mmzone.h 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifndef __ASSEMBLY__
  4. #ifndef __GENERATING_BOUNDS_H
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/bitops.h>
  9. #include <linux/cache.h>
  10. #include <linux/threads.h>
  11. #include <linux/numa.h>
  12. #include <linux/init.h>
  13. #include <linux/seqlock.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/pageblock-flags.h>
  16. #include <generated/bounds.h>
  17. #include <linux/atomic.h>
  18. #include <asm/page.h>
  19. /* Free memory management - zoned buddy allocator. */
  20. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  21. #define MAX_ORDER 11
  22. #else
  23. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  24. #endif
  25. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  26. /*
  27. * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  28. * costly to service. That is between allocation orders which should
  29. * coelesce naturally under reasonable reclaim pressure and those which
  30. * will not.
  31. */
  32. #define PAGE_ALLOC_COSTLY_ORDER 3
  33. #define MIGRATE_UNMOVABLE 0
  34. #define MIGRATE_RECLAIMABLE 1
  35. #define MIGRATE_MOVABLE 2
  36. #define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
  37. #define MIGRATE_RESERVE 3
  38. #define MIGRATE_ISOLATE 4 /* can't allocate from here */
  39. #define MIGRATE_TYPES 5
  40. #define for_each_migratetype_order(order, type) \
  41. for (order = 0; order < MAX_ORDER; order++) \
  42. for (type = 0; type < MIGRATE_TYPES; type++)
  43. extern int page_group_by_mobility_disabled;
  44. static inline int get_pageblock_migratetype(struct page *page)
  45. {
  46. return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  47. }
  48. struct free_area {
  49. struct list_head free_list[MIGRATE_TYPES];
  50. unsigned long nr_free;
  51. };
  52. struct pglist_data;
  53. /*
  54. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  55. * So add a wild amount of padding here to ensure that they fall into separate
  56. * cachelines. There are very few zone structures in the machine, so space
  57. * consumption is not a concern here.
  58. */
  59. #if defined(CONFIG_SMP)
  60. struct zone_padding {
  61. char x[0];
  62. } ____cacheline_internodealigned_in_smp;
  63. #define ZONE_PADDING(name) struct zone_padding name;
  64. #else
  65. #define ZONE_PADDING(name)
  66. #endif
  67. enum zone_stat_item {
  68. /* First 128 byte cacheline (assuming 64 bit words) */
  69. NR_FREE_PAGES,
  70. NR_LRU_BASE,
  71. NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
  72. NR_ACTIVE_ANON, /* " " " " " */
  73. NR_INACTIVE_FILE, /* " " " " " */
  74. NR_ACTIVE_FILE, /* " " " " " */
  75. NR_UNEVICTABLE, /* " " " " " */
  76. NR_MLOCK, /* mlock()ed pages found and moved off LRU */
  77. NR_ANON_PAGES, /* Mapped anonymous pages */
  78. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  79. only modified from process context */
  80. NR_FILE_PAGES,
  81. NR_FILE_DIRTY,
  82. NR_WRITEBACK,
  83. NR_SLAB_RECLAIMABLE,
  84. NR_SLAB_UNRECLAIMABLE,
  85. NR_PAGETABLE, /* used for pagetables */
  86. NR_KERNEL_STACK,
  87. /* Second 128 byte cacheline */
  88. NR_UNSTABLE_NFS, /* NFS unstable pages */
  89. NR_BOUNCE,
  90. NR_VMSCAN_WRITE,
  91. NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
  92. NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
  93. NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
  94. NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
  95. NR_DIRTIED, /* page dirtyings since bootup */
  96. NR_WRITTEN, /* page writings since bootup */
  97. #ifdef CONFIG_NUMA
  98. NUMA_HIT, /* allocated in intended node */
  99. NUMA_MISS, /* allocated in non intended node */
  100. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  101. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  102. NUMA_LOCAL, /* allocation from local node */
  103. NUMA_OTHER, /* allocation from other node */
  104. #endif
  105. NR_ANON_TRANSPARENT_HUGEPAGES,
  106. NR_VM_ZONE_STAT_ITEMS };
  107. /*
  108. * We do arithmetic on the LRU lists in various places in the code,
  109. * so it is important to keep the active lists LRU_ACTIVE higher in
  110. * the array than the corresponding inactive lists, and to keep
  111. * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
  112. *
  113. * This has to be kept in sync with the statistics in zone_stat_item
  114. * above and the descriptions in vmstat_text in mm/vmstat.c
  115. */
  116. #define LRU_BASE 0
  117. #define LRU_ACTIVE 1
  118. #define LRU_FILE 2
  119. enum lru_list {
  120. LRU_INACTIVE_ANON = LRU_BASE,
  121. LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
  122. LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
  123. LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
  124. LRU_UNEVICTABLE,
  125. NR_LRU_LISTS
  126. };
  127. #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
  128. #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
  129. static inline int is_file_lru(enum lru_list l)
  130. {
  131. return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
  132. }
  133. static inline int is_active_lru(enum lru_list l)
  134. {
  135. return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
  136. }
  137. static inline int is_unevictable_lru(enum lru_list l)
  138. {
  139. return (l == LRU_UNEVICTABLE);
  140. }
  141. /* Mask used at gathering information at once (see memcontrol.c) */
  142. #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
  143. #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
  144. #define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
  145. #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
  146. /* Isolate inactive pages */
  147. #define ISOLATE_INACTIVE ((__force isolate_mode_t)0x1)
  148. /* Isolate active pages */
  149. #define ISOLATE_ACTIVE ((__force isolate_mode_t)0x2)
  150. /* LRU Isolation modes. */
  151. typedef unsigned __bitwise__ isolate_mode_t;
  152. enum zone_watermarks {
  153. WMARK_MIN,
  154. WMARK_LOW,
  155. WMARK_HIGH,
  156. NR_WMARK
  157. };
  158. #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
  159. #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
  160. #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
  161. struct per_cpu_pages {
  162. int count; /* number of pages in the list */
  163. int high; /* high watermark, emptying needed */
  164. int batch; /* chunk size for buddy add/remove */
  165. /* Lists of pages, one per migrate type stored on the pcp-lists */
  166. struct list_head lists[MIGRATE_PCPTYPES];
  167. };
  168. struct per_cpu_pageset {
  169. struct per_cpu_pages pcp;
  170. #ifdef CONFIG_NUMA
  171. s8 expire;
  172. #endif
  173. #ifdef CONFIG_SMP
  174. s8 stat_threshold;
  175. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  176. #endif
  177. };
  178. #endif /* !__GENERATING_BOUNDS.H */
  179. enum zone_type {
  180. #ifdef CONFIG_ZONE_DMA
  181. /*
  182. * ZONE_DMA is used when there are devices that are not able
  183. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  184. * carve out the portion of memory that is needed for these devices.
  185. * The range is arch specific.
  186. *
  187. * Some examples
  188. *
  189. * Architecture Limit
  190. * ---------------------------
  191. * parisc, ia64, sparc <4G
  192. * s390 <2G
  193. * arm Various
  194. * alpha Unlimited or 0-16MB.
  195. *
  196. * i386, x86_64 and multiple other arches
  197. * <16M.
  198. */
  199. ZONE_DMA,
  200. #endif
  201. #ifdef CONFIG_ZONE_DMA32
  202. /*
  203. * x86_64 needs two ZONE_DMAs because it supports devices that are
  204. * only able to do DMA to the lower 16M but also 32 bit devices that
  205. * can only do DMA areas below 4G.
  206. */
  207. ZONE_DMA32,
  208. #endif
  209. /*
  210. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  211. * performed on pages in ZONE_NORMAL if the DMA devices support
  212. * transfers to all addressable memory.
  213. */
  214. ZONE_NORMAL,
  215. #ifdef CONFIG_HIGHMEM
  216. /*
  217. * A memory area that is only addressable by the kernel through
  218. * mapping portions into its own address space. This is for example
  219. * used by i386 to allow the kernel to address the memory beyond
  220. * 900MB. The kernel will set up special mappings (page
  221. * table entries on i386) for each page that the kernel needs to
  222. * access.
  223. */
  224. ZONE_HIGHMEM,
  225. #endif
  226. ZONE_MOVABLE,
  227. __MAX_NR_ZONES
  228. };
  229. #ifndef __GENERATING_BOUNDS_H
  230. /*
  231. * When a memory allocation must conform to specific limitations (such
  232. * as being suitable for DMA) the caller will pass in hints to the
  233. * allocator in the gfp_mask, in the zone modifier bits. These bits
  234. * are used to select a priority ordered list of memory zones which
  235. * match the requested limits. See gfp_zone() in include/linux/gfp.h
  236. */
  237. #if MAX_NR_ZONES < 2
  238. #define ZONES_SHIFT 0
  239. #elif MAX_NR_ZONES <= 2
  240. #define ZONES_SHIFT 1
  241. #elif MAX_NR_ZONES <= 4
  242. #define ZONES_SHIFT 2
  243. #else
  244. #error ZONES_SHIFT -- too many zones configured adjust calculation
  245. #endif
  246. struct zone_reclaim_stat {
  247. /*
  248. * The pageout code in vmscan.c keeps track of how many of the
  249. * mem/swap backed and file backed pages are refeferenced.
  250. * The higher the rotated/scanned ratio, the more valuable
  251. * that cache is.
  252. *
  253. * The anon LRU stats live in [0], file LRU stats in [1]
  254. */
  255. unsigned long recent_rotated[2];
  256. unsigned long recent_scanned[2];
  257. };
  258. struct zone {
  259. /* Fields commonly accessed by the page allocator */
  260. /* zone watermarks, access with *_wmark_pages(zone) macros */
  261. unsigned long watermark[NR_WMARK];
  262. /*
  263. * When free pages are below this point, additional steps are taken
  264. * when reading the number of free pages to avoid per-cpu counter
  265. * drift allowing watermarks to be breached
  266. */
  267. unsigned long percpu_drift_mark;
  268. /*
  269. * We don't know if the memory that we're going to allocate will be freeable
  270. * or/and it will be released eventually, so to avoid totally wasting several
  271. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  272. * to run OOM on the lower zones despite there's tons of freeable ram
  273. * on the higher zones). This array is recalculated at runtime if the
  274. * sysctl_lowmem_reserve_ratio sysctl changes.
  275. */
  276. unsigned long lowmem_reserve[MAX_NR_ZONES];
  277. #ifdef CONFIG_NUMA
  278. int node;
  279. /*
  280. * zone reclaim becomes active if more unmapped pages exist.
  281. */
  282. unsigned long min_unmapped_pages;
  283. unsigned long min_slab_pages;
  284. #endif
  285. struct per_cpu_pageset __percpu *pageset;
  286. /*
  287. * free areas of different sizes
  288. */
  289. spinlock_t lock;
  290. int all_unreclaimable; /* All pages pinned */
  291. #ifdef CONFIG_MEMORY_HOTPLUG
  292. /* see spanned/present_pages for more description */
  293. seqlock_t span_seqlock;
  294. #endif
  295. struct free_area free_area[MAX_ORDER];
  296. #ifndef CONFIG_SPARSEMEM
  297. /*
  298. * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
  299. * In SPARSEMEM, this map is stored in struct mem_section
  300. */
  301. unsigned long *pageblock_flags;
  302. #endif /* CONFIG_SPARSEMEM */
  303. #ifdef CONFIG_COMPACTION
  304. /*
  305. * On compaction failure, 1<<compact_defer_shift compactions
  306. * are skipped before trying again. The number attempted since
  307. * last failure is tracked with compact_considered.
  308. */
  309. unsigned int compact_considered;
  310. unsigned int compact_defer_shift;
  311. #endif
  312. ZONE_PADDING(_pad1_)
  313. /* Fields commonly accessed by the page reclaim scanner */
  314. spinlock_t lru_lock;
  315. struct zone_lru {
  316. struct list_head list;
  317. } lru[NR_LRU_LISTS];
  318. struct zone_reclaim_stat reclaim_stat;
  319. unsigned long pages_scanned; /* since last reclaim */
  320. unsigned long flags; /* zone flags, see below */
  321. /* Zone statistics */
  322. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  323. /*
  324. * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
  325. * this zone's LRU. Maintained by the pageout code.
  326. */
  327. unsigned int inactive_ratio;
  328. ZONE_PADDING(_pad2_)
  329. /* Rarely used or read-mostly fields */
  330. /*
  331. * wait_table -- the array holding the hash table
  332. * wait_table_hash_nr_entries -- the size of the hash table array
  333. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  334. *
  335. * The purpose of all these is to keep track of the people
  336. * waiting for a page to become available and make them
  337. * runnable again when possible. The trouble is that this
  338. * consumes a lot of space, especially when so few things
  339. * wait on pages at a given time. So instead of using
  340. * per-page waitqueues, we use a waitqueue hash table.
  341. *
  342. * The bucket discipline is to sleep on the same queue when
  343. * colliding and wake all in that wait queue when removing.
  344. * When something wakes, it must check to be sure its page is
  345. * truly available, a la thundering herd. The cost of a
  346. * collision is great, but given the expected load of the
  347. * table, they should be so rare as to be outweighed by the
  348. * benefits from the saved space.
  349. *
  350. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  351. * primary users of these fields, and in mm/page_alloc.c
  352. * free_area_init_core() performs the initialization of them.
  353. */
  354. wait_queue_head_t * wait_table;
  355. unsigned long wait_table_hash_nr_entries;
  356. unsigned long wait_table_bits;
  357. /*
  358. * Discontig memory support fields.
  359. */
  360. struct pglist_data *zone_pgdat;
  361. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  362. unsigned long zone_start_pfn;
  363. /*
  364. * zone_start_pfn, spanned_pages and present_pages are all
  365. * protected by span_seqlock. It is a seqlock because it has
  366. * to be read outside of zone->lock, and it is done in the main
  367. * allocator path. But, it is written quite infrequently.
  368. *
  369. * The lock is declared along with zone->lock because it is
  370. * frequently read in proximity to zone->lock. It's good to
  371. * give them a chance of being in the same cacheline.
  372. */
  373. unsigned long spanned_pages; /* total size, including holes */
  374. unsigned long present_pages; /* amount of memory (excluding holes) */
  375. /*
  376. * rarely used fields:
  377. */
  378. const char *name;
  379. } ____cacheline_internodealigned_in_smp;
  380. typedef enum {
  381. ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
  382. ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
  383. ZONE_CONGESTED, /* zone has many dirty pages backed by
  384. * a congested BDI
  385. */
  386. } zone_flags_t;
  387. static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
  388. {
  389. set_bit(flag, &zone->flags);
  390. }
  391. static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
  392. {
  393. return test_and_set_bit(flag, &zone->flags);
  394. }
  395. static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
  396. {
  397. clear_bit(flag, &zone->flags);
  398. }
  399. static inline int zone_is_reclaim_congested(const struct zone *zone)
  400. {
  401. return test_bit(ZONE_CONGESTED, &zone->flags);
  402. }
  403. static inline int zone_is_reclaim_locked(const struct zone *zone)
  404. {
  405. return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
  406. }
  407. static inline int zone_is_oom_locked(const struct zone *zone)
  408. {
  409. return test_bit(ZONE_OOM_LOCKED, &zone->flags);
  410. }
  411. /*
  412. * The "priority" of VM scanning is how much of the queues we will scan in one
  413. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  414. * queues ("queue_length >> 12") during an aging round.
  415. */
  416. #define DEF_PRIORITY 12
  417. /* Maximum number of zones on a zonelist */
  418. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  419. #ifdef CONFIG_NUMA
  420. /*
  421. * The NUMA zonelists are doubled because we need zonelists that restrict the
  422. * allocations to a single node for GFP_THISNODE.
  423. *
  424. * [0] : Zonelist with fallback
  425. * [1] : No fallback (GFP_THISNODE)
  426. */
  427. #define MAX_ZONELISTS 2
  428. /*
  429. * We cache key information from each zonelist for smaller cache
  430. * footprint when scanning for free pages in get_page_from_freelist().
  431. *
  432. * 1) The BITMAP fullzones tracks which zones in a zonelist have come
  433. * up short of free memory since the last time (last_fullzone_zap)
  434. * we zero'd fullzones.
  435. * 2) The array z_to_n[] maps each zone in the zonelist to its node
  436. * id, so that we can efficiently evaluate whether that node is
  437. * set in the current tasks mems_allowed.
  438. *
  439. * Both fullzones and z_to_n[] are one-to-one with the zonelist,
  440. * indexed by a zones offset in the zonelist zones[] array.
  441. *
  442. * The get_page_from_freelist() routine does two scans. During the
  443. * first scan, we skip zones whose corresponding bit in 'fullzones'
  444. * is set or whose corresponding node in current->mems_allowed (which
  445. * comes from cpusets) is not set. During the second scan, we bypass
  446. * this zonelist_cache, to ensure we look methodically at each zone.
  447. *
  448. * Once per second, we zero out (zap) fullzones, forcing us to
  449. * reconsider nodes that might have regained more free memory.
  450. * The field last_full_zap is the time we last zapped fullzones.
  451. *
  452. * This mechanism reduces the amount of time we waste repeatedly
  453. * reexaming zones for free memory when they just came up low on
  454. * memory momentarilly ago.
  455. *
  456. * The zonelist_cache struct members logically belong in struct
  457. * zonelist. However, the mempolicy zonelists constructed for
  458. * MPOL_BIND are intentionally variable length (and usually much
  459. * shorter). A general purpose mechanism for handling structs with
  460. * multiple variable length members is more mechanism than we want
  461. * here. We resort to some special case hackery instead.
  462. *
  463. * The MPOL_BIND zonelists don't need this zonelist_cache (in good
  464. * part because they are shorter), so we put the fixed length stuff
  465. * at the front of the zonelist struct, ending in a variable length
  466. * zones[], as is needed by MPOL_BIND.
  467. *
  468. * Then we put the optional zonelist cache on the end of the zonelist
  469. * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
  470. * the fixed length portion at the front of the struct. This pointer
  471. * both enables us to find the zonelist cache, and in the case of
  472. * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
  473. * to know that the zonelist cache is not there.
  474. *
  475. * The end result is that struct zonelists come in two flavors:
  476. * 1) The full, fixed length version, shown below, and
  477. * 2) The custom zonelists for MPOL_BIND.
  478. * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
  479. *
  480. * Even though there may be multiple CPU cores on a node modifying
  481. * fullzones or last_full_zap in the same zonelist_cache at the same
  482. * time, we don't lock it. This is just hint data - if it is wrong now
  483. * and then, the allocator will still function, perhaps a bit slower.
  484. */
  485. struct zonelist_cache {
  486. unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
  487. DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
  488. unsigned long last_full_zap; /* when last zap'd (jiffies) */
  489. };
  490. #else
  491. #define MAX_ZONELISTS 1
  492. struct zonelist_cache;
  493. #endif
  494. /*
  495. * This struct contains information about a zone in a zonelist. It is stored
  496. * here to avoid dereferences into large structures and lookups of tables
  497. */
  498. struct zoneref {
  499. struct zone *zone; /* Pointer to actual zone */
  500. int zone_idx; /* zone_idx(zoneref->zone) */
  501. };
  502. /*
  503. * One allocation request operates on a zonelist. A zonelist
  504. * is a list of zones, the first one is the 'goal' of the
  505. * allocation, the other zones are fallback zones, in decreasing
  506. * priority.
  507. *
  508. * If zlcache_ptr is not NULL, then it is just the address of zlcache,
  509. * as explained above. If zlcache_ptr is NULL, there is no zlcache.
  510. * *
  511. * To speed the reading of the zonelist, the zonerefs contain the zone index
  512. * of the entry being read. Helper functions to access information given
  513. * a struct zoneref are
  514. *
  515. * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
  516. * zonelist_zone_idx() - Return the index of the zone for an entry
  517. * zonelist_node_idx() - Return the index of the node for an entry
  518. */
  519. struct zonelist {
  520. struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
  521. struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
  522. #ifdef CONFIG_NUMA
  523. struct zonelist_cache zlcache; // optional ...
  524. #endif
  525. };
  526. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  527. struct node_active_region {
  528. unsigned long start_pfn;
  529. unsigned long end_pfn;
  530. int nid;
  531. };
  532. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  533. #ifndef CONFIG_DISCONTIGMEM
  534. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  535. extern struct page *mem_map;
  536. #endif
  537. /*
  538. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  539. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  540. * zone denotes.
  541. *
  542. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  543. * it's memory layout.
  544. *
  545. * Memory statistics and page replacement data structures are maintained on a
  546. * per-zone basis.
  547. */
  548. struct bootmem_data;
  549. typedef struct pglist_data {
  550. struct zone node_zones[MAX_NR_ZONES];
  551. struct zonelist node_zonelists[MAX_ZONELISTS];
  552. int nr_zones;
  553. #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
  554. struct page *node_mem_map;
  555. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  556. struct page_cgroup *node_page_cgroup;
  557. #endif
  558. #endif
  559. #ifndef CONFIG_NO_BOOTMEM
  560. struct bootmem_data *bdata;
  561. #endif
  562. #ifdef CONFIG_MEMORY_HOTPLUG
  563. /*
  564. * Must be held any time you expect node_start_pfn, node_present_pages
  565. * or node_spanned_pages stay constant. Holding this will also
  566. * guarantee that any pfn_valid() stays that way.
  567. *
  568. * Nests above zone->lock and zone->size_seqlock.
  569. */
  570. spinlock_t node_size_lock;
  571. #endif
  572. unsigned long node_start_pfn;
  573. unsigned long node_present_pages; /* total number of physical pages */
  574. unsigned long node_spanned_pages; /* total size of physical page
  575. range, including holes */
  576. int node_id;
  577. wait_queue_head_t kswapd_wait;
  578. struct task_struct *kswapd;
  579. int kswapd_max_order;
  580. enum zone_type classzone_idx;
  581. } pg_data_t;
  582. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  583. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  584. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  585. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  586. #else
  587. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  588. #endif
  589. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  590. #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
  591. #define node_end_pfn(nid) ({\
  592. pg_data_t *__pgdat = NODE_DATA(nid);\
  593. __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
  594. })
  595. #include <linux/memory_hotplug.h>
  596. extern struct mutex zonelists_mutex;
  597. void build_all_zonelists(void *data);
  598. void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
  599. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  600. int classzone_idx, int alloc_flags);
  601. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  602. int classzone_idx, int alloc_flags);
  603. enum memmap_context {
  604. MEMMAP_EARLY,
  605. MEMMAP_HOTPLUG,
  606. };
  607. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  608. unsigned long size,
  609. enum memmap_context context);
  610. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  611. void memory_present(int nid, unsigned long start, unsigned long end);
  612. #else
  613. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  614. #endif
  615. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  616. int local_memory_node(int node_id);
  617. #else
  618. static inline int local_memory_node(int node_id) { return node_id; };
  619. #endif
  620. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  621. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  622. #endif
  623. /*
  624. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  625. */
  626. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  627. static inline int populated_zone(struct zone *zone)
  628. {
  629. return (!!zone->present_pages);
  630. }
  631. extern int movable_zone;
  632. static inline int zone_movable_is_highmem(void)
  633. {
  634. #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  635. return movable_zone == ZONE_HIGHMEM;
  636. #else
  637. return 0;
  638. #endif
  639. }
  640. static inline int is_highmem_idx(enum zone_type idx)
  641. {
  642. #ifdef CONFIG_HIGHMEM
  643. return (idx == ZONE_HIGHMEM ||
  644. (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
  645. #else
  646. return 0;
  647. #endif
  648. }
  649. static inline int is_normal_idx(enum zone_type idx)
  650. {
  651. return (idx == ZONE_NORMAL);
  652. }
  653. /**
  654. * is_highmem - helper function to quickly check if a struct zone is a
  655. * highmem zone or not. This is an attempt to keep references
  656. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  657. * @zone - pointer to struct zone variable
  658. */
  659. static inline int is_highmem(struct zone *zone)
  660. {
  661. #ifdef CONFIG_HIGHMEM
  662. int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
  663. return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
  664. (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
  665. zone_movable_is_highmem());
  666. #else
  667. return 0;
  668. #endif
  669. }
  670. static inline int is_normal(struct zone *zone)
  671. {
  672. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  673. }
  674. static inline int is_dma32(struct zone *zone)
  675. {
  676. #ifdef CONFIG_ZONE_DMA32
  677. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  678. #else
  679. return 0;
  680. #endif
  681. }
  682. static inline int is_dma(struct zone *zone)
  683. {
  684. #ifdef CONFIG_ZONE_DMA
  685. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  686. #else
  687. return 0;
  688. #endif
  689. }
  690. /* These two functions are used to setup the per zone pages min values */
  691. struct ctl_table;
  692. int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
  693. void __user *, size_t *, loff_t *);
  694. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  695. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
  696. void __user *, size_t *, loff_t *);
  697. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
  698. void __user *, size_t *, loff_t *);
  699. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  700. void __user *, size_t *, loff_t *);
  701. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  702. void __user *, size_t *, loff_t *);
  703. extern int numa_zonelist_order_handler(struct ctl_table *, int,
  704. void __user *, size_t *, loff_t *);
  705. extern char numa_zonelist_order[];
  706. #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
  707. #ifndef CONFIG_NEED_MULTIPLE_NODES
  708. extern struct pglist_data contig_page_data;
  709. #define NODE_DATA(nid) (&contig_page_data)
  710. #define NODE_MEM_MAP(nid) mem_map
  711. #else /* CONFIG_NEED_MULTIPLE_NODES */
  712. #include <asm/mmzone.h>
  713. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  714. extern struct pglist_data *first_online_pgdat(void);
  715. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  716. extern struct zone *next_zone(struct zone *zone);
  717. /**
  718. * for_each_online_pgdat - helper macro to iterate over all online nodes
  719. * @pgdat - pointer to a pg_data_t variable
  720. */
  721. #define for_each_online_pgdat(pgdat) \
  722. for (pgdat = first_online_pgdat(); \
  723. pgdat; \
  724. pgdat = next_online_pgdat(pgdat))
  725. /**
  726. * for_each_zone - helper macro to iterate over all memory zones
  727. * @zone - pointer to struct zone variable
  728. *
  729. * The user only needs to declare the zone variable, for_each_zone
  730. * fills it in.
  731. */
  732. #define for_each_zone(zone) \
  733. for (zone = (first_online_pgdat())->node_zones; \
  734. zone; \
  735. zone = next_zone(zone))
  736. #define for_each_populated_zone(zone) \
  737. for (zone = (first_online_pgdat())->node_zones; \
  738. zone; \
  739. zone = next_zone(zone)) \
  740. if (!populated_zone(zone)) \
  741. ; /* do nothing */ \
  742. else
  743. static inline struct zone *zonelist_zone(struct zoneref *zoneref)
  744. {
  745. return zoneref->zone;
  746. }
  747. static inline int zonelist_zone_idx(struct zoneref *zoneref)
  748. {
  749. return zoneref->zone_idx;
  750. }
  751. static inline int zonelist_node_idx(struct zoneref *zoneref)
  752. {
  753. #ifdef CONFIG_NUMA
  754. /* zone_to_nid not available in this context */
  755. return zoneref->zone->node;
  756. #else
  757. return 0;
  758. #endif /* CONFIG_NUMA */
  759. }
  760. /**
  761. * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
  762. * @z - The cursor used as a starting point for the search
  763. * @highest_zoneidx - The zone index of the highest zone to return
  764. * @nodes - An optional nodemask to filter the zonelist with
  765. * @zone - The first suitable zone found is returned via this parameter
  766. *
  767. * This function returns the next zone at or below a given zone index that is
  768. * within the allowed nodemask using a cursor as the starting point for the
  769. * search. The zoneref returned is a cursor that represents the current zone
  770. * being examined. It should be advanced by one before calling
  771. * next_zones_zonelist again.
  772. */
  773. struct zoneref *next_zones_zonelist(struct zoneref *z,
  774. enum zone_type highest_zoneidx,
  775. nodemask_t *nodes,
  776. struct zone **zone);
  777. /**
  778. * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
  779. * @zonelist - The zonelist to search for a suitable zone
  780. * @highest_zoneidx - The zone index of the highest zone to return
  781. * @nodes - An optional nodemask to filter the zonelist with
  782. * @zone - The first suitable zone found is returned via this parameter
  783. *
  784. * This function returns the first zone at or below a given zone index that is
  785. * within the allowed nodemask. The zoneref returned is a cursor that can be
  786. * used to iterate the zonelist with next_zones_zonelist by advancing it by
  787. * one before calling.
  788. */
  789. static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
  790. enum zone_type highest_zoneidx,
  791. nodemask_t *nodes,
  792. struct zone **zone)
  793. {
  794. return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
  795. zone);
  796. }
  797. /**
  798. * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
  799. * @zone - The current zone in the iterator
  800. * @z - The current pointer within zonelist->zones being iterated
  801. * @zlist - The zonelist being iterated
  802. * @highidx - The zone index of the highest zone to return
  803. * @nodemask - Nodemask allowed by the allocator
  804. *
  805. * This iterator iterates though all zones at or below a given zone index and
  806. * within a given nodemask
  807. */
  808. #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
  809. for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
  810. zone; \
  811. z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
  812. /**
  813. * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
  814. * @zone - The current zone in the iterator
  815. * @z - The current pointer within zonelist->zones being iterated
  816. * @zlist - The zonelist being iterated
  817. * @highidx - The zone index of the highest zone to return
  818. *
  819. * This iterator iterates though all zones at or below a given zone index.
  820. */
  821. #define for_each_zone_zonelist(zone, z, zlist, highidx) \
  822. for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
  823. #ifdef CONFIG_SPARSEMEM
  824. #include <asm/sparsemem.h>
  825. #endif
  826. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  827. !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  828. static inline unsigned long early_pfn_to_nid(unsigned long pfn)
  829. {
  830. return 0;
  831. }
  832. #endif
  833. #ifdef CONFIG_FLATMEM
  834. #define pfn_to_nid(pfn) (0)
  835. #endif
  836. #ifdef CONFIG_SPARSEMEM
  837. /*
  838. * SECTION_SHIFT #bits space required to store a section #
  839. *
  840. * PA_SECTION_SHIFT physical address to/from section number
  841. * PFN_SECTION_SHIFT pfn to/from section number
  842. */
  843. #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
  844. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  845. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  846. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  847. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  848. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  849. #define SECTION_BLOCKFLAGS_BITS \
  850. ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
  851. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  852. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  853. #endif
  854. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  855. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  856. #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
  857. #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
  858. struct page;
  859. struct page_cgroup;
  860. struct mem_section {
  861. /*
  862. * This is, logically, a pointer to an array of struct
  863. * pages. However, it is stored with some other magic.
  864. * (see sparse.c::sparse_init_one_section())
  865. *
  866. * Additionally during early boot we encode node id of
  867. * the location of the section here to guide allocation.
  868. * (see sparse.c::memory_present())
  869. *
  870. * Making it a UL at least makes someone do a cast
  871. * before using it wrong.
  872. */
  873. unsigned long section_mem_map;
  874. /* See declaration of similar field in struct zone */
  875. unsigned long *pageblock_flags;
  876. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  877. /*
  878. * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
  879. * section. (see memcontrol.h/page_cgroup.h about this.)
  880. */
  881. struct page_cgroup *page_cgroup;
  882. unsigned long pad;
  883. #endif
  884. };
  885. #ifdef CONFIG_SPARSEMEM_EXTREME
  886. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  887. #else
  888. #define SECTIONS_PER_ROOT 1
  889. #endif
  890. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  891. #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
  892. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  893. #ifdef CONFIG_SPARSEMEM_EXTREME
  894. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  895. #else
  896. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  897. #endif
  898. static inline struct mem_section *__nr_to_section(unsigned long nr)
  899. {
  900. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  901. return NULL;
  902. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  903. }
  904. extern int __section_nr(struct mem_section* ms);
  905. extern unsigned long usemap_size(void);
  906. /*
  907. * We use the lower bits of the mem_map pointer to store
  908. * a little bit of information. There should be at least
  909. * 3 bits here due to 32-bit alignment.
  910. */
  911. #define SECTION_MARKED_PRESENT (1UL<<0)
  912. #define SECTION_HAS_MEM_MAP (1UL<<1)
  913. #define SECTION_MAP_LAST_BIT (1UL<<2)
  914. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  915. #define SECTION_NID_SHIFT 2
  916. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  917. {
  918. unsigned long map = section->section_mem_map;
  919. map &= SECTION_MAP_MASK;
  920. return (struct page *)map;
  921. }
  922. static inline int present_section(struct mem_section *section)
  923. {
  924. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  925. }
  926. static inline int present_section_nr(unsigned long nr)
  927. {
  928. return present_section(__nr_to_section(nr));
  929. }
  930. static inline int valid_section(struct mem_section *section)
  931. {
  932. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  933. }
  934. static inline int valid_section_nr(unsigned long nr)
  935. {
  936. return valid_section(__nr_to_section(nr));
  937. }
  938. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  939. {
  940. return __nr_to_section(pfn_to_section_nr(pfn));
  941. }
  942. #ifndef CONFIG_HAVE_ARCH_PFN_VALID
  943. static inline int pfn_valid(unsigned long pfn)
  944. {
  945. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  946. return 0;
  947. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  948. }
  949. #endif
  950. static inline int pfn_present(unsigned long pfn)
  951. {
  952. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  953. return 0;
  954. return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
  955. }
  956. /*
  957. * These are _only_ used during initialisation, therefore they
  958. * can use __initdata ... They could have names to indicate
  959. * this restriction.
  960. */
  961. #ifdef CONFIG_NUMA
  962. #define pfn_to_nid(pfn) \
  963. ({ \
  964. unsigned long __pfn_to_nid_pfn = (pfn); \
  965. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  966. })
  967. #else
  968. #define pfn_to_nid(pfn) (0)
  969. #endif
  970. #define early_pfn_valid(pfn) pfn_valid(pfn)
  971. void sparse_init(void);
  972. #else
  973. #define sparse_init() do {} while (0)
  974. #define sparse_index_init(_sec, _nid) do {} while (0)
  975. #endif /* CONFIG_SPARSEMEM */
  976. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  977. bool early_pfn_in_nid(unsigned long pfn, int nid);
  978. #else
  979. #define early_pfn_in_nid(pfn, nid) (1)
  980. #endif
  981. #ifndef early_pfn_valid
  982. #define early_pfn_valid(pfn) (1)
  983. #endif
  984. void memory_present(int nid, unsigned long start, unsigned long end);
  985. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  986. /*
  987. * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
  988. * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
  989. * pfn_valid_within() should be used in this case; we optimise this away
  990. * when we have no holes within a MAX_ORDER_NR_PAGES block.
  991. */
  992. #ifdef CONFIG_HOLES_IN_ZONE
  993. #define pfn_valid_within(pfn) pfn_valid(pfn)
  994. #else
  995. #define pfn_valid_within(pfn) (1)
  996. #endif
  997. #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
  998. /*
  999. * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
  1000. * associated with it or not. In FLATMEM, it is expected that holes always
  1001. * have valid memmap as long as there is valid PFNs either side of the hole.
  1002. * In SPARSEMEM, it is assumed that a valid section has a memmap for the
  1003. * entire section.
  1004. *
  1005. * However, an ARM, and maybe other embedded architectures in the future
  1006. * free memmap backing holes to save memory on the assumption the memmap is
  1007. * never used. The page_zone linkages are then broken even though pfn_valid()
  1008. * returns true. A walker of the full memmap must then do this additional
  1009. * check to ensure the memmap they are looking at is sane by making sure
  1010. * the zone and PFN linkages are still valid. This is expensive, but walkers
  1011. * of the full memmap are extremely rare.
  1012. */
  1013. int memmap_valid_within(unsigned long pfn,
  1014. struct page *page, struct zone *zone);
  1015. #else
  1016. static inline int memmap_valid_within(unsigned long pfn,
  1017. struct page *page, struct zone *zone)
  1018. {
  1019. return 1;
  1020. }
  1021. #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
  1022. #endif /* !__GENERATING_BOUNDS.H */
  1023. #endif /* !__ASSEMBLY__ */
  1024. #endif /* _LINUX_MMZONE_H */