intel_display.c 179 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/module.h>
  27. #include <linux/input.h>
  28. #include <linux/i2c.h>
  29. #include <linux/kernel.h>
  30. #include <linux/slab.h>
  31. #include <linux/vgaarb.h>
  32. #include "drmP.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "i915_trace.h"
  37. #include "drm_dp_helper.h"
  38. #include "drm_crtc_helper.h"
  39. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  40. bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
  41. static void intel_update_watermarks(struct drm_device *dev);
  42. static void intel_increase_pllclock(struct drm_crtc *crtc);
  43. static void intel_crtc_update_cursor(struct drm_crtc *crtc);
  44. typedef struct {
  45. /* given values */
  46. int n;
  47. int m1, m2;
  48. int p1, p2;
  49. /* derived values */
  50. int dot;
  51. int vco;
  52. int m;
  53. int p;
  54. } intel_clock_t;
  55. typedef struct {
  56. int min, max;
  57. } intel_range_t;
  58. typedef struct {
  59. int dot_limit;
  60. int p2_slow, p2_fast;
  61. } intel_p2_t;
  62. #define INTEL_P2_NUM 2
  63. typedef struct intel_limit intel_limit_t;
  64. struct intel_limit {
  65. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  66. intel_p2_t p2;
  67. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  68. int, int, intel_clock_t *);
  69. };
  70. #define I8XX_DOT_MIN 25000
  71. #define I8XX_DOT_MAX 350000
  72. #define I8XX_VCO_MIN 930000
  73. #define I8XX_VCO_MAX 1400000
  74. #define I8XX_N_MIN 3
  75. #define I8XX_N_MAX 16
  76. #define I8XX_M_MIN 96
  77. #define I8XX_M_MAX 140
  78. #define I8XX_M1_MIN 18
  79. #define I8XX_M1_MAX 26
  80. #define I8XX_M2_MIN 6
  81. #define I8XX_M2_MAX 16
  82. #define I8XX_P_MIN 4
  83. #define I8XX_P_MAX 128
  84. #define I8XX_P1_MIN 2
  85. #define I8XX_P1_MAX 33
  86. #define I8XX_P1_LVDS_MIN 1
  87. #define I8XX_P1_LVDS_MAX 6
  88. #define I8XX_P2_SLOW 4
  89. #define I8XX_P2_FAST 2
  90. #define I8XX_P2_LVDS_SLOW 14
  91. #define I8XX_P2_LVDS_FAST 7
  92. #define I8XX_P2_SLOW_LIMIT 165000
  93. #define I9XX_DOT_MIN 20000
  94. #define I9XX_DOT_MAX 400000
  95. #define I9XX_VCO_MIN 1400000
  96. #define I9XX_VCO_MAX 2800000
  97. #define PINEVIEW_VCO_MIN 1700000
  98. #define PINEVIEW_VCO_MAX 3500000
  99. #define I9XX_N_MIN 1
  100. #define I9XX_N_MAX 6
  101. /* Pineview's Ncounter is a ring counter */
  102. #define PINEVIEW_N_MIN 3
  103. #define PINEVIEW_N_MAX 6
  104. #define I9XX_M_MIN 70
  105. #define I9XX_M_MAX 120
  106. #define PINEVIEW_M_MIN 2
  107. #define PINEVIEW_M_MAX 256
  108. #define I9XX_M1_MIN 10
  109. #define I9XX_M1_MAX 22
  110. #define I9XX_M2_MIN 5
  111. #define I9XX_M2_MAX 9
  112. /* Pineview M1 is reserved, and must be 0 */
  113. #define PINEVIEW_M1_MIN 0
  114. #define PINEVIEW_M1_MAX 0
  115. #define PINEVIEW_M2_MIN 0
  116. #define PINEVIEW_M2_MAX 254
  117. #define I9XX_P_SDVO_DAC_MIN 5
  118. #define I9XX_P_SDVO_DAC_MAX 80
  119. #define I9XX_P_LVDS_MIN 7
  120. #define I9XX_P_LVDS_MAX 98
  121. #define PINEVIEW_P_LVDS_MIN 7
  122. #define PINEVIEW_P_LVDS_MAX 112
  123. #define I9XX_P1_MIN 1
  124. #define I9XX_P1_MAX 8
  125. #define I9XX_P2_SDVO_DAC_SLOW 10
  126. #define I9XX_P2_SDVO_DAC_FAST 5
  127. #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
  128. #define I9XX_P2_LVDS_SLOW 14
  129. #define I9XX_P2_LVDS_FAST 7
  130. #define I9XX_P2_LVDS_SLOW_LIMIT 112000
  131. /*The parameter is for SDVO on G4x platform*/
  132. #define G4X_DOT_SDVO_MIN 25000
  133. #define G4X_DOT_SDVO_MAX 270000
  134. #define G4X_VCO_MIN 1750000
  135. #define G4X_VCO_MAX 3500000
  136. #define G4X_N_SDVO_MIN 1
  137. #define G4X_N_SDVO_MAX 4
  138. #define G4X_M_SDVO_MIN 104
  139. #define G4X_M_SDVO_MAX 138
  140. #define G4X_M1_SDVO_MIN 17
  141. #define G4X_M1_SDVO_MAX 23
  142. #define G4X_M2_SDVO_MIN 5
  143. #define G4X_M2_SDVO_MAX 11
  144. #define G4X_P_SDVO_MIN 10
  145. #define G4X_P_SDVO_MAX 30
  146. #define G4X_P1_SDVO_MIN 1
  147. #define G4X_P1_SDVO_MAX 3
  148. #define G4X_P2_SDVO_SLOW 10
  149. #define G4X_P2_SDVO_FAST 10
  150. #define G4X_P2_SDVO_LIMIT 270000
  151. /*The parameter is for HDMI_DAC on G4x platform*/
  152. #define G4X_DOT_HDMI_DAC_MIN 22000
  153. #define G4X_DOT_HDMI_DAC_MAX 400000
  154. #define G4X_N_HDMI_DAC_MIN 1
  155. #define G4X_N_HDMI_DAC_MAX 4
  156. #define G4X_M_HDMI_DAC_MIN 104
  157. #define G4X_M_HDMI_DAC_MAX 138
  158. #define G4X_M1_HDMI_DAC_MIN 16
  159. #define G4X_M1_HDMI_DAC_MAX 23
  160. #define G4X_M2_HDMI_DAC_MIN 5
  161. #define G4X_M2_HDMI_DAC_MAX 11
  162. #define G4X_P_HDMI_DAC_MIN 5
  163. #define G4X_P_HDMI_DAC_MAX 80
  164. #define G4X_P1_HDMI_DAC_MIN 1
  165. #define G4X_P1_HDMI_DAC_MAX 8
  166. #define G4X_P2_HDMI_DAC_SLOW 10
  167. #define G4X_P2_HDMI_DAC_FAST 5
  168. #define G4X_P2_HDMI_DAC_LIMIT 165000
  169. /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
  170. #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
  171. #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
  172. #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
  173. #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
  174. #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
  175. #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
  176. #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
  177. #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
  178. #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
  179. #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
  180. #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
  181. #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
  182. #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
  183. #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
  184. #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
  185. #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
  186. #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
  187. /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
  188. #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
  189. #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
  190. #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
  191. #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
  192. #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
  193. #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
  194. #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
  195. #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
  196. #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
  197. #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
  198. #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
  199. #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
  200. #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
  201. #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
  202. #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
  203. #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
  204. #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
  205. /*The parameter is for DISPLAY PORT on G4x platform*/
  206. #define G4X_DOT_DISPLAY_PORT_MIN 161670
  207. #define G4X_DOT_DISPLAY_PORT_MAX 227000
  208. #define G4X_N_DISPLAY_PORT_MIN 1
  209. #define G4X_N_DISPLAY_PORT_MAX 2
  210. #define G4X_M_DISPLAY_PORT_MIN 97
  211. #define G4X_M_DISPLAY_PORT_MAX 108
  212. #define G4X_M1_DISPLAY_PORT_MIN 0x10
  213. #define G4X_M1_DISPLAY_PORT_MAX 0x12
  214. #define G4X_M2_DISPLAY_PORT_MIN 0x05
  215. #define G4X_M2_DISPLAY_PORT_MAX 0x06
  216. #define G4X_P_DISPLAY_PORT_MIN 10
  217. #define G4X_P_DISPLAY_PORT_MAX 20
  218. #define G4X_P1_DISPLAY_PORT_MIN 1
  219. #define G4X_P1_DISPLAY_PORT_MAX 2
  220. #define G4X_P2_DISPLAY_PORT_SLOW 10
  221. #define G4X_P2_DISPLAY_PORT_FAST 10
  222. #define G4X_P2_DISPLAY_PORT_LIMIT 0
  223. /* Ironlake / Sandybridge */
  224. /* as we calculate clock using (register_value + 2) for
  225. N/M1/M2, so here the range value for them is (actual_value-2).
  226. */
  227. #define IRONLAKE_DOT_MIN 25000
  228. #define IRONLAKE_DOT_MAX 350000
  229. #define IRONLAKE_VCO_MIN 1760000
  230. #define IRONLAKE_VCO_MAX 3510000
  231. #define IRONLAKE_M1_MIN 12
  232. #define IRONLAKE_M1_MAX 22
  233. #define IRONLAKE_M2_MIN 5
  234. #define IRONLAKE_M2_MAX 9
  235. #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
  236. /* We have parameter ranges for different type of outputs. */
  237. /* DAC & HDMI Refclk 120Mhz */
  238. #define IRONLAKE_DAC_N_MIN 1
  239. #define IRONLAKE_DAC_N_MAX 5
  240. #define IRONLAKE_DAC_M_MIN 79
  241. #define IRONLAKE_DAC_M_MAX 127
  242. #define IRONLAKE_DAC_P_MIN 5
  243. #define IRONLAKE_DAC_P_MAX 80
  244. #define IRONLAKE_DAC_P1_MIN 1
  245. #define IRONLAKE_DAC_P1_MAX 8
  246. #define IRONLAKE_DAC_P2_SLOW 10
  247. #define IRONLAKE_DAC_P2_FAST 5
  248. /* LVDS single-channel 120Mhz refclk */
  249. #define IRONLAKE_LVDS_S_N_MIN 1
  250. #define IRONLAKE_LVDS_S_N_MAX 3
  251. #define IRONLAKE_LVDS_S_M_MIN 79
  252. #define IRONLAKE_LVDS_S_M_MAX 118
  253. #define IRONLAKE_LVDS_S_P_MIN 28
  254. #define IRONLAKE_LVDS_S_P_MAX 112
  255. #define IRONLAKE_LVDS_S_P1_MIN 2
  256. #define IRONLAKE_LVDS_S_P1_MAX 8
  257. #define IRONLAKE_LVDS_S_P2_SLOW 14
  258. #define IRONLAKE_LVDS_S_P2_FAST 14
  259. /* LVDS dual-channel 120Mhz refclk */
  260. #define IRONLAKE_LVDS_D_N_MIN 1
  261. #define IRONLAKE_LVDS_D_N_MAX 3
  262. #define IRONLAKE_LVDS_D_M_MIN 79
  263. #define IRONLAKE_LVDS_D_M_MAX 127
  264. #define IRONLAKE_LVDS_D_P_MIN 14
  265. #define IRONLAKE_LVDS_D_P_MAX 56
  266. #define IRONLAKE_LVDS_D_P1_MIN 2
  267. #define IRONLAKE_LVDS_D_P1_MAX 8
  268. #define IRONLAKE_LVDS_D_P2_SLOW 7
  269. #define IRONLAKE_LVDS_D_P2_FAST 7
  270. /* LVDS single-channel 100Mhz refclk */
  271. #define IRONLAKE_LVDS_S_SSC_N_MIN 1
  272. #define IRONLAKE_LVDS_S_SSC_N_MAX 2
  273. #define IRONLAKE_LVDS_S_SSC_M_MIN 79
  274. #define IRONLAKE_LVDS_S_SSC_M_MAX 126
  275. #define IRONLAKE_LVDS_S_SSC_P_MIN 28
  276. #define IRONLAKE_LVDS_S_SSC_P_MAX 112
  277. #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
  278. #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
  279. #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
  280. #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
  281. /* LVDS dual-channel 100Mhz refclk */
  282. #define IRONLAKE_LVDS_D_SSC_N_MIN 1
  283. #define IRONLAKE_LVDS_D_SSC_N_MAX 3
  284. #define IRONLAKE_LVDS_D_SSC_M_MIN 79
  285. #define IRONLAKE_LVDS_D_SSC_M_MAX 126
  286. #define IRONLAKE_LVDS_D_SSC_P_MIN 14
  287. #define IRONLAKE_LVDS_D_SSC_P_MAX 42
  288. #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
  289. #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
  290. #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
  291. #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
  292. /* DisplayPort */
  293. #define IRONLAKE_DP_N_MIN 1
  294. #define IRONLAKE_DP_N_MAX 2
  295. #define IRONLAKE_DP_M_MIN 81
  296. #define IRONLAKE_DP_M_MAX 90
  297. #define IRONLAKE_DP_P_MIN 10
  298. #define IRONLAKE_DP_P_MAX 20
  299. #define IRONLAKE_DP_P2_FAST 10
  300. #define IRONLAKE_DP_P2_SLOW 10
  301. #define IRONLAKE_DP_P2_LIMIT 0
  302. #define IRONLAKE_DP_P1_MIN 1
  303. #define IRONLAKE_DP_P1_MAX 2
  304. /* FDI */
  305. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  306. static bool
  307. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  308. int target, int refclk, intel_clock_t *best_clock);
  309. static bool
  310. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  311. int target, int refclk, intel_clock_t *best_clock);
  312. static bool
  313. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  314. int target, int refclk, intel_clock_t *best_clock);
  315. static bool
  316. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  317. int target, int refclk, intel_clock_t *best_clock);
  318. static const intel_limit_t intel_limits_i8xx_dvo = {
  319. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  320. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  321. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  322. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  323. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  324. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  325. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  326. .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
  327. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  328. .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
  329. .find_pll = intel_find_best_PLL,
  330. };
  331. static const intel_limit_t intel_limits_i8xx_lvds = {
  332. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  333. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  334. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  335. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  336. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  337. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  338. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  339. .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
  340. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  341. .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
  342. .find_pll = intel_find_best_PLL,
  343. };
  344. static const intel_limit_t intel_limits_i9xx_sdvo = {
  345. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  346. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  347. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  348. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  349. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  350. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  351. .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
  352. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  353. .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
  354. .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
  355. .find_pll = intel_find_best_PLL,
  356. };
  357. static const intel_limit_t intel_limits_i9xx_lvds = {
  358. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  359. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  360. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  361. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  362. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  363. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  364. .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
  365. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  366. /* The single-channel range is 25-112Mhz, and dual-channel
  367. * is 80-224Mhz. Prefer single channel as much as possible.
  368. */
  369. .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
  370. .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
  371. .find_pll = intel_find_best_PLL,
  372. };
  373. /* below parameter and function is for G4X Chipset Family*/
  374. static const intel_limit_t intel_limits_g4x_sdvo = {
  375. .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
  376. .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
  377. .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
  378. .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
  379. .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
  380. .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
  381. .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
  382. .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
  383. .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
  384. .p2_slow = G4X_P2_SDVO_SLOW,
  385. .p2_fast = G4X_P2_SDVO_FAST
  386. },
  387. .find_pll = intel_g4x_find_best_PLL,
  388. };
  389. static const intel_limit_t intel_limits_g4x_hdmi = {
  390. .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
  391. .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
  392. .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
  393. .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
  394. .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
  395. .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
  396. .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
  397. .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
  398. .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
  399. .p2_slow = G4X_P2_HDMI_DAC_SLOW,
  400. .p2_fast = G4X_P2_HDMI_DAC_FAST
  401. },
  402. .find_pll = intel_g4x_find_best_PLL,
  403. };
  404. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  405. .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
  406. .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
  407. .vco = { .min = G4X_VCO_MIN,
  408. .max = G4X_VCO_MAX },
  409. .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
  410. .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
  411. .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
  412. .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
  413. .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
  414. .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
  415. .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
  416. .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
  417. .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
  418. .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
  419. .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
  420. .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
  421. .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
  422. .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
  423. .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
  424. },
  425. .find_pll = intel_g4x_find_best_PLL,
  426. };
  427. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  428. .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
  429. .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
  430. .vco = { .min = G4X_VCO_MIN,
  431. .max = G4X_VCO_MAX },
  432. .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
  433. .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
  434. .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
  435. .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
  436. .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
  437. .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
  438. .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
  439. .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
  440. .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
  441. .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
  442. .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
  443. .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
  444. .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
  445. .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
  446. .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
  447. },
  448. .find_pll = intel_g4x_find_best_PLL,
  449. };
  450. static const intel_limit_t intel_limits_g4x_display_port = {
  451. .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
  452. .max = G4X_DOT_DISPLAY_PORT_MAX },
  453. .vco = { .min = G4X_VCO_MIN,
  454. .max = G4X_VCO_MAX},
  455. .n = { .min = G4X_N_DISPLAY_PORT_MIN,
  456. .max = G4X_N_DISPLAY_PORT_MAX },
  457. .m = { .min = G4X_M_DISPLAY_PORT_MIN,
  458. .max = G4X_M_DISPLAY_PORT_MAX },
  459. .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
  460. .max = G4X_M1_DISPLAY_PORT_MAX },
  461. .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
  462. .max = G4X_M2_DISPLAY_PORT_MAX },
  463. .p = { .min = G4X_P_DISPLAY_PORT_MIN,
  464. .max = G4X_P_DISPLAY_PORT_MAX },
  465. .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
  466. .max = G4X_P1_DISPLAY_PORT_MAX},
  467. .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
  468. .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
  469. .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
  470. .find_pll = intel_find_pll_g4x_dp,
  471. };
  472. static const intel_limit_t intel_limits_pineview_sdvo = {
  473. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
  474. .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
  475. .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
  476. .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
  477. .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
  478. .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
  479. .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
  480. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  481. .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
  482. .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
  483. .find_pll = intel_find_best_PLL,
  484. };
  485. static const intel_limit_t intel_limits_pineview_lvds = {
  486. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  487. .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
  488. .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
  489. .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
  490. .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
  491. .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
  492. .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
  493. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  494. /* Pineview only supports single-channel mode. */
  495. .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
  496. .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
  497. .find_pll = intel_find_best_PLL,
  498. };
  499. static const intel_limit_t intel_limits_ironlake_dac = {
  500. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  501. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  502. .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
  503. .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
  504. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  505. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  506. .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
  507. .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
  508. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  509. .p2_slow = IRONLAKE_DAC_P2_SLOW,
  510. .p2_fast = IRONLAKE_DAC_P2_FAST },
  511. .find_pll = intel_g4x_find_best_PLL,
  512. };
  513. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  514. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  515. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  516. .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
  517. .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
  518. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  519. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  520. .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
  521. .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
  522. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  523. .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
  524. .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
  525. .find_pll = intel_g4x_find_best_PLL,
  526. };
  527. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  528. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  529. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  530. .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
  531. .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
  532. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  533. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  534. .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
  535. .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
  536. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  537. .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
  538. .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
  539. .find_pll = intel_g4x_find_best_PLL,
  540. };
  541. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  542. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  543. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  544. .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
  545. .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
  546. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  547. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  548. .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
  549. .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
  550. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  551. .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
  552. .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
  553. .find_pll = intel_g4x_find_best_PLL,
  554. };
  555. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  556. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  557. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  558. .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
  559. .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
  560. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  561. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  562. .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
  563. .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
  564. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  565. .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
  566. .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
  567. .find_pll = intel_g4x_find_best_PLL,
  568. };
  569. static const intel_limit_t intel_limits_ironlake_display_port = {
  570. .dot = { .min = IRONLAKE_DOT_MIN,
  571. .max = IRONLAKE_DOT_MAX },
  572. .vco = { .min = IRONLAKE_VCO_MIN,
  573. .max = IRONLAKE_VCO_MAX},
  574. .n = { .min = IRONLAKE_DP_N_MIN,
  575. .max = IRONLAKE_DP_N_MAX },
  576. .m = { .min = IRONLAKE_DP_M_MIN,
  577. .max = IRONLAKE_DP_M_MAX },
  578. .m1 = { .min = IRONLAKE_M1_MIN,
  579. .max = IRONLAKE_M1_MAX },
  580. .m2 = { .min = IRONLAKE_M2_MIN,
  581. .max = IRONLAKE_M2_MAX },
  582. .p = { .min = IRONLAKE_DP_P_MIN,
  583. .max = IRONLAKE_DP_P_MAX },
  584. .p1 = { .min = IRONLAKE_DP_P1_MIN,
  585. .max = IRONLAKE_DP_P1_MAX},
  586. .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
  587. .p2_slow = IRONLAKE_DP_P2_SLOW,
  588. .p2_fast = IRONLAKE_DP_P2_FAST },
  589. .find_pll = intel_find_pll_ironlake_dp,
  590. };
  591. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
  592. {
  593. struct drm_device *dev = crtc->dev;
  594. struct drm_i915_private *dev_priv = dev->dev_private;
  595. const intel_limit_t *limit;
  596. int refclk = 120;
  597. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  598. if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
  599. refclk = 100;
  600. if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
  601. LVDS_CLKB_POWER_UP) {
  602. /* LVDS dual channel */
  603. if (refclk == 100)
  604. limit = &intel_limits_ironlake_dual_lvds_100m;
  605. else
  606. limit = &intel_limits_ironlake_dual_lvds;
  607. } else {
  608. if (refclk == 100)
  609. limit = &intel_limits_ironlake_single_lvds_100m;
  610. else
  611. limit = &intel_limits_ironlake_single_lvds;
  612. }
  613. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  614. HAS_eDP)
  615. limit = &intel_limits_ironlake_display_port;
  616. else
  617. limit = &intel_limits_ironlake_dac;
  618. return limit;
  619. }
  620. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  621. {
  622. struct drm_device *dev = crtc->dev;
  623. struct drm_i915_private *dev_priv = dev->dev_private;
  624. const intel_limit_t *limit;
  625. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  626. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  627. LVDS_CLKB_POWER_UP)
  628. /* LVDS with dual channel */
  629. limit = &intel_limits_g4x_dual_channel_lvds;
  630. else
  631. /* LVDS with dual channel */
  632. limit = &intel_limits_g4x_single_channel_lvds;
  633. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  634. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  635. limit = &intel_limits_g4x_hdmi;
  636. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  637. limit = &intel_limits_g4x_sdvo;
  638. } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  639. limit = &intel_limits_g4x_display_port;
  640. } else /* The option is for other outputs */
  641. limit = &intel_limits_i9xx_sdvo;
  642. return limit;
  643. }
  644. static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
  645. {
  646. struct drm_device *dev = crtc->dev;
  647. const intel_limit_t *limit;
  648. if (HAS_PCH_SPLIT(dev))
  649. limit = intel_ironlake_limit(crtc);
  650. else if (IS_G4X(dev)) {
  651. limit = intel_g4x_limit(crtc);
  652. } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
  653. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  654. limit = &intel_limits_i9xx_lvds;
  655. else
  656. limit = &intel_limits_i9xx_sdvo;
  657. } else if (IS_PINEVIEW(dev)) {
  658. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  659. limit = &intel_limits_pineview_lvds;
  660. else
  661. limit = &intel_limits_pineview_sdvo;
  662. } else {
  663. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  664. limit = &intel_limits_i8xx_lvds;
  665. else
  666. limit = &intel_limits_i8xx_dvo;
  667. }
  668. return limit;
  669. }
  670. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  671. static void pineview_clock(int refclk, intel_clock_t *clock)
  672. {
  673. clock->m = clock->m2 + 2;
  674. clock->p = clock->p1 * clock->p2;
  675. clock->vco = refclk * clock->m / clock->n;
  676. clock->dot = clock->vco / clock->p;
  677. }
  678. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  679. {
  680. if (IS_PINEVIEW(dev)) {
  681. pineview_clock(refclk, clock);
  682. return;
  683. }
  684. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  685. clock->p = clock->p1 * clock->p2;
  686. clock->vco = refclk * clock->m / (clock->n + 2);
  687. clock->dot = clock->vco / clock->p;
  688. }
  689. /**
  690. * Returns whether any output on the specified pipe is of the specified type
  691. */
  692. bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
  693. {
  694. struct drm_device *dev = crtc->dev;
  695. struct drm_mode_config *mode_config = &dev->mode_config;
  696. struct drm_encoder *l_entry;
  697. list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
  698. if (l_entry && l_entry->crtc == crtc) {
  699. struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
  700. if (intel_encoder->type == type)
  701. return true;
  702. }
  703. }
  704. return false;
  705. }
  706. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  707. /**
  708. * Returns whether the given set of divisors are valid for a given refclk with
  709. * the given connectors.
  710. */
  711. static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
  712. {
  713. const intel_limit_t *limit = intel_limit (crtc);
  714. struct drm_device *dev = crtc->dev;
  715. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  716. INTELPllInvalid ("p1 out of range\n");
  717. if (clock->p < limit->p.min || limit->p.max < clock->p)
  718. INTELPllInvalid ("p out of range\n");
  719. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  720. INTELPllInvalid ("m2 out of range\n");
  721. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  722. INTELPllInvalid ("m1 out of range\n");
  723. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  724. INTELPllInvalid ("m1 <= m2\n");
  725. if (clock->m < limit->m.min || limit->m.max < clock->m)
  726. INTELPllInvalid ("m out of range\n");
  727. if (clock->n < limit->n.min || limit->n.max < clock->n)
  728. INTELPllInvalid ("n out of range\n");
  729. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  730. INTELPllInvalid ("vco out of range\n");
  731. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  732. * connector, etc., rather than just a single range.
  733. */
  734. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  735. INTELPllInvalid ("dot out of range\n");
  736. return true;
  737. }
  738. static bool
  739. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  740. int target, int refclk, intel_clock_t *best_clock)
  741. {
  742. struct drm_device *dev = crtc->dev;
  743. struct drm_i915_private *dev_priv = dev->dev_private;
  744. intel_clock_t clock;
  745. int err = target;
  746. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  747. (I915_READ(LVDS)) != 0) {
  748. /*
  749. * For LVDS, if the panel is on, just rely on its current
  750. * settings for dual-channel. We haven't figured out how to
  751. * reliably set up different single/dual channel state, if we
  752. * even can.
  753. */
  754. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  755. LVDS_CLKB_POWER_UP)
  756. clock.p2 = limit->p2.p2_fast;
  757. else
  758. clock.p2 = limit->p2.p2_slow;
  759. } else {
  760. if (target < limit->p2.dot_limit)
  761. clock.p2 = limit->p2.p2_slow;
  762. else
  763. clock.p2 = limit->p2.p2_fast;
  764. }
  765. memset (best_clock, 0, sizeof (*best_clock));
  766. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  767. clock.m1++) {
  768. for (clock.m2 = limit->m2.min;
  769. clock.m2 <= limit->m2.max; clock.m2++) {
  770. /* m1 is always 0 in Pineview */
  771. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  772. break;
  773. for (clock.n = limit->n.min;
  774. clock.n <= limit->n.max; clock.n++) {
  775. for (clock.p1 = limit->p1.min;
  776. clock.p1 <= limit->p1.max; clock.p1++) {
  777. int this_err;
  778. intel_clock(dev, refclk, &clock);
  779. if (!intel_PLL_is_valid(crtc, &clock))
  780. continue;
  781. this_err = abs(clock.dot - target);
  782. if (this_err < err) {
  783. *best_clock = clock;
  784. err = this_err;
  785. }
  786. }
  787. }
  788. }
  789. }
  790. return (err != target);
  791. }
  792. static bool
  793. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  794. int target, int refclk, intel_clock_t *best_clock)
  795. {
  796. struct drm_device *dev = crtc->dev;
  797. struct drm_i915_private *dev_priv = dev->dev_private;
  798. intel_clock_t clock;
  799. int max_n;
  800. bool found;
  801. /* approximately equals target * 0.00585 */
  802. int err_most = (target >> 8) + (target >> 9);
  803. found = false;
  804. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  805. int lvds_reg;
  806. if (HAS_PCH_SPLIT(dev))
  807. lvds_reg = PCH_LVDS;
  808. else
  809. lvds_reg = LVDS;
  810. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  811. LVDS_CLKB_POWER_UP)
  812. clock.p2 = limit->p2.p2_fast;
  813. else
  814. clock.p2 = limit->p2.p2_slow;
  815. } else {
  816. if (target < limit->p2.dot_limit)
  817. clock.p2 = limit->p2.p2_slow;
  818. else
  819. clock.p2 = limit->p2.p2_fast;
  820. }
  821. memset(best_clock, 0, sizeof(*best_clock));
  822. max_n = limit->n.max;
  823. /* based on hardware requirement, prefer smaller n to precision */
  824. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  825. /* based on hardware requirement, prefere larger m1,m2 */
  826. for (clock.m1 = limit->m1.max;
  827. clock.m1 >= limit->m1.min; clock.m1--) {
  828. for (clock.m2 = limit->m2.max;
  829. clock.m2 >= limit->m2.min; clock.m2--) {
  830. for (clock.p1 = limit->p1.max;
  831. clock.p1 >= limit->p1.min; clock.p1--) {
  832. int this_err;
  833. intel_clock(dev, refclk, &clock);
  834. if (!intel_PLL_is_valid(crtc, &clock))
  835. continue;
  836. this_err = abs(clock.dot - target) ;
  837. if (this_err < err_most) {
  838. *best_clock = clock;
  839. err_most = this_err;
  840. max_n = clock.n;
  841. found = true;
  842. }
  843. }
  844. }
  845. }
  846. }
  847. return found;
  848. }
  849. static bool
  850. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  851. int target, int refclk, intel_clock_t *best_clock)
  852. {
  853. struct drm_device *dev = crtc->dev;
  854. intel_clock_t clock;
  855. /* return directly when it is eDP */
  856. if (HAS_eDP)
  857. return true;
  858. if (target < 200000) {
  859. clock.n = 1;
  860. clock.p1 = 2;
  861. clock.p2 = 10;
  862. clock.m1 = 12;
  863. clock.m2 = 9;
  864. } else {
  865. clock.n = 2;
  866. clock.p1 = 1;
  867. clock.p2 = 10;
  868. clock.m1 = 14;
  869. clock.m2 = 8;
  870. }
  871. intel_clock(dev, refclk, &clock);
  872. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  873. return true;
  874. }
  875. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  876. static bool
  877. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  878. int target, int refclk, intel_clock_t *best_clock)
  879. {
  880. intel_clock_t clock;
  881. if (target < 200000) {
  882. clock.p1 = 2;
  883. clock.p2 = 10;
  884. clock.n = 2;
  885. clock.m1 = 23;
  886. clock.m2 = 8;
  887. } else {
  888. clock.p1 = 1;
  889. clock.p2 = 10;
  890. clock.n = 1;
  891. clock.m1 = 14;
  892. clock.m2 = 2;
  893. }
  894. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  895. clock.p = (clock.p1 * clock.p2);
  896. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  897. clock.vco = 0;
  898. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  899. return true;
  900. }
  901. /**
  902. * intel_wait_for_vblank - wait for vblank on a given pipe
  903. * @dev: drm device
  904. * @pipe: pipe to wait for
  905. *
  906. * Wait for vblank to occur on a given pipe. Needed for various bits of
  907. * mode setting code.
  908. */
  909. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  910. {
  911. struct drm_i915_private *dev_priv = dev->dev_private;
  912. int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);
  913. /* Clear existing vblank status. Note this will clear any other
  914. * sticky status fields as well.
  915. *
  916. * This races with i915_driver_irq_handler() with the result
  917. * that either function could miss a vblank event. Here it is not
  918. * fatal, as we will either wait upon the next vblank interrupt or
  919. * timeout. Generally speaking intel_wait_for_vblank() is only
  920. * called during modeset at which time the GPU should be idle and
  921. * should *not* be performing page flips and thus not waiting on
  922. * vblanks...
  923. * Currently, the result of us stealing a vblank from the irq
  924. * handler is that a single frame will be skipped during swapbuffers.
  925. */
  926. I915_WRITE(pipestat_reg,
  927. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  928. /* Wait for vblank interrupt bit to set */
  929. if (wait_for(I915_READ(pipestat_reg) &
  930. PIPE_VBLANK_INTERRUPT_STATUS,
  931. 50))
  932. DRM_DEBUG_KMS("vblank wait timed out\n");
  933. }
  934. /**
  935. * intel_wait_for_vblank_off - wait for vblank after disabling a pipe
  936. * @dev: drm device
  937. * @pipe: pipe to wait for
  938. *
  939. * After disabling a pipe, we can't wait for vblank in the usual way,
  940. * spinning on the vblank interrupt status bit, since we won't actually
  941. * see an interrupt when the pipe is disabled.
  942. *
  943. * So this function waits for the display line value to settle (it
  944. * usually ends up stopping at the start of the next frame).
  945. */
  946. void intel_wait_for_vblank_off(struct drm_device *dev, int pipe)
  947. {
  948. struct drm_i915_private *dev_priv = dev->dev_private;
  949. int pipedsl_reg = (pipe == 0 ? PIPEADSL : PIPEBDSL);
  950. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  951. u32 last_line;
  952. /* Wait for the display line to settle */
  953. do {
  954. last_line = I915_READ(pipedsl_reg) & DSL_LINEMASK;
  955. mdelay(5);
  956. } while (((I915_READ(pipedsl_reg) & DSL_LINEMASK) != last_line) &&
  957. time_after(timeout, jiffies));
  958. if (time_after(jiffies, timeout))
  959. DRM_DEBUG_KMS("vblank wait timed out\n");
  960. }
  961. /* Parameters have changed, update FBC info */
  962. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  963. {
  964. struct drm_device *dev = crtc->dev;
  965. struct drm_i915_private *dev_priv = dev->dev_private;
  966. struct drm_framebuffer *fb = crtc->fb;
  967. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  968. struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
  969. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  970. int plane, i;
  971. u32 fbc_ctl, fbc_ctl2;
  972. dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  973. if (fb->pitch < dev_priv->cfb_pitch)
  974. dev_priv->cfb_pitch = fb->pitch;
  975. /* FBC_CTL wants 64B units */
  976. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  977. dev_priv->cfb_fence = obj_priv->fence_reg;
  978. dev_priv->cfb_plane = intel_crtc->plane;
  979. plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  980. /* Clear old tags */
  981. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  982. I915_WRITE(FBC_TAG + (i * 4), 0);
  983. /* Set it up... */
  984. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
  985. if (obj_priv->tiling_mode != I915_TILING_NONE)
  986. fbc_ctl2 |= FBC_CTL_CPU_FENCE;
  987. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  988. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  989. /* enable it... */
  990. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  991. if (IS_I945GM(dev))
  992. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  993. fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  994. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  995. if (obj_priv->tiling_mode != I915_TILING_NONE)
  996. fbc_ctl |= dev_priv->cfb_fence;
  997. I915_WRITE(FBC_CONTROL, fbc_ctl);
  998. DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
  999. dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
  1000. }
  1001. void i8xx_disable_fbc(struct drm_device *dev)
  1002. {
  1003. struct drm_i915_private *dev_priv = dev->dev_private;
  1004. u32 fbc_ctl;
  1005. if (!I915_HAS_FBC(dev))
  1006. return;
  1007. if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN))
  1008. return; /* Already off, just return */
  1009. /* Disable compression */
  1010. fbc_ctl = I915_READ(FBC_CONTROL);
  1011. fbc_ctl &= ~FBC_CTL_EN;
  1012. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1013. /* Wait for compressing bit to clear */
  1014. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  1015. DRM_DEBUG_KMS("FBC idle timed out\n");
  1016. return;
  1017. }
  1018. DRM_DEBUG_KMS("disabled FBC\n");
  1019. }
  1020. static bool i8xx_fbc_enabled(struct drm_device *dev)
  1021. {
  1022. struct drm_i915_private *dev_priv = dev->dev_private;
  1023. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  1024. }
  1025. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1026. {
  1027. struct drm_device *dev = crtc->dev;
  1028. struct drm_i915_private *dev_priv = dev->dev_private;
  1029. struct drm_framebuffer *fb = crtc->fb;
  1030. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1031. struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
  1032. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1033. int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
  1034. DPFC_CTL_PLANEB);
  1035. unsigned long stall_watermark = 200;
  1036. u32 dpfc_ctl;
  1037. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  1038. dev_priv->cfb_fence = obj_priv->fence_reg;
  1039. dev_priv->cfb_plane = intel_crtc->plane;
  1040. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  1041. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1042. dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
  1043. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  1044. } else {
  1045. I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
  1046. }
  1047. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  1048. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1049. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1050. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1051. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  1052. /* enable it... */
  1053. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  1054. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1055. }
  1056. void g4x_disable_fbc(struct drm_device *dev)
  1057. {
  1058. struct drm_i915_private *dev_priv = dev->dev_private;
  1059. u32 dpfc_ctl;
  1060. /* Disable compression */
  1061. dpfc_ctl = I915_READ(DPFC_CONTROL);
  1062. dpfc_ctl &= ~DPFC_CTL_EN;
  1063. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  1064. DRM_DEBUG_KMS("disabled FBC\n");
  1065. }
  1066. static bool g4x_fbc_enabled(struct drm_device *dev)
  1067. {
  1068. struct drm_i915_private *dev_priv = dev->dev_private;
  1069. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  1070. }
  1071. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1072. {
  1073. struct drm_device *dev = crtc->dev;
  1074. struct drm_i915_private *dev_priv = dev->dev_private;
  1075. struct drm_framebuffer *fb = crtc->fb;
  1076. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1077. struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
  1078. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1079. int plane = (intel_crtc->plane == 0) ? DPFC_CTL_PLANEA :
  1080. DPFC_CTL_PLANEB;
  1081. unsigned long stall_watermark = 200;
  1082. u32 dpfc_ctl;
  1083. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  1084. dev_priv->cfb_fence = obj_priv->fence_reg;
  1085. dev_priv->cfb_plane = intel_crtc->plane;
  1086. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1087. dpfc_ctl &= DPFC_RESERVED;
  1088. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  1089. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1090. dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
  1091. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  1092. } else {
  1093. I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
  1094. }
  1095. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  1096. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1097. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1098. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1099. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  1100. I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
  1101. /* enable it... */
  1102. I915_WRITE(ILK_DPFC_CONTROL, I915_READ(ILK_DPFC_CONTROL) |
  1103. DPFC_CTL_EN);
  1104. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1105. }
  1106. void ironlake_disable_fbc(struct drm_device *dev)
  1107. {
  1108. struct drm_i915_private *dev_priv = dev->dev_private;
  1109. u32 dpfc_ctl;
  1110. /* Disable compression */
  1111. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1112. dpfc_ctl &= ~DPFC_CTL_EN;
  1113. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  1114. DRM_DEBUG_KMS("disabled FBC\n");
  1115. }
  1116. static bool ironlake_fbc_enabled(struct drm_device *dev)
  1117. {
  1118. struct drm_i915_private *dev_priv = dev->dev_private;
  1119. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  1120. }
  1121. bool intel_fbc_enabled(struct drm_device *dev)
  1122. {
  1123. struct drm_i915_private *dev_priv = dev->dev_private;
  1124. if (!dev_priv->display.fbc_enabled)
  1125. return false;
  1126. return dev_priv->display.fbc_enabled(dev);
  1127. }
  1128. void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1129. {
  1130. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1131. if (!dev_priv->display.enable_fbc)
  1132. return;
  1133. dev_priv->display.enable_fbc(crtc, interval);
  1134. }
  1135. void intel_disable_fbc(struct drm_device *dev)
  1136. {
  1137. struct drm_i915_private *dev_priv = dev->dev_private;
  1138. if (!dev_priv->display.disable_fbc)
  1139. return;
  1140. dev_priv->display.disable_fbc(dev);
  1141. }
  1142. /**
  1143. * intel_update_fbc - enable/disable FBC as needed
  1144. * @crtc: CRTC to point the compressor at
  1145. * @mode: mode in use
  1146. *
  1147. * Set up the framebuffer compression hardware at mode set time. We
  1148. * enable it if possible:
  1149. * - plane A only (on pre-965)
  1150. * - no pixel mulitply/line duplication
  1151. * - no alpha buffer discard
  1152. * - no dual wide
  1153. * - framebuffer <= 2048 in width, 1536 in height
  1154. *
  1155. * We can't assume that any compression will take place (worst case),
  1156. * so the compressed buffer has to be the same size as the uncompressed
  1157. * one. It also must reside (along with the line length buffer) in
  1158. * stolen memory.
  1159. *
  1160. * We need to enable/disable FBC on a global basis.
  1161. */
  1162. static void intel_update_fbc(struct drm_crtc *crtc,
  1163. struct drm_display_mode *mode)
  1164. {
  1165. struct drm_device *dev = crtc->dev;
  1166. struct drm_i915_private *dev_priv = dev->dev_private;
  1167. struct drm_framebuffer *fb = crtc->fb;
  1168. struct intel_framebuffer *intel_fb;
  1169. struct drm_i915_gem_object *obj_priv;
  1170. struct drm_crtc *tmp_crtc;
  1171. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1172. int plane = intel_crtc->plane;
  1173. int crtcs_enabled = 0;
  1174. DRM_DEBUG_KMS("\n");
  1175. if (!i915_powersave)
  1176. return;
  1177. if (!I915_HAS_FBC(dev))
  1178. return;
  1179. if (!crtc->fb)
  1180. return;
  1181. intel_fb = to_intel_framebuffer(fb);
  1182. obj_priv = to_intel_bo(intel_fb->obj);
  1183. /*
  1184. * If FBC is already on, we just have to verify that we can
  1185. * keep it that way...
  1186. * Need to disable if:
  1187. * - more than one pipe is active
  1188. * - changing FBC params (stride, fence, mode)
  1189. * - new fb is too large to fit in compressed buffer
  1190. * - going to an unsupported config (interlace, pixel multiply, etc.)
  1191. */
  1192. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  1193. if (tmp_crtc->enabled)
  1194. crtcs_enabled++;
  1195. }
  1196. DRM_DEBUG_KMS("%d pipes active\n", crtcs_enabled);
  1197. if (crtcs_enabled > 1) {
  1198. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  1199. dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
  1200. goto out_disable;
  1201. }
  1202. if (intel_fb->obj->size > dev_priv->cfb_size) {
  1203. DRM_DEBUG_KMS("framebuffer too large, disabling "
  1204. "compression\n");
  1205. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  1206. goto out_disable;
  1207. }
  1208. if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  1209. (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  1210. DRM_DEBUG_KMS("mode incompatible with compression, "
  1211. "disabling\n");
  1212. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  1213. goto out_disable;
  1214. }
  1215. if ((mode->hdisplay > 2048) ||
  1216. (mode->vdisplay > 1536)) {
  1217. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  1218. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  1219. goto out_disable;
  1220. }
  1221. if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
  1222. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  1223. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  1224. goto out_disable;
  1225. }
  1226. if (obj_priv->tiling_mode != I915_TILING_X) {
  1227. DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
  1228. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  1229. goto out_disable;
  1230. }
  1231. /* If the kernel debugger is active, always disable compression */
  1232. if (in_dbg_master())
  1233. goto out_disable;
  1234. if (intel_fbc_enabled(dev)) {
  1235. /* We can re-enable it in this case, but need to update pitch */
  1236. if ((fb->pitch > dev_priv->cfb_pitch) ||
  1237. (obj_priv->fence_reg != dev_priv->cfb_fence) ||
  1238. (plane != dev_priv->cfb_plane))
  1239. intel_disable_fbc(dev);
  1240. }
  1241. /* Now try to turn it back on if possible */
  1242. if (!intel_fbc_enabled(dev))
  1243. intel_enable_fbc(crtc, 500);
  1244. return;
  1245. out_disable:
  1246. /* Multiple disables should be harmless */
  1247. if (intel_fbc_enabled(dev)) {
  1248. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  1249. intel_disable_fbc(dev);
  1250. }
  1251. }
  1252. int
  1253. intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
  1254. {
  1255. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1256. u32 alignment;
  1257. int ret;
  1258. switch (obj_priv->tiling_mode) {
  1259. case I915_TILING_NONE:
  1260. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1261. alignment = 128 * 1024;
  1262. else if (IS_I965G(dev))
  1263. alignment = 4 * 1024;
  1264. else
  1265. alignment = 64 * 1024;
  1266. break;
  1267. case I915_TILING_X:
  1268. /* pin() will align the object as required by fence */
  1269. alignment = 0;
  1270. break;
  1271. case I915_TILING_Y:
  1272. /* FIXME: Is this true? */
  1273. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1274. return -EINVAL;
  1275. default:
  1276. BUG();
  1277. }
  1278. ret = i915_gem_object_pin(obj, alignment);
  1279. if (ret != 0)
  1280. return ret;
  1281. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1282. * fence, whereas 965+ only requires a fence if using
  1283. * framebuffer compression. For simplicity, we always install
  1284. * a fence as the cost is not that onerous.
  1285. */
  1286. if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  1287. obj_priv->tiling_mode != I915_TILING_NONE) {
  1288. ret = i915_gem_object_get_fence_reg(obj);
  1289. if (ret != 0) {
  1290. i915_gem_object_unpin(obj);
  1291. return ret;
  1292. }
  1293. }
  1294. return 0;
  1295. }
  1296. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1297. static int
  1298. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1299. int x, int y)
  1300. {
  1301. struct drm_device *dev = crtc->dev;
  1302. struct drm_i915_private *dev_priv = dev->dev_private;
  1303. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1304. struct intel_framebuffer *intel_fb;
  1305. struct drm_i915_gem_object *obj_priv;
  1306. struct drm_gem_object *obj;
  1307. int plane = intel_crtc->plane;
  1308. unsigned long Start, Offset;
  1309. int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
  1310. int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
  1311. int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
  1312. int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
  1313. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1314. u32 dspcntr;
  1315. switch (plane) {
  1316. case 0:
  1317. case 1:
  1318. break;
  1319. default:
  1320. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1321. return -EINVAL;
  1322. }
  1323. intel_fb = to_intel_framebuffer(fb);
  1324. obj = intel_fb->obj;
  1325. obj_priv = to_intel_bo(obj);
  1326. dspcntr = I915_READ(dspcntr_reg);
  1327. /* Mask out pixel format bits in case we change it */
  1328. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1329. switch (fb->bits_per_pixel) {
  1330. case 8:
  1331. dspcntr |= DISPPLANE_8BPP;
  1332. break;
  1333. case 16:
  1334. if (fb->depth == 15)
  1335. dspcntr |= DISPPLANE_15_16BPP;
  1336. else
  1337. dspcntr |= DISPPLANE_16BPP;
  1338. break;
  1339. case 24:
  1340. case 32:
  1341. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1342. break;
  1343. default:
  1344. DRM_ERROR("Unknown color depth\n");
  1345. return -EINVAL;
  1346. }
  1347. if (IS_I965G(dev)) {
  1348. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1349. dspcntr |= DISPPLANE_TILED;
  1350. else
  1351. dspcntr &= ~DISPPLANE_TILED;
  1352. }
  1353. if (HAS_PCH_SPLIT(dev))
  1354. /* must disable */
  1355. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1356. I915_WRITE(dspcntr_reg, dspcntr);
  1357. Start = obj_priv->gtt_offset;
  1358. Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
  1359. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1360. Start, Offset, x, y, fb->pitch);
  1361. I915_WRITE(dspstride, fb->pitch);
  1362. if (IS_I965G(dev)) {
  1363. I915_WRITE(dspsurf, Start);
  1364. I915_WRITE(dsptileoff, (y << 16) | x);
  1365. I915_WRITE(dspbase, Offset);
  1366. } else {
  1367. I915_WRITE(dspbase, Start + Offset);
  1368. }
  1369. POSTING_READ(dspbase);
  1370. if (IS_I965G(dev) || plane == 0)
  1371. intel_update_fbc(crtc, &crtc->mode);
  1372. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1373. intel_increase_pllclock(crtc);
  1374. return 0;
  1375. }
  1376. static int
  1377. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1378. struct drm_framebuffer *old_fb)
  1379. {
  1380. struct drm_device *dev = crtc->dev;
  1381. struct drm_i915_master_private *master_priv;
  1382. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1383. struct intel_framebuffer *intel_fb;
  1384. struct drm_i915_gem_object *obj_priv;
  1385. struct drm_gem_object *obj;
  1386. int pipe = intel_crtc->pipe;
  1387. int plane = intel_crtc->plane;
  1388. int ret;
  1389. /* no fb bound */
  1390. if (!crtc->fb) {
  1391. DRM_DEBUG_KMS("No FB bound\n");
  1392. return 0;
  1393. }
  1394. switch (plane) {
  1395. case 0:
  1396. case 1:
  1397. break;
  1398. default:
  1399. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1400. return -EINVAL;
  1401. }
  1402. intel_fb = to_intel_framebuffer(crtc->fb);
  1403. obj = intel_fb->obj;
  1404. obj_priv = to_intel_bo(obj);
  1405. mutex_lock(&dev->struct_mutex);
  1406. ret = intel_pin_and_fence_fb_obj(dev, obj);
  1407. if (ret != 0) {
  1408. mutex_unlock(&dev->struct_mutex);
  1409. return ret;
  1410. }
  1411. ret = i915_gem_object_set_to_display_plane(obj);
  1412. if (ret != 0) {
  1413. i915_gem_object_unpin(obj);
  1414. mutex_unlock(&dev->struct_mutex);
  1415. return ret;
  1416. }
  1417. ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y);
  1418. if (ret) {
  1419. i915_gem_object_unpin(obj);
  1420. mutex_unlock(&dev->struct_mutex);
  1421. return ret;
  1422. }
  1423. if (old_fb) {
  1424. intel_fb = to_intel_framebuffer(old_fb);
  1425. obj_priv = to_intel_bo(intel_fb->obj);
  1426. i915_gem_object_unpin(intel_fb->obj);
  1427. }
  1428. mutex_unlock(&dev->struct_mutex);
  1429. if (!dev->primary->master)
  1430. return 0;
  1431. master_priv = dev->primary->master->driver_priv;
  1432. if (!master_priv->sarea_priv)
  1433. return 0;
  1434. if (pipe) {
  1435. master_priv->sarea_priv->pipeB_x = x;
  1436. master_priv->sarea_priv->pipeB_y = y;
  1437. } else {
  1438. master_priv->sarea_priv->pipeA_x = x;
  1439. master_priv->sarea_priv->pipeA_y = y;
  1440. }
  1441. return 0;
  1442. }
  1443. static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
  1444. {
  1445. struct drm_device *dev = crtc->dev;
  1446. struct drm_i915_private *dev_priv = dev->dev_private;
  1447. u32 dpa_ctl;
  1448. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  1449. dpa_ctl = I915_READ(DP_A);
  1450. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  1451. if (clock < 200000) {
  1452. u32 temp;
  1453. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  1454. /* workaround for 160Mhz:
  1455. 1) program 0x4600c bits 15:0 = 0x8124
  1456. 2) program 0x46010 bit 0 = 1
  1457. 3) program 0x46034 bit 24 = 1
  1458. 4) program 0x64000 bit 14 = 1
  1459. */
  1460. temp = I915_READ(0x4600c);
  1461. temp &= 0xffff0000;
  1462. I915_WRITE(0x4600c, temp | 0x8124);
  1463. temp = I915_READ(0x46010);
  1464. I915_WRITE(0x46010, temp | 1);
  1465. temp = I915_READ(0x46034);
  1466. I915_WRITE(0x46034, temp | (1 << 24));
  1467. } else {
  1468. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  1469. }
  1470. I915_WRITE(DP_A, dpa_ctl);
  1471. udelay(500);
  1472. }
  1473. /* The FDI link training functions for ILK/Ibexpeak. */
  1474. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  1475. {
  1476. struct drm_device *dev = crtc->dev;
  1477. struct drm_i915_private *dev_priv = dev->dev_private;
  1478. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1479. int pipe = intel_crtc->pipe;
  1480. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  1481. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  1482. int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
  1483. int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
  1484. u32 temp, tries = 0;
  1485. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  1486. for train result */
  1487. temp = I915_READ(fdi_rx_imr_reg);
  1488. temp &= ~FDI_RX_SYMBOL_LOCK;
  1489. temp &= ~FDI_RX_BIT_LOCK;
  1490. I915_WRITE(fdi_rx_imr_reg, temp);
  1491. I915_READ(fdi_rx_imr_reg);
  1492. udelay(150);
  1493. /* enable CPU FDI TX and PCH FDI RX */
  1494. temp = I915_READ(fdi_tx_reg);
  1495. temp |= FDI_TX_ENABLE;
  1496. temp &= ~(7 << 19);
  1497. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1498. temp &= ~FDI_LINK_TRAIN_NONE;
  1499. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1500. I915_WRITE(fdi_tx_reg, temp);
  1501. I915_READ(fdi_tx_reg);
  1502. temp = I915_READ(fdi_rx_reg);
  1503. temp &= ~FDI_LINK_TRAIN_NONE;
  1504. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1505. I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
  1506. I915_READ(fdi_rx_reg);
  1507. udelay(150);
  1508. for (tries = 0; tries < 5; tries++) {
  1509. temp = I915_READ(fdi_rx_iir_reg);
  1510. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1511. if ((temp & FDI_RX_BIT_LOCK)) {
  1512. DRM_DEBUG_KMS("FDI train 1 done.\n");
  1513. I915_WRITE(fdi_rx_iir_reg,
  1514. temp | FDI_RX_BIT_LOCK);
  1515. break;
  1516. }
  1517. }
  1518. if (tries == 5)
  1519. DRM_DEBUG_KMS("FDI train 1 fail!\n");
  1520. /* Train 2 */
  1521. temp = I915_READ(fdi_tx_reg);
  1522. temp &= ~FDI_LINK_TRAIN_NONE;
  1523. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1524. I915_WRITE(fdi_tx_reg, temp);
  1525. temp = I915_READ(fdi_rx_reg);
  1526. temp &= ~FDI_LINK_TRAIN_NONE;
  1527. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1528. I915_WRITE(fdi_rx_reg, temp);
  1529. udelay(150);
  1530. tries = 0;
  1531. for (tries = 0; tries < 5; tries++) {
  1532. temp = I915_READ(fdi_rx_iir_reg);
  1533. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1534. if (temp & FDI_RX_SYMBOL_LOCK) {
  1535. I915_WRITE(fdi_rx_iir_reg,
  1536. temp | FDI_RX_SYMBOL_LOCK);
  1537. DRM_DEBUG_KMS("FDI train 2 done.\n");
  1538. break;
  1539. }
  1540. }
  1541. if (tries == 5)
  1542. DRM_DEBUG_KMS("FDI train 2 fail!\n");
  1543. DRM_DEBUG_KMS("FDI train done\n");
  1544. }
  1545. static int snb_b_fdi_train_param [] = {
  1546. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  1547. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  1548. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  1549. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  1550. };
  1551. /* The FDI link training functions for SNB/Cougarpoint. */
  1552. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  1553. {
  1554. struct drm_device *dev = crtc->dev;
  1555. struct drm_i915_private *dev_priv = dev->dev_private;
  1556. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1557. int pipe = intel_crtc->pipe;
  1558. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  1559. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  1560. int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
  1561. int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
  1562. u32 temp, i;
  1563. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  1564. for train result */
  1565. temp = I915_READ(fdi_rx_imr_reg);
  1566. temp &= ~FDI_RX_SYMBOL_LOCK;
  1567. temp &= ~FDI_RX_BIT_LOCK;
  1568. I915_WRITE(fdi_rx_imr_reg, temp);
  1569. I915_READ(fdi_rx_imr_reg);
  1570. udelay(150);
  1571. /* enable CPU FDI TX and PCH FDI RX */
  1572. temp = I915_READ(fdi_tx_reg);
  1573. temp |= FDI_TX_ENABLE;
  1574. temp &= ~(7 << 19);
  1575. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1576. temp &= ~FDI_LINK_TRAIN_NONE;
  1577. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1578. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1579. /* SNB-B */
  1580. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  1581. I915_WRITE(fdi_tx_reg, temp);
  1582. I915_READ(fdi_tx_reg);
  1583. temp = I915_READ(fdi_rx_reg);
  1584. if (HAS_PCH_CPT(dev)) {
  1585. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1586. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  1587. } else {
  1588. temp &= ~FDI_LINK_TRAIN_NONE;
  1589. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1590. }
  1591. I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
  1592. I915_READ(fdi_rx_reg);
  1593. udelay(150);
  1594. for (i = 0; i < 4; i++ ) {
  1595. temp = I915_READ(fdi_tx_reg);
  1596. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1597. temp |= snb_b_fdi_train_param[i];
  1598. I915_WRITE(fdi_tx_reg, temp);
  1599. udelay(500);
  1600. temp = I915_READ(fdi_rx_iir_reg);
  1601. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1602. if (temp & FDI_RX_BIT_LOCK) {
  1603. I915_WRITE(fdi_rx_iir_reg,
  1604. temp | FDI_RX_BIT_LOCK);
  1605. DRM_DEBUG_KMS("FDI train 1 done.\n");
  1606. break;
  1607. }
  1608. }
  1609. if (i == 4)
  1610. DRM_DEBUG_KMS("FDI train 1 fail!\n");
  1611. /* Train 2 */
  1612. temp = I915_READ(fdi_tx_reg);
  1613. temp &= ~FDI_LINK_TRAIN_NONE;
  1614. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1615. if (IS_GEN6(dev)) {
  1616. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1617. /* SNB-B */
  1618. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  1619. }
  1620. I915_WRITE(fdi_tx_reg, temp);
  1621. temp = I915_READ(fdi_rx_reg);
  1622. if (HAS_PCH_CPT(dev)) {
  1623. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1624. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  1625. } else {
  1626. temp &= ~FDI_LINK_TRAIN_NONE;
  1627. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1628. }
  1629. I915_WRITE(fdi_rx_reg, temp);
  1630. udelay(150);
  1631. for (i = 0; i < 4; i++ ) {
  1632. temp = I915_READ(fdi_tx_reg);
  1633. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1634. temp |= snb_b_fdi_train_param[i];
  1635. I915_WRITE(fdi_tx_reg, temp);
  1636. udelay(500);
  1637. temp = I915_READ(fdi_rx_iir_reg);
  1638. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1639. if (temp & FDI_RX_SYMBOL_LOCK) {
  1640. I915_WRITE(fdi_rx_iir_reg,
  1641. temp | FDI_RX_SYMBOL_LOCK);
  1642. DRM_DEBUG_KMS("FDI train 2 done.\n");
  1643. break;
  1644. }
  1645. }
  1646. if (i == 4)
  1647. DRM_DEBUG_KMS("FDI train 2 fail!\n");
  1648. DRM_DEBUG_KMS("FDI train done.\n");
  1649. }
  1650. static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
  1651. {
  1652. struct drm_device *dev = crtc->dev;
  1653. struct drm_i915_private *dev_priv = dev->dev_private;
  1654. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1655. int pipe = intel_crtc->pipe;
  1656. int plane = intel_crtc->plane;
  1657. int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
  1658. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  1659. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1660. int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
  1661. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  1662. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  1663. int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
  1664. int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
  1665. int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
  1666. int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
  1667. int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
  1668. int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
  1669. int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
  1670. int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
  1671. int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
  1672. int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
  1673. int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
  1674. int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
  1675. int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
  1676. int trans_dpll_sel = (pipe == 0) ? 0 : 1;
  1677. u32 temp;
  1678. u32 pipe_bpc;
  1679. temp = I915_READ(pipeconf_reg);
  1680. pipe_bpc = temp & PIPE_BPC_MASK;
  1681. /* XXX: When our outputs are all unaware of DPMS modes other than off
  1682. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  1683. */
  1684. switch (mode) {
  1685. case DRM_MODE_DPMS_ON:
  1686. case DRM_MODE_DPMS_STANDBY:
  1687. case DRM_MODE_DPMS_SUSPEND:
  1688. DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
  1689. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  1690. temp = I915_READ(PCH_LVDS);
  1691. if ((temp & LVDS_PORT_EN) == 0) {
  1692. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  1693. POSTING_READ(PCH_LVDS);
  1694. }
  1695. }
  1696. if (!HAS_eDP) {
  1697. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  1698. temp = I915_READ(fdi_rx_reg);
  1699. /*
  1700. * make the BPC in FDI Rx be consistent with that in
  1701. * pipeconf reg.
  1702. */
  1703. temp &= ~(0x7 << 16);
  1704. temp |= (pipe_bpc << 11);
  1705. temp &= ~(7 << 19);
  1706. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1707. I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
  1708. I915_READ(fdi_rx_reg);
  1709. udelay(200);
  1710. /* Switch from Rawclk to PCDclk */
  1711. temp = I915_READ(fdi_rx_reg);
  1712. I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
  1713. I915_READ(fdi_rx_reg);
  1714. udelay(200);
  1715. /* Enable CPU FDI TX PLL, always on for Ironlake */
  1716. temp = I915_READ(fdi_tx_reg);
  1717. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  1718. I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
  1719. I915_READ(fdi_tx_reg);
  1720. udelay(100);
  1721. }
  1722. }
  1723. /* Enable panel fitting for LVDS */
  1724. if (dev_priv->pch_pf_size &&
  1725. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)
  1726. || HAS_eDP || intel_pch_has_edp(crtc))) {
  1727. /* Force use of hard-coded filter coefficients
  1728. * as some pre-programmed values are broken,
  1729. * e.g. x201.
  1730. */
  1731. I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1,
  1732. PF_ENABLE | PF_FILTER_MED_3x3);
  1733. I915_WRITE(pipe ? PFB_WIN_POS : PFA_WIN_POS,
  1734. dev_priv->pch_pf_pos);
  1735. I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ,
  1736. dev_priv->pch_pf_size);
  1737. }
  1738. /* Enable CPU pipe */
  1739. temp = I915_READ(pipeconf_reg);
  1740. if ((temp & PIPEACONF_ENABLE) == 0) {
  1741. I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
  1742. I915_READ(pipeconf_reg);
  1743. udelay(100);
  1744. }
  1745. /* configure and enable CPU plane */
  1746. temp = I915_READ(dspcntr_reg);
  1747. if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
  1748. I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
  1749. /* Flush the plane changes */
  1750. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1751. }
  1752. if (!HAS_eDP) {
  1753. /* For PCH output, training FDI link */
  1754. if (IS_GEN6(dev))
  1755. gen6_fdi_link_train(crtc);
  1756. else
  1757. ironlake_fdi_link_train(crtc);
  1758. /* enable PCH DPLL */
  1759. temp = I915_READ(pch_dpll_reg);
  1760. if ((temp & DPLL_VCO_ENABLE) == 0) {
  1761. I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
  1762. I915_READ(pch_dpll_reg);
  1763. }
  1764. udelay(200);
  1765. if (HAS_PCH_CPT(dev)) {
  1766. /* Be sure PCH DPLL SEL is set */
  1767. temp = I915_READ(PCH_DPLL_SEL);
  1768. if (trans_dpll_sel == 0 &&
  1769. (temp & TRANSA_DPLL_ENABLE) == 0)
  1770. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  1771. else if (trans_dpll_sel == 1 &&
  1772. (temp & TRANSB_DPLL_ENABLE) == 0)
  1773. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  1774. I915_WRITE(PCH_DPLL_SEL, temp);
  1775. I915_READ(PCH_DPLL_SEL);
  1776. }
  1777. /* set transcoder timing */
  1778. I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
  1779. I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
  1780. I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
  1781. I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
  1782. I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
  1783. I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
  1784. /* enable normal train */
  1785. temp = I915_READ(fdi_tx_reg);
  1786. temp &= ~FDI_LINK_TRAIN_NONE;
  1787. I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
  1788. FDI_TX_ENHANCE_FRAME_ENABLE);
  1789. I915_READ(fdi_tx_reg);
  1790. temp = I915_READ(fdi_rx_reg);
  1791. if (HAS_PCH_CPT(dev)) {
  1792. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1793. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  1794. } else {
  1795. temp &= ~FDI_LINK_TRAIN_NONE;
  1796. temp |= FDI_LINK_TRAIN_NONE;
  1797. }
  1798. I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  1799. I915_READ(fdi_rx_reg);
  1800. /* wait one idle pattern time */
  1801. udelay(100);
  1802. /* For PCH DP, enable TRANS_DP_CTL */
  1803. if (HAS_PCH_CPT(dev) &&
  1804. intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  1805. int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
  1806. int reg;
  1807. reg = I915_READ(trans_dp_ctl);
  1808. reg &= ~(TRANS_DP_PORT_SEL_MASK |
  1809. TRANS_DP_SYNC_MASK);
  1810. reg |= (TRANS_DP_OUTPUT_ENABLE |
  1811. TRANS_DP_ENH_FRAMING);
  1812. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  1813. reg |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  1814. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  1815. reg |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  1816. switch (intel_trans_dp_port_sel(crtc)) {
  1817. case PCH_DP_B:
  1818. reg |= TRANS_DP_PORT_SEL_B;
  1819. break;
  1820. case PCH_DP_C:
  1821. reg |= TRANS_DP_PORT_SEL_C;
  1822. break;
  1823. case PCH_DP_D:
  1824. reg |= TRANS_DP_PORT_SEL_D;
  1825. break;
  1826. default:
  1827. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  1828. reg |= TRANS_DP_PORT_SEL_B;
  1829. break;
  1830. }
  1831. I915_WRITE(trans_dp_ctl, reg);
  1832. POSTING_READ(trans_dp_ctl);
  1833. }
  1834. /* enable PCH transcoder */
  1835. temp = I915_READ(transconf_reg);
  1836. /*
  1837. * make the BPC in transcoder be consistent with
  1838. * that in pipeconf reg.
  1839. */
  1840. temp &= ~PIPE_BPC_MASK;
  1841. temp |= pipe_bpc;
  1842. I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
  1843. I915_READ(transconf_reg);
  1844. if (wait_for(I915_READ(transconf_reg) & TRANS_STATE_ENABLE, 100))
  1845. DRM_ERROR("failed to enable transcoder\n");
  1846. }
  1847. intel_crtc_load_lut(crtc);
  1848. intel_update_fbc(crtc, &crtc->mode);
  1849. break;
  1850. case DRM_MODE_DPMS_OFF:
  1851. DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
  1852. drm_vblank_off(dev, pipe);
  1853. /* Disable display plane */
  1854. temp = I915_READ(dspcntr_reg);
  1855. if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
  1856. I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
  1857. /* Flush the plane changes */
  1858. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1859. I915_READ(dspbase_reg);
  1860. }
  1861. if (dev_priv->cfb_plane == plane &&
  1862. dev_priv->display.disable_fbc)
  1863. dev_priv->display.disable_fbc(dev);
  1864. /* disable cpu pipe, disable after all planes disabled */
  1865. temp = I915_READ(pipeconf_reg);
  1866. if ((temp & PIPEACONF_ENABLE) != 0) {
  1867. I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
  1868. /* wait for cpu pipe off, pipe state */
  1869. if (wait_for((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) == 0, 50))
  1870. DRM_ERROR("failed to turn off cpu pipe\n");
  1871. } else
  1872. DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
  1873. udelay(100);
  1874. /* Disable PF */
  1875. I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, 0);
  1876. I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, 0);
  1877. /* disable CPU FDI tx and PCH FDI rx */
  1878. temp = I915_READ(fdi_tx_reg);
  1879. I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
  1880. I915_READ(fdi_tx_reg);
  1881. temp = I915_READ(fdi_rx_reg);
  1882. /* BPC in FDI rx is consistent with that in pipeconf */
  1883. temp &= ~(0x07 << 16);
  1884. temp |= (pipe_bpc << 11);
  1885. I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
  1886. I915_READ(fdi_rx_reg);
  1887. udelay(100);
  1888. /* still set train pattern 1 */
  1889. temp = I915_READ(fdi_tx_reg);
  1890. temp &= ~FDI_LINK_TRAIN_NONE;
  1891. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1892. I915_WRITE(fdi_tx_reg, temp);
  1893. POSTING_READ(fdi_tx_reg);
  1894. temp = I915_READ(fdi_rx_reg);
  1895. if (HAS_PCH_CPT(dev)) {
  1896. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1897. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  1898. } else {
  1899. temp &= ~FDI_LINK_TRAIN_NONE;
  1900. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1901. }
  1902. I915_WRITE(fdi_rx_reg, temp);
  1903. POSTING_READ(fdi_rx_reg);
  1904. udelay(100);
  1905. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  1906. temp = I915_READ(PCH_LVDS);
  1907. I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
  1908. I915_READ(PCH_LVDS);
  1909. udelay(100);
  1910. }
  1911. /* disable PCH transcoder */
  1912. temp = I915_READ(transconf_reg);
  1913. if ((temp & TRANS_ENABLE) != 0) {
  1914. I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
  1915. /* wait for PCH transcoder off, transcoder state */
  1916. if (wait_for((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0, 50))
  1917. DRM_ERROR("failed to disable transcoder\n");
  1918. }
  1919. temp = I915_READ(transconf_reg);
  1920. /* BPC in transcoder is consistent with that in pipeconf */
  1921. temp &= ~PIPE_BPC_MASK;
  1922. temp |= pipe_bpc;
  1923. I915_WRITE(transconf_reg, temp);
  1924. I915_READ(transconf_reg);
  1925. udelay(100);
  1926. if (HAS_PCH_CPT(dev)) {
  1927. /* disable TRANS_DP_CTL */
  1928. int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
  1929. int reg;
  1930. reg = I915_READ(trans_dp_ctl);
  1931. reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  1932. I915_WRITE(trans_dp_ctl, reg);
  1933. POSTING_READ(trans_dp_ctl);
  1934. /* disable DPLL_SEL */
  1935. temp = I915_READ(PCH_DPLL_SEL);
  1936. if (trans_dpll_sel == 0)
  1937. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  1938. else
  1939. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  1940. I915_WRITE(PCH_DPLL_SEL, temp);
  1941. I915_READ(PCH_DPLL_SEL);
  1942. }
  1943. /* disable PCH DPLL */
  1944. temp = I915_READ(pch_dpll_reg);
  1945. I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
  1946. I915_READ(pch_dpll_reg);
  1947. /* Switch from PCDclk to Rawclk */
  1948. temp = I915_READ(fdi_rx_reg);
  1949. temp &= ~FDI_SEL_PCDCLK;
  1950. I915_WRITE(fdi_rx_reg, temp);
  1951. I915_READ(fdi_rx_reg);
  1952. /* Disable CPU FDI TX PLL */
  1953. temp = I915_READ(fdi_tx_reg);
  1954. I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
  1955. I915_READ(fdi_tx_reg);
  1956. udelay(100);
  1957. temp = I915_READ(fdi_rx_reg);
  1958. temp &= ~FDI_RX_PLL_ENABLE;
  1959. I915_WRITE(fdi_rx_reg, temp);
  1960. I915_READ(fdi_rx_reg);
  1961. /* Wait for the clocks to turn off. */
  1962. udelay(100);
  1963. break;
  1964. }
  1965. }
  1966. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  1967. {
  1968. if (!enable && intel_crtc->overlay) {
  1969. struct drm_device *dev = intel_crtc->base.dev;
  1970. mutex_lock(&dev->struct_mutex);
  1971. (void) intel_overlay_switch_off(intel_crtc->overlay, false);
  1972. mutex_unlock(&dev->struct_mutex);
  1973. }
  1974. /* Let userspace switch the overlay on again. In most cases userspace
  1975. * has to recompute where to put it anyway.
  1976. */
  1977. }
  1978. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  1979. {
  1980. struct drm_device *dev = crtc->dev;
  1981. struct drm_i915_private *dev_priv = dev->dev_private;
  1982. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1983. int pipe = intel_crtc->pipe;
  1984. int plane = intel_crtc->plane;
  1985. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  1986. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1987. int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
  1988. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  1989. u32 temp;
  1990. /* XXX: When our outputs are all unaware of DPMS modes other than off
  1991. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  1992. */
  1993. switch (mode) {
  1994. case DRM_MODE_DPMS_ON:
  1995. case DRM_MODE_DPMS_STANDBY:
  1996. case DRM_MODE_DPMS_SUSPEND:
  1997. /* Enable the DPLL */
  1998. temp = I915_READ(dpll_reg);
  1999. if ((temp & DPLL_VCO_ENABLE) == 0) {
  2000. I915_WRITE(dpll_reg, temp);
  2001. I915_READ(dpll_reg);
  2002. /* Wait for the clocks to stabilize. */
  2003. udelay(150);
  2004. I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
  2005. I915_READ(dpll_reg);
  2006. /* Wait for the clocks to stabilize. */
  2007. udelay(150);
  2008. I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
  2009. I915_READ(dpll_reg);
  2010. /* Wait for the clocks to stabilize. */
  2011. udelay(150);
  2012. }
  2013. /* Enable the pipe */
  2014. temp = I915_READ(pipeconf_reg);
  2015. if ((temp & PIPEACONF_ENABLE) == 0)
  2016. I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
  2017. /* Enable the plane */
  2018. temp = I915_READ(dspcntr_reg);
  2019. if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
  2020. I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
  2021. /* Flush the plane changes */
  2022. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  2023. }
  2024. intel_crtc_load_lut(crtc);
  2025. if ((IS_I965G(dev) || plane == 0))
  2026. intel_update_fbc(crtc, &crtc->mode);
  2027. /* Give the overlay scaler a chance to enable if it's on this pipe */
  2028. intel_crtc_dpms_overlay(intel_crtc, true);
  2029. break;
  2030. case DRM_MODE_DPMS_OFF:
  2031. /* Give the overlay scaler a chance to disable if it's on this pipe */
  2032. intel_crtc_dpms_overlay(intel_crtc, false);
  2033. drm_vblank_off(dev, pipe);
  2034. if (dev_priv->cfb_plane == plane &&
  2035. dev_priv->display.disable_fbc)
  2036. dev_priv->display.disable_fbc(dev);
  2037. /* Disable display plane */
  2038. temp = I915_READ(dspcntr_reg);
  2039. if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
  2040. I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
  2041. /* Flush the plane changes */
  2042. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  2043. I915_READ(dspbase_reg);
  2044. }
  2045. if (!IS_I9XX(dev)) {
  2046. /* Wait for vblank for the disable to take effect */
  2047. intel_wait_for_vblank_off(dev, pipe);
  2048. }
  2049. /* Don't disable pipe A or pipe A PLLs if needed */
  2050. if (pipeconf_reg == PIPEACONF &&
  2051. (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  2052. goto skip_pipe_off;
  2053. /* Next, disable display pipes */
  2054. temp = I915_READ(pipeconf_reg);
  2055. if ((temp & PIPEACONF_ENABLE) != 0) {
  2056. I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
  2057. I915_READ(pipeconf_reg);
  2058. }
  2059. /* Wait for vblank for the disable to take effect. */
  2060. intel_wait_for_vblank_off(dev, pipe);
  2061. temp = I915_READ(dpll_reg);
  2062. if ((temp & DPLL_VCO_ENABLE) != 0) {
  2063. I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
  2064. I915_READ(dpll_reg);
  2065. }
  2066. skip_pipe_off:
  2067. /* Wait for the clocks to turn off. */
  2068. udelay(150);
  2069. break;
  2070. }
  2071. }
  2072. /*
  2073. * When we disable a pipe, we need to clear any pending scanline wait events
  2074. * to avoid hanging the ring, which we assume we are waiting on.
  2075. */
  2076. static void intel_clear_scanline_wait(struct drm_device *dev)
  2077. {
  2078. struct drm_i915_private *dev_priv = dev->dev_private;
  2079. u32 tmp;
  2080. if (IS_GEN2(dev))
  2081. /* Can't break the hang on i8xx */
  2082. return;
  2083. tmp = I915_READ(PRB0_CTL);
  2084. if (tmp & RING_WAIT) {
  2085. I915_WRITE(PRB0_CTL, tmp);
  2086. POSTING_READ(PRB0_CTL);
  2087. }
  2088. }
  2089. /**
  2090. * Sets the power management mode of the pipe and plane.
  2091. */
  2092. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  2093. {
  2094. struct drm_device *dev = crtc->dev;
  2095. struct drm_i915_private *dev_priv = dev->dev_private;
  2096. struct drm_i915_master_private *master_priv;
  2097. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2098. int pipe = intel_crtc->pipe;
  2099. bool enabled;
  2100. if (intel_crtc->dpms_mode == mode)
  2101. return;
  2102. intel_crtc->dpms_mode = mode;
  2103. intel_crtc->cursor_on = mode == DRM_MODE_DPMS_ON;
  2104. /* When switching on the display, ensure that SR is disabled
  2105. * with multiple pipes prior to enabling to new pipe.
  2106. *
  2107. * When switching off the display, make sure the cursor is
  2108. * properly hidden and there are no pending waits prior to
  2109. * disabling the pipe.
  2110. */
  2111. if (mode == DRM_MODE_DPMS_ON)
  2112. intel_update_watermarks(dev);
  2113. else
  2114. intel_crtc_update_cursor(crtc);
  2115. dev_priv->display.dpms(crtc, mode);
  2116. if (mode == DRM_MODE_DPMS_ON)
  2117. intel_crtc_update_cursor(crtc);
  2118. else {
  2119. /* XXX Note that this is not a complete solution, but a hack
  2120. * to avoid the most frequently hit hang.
  2121. */
  2122. intel_clear_scanline_wait(dev);
  2123. intel_update_watermarks(dev);
  2124. }
  2125. if (!dev->primary->master)
  2126. return;
  2127. master_priv = dev->primary->master->driver_priv;
  2128. if (!master_priv->sarea_priv)
  2129. return;
  2130. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  2131. switch (pipe) {
  2132. case 0:
  2133. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2134. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2135. break;
  2136. case 1:
  2137. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2138. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2139. break;
  2140. default:
  2141. DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
  2142. break;
  2143. }
  2144. }
  2145. static void intel_crtc_prepare (struct drm_crtc *crtc)
  2146. {
  2147. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2148. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  2149. }
  2150. static void intel_crtc_commit (struct drm_crtc *crtc)
  2151. {
  2152. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2153. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  2154. }
  2155. void intel_encoder_prepare (struct drm_encoder *encoder)
  2156. {
  2157. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2158. /* lvds has its own version of prepare see intel_lvds_prepare */
  2159. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  2160. }
  2161. void intel_encoder_commit (struct drm_encoder *encoder)
  2162. {
  2163. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2164. /* lvds has its own version of commit see intel_lvds_commit */
  2165. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  2166. }
  2167. void intel_encoder_destroy(struct drm_encoder *encoder)
  2168. {
  2169. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  2170. if (intel_encoder->ddc_bus)
  2171. intel_i2c_destroy(intel_encoder->ddc_bus);
  2172. if (intel_encoder->i2c_bus)
  2173. intel_i2c_destroy(intel_encoder->i2c_bus);
  2174. drm_encoder_cleanup(encoder);
  2175. kfree(intel_encoder);
  2176. }
  2177. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  2178. struct drm_display_mode *mode,
  2179. struct drm_display_mode *adjusted_mode)
  2180. {
  2181. struct drm_device *dev = crtc->dev;
  2182. if (HAS_PCH_SPLIT(dev)) {
  2183. /* FDI link clock is fixed at 2.7G */
  2184. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  2185. return false;
  2186. }
  2187. return true;
  2188. }
  2189. static int i945_get_display_clock_speed(struct drm_device *dev)
  2190. {
  2191. return 400000;
  2192. }
  2193. static int i915_get_display_clock_speed(struct drm_device *dev)
  2194. {
  2195. return 333000;
  2196. }
  2197. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  2198. {
  2199. return 200000;
  2200. }
  2201. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  2202. {
  2203. u16 gcfgc = 0;
  2204. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  2205. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  2206. return 133000;
  2207. else {
  2208. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  2209. case GC_DISPLAY_CLOCK_333_MHZ:
  2210. return 333000;
  2211. default:
  2212. case GC_DISPLAY_CLOCK_190_200_MHZ:
  2213. return 190000;
  2214. }
  2215. }
  2216. }
  2217. static int i865_get_display_clock_speed(struct drm_device *dev)
  2218. {
  2219. return 266000;
  2220. }
  2221. static int i855_get_display_clock_speed(struct drm_device *dev)
  2222. {
  2223. u16 hpllcc = 0;
  2224. /* Assume that the hardware is in the high speed state. This
  2225. * should be the default.
  2226. */
  2227. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  2228. case GC_CLOCK_133_200:
  2229. case GC_CLOCK_100_200:
  2230. return 200000;
  2231. case GC_CLOCK_166_250:
  2232. return 250000;
  2233. case GC_CLOCK_100_133:
  2234. return 133000;
  2235. }
  2236. /* Shouldn't happen */
  2237. return 0;
  2238. }
  2239. static int i830_get_display_clock_speed(struct drm_device *dev)
  2240. {
  2241. return 133000;
  2242. }
  2243. /**
  2244. * Return the pipe currently connected to the panel fitter,
  2245. * or -1 if the panel fitter is not present or not in use
  2246. */
  2247. int intel_panel_fitter_pipe (struct drm_device *dev)
  2248. {
  2249. struct drm_i915_private *dev_priv = dev->dev_private;
  2250. u32 pfit_control;
  2251. /* i830 doesn't have a panel fitter */
  2252. if (IS_I830(dev))
  2253. return -1;
  2254. pfit_control = I915_READ(PFIT_CONTROL);
  2255. /* See if the panel fitter is in use */
  2256. if ((pfit_control & PFIT_ENABLE) == 0)
  2257. return -1;
  2258. /* 965 can place panel fitter on either pipe */
  2259. if (IS_I965G(dev))
  2260. return (pfit_control >> 29) & 0x3;
  2261. /* older chips can only use pipe 1 */
  2262. return 1;
  2263. }
  2264. struct fdi_m_n {
  2265. u32 tu;
  2266. u32 gmch_m;
  2267. u32 gmch_n;
  2268. u32 link_m;
  2269. u32 link_n;
  2270. };
  2271. static void
  2272. fdi_reduce_ratio(u32 *num, u32 *den)
  2273. {
  2274. while (*num > 0xffffff || *den > 0xffffff) {
  2275. *num >>= 1;
  2276. *den >>= 1;
  2277. }
  2278. }
  2279. #define DATA_N 0x800000
  2280. #define LINK_N 0x80000
  2281. static void
  2282. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  2283. int link_clock, struct fdi_m_n *m_n)
  2284. {
  2285. u64 temp;
  2286. m_n->tu = 64; /* default size */
  2287. temp = (u64) DATA_N * pixel_clock;
  2288. temp = div_u64(temp, link_clock);
  2289. m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
  2290. m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
  2291. m_n->gmch_n = DATA_N;
  2292. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  2293. temp = (u64) LINK_N * pixel_clock;
  2294. m_n->link_m = div_u64(temp, link_clock);
  2295. m_n->link_n = LINK_N;
  2296. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  2297. }
  2298. struct intel_watermark_params {
  2299. unsigned long fifo_size;
  2300. unsigned long max_wm;
  2301. unsigned long default_wm;
  2302. unsigned long guard_size;
  2303. unsigned long cacheline_size;
  2304. };
  2305. /* Pineview has different values for various configs */
  2306. static struct intel_watermark_params pineview_display_wm = {
  2307. PINEVIEW_DISPLAY_FIFO,
  2308. PINEVIEW_MAX_WM,
  2309. PINEVIEW_DFT_WM,
  2310. PINEVIEW_GUARD_WM,
  2311. PINEVIEW_FIFO_LINE_SIZE
  2312. };
  2313. static struct intel_watermark_params pineview_display_hplloff_wm = {
  2314. PINEVIEW_DISPLAY_FIFO,
  2315. PINEVIEW_MAX_WM,
  2316. PINEVIEW_DFT_HPLLOFF_WM,
  2317. PINEVIEW_GUARD_WM,
  2318. PINEVIEW_FIFO_LINE_SIZE
  2319. };
  2320. static struct intel_watermark_params pineview_cursor_wm = {
  2321. PINEVIEW_CURSOR_FIFO,
  2322. PINEVIEW_CURSOR_MAX_WM,
  2323. PINEVIEW_CURSOR_DFT_WM,
  2324. PINEVIEW_CURSOR_GUARD_WM,
  2325. PINEVIEW_FIFO_LINE_SIZE,
  2326. };
  2327. static struct intel_watermark_params pineview_cursor_hplloff_wm = {
  2328. PINEVIEW_CURSOR_FIFO,
  2329. PINEVIEW_CURSOR_MAX_WM,
  2330. PINEVIEW_CURSOR_DFT_WM,
  2331. PINEVIEW_CURSOR_GUARD_WM,
  2332. PINEVIEW_FIFO_LINE_SIZE
  2333. };
  2334. static struct intel_watermark_params g4x_wm_info = {
  2335. G4X_FIFO_SIZE,
  2336. G4X_MAX_WM,
  2337. G4X_MAX_WM,
  2338. 2,
  2339. G4X_FIFO_LINE_SIZE,
  2340. };
  2341. static struct intel_watermark_params g4x_cursor_wm_info = {
  2342. I965_CURSOR_FIFO,
  2343. I965_CURSOR_MAX_WM,
  2344. I965_CURSOR_DFT_WM,
  2345. 2,
  2346. G4X_FIFO_LINE_SIZE,
  2347. };
  2348. static struct intel_watermark_params i965_cursor_wm_info = {
  2349. I965_CURSOR_FIFO,
  2350. I965_CURSOR_MAX_WM,
  2351. I965_CURSOR_DFT_WM,
  2352. 2,
  2353. I915_FIFO_LINE_SIZE,
  2354. };
  2355. static struct intel_watermark_params i945_wm_info = {
  2356. I945_FIFO_SIZE,
  2357. I915_MAX_WM,
  2358. 1,
  2359. 2,
  2360. I915_FIFO_LINE_SIZE
  2361. };
  2362. static struct intel_watermark_params i915_wm_info = {
  2363. I915_FIFO_SIZE,
  2364. I915_MAX_WM,
  2365. 1,
  2366. 2,
  2367. I915_FIFO_LINE_SIZE
  2368. };
  2369. static struct intel_watermark_params i855_wm_info = {
  2370. I855GM_FIFO_SIZE,
  2371. I915_MAX_WM,
  2372. 1,
  2373. 2,
  2374. I830_FIFO_LINE_SIZE
  2375. };
  2376. static struct intel_watermark_params i830_wm_info = {
  2377. I830_FIFO_SIZE,
  2378. I915_MAX_WM,
  2379. 1,
  2380. 2,
  2381. I830_FIFO_LINE_SIZE
  2382. };
  2383. static struct intel_watermark_params ironlake_display_wm_info = {
  2384. ILK_DISPLAY_FIFO,
  2385. ILK_DISPLAY_MAXWM,
  2386. ILK_DISPLAY_DFTWM,
  2387. 2,
  2388. ILK_FIFO_LINE_SIZE
  2389. };
  2390. static struct intel_watermark_params ironlake_cursor_wm_info = {
  2391. ILK_CURSOR_FIFO,
  2392. ILK_CURSOR_MAXWM,
  2393. ILK_CURSOR_DFTWM,
  2394. 2,
  2395. ILK_FIFO_LINE_SIZE
  2396. };
  2397. static struct intel_watermark_params ironlake_display_srwm_info = {
  2398. ILK_DISPLAY_SR_FIFO,
  2399. ILK_DISPLAY_MAX_SRWM,
  2400. ILK_DISPLAY_DFT_SRWM,
  2401. 2,
  2402. ILK_FIFO_LINE_SIZE
  2403. };
  2404. static struct intel_watermark_params ironlake_cursor_srwm_info = {
  2405. ILK_CURSOR_SR_FIFO,
  2406. ILK_CURSOR_MAX_SRWM,
  2407. ILK_CURSOR_DFT_SRWM,
  2408. 2,
  2409. ILK_FIFO_LINE_SIZE
  2410. };
  2411. /**
  2412. * intel_calculate_wm - calculate watermark level
  2413. * @clock_in_khz: pixel clock
  2414. * @wm: chip FIFO params
  2415. * @pixel_size: display pixel size
  2416. * @latency_ns: memory latency for the platform
  2417. *
  2418. * Calculate the watermark level (the level at which the display plane will
  2419. * start fetching from memory again). Each chip has a different display
  2420. * FIFO size and allocation, so the caller needs to figure that out and pass
  2421. * in the correct intel_watermark_params structure.
  2422. *
  2423. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  2424. * on the pixel size. When it reaches the watermark level, it'll start
  2425. * fetching FIFO line sized based chunks from memory until the FIFO fills
  2426. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  2427. * will occur, and a display engine hang could result.
  2428. */
  2429. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  2430. struct intel_watermark_params *wm,
  2431. int pixel_size,
  2432. unsigned long latency_ns)
  2433. {
  2434. long entries_required, wm_size;
  2435. /*
  2436. * Note: we need to make sure we don't overflow for various clock &
  2437. * latency values.
  2438. * clocks go from a few thousand to several hundred thousand.
  2439. * latency is usually a few thousand
  2440. */
  2441. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  2442. 1000;
  2443. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  2444. DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
  2445. wm_size = wm->fifo_size - (entries_required + wm->guard_size);
  2446. DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
  2447. /* Don't promote wm_size to unsigned... */
  2448. if (wm_size > (long)wm->max_wm)
  2449. wm_size = wm->max_wm;
  2450. if (wm_size <= 0)
  2451. wm_size = wm->default_wm;
  2452. return wm_size;
  2453. }
  2454. struct cxsr_latency {
  2455. int is_desktop;
  2456. int is_ddr3;
  2457. unsigned long fsb_freq;
  2458. unsigned long mem_freq;
  2459. unsigned long display_sr;
  2460. unsigned long display_hpll_disable;
  2461. unsigned long cursor_sr;
  2462. unsigned long cursor_hpll_disable;
  2463. };
  2464. static const struct cxsr_latency cxsr_latency_table[] = {
  2465. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  2466. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  2467. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  2468. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  2469. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  2470. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  2471. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  2472. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  2473. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  2474. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  2475. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  2476. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  2477. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  2478. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  2479. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  2480. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  2481. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  2482. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  2483. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  2484. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  2485. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  2486. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  2487. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  2488. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  2489. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  2490. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  2491. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  2492. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  2493. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  2494. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  2495. };
  2496. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  2497. int is_ddr3,
  2498. int fsb,
  2499. int mem)
  2500. {
  2501. const struct cxsr_latency *latency;
  2502. int i;
  2503. if (fsb == 0 || mem == 0)
  2504. return NULL;
  2505. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  2506. latency = &cxsr_latency_table[i];
  2507. if (is_desktop == latency->is_desktop &&
  2508. is_ddr3 == latency->is_ddr3 &&
  2509. fsb == latency->fsb_freq && mem == latency->mem_freq)
  2510. return latency;
  2511. }
  2512. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  2513. return NULL;
  2514. }
  2515. static void pineview_disable_cxsr(struct drm_device *dev)
  2516. {
  2517. struct drm_i915_private *dev_priv = dev->dev_private;
  2518. /* deactivate cxsr */
  2519. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  2520. }
  2521. /*
  2522. * Latency for FIFO fetches is dependent on several factors:
  2523. * - memory configuration (speed, channels)
  2524. * - chipset
  2525. * - current MCH state
  2526. * It can be fairly high in some situations, so here we assume a fairly
  2527. * pessimal value. It's a tradeoff between extra memory fetches (if we
  2528. * set this value too high, the FIFO will fetch frequently to stay full)
  2529. * and power consumption (set it too low to save power and we might see
  2530. * FIFO underruns and display "flicker").
  2531. *
  2532. * A value of 5us seems to be a good balance; safe for very low end
  2533. * platforms but not overly aggressive on lower latency configs.
  2534. */
  2535. static const int latency_ns = 5000;
  2536. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  2537. {
  2538. struct drm_i915_private *dev_priv = dev->dev_private;
  2539. uint32_t dsparb = I915_READ(DSPARB);
  2540. int size;
  2541. size = dsparb & 0x7f;
  2542. if (plane)
  2543. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  2544. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2545. plane ? "B" : "A", size);
  2546. return size;
  2547. }
  2548. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  2549. {
  2550. struct drm_i915_private *dev_priv = dev->dev_private;
  2551. uint32_t dsparb = I915_READ(DSPARB);
  2552. int size;
  2553. size = dsparb & 0x1ff;
  2554. if (plane)
  2555. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  2556. size >>= 1; /* Convert to cachelines */
  2557. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2558. plane ? "B" : "A", size);
  2559. return size;
  2560. }
  2561. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  2562. {
  2563. struct drm_i915_private *dev_priv = dev->dev_private;
  2564. uint32_t dsparb = I915_READ(DSPARB);
  2565. int size;
  2566. size = dsparb & 0x7f;
  2567. size >>= 2; /* Convert to cachelines */
  2568. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2569. plane ? "B" : "A",
  2570. size);
  2571. return size;
  2572. }
  2573. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  2574. {
  2575. struct drm_i915_private *dev_priv = dev->dev_private;
  2576. uint32_t dsparb = I915_READ(DSPARB);
  2577. int size;
  2578. size = dsparb & 0x7f;
  2579. size >>= 1; /* Convert to cachelines */
  2580. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2581. plane ? "B" : "A", size);
  2582. return size;
  2583. }
  2584. static void pineview_update_wm(struct drm_device *dev, int planea_clock,
  2585. int planeb_clock, int sr_hdisplay, int unused,
  2586. int pixel_size)
  2587. {
  2588. struct drm_i915_private *dev_priv = dev->dev_private;
  2589. const struct cxsr_latency *latency;
  2590. u32 reg;
  2591. unsigned long wm;
  2592. int sr_clock;
  2593. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  2594. dev_priv->fsb_freq, dev_priv->mem_freq);
  2595. if (!latency) {
  2596. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  2597. pineview_disable_cxsr(dev);
  2598. return;
  2599. }
  2600. if (!planea_clock || !planeb_clock) {
  2601. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2602. /* Display SR */
  2603. wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
  2604. pixel_size, latency->display_sr);
  2605. reg = I915_READ(DSPFW1);
  2606. reg &= ~DSPFW_SR_MASK;
  2607. reg |= wm << DSPFW_SR_SHIFT;
  2608. I915_WRITE(DSPFW1, reg);
  2609. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  2610. /* cursor SR */
  2611. wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
  2612. pixel_size, latency->cursor_sr);
  2613. reg = I915_READ(DSPFW3);
  2614. reg &= ~DSPFW_CURSOR_SR_MASK;
  2615. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  2616. I915_WRITE(DSPFW3, reg);
  2617. /* Display HPLL off SR */
  2618. wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
  2619. pixel_size, latency->display_hpll_disable);
  2620. reg = I915_READ(DSPFW3);
  2621. reg &= ~DSPFW_HPLL_SR_MASK;
  2622. reg |= wm & DSPFW_HPLL_SR_MASK;
  2623. I915_WRITE(DSPFW3, reg);
  2624. /* cursor HPLL off SR */
  2625. wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
  2626. pixel_size, latency->cursor_hpll_disable);
  2627. reg = I915_READ(DSPFW3);
  2628. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  2629. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  2630. I915_WRITE(DSPFW3, reg);
  2631. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  2632. /* activate cxsr */
  2633. I915_WRITE(DSPFW3,
  2634. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  2635. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  2636. } else {
  2637. pineview_disable_cxsr(dev);
  2638. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  2639. }
  2640. }
  2641. static void g4x_update_wm(struct drm_device *dev, int planea_clock,
  2642. int planeb_clock, int sr_hdisplay, int sr_htotal,
  2643. int pixel_size)
  2644. {
  2645. struct drm_i915_private *dev_priv = dev->dev_private;
  2646. int total_size, cacheline_size;
  2647. int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
  2648. struct intel_watermark_params planea_params, planeb_params;
  2649. unsigned long line_time_us;
  2650. int sr_clock, sr_entries = 0, entries_required;
  2651. /* Create copies of the base settings for each pipe */
  2652. planea_params = planeb_params = g4x_wm_info;
  2653. /* Grab a couple of global values before we overwrite them */
  2654. total_size = planea_params.fifo_size;
  2655. cacheline_size = planea_params.cacheline_size;
  2656. /*
  2657. * Note: we need to make sure we don't overflow for various clock &
  2658. * latency values.
  2659. * clocks go from a few thousand to several hundred thousand.
  2660. * latency is usually a few thousand
  2661. */
  2662. entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
  2663. 1000;
  2664. entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
  2665. planea_wm = entries_required + planea_params.guard_size;
  2666. entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
  2667. 1000;
  2668. entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
  2669. planeb_wm = entries_required + planeb_params.guard_size;
  2670. cursora_wm = cursorb_wm = 16;
  2671. cursor_sr = 32;
  2672. DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  2673. /* Calc sr entries for one plane configs */
  2674. if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
  2675. /* self-refresh has much higher latency */
  2676. static const int sr_latency_ns = 12000;
  2677. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2678. line_time_us = ((sr_htotal * 1000) / sr_clock);
  2679. /* Use ns/us then divide to preserve precision */
  2680. sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  2681. pixel_size * sr_hdisplay;
  2682. sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
  2683. entries_required = (((sr_latency_ns / line_time_us) +
  2684. 1000) / 1000) * pixel_size * 64;
  2685. entries_required = DIV_ROUND_UP(entries_required,
  2686. g4x_cursor_wm_info.cacheline_size);
  2687. cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
  2688. if (cursor_sr > g4x_cursor_wm_info.max_wm)
  2689. cursor_sr = g4x_cursor_wm_info.max_wm;
  2690. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  2691. "cursor %d\n", sr_entries, cursor_sr);
  2692. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  2693. } else {
  2694. /* Turn off self refresh if both pipes are enabled */
  2695. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  2696. & ~FW_BLC_SELF_EN);
  2697. }
  2698. DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
  2699. planea_wm, planeb_wm, sr_entries);
  2700. planea_wm &= 0x3f;
  2701. planeb_wm &= 0x3f;
  2702. I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
  2703. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  2704. (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
  2705. I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  2706. (cursora_wm << DSPFW_CURSORA_SHIFT));
  2707. /* HPLL off in SR has some issues on G4x... disable it */
  2708. I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
  2709. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  2710. }
  2711. static void i965_update_wm(struct drm_device *dev, int planea_clock,
  2712. int planeb_clock, int sr_hdisplay, int sr_htotal,
  2713. int pixel_size)
  2714. {
  2715. struct drm_i915_private *dev_priv = dev->dev_private;
  2716. unsigned long line_time_us;
  2717. int sr_clock, sr_entries, srwm = 1;
  2718. int cursor_sr = 16;
  2719. /* Calc sr entries for one plane configs */
  2720. if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
  2721. /* self-refresh has much higher latency */
  2722. static const int sr_latency_ns = 12000;
  2723. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2724. line_time_us = ((sr_htotal * 1000) / sr_clock);
  2725. /* Use ns/us then divide to preserve precision */
  2726. sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  2727. pixel_size * sr_hdisplay;
  2728. sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
  2729. DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
  2730. srwm = I965_FIFO_SIZE - sr_entries;
  2731. if (srwm < 0)
  2732. srwm = 1;
  2733. srwm &= 0x1ff;
  2734. sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  2735. pixel_size * 64;
  2736. sr_entries = DIV_ROUND_UP(sr_entries,
  2737. i965_cursor_wm_info.cacheline_size);
  2738. cursor_sr = i965_cursor_wm_info.fifo_size -
  2739. (sr_entries + i965_cursor_wm_info.guard_size);
  2740. if (cursor_sr > i965_cursor_wm_info.max_wm)
  2741. cursor_sr = i965_cursor_wm_info.max_wm;
  2742. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  2743. "cursor %d\n", srwm, cursor_sr);
  2744. if (IS_I965GM(dev))
  2745. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  2746. } else {
  2747. /* Turn off self refresh if both pipes are enabled */
  2748. if (IS_I965GM(dev))
  2749. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  2750. & ~FW_BLC_SELF_EN);
  2751. }
  2752. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  2753. srwm);
  2754. /* 965 has limitations... */
  2755. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
  2756. (8 << 0));
  2757. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  2758. /* update cursor SR watermark */
  2759. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  2760. }
  2761. static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
  2762. int planeb_clock, int sr_hdisplay, int sr_htotal,
  2763. int pixel_size)
  2764. {
  2765. struct drm_i915_private *dev_priv = dev->dev_private;
  2766. uint32_t fwater_lo;
  2767. uint32_t fwater_hi;
  2768. int total_size, cacheline_size, cwm, srwm = 1;
  2769. int planea_wm, planeb_wm;
  2770. struct intel_watermark_params planea_params, planeb_params;
  2771. unsigned long line_time_us;
  2772. int sr_clock, sr_entries = 0;
  2773. /* Create copies of the base settings for each pipe */
  2774. if (IS_I965GM(dev) || IS_I945GM(dev))
  2775. planea_params = planeb_params = i945_wm_info;
  2776. else if (IS_I9XX(dev))
  2777. planea_params = planeb_params = i915_wm_info;
  2778. else
  2779. planea_params = planeb_params = i855_wm_info;
  2780. /* Grab a couple of global values before we overwrite them */
  2781. total_size = planea_params.fifo_size;
  2782. cacheline_size = planea_params.cacheline_size;
  2783. /* Update per-plane FIFO sizes */
  2784. planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  2785. planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  2786. planea_wm = intel_calculate_wm(planea_clock, &planea_params,
  2787. pixel_size, latency_ns);
  2788. planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
  2789. pixel_size, latency_ns);
  2790. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  2791. /*
  2792. * Overlay gets an aggressive default since video jitter is bad.
  2793. */
  2794. cwm = 2;
  2795. /* Calc sr entries for one plane configs */
  2796. if (HAS_FW_BLC(dev) && sr_hdisplay &&
  2797. (!planea_clock || !planeb_clock)) {
  2798. /* self-refresh has much higher latency */
  2799. static const int sr_latency_ns = 6000;
  2800. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2801. line_time_us = ((sr_htotal * 1000) / sr_clock);
  2802. /* Use ns/us then divide to preserve precision */
  2803. sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  2804. pixel_size * sr_hdisplay;
  2805. sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
  2806. DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
  2807. srwm = total_size - sr_entries;
  2808. if (srwm < 0)
  2809. srwm = 1;
  2810. if (IS_I945G(dev) || IS_I945GM(dev))
  2811. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  2812. else if (IS_I915GM(dev)) {
  2813. /* 915M has a smaller SRWM field */
  2814. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  2815. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  2816. }
  2817. } else {
  2818. /* Turn off self refresh if both pipes are enabled */
  2819. if (IS_I945G(dev) || IS_I945GM(dev)) {
  2820. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  2821. & ~FW_BLC_SELF_EN);
  2822. } else if (IS_I915GM(dev)) {
  2823. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  2824. }
  2825. }
  2826. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  2827. planea_wm, planeb_wm, cwm, srwm);
  2828. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  2829. fwater_hi = (cwm & 0x1f);
  2830. /* Set request length to 8 cachelines per fetch */
  2831. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  2832. fwater_hi = fwater_hi | (1 << 8);
  2833. I915_WRITE(FW_BLC, fwater_lo);
  2834. I915_WRITE(FW_BLC2, fwater_hi);
  2835. }
  2836. static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
  2837. int unused2, int unused3, int pixel_size)
  2838. {
  2839. struct drm_i915_private *dev_priv = dev->dev_private;
  2840. uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  2841. int planea_wm;
  2842. i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  2843. planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
  2844. pixel_size, latency_ns);
  2845. fwater_lo |= (3<<8) | planea_wm;
  2846. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  2847. I915_WRITE(FW_BLC, fwater_lo);
  2848. }
  2849. #define ILK_LP0_PLANE_LATENCY 700
  2850. #define ILK_LP0_CURSOR_LATENCY 1300
  2851. static void ironlake_update_wm(struct drm_device *dev, int planea_clock,
  2852. int planeb_clock, int sr_hdisplay, int sr_htotal,
  2853. int pixel_size)
  2854. {
  2855. struct drm_i915_private *dev_priv = dev->dev_private;
  2856. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  2857. int sr_wm, cursor_wm;
  2858. unsigned long line_time_us;
  2859. int sr_clock, entries_required;
  2860. u32 reg_value;
  2861. int line_count;
  2862. int planea_htotal = 0, planeb_htotal = 0;
  2863. struct drm_crtc *crtc;
  2864. /* Need htotal for all active display plane */
  2865. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2866. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2867. if (intel_crtc->dpms_mode == DRM_MODE_DPMS_ON) {
  2868. if (intel_crtc->plane == 0)
  2869. planea_htotal = crtc->mode.htotal;
  2870. else
  2871. planeb_htotal = crtc->mode.htotal;
  2872. }
  2873. }
  2874. /* Calculate and update the watermark for plane A */
  2875. if (planea_clock) {
  2876. entries_required = ((planea_clock / 1000) * pixel_size *
  2877. ILK_LP0_PLANE_LATENCY) / 1000;
  2878. entries_required = DIV_ROUND_UP(entries_required,
  2879. ironlake_display_wm_info.cacheline_size);
  2880. planea_wm = entries_required +
  2881. ironlake_display_wm_info.guard_size;
  2882. if (planea_wm > (int)ironlake_display_wm_info.max_wm)
  2883. planea_wm = ironlake_display_wm_info.max_wm;
  2884. /* Use the large buffer method to calculate cursor watermark */
  2885. line_time_us = (planea_htotal * 1000) / planea_clock;
  2886. /* Use ns/us then divide to preserve precision */
  2887. line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
  2888. /* calculate the cursor watermark for cursor A */
  2889. entries_required = line_count * 64 * pixel_size;
  2890. entries_required = DIV_ROUND_UP(entries_required,
  2891. ironlake_cursor_wm_info.cacheline_size);
  2892. cursora_wm = entries_required + ironlake_cursor_wm_info.guard_size;
  2893. if (cursora_wm > ironlake_cursor_wm_info.max_wm)
  2894. cursora_wm = ironlake_cursor_wm_info.max_wm;
  2895. reg_value = I915_READ(WM0_PIPEA_ILK);
  2896. reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  2897. reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) |
  2898. (cursora_wm & WM0_PIPE_CURSOR_MASK);
  2899. I915_WRITE(WM0_PIPEA_ILK, reg_value);
  2900. DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, "
  2901. "cursor: %d\n", planea_wm, cursora_wm);
  2902. }
  2903. /* Calculate and update the watermark for plane B */
  2904. if (planeb_clock) {
  2905. entries_required = ((planeb_clock / 1000) * pixel_size *
  2906. ILK_LP0_PLANE_LATENCY) / 1000;
  2907. entries_required = DIV_ROUND_UP(entries_required,
  2908. ironlake_display_wm_info.cacheline_size);
  2909. planeb_wm = entries_required +
  2910. ironlake_display_wm_info.guard_size;
  2911. if (planeb_wm > (int)ironlake_display_wm_info.max_wm)
  2912. planeb_wm = ironlake_display_wm_info.max_wm;
  2913. /* Use the large buffer method to calculate cursor watermark */
  2914. line_time_us = (planeb_htotal * 1000) / planeb_clock;
  2915. /* Use ns/us then divide to preserve precision */
  2916. line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
  2917. /* calculate the cursor watermark for cursor B */
  2918. entries_required = line_count * 64 * pixel_size;
  2919. entries_required = DIV_ROUND_UP(entries_required,
  2920. ironlake_cursor_wm_info.cacheline_size);
  2921. cursorb_wm = entries_required + ironlake_cursor_wm_info.guard_size;
  2922. if (cursorb_wm > ironlake_cursor_wm_info.max_wm)
  2923. cursorb_wm = ironlake_cursor_wm_info.max_wm;
  2924. reg_value = I915_READ(WM0_PIPEB_ILK);
  2925. reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  2926. reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) |
  2927. (cursorb_wm & WM0_PIPE_CURSOR_MASK);
  2928. I915_WRITE(WM0_PIPEB_ILK, reg_value);
  2929. DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, "
  2930. "cursor: %d\n", planeb_wm, cursorb_wm);
  2931. }
  2932. /*
  2933. * Calculate and update the self-refresh watermark only when one
  2934. * display plane is used.
  2935. */
  2936. if (!planea_clock || !planeb_clock) {
  2937. /* Read the self-refresh latency. The unit is 0.5us */
  2938. int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
  2939. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2940. line_time_us = ((sr_htotal * 1000) / sr_clock);
  2941. /* Use ns/us then divide to preserve precision */
  2942. line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
  2943. / 1000;
  2944. /* calculate the self-refresh watermark for display plane */
  2945. entries_required = line_count * sr_hdisplay * pixel_size;
  2946. entries_required = DIV_ROUND_UP(entries_required,
  2947. ironlake_display_srwm_info.cacheline_size);
  2948. sr_wm = entries_required +
  2949. ironlake_display_srwm_info.guard_size;
  2950. /* calculate the self-refresh watermark for display cursor */
  2951. entries_required = line_count * pixel_size * 64;
  2952. entries_required = DIV_ROUND_UP(entries_required,
  2953. ironlake_cursor_srwm_info.cacheline_size);
  2954. cursor_wm = entries_required +
  2955. ironlake_cursor_srwm_info.guard_size;
  2956. /* configure watermark and enable self-refresh */
  2957. reg_value = I915_READ(WM1_LP_ILK);
  2958. reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK |
  2959. WM1_LP_CURSOR_MASK);
  2960. reg_value |= WM1_LP_SR_EN |
  2961. (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
  2962. (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm;
  2963. I915_WRITE(WM1_LP_ILK, reg_value);
  2964. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  2965. "cursor %d\n", sr_wm, cursor_wm);
  2966. } else {
  2967. /* Turn off self refresh if both pipes are enabled */
  2968. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  2969. }
  2970. }
  2971. /**
  2972. * intel_update_watermarks - update FIFO watermark values based on current modes
  2973. *
  2974. * Calculate watermark values for the various WM regs based on current mode
  2975. * and plane configuration.
  2976. *
  2977. * There are several cases to deal with here:
  2978. * - normal (i.e. non-self-refresh)
  2979. * - self-refresh (SR) mode
  2980. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2981. * - lines are small relative to FIFO size (buffer can hold more than 2
  2982. * lines), so need to account for TLB latency
  2983. *
  2984. * The normal calculation is:
  2985. * watermark = dotclock * bytes per pixel * latency
  2986. * where latency is platform & configuration dependent (we assume pessimal
  2987. * values here).
  2988. *
  2989. * The SR calculation is:
  2990. * watermark = (trunc(latency/line time)+1) * surface width *
  2991. * bytes per pixel
  2992. * where
  2993. * line time = htotal / dotclock
  2994. * surface width = hdisplay for normal plane and 64 for cursor
  2995. * and latency is assumed to be high, as above.
  2996. *
  2997. * The final value programmed to the register should always be rounded up,
  2998. * and include an extra 2 entries to account for clock crossings.
  2999. *
  3000. * We don't use the sprite, so we can ignore that. And on Crestline we have
  3001. * to set the non-SR watermarks to 8.
  3002. */
  3003. static void intel_update_watermarks(struct drm_device *dev)
  3004. {
  3005. struct drm_i915_private *dev_priv = dev->dev_private;
  3006. struct drm_crtc *crtc;
  3007. int sr_hdisplay = 0;
  3008. unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
  3009. int enabled = 0, pixel_size = 0;
  3010. int sr_htotal = 0;
  3011. if (!dev_priv->display.update_wm)
  3012. return;
  3013. /* Get the clock config from both planes */
  3014. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3015. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3016. if (intel_crtc->dpms_mode == DRM_MODE_DPMS_ON) {
  3017. enabled++;
  3018. if (intel_crtc->plane == 0) {
  3019. DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
  3020. intel_crtc->pipe, crtc->mode.clock);
  3021. planea_clock = crtc->mode.clock;
  3022. } else {
  3023. DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
  3024. intel_crtc->pipe, crtc->mode.clock);
  3025. planeb_clock = crtc->mode.clock;
  3026. }
  3027. sr_hdisplay = crtc->mode.hdisplay;
  3028. sr_clock = crtc->mode.clock;
  3029. sr_htotal = crtc->mode.htotal;
  3030. if (crtc->fb)
  3031. pixel_size = crtc->fb->bits_per_pixel / 8;
  3032. else
  3033. pixel_size = 4; /* by default */
  3034. }
  3035. }
  3036. if (enabled <= 0)
  3037. return;
  3038. dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
  3039. sr_hdisplay, sr_htotal, pixel_size);
  3040. }
  3041. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  3042. struct drm_display_mode *mode,
  3043. struct drm_display_mode *adjusted_mode,
  3044. int x, int y,
  3045. struct drm_framebuffer *old_fb)
  3046. {
  3047. struct drm_device *dev = crtc->dev;
  3048. struct drm_i915_private *dev_priv = dev->dev_private;
  3049. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3050. int pipe = intel_crtc->pipe;
  3051. int plane = intel_crtc->plane;
  3052. int fp_reg = (pipe == 0) ? FPA0 : FPB0;
  3053. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  3054. int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
  3055. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  3056. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  3057. int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
  3058. int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
  3059. int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
  3060. int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
  3061. int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
  3062. int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
  3063. int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
  3064. int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
  3065. int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
  3066. int refclk, num_connectors = 0;
  3067. intel_clock_t clock, reduced_clock;
  3068. u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
  3069. bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
  3070. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  3071. struct intel_encoder *has_edp_encoder = NULL;
  3072. struct drm_mode_config *mode_config = &dev->mode_config;
  3073. struct drm_encoder *encoder;
  3074. const intel_limit_t *limit;
  3075. int ret;
  3076. struct fdi_m_n m_n = {0};
  3077. int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
  3078. int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
  3079. int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
  3080. int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
  3081. int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
  3082. int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
  3083. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  3084. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  3085. int trans_dpll_sel = (pipe == 0) ? 0 : 1;
  3086. int lvds_reg = LVDS;
  3087. u32 temp;
  3088. int target_clock;
  3089. drm_vblank_pre_modeset(dev, pipe);
  3090. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  3091. struct intel_encoder *intel_encoder;
  3092. if (encoder->crtc != crtc)
  3093. continue;
  3094. intel_encoder = enc_to_intel_encoder(encoder);
  3095. switch (intel_encoder->type) {
  3096. case INTEL_OUTPUT_LVDS:
  3097. is_lvds = true;
  3098. break;
  3099. case INTEL_OUTPUT_SDVO:
  3100. case INTEL_OUTPUT_HDMI:
  3101. is_sdvo = true;
  3102. if (intel_encoder->needs_tv_clock)
  3103. is_tv = true;
  3104. break;
  3105. case INTEL_OUTPUT_DVO:
  3106. is_dvo = true;
  3107. break;
  3108. case INTEL_OUTPUT_TVOUT:
  3109. is_tv = true;
  3110. break;
  3111. case INTEL_OUTPUT_ANALOG:
  3112. is_crt = true;
  3113. break;
  3114. case INTEL_OUTPUT_DISPLAYPORT:
  3115. is_dp = true;
  3116. break;
  3117. case INTEL_OUTPUT_EDP:
  3118. has_edp_encoder = intel_encoder;
  3119. break;
  3120. }
  3121. num_connectors++;
  3122. }
  3123. if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
  3124. refclk = dev_priv->lvds_ssc_freq * 1000;
  3125. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3126. refclk / 1000);
  3127. } else if (IS_I9XX(dev)) {
  3128. refclk = 96000;
  3129. if (HAS_PCH_SPLIT(dev))
  3130. refclk = 120000; /* 120Mhz refclk */
  3131. } else {
  3132. refclk = 48000;
  3133. }
  3134. /*
  3135. * Returns a set of divisors for the desired target clock with the given
  3136. * refclk, or FALSE. The returned values represent the clock equation:
  3137. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  3138. */
  3139. limit = intel_limit(crtc);
  3140. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
  3141. if (!ok) {
  3142. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  3143. drm_vblank_post_modeset(dev, pipe);
  3144. return -EINVAL;
  3145. }
  3146. /* Ensure that the cursor is valid for the new mode before changing... */
  3147. intel_crtc_update_cursor(crtc);
  3148. if (is_lvds && dev_priv->lvds_downclock_avail) {
  3149. has_reduced_clock = limit->find_pll(limit, crtc,
  3150. dev_priv->lvds_downclock,
  3151. refclk,
  3152. &reduced_clock);
  3153. if (has_reduced_clock && (clock.p != reduced_clock.p)) {
  3154. /*
  3155. * If the different P is found, it means that we can't
  3156. * switch the display clock by using the FP0/FP1.
  3157. * In such case we will disable the LVDS downclock
  3158. * feature.
  3159. */
  3160. DRM_DEBUG_KMS("Different P is found for "
  3161. "LVDS clock/downclock\n");
  3162. has_reduced_clock = 0;
  3163. }
  3164. }
  3165. /* SDVO TV has fixed PLL values depend on its clock range,
  3166. this mirrors vbios setting. */
  3167. if (is_sdvo && is_tv) {
  3168. if (adjusted_mode->clock >= 100000
  3169. && adjusted_mode->clock < 140500) {
  3170. clock.p1 = 2;
  3171. clock.p2 = 10;
  3172. clock.n = 3;
  3173. clock.m1 = 16;
  3174. clock.m2 = 8;
  3175. } else if (adjusted_mode->clock >= 140500
  3176. && adjusted_mode->clock <= 200000) {
  3177. clock.p1 = 1;
  3178. clock.p2 = 10;
  3179. clock.n = 6;
  3180. clock.m1 = 12;
  3181. clock.m2 = 8;
  3182. }
  3183. }
  3184. /* FDI link */
  3185. if (HAS_PCH_SPLIT(dev)) {
  3186. int lane = 0, link_bw, bpp;
  3187. /* eDP doesn't require FDI link, so just set DP M/N
  3188. according to current link config */
  3189. if (has_edp_encoder) {
  3190. target_clock = mode->clock;
  3191. intel_edp_link_config(has_edp_encoder,
  3192. &lane, &link_bw);
  3193. } else {
  3194. /* DP over FDI requires target mode clock
  3195. instead of link clock */
  3196. if (is_dp)
  3197. target_clock = mode->clock;
  3198. else
  3199. target_clock = adjusted_mode->clock;
  3200. link_bw = 270000;
  3201. }
  3202. /* determine panel color depth */
  3203. temp = I915_READ(pipeconf_reg);
  3204. temp &= ~PIPE_BPC_MASK;
  3205. if (is_lvds) {
  3206. int lvds_reg = I915_READ(PCH_LVDS);
  3207. /* the BPC will be 6 if it is 18-bit LVDS panel */
  3208. if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
  3209. temp |= PIPE_8BPC;
  3210. else
  3211. temp |= PIPE_6BPC;
  3212. } else if (has_edp_encoder || (is_dp && intel_pch_has_edp(crtc))) {
  3213. switch (dev_priv->edp_bpp/3) {
  3214. case 8:
  3215. temp |= PIPE_8BPC;
  3216. break;
  3217. case 10:
  3218. temp |= PIPE_10BPC;
  3219. break;
  3220. case 6:
  3221. temp |= PIPE_6BPC;
  3222. break;
  3223. case 12:
  3224. temp |= PIPE_12BPC;
  3225. break;
  3226. }
  3227. } else
  3228. temp |= PIPE_8BPC;
  3229. I915_WRITE(pipeconf_reg, temp);
  3230. I915_READ(pipeconf_reg);
  3231. switch (temp & PIPE_BPC_MASK) {
  3232. case PIPE_8BPC:
  3233. bpp = 24;
  3234. break;
  3235. case PIPE_10BPC:
  3236. bpp = 30;
  3237. break;
  3238. case PIPE_6BPC:
  3239. bpp = 18;
  3240. break;
  3241. case PIPE_12BPC:
  3242. bpp = 36;
  3243. break;
  3244. default:
  3245. DRM_ERROR("unknown pipe bpc value\n");
  3246. bpp = 24;
  3247. }
  3248. if (!lane) {
  3249. /*
  3250. * Account for spread spectrum to avoid
  3251. * oversubscribing the link. Max center spread
  3252. * is 2.5%; use 5% for safety's sake.
  3253. */
  3254. u32 bps = target_clock * bpp * 21 / 20;
  3255. lane = bps / (link_bw * 8) + 1;
  3256. }
  3257. intel_crtc->fdi_lanes = lane;
  3258. ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
  3259. }
  3260. /* Ironlake: try to setup display ref clock before DPLL
  3261. * enabling. This is only under driver's control after
  3262. * PCH B stepping, previous chipset stepping should be
  3263. * ignoring this setting.
  3264. */
  3265. if (HAS_PCH_SPLIT(dev)) {
  3266. temp = I915_READ(PCH_DREF_CONTROL);
  3267. /* Always enable nonspread source */
  3268. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  3269. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  3270. I915_WRITE(PCH_DREF_CONTROL, temp);
  3271. POSTING_READ(PCH_DREF_CONTROL);
  3272. temp &= ~DREF_SSC_SOURCE_MASK;
  3273. temp |= DREF_SSC_SOURCE_ENABLE;
  3274. I915_WRITE(PCH_DREF_CONTROL, temp);
  3275. POSTING_READ(PCH_DREF_CONTROL);
  3276. udelay(200);
  3277. if (has_edp_encoder) {
  3278. if (dev_priv->lvds_use_ssc) {
  3279. temp |= DREF_SSC1_ENABLE;
  3280. I915_WRITE(PCH_DREF_CONTROL, temp);
  3281. POSTING_READ(PCH_DREF_CONTROL);
  3282. udelay(200);
  3283. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  3284. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  3285. I915_WRITE(PCH_DREF_CONTROL, temp);
  3286. POSTING_READ(PCH_DREF_CONTROL);
  3287. } else {
  3288. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  3289. I915_WRITE(PCH_DREF_CONTROL, temp);
  3290. POSTING_READ(PCH_DREF_CONTROL);
  3291. }
  3292. }
  3293. }
  3294. if (IS_PINEVIEW(dev)) {
  3295. fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
  3296. if (has_reduced_clock)
  3297. fp2 = (1 << reduced_clock.n) << 16 |
  3298. reduced_clock.m1 << 8 | reduced_clock.m2;
  3299. } else {
  3300. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  3301. if (has_reduced_clock)
  3302. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  3303. reduced_clock.m2;
  3304. }
  3305. if (!HAS_PCH_SPLIT(dev))
  3306. dpll = DPLL_VGA_MODE_DIS;
  3307. if (IS_I9XX(dev)) {
  3308. if (is_lvds)
  3309. dpll |= DPLLB_MODE_LVDS;
  3310. else
  3311. dpll |= DPLLB_MODE_DAC_SERIAL;
  3312. if (is_sdvo) {
  3313. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  3314. if (pixel_multiplier > 1) {
  3315. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3316. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  3317. else if (HAS_PCH_SPLIT(dev))
  3318. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  3319. }
  3320. dpll |= DPLL_DVO_HIGH_SPEED;
  3321. }
  3322. if (is_dp)
  3323. dpll |= DPLL_DVO_HIGH_SPEED;
  3324. /* compute bitmask from p1 value */
  3325. if (IS_PINEVIEW(dev))
  3326. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3327. else {
  3328. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3329. /* also FPA1 */
  3330. if (HAS_PCH_SPLIT(dev))
  3331. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3332. if (IS_G4X(dev) && has_reduced_clock)
  3333. dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3334. }
  3335. switch (clock.p2) {
  3336. case 5:
  3337. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3338. break;
  3339. case 7:
  3340. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3341. break;
  3342. case 10:
  3343. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3344. break;
  3345. case 14:
  3346. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3347. break;
  3348. }
  3349. if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
  3350. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3351. } else {
  3352. if (is_lvds) {
  3353. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3354. } else {
  3355. if (clock.p1 == 2)
  3356. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3357. else
  3358. dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3359. if (clock.p2 == 4)
  3360. dpll |= PLL_P2_DIVIDE_BY_4;
  3361. }
  3362. }
  3363. if (is_sdvo && is_tv)
  3364. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3365. else if (is_tv)
  3366. /* XXX: just matching BIOS for now */
  3367. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3368. dpll |= 3;
  3369. else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
  3370. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3371. else
  3372. dpll |= PLL_REF_INPUT_DREFCLK;
  3373. /* setup pipeconf */
  3374. pipeconf = I915_READ(pipeconf_reg);
  3375. /* Set up the display plane register */
  3376. dspcntr = DISPPLANE_GAMMA_ENABLE;
  3377. /* Ironlake's plane is forced to pipe, bit 24 is to
  3378. enable color space conversion */
  3379. if (!HAS_PCH_SPLIT(dev)) {
  3380. if (pipe == 0)
  3381. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  3382. else
  3383. dspcntr |= DISPPLANE_SEL_PIPE_B;
  3384. }
  3385. if (pipe == 0 && !IS_I965G(dev)) {
  3386. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  3387. * core speed.
  3388. *
  3389. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  3390. * pipe == 0 check?
  3391. */
  3392. if (mode->clock >
  3393. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  3394. pipeconf |= PIPEACONF_DOUBLE_WIDE;
  3395. else
  3396. pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
  3397. }
  3398. dspcntr |= DISPLAY_PLANE_ENABLE;
  3399. pipeconf |= PIPEACONF_ENABLE;
  3400. dpll |= DPLL_VCO_ENABLE;
  3401. /* Disable the panel fitter if it was on our pipe */
  3402. if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
  3403. I915_WRITE(PFIT_CONTROL, 0);
  3404. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  3405. drm_mode_debug_printmodeline(mode);
  3406. /* assign to Ironlake registers */
  3407. if (HAS_PCH_SPLIT(dev)) {
  3408. fp_reg = pch_fp_reg;
  3409. dpll_reg = pch_dpll_reg;
  3410. }
  3411. if (!has_edp_encoder) {
  3412. I915_WRITE(fp_reg, fp);
  3413. I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
  3414. I915_READ(dpll_reg);
  3415. udelay(150);
  3416. }
  3417. /* enable transcoder DPLL */
  3418. if (HAS_PCH_CPT(dev)) {
  3419. temp = I915_READ(PCH_DPLL_SEL);
  3420. if (trans_dpll_sel == 0)
  3421. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  3422. else
  3423. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  3424. I915_WRITE(PCH_DPLL_SEL, temp);
  3425. I915_READ(PCH_DPLL_SEL);
  3426. udelay(150);
  3427. }
  3428. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3429. * This is an exception to the general rule that mode_set doesn't turn
  3430. * things on.
  3431. */
  3432. if (is_lvds) {
  3433. u32 lvds;
  3434. if (HAS_PCH_SPLIT(dev))
  3435. lvds_reg = PCH_LVDS;
  3436. lvds = I915_READ(lvds_reg);
  3437. lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  3438. if (pipe == 1) {
  3439. if (HAS_PCH_CPT(dev))
  3440. lvds |= PORT_TRANS_B_SEL_CPT;
  3441. else
  3442. lvds |= LVDS_PIPEB_SELECT;
  3443. } else {
  3444. if (HAS_PCH_CPT(dev))
  3445. lvds &= ~PORT_TRANS_SEL_MASK;
  3446. else
  3447. lvds &= ~LVDS_PIPEB_SELECT;
  3448. }
  3449. /* set the corresponsding LVDS_BORDER bit */
  3450. lvds |= dev_priv->lvds_border_bits;
  3451. /* Set the B0-B3 data pairs corresponding to whether we're going to
  3452. * set the DPLLs for dual-channel mode or not.
  3453. */
  3454. if (clock.p2 == 7)
  3455. lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  3456. else
  3457. lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  3458. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  3459. * appropriately here, but we need to look more thoroughly into how
  3460. * panels behave in the two modes.
  3461. */
  3462. /* set the dithering flag on non-PCH LVDS as needed */
  3463. if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
  3464. if (dev_priv->lvds_dither)
  3465. lvds |= LVDS_ENABLE_DITHER;
  3466. else
  3467. lvds &= ~LVDS_ENABLE_DITHER;
  3468. }
  3469. I915_WRITE(lvds_reg, lvds);
  3470. I915_READ(lvds_reg);
  3471. }
  3472. /* set the dithering flag and clear for anything other than a panel. */
  3473. if (HAS_PCH_SPLIT(dev)) {
  3474. pipeconf &= ~PIPECONF_DITHER_EN;
  3475. pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
  3476. if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
  3477. pipeconf |= PIPECONF_DITHER_EN;
  3478. pipeconf |= PIPECONF_DITHER_TYPE_ST1;
  3479. }
  3480. }
  3481. if (is_dp)
  3482. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3483. else if (HAS_PCH_SPLIT(dev)) {
  3484. /* For non-DP output, clear any trans DP clock recovery setting.*/
  3485. if (pipe == 0) {
  3486. I915_WRITE(TRANSA_DATA_M1, 0);
  3487. I915_WRITE(TRANSA_DATA_N1, 0);
  3488. I915_WRITE(TRANSA_DP_LINK_M1, 0);
  3489. I915_WRITE(TRANSA_DP_LINK_N1, 0);
  3490. } else {
  3491. I915_WRITE(TRANSB_DATA_M1, 0);
  3492. I915_WRITE(TRANSB_DATA_N1, 0);
  3493. I915_WRITE(TRANSB_DP_LINK_M1, 0);
  3494. I915_WRITE(TRANSB_DP_LINK_N1, 0);
  3495. }
  3496. }
  3497. if (!has_edp_encoder) {
  3498. I915_WRITE(fp_reg, fp);
  3499. I915_WRITE(dpll_reg, dpll);
  3500. I915_READ(dpll_reg);
  3501. /* Wait for the clocks to stabilize. */
  3502. udelay(150);
  3503. if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
  3504. if (is_sdvo) {
  3505. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  3506. if (pixel_multiplier > 1)
  3507. pixel_multiplier = (pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3508. else
  3509. pixel_multiplier = 0;
  3510. I915_WRITE(dpll_md_reg,
  3511. (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
  3512. pixel_multiplier);
  3513. } else
  3514. I915_WRITE(dpll_md_reg, 0);
  3515. } else {
  3516. /* write it again -- the BIOS does, after all */
  3517. I915_WRITE(dpll_reg, dpll);
  3518. }
  3519. I915_READ(dpll_reg);
  3520. /* Wait for the clocks to stabilize. */
  3521. udelay(150);
  3522. }
  3523. if (is_lvds && has_reduced_clock && i915_powersave) {
  3524. I915_WRITE(fp_reg + 4, fp2);
  3525. intel_crtc->lowfreq_avail = true;
  3526. if (HAS_PIPE_CXSR(dev)) {
  3527. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  3528. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  3529. }
  3530. } else {
  3531. I915_WRITE(fp_reg + 4, fp);
  3532. intel_crtc->lowfreq_avail = false;
  3533. if (HAS_PIPE_CXSR(dev)) {
  3534. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  3535. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  3536. }
  3537. }
  3538. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3539. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  3540. /* the chip adds 2 halflines automatically */
  3541. adjusted_mode->crtc_vdisplay -= 1;
  3542. adjusted_mode->crtc_vtotal -= 1;
  3543. adjusted_mode->crtc_vblank_start -= 1;
  3544. adjusted_mode->crtc_vblank_end -= 1;
  3545. adjusted_mode->crtc_vsync_end -= 1;
  3546. adjusted_mode->crtc_vsync_start -= 1;
  3547. } else
  3548. pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
  3549. I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
  3550. ((adjusted_mode->crtc_htotal - 1) << 16));
  3551. I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
  3552. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3553. I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
  3554. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3555. I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
  3556. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3557. I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
  3558. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3559. I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
  3560. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3561. /* pipesrc and dspsize control the size that is scaled from, which should
  3562. * always be the user's requested size.
  3563. */
  3564. if (!HAS_PCH_SPLIT(dev)) {
  3565. I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
  3566. (mode->hdisplay - 1));
  3567. I915_WRITE(dsppos_reg, 0);
  3568. }
  3569. I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3570. if (HAS_PCH_SPLIT(dev)) {
  3571. I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
  3572. I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
  3573. I915_WRITE(link_m1_reg, m_n.link_m);
  3574. I915_WRITE(link_n1_reg, m_n.link_n);
  3575. if (has_edp_encoder) {
  3576. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  3577. } else {
  3578. /* enable FDI RX PLL too */
  3579. temp = I915_READ(fdi_rx_reg);
  3580. I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
  3581. I915_READ(fdi_rx_reg);
  3582. udelay(200);
  3583. /* enable FDI TX PLL too */
  3584. temp = I915_READ(fdi_tx_reg);
  3585. I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
  3586. I915_READ(fdi_tx_reg);
  3587. /* enable FDI RX PCDCLK */
  3588. temp = I915_READ(fdi_rx_reg);
  3589. I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
  3590. I915_READ(fdi_rx_reg);
  3591. udelay(200);
  3592. }
  3593. }
  3594. I915_WRITE(pipeconf_reg, pipeconf);
  3595. I915_READ(pipeconf_reg);
  3596. intel_wait_for_vblank(dev, pipe);
  3597. if (IS_IRONLAKE(dev)) {
  3598. /* enable address swizzle for tiling buffer */
  3599. temp = I915_READ(DISP_ARB_CTL);
  3600. I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
  3601. }
  3602. I915_WRITE(dspcntr_reg, dspcntr);
  3603. /* Flush the plane changes */
  3604. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  3605. intel_update_watermarks(dev);
  3606. drm_vblank_post_modeset(dev, pipe);
  3607. return ret;
  3608. }
  3609. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  3610. void intel_crtc_load_lut(struct drm_crtc *crtc)
  3611. {
  3612. struct drm_device *dev = crtc->dev;
  3613. struct drm_i915_private *dev_priv = dev->dev_private;
  3614. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3615. int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
  3616. int i;
  3617. /* The clocks have to be on to load the palette. */
  3618. if (!crtc->enabled)
  3619. return;
  3620. /* use legacy palette for Ironlake */
  3621. if (HAS_PCH_SPLIT(dev))
  3622. palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
  3623. LGC_PALETTE_B;
  3624. for (i = 0; i < 256; i++) {
  3625. I915_WRITE(palreg + 4 * i,
  3626. (intel_crtc->lut_r[i] << 16) |
  3627. (intel_crtc->lut_g[i] << 8) |
  3628. intel_crtc->lut_b[i]);
  3629. }
  3630. }
  3631. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  3632. {
  3633. struct drm_device *dev = crtc->dev;
  3634. struct drm_i915_private *dev_priv = dev->dev_private;
  3635. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3636. bool visible = base != 0;
  3637. u32 cntl;
  3638. if (intel_crtc->cursor_visible == visible)
  3639. return;
  3640. cntl = I915_READ(CURACNTR);
  3641. if (visible) {
  3642. /* On these chipsets we can only modify the base whilst
  3643. * the cursor is disabled.
  3644. */
  3645. I915_WRITE(CURABASE, base);
  3646. cntl &= ~(CURSOR_FORMAT_MASK);
  3647. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  3648. cntl |= CURSOR_ENABLE |
  3649. CURSOR_GAMMA_ENABLE |
  3650. CURSOR_FORMAT_ARGB;
  3651. } else
  3652. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  3653. I915_WRITE(CURACNTR, cntl);
  3654. intel_crtc->cursor_visible = visible;
  3655. }
  3656. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  3657. {
  3658. struct drm_device *dev = crtc->dev;
  3659. struct drm_i915_private *dev_priv = dev->dev_private;
  3660. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3661. int pipe = intel_crtc->pipe;
  3662. bool visible = base != 0;
  3663. if (intel_crtc->cursor_visible != visible) {
  3664. uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
  3665. if (base) {
  3666. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  3667. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  3668. cntl |= pipe << 28; /* Connect to correct pipe */
  3669. } else {
  3670. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  3671. cntl |= CURSOR_MODE_DISABLE;
  3672. }
  3673. I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
  3674. intel_crtc->cursor_visible = visible;
  3675. }
  3676. /* and commit changes on next vblank */
  3677. I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
  3678. }
  3679. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  3680. static void intel_crtc_update_cursor(struct drm_crtc *crtc)
  3681. {
  3682. struct drm_device *dev = crtc->dev;
  3683. struct drm_i915_private *dev_priv = dev->dev_private;
  3684. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3685. int pipe = intel_crtc->pipe;
  3686. int x = intel_crtc->cursor_x;
  3687. int y = intel_crtc->cursor_y;
  3688. u32 base, pos;
  3689. bool visible;
  3690. pos = 0;
  3691. if (intel_crtc->cursor_on && crtc->fb) {
  3692. base = intel_crtc->cursor_addr;
  3693. if (x > (int) crtc->fb->width)
  3694. base = 0;
  3695. if (y > (int) crtc->fb->height)
  3696. base = 0;
  3697. } else
  3698. base = 0;
  3699. if (x < 0) {
  3700. if (x + intel_crtc->cursor_width < 0)
  3701. base = 0;
  3702. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  3703. x = -x;
  3704. }
  3705. pos |= x << CURSOR_X_SHIFT;
  3706. if (y < 0) {
  3707. if (y + intel_crtc->cursor_height < 0)
  3708. base = 0;
  3709. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  3710. y = -y;
  3711. }
  3712. pos |= y << CURSOR_Y_SHIFT;
  3713. visible = base != 0;
  3714. if (!visible && !intel_crtc->cursor_visible)
  3715. return;
  3716. I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
  3717. if (IS_845G(dev) || IS_I865G(dev))
  3718. i845_update_cursor(crtc, base);
  3719. else
  3720. i9xx_update_cursor(crtc, base);
  3721. if (visible)
  3722. intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
  3723. }
  3724. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  3725. struct drm_file *file_priv,
  3726. uint32_t handle,
  3727. uint32_t width, uint32_t height)
  3728. {
  3729. struct drm_device *dev = crtc->dev;
  3730. struct drm_i915_private *dev_priv = dev->dev_private;
  3731. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3732. struct drm_gem_object *bo;
  3733. struct drm_i915_gem_object *obj_priv;
  3734. uint32_t addr;
  3735. int ret;
  3736. DRM_DEBUG_KMS("\n");
  3737. /* if we want to turn off the cursor ignore width and height */
  3738. if (!handle) {
  3739. DRM_DEBUG_KMS("cursor off\n");
  3740. addr = 0;
  3741. bo = NULL;
  3742. mutex_lock(&dev->struct_mutex);
  3743. goto finish;
  3744. }
  3745. /* Currently we only support 64x64 cursors */
  3746. if (width != 64 || height != 64) {
  3747. DRM_ERROR("we currently only support 64x64 cursors\n");
  3748. return -EINVAL;
  3749. }
  3750. bo = drm_gem_object_lookup(dev, file_priv, handle);
  3751. if (!bo)
  3752. return -ENOENT;
  3753. obj_priv = to_intel_bo(bo);
  3754. if (bo->size < width * height * 4) {
  3755. DRM_ERROR("buffer is to small\n");
  3756. ret = -ENOMEM;
  3757. goto fail;
  3758. }
  3759. /* we only need to pin inside GTT if cursor is non-phy */
  3760. mutex_lock(&dev->struct_mutex);
  3761. if (!dev_priv->info->cursor_needs_physical) {
  3762. ret = i915_gem_object_pin(bo, PAGE_SIZE);
  3763. if (ret) {
  3764. DRM_ERROR("failed to pin cursor bo\n");
  3765. goto fail_locked;
  3766. }
  3767. ret = i915_gem_object_set_to_gtt_domain(bo, 0);
  3768. if (ret) {
  3769. DRM_ERROR("failed to move cursor bo into the GTT\n");
  3770. goto fail_unpin;
  3771. }
  3772. addr = obj_priv->gtt_offset;
  3773. } else {
  3774. int align = IS_I830(dev) ? 16 * 1024 : 256;
  3775. ret = i915_gem_attach_phys_object(dev, bo,
  3776. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  3777. align);
  3778. if (ret) {
  3779. DRM_ERROR("failed to attach phys object\n");
  3780. goto fail_locked;
  3781. }
  3782. addr = obj_priv->phys_obj->handle->busaddr;
  3783. }
  3784. if (!IS_I9XX(dev))
  3785. I915_WRITE(CURSIZE, (height << 12) | width);
  3786. finish:
  3787. if (intel_crtc->cursor_bo) {
  3788. if (dev_priv->info->cursor_needs_physical) {
  3789. if (intel_crtc->cursor_bo != bo)
  3790. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  3791. } else
  3792. i915_gem_object_unpin(intel_crtc->cursor_bo);
  3793. drm_gem_object_unreference(intel_crtc->cursor_bo);
  3794. }
  3795. mutex_unlock(&dev->struct_mutex);
  3796. intel_crtc->cursor_addr = addr;
  3797. intel_crtc->cursor_bo = bo;
  3798. intel_crtc->cursor_width = width;
  3799. intel_crtc->cursor_height = height;
  3800. intel_crtc_update_cursor(crtc);
  3801. return 0;
  3802. fail_unpin:
  3803. i915_gem_object_unpin(bo);
  3804. fail_locked:
  3805. mutex_unlock(&dev->struct_mutex);
  3806. fail:
  3807. drm_gem_object_unreference_unlocked(bo);
  3808. return ret;
  3809. }
  3810. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  3811. {
  3812. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3813. intel_crtc->cursor_x = x;
  3814. intel_crtc->cursor_y = y;
  3815. intel_crtc_update_cursor(crtc);
  3816. return 0;
  3817. }
  3818. /** Sets the color ramps on behalf of RandR */
  3819. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  3820. u16 blue, int regno)
  3821. {
  3822. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3823. intel_crtc->lut_r[regno] = red >> 8;
  3824. intel_crtc->lut_g[regno] = green >> 8;
  3825. intel_crtc->lut_b[regno] = blue >> 8;
  3826. }
  3827. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  3828. u16 *blue, int regno)
  3829. {
  3830. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3831. *red = intel_crtc->lut_r[regno] << 8;
  3832. *green = intel_crtc->lut_g[regno] << 8;
  3833. *blue = intel_crtc->lut_b[regno] << 8;
  3834. }
  3835. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  3836. u16 *blue, uint32_t start, uint32_t size)
  3837. {
  3838. int end = (start + size > 256) ? 256 : start + size, i;
  3839. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3840. for (i = start; i < end; i++) {
  3841. intel_crtc->lut_r[i] = red[i] >> 8;
  3842. intel_crtc->lut_g[i] = green[i] >> 8;
  3843. intel_crtc->lut_b[i] = blue[i] >> 8;
  3844. }
  3845. intel_crtc_load_lut(crtc);
  3846. }
  3847. /**
  3848. * Get a pipe with a simple mode set on it for doing load-based monitor
  3849. * detection.
  3850. *
  3851. * It will be up to the load-detect code to adjust the pipe as appropriate for
  3852. * its requirements. The pipe will be connected to no other encoders.
  3853. *
  3854. * Currently this code will only succeed if there is a pipe with no encoders
  3855. * configured for it. In the future, it could choose to temporarily disable
  3856. * some outputs to free up a pipe for its use.
  3857. *
  3858. * \return crtc, or NULL if no pipes are available.
  3859. */
  3860. /* VESA 640x480x72Hz mode to set on the pipe */
  3861. static struct drm_display_mode load_detect_mode = {
  3862. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  3863. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  3864. };
  3865. struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
  3866. struct drm_connector *connector,
  3867. struct drm_display_mode *mode,
  3868. int *dpms_mode)
  3869. {
  3870. struct intel_crtc *intel_crtc;
  3871. struct drm_crtc *possible_crtc;
  3872. struct drm_crtc *supported_crtc =NULL;
  3873. struct drm_encoder *encoder = &intel_encoder->enc;
  3874. struct drm_crtc *crtc = NULL;
  3875. struct drm_device *dev = encoder->dev;
  3876. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  3877. struct drm_crtc_helper_funcs *crtc_funcs;
  3878. int i = -1;
  3879. /*
  3880. * Algorithm gets a little messy:
  3881. * - if the connector already has an assigned crtc, use it (but make
  3882. * sure it's on first)
  3883. * - try to find the first unused crtc that can drive this connector,
  3884. * and use that if we find one
  3885. * - if there are no unused crtcs available, try to use the first
  3886. * one we found that supports the connector
  3887. */
  3888. /* See if we already have a CRTC for this connector */
  3889. if (encoder->crtc) {
  3890. crtc = encoder->crtc;
  3891. /* Make sure the crtc and connector are running */
  3892. intel_crtc = to_intel_crtc(crtc);
  3893. *dpms_mode = intel_crtc->dpms_mode;
  3894. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  3895. crtc_funcs = crtc->helper_private;
  3896. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  3897. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  3898. }
  3899. return crtc;
  3900. }
  3901. /* Find an unused one (if possible) */
  3902. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  3903. i++;
  3904. if (!(encoder->possible_crtcs & (1 << i)))
  3905. continue;
  3906. if (!possible_crtc->enabled) {
  3907. crtc = possible_crtc;
  3908. break;
  3909. }
  3910. if (!supported_crtc)
  3911. supported_crtc = possible_crtc;
  3912. }
  3913. /*
  3914. * If we didn't find an unused CRTC, don't use any.
  3915. */
  3916. if (!crtc) {
  3917. return NULL;
  3918. }
  3919. encoder->crtc = crtc;
  3920. connector->encoder = encoder;
  3921. intel_encoder->load_detect_temp = true;
  3922. intel_crtc = to_intel_crtc(crtc);
  3923. *dpms_mode = intel_crtc->dpms_mode;
  3924. if (!crtc->enabled) {
  3925. if (!mode)
  3926. mode = &load_detect_mode;
  3927. drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
  3928. } else {
  3929. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  3930. crtc_funcs = crtc->helper_private;
  3931. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  3932. }
  3933. /* Add this connector to the crtc */
  3934. encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
  3935. encoder_funcs->commit(encoder);
  3936. }
  3937. /* let the connector get through one full cycle before testing */
  3938. intel_wait_for_vblank(dev, intel_crtc->pipe);
  3939. return crtc;
  3940. }
  3941. void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
  3942. struct drm_connector *connector, int dpms_mode)
  3943. {
  3944. struct drm_encoder *encoder = &intel_encoder->enc;
  3945. struct drm_device *dev = encoder->dev;
  3946. struct drm_crtc *crtc = encoder->crtc;
  3947. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  3948. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  3949. if (intel_encoder->load_detect_temp) {
  3950. encoder->crtc = NULL;
  3951. connector->encoder = NULL;
  3952. intel_encoder->load_detect_temp = false;
  3953. crtc->enabled = drm_helper_crtc_in_use(crtc);
  3954. drm_helper_disable_unused_functions(dev);
  3955. }
  3956. /* Switch crtc and encoder back off if necessary */
  3957. if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
  3958. if (encoder->crtc == crtc)
  3959. encoder_funcs->dpms(encoder, dpms_mode);
  3960. crtc_funcs->dpms(crtc, dpms_mode);
  3961. }
  3962. }
  3963. /* Returns the clock of the currently programmed mode of the given pipe. */
  3964. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  3965. {
  3966. struct drm_i915_private *dev_priv = dev->dev_private;
  3967. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3968. int pipe = intel_crtc->pipe;
  3969. u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
  3970. u32 fp;
  3971. intel_clock_t clock;
  3972. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  3973. fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
  3974. else
  3975. fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
  3976. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  3977. if (IS_PINEVIEW(dev)) {
  3978. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  3979. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  3980. } else {
  3981. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  3982. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  3983. }
  3984. if (IS_I9XX(dev)) {
  3985. if (IS_PINEVIEW(dev))
  3986. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  3987. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  3988. else
  3989. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  3990. DPLL_FPA01_P1_POST_DIV_SHIFT);
  3991. switch (dpll & DPLL_MODE_MASK) {
  3992. case DPLLB_MODE_DAC_SERIAL:
  3993. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  3994. 5 : 10;
  3995. break;
  3996. case DPLLB_MODE_LVDS:
  3997. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  3998. 7 : 14;
  3999. break;
  4000. default:
  4001. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  4002. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  4003. return 0;
  4004. }
  4005. /* XXX: Handle the 100Mhz refclk */
  4006. intel_clock(dev, 96000, &clock);
  4007. } else {
  4008. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  4009. if (is_lvds) {
  4010. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  4011. DPLL_FPA01_P1_POST_DIV_SHIFT);
  4012. clock.p2 = 14;
  4013. if ((dpll & PLL_REF_INPUT_MASK) ==
  4014. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  4015. /* XXX: might not be 66MHz */
  4016. intel_clock(dev, 66000, &clock);
  4017. } else
  4018. intel_clock(dev, 48000, &clock);
  4019. } else {
  4020. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  4021. clock.p1 = 2;
  4022. else {
  4023. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  4024. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  4025. }
  4026. if (dpll & PLL_P2_DIVIDE_BY_4)
  4027. clock.p2 = 4;
  4028. else
  4029. clock.p2 = 2;
  4030. intel_clock(dev, 48000, &clock);
  4031. }
  4032. }
  4033. /* XXX: It would be nice to validate the clocks, but we can't reuse
  4034. * i830PllIsValid() because it relies on the xf86_config connector
  4035. * configuration being accurate, which it isn't necessarily.
  4036. */
  4037. return clock.dot;
  4038. }
  4039. /** Returns the currently programmed mode of the given pipe. */
  4040. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  4041. struct drm_crtc *crtc)
  4042. {
  4043. struct drm_i915_private *dev_priv = dev->dev_private;
  4044. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4045. int pipe = intel_crtc->pipe;
  4046. struct drm_display_mode *mode;
  4047. int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
  4048. int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
  4049. int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
  4050. int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
  4051. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  4052. if (!mode)
  4053. return NULL;
  4054. mode->clock = intel_crtc_clock_get(dev, crtc);
  4055. mode->hdisplay = (htot & 0xffff) + 1;
  4056. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  4057. mode->hsync_start = (hsync & 0xffff) + 1;
  4058. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  4059. mode->vdisplay = (vtot & 0xffff) + 1;
  4060. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  4061. mode->vsync_start = (vsync & 0xffff) + 1;
  4062. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  4063. drm_mode_set_name(mode);
  4064. drm_mode_set_crtcinfo(mode, 0);
  4065. return mode;
  4066. }
  4067. #define GPU_IDLE_TIMEOUT 500 /* ms */
  4068. /* When this timer fires, we've been idle for awhile */
  4069. static void intel_gpu_idle_timer(unsigned long arg)
  4070. {
  4071. struct drm_device *dev = (struct drm_device *)arg;
  4072. drm_i915_private_t *dev_priv = dev->dev_private;
  4073. DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
  4074. dev_priv->busy = false;
  4075. queue_work(dev_priv->wq, &dev_priv->idle_work);
  4076. }
  4077. #define CRTC_IDLE_TIMEOUT 1000 /* ms */
  4078. static void intel_crtc_idle_timer(unsigned long arg)
  4079. {
  4080. struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
  4081. struct drm_crtc *crtc = &intel_crtc->base;
  4082. drm_i915_private_t *dev_priv = crtc->dev->dev_private;
  4083. DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
  4084. intel_crtc->busy = false;
  4085. queue_work(dev_priv->wq, &dev_priv->idle_work);
  4086. }
  4087. static void intel_increase_pllclock(struct drm_crtc *crtc)
  4088. {
  4089. struct drm_device *dev = crtc->dev;
  4090. drm_i915_private_t *dev_priv = dev->dev_private;
  4091. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4092. int pipe = intel_crtc->pipe;
  4093. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  4094. int dpll = I915_READ(dpll_reg);
  4095. if (HAS_PCH_SPLIT(dev))
  4096. return;
  4097. if (!dev_priv->lvds_downclock_avail)
  4098. return;
  4099. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  4100. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  4101. /* Unlock panel regs */
  4102. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
  4103. PANEL_UNLOCK_REGS);
  4104. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  4105. I915_WRITE(dpll_reg, dpll);
  4106. dpll = I915_READ(dpll_reg);
  4107. intel_wait_for_vblank(dev, pipe);
  4108. dpll = I915_READ(dpll_reg);
  4109. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  4110. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  4111. /* ...and lock them again */
  4112. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  4113. }
  4114. /* Schedule downclock */
  4115. mod_timer(&intel_crtc->idle_timer, jiffies +
  4116. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  4117. }
  4118. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  4119. {
  4120. struct drm_device *dev = crtc->dev;
  4121. drm_i915_private_t *dev_priv = dev->dev_private;
  4122. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4123. int pipe = intel_crtc->pipe;
  4124. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  4125. int dpll = I915_READ(dpll_reg);
  4126. if (HAS_PCH_SPLIT(dev))
  4127. return;
  4128. if (!dev_priv->lvds_downclock_avail)
  4129. return;
  4130. /*
  4131. * Since this is called by a timer, we should never get here in
  4132. * the manual case.
  4133. */
  4134. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  4135. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  4136. /* Unlock panel regs */
  4137. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
  4138. PANEL_UNLOCK_REGS);
  4139. dpll |= DISPLAY_RATE_SELECT_FPA1;
  4140. I915_WRITE(dpll_reg, dpll);
  4141. dpll = I915_READ(dpll_reg);
  4142. intel_wait_for_vblank(dev, pipe);
  4143. dpll = I915_READ(dpll_reg);
  4144. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  4145. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  4146. /* ...and lock them again */
  4147. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  4148. }
  4149. }
  4150. /**
  4151. * intel_idle_update - adjust clocks for idleness
  4152. * @work: work struct
  4153. *
  4154. * Either the GPU or display (or both) went idle. Check the busy status
  4155. * here and adjust the CRTC and GPU clocks as necessary.
  4156. */
  4157. static void intel_idle_update(struct work_struct *work)
  4158. {
  4159. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  4160. idle_work);
  4161. struct drm_device *dev = dev_priv->dev;
  4162. struct drm_crtc *crtc;
  4163. struct intel_crtc *intel_crtc;
  4164. int enabled = 0;
  4165. if (!i915_powersave)
  4166. return;
  4167. mutex_lock(&dev->struct_mutex);
  4168. i915_update_gfx_val(dev_priv);
  4169. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4170. /* Skip inactive CRTCs */
  4171. if (!crtc->fb)
  4172. continue;
  4173. enabled++;
  4174. intel_crtc = to_intel_crtc(crtc);
  4175. if (!intel_crtc->busy)
  4176. intel_decrease_pllclock(crtc);
  4177. }
  4178. if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
  4179. DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
  4180. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  4181. }
  4182. mutex_unlock(&dev->struct_mutex);
  4183. }
  4184. /**
  4185. * intel_mark_busy - mark the GPU and possibly the display busy
  4186. * @dev: drm device
  4187. * @obj: object we're operating on
  4188. *
  4189. * Callers can use this function to indicate that the GPU is busy processing
  4190. * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
  4191. * buffer), we'll also mark the display as busy, so we know to increase its
  4192. * clock frequency.
  4193. */
  4194. void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
  4195. {
  4196. drm_i915_private_t *dev_priv = dev->dev_private;
  4197. struct drm_crtc *crtc = NULL;
  4198. struct intel_framebuffer *intel_fb;
  4199. struct intel_crtc *intel_crtc;
  4200. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4201. return;
  4202. if (!dev_priv->busy) {
  4203. if (IS_I945G(dev) || IS_I945GM(dev)) {
  4204. u32 fw_blc_self;
  4205. DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
  4206. fw_blc_self = I915_READ(FW_BLC_SELF);
  4207. fw_blc_self &= ~FW_BLC_SELF_EN;
  4208. I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
  4209. }
  4210. dev_priv->busy = true;
  4211. } else
  4212. mod_timer(&dev_priv->idle_timer, jiffies +
  4213. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  4214. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4215. if (!crtc->fb)
  4216. continue;
  4217. intel_crtc = to_intel_crtc(crtc);
  4218. intel_fb = to_intel_framebuffer(crtc->fb);
  4219. if (intel_fb->obj == obj) {
  4220. if (!intel_crtc->busy) {
  4221. if (IS_I945G(dev) || IS_I945GM(dev)) {
  4222. u32 fw_blc_self;
  4223. DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
  4224. fw_blc_self = I915_READ(FW_BLC_SELF);
  4225. fw_blc_self &= ~FW_BLC_SELF_EN;
  4226. I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
  4227. }
  4228. /* Non-busy -> busy, upclock */
  4229. intel_increase_pllclock(crtc);
  4230. intel_crtc->busy = true;
  4231. } else {
  4232. /* Busy -> busy, put off timer */
  4233. mod_timer(&intel_crtc->idle_timer, jiffies +
  4234. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  4235. }
  4236. }
  4237. }
  4238. }
  4239. static void intel_crtc_destroy(struct drm_crtc *crtc)
  4240. {
  4241. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4242. struct drm_device *dev = crtc->dev;
  4243. struct intel_unpin_work *work;
  4244. unsigned long flags;
  4245. spin_lock_irqsave(&dev->event_lock, flags);
  4246. work = intel_crtc->unpin_work;
  4247. intel_crtc->unpin_work = NULL;
  4248. spin_unlock_irqrestore(&dev->event_lock, flags);
  4249. if (work) {
  4250. cancel_work_sync(&work->work);
  4251. kfree(work);
  4252. }
  4253. drm_crtc_cleanup(crtc);
  4254. kfree(intel_crtc);
  4255. }
  4256. static void intel_unpin_work_fn(struct work_struct *__work)
  4257. {
  4258. struct intel_unpin_work *work =
  4259. container_of(__work, struct intel_unpin_work, work);
  4260. mutex_lock(&work->dev->struct_mutex);
  4261. i915_gem_object_unpin(work->old_fb_obj);
  4262. drm_gem_object_unreference(work->pending_flip_obj);
  4263. drm_gem_object_unreference(work->old_fb_obj);
  4264. mutex_unlock(&work->dev->struct_mutex);
  4265. kfree(work);
  4266. }
  4267. static void do_intel_finish_page_flip(struct drm_device *dev,
  4268. struct drm_crtc *crtc)
  4269. {
  4270. drm_i915_private_t *dev_priv = dev->dev_private;
  4271. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4272. struct intel_unpin_work *work;
  4273. struct drm_i915_gem_object *obj_priv;
  4274. struct drm_pending_vblank_event *e;
  4275. struct timeval now;
  4276. unsigned long flags;
  4277. /* Ignore early vblank irqs */
  4278. if (intel_crtc == NULL)
  4279. return;
  4280. spin_lock_irqsave(&dev->event_lock, flags);
  4281. work = intel_crtc->unpin_work;
  4282. if (work == NULL || !work->pending) {
  4283. spin_unlock_irqrestore(&dev->event_lock, flags);
  4284. return;
  4285. }
  4286. intel_crtc->unpin_work = NULL;
  4287. drm_vblank_put(dev, intel_crtc->pipe);
  4288. if (work->event) {
  4289. e = work->event;
  4290. do_gettimeofday(&now);
  4291. e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
  4292. e->event.tv_sec = now.tv_sec;
  4293. e->event.tv_usec = now.tv_usec;
  4294. list_add_tail(&e->base.link,
  4295. &e->base.file_priv->event_list);
  4296. wake_up_interruptible(&e->base.file_priv->event_wait);
  4297. }
  4298. spin_unlock_irqrestore(&dev->event_lock, flags);
  4299. obj_priv = to_intel_bo(work->pending_flip_obj);
  4300. /* Initial scanout buffer will have a 0 pending flip count */
  4301. if ((atomic_read(&obj_priv->pending_flip) == 0) ||
  4302. atomic_dec_and_test(&obj_priv->pending_flip))
  4303. DRM_WAKEUP(&dev_priv->pending_flip_queue);
  4304. schedule_work(&work->work);
  4305. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  4306. }
  4307. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  4308. {
  4309. drm_i915_private_t *dev_priv = dev->dev_private;
  4310. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  4311. do_intel_finish_page_flip(dev, crtc);
  4312. }
  4313. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  4314. {
  4315. drm_i915_private_t *dev_priv = dev->dev_private;
  4316. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  4317. do_intel_finish_page_flip(dev, crtc);
  4318. }
  4319. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  4320. {
  4321. drm_i915_private_t *dev_priv = dev->dev_private;
  4322. struct intel_crtc *intel_crtc =
  4323. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  4324. unsigned long flags;
  4325. spin_lock_irqsave(&dev->event_lock, flags);
  4326. if (intel_crtc->unpin_work) {
  4327. if ((++intel_crtc->unpin_work->pending) > 1)
  4328. DRM_ERROR("Prepared flip multiple times\n");
  4329. } else {
  4330. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  4331. }
  4332. spin_unlock_irqrestore(&dev->event_lock, flags);
  4333. }
  4334. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  4335. struct drm_framebuffer *fb,
  4336. struct drm_pending_vblank_event *event)
  4337. {
  4338. struct drm_device *dev = crtc->dev;
  4339. struct drm_i915_private *dev_priv = dev->dev_private;
  4340. struct intel_framebuffer *intel_fb;
  4341. struct drm_i915_gem_object *obj_priv;
  4342. struct drm_gem_object *obj;
  4343. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4344. struct intel_unpin_work *work;
  4345. unsigned long flags, offset;
  4346. int pipe = intel_crtc->pipe;
  4347. u32 pf, pipesrc;
  4348. int ret;
  4349. work = kzalloc(sizeof *work, GFP_KERNEL);
  4350. if (work == NULL)
  4351. return -ENOMEM;
  4352. work->event = event;
  4353. work->dev = crtc->dev;
  4354. intel_fb = to_intel_framebuffer(crtc->fb);
  4355. work->old_fb_obj = intel_fb->obj;
  4356. INIT_WORK(&work->work, intel_unpin_work_fn);
  4357. /* We borrow the event spin lock for protecting unpin_work */
  4358. spin_lock_irqsave(&dev->event_lock, flags);
  4359. if (intel_crtc->unpin_work) {
  4360. spin_unlock_irqrestore(&dev->event_lock, flags);
  4361. kfree(work);
  4362. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  4363. return -EBUSY;
  4364. }
  4365. intel_crtc->unpin_work = work;
  4366. spin_unlock_irqrestore(&dev->event_lock, flags);
  4367. intel_fb = to_intel_framebuffer(fb);
  4368. obj = intel_fb->obj;
  4369. mutex_lock(&dev->struct_mutex);
  4370. ret = intel_pin_and_fence_fb_obj(dev, obj);
  4371. if (ret)
  4372. goto cleanup_work;
  4373. /* Reference the objects for the scheduled work. */
  4374. drm_gem_object_reference(work->old_fb_obj);
  4375. drm_gem_object_reference(obj);
  4376. crtc->fb = fb;
  4377. ret = i915_gem_object_flush_write_domain(obj);
  4378. if (ret)
  4379. goto cleanup_objs;
  4380. ret = drm_vblank_get(dev, intel_crtc->pipe);
  4381. if (ret)
  4382. goto cleanup_objs;
  4383. obj_priv = to_intel_bo(obj);
  4384. atomic_inc(&obj_priv->pending_flip);
  4385. work->pending_flip_obj = obj;
  4386. if (IS_GEN3(dev) || IS_GEN2(dev)) {
  4387. u32 flip_mask;
  4388. if (intel_crtc->plane)
  4389. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  4390. else
  4391. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  4392. BEGIN_LP_RING(2);
  4393. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  4394. OUT_RING(0);
  4395. ADVANCE_LP_RING();
  4396. }
  4397. work->enable_stall_check = true;
  4398. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  4399. offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
  4400. BEGIN_LP_RING(4);
  4401. switch(INTEL_INFO(dev)->gen) {
  4402. case 2:
  4403. OUT_RING(MI_DISPLAY_FLIP |
  4404. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  4405. OUT_RING(fb->pitch);
  4406. OUT_RING(obj_priv->gtt_offset + offset);
  4407. OUT_RING(MI_NOOP);
  4408. break;
  4409. case 3:
  4410. OUT_RING(MI_DISPLAY_FLIP_I915 |
  4411. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  4412. OUT_RING(fb->pitch);
  4413. OUT_RING(obj_priv->gtt_offset + offset);
  4414. OUT_RING(MI_NOOP);
  4415. break;
  4416. case 4:
  4417. case 5:
  4418. /* i965+ uses the linear or tiled offsets from the
  4419. * Display Registers (which do not change across a page-flip)
  4420. * so we need only reprogram the base address.
  4421. */
  4422. OUT_RING(MI_DISPLAY_FLIP |
  4423. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  4424. OUT_RING(fb->pitch);
  4425. OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
  4426. /* XXX Enabling the panel-fitter across page-flip is so far
  4427. * untested on non-native modes, so ignore it for now.
  4428. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  4429. */
  4430. pf = 0;
  4431. pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
  4432. OUT_RING(pf | pipesrc);
  4433. break;
  4434. case 6:
  4435. OUT_RING(MI_DISPLAY_FLIP |
  4436. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  4437. OUT_RING(fb->pitch | obj_priv->tiling_mode);
  4438. OUT_RING(obj_priv->gtt_offset);
  4439. pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  4440. pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
  4441. OUT_RING(pf | pipesrc);
  4442. break;
  4443. }
  4444. ADVANCE_LP_RING();
  4445. mutex_unlock(&dev->struct_mutex);
  4446. trace_i915_flip_request(intel_crtc->plane, obj);
  4447. return 0;
  4448. cleanup_objs:
  4449. drm_gem_object_unreference(work->old_fb_obj);
  4450. drm_gem_object_unreference(obj);
  4451. cleanup_work:
  4452. mutex_unlock(&dev->struct_mutex);
  4453. spin_lock_irqsave(&dev->event_lock, flags);
  4454. intel_crtc->unpin_work = NULL;
  4455. spin_unlock_irqrestore(&dev->event_lock, flags);
  4456. kfree(work);
  4457. return ret;
  4458. }
  4459. static const struct drm_crtc_helper_funcs intel_helper_funcs = {
  4460. .dpms = intel_crtc_dpms,
  4461. .mode_fixup = intel_crtc_mode_fixup,
  4462. .mode_set = intel_crtc_mode_set,
  4463. .mode_set_base = intel_pipe_set_base,
  4464. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  4465. .prepare = intel_crtc_prepare,
  4466. .commit = intel_crtc_commit,
  4467. .load_lut = intel_crtc_load_lut,
  4468. };
  4469. static const struct drm_crtc_funcs intel_crtc_funcs = {
  4470. .cursor_set = intel_crtc_cursor_set,
  4471. .cursor_move = intel_crtc_cursor_move,
  4472. .gamma_set = intel_crtc_gamma_set,
  4473. .set_config = drm_crtc_helper_set_config,
  4474. .destroy = intel_crtc_destroy,
  4475. .page_flip = intel_crtc_page_flip,
  4476. };
  4477. static void intel_crtc_init(struct drm_device *dev, int pipe)
  4478. {
  4479. drm_i915_private_t *dev_priv = dev->dev_private;
  4480. struct intel_crtc *intel_crtc;
  4481. int i;
  4482. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  4483. if (intel_crtc == NULL)
  4484. return;
  4485. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  4486. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  4487. intel_crtc->pipe = pipe;
  4488. intel_crtc->plane = pipe;
  4489. for (i = 0; i < 256; i++) {
  4490. intel_crtc->lut_r[i] = i;
  4491. intel_crtc->lut_g[i] = i;
  4492. intel_crtc->lut_b[i] = i;
  4493. }
  4494. /* Swap pipes & planes for FBC on pre-965 */
  4495. intel_crtc->pipe = pipe;
  4496. intel_crtc->plane = pipe;
  4497. if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
  4498. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  4499. intel_crtc->plane = ((pipe == 0) ? 1 : 0);
  4500. }
  4501. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  4502. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  4503. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  4504. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  4505. intel_crtc->cursor_addr = 0;
  4506. intel_crtc->dpms_mode = -1;
  4507. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  4508. intel_crtc->busy = false;
  4509. setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
  4510. (unsigned long)intel_crtc);
  4511. }
  4512. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  4513. struct drm_file *file_priv)
  4514. {
  4515. drm_i915_private_t *dev_priv = dev->dev_private;
  4516. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  4517. struct drm_mode_object *drmmode_obj;
  4518. struct intel_crtc *crtc;
  4519. if (!dev_priv) {
  4520. DRM_ERROR("called with no initialization\n");
  4521. return -EINVAL;
  4522. }
  4523. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  4524. DRM_MODE_OBJECT_CRTC);
  4525. if (!drmmode_obj) {
  4526. DRM_ERROR("no such CRTC id\n");
  4527. return -EINVAL;
  4528. }
  4529. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  4530. pipe_from_crtc_id->pipe = crtc->pipe;
  4531. return 0;
  4532. }
  4533. struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
  4534. {
  4535. struct drm_crtc *crtc = NULL;
  4536. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4537. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4538. if (intel_crtc->pipe == pipe)
  4539. break;
  4540. }
  4541. return crtc;
  4542. }
  4543. static int intel_encoder_clones(struct drm_device *dev, int type_mask)
  4544. {
  4545. int index_mask = 0;
  4546. struct drm_encoder *encoder;
  4547. int entry = 0;
  4548. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  4549. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  4550. if (type_mask & intel_encoder->clone_mask)
  4551. index_mask |= (1 << entry);
  4552. entry++;
  4553. }
  4554. return index_mask;
  4555. }
  4556. static void intel_setup_outputs(struct drm_device *dev)
  4557. {
  4558. struct drm_i915_private *dev_priv = dev->dev_private;
  4559. struct drm_encoder *encoder;
  4560. bool dpd_is_edp = false;
  4561. if (IS_MOBILE(dev) && !IS_I830(dev))
  4562. intel_lvds_init(dev);
  4563. if (HAS_PCH_SPLIT(dev)) {
  4564. dpd_is_edp = intel_dpd_is_edp(dev);
  4565. if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
  4566. intel_dp_init(dev, DP_A);
  4567. if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  4568. intel_dp_init(dev, PCH_DP_D);
  4569. }
  4570. intel_crt_init(dev);
  4571. if (HAS_PCH_SPLIT(dev)) {
  4572. int found;
  4573. if (I915_READ(HDMIB) & PORT_DETECTED) {
  4574. /* PCH SDVOB multiplex with HDMIB */
  4575. found = intel_sdvo_init(dev, PCH_SDVOB);
  4576. if (!found)
  4577. intel_hdmi_init(dev, HDMIB);
  4578. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  4579. intel_dp_init(dev, PCH_DP_B);
  4580. }
  4581. if (I915_READ(HDMIC) & PORT_DETECTED)
  4582. intel_hdmi_init(dev, HDMIC);
  4583. if (I915_READ(HDMID) & PORT_DETECTED)
  4584. intel_hdmi_init(dev, HDMID);
  4585. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  4586. intel_dp_init(dev, PCH_DP_C);
  4587. if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  4588. intel_dp_init(dev, PCH_DP_D);
  4589. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  4590. bool found = false;
  4591. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  4592. DRM_DEBUG_KMS("probing SDVOB\n");
  4593. found = intel_sdvo_init(dev, SDVOB);
  4594. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  4595. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  4596. intel_hdmi_init(dev, SDVOB);
  4597. }
  4598. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  4599. DRM_DEBUG_KMS("probing DP_B\n");
  4600. intel_dp_init(dev, DP_B);
  4601. }
  4602. }
  4603. /* Before G4X SDVOC doesn't have its own detect register */
  4604. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  4605. DRM_DEBUG_KMS("probing SDVOC\n");
  4606. found = intel_sdvo_init(dev, SDVOC);
  4607. }
  4608. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  4609. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  4610. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  4611. intel_hdmi_init(dev, SDVOC);
  4612. }
  4613. if (SUPPORTS_INTEGRATED_DP(dev)) {
  4614. DRM_DEBUG_KMS("probing DP_C\n");
  4615. intel_dp_init(dev, DP_C);
  4616. }
  4617. }
  4618. if (SUPPORTS_INTEGRATED_DP(dev) &&
  4619. (I915_READ(DP_D) & DP_DETECTED)) {
  4620. DRM_DEBUG_KMS("probing DP_D\n");
  4621. intel_dp_init(dev, DP_D);
  4622. }
  4623. } else if (IS_GEN2(dev))
  4624. intel_dvo_init(dev);
  4625. if (SUPPORTS_TV(dev))
  4626. intel_tv_init(dev);
  4627. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  4628. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  4629. encoder->possible_crtcs = intel_encoder->crtc_mask;
  4630. encoder->possible_clones = intel_encoder_clones(dev,
  4631. intel_encoder->clone_mask);
  4632. }
  4633. }
  4634. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  4635. {
  4636. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  4637. drm_framebuffer_cleanup(fb);
  4638. drm_gem_object_unreference_unlocked(intel_fb->obj);
  4639. kfree(intel_fb);
  4640. }
  4641. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  4642. struct drm_file *file_priv,
  4643. unsigned int *handle)
  4644. {
  4645. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  4646. struct drm_gem_object *object = intel_fb->obj;
  4647. return drm_gem_handle_create(file_priv, object, handle);
  4648. }
  4649. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  4650. .destroy = intel_user_framebuffer_destroy,
  4651. .create_handle = intel_user_framebuffer_create_handle,
  4652. };
  4653. int intel_framebuffer_init(struct drm_device *dev,
  4654. struct intel_framebuffer *intel_fb,
  4655. struct drm_mode_fb_cmd *mode_cmd,
  4656. struct drm_gem_object *obj)
  4657. {
  4658. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4659. int ret;
  4660. if (obj_priv->tiling_mode == I915_TILING_Y)
  4661. return -EINVAL;
  4662. if (mode_cmd->pitch & 63)
  4663. return -EINVAL;
  4664. switch (mode_cmd->bpp) {
  4665. case 8:
  4666. case 16:
  4667. case 24:
  4668. case 32:
  4669. break;
  4670. default:
  4671. return -EINVAL;
  4672. }
  4673. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  4674. if (ret) {
  4675. DRM_ERROR("framebuffer init failed %d\n", ret);
  4676. return ret;
  4677. }
  4678. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  4679. intel_fb->obj = obj;
  4680. return 0;
  4681. }
  4682. static struct drm_framebuffer *
  4683. intel_user_framebuffer_create(struct drm_device *dev,
  4684. struct drm_file *filp,
  4685. struct drm_mode_fb_cmd *mode_cmd)
  4686. {
  4687. struct drm_gem_object *obj;
  4688. struct intel_framebuffer *intel_fb;
  4689. int ret;
  4690. obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
  4691. if (!obj)
  4692. return ERR_PTR(-ENOENT);
  4693. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  4694. if (!intel_fb)
  4695. return ERR_PTR(-ENOMEM);
  4696. ret = intel_framebuffer_init(dev, intel_fb,
  4697. mode_cmd, obj);
  4698. if (ret) {
  4699. drm_gem_object_unreference_unlocked(obj);
  4700. kfree(intel_fb);
  4701. return ERR_PTR(ret);
  4702. }
  4703. return &intel_fb->base;
  4704. }
  4705. static const struct drm_mode_config_funcs intel_mode_funcs = {
  4706. .fb_create = intel_user_framebuffer_create,
  4707. .output_poll_changed = intel_fb_output_poll_changed,
  4708. };
  4709. static struct drm_gem_object *
  4710. intel_alloc_context_page(struct drm_device *dev)
  4711. {
  4712. struct drm_gem_object *ctx;
  4713. int ret;
  4714. ctx = i915_gem_alloc_object(dev, 4096);
  4715. if (!ctx) {
  4716. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  4717. return NULL;
  4718. }
  4719. mutex_lock(&dev->struct_mutex);
  4720. ret = i915_gem_object_pin(ctx, 4096);
  4721. if (ret) {
  4722. DRM_ERROR("failed to pin power context: %d\n", ret);
  4723. goto err_unref;
  4724. }
  4725. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  4726. if (ret) {
  4727. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  4728. goto err_unpin;
  4729. }
  4730. mutex_unlock(&dev->struct_mutex);
  4731. return ctx;
  4732. err_unpin:
  4733. i915_gem_object_unpin(ctx);
  4734. err_unref:
  4735. drm_gem_object_unreference(ctx);
  4736. mutex_unlock(&dev->struct_mutex);
  4737. return NULL;
  4738. }
  4739. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  4740. {
  4741. struct drm_i915_private *dev_priv = dev->dev_private;
  4742. u16 rgvswctl;
  4743. rgvswctl = I915_READ16(MEMSWCTL);
  4744. if (rgvswctl & MEMCTL_CMD_STS) {
  4745. DRM_DEBUG("gpu busy, RCS change rejected\n");
  4746. return false; /* still busy with another command */
  4747. }
  4748. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  4749. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  4750. I915_WRITE16(MEMSWCTL, rgvswctl);
  4751. POSTING_READ16(MEMSWCTL);
  4752. rgvswctl |= MEMCTL_CMD_STS;
  4753. I915_WRITE16(MEMSWCTL, rgvswctl);
  4754. return true;
  4755. }
  4756. void ironlake_enable_drps(struct drm_device *dev)
  4757. {
  4758. struct drm_i915_private *dev_priv = dev->dev_private;
  4759. u32 rgvmodectl = I915_READ(MEMMODECTL);
  4760. u8 fmax, fmin, fstart, vstart;
  4761. /* 100ms RC evaluation intervals */
  4762. I915_WRITE(RCUPEI, 100000);
  4763. I915_WRITE(RCDNEI, 100000);
  4764. /* Set max/min thresholds to 90ms and 80ms respectively */
  4765. I915_WRITE(RCBMAXAVG, 90000);
  4766. I915_WRITE(RCBMINAVG, 80000);
  4767. I915_WRITE(MEMIHYST, 1);
  4768. /* Set up min, max, and cur for interrupt handling */
  4769. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  4770. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  4771. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  4772. MEMMODE_FSTART_SHIFT;
  4773. fstart = fmax;
  4774. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  4775. PXVFREQ_PX_SHIFT;
  4776. dev_priv->fmax = fstart; /* IPS callback will increase this */
  4777. dev_priv->fstart = fstart;
  4778. dev_priv->max_delay = fmax;
  4779. dev_priv->min_delay = fmin;
  4780. dev_priv->cur_delay = fstart;
  4781. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
  4782. fstart);
  4783. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  4784. /*
  4785. * Interrupts will be enabled in ironlake_irq_postinstall
  4786. */
  4787. I915_WRITE(VIDSTART, vstart);
  4788. POSTING_READ(VIDSTART);
  4789. rgvmodectl |= MEMMODE_SWMODE_EN;
  4790. I915_WRITE(MEMMODECTL, rgvmodectl);
  4791. if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  4792. DRM_ERROR("stuck trying to change perf mode\n");
  4793. msleep(1);
  4794. ironlake_set_drps(dev, fstart);
  4795. dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  4796. I915_READ(0x112e0);
  4797. dev_priv->last_time1 = jiffies_to_msecs(jiffies);
  4798. dev_priv->last_count2 = I915_READ(0x112f4);
  4799. getrawmonotonic(&dev_priv->last_time2);
  4800. }
  4801. void ironlake_disable_drps(struct drm_device *dev)
  4802. {
  4803. struct drm_i915_private *dev_priv = dev->dev_private;
  4804. u16 rgvswctl = I915_READ16(MEMSWCTL);
  4805. /* Ack interrupts, disable EFC interrupt */
  4806. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  4807. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  4808. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  4809. I915_WRITE(DEIIR, DE_PCU_EVENT);
  4810. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  4811. /* Go back to the starting frequency */
  4812. ironlake_set_drps(dev, dev_priv->fstart);
  4813. msleep(1);
  4814. rgvswctl |= MEMCTL_CMD_STS;
  4815. I915_WRITE(MEMSWCTL, rgvswctl);
  4816. msleep(1);
  4817. }
  4818. static unsigned long intel_pxfreq(u32 vidfreq)
  4819. {
  4820. unsigned long freq;
  4821. int div = (vidfreq & 0x3f0000) >> 16;
  4822. int post = (vidfreq & 0x3000) >> 12;
  4823. int pre = (vidfreq & 0x7);
  4824. if (!pre)
  4825. return 0;
  4826. freq = ((div * 133333) / ((1<<post) * pre));
  4827. return freq;
  4828. }
  4829. void intel_init_emon(struct drm_device *dev)
  4830. {
  4831. struct drm_i915_private *dev_priv = dev->dev_private;
  4832. u32 lcfuse;
  4833. u8 pxw[16];
  4834. int i;
  4835. /* Disable to program */
  4836. I915_WRITE(ECR, 0);
  4837. POSTING_READ(ECR);
  4838. /* Program energy weights for various events */
  4839. I915_WRITE(SDEW, 0x15040d00);
  4840. I915_WRITE(CSIEW0, 0x007f0000);
  4841. I915_WRITE(CSIEW1, 0x1e220004);
  4842. I915_WRITE(CSIEW2, 0x04000004);
  4843. for (i = 0; i < 5; i++)
  4844. I915_WRITE(PEW + (i * 4), 0);
  4845. for (i = 0; i < 3; i++)
  4846. I915_WRITE(DEW + (i * 4), 0);
  4847. /* Program P-state weights to account for frequency power adjustment */
  4848. for (i = 0; i < 16; i++) {
  4849. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  4850. unsigned long freq = intel_pxfreq(pxvidfreq);
  4851. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  4852. PXVFREQ_PX_SHIFT;
  4853. unsigned long val;
  4854. val = vid * vid;
  4855. val *= (freq / 1000);
  4856. val *= 255;
  4857. val /= (127*127*900);
  4858. if (val > 0xff)
  4859. DRM_ERROR("bad pxval: %ld\n", val);
  4860. pxw[i] = val;
  4861. }
  4862. /* Render standby states get 0 weight */
  4863. pxw[14] = 0;
  4864. pxw[15] = 0;
  4865. for (i = 0; i < 4; i++) {
  4866. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4867. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4868. I915_WRITE(PXW + (i * 4), val);
  4869. }
  4870. /* Adjust magic regs to magic values (more experimental results) */
  4871. I915_WRITE(OGW0, 0);
  4872. I915_WRITE(OGW1, 0);
  4873. I915_WRITE(EG0, 0x00007f00);
  4874. I915_WRITE(EG1, 0x0000000e);
  4875. I915_WRITE(EG2, 0x000e0000);
  4876. I915_WRITE(EG3, 0x68000300);
  4877. I915_WRITE(EG4, 0x42000000);
  4878. I915_WRITE(EG5, 0x00140031);
  4879. I915_WRITE(EG6, 0);
  4880. I915_WRITE(EG7, 0);
  4881. for (i = 0; i < 8; i++)
  4882. I915_WRITE(PXWL + (i * 4), 0);
  4883. /* Enable PMON + select events */
  4884. I915_WRITE(ECR, 0x80000019);
  4885. lcfuse = I915_READ(LCFUSE02);
  4886. dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
  4887. }
  4888. void intel_init_clock_gating(struct drm_device *dev)
  4889. {
  4890. struct drm_i915_private *dev_priv = dev->dev_private;
  4891. /*
  4892. * Disable clock gating reported to work incorrectly according to the
  4893. * specs, but enable as much else as we can.
  4894. */
  4895. if (HAS_PCH_SPLIT(dev)) {
  4896. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  4897. if (IS_IRONLAKE(dev)) {
  4898. /* Required for FBC */
  4899. dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
  4900. /* Required for CxSR */
  4901. dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
  4902. I915_WRITE(PCH_3DCGDIS0,
  4903. MARIUNIT_CLOCK_GATE_DISABLE |
  4904. SVSMUNIT_CLOCK_GATE_DISABLE);
  4905. }
  4906. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  4907. /*
  4908. * According to the spec the following bits should be set in
  4909. * order to enable memory self-refresh
  4910. * The bit 22/21 of 0x42004
  4911. * The bit 5 of 0x42020
  4912. * The bit 15 of 0x45000
  4913. */
  4914. if (IS_IRONLAKE(dev)) {
  4915. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4916. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4917. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4918. I915_WRITE(ILK_DSPCLK_GATE,
  4919. (I915_READ(ILK_DSPCLK_GATE) |
  4920. ILK_DPARB_CLK_GATE));
  4921. I915_WRITE(DISP_ARB_CTL,
  4922. (I915_READ(DISP_ARB_CTL) |
  4923. DISP_FBC_WM_DIS));
  4924. }
  4925. /*
  4926. * Based on the document from hardware guys the following bits
  4927. * should be set unconditionally in order to enable FBC.
  4928. * The bit 22 of 0x42000
  4929. * The bit 22 of 0x42004
  4930. * The bit 7,8,9 of 0x42020.
  4931. */
  4932. if (IS_IRONLAKE_M(dev)) {
  4933. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4934. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4935. ILK_FBCQ_DIS);
  4936. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4937. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4938. ILK_DPARB_GATE);
  4939. I915_WRITE(ILK_DSPCLK_GATE,
  4940. I915_READ(ILK_DSPCLK_GATE) |
  4941. ILK_DPFC_DIS1 |
  4942. ILK_DPFC_DIS2 |
  4943. ILK_CLK_FBC);
  4944. }
  4945. return;
  4946. } else if (IS_G4X(dev)) {
  4947. uint32_t dspclk_gate;
  4948. I915_WRITE(RENCLK_GATE_D1, 0);
  4949. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  4950. GS_UNIT_CLOCK_GATE_DISABLE |
  4951. CL_UNIT_CLOCK_GATE_DISABLE);
  4952. I915_WRITE(RAMCLK_GATE_D, 0);
  4953. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  4954. OVRUNIT_CLOCK_GATE_DISABLE |
  4955. OVCUNIT_CLOCK_GATE_DISABLE;
  4956. if (IS_GM45(dev))
  4957. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  4958. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  4959. } else if (IS_I965GM(dev)) {
  4960. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  4961. I915_WRITE(RENCLK_GATE_D2, 0);
  4962. I915_WRITE(DSPCLK_GATE_D, 0);
  4963. I915_WRITE(RAMCLK_GATE_D, 0);
  4964. I915_WRITE16(DEUC, 0);
  4965. } else if (IS_I965G(dev)) {
  4966. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  4967. I965_RCC_CLOCK_GATE_DISABLE |
  4968. I965_RCPB_CLOCK_GATE_DISABLE |
  4969. I965_ISC_CLOCK_GATE_DISABLE |
  4970. I965_FBC_CLOCK_GATE_DISABLE);
  4971. I915_WRITE(RENCLK_GATE_D2, 0);
  4972. } else if (IS_I9XX(dev)) {
  4973. u32 dstate = I915_READ(D_STATE);
  4974. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  4975. DSTATE_DOT_CLOCK_GATING;
  4976. I915_WRITE(D_STATE, dstate);
  4977. } else if (IS_I85X(dev) || IS_I865G(dev)) {
  4978. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  4979. } else if (IS_I830(dev)) {
  4980. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  4981. }
  4982. /*
  4983. * GPU can automatically power down the render unit if given a page
  4984. * to save state.
  4985. */
  4986. if (IS_IRONLAKE_M(dev)) {
  4987. if (dev_priv->renderctx == NULL)
  4988. dev_priv->renderctx = intel_alloc_context_page(dev);
  4989. if (dev_priv->renderctx) {
  4990. struct drm_i915_gem_object *obj_priv;
  4991. obj_priv = to_intel_bo(dev_priv->renderctx);
  4992. if (obj_priv) {
  4993. BEGIN_LP_RING(4);
  4994. OUT_RING(MI_SET_CONTEXT);
  4995. OUT_RING(obj_priv->gtt_offset |
  4996. MI_MM_SPACE_GTT |
  4997. MI_SAVE_EXT_STATE_EN |
  4998. MI_RESTORE_EXT_STATE_EN |
  4999. MI_RESTORE_INHIBIT);
  5000. OUT_RING(MI_NOOP);
  5001. OUT_RING(MI_FLUSH);
  5002. ADVANCE_LP_RING();
  5003. }
  5004. } else
  5005. DRM_DEBUG_KMS("Failed to allocate render context."
  5006. "Disable RC6\n");
  5007. }
  5008. if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
  5009. struct drm_i915_gem_object *obj_priv = NULL;
  5010. if (dev_priv->pwrctx) {
  5011. obj_priv = to_intel_bo(dev_priv->pwrctx);
  5012. } else {
  5013. struct drm_gem_object *pwrctx;
  5014. pwrctx = intel_alloc_context_page(dev);
  5015. if (pwrctx) {
  5016. dev_priv->pwrctx = pwrctx;
  5017. obj_priv = to_intel_bo(pwrctx);
  5018. }
  5019. }
  5020. if (obj_priv) {
  5021. I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
  5022. I915_WRITE(MCHBAR_RENDER_STANDBY,
  5023. I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
  5024. }
  5025. }
  5026. }
  5027. /* Set up chip specific display functions */
  5028. static void intel_init_display(struct drm_device *dev)
  5029. {
  5030. struct drm_i915_private *dev_priv = dev->dev_private;
  5031. /* We always want a DPMS function */
  5032. if (HAS_PCH_SPLIT(dev))
  5033. dev_priv->display.dpms = ironlake_crtc_dpms;
  5034. else
  5035. dev_priv->display.dpms = i9xx_crtc_dpms;
  5036. if (I915_HAS_FBC(dev)) {
  5037. if (IS_IRONLAKE_M(dev)) {
  5038. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  5039. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  5040. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  5041. } else if (IS_GM45(dev)) {
  5042. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  5043. dev_priv->display.enable_fbc = g4x_enable_fbc;
  5044. dev_priv->display.disable_fbc = g4x_disable_fbc;
  5045. } else if (IS_I965GM(dev)) {
  5046. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  5047. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  5048. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  5049. }
  5050. /* 855GM needs testing */
  5051. }
  5052. /* Returns the core display clock speed */
  5053. if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
  5054. dev_priv->display.get_display_clock_speed =
  5055. i945_get_display_clock_speed;
  5056. else if (IS_I915G(dev))
  5057. dev_priv->display.get_display_clock_speed =
  5058. i915_get_display_clock_speed;
  5059. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  5060. dev_priv->display.get_display_clock_speed =
  5061. i9xx_misc_get_display_clock_speed;
  5062. else if (IS_I915GM(dev))
  5063. dev_priv->display.get_display_clock_speed =
  5064. i915gm_get_display_clock_speed;
  5065. else if (IS_I865G(dev))
  5066. dev_priv->display.get_display_clock_speed =
  5067. i865_get_display_clock_speed;
  5068. else if (IS_I85X(dev))
  5069. dev_priv->display.get_display_clock_speed =
  5070. i855_get_display_clock_speed;
  5071. else /* 852, 830 */
  5072. dev_priv->display.get_display_clock_speed =
  5073. i830_get_display_clock_speed;
  5074. /* For FIFO watermark updates */
  5075. if (HAS_PCH_SPLIT(dev)) {
  5076. if (IS_IRONLAKE(dev)) {
  5077. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  5078. dev_priv->display.update_wm = ironlake_update_wm;
  5079. else {
  5080. DRM_DEBUG_KMS("Failed to get proper latency. "
  5081. "Disable CxSR\n");
  5082. dev_priv->display.update_wm = NULL;
  5083. }
  5084. } else
  5085. dev_priv->display.update_wm = NULL;
  5086. } else if (IS_PINEVIEW(dev)) {
  5087. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  5088. dev_priv->is_ddr3,
  5089. dev_priv->fsb_freq,
  5090. dev_priv->mem_freq)) {
  5091. DRM_INFO("failed to find known CxSR latency "
  5092. "(found ddr%s fsb freq %d, mem freq %d), "
  5093. "disabling CxSR\n",
  5094. (dev_priv->is_ddr3 == 1) ? "3": "2",
  5095. dev_priv->fsb_freq, dev_priv->mem_freq);
  5096. /* Disable CxSR and never update its watermark again */
  5097. pineview_disable_cxsr(dev);
  5098. dev_priv->display.update_wm = NULL;
  5099. } else
  5100. dev_priv->display.update_wm = pineview_update_wm;
  5101. } else if (IS_G4X(dev))
  5102. dev_priv->display.update_wm = g4x_update_wm;
  5103. else if (IS_I965G(dev))
  5104. dev_priv->display.update_wm = i965_update_wm;
  5105. else if (IS_I9XX(dev)) {
  5106. dev_priv->display.update_wm = i9xx_update_wm;
  5107. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  5108. } else if (IS_I85X(dev)) {
  5109. dev_priv->display.update_wm = i9xx_update_wm;
  5110. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  5111. } else {
  5112. dev_priv->display.update_wm = i830_update_wm;
  5113. if (IS_845G(dev))
  5114. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  5115. else
  5116. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  5117. }
  5118. }
  5119. /*
  5120. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  5121. * resume, or other times. This quirk makes sure that's the case for
  5122. * affected systems.
  5123. */
  5124. static void quirk_pipea_force (struct drm_device *dev)
  5125. {
  5126. struct drm_i915_private *dev_priv = dev->dev_private;
  5127. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  5128. DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
  5129. }
  5130. struct intel_quirk {
  5131. int device;
  5132. int subsystem_vendor;
  5133. int subsystem_device;
  5134. void (*hook)(struct drm_device *dev);
  5135. };
  5136. struct intel_quirk intel_quirks[] = {
  5137. /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
  5138. { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
  5139. /* HP Mini needs pipe A force quirk (LP: #322104) */
  5140. { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
  5141. /* Thinkpad R31 needs pipe A force quirk */
  5142. { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
  5143. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  5144. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  5145. /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
  5146. { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
  5147. /* ThinkPad X40 needs pipe A force quirk */
  5148. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  5149. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  5150. /* 855 & before need to leave pipe A & dpll A up */
  5151. { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  5152. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  5153. };
  5154. static void intel_init_quirks(struct drm_device *dev)
  5155. {
  5156. struct pci_dev *d = dev->pdev;
  5157. int i;
  5158. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  5159. struct intel_quirk *q = &intel_quirks[i];
  5160. if (d->device == q->device &&
  5161. (d->subsystem_vendor == q->subsystem_vendor ||
  5162. q->subsystem_vendor == PCI_ANY_ID) &&
  5163. (d->subsystem_device == q->subsystem_device ||
  5164. q->subsystem_device == PCI_ANY_ID))
  5165. q->hook(dev);
  5166. }
  5167. }
  5168. /* Disable the VGA plane that we never use */
  5169. static void i915_disable_vga(struct drm_device *dev)
  5170. {
  5171. struct drm_i915_private *dev_priv = dev->dev_private;
  5172. u8 sr1;
  5173. u32 vga_reg;
  5174. if (HAS_PCH_SPLIT(dev))
  5175. vga_reg = CPU_VGACNTRL;
  5176. else
  5177. vga_reg = VGACNTRL;
  5178. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  5179. outb(1, VGA_SR_INDEX);
  5180. sr1 = inb(VGA_SR_DATA);
  5181. outb(sr1 | 1<<5, VGA_SR_DATA);
  5182. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  5183. udelay(300);
  5184. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  5185. POSTING_READ(vga_reg);
  5186. }
  5187. void intel_modeset_init(struct drm_device *dev)
  5188. {
  5189. struct drm_i915_private *dev_priv = dev->dev_private;
  5190. int i;
  5191. drm_mode_config_init(dev);
  5192. dev->mode_config.min_width = 0;
  5193. dev->mode_config.min_height = 0;
  5194. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  5195. intel_init_quirks(dev);
  5196. intel_init_display(dev);
  5197. if (IS_I965G(dev)) {
  5198. dev->mode_config.max_width = 8192;
  5199. dev->mode_config.max_height = 8192;
  5200. } else if (IS_I9XX(dev)) {
  5201. dev->mode_config.max_width = 4096;
  5202. dev->mode_config.max_height = 4096;
  5203. } else {
  5204. dev->mode_config.max_width = 2048;
  5205. dev->mode_config.max_height = 2048;
  5206. }
  5207. /* set memory base */
  5208. if (IS_I9XX(dev))
  5209. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
  5210. else
  5211. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
  5212. if (IS_MOBILE(dev) || IS_I9XX(dev))
  5213. dev_priv->num_pipe = 2;
  5214. else
  5215. dev_priv->num_pipe = 1;
  5216. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  5217. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  5218. for (i = 0; i < dev_priv->num_pipe; i++) {
  5219. intel_crtc_init(dev, i);
  5220. }
  5221. intel_setup_outputs(dev);
  5222. intel_init_clock_gating(dev);
  5223. /* Just disable it once at startup */
  5224. i915_disable_vga(dev);
  5225. if (IS_IRONLAKE_M(dev)) {
  5226. ironlake_enable_drps(dev);
  5227. intel_init_emon(dev);
  5228. }
  5229. INIT_WORK(&dev_priv->idle_work, intel_idle_update);
  5230. setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
  5231. (unsigned long)dev);
  5232. intel_setup_overlay(dev);
  5233. }
  5234. void intel_modeset_cleanup(struct drm_device *dev)
  5235. {
  5236. struct drm_i915_private *dev_priv = dev->dev_private;
  5237. struct drm_crtc *crtc;
  5238. struct intel_crtc *intel_crtc;
  5239. mutex_lock(&dev->struct_mutex);
  5240. drm_kms_helper_poll_fini(dev);
  5241. intel_fbdev_fini(dev);
  5242. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5243. /* Skip inactive CRTCs */
  5244. if (!crtc->fb)
  5245. continue;
  5246. intel_crtc = to_intel_crtc(crtc);
  5247. intel_increase_pllclock(crtc);
  5248. }
  5249. if (dev_priv->display.disable_fbc)
  5250. dev_priv->display.disable_fbc(dev);
  5251. if (dev_priv->renderctx) {
  5252. struct drm_i915_gem_object *obj_priv;
  5253. obj_priv = to_intel_bo(dev_priv->renderctx);
  5254. I915_WRITE(CCID, obj_priv->gtt_offset &~ CCID_EN);
  5255. I915_READ(CCID);
  5256. i915_gem_object_unpin(dev_priv->renderctx);
  5257. drm_gem_object_unreference(dev_priv->renderctx);
  5258. }
  5259. if (dev_priv->pwrctx) {
  5260. struct drm_i915_gem_object *obj_priv;
  5261. obj_priv = to_intel_bo(dev_priv->pwrctx);
  5262. I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
  5263. I915_READ(PWRCTXA);
  5264. i915_gem_object_unpin(dev_priv->pwrctx);
  5265. drm_gem_object_unreference(dev_priv->pwrctx);
  5266. }
  5267. if (IS_IRONLAKE_M(dev))
  5268. ironlake_disable_drps(dev);
  5269. mutex_unlock(&dev->struct_mutex);
  5270. /* Disable the irq before mode object teardown, for the irq might
  5271. * enqueue unpin/hotplug work. */
  5272. drm_irq_uninstall(dev);
  5273. cancel_work_sync(&dev_priv->hotplug_work);
  5274. /* Shut off idle work before the crtcs get freed. */
  5275. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5276. intel_crtc = to_intel_crtc(crtc);
  5277. del_timer_sync(&intel_crtc->idle_timer);
  5278. }
  5279. del_timer_sync(&dev_priv->idle_timer);
  5280. cancel_work_sync(&dev_priv->idle_work);
  5281. drm_mode_config_cleanup(dev);
  5282. }
  5283. /*
  5284. * Return which encoder is currently attached for connector.
  5285. */
  5286. struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
  5287. {
  5288. struct drm_mode_object *obj;
  5289. struct drm_encoder *encoder;
  5290. int i;
  5291. for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
  5292. if (connector->encoder_ids[i] == 0)
  5293. break;
  5294. obj = drm_mode_object_find(connector->dev,
  5295. connector->encoder_ids[i],
  5296. DRM_MODE_OBJECT_ENCODER);
  5297. if (!obj)
  5298. continue;
  5299. encoder = obj_to_encoder(obj);
  5300. return encoder;
  5301. }
  5302. return NULL;
  5303. }
  5304. /*
  5305. * set vga decode state - true == enable VGA decode
  5306. */
  5307. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  5308. {
  5309. struct drm_i915_private *dev_priv = dev->dev_private;
  5310. u16 gmch_ctrl;
  5311. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  5312. if (state)
  5313. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  5314. else
  5315. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  5316. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  5317. return 0;
  5318. }