sched.c 204 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <asm/tlb.h>
  71. #include <asm/irq_regs.h>
  72. /*
  73. * Scheduler clock - returns current time in nanosec units.
  74. * This is default implementation.
  75. * Architectures and sub-architectures can override this.
  76. */
  77. unsigned long long __attribute__((weak)) sched_clock(void)
  78. {
  79. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  80. }
  81. /*
  82. * Convert user-nice values [ -20 ... 0 ... 19 ]
  83. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  84. * and back.
  85. */
  86. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  87. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  88. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  89. /*
  90. * 'User priority' is the nice value converted to something we
  91. * can work with better when scaling various scheduler parameters,
  92. * it's a [ 0 ... 39 ] range.
  93. */
  94. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  95. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  96. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  97. /*
  98. * Helpers for converting nanosecond timing to jiffy resolution
  99. */
  100. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  101. #define NICE_0_LOAD SCHED_LOAD_SCALE
  102. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  103. /*
  104. * These are the 'tuning knobs' of the scheduler:
  105. *
  106. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  107. * Timeslices get refilled after they expire.
  108. */
  109. #define DEF_TIMESLICE (100 * HZ / 1000)
  110. /*
  111. * single value that denotes runtime == period, ie unlimited time.
  112. */
  113. #define RUNTIME_INF ((u64)~0ULL)
  114. #ifdef CONFIG_SMP
  115. /*
  116. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  117. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  118. */
  119. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  120. {
  121. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  122. }
  123. /*
  124. * Each time a sched group cpu_power is changed,
  125. * we must compute its reciprocal value
  126. */
  127. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  128. {
  129. sg->__cpu_power += val;
  130. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  131. }
  132. #endif
  133. static inline int rt_policy(int policy)
  134. {
  135. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  136. return 1;
  137. return 0;
  138. }
  139. static inline int task_has_rt_policy(struct task_struct *p)
  140. {
  141. return rt_policy(p->policy);
  142. }
  143. /*
  144. * This is the priority-queue data structure of the RT scheduling class:
  145. */
  146. struct rt_prio_array {
  147. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  148. struct list_head queue[MAX_RT_PRIO];
  149. };
  150. struct rt_bandwidth {
  151. ktime_t rt_period;
  152. u64 rt_runtime;
  153. spinlock_t rt_runtime_lock;
  154. struct hrtimer rt_period_timer;
  155. };
  156. static struct rt_bandwidth def_rt_bandwidth;
  157. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  158. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  159. {
  160. struct rt_bandwidth *rt_b =
  161. container_of(timer, struct rt_bandwidth, rt_period_timer);
  162. ktime_t now;
  163. int overrun;
  164. int idle = 0;
  165. for (;;) {
  166. now = hrtimer_cb_get_time(timer);
  167. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  168. if (!overrun)
  169. break;
  170. idle = do_sched_rt_period_timer(rt_b, overrun);
  171. }
  172. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  173. }
  174. static
  175. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  176. {
  177. rt_b->rt_period = ns_to_ktime(period);
  178. rt_b->rt_runtime = runtime;
  179. spin_lock_init(&rt_b->rt_runtime_lock);
  180. hrtimer_init(&rt_b->rt_period_timer,
  181. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  182. rt_b->rt_period_timer.function = sched_rt_period_timer;
  183. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  184. }
  185. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  186. {
  187. ktime_t now;
  188. if (rt_b->rt_runtime == RUNTIME_INF)
  189. return;
  190. if (hrtimer_active(&rt_b->rt_period_timer))
  191. return;
  192. spin_lock(&rt_b->rt_runtime_lock);
  193. for (;;) {
  194. if (hrtimer_active(&rt_b->rt_period_timer))
  195. break;
  196. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  197. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  198. hrtimer_start(&rt_b->rt_period_timer,
  199. rt_b->rt_period_timer.expires,
  200. HRTIMER_MODE_ABS);
  201. }
  202. spin_unlock(&rt_b->rt_runtime_lock);
  203. }
  204. #ifdef CONFIG_RT_GROUP_SCHED
  205. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  206. {
  207. hrtimer_cancel(&rt_b->rt_period_timer);
  208. }
  209. #endif
  210. #ifdef CONFIG_GROUP_SCHED
  211. #include <linux/cgroup.h>
  212. struct cfs_rq;
  213. static LIST_HEAD(task_groups);
  214. /* task group related information */
  215. struct task_group {
  216. #ifdef CONFIG_CGROUP_SCHED
  217. struct cgroup_subsys_state css;
  218. #endif
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. /* schedulable entities of this group on each cpu */
  221. struct sched_entity **se;
  222. /* runqueue "owned" by this group on each cpu */
  223. struct cfs_rq **cfs_rq;
  224. unsigned long shares;
  225. #endif
  226. #ifdef CONFIG_RT_GROUP_SCHED
  227. struct sched_rt_entity **rt_se;
  228. struct rt_rq **rt_rq;
  229. struct rt_bandwidth rt_bandwidth;
  230. #endif
  231. struct rcu_head rcu;
  232. struct list_head list;
  233. };
  234. #ifdef CONFIG_FAIR_GROUP_SCHED
  235. /* Default task group's sched entity on each cpu */
  236. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  237. /* Default task group's cfs_rq on each cpu */
  238. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  239. #endif
  240. #ifdef CONFIG_RT_GROUP_SCHED
  241. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  242. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  243. #endif
  244. /* task_group_lock serializes add/remove of task groups and also changes to
  245. * a task group's cpu shares.
  246. */
  247. static DEFINE_SPINLOCK(task_group_lock);
  248. /* doms_cur_mutex serializes access to doms_cur[] array */
  249. static DEFINE_MUTEX(doms_cur_mutex);
  250. #ifdef CONFIG_FAIR_GROUP_SCHED
  251. #ifdef CONFIG_USER_SCHED
  252. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  253. #else
  254. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  255. #endif
  256. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  257. #endif
  258. /* Default task group.
  259. * Every task in system belong to this group at bootup.
  260. */
  261. struct task_group init_task_group;
  262. /* return group to which a task belongs */
  263. static inline struct task_group *task_group(struct task_struct *p)
  264. {
  265. struct task_group *tg;
  266. #ifdef CONFIG_USER_SCHED
  267. tg = p->user->tg;
  268. #elif defined(CONFIG_CGROUP_SCHED)
  269. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  270. struct task_group, css);
  271. #else
  272. tg = &init_task_group;
  273. #endif
  274. return tg;
  275. }
  276. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  277. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  278. {
  279. #ifdef CONFIG_FAIR_GROUP_SCHED
  280. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  281. p->se.parent = task_group(p)->se[cpu];
  282. #endif
  283. #ifdef CONFIG_RT_GROUP_SCHED
  284. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  285. p->rt.parent = task_group(p)->rt_se[cpu];
  286. #endif
  287. }
  288. static inline void lock_doms_cur(void)
  289. {
  290. mutex_lock(&doms_cur_mutex);
  291. }
  292. static inline void unlock_doms_cur(void)
  293. {
  294. mutex_unlock(&doms_cur_mutex);
  295. }
  296. #else
  297. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  298. static inline void lock_doms_cur(void) { }
  299. static inline void unlock_doms_cur(void) { }
  300. #endif /* CONFIG_GROUP_SCHED */
  301. /* CFS-related fields in a runqueue */
  302. struct cfs_rq {
  303. struct load_weight load;
  304. unsigned long nr_running;
  305. u64 exec_clock;
  306. u64 min_vruntime;
  307. struct rb_root tasks_timeline;
  308. struct rb_node *rb_leftmost;
  309. struct rb_node *rb_load_balance_curr;
  310. /* 'curr' points to currently running entity on this cfs_rq.
  311. * It is set to NULL otherwise (i.e when none are currently running).
  312. */
  313. struct sched_entity *curr, *next;
  314. unsigned long nr_spread_over;
  315. #ifdef CONFIG_FAIR_GROUP_SCHED
  316. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  317. /*
  318. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  319. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  320. * (like users, containers etc.)
  321. *
  322. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  323. * list is used during load balance.
  324. */
  325. struct list_head leaf_cfs_rq_list;
  326. struct task_group *tg; /* group that "owns" this runqueue */
  327. #endif
  328. };
  329. /* Real-Time classes' related field in a runqueue: */
  330. struct rt_rq {
  331. struct rt_prio_array active;
  332. unsigned long rt_nr_running;
  333. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  334. int highest_prio; /* highest queued rt task prio */
  335. #endif
  336. #ifdef CONFIG_SMP
  337. unsigned long rt_nr_migratory;
  338. int overloaded;
  339. #endif
  340. int rt_throttled;
  341. u64 rt_time;
  342. u64 rt_runtime;
  343. spinlock_t rt_runtime_lock;
  344. #ifdef CONFIG_RT_GROUP_SCHED
  345. unsigned long rt_nr_boosted;
  346. struct rq *rq;
  347. struct list_head leaf_rt_rq_list;
  348. struct task_group *tg;
  349. struct sched_rt_entity *rt_se;
  350. #endif
  351. };
  352. #ifdef CONFIG_SMP
  353. /*
  354. * We add the notion of a root-domain which will be used to define per-domain
  355. * variables. Each exclusive cpuset essentially defines an island domain by
  356. * fully partitioning the member cpus from any other cpuset. Whenever a new
  357. * exclusive cpuset is created, we also create and attach a new root-domain
  358. * object.
  359. *
  360. */
  361. struct root_domain {
  362. atomic_t refcount;
  363. cpumask_t span;
  364. cpumask_t online;
  365. /*
  366. * The "RT overload" flag: it gets set if a CPU has more than
  367. * one runnable RT task.
  368. */
  369. cpumask_t rto_mask;
  370. atomic_t rto_count;
  371. };
  372. /*
  373. * By default the system creates a single root-domain with all cpus as
  374. * members (mimicking the global state we have today).
  375. */
  376. static struct root_domain def_root_domain;
  377. #endif
  378. /*
  379. * This is the main, per-CPU runqueue data structure.
  380. *
  381. * Locking rule: those places that want to lock multiple runqueues
  382. * (such as the load balancing or the thread migration code), lock
  383. * acquire operations must be ordered by ascending &runqueue.
  384. */
  385. struct rq {
  386. /* runqueue lock: */
  387. spinlock_t lock;
  388. /*
  389. * nr_running and cpu_load should be in the same cacheline because
  390. * remote CPUs use both these fields when doing load calculation.
  391. */
  392. unsigned long nr_running;
  393. #define CPU_LOAD_IDX_MAX 5
  394. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  395. unsigned char idle_at_tick;
  396. #ifdef CONFIG_NO_HZ
  397. unsigned long last_tick_seen;
  398. unsigned char in_nohz_recently;
  399. #endif
  400. /* capture load from *all* tasks on this cpu: */
  401. struct load_weight load;
  402. unsigned long nr_load_updates;
  403. u64 nr_switches;
  404. struct cfs_rq cfs;
  405. struct rt_rq rt;
  406. #ifdef CONFIG_FAIR_GROUP_SCHED
  407. /* list of leaf cfs_rq on this cpu: */
  408. struct list_head leaf_cfs_rq_list;
  409. #endif
  410. #ifdef CONFIG_RT_GROUP_SCHED
  411. struct list_head leaf_rt_rq_list;
  412. #endif
  413. /*
  414. * This is part of a global counter where only the total sum
  415. * over all CPUs matters. A task can increase this counter on
  416. * one CPU and if it got migrated afterwards it may decrease
  417. * it on another CPU. Always updated under the runqueue lock:
  418. */
  419. unsigned long nr_uninterruptible;
  420. struct task_struct *curr, *idle;
  421. unsigned long next_balance;
  422. struct mm_struct *prev_mm;
  423. u64 clock, prev_clock_raw;
  424. s64 clock_max_delta;
  425. unsigned int clock_warps, clock_overflows, clock_underflows;
  426. u64 idle_clock;
  427. unsigned int clock_deep_idle_events;
  428. u64 tick_timestamp;
  429. atomic_t nr_iowait;
  430. #ifdef CONFIG_SMP
  431. struct root_domain *rd;
  432. struct sched_domain *sd;
  433. /* For active balancing */
  434. int active_balance;
  435. int push_cpu;
  436. /* cpu of this runqueue: */
  437. int cpu;
  438. struct task_struct *migration_thread;
  439. struct list_head migration_queue;
  440. #endif
  441. #ifdef CONFIG_SCHED_HRTICK
  442. unsigned long hrtick_flags;
  443. ktime_t hrtick_expire;
  444. struct hrtimer hrtick_timer;
  445. #endif
  446. #ifdef CONFIG_SCHEDSTATS
  447. /* latency stats */
  448. struct sched_info rq_sched_info;
  449. /* sys_sched_yield() stats */
  450. unsigned int yld_exp_empty;
  451. unsigned int yld_act_empty;
  452. unsigned int yld_both_empty;
  453. unsigned int yld_count;
  454. /* schedule() stats */
  455. unsigned int sched_switch;
  456. unsigned int sched_count;
  457. unsigned int sched_goidle;
  458. /* try_to_wake_up() stats */
  459. unsigned int ttwu_count;
  460. unsigned int ttwu_local;
  461. /* BKL stats */
  462. unsigned int bkl_count;
  463. #endif
  464. struct lock_class_key rq_lock_key;
  465. };
  466. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  467. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  468. {
  469. rq->curr->sched_class->check_preempt_curr(rq, p);
  470. }
  471. static inline int cpu_of(struct rq *rq)
  472. {
  473. #ifdef CONFIG_SMP
  474. return rq->cpu;
  475. #else
  476. return 0;
  477. #endif
  478. }
  479. #ifdef CONFIG_NO_HZ
  480. static inline bool nohz_on(int cpu)
  481. {
  482. return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
  483. }
  484. static inline u64 max_skipped_ticks(struct rq *rq)
  485. {
  486. return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
  487. }
  488. static inline void update_last_tick_seen(struct rq *rq)
  489. {
  490. rq->last_tick_seen = jiffies;
  491. }
  492. #else
  493. static inline u64 max_skipped_ticks(struct rq *rq)
  494. {
  495. return 1;
  496. }
  497. static inline void update_last_tick_seen(struct rq *rq)
  498. {
  499. }
  500. #endif
  501. /*
  502. * Update the per-runqueue clock, as finegrained as the platform can give
  503. * us, but without assuming monotonicity, etc.:
  504. */
  505. static void __update_rq_clock(struct rq *rq)
  506. {
  507. u64 prev_raw = rq->prev_clock_raw;
  508. u64 now = sched_clock();
  509. s64 delta = now - prev_raw;
  510. u64 clock = rq->clock;
  511. #ifdef CONFIG_SCHED_DEBUG
  512. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  513. #endif
  514. /*
  515. * Protect against sched_clock() occasionally going backwards:
  516. */
  517. if (unlikely(delta < 0)) {
  518. clock++;
  519. rq->clock_warps++;
  520. } else {
  521. /*
  522. * Catch too large forward jumps too:
  523. */
  524. u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
  525. u64 max_time = rq->tick_timestamp + max_jump;
  526. if (unlikely(clock + delta > max_time)) {
  527. if (clock < max_time)
  528. clock = max_time;
  529. else
  530. clock++;
  531. rq->clock_overflows++;
  532. } else {
  533. if (unlikely(delta > rq->clock_max_delta))
  534. rq->clock_max_delta = delta;
  535. clock += delta;
  536. }
  537. }
  538. rq->prev_clock_raw = now;
  539. rq->clock = clock;
  540. }
  541. static void update_rq_clock(struct rq *rq)
  542. {
  543. if (likely(smp_processor_id() == cpu_of(rq)))
  544. __update_rq_clock(rq);
  545. }
  546. /*
  547. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  548. * See detach_destroy_domains: synchronize_sched for details.
  549. *
  550. * The domain tree of any CPU may only be accessed from within
  551. * preempt-disabled sections.
  552. */
  553. #define for_each_domain(cpu, __sd) \
  554. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  555. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  556. #define this_rq() (&__get_cpu_var(runqueues))
  557. #define task_rq(p) cpu_rq(task_cpu(p))
  558. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  559. /*
  560. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  561. */
  562. #ifdef CONFIG_SCHED_DEBUG
  563. # define const_debug __read_mostly
  564. #else
  565. # define const_debug static const
  566. #endif
  567. /*
  568. * Debugging: various feature bits
  569. */
  570. enum {
  571. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  572. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  573. SCHED_FEAT_START_DEBIT = 4,
  574. SCHED_FEAT_AFFINE_WAKEUPS = 8,
  575. SCHED_FEAT_CACHE_HOT_BUDDY = 16,
  576. SCHED_FEAT_SYNC_WAKEUPS = 32,
  577. SCHED_FEAT_HRTICK = 64,
  578. SCHED_FEAT_DOUBLE_TICK = 128,
  579. };
  580. const_debug unsigned int sysctl_sched_features =
  581. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  582. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  583. SCHED_FEAT_START_DEBIT * 1 |
  584. SCHED_FEAT_AFFINE_WAKEUPS * 1 |
  585. SCHED_FEAT_CACHE_HOT_BUDDY * 1 |
  586. SCHED_FEAT_SYNC_WAKEUPS * 1 |
  587. SCHED_FEAT_HRTICK * 1 |
  588. SCHED_FEAT_DOUBLE_TICK * 0;
  589. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  590. /*
  591. * Number of tasks to iterate in a single balance run.
  592. * Limited because this is done with IRQs disabled.
  593. */
  594. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  595. /*
  596. * period over which we measure -rt task cpu usage in us.
  597. * default: 1s
  598. */
  599. unsigned int sysctl_sched_rt_period = 1000000;
  600. static __read_mostly int scheduler_running;
  601. /*
  602. * part of the period that we allow rt tasks to run in us.
  603. * default: 0.95s
  604. */
  605. int sysctl_sched_rt_runtime = 950000;
  606. static inline u64 global_rt_period(void)
  607. {
  608. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  609. }
  610. static inline u64 global_rt_runtime(void)
  611. {
  612. if (sysctl_sched_rt_period < 0)
  613. return RUNTIME_INF;
  614. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  615. }
  616. static const unsigned long long time_sync_thresh = 100000;
  617. static DEFINE_PER_CPU(unsigned long long, time_offset);
  618. static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
  619. /*
  620. * Global lock which we take every now and then to synchronize
  621. * the CPUs time. This method is not warp-safe, but it's good
  622. * enough to synchronize slowly diverging time sources and thus
  623. * it's good enough for tracing:
  624. */
  625. static DEFINE_SPINLOCK(time_sync_lock);
  626. static unsigned long long prev_global_time;
  627. static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
  628. {
  629. unsigned long flags;
  630. spin_lock_irqsave(&time_sync_lock, flags);
  631. if (time < prev_global_time) {
  632. per_cpu(time_offset, cpu) += prev_global_time - time;
  633. time = prev_global_time;
  634. } else {
  635. prev_global_time = time;
  636. }
  637. spin_unlock_irqrestore(&time_sync_lock, flags);
  638. return time;
  639. }
  640. static unsigned long long __cpu_clock(int cpu)
  641. {
  642. unsigned long long now;
  643. unsigned long flags;
  644. struct rq *rq;
  645. /*
  646. * Only call sched_clock() if the scheduler has already been
  647. * initialized (some code might call cpu_clock() very early):
  648. */
  649. if (unlikely(!scheduler_running))
  650. return 0;
  651. local_irq_save(flags);
  652. rq = cpu_rq(cpu);
  653. update_rq_clock(rq);
  654. now = rq->clock;
  655. local_irq_restore(flags);
  656. return now;
  657. }
  658. /*
  659. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  660. * clock constructed from sched_clock():
  661. */
  662. unsigned long long cpu_clock(int cpu)
  663. {
  664. unsigned long long prev_cpu_time, time, delta_time;
  665. prev_cpu_time = per_cpu(prev_cpu_time, cpu);
  666. time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
  667. delta_time = time-prev_cpu_time;
  668. if (unlikely(delta_time > time_sync_thresh))
  669. time = __sync_cpu_clock(time, cpu);
  670. return time;
  671. }
  672. EXPORT_SYMBOL_GPL(cpu_clock);
  673. #ifndef prepare_arch_switch
  674. # define prepare_arch_switch(next) do { } while (0)
  675. #endif
  676. #ifndef finish_arch_switch
  677. # define finish_arch_switch(prev) do { } while (0)
  678. #endif
  679. static inline int task_current(struct rq *rq, struct task_struct *p)
  680. {
  681. return rq->curr == p;
  682. }
  683. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  684. static inline int task_running(struct rq *rq, struct task_struct *p)
  685. {
  686. return task_current(rq, p);
  687. }
  688. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  689. {
  690. }
  691. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  692. {
  693. #ifdef CONFIG_DEBUG_SPINLOCK
  694. /* this is a valid case when another task releases the spinlock */
  695. rq->lock.owner = current;
  696. #endif
  697. /*
  698. * If we are tracking spinlock dependencies then we have to
  699. * fix up the runqueue lock - which gets 'carried over' from
  700. * prev into current:
  701. */
  702. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  703. spin_unlock_irq(&rq->lock);
  704. }
  705. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  706. static inline int task_running(struct rq *rq, struct task_struct *p)
  707. {
  708. #ifdef CONFIG_SMP
  709. return p->oncpu;
  710. #else
  711. return task_current(rq, p);
  712. #endif
  713. }
  714. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  715. {
  716. #ifdef CONFIG_SMP
  717. /*
  718. * We can optimise this out completely for !SMP, because the
  719. * SMP rebalancing from interrupt is the only thing that cares
  720. * here.
  721. */
  722. next->oncpu = 1;
  723. #endif
  724. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  725. spin_unlock_irq(&rq->lock);
  726. #else
  727. spin_unlock(&rq->lock);
  728. #endif
  729. }
  730. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  731. {
  732. #ifdef CONFIG_SMP
  733. /*
  734. * After ->oncpu is cleared, the task can be moved to a different CPU.
  735. * We must ensure this doesn't happen until the switch is completely
  736. * finished.
  737. */
  738. smp_wmb();
  739. prev->oncpu = 0;
  740. #endif
  741. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  742. local_irq_enable();
  743. #endif
  744. }
  745. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  746. /*
  747. * __task_rq_lock - lock the runqueue a given task resides on.
  748. * Must be called interrupts disabled.
  749. */
  750. static inline struct rq *__task_rq_lock(struct task_struct *p)
  751. __acquires(rq->lock)
  752. {
  753. for (;;) {
  754. struct rq *rq = task_rq(p);
  755. spin_lock(&rq->lock);
  756. if (likely(rq == task_rq(p)))
  757. return rq;
  758. spin_unlock(&rq->lock);
  759. }
  760. }
  761. /*
  762. * task_rq_lock - lock the runqueue a given task resides on and disable
  763. * interrupts. Note the ordering: we can safely lookup the task_rq without
  764. * explicitly disabling preemption.
  765. */
  766. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  767. __acquires(rq->lock)
  768. {
  769. struct rq *rq;
  770. for (;;) {
  771. local_irq_save(*flags);
  772. rq = task_rq(p);
  773. spin_lock(&rq->lock);
  774. if (likely(rq == task_rq(p)))
  775. return rq;
  776. spin_unlock_irqrestore(&rq->lock, *flags);
  777. }
  778. }
  779. static void __task_rq_unlock(struct rq *rq)
  780. __releases(rq->lock)
  781. {
  782. spin_unlock(&rq->lock);
  783. }
  784. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  785. __releases(rq->lock)
  786. {
  787. spin_unlock_irqrestore(&rq->lock, *flags);
  788. }
  789. /*
  790. * this_rq_lock - lock this runqueue and disable interrupts.
  791. */
  792. static struct rq *this_rq_lock(void)
  793. __acquires(rq->lock)
  794. {
  795. struct rq *rq;
  796. local_irq_disable();
  797. rq = this_rq();
  798. spin_lock(&rq->lock);
  799. return rq;
  800. }
  801. /*
  802. * We are going deep-idle (irqs are disabled):
  803. */
  804. void sched_clock_idle_sleep_event(void)
  805. {
  806. struct rq *rq = cpu_rq(smp_processor_id());
  807. spin_lock(&rq->lock);
  808. __update_rq_clock(rq);
  809. spin_unlock(&rq->lock);
  810. rq->clock_deep_idle_events++;
  811. }
  812. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  813. /*
  814. * We just idled delta nanoseconds (called with irqs disabled):
  815. */
  816. void sched_clock_idle_wakeup_event(u64 delta_ns)
  817. {
  818. struct rq *rq = cpu_rq(smp_processor_id());
  819. u64 now = sched_clock();
  820. rq->idle_clock += delta_ns;
  821. /*
  822. * Override the previous timestamp and ignore all
  823. * sched_clock() deltas that occured while we idled,
  824. * and use the PM-provided delta_ns to advance the
  825. * rq clock:
  826. */
  827. spin_lock(&rq->lock);
  828. rq->prev_clock_raw = now;
  829. rq->clock += delta_ns;
  830. spin_unlock(&rq->lock);
  831. touch_softlockup_watchdog();
  832. }
  833. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  834. static void __resched_task(struct task_struct *p, int tif_bit);
  835. static inline void resched_task(struct task_struct *p)
  836. {
  837. __resched_task(p, TIF_NEED_RESCHED);
  838. }
  839. #ifdef CONFIG_SCHED_HRTICK
  840. /*
  841. * Use HR-timers to deliver accurate preemption points.
  842. *
  843. * Its all a bit involved since we cannot program an hrt while holding the
  844. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  845. * reschedule event.
  846. *
  847. * When we get rescheduled we reprogram the hrtick_timer outside of the
  848. * rq->lock.
  849. */
  850. static inline void resched_hrt(struct task_struct *p)
  851. {
  852. __resched_task(p, TIF_HRTICK_RESCHED);
  853. }
  854. static inline void resched_rq(struct rq *rq)
  855. {
  856. unsigned long flags;
  857. spin_lock_irqsave(&rq->lock, flags);
  858. resched_task(rq->curr);
  859. spin_unlock_irqrestore(&rq->lock, flags);
  860. }
  861. enum {
  862. HRTICK_SET, /* re-programm hrtick_timer */
  863. HRTICK_RESET, /* not a new slice */
  864. };
  865. /*
  866. * Use hrtick when:
  867. * - enabled by features
  868. * - hrtimer is actually high res
  869. */
  870. static inline int hrtick_enabled(struct rq *rq)
  871. {
  872. if (!sched_feat(HRTICK))
  873. return 0;
  874. return hrtimer_is_hres_active(&rq->hrtick_timer);
  875. }
  876. /*
  877. * Called to set the hrtick timer state.
  878. *
  879. * called with rq->lock held and irqs disabled
  880. */
  881. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  882. {
  883. assert_spin_locked(&rq->lock);
  884. /*
  885. * preempt at: now + delay
  886. */
  887. rq->hrtick_expire =
  888. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  889. /*
  890. * indicate we need to program the timer
  891. */
  892. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  893. if (reset)
  894. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  895. /*
  896. * New slices are called from the schedule path and don't need a
  897. * forced reschedule.
  898. */
  899. if (reset)
  900. resched_hrt(rq->curr);
  901. }
  902. static void hrtick_clear(struct rq *rq)
  903. {
  904. if (hrtimer_active(&rq->hrtick_timer))
  905. hrtimer_cancel(&rq->hrtick_timer);
  906. }
  907. /*
  908. * Update the timer from the possible pending state.
  909. */
  910. static void hrtick_set(struct rq *rq)
  911. {
  912. ktime_t time;
  913. int set, reset;
  914. unsigned long flags;
  915. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  916. spin_lock_irqsave(&rq->lock, flags);
  917. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  918. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  919. time = rq->hrtick_expire;
  920. clear_thread_flag(TIF_HRTICK_RESCHED);
  921. spin_unlock_irqrestore(&rq->lock, flags);
  922. if (set) {
  923. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  924. if (reset && !hrtimer_active(&rq->hrtick_timer))
  925. resched_rq(rq);
  926. } else
  927. hrtick_clear(rq);
  928. }
  929. /*
  930. * High-resolution timer tick.
  931. * Runs from hardirq context with interrupts disabled.
  932. */
  933. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  934. {
  935. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  936. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  937. spin_lock(&rq->lock);
  938. __update_rq_clock(rq);
  939. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  940. spin_unlock(&rq->lock);
  941. return HRTIMER_NORESTART;
  942. }
  943. static inline void init_rq_hrtick(struct rq *rq)
  944. {
  945. rq->hrtick_flags = 0;
  946. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  947. rq->hrtick_timer.function = hrtick;
  948. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  949. }
  950. void hrtick_resched(void)
  951. {
  952. struct rq *rq;
  953. unsigned long flags;
  954. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  955. return;
  956. local_irq_save(flags);
  957. rq = cpu_rq(smp_processor_id());
  958. hrtick_set(rq);
  959. local_irq_restore(flags);
  960. }
  961. #else
  962. static inline void hrtick_clear(struct rq *rq)
  963. {
  964. }
  965. static inline void hrtick_set(struct rq *rq)
  966. {
  967. }
  968. static inline void init_rq_hrtick(struct rq *rq)
  969. {
  970. }
  971. void hrtick_resched(void)
  972. {
  973. }
  974. #endif
  975. /*
  976. * resched_task - mark a task 'to be rescheduled now'.
  977. *
  978. * On UP this means the setting of the need_resched flag, on SMP it
  979. * might also involve a cross-CPU call to trigger the scheduler on
  980. * the target CPU.
  981. */
  982. #ifdef CONFIG_SMP
  983. #ifndef tsk_is_polling
  984. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  985. #endif
  986. static void __resched_task(struct task_struct *p, int tif_bit)
  987. {
  988. int cpu;
  989. assert_spin_locked(&task_rq(p)->lock);
  990. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  991. return;
  992. set_tsk_thread_flag(p, tif_bit);
  993. cpu = task_cpu(p);
  994. if (cpu == smp_processor_id())
  995. return;
  996. /* NEED_RESCHED must be visible before we test polling */
  997. smp_mb();
  998. if (!tsk_is_polling(p))
  999. smp_send_reschedule(cpu);
  1000. }
  1001. static void resched_cpu(int cpu)
  1002. {
  1003. struct rq *rq = cpu_rq(cpu);
  1004. unsigned long flags;
  1005. if (!spin_trylock_irqsave(&rq->lock, flags))
  1006. return;
  1007. resched_task(cpu_curr(cpu));
  1008. spin_unlock_irqrestore(&rq->lock, flags);
  1009. }
  1010. #ifdef CONFIG_NO_HZ
  1011. /*
  1012. * When add_timer_on() enqueues a timer into the timer wheel of an
  1013. * idle CPU then this timer might expire before the next timer event
  1014. * which is scheduled to wake up that CPU. In case of a completely
  1015. * idle system the next event might even be infinite time into the
  1016. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1017. * leaves the inner idle loop so the newly added timer is taken into
  1018. * account when the CPU goes back to idle and evaluates the timer
  1019. * wheel for the next timer event.
  1020. */
  1021. void wake_up_idle_cpu(int cpu)
  1022. {
  1023. struct rq *rq = cpu_rq(cpu);
  1024. if (cpu == smp_processor_id())
  1025. return;
  1026. /*
  1027. * This is safe, as this function is called with the timer
  1028. * wheel base lock of (cpu) held. When the CPU is on the way
  1029. * to idle and has not yet set rq->curr to idle then it will
  1030. * be serialized on the timer wheel base lock and take the new
  1031. * timer into account automatically.
  1032. */
  1033. if (rq->curr != rq->idle)
  1034. return;
  1035. /*
  1036. * We can set TIF_RESCHED on the idle task of the other CPU
  1037. * lockless. The worst case is that the other CPU runs the
  1038. * idle task through an additional NOOP schedule()
  1039. */
  1040. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1041. /* NEED_RESCHED must be visible before we test polling */
  1042. smp_mb();
  1043. if (!tsk_is_polling(rq->idle))
  1044. smp_send_reschedule(cpu);
  1045. }
  1046. #endif
  1047. #else
  1048. static void __resched_task(struct task_struct *p, int tif_bit)
  1049. {
  1050. assert_spin_locked(&task_rq(p)->lock);
  1051. set_tsk_thread_flag(p, tif_bit);
  1052. }
  1053. #endif
  1054. #if BITS_PER_LONG == 32
  1055. # define WMULT_CONST (~0UL)
  1056. #else
  1057. # define WMULT_CONST (1UL << 32)
  1058. #endif
  1059. #define WMULT_SHIFT 32
  1060. /*
  1061. * Shift right and round:
  1062. */
  1063. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1064. static unsigned long
  1065. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1066. struct load_weight *lw)
  1067. {
  1068. u64 tmp;
  1069. if (unlikely(!lw->inv_weight))
  1070. lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
  1071. tmp = (u64)delta_exec * weight;
  1072. /*
  1073. * Check whether we'd overflow the 64-bit multiplication:
  1074. */
  1075. if (unlikely(tmp > WMULT_CONST))
  1076. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1077. WMULT_SHIFT/2);
  1078. else
  1079. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1080. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1081. }
  1082. static inline unsigned long
  1083. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  1084. {
  1085. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  1086. }
  1087. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1088. {
  1089. lw->weight += inc;
  1090. lw->inv_weight = 0;
  1091. }
  1092. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1093. {
  1094. lw->weight -= dec;
  1095. lw->inv_weight = 0;
  1096. }
  1097. /*
  1098. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1099. * of tasks with abnormal "nice" values across CPUs the contribution that
  1100. * each task makes to its run queue's load is weighted according to its
  1101. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1102. * scaled version of the new time slice allocation that they receive on time
  1103. * slice expiry etc.
  1104. */
  1105. #define WEIGHT_IDLEPRIO 2
  1106. #define WMULT_IDLEPRIO (1 << 31)
  1107. /*
  1108. * Nice levels are multiplicative, with a gentle 10% change for every
  1109. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1110. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1111. * that remained on nice 0.
  1112. *
  1113. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1114. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1115. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1116. * If a task goes up by ~10% and another task goes down by ~10% then
  1117. * the relative distance between them is ~25%.)
  1118. */
  1119. static const int prio_to_weight[40] = {
  1120. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1121. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1122. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1123. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1124. /* 0 */ 1024, 820, 655, 526, 423,
  1125. /* 5 */ 335, 272, 215, 172, 137,
  1126. /* 10 */ 110, 87, 70, 56, 45,
  1127. /* 15 */ 36, 29, 23, 18, 15,
  1128. };
  1129. /*
  1130. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1131. *
  1132. * In cases where the weight does not change often, we can use the
  1133. * precalculated inverse to speed up arithmetics by turning divisions
  1134. * into multiplications:
  1135. */
  1136. static const u32 prio_to_wmult[40] = {
  1137. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1138. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1139. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1140. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1141. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1142. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1143. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1144. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1145. };
  1146. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1147. /*
  1148. * runqueue iterator, to support SMP load-balancing between different
  1149. * scheduling classes, without having to expose their internal data
  1150. * structures to the load-balancing proper:
  1151. */
  1152. struct rq_iterator {
  1153. void *arg;
  1154. struct task_struct *(*start)(void *);
  1155. struct task_struct *(*next)(void *);
  1156. };
  1157. #ifdef CONFIG_SMP
  1158. static unsigned long
  1159. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1160. unsigned long max_load_move, struct sched_domain *sd,
  1161. enum cpu_idle_type idle, int *all_pinned,
  1162. int *this_best_prio, struct rq_iterator *iterator);
  1163. static int
  1164. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1165. struct sched_domain *sd, enum cpu_idle_type idle,
  1166. struct rq_iterator *iterator);
  1167. #endif
  1168. #ifdef CONFIG_CGROUP_CPUACCT
  1169. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1170. #else
  1171. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1172. #endif
  1173. #ifdef CONFIG_SMP
  1174. static unsigned long source_load(int cpu, int type);
  1175. static unsigned long target_load(int cpu, int type);
  1176. static unsigned long cpu_avg_load_per_task(int cpu);
  1177. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1178. #endif /* CONFIG_SMP */
  1179. #include "sched_stats.h"
  1180. #include "sched_idletask.c"
  1181. #include "sched_fair.c"
  1182. #include "sched_rt.c"
  1183. #ifdef CONFIG_SCHED_DEBUG
  1184. # include "sched_debug.c"
  1185. #endif
  1186. #define sched_class_highest (&rt_sched_class)
  1187. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  1188. {
  1189. update_load_add(&rq->load, p->se.load.weight);
  1190. }
  1191. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  1192. {
  1193. update_load_sub(&rq->load, p->se.load.weight);
  1194. }
  1195. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  1196. {
  1197. rq->nr_running++;
  1198. inc_load(rq, p);
  1199. }
  1200. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  1201. {
  1202. rq->nr_running--;
  1203. dec_load(rq, p);
  1204. }
  1205. static void set_load_weight(struct task_struct *p)
  1206. {
  1207. if (task_has_rt_policy(p)) {
  1208. p->se.load.weight = prio_to_weight[0] * 2;
  1209. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1210. return;
  1211. }
  1212. /*
  1213. * SCHED_IDLE tasks get minimal weight:
  1214. */
  1215. if (p->policy == SCHED_IDLE) {
  1216. p->se.load.weight = WEIGHT_IDLEPRIO;
  1217. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1218. return;
  1219. }
  1220. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1221. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1222. }
  1223. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1224. {
  1225. sched_info_queued(p);
  1226. p->sched_class->enqueue_task(rq, p, wakeup);
  1227. p->se.on_rq = 1;
  1228. }
  1229. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1230. {
  1231. p->sched_class->dequeue_task(rq, p, sleep);
  1232. p->se.on_rq = 0;
  1233. }
  1234. /*
  1235. * __normal_prio - return the priority that is based on the static prio
  1236. */
  1237. static inline int __normal_prio(struct task_struct *p)
  1238. {
  1239. return p->static_prio;
  1240. }
  1241. /*
  1242. * Calculate the expected normal priority: i.e. priority
  1243. * without taking RT-inheritance into account. Might be
  1244. * boosted by interactivity modifiers. Changes upon fork,
  1245. * setprio syscalls, and whenever the interactivity
  1246. * estimator recalculates.
  1247. */
  1248. static inline int normal_prio(struct task_struct *p)
  1249. {
  1250. int prio;
  1251. if (task_has_rt_policy(p))
  1252. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1253. else
  1254. prio = __normal_prio(p);
  1255. return prio;
  1256. }
  1257. /*
  1258. * Calculate the current priority, i.e. the priority
  1259. * taken into account by the scheduler. This value might
  1260. * be boosted by RT tasks, or might be boosted by
  1261. * interactivity modifiers. Will be RT if the task got
  1262. * RT-boosted. If not then it returns p->normal_prio.
  1263. */
  1264. static int effective_prio(struct task_struct *p)
  1265. {
  1266. p->normal_prio = normal_prio(p);
  1267. /*
  1268. * If we are RT tasks or we were boosted to RT priority,
  1269. * keep the priority unchanged. Otherwise, update priority
  1270. * to the normal priority:
  1271. */
  1272. if (!rt_prio(p->prio))
  1273. return p->normal_prio;
  1274. return p->prio;
  1275. }
  1276. /*
  1277. * activate_task - move a task to the runqueue.
  1278. */
  1279. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1280. {
  1281. if (task_contributes_to_load(p))
  1282. rq->nr_uninterruptible--;
  1283. enqueue_task(rq, p, wakeup);
  1284. inc_nr_running(p, rq);
  1285. }
  1286. /*
  1287. * deactivate_task - remove a task from the runqueue.
  1288. */
  1289. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1290. {
  1291. if (task_contributes_to_load(p))
  1292. rq->nr_uninterruptible++;
  1293. dequeue_task(rq, p, sleep);
  1294. dec_nr_running(p, rq);
  1295. }
  1296. /**
  1297. * task_curr - is this task currently executing on a CPU?
  1298. * @p: the task in question.
  1299. */
  1300. inline int task_curr(const struct task_struct *p)
  1301. {
  1302. return cpu_curr(task_cpu(p)) == p;
  1303. }
  1304. /* Used instead of source_load when we know the type == 0 */
  1305. unsigned long weighted_cpuload(const int cpu)
  1306. {
  1307. return cpu_rq(cpu)->load.weight;
  1308. }
  1309. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1310. {
  1311. set_task_rq(p, cpu);
  1312. #ifdef CONFIG_SMP
  1313. /*
  1314. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1315. * successfuly executed on another CPU. We must ensure that updates of
  1316. * per-task data have been completed by this moment.
  1317. */
  1318. smp_wmb();
  1319. task_thread_info(p)->cpu = cpu;
  1320. #endif
  1321. }
  1322. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1323. const struct sched_class *prev_class,
  1324. int oldprio, int running)
  1325. {
  1326. if (prev_class != p->sched_class) {
  1327. if (prev_class->switched_from)
  1328. prev_class->switched_from(rq, p, running);
  1329. p->sched_class->switched_to(rq, p, running);
  1330. } else
  1331. p->sched_class->prio_changed(rq, p, oldprio, running);
  1332. }
  1333. #ifdef CONFIG_SMP
  1334. /*
  1335. * Is this task likely cache-hot:
  1336. */
  1337. static int
  1338. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1339. {
  1340. s64 delta;
  1341. /*
  1342. * Buddy candidates are cache hot:
  1343. */
  1344. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1345. return 1;
  1346. if (p->sched_class != &fair_sched_class)
  1347. return 0;
  1348. if (sysctl_sched_migration_cost == -1)
  1349. return 1;
  1350. if (sysctl_sched_migration_cost == 0)
  1351. return 0;
  1352. delta = now - p->se.exec_start;
  1353. return delta < (s64)sysctl_sched_migration_cost;
  1354. }
  1355. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1356. {
  1357. int old_cpu = task_cpu(p);
  1358. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1359. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1360. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1361. u64 clock_offset;
  1362. clock_offset = old_rq->clock - new_rq->clock;
  1363. #ifdef CONFIG_SCHEDSTATS
  1364. if (p->se.wait_start)
  1365. p->se.wait_start -= clock_offset;
  1366. if (p->se.sleep_start)
  1367. p->se.sleep_start -= clock_offset;
  1368. if (p->se.block_start)
  1369. p->se.block_start -= clock_offset;
  1370. if (old_cpu != new_cpu) {
  1371. schedstat_inc(p, se.nr_migrations);
  1372. if (task_hot(p, old_rq->clock, NULL))
  1373. schedstat_inc(p, se.nr_forced2_migrations);
  1374. }
  1375. #endif
  1376. p->se.vruntime -= old_cfsrq->min_vruntime -
  1377. new_cfsrq->min_vruntime;
  1378. __set_task_cpu(p, new_cpu);
  1379. }
  1380. struct migration_req {
  1381. struct list_head list;
  1382. struct task_struct *task;
  1383. int dest_cpu;
  1384. struct completion done;
  1385. };
  1386. /*
  1387. * The task's runqueue lock must be held.
  1388. * Returns true if you have to wait for migration thread.
  1389. */
  1390. static int
  1391. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1392. {
  1393. struct rq *rq = task_rq(p);
  1394. /*
  1395. * If the task is not on a runqueue (and not running), then
  1396. * it is sufficient to simply update the task's cpu field.
  1397. */
  1398. if (!p->se.on_rq && !task_running(rq, p)) {
  1399. set_task_cpu(p, dest_cpu);
  1400. return 0;
  1401. }
  1402. init_completion(&req->done);
  1403. req->task = p;
  1404. req->dest_cpu = dest_cpu;
  1405. list_add(&req->list, &rq->migration_queue);
  1406. return 1;
  1407. }
  1408. /*
  1409. * wait_task_inactive - wait for a thread to unschedule.
  1410. *
  1411. * The caller must ensure that the task *will* unschedule sometime soon,
  1412. * else this function might spin for a *long* time. This function can't
  1413. * be called with interrupts off, or it may introduce deadlock with
  1414. * smp_call_function() if an IPI is sent by the same process we are
  1415. * waiting to become inactive.
  1416. */
  1417. void wait_task_inactive(struct task_struct *p)
  1418. {
  1419. unsigned long flags;
  1420. int running, on_rq;
  1421. struct rq *rq;
  1422. for (;;) {
  1423. /*
  1424. * We do the initial early heuristics without holding
  1425. * any task-queue locks at all. We'll only try to get
  1426. * the runqueue lock when things look like they will
  1427. * work out!
  1428. */
  1429. rq = task_rq(p);
  1430. /*
  1431. * If the task is actively running on another CPU
  1432. * still, just relax and busy-wait without holding
  1433. * any locks.
  1434. *
  1435. * NOTE! Since we don't hold any locks, it's not
  1436. * even sure that "rq" stays as the right runqueue!
  1437. * But we don't care, since "task_running()" will
  1438. * return false if the runqueue has changed and p
  1439. * is actually now running somewhere else!
  1440. */
  1441. while (task_running(rq, p))
  1442. cpu_relax();
  1443. /*
  1444. * Ok, time to look more closely! We need the rq
  1445. * lock now, to be *sure*. If we're wrong, we'll
  1446. * just go back and repeat.
  1447. */
  1448. rq = task_rq_lock(p, &flags);
  1449. running = task_running(rq, p);
  1450. on_rq = p->se.on_rq;
  1451. task_rq_unlock(rq, &flags);
  1452. /*
  1453. * Was it really running after all now that we
  1454. * checked with the proper locks actually held?
  1455. *
  1456. * Oops. Go back and try again..
  1457. */
  1458. if (unlikely(running)) {
  1459. cpu_relax();
  1460. continue;
  1461. }
  1462. /*
  1463. * It's not enough that it's not actively running,
  1464. * it must be off the runqueue _entirely_, and not
  1465. * preempted!
  1466. *
  1467. * So if it wa still runnable (but just not actively
  1468. * running right now), it's preempted, and we should
  1469. * yield - it could be a while.
  1470. */
  1471. if (unlikely(on_rq)) {
  1472. schedule_timeout_uninterruptible(1);
  1473. continue;
  1474. }
  1475. /*
  1476. * Ahh, all good. It wasn't running, and it wasn't
  1477. * runnable, which means that it will never become
  1478. * running in the future either. We're all done!
  1479. */
  1480. break;
  1481. }
  1482. }
  1483. /***
  1484. * kick_process - kick a running thread to enter/exit the kernel
  1485. * @p: the to-be-kicked thread
  1486. *
  1487. * Cause a process which is running on another CPU to enter
  1488. * kernel-mode, without any delay. (to get signals handled.)
  1489. *
  1490. * NOTE: this function doesnt have to take the runqueue lock,
  1491. * because all it wants to ensure is that the remote task enters
  1492. * the kernel. If the IPI races and the task has been migrated
  1493. * to another CPU then no harm is done and the purpose has been
  1494. * achieved as well.
  1495. */
  1496. void kick_process(struct task_struct *p)
  1497. {
  1498. int cpu;
  1499. preempt_disable();
  1500. cpu = task_cpu(p);
  1501. if ((cpu != smp_processor_id()) && task_curr(p))
  1502. smp_send_reschedule(cpu);
  1503. preempt_enable();
  1504. }
  1505. /*
  1506. * Return a low guess at the load of a migration-source cpu weighted
  1507. * according to the scheduling class and "nice" value.
  1508. *
  1509. * We want to under-estimate the load of migration sources, to
  1510. * balance conservatively.
  1511. */
  1512. static unsigned long source_load(int cpu, int type)
  1513. {
  1514. struct rq *rq = cpu_rq(cpu);
  1515. unsigned long total = weighted_cpuload(cpu);
  1516. if (type == 0)
  1517. return total;
  1518. return min(rq->cpu_load[type-1], total);
  1519. }
  1520. /*
  1521. * Return a high guess at the load of a migration-target cpu weighted
  1522. * according to the scheduling class and "nice" value.
  1523. */
  1524. static unsigned long target_load(int cpu, int type)
  1525. {
  1526. struct rq *rq = cpu_rq(cpu);
  1527. unsigned long total = weighted_cpuload(cpu);
  1528. if (type == 0)
  1529. return total;
  1530. return max(rq->cpu_load[type-1], total);
  1531. }
  1532. /*
  1533. * Return the average load per task on the cpu's run queue
  1534. */
  1535. static unsigned long cpu_avg_load_per_task(int cpu)
  1536. {
  1537. struct rq *rq = cpu_rq(cpu);
  1538. unsigned long total = weighted_cpuload(cpu);
  1539. unsigned long n = rq->nr_running;
  1540. return n ? total / n : SCHED_LOAD_SCALE;
  1541. }
  1542. /*
  1543. * find_idlest_group finds and returns the least busy CPU group within the
  1544. * domain.
  1545. */
  1546. static struct sched_group *
  1547. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1548. {
  1549. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1550. unsigned long min_load = ULONG_MAX, this_load = 0;
  1551. int load_idx = sd->forkexec_idx;
  1552. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1553. do {
  1554. unsigned long load, avg_load;
  1555. int local_group;
  1556. int i;
  1557. /* Skip over this group if it has no CPUs allowed */
  1558. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1559. continue;
  1560. local_group = cpu_isset(this_cpu, group->cpumask);
  1561. /* Tally up the load of all CPUs in the group */
  1562. avg_load = 0;
  1563. for_each_cpu_mask(i, group->cpumask) {
  1564. /* Bias balancing toward cpus of our domain */
  1565. if (local_group)
  1566. load = source_load(i, load_idx);
  1567. else
  1568. load = target_load(i, load_idx);
  1569. avg_load += load;
  1570. }
  1571. /* Adjust by relative CPU power of the group */
  1572. avg_load = sg_div_cpu_power(group,
  1573. avg_load * SCHED_LOAD_SCALE);
  1574. if (local_group) {
  1575. this_load = avg_load;
  1576. this = group;
  1577. } else if (avg_load < min_load) {
  1578. min_load = avg_load;
  1579. idlest = group;
  1580. }
  1581. } while (group = group->next, group != sd->groups);
  1582. if (!idlest || 100*this_load < imbalance*min_load)
  1583. return NULL;
  1584. return idlest;
  1585. }
  1586. /*
  1587. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1588. */
  1589. static int
  1590. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1591. {
  1592. cpumask_t tmp;
  1593. unsigned long load, min_load = ULONG_MAX;
  1594. int idlest = -1;
  1595. int i;
  1596. /* Traverse only the allowed CPUs */
  1597. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1598. for_each_cpu_mask(i, tmp) {
  1599. load = weighted_cpuload(i);
  1600. if (load < min_load || (load == min_load && i == this_cpu)) {
  1601. min_load = load;
  1602. idlest = i;
  1603. }
  1604. }
  1605. return idlest;
  1606. }
  1607. /*
  1608. * sched_balance_self: balance the current task (running on cpu) in domains
  1609. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1610. * SD_BALANCE_EXEC.
  1611. *
  1612. * Balance, ie. select the least loaded group.
  1613. *
  1614. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1615. *
  1616. * preempt must be disabled.
  1617. */
  1618. static int sched_balance_self(int cpu, int flag)
  1619. {
  1620. struct task_struct *t = current;
  1621. struct sched_domain *tmp, *sd = NULL;
  1622. for_each_domain(cpu, tmp) {
  1623. /*
  1624. * If power savings logic is enabled for a domain, stop there.
  1625. */
  1626. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1627. break;
  1628. if (tmp->flags & flag)
  1629. sd = tmp;
  1630. }
  1631. while (sd) {
  1632. cpumask_t span;
  1633. struct sched_group *group;
  1634. int new_cpu, weight;
  1635. if (!(sd->flags & flag)) {
  1636. sd = sd->child;
  1637. continue;
  1638. }
  1639. span = sd->span;
  1640. group = find_idlest_group(sd, t, cpu);
  1641. if (!group) {
  1642. sd = sd->child;
  1643. continue;
  1644. }
  1645. new_cpu = find_idlest_cpu(group, t, cpu);
  1646. if (new_cpu == -1 || new_cpu == cpu) {
  1647. /* Now try balancing at a lower domain level of cpu */
  1648. sd = sd->child;
  1649. continue;
  1650. }
  1651. /* Now try balancing at a lower domain level of new_cpu */
  1652. cpu = new_cpu;
  1653. sd = NULL;
  1654. weight = cpus_weight(span);
  1655. for_each_domain(cpu, tmp) {
  1656. if (weight <= cpus_weight(tmp->span))
  1657. break;
  1658. if (tmp->flags & flag)
  1659. sd = tmp;
  1660. }
  1661. /* while loop will break here if sd == NULL */
  1662. }
  1663. return cpu;
  1664. }
  1665. #endif /* CONFIG_SMP */
  1666. /***
  1667. * try_to_wake_up - wake up a thread
  1668. * @p: the to-be-woken-up thread
  1669. * @state: the mask of task states that can be woken
  1670. * @sync: do a synchronous wakeup?
  1671. *
  1672. * Put it on the run-queue if it's not already there. The "current"
  1673. * thread is always on the run-queue (except when the actual
  1674. * re-schedule is in progress), and as such you're allowed to do
  1675. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1676. * runnable without the overhead of this.
  1677. *
  1678. * returns failure only if the task is already active.
  1679. */
  1680. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1681. {
  1682. int cpu, orig_cpu, this_cpu, success = 0;
  1683. unsigned long flags;
  1684. long old_state;
  1685. struct rq *rq;
  1686. if (!sched_feat(SYNC_WAKEUPS))
  1687. sync = 0;
  1688. smp_wmb();
  1689. rq = task_rq_lock(p, &flags);
  1690. old_state = p->state;
  1691. if (!(old_state & state))
  1692. goto out;
  1693. if (p->se.on_rq)
  1694. goto out_running;
  1695. cpu = task_cpu(p);
  1696. orig_cpu = cpu;
  1697. this_cpu = smp_processor_id();
  1698. #ifdef CONFIG_SMP
  1699. if (unlikely(task_running(rq, p)))
  1700. goto out_activate;
  1701. cpu = p->sched_class->select_task_rq(p, sync);
  1702. if (cpu != orig_cpu) {
  1703. set_task_cpu(p, cpu);
  1704. task_rq_unlock(rq, &flags);
  1705. /* might preempt at this point */
  1706. rq = task_rq_lock(p, &flags);
  1707. old_state = p->state;
  1708. if (!(old_state & state))
  1709. goto out;
  1710. if (p->se.on_rq)
  1711. goto out_running;
  1712. this_cpu = smp_processor_id();
  1713. cpu = task_cpu(p);
  1714. }
  1715. #ifdef CONFIG_SCHEDSTATS
  1716. schedstat_inc(rq, ttwu_count);
  1717. if (cpu == this_cpu)
  1718. schedstat_inc(rq, ttwu_local);
  1719. else {
  1720. struct sched_domain *sd;
  1721. for_each_domain(this_cpu, sd) {
  1722. if (cpu_isset(cpu, sd->span)) {
  1723. schedstat_inc(sd, ttwu_wake_remote);
  1724. break;
  1725. }
  1726. }
  1727. }
  1728. #endif
  1729. out_activate:
  1730. #endif /* CONFIG_SMP */
  1731. schedstat_inc(p, se.nr_wakeups);
  1732. if (sync)
  1733. schedstat_inc(p, se.nr_wakeups_sync);
  1734. if (orig_cpu != cpu)
  1735. schedstat_inc(p, se.nr_wakeups_migrate);
  1736. if (cpu == this_cpu)
  1737. schedstat_inc(p, se.nr_wakeups_local);
  1738. else
  1739. schedstat_inc(p, se.nr_wakeups_remote);
  1740. update_rq_clock(rq);
  1741. activate_task(rq, p, 1);
  1742. success = 1;
  1743. out_running:
  1744. check_preempt_curr(rq, p);
  1745. p->state = TASK_RUNNING;
  1746. #ifdef CONFIG_SMP
  1747. if (p->sched_class->task_wake_up)
  1748. p->sched_class->task_wake_up(rq, p);
  1749. #endif
  1750. out:
  1751. task_rq_unlock(rq, &flags);
  1752. return success;
  1753. }
  1754. int wake_up_process(struct task_struct *p)
  1755. {
  1756. return try_to_wake_up(p, TASK_ALL, 0);
  1757. }
  1758. EXPORT_SYMBOL(wake_up_process);
  1759. int wake_up_state(struct task_struct *p, unsigned int state)
  1760. {
  1761. return try_to_wake_up(p, state, 0);
  1762. }
  1763. /*
  1764. * Perform scheduler related setup for a newly forked process p.
  1765. * p is forked by current.
  1766. *
  1767. * __sched_fork() is basic setup used by init_idle() too:
  1768. */
  1769. static void __sched_fork(struct task_struct *p)
  1770. {
  1771. p->se.exec_start = 0;
  1772. p->se.sum_exec_runtime = 0;
  1773. p->se.prev_sum_exec_runtime = 0;
  1774. p->se.last_wakeup = 0;
  1775. p->se.avg_overlap = 0;
  1776. #ifdef CONFIG_SCHEDSTATS
  1777. p->se.wait_start = 0;
  1778. p->se.sum_sleep_runtime = 0;
  1779. p->se.sleep_start = 0;
  1780. p->se.block_start = 0;
  1781. p->se.sleep_max = 0;
  1782. p->se.block_max = 0;
  1783. p->se.exec_max = 0;
  1784. p->se.slice_max = 0;
  1785. p->se.wait_max = 0;
  1786. #endif
  1787. INIT_LIST_HEAD(&p->rt.run_list);
  1788. p->se.on_rq = 0;
  1789. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1790. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1791. #endif
  1792. /*
  1793. * We mark the process as running here, but have not actually
  1794. * inserted it onto the runqueue yet. This guarantees that
  1795. * nobody will actually run it, and a signal or other external
  1796. * event cannot wake it up and insert it on the runqueue either.
  1797. */
  1798. p->state = TASK_RUNNING;
  1799. }
  1800. /*
  1801. * fork()/clone()-time setup:
  1802. */
  1803. void sched_fork(struct task_struct *p, int clone_flags)
  1804. {
  1805. int cpu = get_cpu();
  1806. __sched_fork(p);
  1807. #ifdef CONFIG_SMP
  1808. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1809. #endif
  1810. set_task_cpu(p, cpu);
  1811. /*
  1812. * Make sure we do not leak PI boosting priority to the child:
  1813. */
  1814. p->prio = current->normal_prio;
  1815. if (!rt_prio(p->prio))
  1816. p->sched_class = &fair_sched_class;
  1817. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1818. if (likely(sched_info_on()))
  1819. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1820. #endif
  1821. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1822. p->oncpu = 0;
  1823. #endif
  1824. #ifdef CONFIG_PREEMPT
  1825. /* Want to start with kernel preemption disabled. */
  1826. task_thread_info(p)->preempt_count = 1;
  1827. #endif
  1828. put_cpu();
  1829. }
  1830. /*
  1831. * wake_up_new_task - wake up a newly created task for the first time.
  1832. *
  1833. * This function will do some initial scheduler statistics housekeeping
  1834. * that must be done for every newly created context, then puts the task
  1835. * on the runqueue and wakes it.
  1836. */
  1837. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1838. {
  1839. unsigned long flags;
  1840. struct rq *rq;
  1841. rq = task_rq_lock(p, &flags);
  1842. BUG_ON(p->state != TASK_RUNNING);
  1843. update_rq_clock(rq);
  1844. p->prio = effective_prio(p);
  1845. if (!p->sched_class->task_new || !current->se.on_rq) {
  1846. activate_task(rq, p, 0);
  1847. } else {
  1848. /*
  1849. * Let the scheduling class do new task startup
  1850. * management (if any):
  1851. */
  1852. p->sched_class->task_new(rq, p);
  1853. inc_nr_running(p, rq);
  1854. }
  1855. check_preempt_curr(rq, p);
  1856. #ifdef CONFIG_SMP
  1857. if (p->sched_class->task_wake_up)
  1858. p->sched_class->task_wake_up(rq, p);
  1859. #endif
  1860. task_rq_unlock(rq, &flags);
  1861. }
  1862. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1863. /**
  1864. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1865. * @notifier: notifier struct to register
  1866. */
  1867. void preempt_notifier_register(struct preempt_notifier *notifier)
  1868. {
  1869. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1870. }
  1871. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1872. /**
  1873. * preempt_notifier_unregister - no longer interested in preemption notifications
  1874. * @notifier: notifier struct to unregister
  1875. *
  1876. * This is safe to call from within a preemption notifier.
  1877. */
  1878. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1879. {
  1880. hlist_del(&notifier->link);
  1881. }
  1882. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1883. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1884. {
  1885. struct preempt_notifier *notifier;
  1886. struct hlist_node *node;
  1887. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1888. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1889. }
  1890. static void
  1891. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1892. struct task_struct *next)
  1893. {
  1894. struct preempt_notifier *notifier;
  1895. struct hlist_node *node;
  1896. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1897. notifier->ops->sched_out(notifier, next);
  1898. }
  1899. #else
  1900. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1901. {
  1902. }
  1903. static void
  1904. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1905. struct task_struct *next)
  1906. {
  1907. }
  1908. #endif
  1909. /**
  1910. * prepare_task_switch - prepare to switch tasks
  1911. * @rq: the runqueue preparing to switch
  1912. * @prev: the current task that is being switched out
  1913. * @next: the task we are going to switch to.
  1914. *
  1915. * This is called with the rq lock held and interrupts off. It must
  1916. * be paired with a subsequent finish_task_switch after the context
  1917. * switch.
  1918. *
  1919. * prepare_task_switch sets up locking and calls architecture specific
  1920. * hooks.
  1921. */
  1922. static inline void
  1923. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1924. struct task_struct *next)
  1925. {
  1926. fire_sched_out_preempt_notifiers(prev, next);
  1927. prepare_lock_switch(rq, next);
  1928. prepare_arch_switch(next);
  1929. }
  1930. /**
  1931. * finish_task_switch - clean up after a task-switch
  1932. * @rq: runqueue associated with task-switch
  1933. * @prev: the thread we just switched away from.
  1934. *
  1935. * finish_task_switch must be called after the context switch, paired
  1936. * with a prepare_task_switch call before the context switch.
  1937. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1938. * and do any other architecture-specific cleanup actions.
  1939. *
  1940. * Note that we may have delayed dropping an mm in context_switch(). If
  1941. * so, we finish that here outside of the runqueue lock. (Doing it
  1942. * with the lock held can cause deadlocks; see schedule() for
  1943. * details.)
  1944. */
  1945. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1946. __releases(rq->lock)
  1947. {
  1948. struct mm_struct *mm = rq->prev_mm;
  1949. long prev_state;
  1950. rq->prev_mm = NULL;
  1951. /*
  1952. * A task struct has one reference for the use as "current".
  1953. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1954. * schedule one last time. The schedule call will never return, and
  1955. * the scheduled task must drop that reference.
  1956. * The test for TASK_DEAD must occur while the runqueue locks are
  1957. * still held, otherwise prev could be scheduled on another cpu, die
  1958. * there before we look at prev->state, and then the reference would
  1959. * be dropped twice.
  1960. * Manfred Spraul <manfred@colorfullife.com>
  1961. */
  1962. prev_state = prev->state;
  1963. finish_arch_switch(prev);
  1964. finish_lock_switch(rq, prev);
  1965. #ifdef CONFIG_SMP
  1966. if (current->sched_class->post_schedule)
  1967. current->sched_class->post_schedule(rq);
  1968. #endif
  1969. fire_sched_in_preempt_notifiers(current);
  1970. if (mm)
  1971. mmdrop(mm);
  1972. if (unlikely(prev_state == TASK_DEAD)) {
  1973. /*
  1974. * Remove function-return probe instances associated with this
  1975. * task and put them back on the free list.
  1976. */
  1977. kprobe_flush_task(prev);
  1978. put_task_struct(prev);
  1979. }
  1980. }
  1981. /**
  1982. * schedule_tail - first thing a freshly forked thread must call.
  1983. * @prev: the thread we just switched away from.
  1984. */
  1985. asmlinkage void schedule_tail(struct task_struct *prev)
  1986. __releases(rq->lock)
  1987. {
  1988. struct rq *rq = this_rq();
  1989. finish_task_switch(rq, prev);
  1990. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1991. /* In this case, finish_task_switch does not reenable preemption */
  1992. preempt_enable();
  1993. #endif
  1994. if (current->set_child_tid)
  1995. put_user(task_pid_vnr(current), current->set_child_tid);
  1996. }
  1997. /*
  1998. * context_switch - switch to the new MM and the new
  1999. * thread's register state.
  2000. */
  2001. static inline void
  2002. context_switch(struct rq *rq, struct task_struct *prev,
  2003. struct task_struct *next)
  2004. {
  2005. struct mm_struct *mm, *oldmm;
  2006. prepare_task_switch(rq, prev, next);
  2007. mm = next->mm;
  2008. oldmm = prev->active_mm;
  2009. /*
  2010. * For paravirt, this is coupled with an exit in switch_to to
  2011. * combine the page table reload and the switch backend into
  2012. * one hypercall.
  2013. */
  2014. arch_enter_lazy_cpu_mode();
  2015. if (unlikely(!mm)) {
  2016. next->active_mm = oldmm;
  2017. atomic_inc(&oldmm->mm_count);
  2018. enter_lazy_tlb(oldmm, next);
  2019. } else
  2020. switch_mm(oldmm, mm, next);
  2021. if (unlikely(!prev->mm)) {
  2022. prev->active_mm = NULL;
  2023. rq->prev_mm = oldmm;
  2024. }
  2025. /*
  2026. * Since the runqueue lock will be released by the next
  2027. * task (which is an invalid locking op but in the case
  2028. * of the scheduler it's an obvious special-case), so we
  2029. * do an early lockdep release here:
  2030. */
  2031. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2032. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2033. #endif
  2034. /* Here we just switch the register state and the stack. */
  2035. switch_to(prev, next, prev);
  2036. barrier();
  2037. /*
  2038. * this_rq must be evaluated again because prev may have moved
  2039. * CPUs since it called schedule(), thus the 'rq' on its stack
  2040. * frame will be invalid.
  2041. */
  2042. finish_task_switch(this_rq(), prev);
  2043. }
  2044. /*
  2045. * nr_running, nr_uninterruptible and nr_context_switches:
  2046. *
  2047. * externally visible scheduler statistics: current number of runnable
  2048. * threads, current number of uninterruptible-sleeping threads, total
  2049. * number of context switches performed since bootup.
  2050. */
  2051. unsigned long nr_running(void)
  2052. {
  2053. unsigned long i, sum = 0;
  2054. for_each_online_cpu(i)
  2055. sum += cpu_rq(i)->nr_running;
  2056. return sum;
  2057. }
  2058. unsigned long nr_uninterruptible(void)
  2059. {
  2060. unsigned long i, sum = 0;
  2061. for_each_possible_cpu(i)
  2062. sum += cpu_rq(i)->nr_uninterruptible;
  2063. /*
  2064. * Since we read the counters lockless, it might be slightly
  2065. * inaccurate. Do not allow it to go below zero though:
  2066. */
  2067. if (unlikely((long)sum < 0))
  2068. sum = 0;
  2069. return sum;
  2070. }
  2071. unsigned long long nr_context_switches(void)
  2072. {
  2073. int i;
  2074. unsigned long long sum = 0;
  2075. for_each_possible_cpu(i)
  2076. sum += cpu_rq(i)->nr_switches;
  2077. return sum;
  2078. }
  2079. unsigned long nr_iowait(void)
  2080. {
  2081. unsigned long i, sum = 0;
  2082. for_each_possible_cpu(i)
  2083. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2084. return sum;
  2085. }
  2086. unsigned long nr_active(void)
  2087. {
  2088. unsigned long i, running = 0, uninterruptible = 0;
  2089. for_each_online_cpu(i) {
  2090. running += cpu_rq(i)->nr_running;
  2091. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2092. }
  2093. if (unlikely((long)uninterruptible < 0))
  2094. uninterruptible = 0;
  2095. return running + uninterruptible;
  2096. }
  2097. /*
  2098. * Update rq->cpu_load[] statistics. This function is usually called every
  2099. * scheduler tick (TICK_NSEC).
  2100. */
  2101. static void update_cpu_load(struct rq *this_rq)
  2102. {
  2103. unsigned long this_load = this_rq->load.weight;
  2104. int i, scale;
  2105. this_rq->nr_load_updates++;
  2106. /* Update our load: */
  2107. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2108. unsigned long old_load, new_load;
  2109. /* scale is effectively 1 << i now, and >> i divides by scale */
  2110. old_load = this_rq->cpu_load[i];
  2111. new_load = this_load;
  2112. /*
  2113. * Round up the averaging division if load is increasing. This
  2114. * prevents us from getting stuck on 9 if the load is 10, for
  2115. * example.
  2116. */
  2117. if (new_load > old_load)
  2118. new_load += scale-1;
  2119. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2120. }
  2121. }
  2122. #ifdef CONFIG_SMP
  2123. /*
  2124. * double_rq_lock - safely lock two runqueues
  2125. *
  2126. * Note this does not disable interrupts like task_rq_lock,
  2127. * you need to do so manually before calling.
  2128. */
  2129. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2130. __acquires(rq1->lock)
  2131. __acquires(rq2->lock)
  2132. {
  2133. BUG_ON(!irqs_disabled());
  2134. if (rq1 == rq2) {
  2135. spin_lock(&rq1->lock);
  2136. __acquire(rq2->lock); /* Fake it out ;) */
  2137. } else {
  2138. if (rq1 < rq2) {
  2139. spin_lock(&rq1->lock);
  2140. spin_lock(&rq2->lock);
  2141. } else {
  2142. spin_lock(&rq2->lock);
  2143. spin_lock(&rq1->lock);
  2144. }
  2145. }
  2146. update_rq_clock(rq1);
  2147. update_rq_clock(rq2);
  2148. }
  2149. /*
  2150. * double_rq_unlock - safely unlock two runqueues
  2151. *
  2152. * Note this does not restore interrupts like task_rq_unlock,
  2153. * you need to do so manually after calling.
  2154. */
  2155. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2156. __releases(rq1->lock)
  2157. __releases(rq2->lock)
  2158. {
  2159. spin_unlock(&rq1->lock);
  2160. if (rq1 != rq2)
  2161. spin_unlock(&rq2->lock);
  2162. else
  2163. __release(rq2->lock);
  2164. }
  2165. /*
  2166. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2167. */
  2168. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2169. __releases(this_rq->lock)
  2170. __acquires(busiest->lock)
  2171. __acquires(this_rq->lock)
  2172. {
  2173. int ret = 0;
  2174. if (unlikely(!irqs_disabled())) {
  2175. /* printk() doesn't work good under rq->lock */
  2176. spin_unlock(&this_rq->lock);
  2177. BUG_ON(1);
  2178. }
  2179. if (unlikely(!spin_trylock(&busiest->lock))) {
  2180. if (busiest < this_rq) {
  2181. spin_unlock(&this_rq->lock);
  2182. spin_lock(&busiest->lock);
  2183. spin_lock(&this_rq->lock);
  2184. ret = 1;
  2185. } else
  2186. spin_lock(&busiest->lock);
  2187. }
  2188. return ret;
  2189. }
  2190. /*
  2191. * If dest_cpu is allowed for this process, migrate the task to it.
  2192. * This is accomplished by forcing the cpu_allowed mask to only
  2193. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2194. * the cpu_allowed mask is restored.
  2195. */
  2196. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2197. {
  2198. struct migration_req req;
  2199. unsigned long flags;
  2200. struct rq *rq;
  2201. rq = task_rq_lock(p, &flags);
  2202. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2203. || unlikely(cpu_is_offline(dest_cpu)))
  2204. goto out;
  2205. /* force the process onto the specified CPU */
  2206. if (migrate_task(p, dest_cpu, &req)) {
  2207. /* Need to wait for migration thread (might exit: take ref). */
  2208. struct task_struct *mt = rq->migration_thread;
  2209. get_task_struct(mt);
  2210. task_rq_unlock(rq, &flags);
  2211. wake_up_process(mt);
  2212. put_task_struct(mt);
  2213. wait_for_completion(&req.done);
  2214. return;
  2215. }
  2216. out:
  2217. task_rq_unlock(rq, &flags);
  2218. }
  2219. /*
  2220. * sched_exec - execve() is a valuable balancing opportunity, because at
  2221. * this point the task has the smallest effective memory and cache footprint.
  2222. */
  2223. void sched_exec(void)
  2224. {
  2225. int new_cpu, this_cpu = get_cpu();
  2226. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2227. put_cpu();
  2228. if (new_cpu != this_cpu)
  2229. sched_migrate_task(current, new_cpu);
  2230. }
  2231. /*
  2232. * pull_task - move a task from a remote runqueue to the local runqueue.
  2233. * Both runqueues must be locked.
  2234. */
  2235. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2236. struct rq *this_rq, int this_cpu)
  2237. {
  2238. deactivate_task(src_rq, p, 0);
  2239. set_task_cpu(p, this_cpu);
  2240. activate_task(this_rq, p, 0);
  2241. /*
  2242. * Note that idle threads have a prio of MAX_PRIO, for this test
  2243. * to be always true for them.
  2244. */
  2245. check_preempt_curr(this_rq, p);
  2246. }
  2247. /*
  2248. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2249. */
  2250. static
  2251. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2252. struct sched_domain *sd, enum cpu_idle_type idle,
  2253. int *all_pinned)
  2254. {
  2255. /*
  2256. * We do not migrate tasks that are:
  2257. * 1) running (obviously), or
  2258. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2259. * 3) are cache-hot on their current CPU.
  2260. */
  2261. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2262. schedstat_inc(p, se.nr_failed_migrations_affine);
  2263. return 0;
  2264. }
  2265. *all_pinned = 0;
  2266. if (task_running(rq, p)) {
  2267. schedstat_inc(p, se.nr_failed_migrations_running);
  2268. return 0;
  2269. }
  2270. /*
  2271. * Aggressive migration if:
  2272. * 1) task is cache cold, or
  2273. * 2) too many balance attempts have failed.
  2274. */
  2275. if (!task_hot(p, rq->clock, sd) ||
  2276. sd->nr_balance_failed > sd->cache_nice_tries) {
  2277. #ifdef CONFIG_SCHEDSTATS
  2278. if (task_hot(p, rq->clock, sd)) {
  2279. schedstat_inc(sd, lb_hot_gained[idle]);
  2280. schedstat_inc(p, se.nr_forced_migrations);
  2281. }
  2282. #endif
  2283. return 1;
  2284. }
  2285. if (task_hot(p, rq->clock, sd)) {
  2286. schedstat_inc(p, se.nr_failed_migrations_hot);
  2287. return 0;
  2288. }
  2289. return 1;
  2290. }
  2291. static unsigned long
  2292. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2293. unsigned long max_load_move, struct sched_domain *sd,
  2294. enum cpu_idle_type idle, int *all_pinned,
  2295. int *this_best_prio, struct rq_iterator *iterator)
  2296. {
  2297. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2298. struct task_struct *p;
  2299. long rem_load_move = max_load_move;
  2300. if (max_load_move == 0)
  2301. goto out;
  2302. pinned = 1;
  2303. /*
  2304. * Start the load-balancing iterator:
  2305. */
  2306. p = iterator->start(iterator->arg);
  2307. next:
  2308. if (!p || loops++ > sysctl_sched_nr_migrate)
  2309. goto out;
  2310. /*
  2311. * To help distribute high priority tasks across CPUs we don't
  2312. * skip a task if it will be the highest priority task (i.e. smallest
  2313. * prio value) on its new queue regardless of its load weight
  2314. */
  2315. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2316. SCHED_LOAD_SCALE_FUZZ;
  2317. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2318. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2319. p = iterator->next(iterator->arg);
  2320. goto next;
  2321. }
  2322. pull_task(busiest, p, this_rq, this_cpu);
  2323. pulled++;
  2324. rem_load_move -= p->se.load.weight;
  2325. /*
  2326. * We only want to steal up to the prescribed amount of weighted load.
  2327. */
  2328. if (rem_load_move > 0) {
  2329. if (p->prio < *this_best_prio)
  2330. *this_best_prio = p->prio;
  2331. p = iterator->next(iterator->arg);
  2332. goto next;
  2333. }
  2334. out:
  2335. /*
  2336. * Right now, this is one of only two places pull_task() is called,
  2337. * so we can safely collect pull_task() stats here rather than
  2338. * inside pull_task().
  2339. */
  2340. schedstat_add(sd, lb_gained[idle], pulled);
  2341. if (all_pinned)
  2342. *all_pinned = pinned;
  2343. return max_load_move - rem_load_move;
  2344. }
  2345. /*
  2346. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2347. * this_rq, as part of a balancing operation within domain "sd".
  2348. * Returns 1 if successful and 0 otherwise.
  2349. *
  2350. * Called with both runqueues locked.
  2351. */
  2352. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2353. unsigned long max_load_move,
  2354. struct sched_domain *sd, enum cpu_idle_type idle,
  2355. int *all_pinned)
  2356. {
  2357. const struct sched_class *class = sched_class_highest;
  2358. unsigned long total_load_moved = 0;
  2359. int this_best_prio = this_rq->curr->prio;
  2360. do {
  2361. total_load_moved +=
  2362. class->load_balance(this_rq, this_cpu, busiest,
  2363. max_load_move - total_load_moved,
  2364. sd, idle, all_pinned, &this_best_prio);
  2365. class = class->next;
  2366. } while (class && max_load_move > total_load_moved);
  2367. return total_load_moved > 0;
  2368. }
  2369. static int
  2370. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2371. struct sched_domain *sd, enum cpu_idle_type idle,
  2372. struct rq_iterator *iterator)
  2373. {
  2374. struct task_struct *p = iterator->start(iterator->arg);
  2375. int pinned = 0;
  2376. while (p) {
  2377. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2378. pull_task(busiest, p, this_rq, this_cpu);
  2379. /*
  2380. * Right now, this is only the second place pull_task()
  2381. * is called, so we can safely collect pull_task()
  2382. * stats here rather than inside pull_task().
  2383. */
  2384. schedstat_inc(sd, lb_gained[idle]);
  2385. return 1;
  2386. }
  2387. p = iterator->next(iterator->arg);
  2388. }
  2389. return 0;
  2390. }
  2391. /*
  2392. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2393. * part of active balancing operations within "domain".
  2394. * Returns 1 if successful and 0 otherwise.
  2395. *
  2396. * Called with both runqueues locked.
  2397. */
  2398. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2399. struct sched_domain *sd, enum cpu_idle_type idle)
  2400. {
  2401. const struct sched_class *class;
  2402. for (class = sched_class_highest; class; class = class->next)
  2403. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2404. return 1;
  2405. return 0;
  2406. }
  2407. /*
  2408. * find_busiest_group finds and returns the busiest CPU group within the
  2409. * domain. It calculates and returns the amount of weighted load which
  2410. * should be moved to restore balance via the imbalance parameter.
  2411. */
  2412. static struct sched_group *
  2413. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2414. unsigned long *imbalance, enum cpu_idle_type idle,
  2415. int *sd_idle, cpumask_t *cpus, int *balance)
  2416. {
  2417. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2418. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2419. unsigned long max_pull;
  2420. unsigned long busiest_load_per_task, busiest_nr_running;
  2421. unsigned long this_load_per_task, this_nr_running;
  2422. int load_idx, group_imb = 0;
  2423. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2424. int power_savings_balance = 1;
  2425. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2426. unsigned long min_nr_running = ULONG_MAX;
  2427. struct sched_group *group_min = NULL, *group_leader = NULL;
  2428. #endif
  2429. max_load = this_load = total_load = total_pwr = 0;
  2430. busiest_load_per_task = busiest_nr_running = 0;
  2431. this_load_per_task = this_nr_running = 0;
  2432. if (idle == CPU_NOT_IDLE)
  2433. load_idx = sd->busy_idx;
  2434. else if (idle == CPU_NEWLY_IDLE)
  2435. load_idx = sd->newidle_idx;
  2436. else
  2437. load_idx = sd->idle_idx;
  2438. do {
  2439. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2440. int local_group;
  2441. int i;
  2442. int __group_imb = 0;
  2443. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2444. unsigned long sum_nr_running, sum_weighted_load;
  2445. local_group = cpu_isset(this_cpu, group->cpumask);
  2446. if (local_group)
  2447. balance_cpu = first_cpu(group->cpumask);
  2448. /* Tally up the load of all CPUs in the group */
  2449. sum_weighted_load = sum_nr_running = avg_load = 0;
  2450. max_cpu_load = 0;
  2451. min_cpu_load = ~0UL;
  2452. for_each_cpu_mask(i, group->cpumask) {
  2453. struct rq *rq;
  2454. if (!cpu_isset(i, *cpus))
  2455. continue;
  2456. rq = cpu_rq(i);
  2457. if (*sd_idle && rq->nr_running)
  2458. *sd_idle = 0;
  2459. /* Bias balancing toward cpus of our domain */
  2460. if (local_group) {
  2461. if (idle_cpu(i) && !first_idle_cpu) {
  2462. first_idle_cpu = 1;
  2463. balance_cpu = i;
  2464. }
  2465. load = target_load(i, load_idx);
  2466. } else {
  2467. load = source_load(i, load_idx);
  2468. if (load > max_cpu_load)
  2469. max_cpu_load = load;
  2470. if (min_cpu_load > load)
  2471. min_cpu_load = load;
  2472. }
  2473. avg_load += load;
  2474. sum_nr_running += rq->nr_running;
  2475. sum_weighted_load += weighted_cpuload(i);
  2476. }
  2477. /*
  2478. * First idle cpu or the first cpu(busiest) in this sched group
  2479. * is eligible for doing load balancing at this and above
  2480. * domains. In the newly idle case, we will allow all the cpu's
  2481. * to do the newly idle load balance.
  2482. */
  2483. if (idle != CPU_NEWLY_IDLE && local_group &&
  2484. balance_cpu != this_cpu && balance) {
  2485. *balance = 0;
  2486. goto ret;
  2487. }
  2488. total_load += avg_load;
  2489. total_pwr += group->__cpu_power;
  2490. /* Adjust by relative CPU power of the group */
  2491. avg_load = sg_div_cpu_power(group,
  2492. avg_load * SCHED_LOAD_SCALE);
  2493. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2494. __group_imb = 1;
  2495. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2496. if (local_group) {
  2497. this_load = avg_load;
  2498. this = group;
  2499. this_nr_running = sum_nr_running;
  2500. this_load_per_task = sum_weighted_load;
  2501. } else if (avg_load > max_load &&
  2502. (sum_nr_running > group_capacity || __group_imb)) {
  2503. max_load = avg_load;
  2504. busiest = group;
  2505. busiest_nr_running = sum_nr_running;
  2506. busiest_load_per_task = sum_weighted_load;
  2507. group_imb = __group_imb;
  2508. }
  2509. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2510. /*
  2511. * Busy processors will not participate in power savings
  2512. * balance.
  2513. */
  2514. if (idle == CPU_NOT_IDLE ||
  2515. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2516. goto group_next;
  2517. /*
  2518. * If the local group is idle or completely loaded
  2519. * no need to do power savings balance at this domain
  2520. */
  2521. if (local_group && (this_nr_running >= group_capacity ||
  2522. !this_nr_running))
  2523. power_savings_balance = 0;
  2524. /*
  2525. * If a group is already running at full capacity or idle,
  2526. * don't include that group in power savings calculations
  2527. */
  2528. if (!power_savings_balance || sum_nr_running >= group_capacity
  2529. || !sum_nr_running)
  2530. goto group_next;
  2531. /*
  2532. * Calculate the group which has the least non-idle load.
  2533. * This is the group from where we need to pick up the load
  2534. * for saving power
  2535. */
  2536. if ((sum_nr_running < min_nr_running) ||
  2537. (sum_nr_running == min_nr_running &&
  2538. first_cpu(group->cpumask) <
  2539. first_cpu(group_min->cpumask))) {
  2540. group_min = group;
  2541. min_nr_running = sum_nr_running;
  2542. min_load_per_task = sum_weighted_load /
  2543. sum_nr_running;
  2544. }
  2545. /*
  2546. * Calculate the group which is almost near its
  2547. * capacity but still has some space to pick up some load
  2548. * from other group and save more power
  2549. */
  2550. if (sum_nr_running <= group_capacity - 1) {
  2551. if (sum_nr_running > leader_nr_running ||
  2552. (sum_nr_running == leader_nr_running &&
  2553. first_cpu(group->cpumask) >
  2554. first_cpu(group_leader->cpumask))) {
  2555. group_leader = group;
  2556. leader_nr_running = sum_nr_running;
  2557. }
  2558. }
  2559. group_next:
  2560. #endif
  2561. group = group->next;
  2562. } while (group != sd->groups);
  2563. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2564. goto out_balanced;
  2565. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2566. if (this_load >= avg_load ||
  2567. 100*max_load <= sd->imbalance_pct*this_load)
  2568. goto out_balanced;
  2569. busiest_load_per_task /= busiest_nr_running;
  2570. if (group_imb)
  2571. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2572. /*
  2573. * We're trying to get all the cpus to the average_load, so we don't
  2574. * want to push ourselves above the average load, nor do we wish to
  2575. * reduce the max loaded cpu below the average load, as either of these
  2576. * actions would just result in more rebalancing later, and ping-pong
  2577. * tasks around. Thus we look for the minimum possible imbalance.
  2578. * Negative imbalances (*we* are more loaded than anyone else) will
  2579. * be counted as no imbalance for these purposes -- we can't fix that
  2580. * by pulling tasks to us. Be careful of negative numbers as they'll
  2581. * appear as very large values with unsigned longs.
  2582. */
  2583. if (max_load <= busiest_load_per_task)
  2584. goto out_balanced;
  2585. /*
  2586. * In the presence of smp nice balancing, certain scenarios can have
  2587. * max load less than avg load(as we skip the groups at or below
  2588. * its cpu_power, while calculating max_load..)
  2589. */
  2590. if (max_load < avg_load) {
  2591. *imbalance = 0;
  2592. goto small_imbalance;
  2593. }
  2594. /* Don't want to pull so many tasks that a group would go idle */
  2595. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2596. /* How much load to actually move to equalise the imbalance */
  2597. *imbalance = min(max_pull * busiest->__cpu_power,
  2598. (avg_load - this_load) * this->__cpu_power)
  2599. / SCHED_LOAD_SCALE;
  2600. /*
  2601. * if *imbalance is less than the average load per runnable task
  2602. * there is no gaurantee that any tasks will be moved so we'll have
  2603. * a think about bumping its value to force at least one task to be
  2604. * moved
  2605. */
  2606. if (*imbalance < busiest_load_per_task) {
  2607. unsigned long tmp, pwr_now, pwr_move;
  2608. unsigned int imbn;
  2609. small_imbalance:
  2610. pwr_move = pwr_now = 0;
  2611. imbn = 2;
  2612. if (this_nr_running) {
  2613. this_load_per_task /= this_nr_running;
  2614. if (busiest_load_per_task > this_load_per_task)
  2615. imbn = 1;
  2616. } else
  2617. this_load_per_task = SCHED_LOAD_SCALE;
  2618. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2619. busiest_load_per_task * imbn) {
  2620. *imbalance = busiest_load_per_task;
  2621. return busiest;
  2622. }
  2623. /*
  2624. * OK, we don't have enough imbalance to justify moving tasks,
  2625. * however we may be able to increase total CPU power used by
  2626. * moving them.
  2627. */
  2628. pwr_now += busiest->__cpu_power *
  2629. min(busiest_load_per_task, max_load);
  2630. pwr_now += this->__cpu_power *
  2631. min(this_load_per_task, this_load);
  2632. pwr_now /= SCHED_LOAD_SCALE;
  2633. /* Amount of load we'd subtract */
  2634. tmp = sg_div_cpu_power(busiest,
  2635. busiest_load_per_task * SCHED_LOAD_SCALE);
  2636. if (max_load > tmp)
  2637. pwr_move += busiest->__cpu_power *
  2638. min(busiest_load_per_task, max_load - tmp);
  2639. /* Amount of load we'd add */
  2640. if (max_load * busiest->__cpu_power <
  2641. busiest_load_per_task * SCHED_LOAD_SCALE)
  2642. tmp = sg_div_cpu_power(this,
  2643. max_load * busiest->__cpu_power);
  2644. else
  2645. tmp = sg_div_cpu_power(this,
  2646. busiest_load_per_task * SCHED_LOAD_SCALE);
  2647. pwr_move += this->__cpu_power *
  2648. min(this_load_per_task, this_load + tmp);
  2649. pwr_move /= SCHED_LOAD_SCALE;
  2650. /* Move if we gain throughput */
  2651. if (pwr_move > pwr_now)
  2652. *imbalance = busiest_load_per_task;
  2653. }
  2654. return busiest;
  2655. out_balanced:
  2656. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2657. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2658. goto ret;
  2659. if (this == group_leader && group_leader != group_min) {
  2660. *imbalance = min_load_per_task;
  2661. return group_min;
  2662. }
  2663. #endif
  2664. ret:
  2665. *imbalance = 0;
  2666. return NULL;
  2667. }
  2668. /*
  2669. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2670. */
  2671. static struct rq *
  2672. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2673. unsigned long imbalance, cpumask_t *cpus)
  2674. {
  2675. struct rq *busiest = NULL, *rq;
  2676. unsigned long max_load = 0;
  2677. int i;
  2678. for_each_cpu_mask(i, group->cpumask) {
  2679. unsigned long wl;
  2680. if (!cpu_isset(i, *cpus))
  2681. continue;
  2682. rq = cpu_rq(i);
  2683. wl = weighted_cpuload(i);
  2684. if (rq->nr_running == 1 && wl > imbalance)
  2685. continue;
  2686. if (wl > max_load) {
  2687. max_load = wl;
  2688. busiest = rq;
  2689. }
  2690. }
  2691. return busiest;
  2692. }
  2693. /*
  2694. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2695. * so long as it is large enough.
  2696. */
  2697. #define MAX_PINNED_INTERVAL 512
  2698. /*
  2699. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2700. * tasks if there is an imbalance.
  2701. */
  2702. static int load_balance(int this_cpu, struct rq *this_rq,
  2703. struct sched_domain *sd, enum cpu_idle_type idle,
  2704. int *balance)
  2705. {
  2706. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2707. struct sched_group *group;
  2708. unsigned long imbalance;
  2709. struct rq *busiest;
  2710. cpumask_t cpus = CPU_MASK_ALL;
  2711. unsigned long flags;
  2712. /*
  2713. * When power savings policy is enabled for the parent domain, idle
  2714. * sibling can pick up load irrespective of busy siblings. In this case,
  2715. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2716. * portraying it as CPU_NOT_IDLE.
  2717. */
  2718. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2719. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2720. sd_idle = 1;
  2721. schedstat_inc(sd, lb_count[idle]);
  2722. redo:
  2723. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2724. &cpus, balance);
  2725. if (*balance == 0)
  2726. goto out_balanced;
  2727. if (!group) {
  2728. schedstat_inc(sd, lb_nobusyg[idle]);
  2729. goto out_balanced;
  2730. }
  2731. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2732. if (!busiest) {
  2733. schedstat_inc(sd, lb_nobusyq[idle]);
  2734. goto out_balanced;
  2735. }
  2736. BUG_ON(busiest == this_rq);
  2737. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2738. ld_moved = 0;
  2739. if (busiest->nr_running > 1) {
  2740. /*
  2741. * Attempt to move tasks. If find_busiest_group has found
  2742. * an imbalance but busiest->nr_running <= 1, the group is
  2743. * still unbalanced. ld_moved simply stays zero, so it is
  2744. * correctly treated as an imbalance.
  2745. */
  2746. local_irq_save(flags);
  2747. double_rq_lock(this_rq, busiest);
  2748. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2749. imbalance, sd, idle, &all_pinned);
  2750. double_rq_unlock(this_rq, busiest);
  2751. local_irq_restore(flags);
  2752. /*
  2753. * some other cpu did the load balance for us.
  2754. */
  2755. if (ld_moved && this_cpu != smp_processor_id())
  2756. resched_cpu(this_cpu);
  2757. /* All tasks on this runqueue were pinned by CPU affinity */
  2758. if (unlikely(all_pinned)) {
  2759. cpu_clear(cpu_of(busiest), cpus);
  2760. if (!cpus_empty(cpus))
  2761. goto redo;
  2762. goto out_balanced;
  2763. }
  2764. }
  2765. if (!ld_moved) {
  2766. schedstat_inc(sd, lb_failed[idle]);
  2767. sd->nr_balance_failed++;
  2768. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2769. spin_lock_irqsave(&busiest->lock, flags);
  2770. /* don't kick the migration_thread, if the curr
  2771. * task on busiest cpu can't be moved to this_cpu
  2772. */
  2773. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2774. spin_unlock_irqrestore(&busiest->lock, flags);
  2775. all_pinned = 1;
  2776. goto out_one_pinned;
  2777. }
  2778. if (!busiest->active_balance) {
  2779. busiest->active_balance = 1;
  2780. busiest->push_cpu = this_cpu;
  2781. active_balance = 1;
  2782. }
  2783. spin_unlock_irqrestore(&busiest->lock, flags);
  2784. if (active_balance)
  2785. wake_up_process(busiest->migration_thread);
  2786. /*
  2787. * We've kicked active balancing, reset the failure
  2788. * counter.
  2789. */
  2790. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2791. }
  2792. } else
  2793. sd->nr_balance_failed = 0;
  2794. if (likely(!active_balance)) {
  2795. /* We were unbalanced, so reset the balancing interval */
  2796. sd->balance_interval = sd->min_interval;
  2797. } else {
  2798. /*
  2799. * If we've begun active balancing, start to back off. This
  2800. * case may not be covered by the all_pinned logic if there
  2801. * is only 1 task on the busy runqueue (because we don't call
  2802. * move_tasks).
  2803. */
  2804. if (sd->balance_interval < sd->max_interval)
  2805. sd->balance_interval *= 2;
  2806. }
  2807. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2808. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2809. return -1;
  2810. return ld_moved;
  2811. out_balanced:
  2812. schedstat_inc(sd, lb_balanced[idle]);
  2813. sd->nr_balance_failed = 0;
  2814. out_one_pinned:
  2815. /* tune up the balancing interval */
  2816. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2817. (sd->balance_interval < sd->max_interval))
  2818. sd->balance_interval *= 2;
  2819. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2820. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2821. return -1;
  2822. return 0;
  2823. }
  2824. /*
  2825. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2826. * tasks if there is an imbalance.
  2827. *
  2828. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2829. * this_rq is locked.
  2830. */
  2831. static int
  2832. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2833. {
  2834. struct sched_group *group;
  2835. struct rq *busiest = NULL;
  2836. unsigned long imbalance;
  2837. int ld_moved = 0;
  2838. int sd_idle = 0;
  2839. int all_pinned = 0;
  2840. cpumask_t cpus = CPU_MASK_ALL;
  2841. /*
  2842. * When power savings policy is enabled for the parent domain, idle
  2843. * sibling can pick up load irrespective of busy siblings. In this case,
  2844. * let the state of idle sibling percolate up as IDLE, instead of
  2845. * portraying it as CPU_NOT_IDLE.
  2846. */
  2847. if (sd->flags & SD_SHARE_CPUPOWER &&
  2848. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2849. sd_idle = 1;
  2850. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2851. redo:
  2852. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2853. &sd_idle, &cpus, NULL);
  2854. if (!group) {
  2855. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2856. goto out_balanced;
  2857. }
  2858. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2859. &cpus);
  2860. if (!busiest) {
  2861. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2862. goto out_balanced;
  2863. }
  2864. BUG_ON(busiest == this_rq);
  2865. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2866. ld_moved = 0;
  2867. if (busiest->nr_running > 1) {
  2868. /* Attempt to move tasks */
  2869. double_lock_balance(this_rq, busiest);
  2870. /* this_rq->clock is already updated */
  2871. update_rq_clock(busiest);
  2872. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2873. imbalance, sd, CPU_NEWLY_IDLE,
  2874. &all_pinned);
  2875. spin_unlock(&busiest->lock);
  2876. if (unlikely(all_pinned)) {
  2877. cpu_clear(cpu_of(busiest), cpus);
  2878. if (!cpus_empty(cpus))
  2879. goto redo;
  2880. }
  2881. }
  2882. if (!ld_moved) {
  2883. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2884. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2885. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2886. return -1;
  2887. } else
  2888. sd->nr_balance_failed = 0;
  2889. return ld_moved;
  2890. out_balanced:
  2891. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2892. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2893. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2894. return -1;
  2895. sd->nr_balance_failed = 0;
  2896. return 0;
  2897. }
  2898. /*
  2899. * idle_balance is called by schedule() if this_cpu is about to become
  2900. * idle. Attempts to pull tasks from other CPUs.
  2901. */
  2902. static void idle_balance(int this_cpu, struct rq *this_rq)
  2903. {
  2904. struct sched_domain *sd;
  2905. int pulled_task = -1;
  2906. unsigned long next_balance = jiffies + HZ;
  2907. for_each_domain(this_cpu, sd) {
  2908. unsigned long interval;
  2909. if (!(sd->flags & SD_LOAD_BALANCE))
  2910. continue;
  2911. if (sd->flags & SD_BALANCE_NEWIDLE)
  2912. /* If we've pulled tasks over stop searching: */
  2913. pulled_task = load_balance_newidle(this_cpu,
  2914. this_rq, sd);
  2915. interval = msecs_to_jiffies(sd->balance_interval);
  2916. if (time_after(next_balance, sd->last_balance + interval))
  2917. next_balance = sd->last_balance + interval;
  2918. if (pulled_task)
  2919. break;
  2920. }
  2921. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2922. /*
  2923. * We are going idle. next_balance may be set based on
  2924. * a busy processor. So reset next_balance.
  2925. */
  2926. this_rq->next_balance = next_balance;
  2927. }
  2928. }
  2929. /*
  2930. * active_load_balance is run by migration threads. It pushes running tasks
  2931. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2932. * running on each physical CPU where possible, and avoids physical /
  2933. * logical imbalances.
  2934. *
  2935. * Called with busiest_rq locked.
  2936. */
  2937. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2938. {
  2939. int target_cpu = busiest_rq->push_cpu;
  2940. struct sched_domain *sd;
  2941. struct rq *target_rq;
  2942. /* Is there any task to move? */
  2943. if (busiest_rq->nr_running <= 1)
  2944. return;
  2945. target_rq = cpu_rq(target_cpu);
  2946. /*
  2947. * This condition is "impossible", if it occurs
  2948. * we need to fix it. Originally reported by
  2949. * Bjorn Helgaas on a 128-cpu setup.
  2950. */
  2951. BUG_ON(busiest_rq == target_rq);
  2952. /* move a task from busiest_rq to target_rq */
  2953. double_lock_balance(busiest_rq, target_rq);
  2954. update_rq_clock(busiest_rq);
  2955. update_rq_clock(target_rq);
  2956. /* Search for an sd spanning us and the target CPU. */
  2957. for_each_domain(target_cpu, sd) {
  2958. if ((sd->flags & SD_LOAD_BALANCE) &&
  2959. cpu_isset(busiest_cpu, sd->span))
  2960. break;
  2961. }
  2962. if (likely(sd)) {
  2963. schedstat_inc(sd, alb_count);
  2964. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2965. sd, CPU_IDLE))
  2966. schedstat_inc(sd, alb_pushed);
  2967. else
  2968. schedstat_inc(sd, alb_failed);
  2969. }
  2970. spin_unlock(&target_rq->lock);
  2971. }
  2972. #ifdef CONFIG_NO_HZ
  2973. static struct {
  2974. atomic_t load_balancer;
  2975. cpumask_t cpu_mask;
  2976. } nohz ____cacheline_aligned = {
  2977. .load_balancer = ATOMIC_INIT(-1),
  2978. .cpu_mask = CPU_MASK_NONE,
  2979. };
  2980. /*
  2981. * This routine will try to nominate the ilb (idle load balancing)
  2982. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2983. * load balancing on behalf of all those cpus. If all the cpus in the system
  2984. * go into this tickless mode, then there will be no ilb owner (as there is
  2985. * no need for one) and all the cpus will sleep till the next wakeup event
  2986. * arrives...
  2987. *
  2988. * For the ilb owner, tick is not stopped. And this tick will be used
  2989. * for idle load balancing. ilb owner will still be part of
  2990. * nohz.cpu_mask..
  2991. *
  2992. * While stopping the tick, this cpu will become the ilb owner if there
  2993. * is no other owner. And will be the owner till that cpu becomes busy
  2994. * or if all cpus in the system stop their ticks at which point
  2995. * there is no need for ilb owner.
  2996. *
  2997. * When the ilb owner becomes busy, it nominates another owner, during the
  2998. * next busy scheduler_tick()
  2999. */
  3000. int select_nohz_load_balancer(int stop_tick)
  3001. {
  3002. int cpu = smp_processor_id();
  3003. if (stop_tick) {
  3004. cpu_set(cpu, nohz.cpu_mask);
  3005. cpu_rq(cpu)->in_nohz_recently = 1;
  3006. /*
  3007. * If we are going offline and still the leader, give up!
  3008. */
  3009. if (cpu_is_offline(cpu) &&
  3010. atomic_read(&nohz.load_balancer) == cpu) {
  3011. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3012. BUG();
  3013. return 0;
  3014. }
  3015. /* time for ilb owner also to sleep */
  3016. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3017. if (atomic_read(&nohz.load_balancer) == cpu)
  3018. atomic_set(&nohz.load_balancer, -1);
  3019. return 0;
  3020. }
  3021. if (atomic_read(&nohz.load_balancer) == -1) {
  3022. /* make me the ilb owner */
  3023. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3024. return 1;
  3025. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3026. return 1;
  3027. } else {
  3028. if (!cpu_isset(cpu, nohz.cpu_mask))
  3029. return 0;
  3030. cpu_clear(cpu, nohz.cpu_mask);
  3031. if (atomic_read(&nohz.load_balancer) == cpu)
  3032. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3033. BUG();
  3034. }
  3035. return 0;
  3036. }
  3037. #endif
  3038. static DEFINE_SPINLOCK(balancing);
  3039. /*
  3040. * It checks each scheduling domain to see if it is due to be balanced,
  3041. * and initiates a balancing operation if so.
  3042. *
  3043. * Balancing parameters are set up in arch_init_sched_domains.
  3044. */
  3045. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3046. {
  3047. int balance = 1;
  3048. struct rq *rq = cpu_rq(cpu);
  3049. unsigned long interval;
  3050. struct sched_domain *sd;
  3051. /* Earliest time when we have to do rebalance again */
  3052. unsigned long next_balance = jiffies + 60*HZ;
  3053. int update_next_balance = 0;
  3054. for_each_domain(cpu, sd) {
  3055. if (!(sd->flags & SD_LOAD_BALANCE))
  3056. continue;
  3057. interval = sd->balance_interval;
  3058. if (idle != CPU_IDLE)
  3059. interval *= sd->busy_factor;
  3060. /* scale ms to jiffies */
  3061. interval = msecs_to_jiffies(interval);
  3062. if (unlikely(!interval))
  3063. interval = 1;
  3064. if (interval > HZ*NR_CPUS/10)
  3065. interval = HZ*NR_CPUS/10;
  3066. if (sd->flags & SD_SERIALIZE) {
  3067. if (!spin_trylock(&balancing))
  3068. goto out;
  3069. }
  3070. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3071. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3072. /*
  3073. * We've pulled tasks over so either we're no
  3074. * longer idle, or one of our SMT siblings is
  3075. * not idle.
  3076. */
  3077. idle = CPU_NOT_IDLE;
  3078. }
  3079. sd->last_balance = jiffies;
  3080. }
  3081. if (sd->flags & SD_SERIALIZE)
  3082. spin_unlock(&balancing);
  3083. out:
  3084. if (time_after(next_balance, sd->last_balance + interval)) {
  3085. next_balance = sd->last_balance + interval;
  3086. update_next_balance = 1;
  3087. }
  3088. /*
  3089. * Stop the load balance at this level. There is another
  3090. * CPU in our sched group which is doing load balancing more
  3091. * actively.
  3092. */
  3093. if (!balance)
  3094. break;
  3095. }
  3096. /*
  3097. * next_balance will be updated only when there is a need.
  3098. * When the cpu is attached to null domain for ex, it will not be
  3099. * updated.
  3100. */
  3101. if (likely(update_next_balance))
  3102. rq->next_balance = next_balance;
  3103. }
  3104. /*
  3105. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3106. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3107. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3108. */
  3109. static void run_rebalance_domains(struct softirq_action *h)
  3110. {
  3111. int this_cpu = smp_processor_id();
  3112. struct rq *this_rq = cpu_rq(this_cpu);
  3113. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3114. CPU_IDLE : CPU_NOT_IDLE;
  3115. rebalance_domains(this_cpu, idle);
  3116. #ifdef CONFIG_NO_HZ
  3117. /*
  3118. * If this cpu is the owner for idle load balancing, then do the
  3119. * balancing on behalf of the other idle cpus whose ticks are
  3120. * stopped.
  3121. */
  3122. if (this_rq->idle_at_tick &&
  3123. atomic_read(&nohz.load_balancer) == this_cpu) {
  3124. cpumask_t cpus = nohz.cpu_mask;
  3125. struct rq *rq;
  3126. int balance_cpu;
  3127. cpu_clear(this_cpu, cpus);
  3128. for_each_cpu_mask(balance_cpu, cpus) {
  3129. /*
  3130. * If this cpu gets work to do, stop the load balancing
  3131. * work being done for other cpus. Next load
  3132. * balancing owner will pick it up.
  3133. */
  3134. if (need_resched())
  3135. break;
  3136. rebalance_domains(balance_cpu, CPU_IDLE);
  3137. rq = cpu_rq(balance_cpu);
  3138. if (time_after(this_rq->next_balance, rq->next_balance))
  3139. this_rq->next_balance = rq->next_balance;
  3140. }
  3141. }
  3142. #endif
  3143. }
  3144. /*
  3145. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3146. *
  3147. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3148. * idle load balancing owner or decide to stop the periodic load balancing,
  3149. * if the whole system is idle.
  3150. */
  3151. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3152. {
  3153. #ifdef CONFIG_NO_HZ
  3154. /*
  3155. * If we were in the nohz mode recently and busy at the current
  3156. * scheduler tick, then check if we need to nominate new idle
  3157. * load balancer.
  3158. */
  3159. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3160. rq->in_nohz_recently = 0;
  3161. if (atomic_read(&nohz.load_balancer) == cpu) {
  3162. cpu_clear(cpu, nohz.cpu_mask);
  3163. atomic_set(&nohz.load_balancer, -1);
  3164. }
  3165. if (atomic_read(&nohz.load_balancer) == -1) {
  3166. /*
  3167. * simple selection for now: Nominate the
  3168. * first cpu in the nohz list to be the next
  3169. * ilb owner.
  3170. *
  3171. * TBD: Traverse the sched domains and nominate
  3172. * the nearest cpu in the nohz.cpu_mask.
  3173. */
  3174. int ilb = first_cpu(nohz.cpu_mask);
  3175. if (ilb < nr_cpu_ids)
  3176. resched_cpu(ilb);
  3177. }
  3178. }
  3179. /*
  3180. * If this cpu is idle and doing idle load balancing for all the
  3181. * cpus with ticks stopped, is it time for that to stop?
  3182. */
  3183. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3184. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3185. resched_cpu(cpu);
  3186. return;
  3187. }
  3188. /*
  3189. * If this cpu is idle and the idle load balancing is done by
  3190. * someone else, then no need raise the SCHED_SOFTIRQ
  3191. */
  3192. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3193. cpu_isset(cpu, nohz.cpu_mask))
  3194. return;
  3195. #endif
  3196. if (time_after_eq(jiffies, rq->next_balance))
  3197. raise_softirq(SCHED_SOFTIRQ);
  3198. }
  3199. #else /* CONFIG_SMP */
  3200. /*
  3201. * on UP we do not need to balance between CPUs:
  3202. */
  3203. static inline void idle_balance(int cpu, struct rq *rq)
  3204. {
  3205. }
  3206. #endif
  3207. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3208. EXPORT_PER_CPU_SYMBOL(kstat);
  3209. /*
  3210. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3211. * that have not yet been banked in case the task is currently running.
  3212. */
  3213. unsigned long long task_sched_runtime(struct task_struct *p)
  3214. {
  3215. unsigned long flags;
  3216. u64 ns, delta_exec;
  3217. struct rq *rq;
  3218. rq = task_rq_lock(p, &flags);
  3219. ns = p->se.sum_exec_runtime;
  3220. if (task_current(rq, p)) {
  3221. update_rq_clock(rq);
  3222. delta_exec = rq->clock - p->se.exec_start;
  3223. if ((s64)delta_exec > 0)
  3224. ns += delta_exec;
  3225. }
  3226. task_rq_unlock(rq, &flags);
  3227. return ns;
  3228. }
  3229. /*
  3230. * Account user cpu time to a process.
  3231. * @p: the process that the cpu time gets accounted to
  3232. * @cputime: the cpu time spent in user space since the last update
  3233. */
  3234. void account_user_time(struct task_struct *p, cputime_t cputime)
  3235. {
  3236. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3237. cputime64_t tmp;
  3238. p->utime = cputime_add(p->utime, cputime);
  3239. /* Add user time to cpustat. */
  3240. tmp = cputime_to_cputime64(cputime);
  3241. if (TASK_NICE(p) > 0)
  3242. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3243. else
  3244. cpustat->user = cputime64_add(cpustat->user, tmp);
  3245. }
  3246. /*
  3247. * Account guest cpu time to a process.
  3248. * @p: the process that the cpu time gets accounted to
  3249. * @cputime: the cpu time spent in virtual machine since the last update
  3250. */
  3251. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3252. {
  3253. cputime64_t tmp;
  3254. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3255. tmp = cputime_to_cputime64(cputime);
  3256. p->utime = cputime_add(p->utime, cputime);
  3257. p->gtime = cputime_add(p->gtime, cputime);
  3258. cpustat->user = cputime64_add(cpustat->user, tmp);
  3259. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3260. }
  3261. /*
  3262. * Account scaled user cpu time to a process.
  3263. * @p: the process that the cpu time gets accounted to
  3264. * @cputime: the cpu time spent in user space since the last update
  3265. */
  3266. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3267. {
  3268. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3269. }
  3270. /*
  3271. * Account system cpu time to a process.
  3272. * @p: the process that the cpu time gets accounted to
  3273. * @hardirq_offset: the offset to subtract from hardirq_count()
  3274. * @cputime: the cpu time spent in kernel space since the last update
  3275. */
  3276. void account_system_time(struct task_struct *p, int hardirq_offset,
  3277. cputime_t cputime)
  3278. {
  3279. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3280. struct rq *rq = this_rq();
  3281. cputime64_t tmp;
  3282. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  3283. return account_guest_time(p, cputime);
  3284. p->stime = cputime_add(p->stime, cputime);
  3285. /* Add system time to cpustat. */
  3286. tmp = cputime_to_cputime64(cputime);
  3287. if (hardirq_count() - hardirq_offset)
  3288. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3289. else if (softirq_count())
  3290. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3291. else if (p != rq->idle)
  3292. cpustat->system = cputime64_add(cpustat->system, tmp);
  3293. else if (atomic_read(&rq->nr_iowait) > 0)
  3294. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3295. else
  3296. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3297. /* Account for system time used */
  3298. acct_update_integrals(p);
  3299. }
  3300. /*
  3301. * Account scaled system cpu time to a process.
  3302. * @p: the process that the cpu time gets accounted to
  3303. * @hardirq_offset: the offset to subtract from hardirq_count()
  3304. * @cputime: the cpu time spent in kernel space since the last update
  3305. */
  3306. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3307. {
  3308. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3309. }
  3310. /*
  3311. * Account for involuntary wait time.
  3312. * @p: the process from which the cpu time has been stolen
  3313. * @steal: the cpu time spent in involuntary wait
  3314. */
  3315. void account_steal_time(struct task_struct *p, cputime_t steal)
  3316. {
  3317. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3318. cputime64_t tmp = cputime_to_cputime64(steal);
  3319. struct rq *rq = this_rq();
  3320. if (p == rq->idle) {
  3321. p->stime = cputime_add(p->stime, steal);
  3322. if (atomic_read(&rq->nr_iowait) > 0)
  3323. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3324. else
  3325. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3326. } else
  3327. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3328. }
  3329. /*
  3330. * This function gets called by the timer code, with HZ frequency.
  3331. * We call it with interrupts disabled.
  3332. *
  3333. * It also gets called by the fork code, when changing the parent's
  3334. * timeslices.
  3335. */
  3336. void scheduler_tick(void)
  3337. {
  3338. int cpu = smp_processor_id();
  3339. struct rq *rq = cpu_rq(cpu);
  3340. struct task_struct *curr = rq->curr;
  3341. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  3342. spin_lock(&rq->lock);
  3343. __update_rq_clock(rq);
  3344. /*
  3345. * Let rq->clock advance by at least TICK_NSEC:
  3346. */
  3347. if (unlikely(rq->clock < next_tick)) {
  3348. rq->clock = next_tick;
  3349. rq->clock_underflows++;
  3350. }
  3351. rq->tick_timestamp = rq->clock;
  3352. update_last_tick_seen(rq);
  3353. update_cpu_load(rq);
  3354. curr->sched_class->task_tick(rq, curr, 0);
  3355. spin_unlock(&rq->lock);
  3356. #ifdef CONFIG_SMP
  3357. rq->idle_at_tick = idle_cpu(cpu);
  3358. trigger_load_balance(rq, cpu);
  3359. #endif
  3360. }
  3361. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3362. void __kprobes add_preempt_count(int val)
  3363. {
  3364. /*
  3365. * Underflow?
  3366. */
  3367. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3368. return;
  3369. preempt_count() += val;
  3370. /*
  3371. * Spinlock count overflowing soon?
  3372. */
  3373. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3374. PREEMPT_MASK - 10);
  3375. }
  3376. EXPORT_SYMBOL(add_preempt_count);
  3377. void __kprobes sub_preempt_count(int val)
  3378. {
  3379. /*
  3380. * Underflow?
  3381. */
  3382. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3383. return;
  3384. /*
  3385. * Is the spinlock portion underflowing?
  3386. */
  3387. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3388. !(preempt_count() & PREEMPT_MASK)))
  3389. return;
  3390. preempt_count() -= val;
  3391. }
  3392. EXPORT_SYMBOL(sub_preempt_count);
  3393. #endif
  3394. /*
  3395. * Print scheduling while atomic bug:
  3396. */
  3397. static noinline void __schedule_bug(struct task_struct *prev)
  3398. {
  3399. struct pt_regs *regs = get_irq_regs();
  3400. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3401. prev->comm, prev->pid, preempt_count());
  3402. debug_show_held_locks(prev);
  3403. if (irqs_disabled())
  3404. print_irqtrace_events(prev);
  3405. if (regs)
  3406. show_regs(regs);
  3407. else
  3408. dump_stack();
  3409. }
  3410. /*
  3411. * Various schedule()-time debugging checks and statistics:
  3412. */
  3413. static inline void schedule_debug(struct task_struct *prev)
  3414. {
  3415. /*
  3416. * Test if we are atomic. Since do_exit() needs to call into
  3417. * schedule() atomically, we ignore that path for now.
  3418. * Otherwise, whine if we are scheduling when we should not be.
  3419. */
  3420. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3421. __schedule_bug(prev);
  3422. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3423. schedstat_inc(this_rq(), sched_count);
  3424. #ifdef CONFIG_SCHEDSTATS
  3425. if (unlikely(prev->lock_depth >= 0)) {
  3426. schedstat_inc(this_rq(), bkl_count);
  3427. schedstat_inc(prev, sched_info.bkl_count);
  3428. }
  3429. #endif
  3430. }
  3431. /*
  3432. * Pick up the highest-prio task:
  3433. */
  3434. static inline struct task_struct *
  3435. pick_next_task(struct rq *rq, struct task_struct *prev)
  3436. {
  3437. const struct sched_class *class;
  3438. struct task_struct *p;
  3439. /*
  3440. * Optimization: we know that if all tasks are in
  3441. * the fair class we can call that function directly:
  3442. */
  3443. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3444. p = fair_sched_class.pick_next_task(rq);
  3445. if (likely(p))
  3446. return p;
  3447. }
  3448. class = sched_class_highest;
  3449. for ( ; ; ) {
  3450. p = class->pick_next_task(rq);
  3451. if (p)
  3452. return p;
  3453. /*
  3454. * Will never be NULL as the idle class always
  3455. * returns a non-NULL p:
  3456. */
  3457. class = class->next;
  3458. }
  3459. }
  3460. /*
  3461. * schedule() is the main scheduler function.
  3462. */
  3463. asmlinkage void __sched schedule(void)
  3464. {
  3465. struct task_struct *prev, *next;
  3466. unsigned long *switch_count;
  3467. struct rq *rq;
  3468. int cpu;
  3469. need_resched:
  3470. preempt_disable();
  3471. cpu = smp_processor_id();
  3472. rq = cpu_rq(cpu);
  3473. rcu_qsctr_inc(cpu);
  3474. prev = rq->curr;
  3475. switch_count = &prev->nivcsw;
  3476. release_kernel_lock(prev);
  3477. need_resched_nonpreemptible:
  3478. schedule_debug(prev);
  3479. hrtick_clear(rq);
  3480. /*
  3481. * Do the rq-clock update outside the rq lock:
  3482. */
  3483. local_irq_disable();
  3484. __update_rq_clock(rq);
  3485. spin_lock(&rq->lock);
  3486. clear_tsk_need_resched(prev);
  3487. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3488. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3489. signal_pending(prev))) {
  3490. prev->state = TASK_RUNNING;
  3491. } else {
  3492. deactivate_task(rq, prev, 1);
  3493. }
  3494. switch_count = &prev->nvcsw;
  3495. }
  3496. #ifdef CONFIG_SMP
  3497. if (prev->sched_class->pre_schedule)
  3498. prev->sched_class->pre_schedule(rq, prev);
  3499. #endif
  3500. if (unlikely(!rq->nr_running))
  3501. idle_balance(cpu, rq);
  3502. prev->sched_class->put_prev_task(rq, prev);
  3503. next = pick_next_task(rq, prev);
  3504. sched_info_switch(prev, next);
  3505. if (likely(prev != next)) {
  3506. rq->nr_switches++;
  3507. rq->curr = next;
  3508. ++*switch_count;
  3509. context_switch(rq, prev, next); /* unlocks the rq */
  3510. /*
  3511. * the context switch might have flipped the stack from under
  3512. * us, hence refresh the local variables.
  3513. */
  3514. cpu = smp_processor_id();
  3515. rq = cpu_rq(cpu);
  3516. } else
  3517. spin_unlock_irq(&rq->lock);
  3518. hrtick_set(rq);
  3519. if (unlikely(reacquire_kernel_lock(current) < 0))
  3520. goto need_resched_nonpreemptible;
  3521. preempt_enable_no_resched();
  3522. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3523. goto need_resched;
  3524. }
  3525. EXPORT_SYMBOL(schedule);
  3526. #ifdef CONFIG_PREEMPT
  3527. /*
  3528. * this is the entry point to schedule() from in-kernel preemption
  3529. * off of preempt_enable. Kernel preemptions off return from interrupt
  3530. * occur there and call schedule directly.
  3531. */
  3532. asmlinkage void __sched preempt_schedule(void)
  3533. {
  3534. struct thread_info *ti = current_thread_info();
  3535. struct task_struct *task = current;
  3536. int saved_lock_depth;
  3537. /*
  3538. * If there is a non-zero preempt_count or interrupts are disabled,
  3539. * we do not want to preempt the current task. Just return..
  3540. */
  3541. if (likely(ti->preempt_count || irqs_disabled()))
  3542. return;
  3543. do {
  3544. add_preempt_count(PREEMPT_ACTIVE);
  3545. /*
  3546. * We keep the big kernel semaphore locked, but we
  3547. * clear ->lock_depth so that schedule() doesnt
  3548. * auto-release the semaphore:
  3549. */
  3550. saved_lock_depth = task->lock_depth;
  3551. task->lock_depth = -1;
  3552. schedule();
  3553. task->lock_depth = saved_lock_depth;
  3554. sub_preempt_count(PREEMPT_ACTIVE);
  3555. /*
  3556. * Check again in case we missed a preemption opportunity
  3557. * between schedule and now.
  3558. */
  3559. barrier();
  3560. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3561. }
  3562. EXPORT_SYMBOL(preempt_schedule);
  3563. /*
  3564. * this is the entry point to schedule() from kernel preemption
  3565. * off of irq context.
  3566. * Note, that this is called and return with irqs disabled. This will
  3567. * protect us against recursive calling from irq.
  3568. */
  3569. asmlinkage void __sched preempt_schedule_irq(void)
  3570. {
  3571. struct thread_info *ti = current_thread_info();
  3572. struct task_struct *task = current;
  3573. int saved_lock_depth;
  3574. /* Catch callers which need to be fixed */
  3575. BUG_ON(ti->preempt_count || !irqs_disabled());
  3576. do {
  3577. add_preempt_count(PREEMPT_ACTIVE);
  3578. /*
  3579. * We keep the big kernel semaphore locked, but we
  3580. * clear ->lock_depth so that schedule() doesnt
  3581. * auto-release the semaphore:
  3582. */
  3583. saved_lock_depth = task->lock_depth;
  3584. task->lock_depth = -1;
  3585. local_irq_enable();
  3586. schedule();
  3587. local_irq_disable();
  3588. task->lock_depth = saved_lock_depth;
  3589. sub_preempt_count(PREEMPT_ACTIVE);
  3590. /*
  3591. * Check again in case we missed a preemption opportunity
  3592. * between schedule and now.
  3593. */
  3594. barrier();
  3595. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3596. }
  3597. #endif /* CONFIG_PREEMPT */
  3598. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3599. void *key)
  3600. {
  3601. return try_to_wake_up(curr->private, mode, sync);
  3602. }
  3603. EXPORT_SYMBOL(default_wake_function);
  3604. /*
  3605. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3606. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3607. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3608. *
  3609. * There are circumstances in which we can try to wake a task which has already
  3610. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3611. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3612. */
  3613. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3614. int nr_exclusive, int sync, void *key)
  3615. {
  3616. wait_queue_t *curr, *next;
  3617. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3618. unsigned flags = curr->flags;
  3619. if (curr->func(curr, mode, sync, key) &&
  3620. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3621. break;
  3622. }
  3623. }
  3624. /**
  3625. * __wake_up - wake up threads blocked on a waitqueue.
  3626. * @q: the waitqueue
  3627. * @mode: which threads
  3628. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3629. * @key: is directly passed to the wakeup function
  3630. */
  3631. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3632. int nr_exclusive, void *key)
  3633. {
  3634. unsigned long flags;
  3635. spin_lock_irqsave(&q->lock, flags);
  3636. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3637. spin_unlock_irqrestore(&q->lock, flags);
  3638. }
  3639. EXPORT_SYMBOL(__wake_up);
  3640. /*
  3641. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3642. */
  3643. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3644. {
  3645. __wake_up_common(q, mode, 1, 0, NULL);
  3646. }
  3647. /**
  3648. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3649. * @q: the waitqueue
  3650. * @mode: which threads
  3651. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3652. *
  3653. * The sync wakeup differs that the waker knows that it will schedule
  3654. * away soon, so while the target thread will be woken up, it will not
  3655. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3656. * with each other. This can prevent needless bouncing between CPUs.
  3657. *
  3658. * On UP it can prevent extra preemption.
  3659. */
  3660. void
  3661. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3662. {
  3663. unsigned long flags;
  3664. int sync = 1;
  3665. if (unlikely(!q))
  3666. return;
  3667. if (unlikely(!nr_exclusive))
  3668. sync = 0;
  3669. spin_lock_irqsave(&q->lock, flags);
  3670. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3671. spin_unlock_irqrestore(&q->lock, flags);
  3672. }
  3673. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3674. void complete(struct completion *x)
  3675. {
  3676. unsigned long flags;
  3677. spin_lock_irqsave(&x->wait.lock, flags);
  3678. x->done++;
  3679. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3680. spin_unlock_irqrestore(&x->wait.lock, flags);
  3681. }
  3682. EXPORT_SYMBOL(complete);
  3683. void complete_all(struct completion *x)
  3684. {
  3685. unsigned long flags;
  3686. spin_lock_irqsave(&x->wait.lock, flags);
  3687. x->done += UINT_MAX/2;
  3688. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3689. spin_unlock_irqrestore(&x->wait.lock, flags);
  3690. }
  3691. EXPORT_SYMBOL(complete_all);
  3692. static inline long __sched
  3693. do_wait_for_common(struct completion *x, long timeout, int state)
  3694. {
  3695. if (!x->done) {
  3696. DECLARE_WAITQUEUE(wait, current);
  3697. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3698. __add_wait_queue_tail(&x->wait, &wait);
  3699. do {
  3700. if ((state == TASK_INTERRUPTIBLE &&
  3701. signal_pending(current)) ||
  3702. (state == TASK_KILLABLE &&
  3703. fatal_signal_pending(current))) {
  3704. __remove_wait_queue(&x->wait, &wait);
  3705. return -ERESTARTSYS;
  3706. }
  3707. __set_current_state(state);
  3708. spin_unlock_irq(&x->wait.lock);
  3709. timeout = schedule_timeout(timeout);
  3710. spin_lock_irq(&x->wait.lock);
  3711. if (!timeout) {
  3712. __remove_wait_queue(&x->wait, &wait);
  3713. return timeout;
  3714. }
  3715. } while (!x->done);
  3716. __remove_wait_queue(&x->wait, &wait);
  3717. }
  3718. x->done--;
  3719. return timeout;
  3720. }
  3721. static long __sched
  3722. wait_for_common(struct completion *x, long timeout, int state)
  3723. {
  3724. might_sleep();
  3725. spin_lock_irq(&x->wait.lock);
  3726. timeout = do_wait_for_common(x, timeout, state);
  3727. spin_unlock_irq(&x->wait.lock);
  3728. return timeout;
  3729. }
  3730. void __sched wait_for_completion(struct completion *x)
  3731. {
  3732. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3733. }
  3734. EXPORT_SYMBOL(wait_for_completion);
  3735. unsigned long __sched
  3736. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3737. {
  3738. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3739. }
  3740. EXPORT_SYMBOL(wait_for_completion_timeout);
  3741. int __sched wait_for_completion_interruptible(struct completion *x)
  3742. {
  3743. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3744. if (t == -ERESTARTSYS)
  3745. return t;
  3746. return 0;
  3747. }
  3748. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3749. unsigned long __sched
  3750. wait_for_completion_interruptible_timeout(struct completion *x,
  3751. unsigned long timeout)
  3752. {
  3753. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3754. }
  3755. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3756. int __sched wait_for_completion_killable(struct completion *x)
  3757. {
  3758. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3759. if (t == -ERESTARTSYS)
  3760. return t;
  3761. return 0;
  3762. }
  3763. EXPORT_SYMBOL(wait_for_completion_killable);
  3764. static long __sched
  3765. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3766. {
  3767. unsigned long flags;
  3768. wait_queue_t wait;
  3769. init_waitqueue_entry(&wait, current);
  3770. __set_current_state(state);
  3771. spin_lock_irqsave(&q->lock, flags);
  3772. __add_wait_queue(q, &wait);
  3773. spin_unlock(&q->lock);
  3774. timeout = schedule_timeout(timeout);
  3775. spin_lock_irq(&q->lock);
  3776. __remove_wait_queue(q, &wait);
  3777. spin_unlock_irqrestore(&q->lock, flags);
  3778. return timeout;
  3779. }
  3780. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3781. {
  3782. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3783. }
  3784. EXPORT_SYMBOL(interruptible_sleep_on);
  3785. long __sched
  3786. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3787. {
  3788. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3789. }
  3790. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3791. void __sched sleep_on(wait_queue_head_t *q)
  3792. {
  3793. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3794. }
  3795. EXPORT_SYMBOL(sleep_on);
  3796. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3797. {
  3798. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3799. }
  3800. EXPORT_SYMBOL(sleep_on_timeout);
  3801. #ifdef CONFIG_RT_MUTEXES
  3802. /*
  3803. * rt_mutex_setprio - set the current priority of a task
  3804. * @p: task
  3805. * @prio: prio value (kernel-internal form)
  3806. *
  3807. * This function changes the 'effective' priority of a task. It does
  3808. * not touch ->normal_prio like __setscheduler().
  3809. *
  3810. * Used by the rt_mutex code to implement priority inheritance logic.
  3811. */
  3812. void rt_mutex_setprio(struct task_struct *p, int prio)
  3813. {
  3814. unsigned long flags;
  3815. int oldprio, on_rq, running;
  3816. struct rq *rq;
  3817. const struct sched_class *prev_class = p->sched_class;
  3818. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3819. rq = task_rq_lock(p, &flags);
  3820. update_rq_clock(rq);
  3821. oldprio = p->prio;
  3822. on_rq = p->se.on_rq;
  3823. running = task_current(rq, p);
  3824. if (on_rq)
  3825. dequeue_task(rq, p, 0);
  3826. if (running)
  3827. p->sched_class->put_prev_task(rq, p);
  3828. if (rt_prio(prio))
  3829. p->sched_class = &rt_sched_class;
  3830. else
  3831. p->sched_class = &fair_sched_class;
  3832. p->prio = prio;
  3833. if (running)
  3834. p->sched_class->set_curr_task(rq);
  3835. if (on_rq) {
  3836. enqueue_task(rq, p, 0);
  3837. check_class_changed(rq, p, prev_class, oldprio, running);
  3838. }
  3839. task_rq_unlock(rq, &flags);
  3840. }
  3841. #endif
  3842. void set_user_nice(struct task_struct *p, long nice)
  3843. {
  3844. int old_prio, delta, on_rq;
  3845. unsigned long flags;
  3846. struct rq *rq;
  3847. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3848. return;
  3849. /*
  3850. * We have to be careful, if called from sys_setpriority(),
  3851. * the task might be in the middle of scheduling on another CPU.
  3852. */
  3853. rq = task_rq_lock(p, &flags);
  3854. update_rq_clock(rq);
  3855. /*
  3856. * The RT priorities are set via sched_setscheduler(), but we still
  3857. * allow the 'normal' nice value to be set - but as expected
  3858. * it wont have any effect on scheduling until the task is
  3859. * SCHED_FIFO/SCHED_RR:
  3860. */
  3861. if (task_has_rt_policy(p)) {
  3862. p->static_prio = NICE_TO_PRIO(nice);
  3863. goto out_unlock;
  3864. }
  3865. on_rq = p->se.on_rq;
  3866. if (on_rq) {
  3867. dequeue_task(rq, p, 0);
  3868. dec_load(rq, p);
  3869. }
  3870. p->static_prio = NICE_TO_PRIO(nice);
  3871. set_load_weight(p);
  3872. old_prio = p->prio;
  3873. p->prio = effective_prio(p);
  3874. delta = p->prio - old_prio;
  3875. if (on_rq) {
  3876. enqueue_task(rq, p, 0);
  3877. inc_load(rq, p);
  3878. /*
  3879. * If the task increased its priority or is running and
  3880. * lowered its priority, then reschedule its CPU:
  3881. */
  3882. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3883. resched_task(rq->curr);
  3884. }
  3885. out_unlock:
  3886. task_rq_unlock(rq, &flags);
  3887. }
  3888. EXPORT_SYMBOL(set_user_nice);
  3889. /*
  3890. * can_nice - check if a task can reduce its nice value
  3891. * @p: task
  3892. * @nice: nice value
  3893. */
  3894. int can_nice(const struct task_struct *p, const int nice)
  3895. {
  3896. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3897. int nice_rlim = 20 - nice;
  3898. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3899. capable(CAP_SYS_NICE));
  3900. }
  3901. #ifdef __ARCH_WANT_SYS_NICE
  3902. /*
  3903. * sys_nice - change the priority of the current process.
  3904. * @increment: priority increment
  3905. *
  3906. * sys_setpriority is a more generic, but much slower function that
  3907. * does similar things.
  3908. */
  3909. asmlinkage long sys_nice(int increment)
  3910. {
  3911. long nice, retval;
  3912. /*
  3913. * Setpriority might change our priority at the same moment.
  3914. * We don't have to worry. Conceptually one call occurs first
  3915. * and we have a single winner.
  3916. */
  3917. if (increment < -40)
  3918. increment = -40;
  3919. if (increment > 40)
  3920. increment = 40;
  3921. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3922. if (nice < -20)
  3923. nice = -20;
  3924. if (nice > 19)
  3925. nice = 19;
  3926. if (increment < 0 && !can_nice(current, nice))
  3927. return -EPERM;
  3928. retval = security_task_setnice(current, nice);
  3929. if (retval)
  3930. return retval;
  3931. set_user_nice(current, nice);
  3932. return 0;
  3933. }
  3934. #endif
  3935. /**
  3936. * task_prio - return the priority value of a given task.
  3937. * @p: the task in question.
  3938. *
  3939. * This is the priority value as seen by users in /proc.
  3940. * RT tasks are offset by -200. Normal tasks are centered
  3941. * around 0, value goes from -16 to +15.
  3942. */
  3943. int task_prio(const struct task_struct *p)
  3944. {
  3945. return p->prio - MAX_RT_PRIO;
  3946. }
  3947. /**
  3948. * task_nice - return the nice value of a given task.
  3949. * @p: the task in question.
  3950. */
  3951. int task_nice(const struct task_struct *p)
  3952. {
  3953. return TASK_NICE(p);
  3954. }
  3955. EXPORT_SYMBOL(task_nice);
  3956. /**
  3957. * idle_cpu - is a given cpu idle currently?
  3958. * @cpu: the processor in question.
  3959. */
  3960. int idle_cpu(int cpu)
  3961. {
  3962. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3963. }
  3964. /**
  3965. * idle_task - return the idle task for a given cpu.
  3966. * @cpu: the processor in question.
  3967. */
  3968. struct task_struct *idle_task(int cpu)
  3969. {
  3970. return cpu_rq(cpu)->idle;
  3971. }
  3972. /**
  3973. * find_process_by_pid - find a process with a matching PID value.
  3974. * @pid: the pid in question.
  3975. */
  3976. static struct task_struct *find_process_by_pid(pid_t pid)
  3977. {
  3978. return pid ? find_task_by_vpid(pid) : current;
  3979. }
  3980. /* Actually do priority change: must hold rq lock. */
  3981. static void
  3982. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3983. {
  3984. BUG_ON(p->se.on_rq);
  3985. p->policy = policy;
  3986. switch (p->policy) {
  3987. case SCHED_NORMAL:
  3988. case SCHED_BATCH:
  3989. case SCHED_IDLE:
  3990. p->sched_class = &fair_sched_class;
  3991. break;
  3992. case SCHED_FIFO:
  3993. case SCHED_RR:
  3994. p->sched_class = &rt_sched_class;
  3995. break;
  3996. }
  3997. p->rt_priority = prio;
  3998. p->normal_prio = normal_prio(p);
  3999. /* we are holding p->pi_lock already */
  4000. p->prio = rt_mutex_getprio(p);
  4001. set_load_weight(p);
  4002. }
  4003. /**
  4004. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4005. * @p: the task in question.
  4006. * @policy: new policy.
  4007. * @param: structure containing the new RT priority.
  4008. *
  4009. * NOTE that the task may be already dead.
  4010. */
  4011. int sched_setscheduler(struct task_struct *p, int policy,
  4012. struct sched_param *param)
  4013. {
  4014. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4015. unsigned long flags;
  4016. const struct sched_class *prev_class = p->sched_class;
  4017. struct rq *rq;
  4018. /* may grab non-irq protected spin_locks */
  4019. BUG_ON(in_interrupt());
  4020. recheck:
  4021. /* double check policy once rq lock held */
  4022. if (policy < 0)
  4023. policy = oldpolicy = p->policy;
  4024. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4025. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4026. policy != SCHED_IDLE)
  4027. return -EINVAL;
  4028. /*
  4029. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4030. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4031. * SCHED_BATCH and SCHED_IDLE is 0.
  4032. */
  4033. if (param->sched_priority < 0 ||
  4034. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4035. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4036. return -EINVAL;
  4037. if (rt_policy(policy) != (param->sched_priority != 0))
  4038. return -EINVAL;
  4039. /*
  4040. * Allow unprivileged RT tasks to decrease priority:
  4041. */
  4042. if (!capable(CAP_SYS_NICE)) {
  4043. if (rt_policy(policy)) {
  4044. unsigned long rlim_rtprio;
  4045. if (!lock_task_sighand(p, &flags))
  4046. return -ESRCH;
  4047. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4048. unlock_task_sighand(p, &flags);
  4049. /* can't set/change the rt policy */
  4050. if (policy != p->policy && !rlim_rtprio)
  4051. return -EPERM;
  4052. /* can't increase priority */
  4053. if (param->sched_priority > p->rt_priority &&
  4054. param->sched_priority > rlim_rtprio)
  4055. return -EPERM;
  4056. }
  4057. /*
  4058. * Like positive nice levels, dont allow tasks to
  4059. * move out of SCHED_IDLE either:
  4060. */
  4061. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4062. return -EPERM;
  4063. /* can't change other user's priorities */
  4064. if ((current->euid != p->euid) &&
  4065. (current->euid != p->uid))
  4066. return -EPERM;
  4067. }
  4068. #ifdef CONFIG_RT_GROUP_SCHED
  4069. /*
  4070. * Do not allow realtime tasks into groups that have no runtime
  4071. * assigned.
  4072. */
  4073. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4074. return -EPERM;
  4075. #endif
  4076. retval = security_task_setscheduler(p, policy, param);
  4077. if (retval)
  4078. return retval;
  4079. /*
  4080. * make sure no PI-waiters arrive (or leave) while we are
  4081. * changing the priority of the task:
  4082. */
  4083. spin_lock_irqsave(&p->pi_lock, flags);
  4084. /*
  4085. * To be able to change p->policy safely, the apropriate
  4086. * runqueue lock must be held.
  4087. */
  4088. rq = __task_rq_lock(p);
  4089. /* recheck policy now with rq lock held */
  4090. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4091. policy = oldpolicy = -1;
  4092. __task_rq_unlock(rq);
  4093. spin_unlock_irqrestore(&p->pi_lock, flags);
  4094. goto recheck;
  4095. }
  4096. update_rq_clock(rq);
  4097. on_rq = p->se.on_rq;
  4098. running = task_current(rq, p);
  4099. if (on_rq)
  4100. deactivate_task(rq, p, 0);
  4101. if (running)
  4102. p->sched_class->put_prev_task(rq, p);
  4103. oldprio = p->prio;
  4104. __setscheduler(rq, p, policy, param->sched_priority);
  4105. if (running)
  4106. p->sched_class->set_curr_task(rq);
  4107. if (on_rq) {
  4108. activate_task(rq, p, 0);
  4109. check_class_changed(rq, p, prev_class, oldprio, running);
  4110. }
  4111. __task_rq_unlock(rq);
  4112. spin_unlock_irqrestore(&p->pi_lock, flags);
  4113. rt_mutex_adjust_pi(p);
  4114. return 0;
  4115. }
  4116. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4117. static int
  4118. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4119. {
  4120. struct sched_param lparam;
  4121. struct task_struct *p;
  4122. int retval;
  4123. if (!param || pid < 0)
  4124. return -EINVAL;
  4125. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4126. return -EFAULT;
  4127. rcu_read_lock();
  4128. retval = -ESRCH;
  4129. p = find_process_by_pid(pid);
  4130. if (p != NULL)
  4131. retval = sched_setscheduler(p, policy, &lparam);
  4132. rcu_read_unlock();
  4133. return retval;
  4134. }
  4135. /**
  4136. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4137. * @pid: the pid in question.
  4138. * @policy: new policy.
  4139. * @param: structure containing the new RT priority.
  4140. */
  4141. asmlinkage long
  4142. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4143. {
  4144. /* negative values for policy are not valid */
  4145. if (policy < 0)
  4146. return -EINVAL;
  4147. return do_sched_setscheduler(pid, policy, param);
  4148. }
  4149. /**
  4150. * sys_sched_setparam - set/change the RT priority of a thread
  4151. * @pid: the pid in question.
  4152. * @param: structure containing the new RT priority.
  4153. */
  4154. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4155. {
  4156. return do_sched_setscheduler(pid, -1, param);
  4157. }
  4158. /**
  4159. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4160. * @pid: the pid in question.
  4161. */
  4162. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4163. {
  4164. struct task_struct *p;
  4165. int retval;
  4166. if (pid < 0)
  4167. return -EINVAL;
  4168. retval = -ESRCH;
  4169. read_lock(&tasklist_lock);
  4170. p = find_process_by_pid(pid);
  4171. if (p) {
  4172. retval = security_task_getscheduler(p);
  4173. if (!retval)
  4174. retval = p->policy;
  4175. }
  4176. read_unlock(&tasklist_lock);
  4177. return retval;
  4178. }
  4179. /**
  4180. * sys_sched_getscheduler - get the RT priority of a thread
  4181. * @pid: the pid in question.
  4182. * @param: structure containing the RT priority.
  4183. */
  4184. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4185. {
  4186. struct sched_param lp;
  4187. struct task_struct *p;
  4188. int retval;
  4189. if (!param || pid < 0)
  4190. return -EINVAL;
  4191. read_lock(&tasklist_lock);
  4192. p = find_process_by_pid(pid);
  4193. retval = -ESRCH;
  4194. if (!p)
  4195. goto out_unlock;
  4196. retval = security_task_getscheduler(p);
  4197. if (retval)
  4198. goto out_unlock;
  4199. lp.sched_priority = p->rt_priority;
  4200. read_unlock(&tasklist_lock);
  4201. /*
  4202. * This one might sleep, we cannot do it with a spinlock held ...
  4203. */
  4204. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4205. return retval;
  4206. out_unlock:
  4207. read_unlock(&tasklist_lock);
  4208. return retval;
  4209. }
  4210. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  4211. {
  4212. cpumask_t cpus_allowed;
  4213. struct task_struct *p;
  4214. int retval;
  4215. get_online_cpus();
  4216. read_lock(&tasklist_lock);
  4217. p = find_process_by_pid(pid);
  4218. if (!p) {
  4219. read_unlock(&tasklist_lock);
  4220. put_online_cpus();
  4221. return -ESRCH;
  4222. }
  4223. /*
  4224. * It is not safe to call set_cpus_allowed with the
  4225. * tasklist_lock held. We will bump the task_struct's
  4226. * usage count and then drop tasklist_lock.
  4227. */
  4228. get_task_struct(p);
  4229. read_unlock(&tasklist_lock);
  4230. retval = -EPERM;
  4231. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4232. !capable(CAP_SYS_NICE))
  4233. goto out_unlock;
  4234. retval = security_task_setscheduler(p, 0, NULL);
  4235. if (retval)
  4236. goto out_unlock;
  4237. cpus_allowed = cpuset_cpus_allowed(p);
  4238. cpus_and(new_mask, new_mask, cpus_allowed);
  4239. again:
  4240. retval = set_cpus_allowed(p, new_mask);
  4241. if (!retval) {
  4242. cpus_allowed = cpuset_cpus_allowed(p);
  4243. if (!cpus_subset(new_mask, cpus_allowed)) {
  4244. /*
  4245. * We must have raced with a concurrent cpuset
  4246. * update. Just reset the cpus_allowed to the
  4247. * cpuset's cpus_allowed
  4248. */
  4249. new_mask = cpus_allowed;
  4250. goto again;
  4251. }
  4252. }
  4253. out_unlock:
  4254. put_task_struct(p);
  4255. put_online_cpus();
  4256. return retval;
  4257. }
  4258. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4259. cpumask_t *new_mask)
  4260. {
  4261. if (len < sizeof(cpumask_t)) {
  4262. memset(new_mask, 0, sizeof(cpumask_t));
  4263. } else if (len > sizeof(cpumask_t)) {
  4264. len = sizeof(cpumask_t);
  4265. }
  4266. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4267. }
  4268. /**
  4269. * sys_sched_setaffinity - set the cpu affinity of a process
  4270. * @pid: pid of the process
  4271. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4272. * @user_mask_ptr: user-space pointer to the new cpu mask
  4273. */
  4274. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4275. unsigned long __user *user_mask_ptr)
  4276. {
  4277. cpumask_t new_mask;
  4278. int retval;
  4279. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4280. if (retval)
  4281. return retval;
  4282. return sched_setaffinity(pid, new_mask);
  4283. }
  4284. /*
  4285. * Represents all cpu's present in the system
  4286. * In systems capable of hotplug, this map could dynamically grow
  4287. * as new cpu's are detected in the system via any platform specific
  4288. * method, such as ACPI for e.g.
  4289. */
  4290. cpumask_t cpu_present_map __read_mostly;
  4291. EXPORT_SYMBOL(cpu_present_map);
  4292. #ifndef CONFIG_SMP
  4293. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4294. EXPORT_SYMBOL(cpu_online_map);
  4295. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4296. EXPORT_SYMBOL(cpu_possible_map);
  4297. #endif
  4298. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4299. {
  4300. struct task_struct *p;
  4301. int retval;
  4302. get_online_cpus();
  4303. read_lock(&tasklist_lock);
  4304. retval = -ESRCH;
  4305. p = find_process_by_pid(pid);
  4306. if (!p)
  4307. goto out_unlock;
  4308. retval = security_task_getscheduler(p);
  4309. if (retval)
  4310. goto out_unlock;
  4311. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4312. out_unlock:
  4313. read_unlock(&tasklist_lock);
  4314. put_online_cpus();
  4315. return retval;
  4316. }
  4317. /**
  4318. * sys_sched_getaffinity - get the cpu affinity of a process
  4319. * @pid: pid of the process
  4320. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4321. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4322. */
  4323. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4324. unsigned long __user *user_mask_ptr)
  4325. {
  4326. int ret;
  4327. cpumask_t mask;
  4328. if (len < sizeof(cpumask_t))
  4329. return -EINVAL;
  4330. ret = sched_getaffinity(pid, &mask);
  4331. if (ret < 0)
  4332. return ret;
  4333. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4334. return -EFAULT;
  4335. return sizeof(cpumask_t);
  4336. }
  4337. /**
  4338. * sys_sched_yield - yield the current processor to other threads.
  4339. *
  4340. * This function yields the current CPU to other tasks. If there are no
  4341. * other threads running on this CPU then this function will return.
  4342. */
  4343. asmlinkage long sys_sched_yield(void)
  4344. {
  4345. struct rq *rq = this_rq_lock();
  4346. schedstat_inc(rq, yld_count);
  4347. current->sched_class->yield_task(rq);
  4348. /*
  4349. * Since we are going to call schedule() anyway, there's
  4350. * no need to preempt or enable interrupts:
  4351. */
  4352. __release(rq->lock);
  4353. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4354. _raw_spin_unlock(&rq->lock);
  4355. preempt_enable_no_resched();
  4356. schedule();
  4357. return 0;
  4358. }
  4359. static void __cond_resched(void)
  4360. {
  4361. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4362. __might_sleep(__FILE__, __LINE__);
  4363. #endif
  4364. /*
  4365. * The BKS might be reacquired before we have dropped
  4366. * PREEMPT_ACTIVE, which could trigger a second
  4367. * cond_resched() call.
  4368. */
  4369. do {
  4370. add_preempt_count(PREEMPT_ACTIVE);
  4371. schedule();
  4372. sub_preempt_count(PREEMPT_ACTIVE);
  4373. } while (need_resched());
  4374. }
  4375. #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
  4376. int __sched _cond_resched(void)
  4377. {
  4378. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4379. system_state == SYSTEM_RUNNING) {
  4380. __cond_resched();
  4381. return 1;
  4382. }
  4383. return 0;
  4384. }
  4385. EXPORT_SYMBOL(_cond_resched);
  4386. #endif
  4387. /*
  4388. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4389. * call schedule, and on return reacquire the lock.
  4390. *
  4391. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4392. * operations here to prevent schedule() from being called twice (once via
  4393. * spin_unlock(), once by hand).
  4394. */
  4395. int cond_resched_lock(spinlock_t *lock)
  4396. {
  4397. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4398. int ret = 0;
  4399. if (spin_needbreak(lock) || resched) {
  4400. spin_unlock(lock);
  4401. if (resched && need_resched())
  4402. __cond_resched();
  4403. else
  4404. cpu_relax();
  4405. ret = 1;
  4406. spin_lock(lock);
  4407. }
  4408. return ret;
  4409. }
  4410. EXPORT_SYMBOL(cond_resched_lock);
  4411. int __sched cond_resched_softirq(void)
  4412. {
  4413. BUG_ON(!in_softirq());
  4414. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4415. local_bh_enable();
  4416. __cond_resched();
  4417. local_bh_disable();
  4418. return 1;
  4419. }
  4420. return 0;
  4421. }
  4422. EXPORT_SYMBOL(cond_resched_softirq);
  4423. /**
  4424. * yield - yield the current processor to other threads.
  4425. *
  4426. * This is a shortcut for kernel-space yielding - it marks the
  4427. * thread runnable and calls sys_sched_yield().
  4428. */
  4429. void __sched yield(void)
  4430. {
  4431. set_current_state(TASK_RUNNING);
  4432. sys_sched_yield();
  4433. }
  4434. EXPORT_SYMBOL(yield);
  4435. /*
  4436. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4437. * that process accounting knows that this is a task in IO wait state.
  4438. *
  4439. * But don't do that if it is a deliberate, throttling IO wait (this task
  4440. * has set its backing_dev_info: the queue against which it should throttle)
  4441. */
  4442. void __sched io_schedule(void)
  4443. {
  4444. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4445. delayacct_blkio_start();
  4446. atomic_inc(&rq->nr_iowait);
  4447. schedule();
  4448. atomic_dec(&rq->nr_iowait);
  4449. delayacct_blkio_end();
  4450. }
  4451. EXPORT_SYMBOL(io_schedule);
  4452. long __sched io_schedule_timeout(long timeout)
  4453. {
  4454. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4455. long ret;
  4456. delayacct_blkio_start();
  4457. atomic_inc(&rq->nr_iowait);
  4458. ret = schedule_timeout(timeout);
  4459. atomic_dec(&rq->nr_iowait);
  4460. delayacct_blkio_end();
  4461. return ret;
  4462. }
  4463. /**
  4464. * sys_sched_get_priority_max - return maximum RT priority.
  4465. * @policy: scheduling class.
  4466. *
  4467. * this syscall returns the maximum rt_priority that can be used
  4468. * by a given scheduling class.
  4469. */
  4470. asmlinkage long sys_sched_get_priority_max(int policy)
  4471. {
  4472. int ret = -EINVAL;
  4473. switch (policy) {
  4474. case SCHED_FIFO:
  4475. case SCHED_RR:
  4476. ret = MAX_USER_RT_PRIO-1;
  4477. break;
  4478. case SCHED_NORMAL:
  4479. case SCHED_BATCH:
  4480. case SCHED_IDLE:
  4481. ret = 0;
  4482. break;
  4483. }
  4484. return ret;
  4485. }
  4486. /**
  4487. * sys_sched_get_priority_min - return minimum RT priority.
  4488. * @policy: scheduling class.
  4489. *
  4490. * this syscall returns the minimum rt_priority that can be used
  4491. * by a given scheduling class.
  4492. */
  4493. asmlinkage long sys_sched_get_priority_min(int policy)
  4494. {
  4495. int ret = -EINVAL;
  4496. switch (policy) {
  4497. case SCHED_FIFO:
  4498. case SCHED_RR:
  4499. ret = 1;
  4500. break;
  4501. case SCHED_NORMAL:
  4502. case SCHED_BATCH:
  4503. case SCHED_IDLE:
  4504. ret = 0;
  4505. }
  4506. return ret;
  4507. }
  4508. /**
  4509. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4510. * @pid: pid of the process.
  4511. * @interval: userspace pointer to the timeslice value.
  4512. *
  4513. * this syscall writes the default timeslice value of a given process
  4514. * into the user-space timespec buffer. A value of '0' means infinity.
  4515. */
  4516. asmlinkage
  4517. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4518. {
  4519. struct task_struct *p;
  4520. unsigned int time_slice;
  4521. int retval;
  4522. struct timespec t;
  4523. if (pid < 0)
  4524. return -EINVAL;
  4525. retval = -ESRCH;
  4526. read_lock(&tasklist_lock);
  4527. p = find_process_by_pid(pid);
  4528. if (!p)
  4529. goto out_unlock;
  4530. retval = security_task_getscheduler(p);
  4531. if (retval)
  4532. goto out_unlock;
  4533. /*
  4534. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4535. * tasks that are on an otherwise idle runqueue:
  4536. */
  4537. time_slice = 0;
  4538. if (p->policy == SCHED_RR) {
  4539. time_slice = DEF_TIMESLICE;
  4540. } else if (p->policy != SCHED_FIFO) {
  4541. struct sched_entity *se = &p->se;
  4542. unsigned long flags;
  4543. struct rq *rq;
  4544. rq = task_rq_lock(p, &flags);
  4545. if (rq->cfs.load.weight)
  4546. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4547. task_rq_unlock(rq, &flags);
  4548. }
  4549. read_unlock(&tasklist_lock);
  4550. jiffies_to_timespec(time_slice, &t);
  4551. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4552. return retval;
  4553. out_unlock:
  4554. read_unlock(&tasklist_lock);
  4555. return retval;
  4556. }
  4557. static const char stat_nam[] = "RSDTtZX";
  4558. void sched_show_task(struct task_struct *p)
  4559. {
  4560. unsigned long free = 0;
  4561. unsigned state;
  4562. state = p->state ? __ffs(p->state) + 1 : 0;
  4563. printk(KERN_INFO "%-13.13s %c", p->comm,
  4564. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4565. #if BITS_PER_LONG == 32
  4566. if (state == TASK_RUNNING)
  4567. printk(KERN_CONT " running ");
  4568. else
  4569. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4570. #else
  4571. if (state == TASK_RUNNING)
  4572. printk(KERN_CONT " running task ");
  4573. else
  4574. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4575. #endif
  4576. #ifdef CONFIG_DEBUG_STACK_USAGE
  4577. {
  4578. unsigned long *n = end_of_stack(p);
  4579. while (!*n)
  4580. n++;
  4581. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4582. }
  4583. #endif
  4584. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4585. task_pid_nr(p), task_pid_nr(p->real_parent));
  4586. show_stack(p, NULL);
  4587. }
  4588. void show_state_filter(unsigned long state_filter)
  4589. {
  4590. struct task_struct *g, *p;
  4591. #if BITS_PER_LONG == 32
  4592. printk(KERN_INFO
  4593. " task PC stack pid father\n");
  4594. #else
  4595. printk(KERN_INFO
  4596. " task PC stack pid father\n");
  4597. #endif
  4598. read_lock(&tasklist_lock);
  4599. do_each_thread(g, p) {
  4600. /*
  4601. * reset the NMI-timeout, listing all files on a slow
  4602. * console might take alot of time:
  4603. */
  4604. touch_nmi_watchdog();
  4605. if (!state_filter || (p->state & state_filter))
  4606. sched_show_task(p);
  4607. } while_each_thread(g, p);
  4608. touch_all_softlockup_watchdogs();
  4609. #ifdef CONFIG_SCHED_DEBUG
  4610. sysrq_sched_debug_show();
  4611. #endif
  4612. read_unlock(&tasklist_lock);
  4613. /*
  4614. * Only show locks if all tasks are dumped:
  4615. */
  4616. if (state_filter == -1)
  4617. debug_show_all_locks();
  4618. }
  4619. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4620. {
  4621. idle->sched_class = &idle_sched_class;
  4622. }
  4623. /**
  4624. * init_idle - set up an idle thread for a given CPU
  4625. * @idle: task in question
  4626. * @cpu: cpu the idle task belongs to
  4627. *
  4628. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4629. * flag, to make booting more robust.
  4630. */
  4631. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4632. {
  4633. struct rq *rq = cpu_rq(cpu);
  4634. unsigned long flags;
  4635. __sched_fork(idle);
  4636. idle->se.exec_start = sched_clock();
  4637. idle->prio = idle->normal_prio = MAX_PRIO;
  4638. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4639. __set_task_cpu(idle, cpu);
  4640. spin_lock_irqsave(&rq->lock, flags);
  4641. rq->curr = rq->idle = idle;
  4642. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4643. idle->oncpu = 1;
  4644. #endif
  4645. spin_unlock_irqrestore(&rq->lock, flags);
  4646. /* Set the preempt count _outside_ the spinlocks! */
  4647. task_thread_info(idle)->preempt_count = 0;
  4648. /*
  4649. * The idle tasks have their own, simple scheduling class:
  4650. */
  4651. idle->sched_class = &idle_sched_class;
  4652. }
  4653. /*
  4654. * In a system that switches off the HZ timer nohz_cpu_mask
  4655. * indicates which cpus entered this state. This is used
  4656. * in the rcu update to wait only for active cpus. For system
  4657. * which do not switch off the HZ timer nohz_cpu_mask should
  4658. * always be CPU_MASK_NONE.
  4659. */
  4660. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4661. /*
  4662. * Increase the granularity value when there are more CPUs,
  4663. * because with more CPUs the 'effective latency' as visible
  4664. * to users decreases. But the relationship is not linear,
  4665. * so pick a second-best guess by going with the log2 of the
  4666. * number of CPUs.
  4667. *
  4668. * This idea comes from the SD scheduler of Con Kolivas:
  4669. */
  4670. static inline void sched_init_granularity(void)
  4671. {
  4672. unsigned int factor = 1 + ilog2(num_online_cpus());
  4673. const unsigned long limit = 200000000;
  4674. sysctl_sched_min_granularity *= factor;
  4675. if (sysctl_sched_min_granularity > limit)
  4676. sysctl_sched_min_granularity = limit;
  4677. sysctl_sched_latency *= factor;
  4678. if (sysctl_sched_latency > limit)
  4679. sysctl_sched_latency = limit;
  4680. sysctl_sched_wakeup_granularity *= factor;
  4681. }
  4682. #ifdef CONFIG_SMP
  4683. /*
  4684. * This is how migration works:
  4685. *
  4686. * 1) we queue a struct migration_req structure in the source CPU's
  4687. * runqueue and wake up that CPU's migration thread.
  4688. * 2) we down() the locked semaphore => thread blocks.
  4689. * 3) migration thread wakes up (implicitly it forces the migrated
  4690. * thread off the CPU)
  4691. * 4) it gets the migration request and checks whether the migrated
  4692. * task is still in the wrong runqueue.
  4693. * 5) if it's in the wrong runqueue then the migration thread removes
  4694. * it and puts it into the right queue.
  4695. * 6) migration thread up()s the semaphore.
  4696. * 7) we wake up and the migration is done.
  4697. */
  4698. /*
  4699. * Change a given task's CPU affinity. Migrate the thread to a
  4700. * proper CPU and schedule it away if the CPU it's executing on
  4701. * is removed from the allowed bitmask.
  4702. *
  4703. * NOTE: the caller must have a valid reference to the task, the
  4704. * task must not exit() & deallocate itself prematurely. The
  4705. * call is not atomic; no spinlocks may be held.
  4706. */
  4707. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4708. {
  4709. struct migration_req req;
  4710. unsigned long flags;
  4711. struct rq *rq;
  4712. int ret = 0;
  4713. rq = task_rq_lock(p, &flags);
  4714. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4715. ret = -EINVAL;
  4716. goto out;
  4717. }
  4718. if (p->sched_class->set_cpus_allowed)
  4719. p->sched_class->set_cpus_allowed(p, &new_mask);
  4720. else {
  4721. p->cpus_allowed = new_mask;
  4722. p->rt.nr_cpus_allowed = cpus_weight(new_mask);
  4723. }
  4724. /* Can the task run on the task's current CPU? If so, we're done */
  4725. if (cpu_isset(task_cpu(p), new_mask))
  4726. goto out;
  4727. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4728. /* Need help from migration thread: drop lock and wait. */
  4729. task_rq_unlock(rq, &flags);
  4730. wake_up_process(rq->migration_thread);
  4731. wait_for_completion(&req.done);
  4732. tlb_migrate_finish(p->mm);
  4733. return 0;
  4734. }
  4735. out:
  4736. task_rq_unlock(rq, &flags);
  4737. return ret;
  4738. }
  4739. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4740. /*
  4741. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4742. * this because either it can't run here any more (set_cpus_allowed()
  4743. * away from this CPU, or CPU going down), or because we're
  4744. * attempting to rebalance this task on exec (sched_exec).
  4745. *
  4746. * So we race with normal scheduler movements, but that's OK, as long
  4747. * as the task is no longer on this CPU.
  4748. *
  4749. * Returns non-zero if task was successfully migrated.
  4750. */
  4751. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4752. {
  4753. struct rq *rq_dest, *rq_src;
  4754. int ret = 0, on_rq;
  4755. if (unlikely(cpu_is_offline(dest_cpu)))
  4756. return ret;
  4757. rq_src = cpu_rq(src_cpu);
  4758. rq_dest = cpu_rq(dest_cpu);
  4759. double_rq_lock(rq_src, rq_dest);
  4760. /* Already moved. */
  4761. if (task_cpu(p) != src_cpu)
  4762. goto out;
  4763. /* Affinity changed (again). */
  4764. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4765. goto out;
  4766. on_rq = p->se.on_rq;
  4767. if (on_rq)
  4768. deactivate_task(rq_src, p, 0);
  4769. set_task_cpu(p, dest_cpu);
  4770. if (on_rq) {
  4771. activate_task(rq_dest, p, 0);
  4772. check_preempt_curr(rq_dest, p);
  4773. }
  4774. ret = 1;
  4775. out:
  4776. double_rq_unlock(rq_src, rq_dest);
  4777. return ret;
  4778. }
  4779. /*
  4780. * migration_thread - this is a highprio system thread that performs
  4781. * thread migration by bumping thread off CPU then 'pushing' onto
  4782. * another runqueue.
  4783. */
  4784. static int migration_thread(void *data)
  4785. {
  4786. int cpu = (long)data;
  4787. struct rq *rq;
  4788. rq = cpu_rq(cpu);
  4789. BUG_ON(rq->migration_thread != current);
  4790. set_current_state(TASK_INTERRUPTIBLE);
  4791. while (!kthread_should_stop()) {
  4792. struct migration_req *req;
  4793. struct list_head *head;
  4794. spin_lock_irq(&rq->lock);
  4795. if (cpu_is_offline(cpu)) {
  4796. spin_unlock_irq(&rq->lock);
  4797. goto wait_to_die;
  4798. }
  4799. if (rq->active_balance) {
  4800. active_load_balance(rq, cpu);
  4801. rq->active_balance = 0;
  4802. }
  4803. head = &rq->migration_queue;
  4804. if (list_empty(head)) {
  4805. spin_unlock_irq(&rq->lock);
  4806. schedule();
  4807. set_current_state(TASK_INTERRUPTIBLE);
  4808. continue;
  4809. }
  4810. req = list_entry(head->next, struct migration_req, list);
  4811. list_del_init(head->next);
  4812. spin_unlock(&rq->lock);
  4813. __migrate_task(req->task, cpu, req->dest_cpu);
  4814. local_irq_enable();
  4815. complete(&req->done);
  4816. }
  4817. __set_current_state(TASK_RUNNING);
  4818. return 0;
  4819. wait_to_die:
  4820. /* Wait for kthread_stop */
  4821. set_current_state(TASK_INTERRUPTIBLE);
  4822. while (!kthread_should_stop()) {
  4823. schedule();
  4824. set_current_state(TASK_INTERRUPTIBLE);
  4825. }
  4826. __set_current_state(TASK_RUNNING);
  4827. return 0;
  4828. }
  4829. #ifdef CONFIG_HOTPLUG_CPU
  4830. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4831. {
  4832. int ret;
  4833. local_irq_disable();
  4834. ret = __migrate_task(p, src_cpu, dest_cpu);
  4835. local_irq_enable();
  4836. return ret;
  4837. }
  4838. /*
  4839. * Figure out where task on dead CPU should go, use force if necessary.
  4840. * NOTE: interrupts should be disabled by the caller
  4841. */
  4842. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4843. {
  4844. unsigned long flags;
  4845. cpumask_t mask;
  4846. struct rq *rq;
  4847. int dest_cpu;
  4848. do {
  4849. /* On same node? */
  4850. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4851. cpus_and(mask, mask, p->cpus_allowed);
  4852. dest_cpu = any_online_cpu(mask);
  4853. /* On any allowed CPU? */
  4854. if (dest_cpu >= nr_cpu_ids)
  4855. dest_cpu = any_online_cpu(p->cpus_allowed);
  4856. /* No more Mr. Nice Guy. */
  4857. if (dest_cpu >= nr_cpu_ids) {
  4858. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4859. /*
  4860. * Try to stay on the same cpuset, where the
  4861. * current cpuset may be a subset of all cpus.
  4862. * The cpuset_cpus_allowed_locked() variant of
  4863. * cpuset_cpus_allowed() will not block. It must be
  4864. * called within calls to cpuset_lock/cpuset_unlock.
  4865. */
  4866. rq = task_rq_lock(p, &flags);
  4867. p->cpus_allowed = cpus_allowed;
  4868. dest_cpu = any_online_cpu(p->cpus_allowed);
  4869. task_rq_unlock(rq, &flags);
  4870. /*
  4871. * Don't tell them about moving exiting tasks or
  4872. * kernel threads (both mm NULL), since they never
  4873. * leave kernel.
  4874. */
  4875. if (p->mm && printk_ratelimit()) {
  4876. printk(KERN_INFO "process %d (%s) no "
  4877. "longer affine to cpu%d\n",
  4878. task_pid_nr(p), p->comm, dead_cpu);
  4879. }
  4880. }
  4881. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4882. }
  4883. /*
  4884. * While a dead CPU has no uninterruptible tasks queued at this point,
  4885. * it might still have a nonzero ->nr_uninterruptible counter, because
  4886. * for performance reasons the counter is not stricly tracking tasks to
  4887. * their home CPUs. So we just add the counter to another CPU's counter,
  4888. * to keep the global sum constant after CPU-down:
  4889. */
  4890. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4891. {
  4892. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4893. unsigned long flags;
  4894. local_irq_save(flags);
  4895. double_rq_lock(rq_src, rq_dest);
  4896. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4897. rq_src->nr_uninterruptible = 0;
  4898. double_rq_unlock(rq_src, rq_dest);
  4899. local_irq_restore(flags);
  4900. }
  4901. /* Run through task list and migrate tasks from the dead cpu. */
  4902. static void migrate_live_tasks(int src_cpu)
  4903. {
  4904. struct task_struct *p, *t;
  4905. read_lock(&tasklist_lock);
  4906. do_each_thread(t, p) {
  4907. if (p == current)
  4908. continue;
  4909. if (task_cpu(p) == src_cpu)
  4910. move_task_off_dead_cpu(src_cpu, p);
  4911. } while_each_thread(t, p);
  4912. read_unlock(&tasklist_lock);
  4913. }
  4914. /*
  4915. * Schedules idle task to be the next runnable task on current CPU.
  4916. * It does so by boosting its priority to highest possible.
  4917. * Used by CPU offline code.
  4918. */
  4919. void sched_idle_next(void)
  4920. {
  4921. int this_cpu = smp_processor_id();
  4922. struct rq *rq = cpu_rq(this_cpu);
  4923. struct task_struct *p = rq->idle;
  4924. unsigned long flags;
  4925. /* cpu has to be offline */
  4926. BUG_ON(cpu_online(this_cpu));
  4927. /*
  4928. * Strictly not necessary since rest of the CPUs are stopped by now
  4929. * and interrupts disabled on the current cpu.
  4930. */
  4931. spin_lock_irqsave(&rq->lock, flags);
  4932. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4933. update_rq_clock(rq);
  4934. activate_task(rq, p, 0);
  4935. spin_unlock_irqrestore(&rq->lock, flags);
  4936. }
  4937. /*
  4938. * Ensures that the idle task is using init_mm right before its cpu goes
  4939. * offline.
  4940. */
  4941. void idle_task_exit(void)
  4942. {
  4943. struct mm_struct *mm = current->active_mm;
  4944. BUG_ON(cpu_online(smp_processor_id()));
  4945. if (mm != &init_mm)
  4946. switch_mm(mm, &init_mm, current);
  4947. mmdrop(mm);
  4948. }
  4949. /* called under rq->lock with disabled interrupts */
  4950. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4951. {
  4952. struct rq *rq = cpu_rq(dead_cpu);
  4953. /* Must be exiting, otherwise would be on tasklist. */
  4954. BUG_ON(!p->exit_state);
  4955. /* Cannot have done final schedule yet: would have vanished. */
  4956. BUG_ON(p->state == TASK_DEAD);
  4957. get_task_struct(p);
  4958. /*
  4959. * Drop lock around migration; if someone else moves it,
  4960. * that's OK. No task can be added to this CPU, so iteration is
  4961. * fine.
  4962. */
  4963. spin_unlock_irq(&rq->lock);
  4964. move_task_off_dead_cpu(dead_cpu, p);
  4965. spin_lock_irq(&rq->lock);
  4966. put_task_struct(p);
  4967. }
  4968. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4969. static void migrate_dead_tasks(unsigned int dead_cpu)
  4970. {
  4971. struct rq *rq = cpu_rq(dead_cpu);
  4972. struct task_struct *next;
  4973. for ( ; ; ) {
  4974. if (!rq->nr_running)
  4975. break;
  4976. update_rq_clock(rq);
  4977. next = pick_next_task(rq, rq->curr);
  4978. if (!next)
  4979. break;
  4980. migrate_dead(dead_cpu, next);
  4981. }
  4982. }
  4983. #endif /* CONFIG_HOTPLUG_CPU */
  4984. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4985. static struct ctl_table sd_ctl_dir[] = {
  4986. {
  4987. .procname = "sched_domain",
  4988. .mode = 0555,
  4989. },
  4990. {0, },
  4991. };
  4992. static struct ctl_table sd_ctl_root[] = {
  4993. {
  4994. .ctl_name = CTL_KERN,
  4995. .procname = "kernel",
  4996. .mode = 0555,
  4997. .child = sd_ctl_dir,
  4998. },
  4999. {0, },
  5000. };
  5001. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5002. {
  5003. struct ctl_table *entry =
  5004. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5005. return entry;
  5006. }
  5007. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5008. {
  5009. struct ctl_table *entry;
  5010. /*
  5011. * In the intermediate directories, both the child directory and
  5012. * procname are dynamically allocated and could fail but the mode
  5013. * will always be set. In the lowest directory the names are
  5014. * static strings and all have proc handlers.
  5015. */
  5016. for (entry = *tablep; entry->mode; entry++) {
  5017. if (entry->child)
  5018. sd_free_ctl_entry(&entry->child);
  5019. if (entry->proc_handler == NULL)
  5020. kfree(entry->procname);
  5021. }
  5022. kfree(*tablep);
  5023. *tablep = NULL;
  5024. }
  5025. static void
  5026. set_table_entry(struct ctl_table *entry,
  5027. const char *procname, void *data, int maxlen,
  5028. mode_t mode, proc_handler *proc_handler)
  5029. {
  5030. entry->procname = procname;
  5031. entry->data = data;
  5032. entry->maxlen = maxlen;
  5033. entry->mode = mode;
  5034. entry->proc_handler = proc_handler;
  5035. }
  5036. static struct ctl_table *
  5037. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5038. {
  5039. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5040. if (table == NULL)
  5041. return NULL;
  5042. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5043. sizeof(long), 0644, proc_doulongvec_minmax);
  5044. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5045. sizeof(long), 0644, proc_doulongvec_minmax);
  5046. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5047. sizeof(int), 0644, proc_dointvec_minmax);
  5048. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5049. sizeof(int), 0644, proc_dointvec_minmax);
  5050. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5051. sizeof(int), 0644, proc_dointvec_minmax);
  5052. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5053. sizeof(int), 0644, proc_dointvec_minmax);
  5054. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5055. sizeof(int), 0644, proc_dointvec_minmax);
  5056. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5057. sizeof(int), 0644, proc_dointvec_minmax);
  5058. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5059. sizeof(int), 0644, proc_dointvec_minmax);
  5060. set_table_entry(&table[9], "cache_nice_tries",
  5061. &sd->cache_nice_tries,
  5062. sizeof(int), 0644, proc_dointvec_minmax);
  5063. set_table_entry(&table[10], "flags", &sd->flags,
  5064. sizeof(int), 0644, proc_dointvec_minmax);
  5065. /* &table[11] is terminator */
  5066. return table;
  5067. }
  5068. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5069. {
  5070. struct ctl_table *entry, *table;
  5071. struct sched_domain *sd;
  5072. int domain_num = 0, i;
  5073. char buf[32];
  5074. for_each_domain(cpu, sd)
  5075. domain_num++;
  5076. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5077. if (table == NULL)
  5078. return NULL;
  5079. i = 0;
  5080. for_each_domain(cpu, sd) {
  5081. snprintf(buf, 32, "domain%d", i);
  5082. entry->procname = kstrdup(buf, GFP_KERNEL);
  5083. entry->mode = 0555;
  5084. entry->child = sd_alloc_ctl_domain_table(sd);
  5085. entry++;
  5086. i++;
  5087. }
  5088. return table;
  5089. }
  5090. static struct ctl_table_header *sd_sysctl_header;
  5091. static void register_sched_domain_sysctl(void)
  5092. {
  5093. int i, cpu_num = num_online_cpus();
  5094. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5095. char buf[32];
  5096. WARN_ON(sd_ctl_dir[0].child);
  5097. sd_ctl_dir[0].child = entry;
  5098. if (entry == NULL)
  5099. return;
  5100. for_each_online_cpu(i) {
  5101. snprintf(buf, 32, "cpu%d", i);
  5102. entry->procname = kstrdup(buf, GFP_KERNEL);
  5103. entry->mode = 0555;
  5104. entry->child = sd_alloc_ctl_cpu_table(i);
  5105. entry++;
  5106. }
  5107. WARN_ON(sd_sysctl_header);
  5108. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5109. }
  5110. /* may be called multiple times per register */
  5111. static void unregister_sched_domain_sysctl(void)
  5112. {
  5113. if (sd_sysctl_header)
  5114. unregister_sysctl_table(sd_sysctl_header);
  5115. sd_sysctl_header = NULL;
  5116. if (sd_ctl_dir[0].child)
  5117. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5118. }
  5119. #else
  5120. static void register_sched_domain_sysctl(void)
  5121. {
  5122. }
  5123. static void unregister_sched_domain_sysctl(void)
  5124. {
  5125. }
  5126. #endif
  5127. /*
  5128. * migration_call - callback that gets triggered when a CPU is added.
  5129. * Here we can start up the necessary migration thread for the new CPU.
  5130. */
  5131. static int __cpuinit
  5132. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5133. {
  5134. struct task_struct *p;
  5135. int cpu = (long)hcpu;
  5136. unsigned long flags;
  5137. struct rq *rq;
  5138. switch (action) {
  5139. case CPU_UP_PREPARE:
  5140. case CPU_UP_PREPARE_FROZEN:
  5141. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5142. if (IS_ERR(p))
  5143. return NOTIFY_BAD;
  5144. kthread_bind(p, cpu);
  5145. /* Must be high prio: stop_machine expects to yield to it. */
  5146. rq = task_rq_lock(p, &flags);
  5147. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5148. task_rq_unlock(rq, &flags);
  5149. cpu_rq(cpu)->migration_thread = p;
  5150. break;
  5151. case CPU_ONLINE:
  5152. case CPU_ONLINE_FROZEN:
  5153. /* Strictly unnecessary, as first user will wake it. */
  5154. wake_up_process(cpu_rq(cpu)->migration_thread);
  5155. /* Update our root-domain */
  5156. rq = cpu_rq(cpu);
  5157. spin_lock_irqsave(&rq->lock, flags);
  5158. if (rq->rd) {
  5159. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5160. cpu_set(cpu, rq->rd->online);
  5161. }
  5162. spin_unlock_irqrestore(&rq->lock, flags);
  5163. break;
  5164. #ifdef CONFIG_HOTPLUG_CPU
  5165. case CPU_UP_CANCELED:
  5166. case CPU_UP_CANCELED_FROZEN:
  5167. if (!cpu_rq(cpu)->migration_thread)
  5168. break;
  5169. /* Unbind it from offline cpu so it can run. Fall thru. */
  5170. kthread_bind(cpu_rq(cpu)->migration_thread,
  5171. any_online_cpu(cpu_online_map));
  5172. kthread_stop(cpu_rq(cpu)->migration_thread);
  5173. cpu_rq(cpu)->migration_thread = NULL;
  5174. break;
  5175. case CPU_DEAD:
  5176. case CPU_DEAD_FROZEN:
  5177. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5178. migrate_live_tasks(cpu);
  5179. rq = cpu_rq(cpu);
  5180. kthread_stop(rq->migration_thread);
  5181. rq->migration_thread = NULL;
  5182. /* Idle task back to normal (off runqueue, low prio) */
  5183. spin_lock_irq(&rq->lock);
  5184. update_rq_clock(rq);
  5185. deactivate_task(rq, rq->idle, 0);
  5186. rq->idle->static_prio = MAX_PRIO;
  5187. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5188. rq->idle->sched_class = &idle_sched_class;
  5189. migrate_dead_tasks(cpu);
  5190. spin_unlock_irq(&rq->lock);
  5191. cpuset_unlock();
  5192. migrate_nr_uninterruptible(rq);
  5193. BUG_ON(rq->nr_running != 0);
  5194. /*
  5195. * No need to migrate the tasks: it was best-effort if
  5196. * they didn't take sched_hotcpu_mutex. Just wake up
  5197. * the requestors.
  5198. */
  5199. spin_lock_irq(&rq->lock);
  5200. while (!list_empty(&rq->migration_queue)) {
  5201. struct migration_req *req;
  5202. req = list_entry(rq->migration_queue.next,
  5203. struct migration_req, list);
  5204. list_del_init(&req->list);
  5205. complete(&req->done);
  5206. }
  5207. spin_unlock_irq(&rq->lock);
  5208. break;
  5209. case CPU_DYING:
  5210. case CPU_DYING_FROZEN:
  5211. /* Update our root-domain */
  5212. rq = cpu_rq(cpu);
  5213. spin_lock_irqsave(&rq->lock, flags);
  5214. if (rq->rd) {
  5215. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5216. cpu_clear(cpu, rq->rd->online);
  5217. }
  5218. spin_unlock_irqrestore(&rq->lock, flags);
  5219. break;
  5220. #endif
  5221. }
  5222. return NOTIFY_OK;
  5223. }
  5224. /* Register at highest priority so that task migration (migrate_all_tasks)
  5225. * happens before everything else.
  5226. */
  5227. static struct notifier_block __cpuinitdata migration_notifier = {
  5228. .notifier_call = migration_call,
  5229. .priority = 10
  5230. };
  5231. void __init migration_init(void)
  5232. {
  5233. void *cpu = (void *)(long)smp_processor_id();
  5234. int err;
  5235. /* Start one for the boot CPU: */
  5236. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5237. BUG_ON(err == NOTIFY_BAD);
  5238. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5239. register_cpu_notifier(&migration_notifier);
  5240. }
  5241. #endif
  5242. #ifdef CONFIG_SMP
  5243. /* Number of possible processor ids */
  5244. int nr_cpu_ids __read_mostly = NR_CPUS;
  5245. EXPORT_SYMBOL(nr_cpu_ids);
  5246. #ifdef CONFIG_SCHED_DEBUG
  5247. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  5248. {
  5249. struct sched_group *group = sd->groups;
  5250. cpumask_t groupmask;
  5251. char str[256];
  5252. cpulist_scnprintf(str, sizeof(str), sd->span);
  5253. cpus_clear(groupmask);
  5254. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5255. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5256. printk("does not load-balance\n");
  5257. if (sd->parent)
  5258. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5259. " has parent");
  5260. return -1;
  5261. }
  5262. printk(KERN_CONT "span %s\n", str);
  5263. if (!cpu_isset(cpu, sd->span)) {
  5264. printk(KERN_ERR "ERROR: domain->span does not contain "
  5265. "CPU%d\n", cpu);
  5266. }
  5267. if (!cpu_isset(cpu, group->cpumask)) {
  5268. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5269. " CPU%d\n", cpu);
  5270. }
  5271. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5272. do {
  5273. if (!group) {
  5274. printk("\n");
  5275. printk(KERN_ERR "ERROR: group is NULL\n");
  5276. break;
  5277. }
  5278. if (!group->__cpu_power) {
  5279. printk(KERN_CONT "\n");
  5280. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5281. "set\n");
  5282. break;
  5283. }
  5284. if (!cpus_weight(group->cpumask)) {
  5285. printk(KERN_CONT "\n");
  5286. printk(KERN_ERR "ERROR: empty group\n");
  5287. break;
  5288. }
  5289. if (cpus_intersects(groupmask, group->cpumask)) {
  5290. printk(KERN_CONT "\n");
  5291. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5292. break;
  5293. }
  5294. cpus_or(groupmask, groupmask, group->cpumask);
  5295. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5296. printk(KERN_CONT " %s", str);
  5297. group = group->next;
  5298. } while (group != sd->groups);
  5299. printk(KERN_CONT "\n");
  5300. if (!cpus_equal(sd->span, groupmask))
  5301. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5302. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  5303. printk(KERN_ERR "ERROR: parent span is not a superset "
  5304. "of domain->span\n");
  5305. return 0;
  5306. }
  5307. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5308. {
  5309. int level = 0;
  5310. if (!sd) {
  5311. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5312. return;
  5313. }
  5314. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5315. for (;;) {
  5316. if (sched_domain_debug_one(sd, cpu, level))
  5317. break;
  5318. level++;
  5319. sd = sd->parent;
  5320. if (!sd)
  5321. break;
  5322. }
  5323. }
  5324. #else
  5325. # define sched_domain_debug(sd, cpu) do { } while (0)
  5326. #endif
  5327. static int sd_degenerate(struct sched_domain *sd)
  5328. {
  5329. if (cpus_weight(sd->span) == 1)
  5330. return 1;
  5331. /* Following flags need at least 2 groups */
  5332. if (sd->flags & (SD_LOAD_BALANCE |
  5333. SD_BALANCE_NEWIDLE |
  5334. SD_BALANCE_FORK |
  5335. SD_BALANCE_EXEC |
  5336. SD_SHARE_CPUPOWER |
  5337. SD_SHARE_PKG_RESOURCES)) {
  5338. if (sd->groups != sd->groups->next)
  5339. return 0;
  5340. }
  5341. /* Following flags don't use groups */
  5342. if (sd->flags & (SD_WAKE_IDLE |
  5343. SD_WAKE_AFFINE |
  5344. SD_WAKE_BALANCE))
  5345. return 0;
  5346. return 1;
  5347. }
  5348. static int
  5349. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5350. {
  5351. unsigned long cflags = sd->flags, pflags = parent->flags;
  5352. if (sd_degenerate(parent))
  5353. return 1;
  5354. if (!cpus_equal(sd->span, parent->span))
  5355. return 0;
  5356. /* Does parent contain flags not in child? */
  5357. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5358. if (cflags & SD_WAKE_AFFINE)
  5359. pflags &= ~SD_WAKE_BALANCE;
  5360. /* Flags needing groups don't count if only 1 group in parent */
  5361. if (parent->groups == parent->groups->next) {
  5362. pflags &= ~(SD_LOAD_BALANCE |
  5363. SD_BALANCE_NEWIDLE |
  5364. SD_BALANCE_FORK |
  5365. SD_BALANCE_EXEC |
  5366. SD_SHARE_CPUPOWER |
  5367. SD_SHARE_PKG_RESOURCES);
  5368. }
  5369. if (~cflags & pflags)
  5370. return 0;
  5371. return 1;
  5372. }
  5373. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5374. {
  5375. unsigned long flags;
  5376. const struct sched_class *class;
  5377. spin_lock_irqsave(&rq->lock, flags);
  5378. if (rq->rd) {
  5379. struct root_domain *old_rd = rq->rd;
  5380. for (class = sched_class_highest; class; class = class->next) {
  5381. if (class->leave_domain)
  5382. class->leave_domain(rq);
  5383. }
  5384. cpu_clear(rq->cpu, old_rd->span);
  5385. cpu_clear(rq->cpu, old_rd->online);
  5386. if (atomic_dec_and_test(&old_rd->refcount))
  5387. kfree(old_rd);
  5388. }
  5389. atomic_inc(&rd->refcount);
  5390. rq->rd = rd;
  5391. cpu_set(rq->cpu, rd->span);
  5392. if (cpu_isset(rq->cpu, cpu_online_map))
  5393. cpu_set(rq->cpu, rd->online);
  5394. for (class = sched_class_highest; class; class = class->next) {
  5395. if (class->join_domain)
  5396. class->join_domain(rq);
  5397. }
  5398. spin_unlock_irqrestore(&rq->lock, flags);
  5399. }
  5400. static void init_rootdomain(struct root_domain *rd)
  5401. {
  5402. memset(rd, 0, sizeof(*rd));
  5403. cpus_clear(rd->span);
  5404. cpus_clear(rd->online);
  5405. }
  5406. static void init_defrootdomain(void)
  5407. {
  5408. init_rootdomain(&def_root_domain);
  5409. atomic_set(&def_root_domain.refcount, 1);
  5410. }
  5411. static struct root_domain *alloc_rootdomain(void)
  5412. {
  5413. struct root_domain *rd;
  5414. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5415. if (!rd)
  5416. return NULL;
  5417. init_rootdomain(rd);
  5418. return rd;
  5419. }
  5420. /*
  5421. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5422. * hold the hotplug lock.
  5423. */
  5424. static void
  5425. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5426. {
  5427. struct rq *rq = cpu_rq(cpu);
  5428. struct sched_domain *tmp;
  5429. /* Remove the sched domains which do not contribute to scheduling. */
  5430. for (tmp = sd; tmp; tmp = tmp->parent) {
  5431. struct sched_domain *parent = tmp->parent;
  5432. if (!parent)
  5433. break;
  5434. if (sd_parent_degenerate(tmp, parent)) {
  5435. tmp->parent = parent->parent;
  5436. if (parent->parent)
  5437. parent->parent->child = tmp;
  5438. }
  5439. }
  5440. if (sd && sd_degenerate(sd)) {
  5441. sd = sd->parent;
  5442. if (sd)
  5443. sd->child = NULL;
  5444. }
  5445. sched_domain_debug(sd, cpu);
  5446. rq_attach_root(rq, rd);
  5447. rcu_assign_pointer(rq->sd, sd);
  5448. }
  5449. /* cpus with isolated domains */
  5450. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5451. /* Setup the mask of cpus configured for isolated domains */
  5452. static int __init isolated_cpu_setup(char *str)
  5453. {
  5454. int ints[NR_CPUS], i;
  5455. str = get_options(str, ARRAY_SIZE(ints), ints);
  5456. cpus_clear(cpu_isolated_map);
  5457. for (i = 1; i <= ints[0]; i++)
  5458. if (ints[i] < NR_CPUS)
  5459. cpu_set(ints[i], cpu_isolated_map);
  5460. return 1;
  5461. }
  5462. __setup("isolcpus=", isolated_cpu_setup);
  5463. /*
  5464. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5465. * to a function which identifies what group(along with sched group) a CPU
  5466. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5467. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5468. *
  5469. * init_sched_build_groups will build a circular linked list of the groups
  5470. * covered by the given span, and will set each group's ->cpumask correctly,
  5471. * and ->cpu_power to 0.
  5472. */
  5473. static void
  5474. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5475. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5476. struct sched_group **sg))
  5477. {
  5478. struct sched_group *first = NULL, *last = NULL;
  5479. cpumask_t covered = CPU_MASK_NONE;
  5480. int i;
  5481. for_each_cpu_mask(i, span) {
  5482. struct sched_group *sg;
  5483. int group = group_fn(i, cpu_map, &sg);
  5484. int j;
  5485. if (cpu_isset(i, covered))
  5486. continue;
  5487. sg->cpumask = CPU_MASK_NONE;
  5488. sg->__cpu_power = 0;
  5489. for_each_cpu_mask(j, span) {
  5490. if (group_fn(j, cpu_map, NULL) != group)
  5491. continue;
  5492. cpu_set(j, covered);
  5493. cpu_set(j, sg->cpumask);
  5494. }
  5495. if (!first)
  5496. first = sg;
  5497. if (last)
  5498. last->next = sg;
  5499. last = sg;
  5500. }
  5501. last->next = first;
  5502. }
  5503. #define SD_NODES_PER_DOMAIN 16
  5504. #ifdef CONFIG_NUMA
  5505. /**
  5506. * find_next_best_node - find the next node to include in a sched_domain
  5507. * @node: node whose sched_domain we're building
  5508. * @used_nodes: nodes already in the sched_domain
  5509. *
  5510. * Find the next node to include in a given scheduling domain. Simply
  5511. * finds the closest node not already in the @used_nodes map.
  5512. *
  5513. * Should use nodemask_t.
  5514. */
  5515. static int find_next_best_node(int node, unsigned long *used_nodes)
  5516. {
  5517. int i, n, val, min_val, best_node = 0;
  5518. min_val = INT_MAX;
  5519. for (i = 0; i < MAX_NUMNODES; i++) {
  5520. /* Start at @node */
  5521. n = (node + i) % MAX_NUMNODES;
  5522. if (!nr_cpus_node(n))
  5523. continue;
  5524. /* Skip already used nodes */
  5525. if (test_bit(n, used_nodes))
  5526. continue;
  5527. /* Simple min distance search */
  5528. val = node_distance(node, n);
  5529. if (val < min_val) {
  5530. min_val = val;
  5531. best_node = n;
  5532. }
  5533. }
  5534. set_bit(best_node, used_nodes);
  5535. return best_node;
  5536. }
  5537. /**
  5538. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5539. * @node: node whose cpumask we're constructing
  5540. * @size: number of nodes to include in this span
  5541. *
  5542. * Given a node, construct a good cpumask for its sched_domain to span. It
  5543. * should be one that prevents unnecessary balancing, but also spreads tasks
  5544. * out optimally.
  5545. */
  5546. static cpumask_t sched_domain_node_span(int node)
  5547. {
  5548. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5549. cpumask_t span, nodemask;
  5550. int i;
  5551. cpus_clear(span);
  5552. bitmap_zero(used_nodes, MAX_NUMNODES);
  5553. nodemask = node_to_cpumask(node);
  5554. cpus_or(span, span, nodemask);
  5555. set_bit(node, used_nodes);
  5556. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5557. int next_node = find_next_best_node(node, used_nodes);
  5558. nodemask = node_to_cpumask(next_node);
  5559. cpus_or(span, span, nodemask);
  5560. }
  5561. return span;
  5562. }
  5563. #endif
  5564. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5565. /*
  5566. * SMT sched-domains:
  5567. */
  5568. #ifdef CONFIG_SCHED_SMT
  5569. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5570. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5571. static int
  5572. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5573. {
  5574. if (sg)
  5575. *sg = &per_cpu(sched_group_cpus, cpu);
  5576. return cpu;
  5577. }
  5578. #endif
  5579. /*
  5580. * multi-core sched-domains:
  5581. */
  5582. #ifdef CONFIG_SCHED_MC
  5583. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5584. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5585. #endif
  5586. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5587. static int
  5588. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5589. {
  5590. int group;
  5591. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5592. cpus_and(mask, mask, *cpu_map);
  5593. group = first_cpu(mask);
  5594. if (sg)
  5595. *sg = &per_cpu(sched_group_core, group);
  5596. return group;
  5597. }
  5598. #elif defined(CONFIG_SCHED_MC)
  5599. static int
  5600. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5601. {
  5602. if (sg)
  5603. *sg = &per_cpu(sched_group_core, cpu);
  5604. return cpu;
  5605. }
  5606. #endif
  5607. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5608. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5609. static int
  5610. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5611. {
  5612. int group;
  5613. #ifdef CONFIG_SCHED_MC
  5614. cpumask_t mask = cpu_coregroup_map(cpu);
  5615. cpus_and(mask, mask, *cpu_map);
  5616. group = first_cpu(mask);
  5617. #elif defined(CONFIG_SCHED_SMT)
  5618. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5619. cpus_and(mask, mask, *cpu_map);
  5620. group = first_cpu(mask);
  5621. #else
  5622. group = cpu;
  5623. #endif
  5624. if (sg)
  5625. *sg = &per_cpu(sched_group_phys, group);
  5626. return group;
  5627. }
  5628. #ifdef CONFIG_NUMA
  5629. /*
  5630. * The init_sched_build_groups can't handle what we want to do with node
  5631. * groups, so roll our own. Now each node has its own list of groups which
  5632. * gets dynamically allocated.
  5633. */
  5634. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5635. static struct sched_group ***sched_group_nodes_bycpu;
  5636. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5637. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5638. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5639. struct sched_group **sg)
  5640. {
  5641. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5642. int group;
  5643. cpus_and(nodemask, nodemask, *cpu_map);
  5644. group = first_cpu(nodemask);
  5645. if (sg)
  5646. *sg = &per_cpu(sched_group_allnodes, group);
  5647. return group;
  5648. }
  5649. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5650. {
  5651. struct sched_group *sg = group_head;
  5652. int j;
  5653. if (!sg)
  5654. return;
  5655. do {
  5656. for_each_cpu_mask(j, sg->cpumask) {
  5657. struct sched_domain *sd;
  5658. sd = &per_cpu(phys_domains, j);
  5659. if (j != first_cpu(sd->groups->cpumask)) {
  5660. /*
  5661. * Only add "power" once for each
  5662. * physical package.
  5663. */
  5664. continue;
  5665. }
  5666. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5667. }
  5668. sg = sg->next;
  5669. } while (sg != group_head);
  5670. }
  5671. #endif
  5672. #ifdef CONFIG_NUMA
  5673. /* Free memory allocated for various sched_group structures */
  5674. static void free_sched_groups(const cpumask_t *cpu_map)
  5675. {
  5676. int cpu, i;
  5677. for_each_cpu_mask(cpu, *cpu_map) {
  5678. struct sched_group **sched_group_nodes
  5679. = sched_group_nodes_bycpu[cpu];
  5680. if (!sched_group_nodes)
  5681. continue;
  5682. for (i = 0; i < MAX_NUMNODES; i++) {
  5683. cpumask_t nodemask = node_to_cpumask(i);
  5684. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5685. cpus_and(nodemask, nodemask, *cpu_map);
  5686. if (cpus_empty(nodemask))
  5687. continue;
  5688. if (sg == NULL)
  5689. continue;
  5690. sg = sg->next;
  5691. next_sg:
  5692. oldsg = sg;
  5693. sg = sg->next;
  5694. kfree(oldsg);
  5695. if (oldsg != sched_group_nodes[i])
  5696. goto next_sg;
  5697. }
  5698. kfree(sched_group_nodes);
  5699. sched_group_nodes_bycpu[cpu] = NULL;
  5700. }
  5701. }
  5702. #else
  5703. static void free_sched_groups(const cpumask_t *cpu_map)
  5704. {
  5705. }
  5706. #endif
  5707. /*
  5708. * Initialize sched groups cpu_power.
  5709. *
  5710. * cpu_power indicates the capacity of sched group, which is used while
  5711. * distributing the load between different sched groups in a sched domain.
  5712. * Typically cpu_power for all the groups in a sched domain will be same unless
  5713. * there are asymmetries in the topology. If there are asymmetries, group
  5714. * having more cpu_power will pickup more load compared to the group having
  5715. * less cpu_power.
  5716. *
  5717. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5718. * the maximum number of tasks a group can handle in the presence of other idle
  5719. * or lightly loaded groups in the same sched domain.
  5720. */
  5721. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5722. {
  5723. struct sched_domain *child;
  5724. struct sched_group *group;
  5725. WARN_ON(!sd || !sd->groups);
  5726. if (cpu != first_cpu(sd->groups->cpumask))
  5727. return;
  5728. child = sd->child;
  5729. sd->groups->__cpu_power = 0;
  5730. /*
  5731. * For perf policy, if the groups in child domain share resources
  5732. * (for example cores sharing some portions of the cache hierarchy
  5733. * or SMT), then set this domain groups cpu_power such that each group
  5734. * can handle only one task, when there are other idle groups in the
  5735. * same sched domain.
  5736. */
  5737. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5738. (child->flags &
  5739. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5740. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5741. return;
  5742. }
  5743. /*
  5744. * add cpu_power of each child group to this groups cpu_power
  5745. */
  5746. group = child->groups;
  5747. do {
  5748. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5749. group = group->next;
  5750. } while (group != child->groups);
  5751. }
  5752. /*
  5753. * Build sched domains for a given set of cpus and attach the sched domains
  5754. * to the individual cpus
  5755. */
  5756. static int build_sched_domains(const cpumask_t *cpu_map)
  5757. {
  5758. int i;
  5759. struct root_domain *rd;
  5760. #ifdef CONFIG_NUMA
  5761. struct sched_group **sched_group_nodes = NULL;
  5762. int sd_allnodes = 0;
  5763. /*
  5764. * Allocate the per-node list of sched groups
  5765. */
  5766. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5767. GFP_KERNEL);
  5768. if (!sched_group_nodes) {
  5769. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5770. return -ENOMEM;
  5771. }
  5772. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5773. #endif
  5774. rd = alloc_rootdomain();
  5775. if (!rd) {
  5776. printk(KERN_WARNING "Cannot alloc root domain\n");
  5777. return -ENOMEM;
  5778. }
  5779. /*
  5780. * Set up domains for cpus specified by the cpu_map.
  5781. */
  5782. for_each_cpu_mask(i, *cpu_map) {
  5783. struct sched_domain *sd = NULL, *p;
  5784. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5785. cpus_and(nodemask, nodemask, *cpu_map);
  5786. #ifdef CONFIG_NUMA
  5787. if (cpus_weight(*cpu_map) >
  5788. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5789. sd = &per_cpu(allnodes_domains, i);
  5790. *sd = SD_ALLNODES_INIT;
  5791. sd->span = *cpu_map;
  5792. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5793. p = sd;
  5794. sd_allnodes = 1;
  5795. } else
  5796. p = NULL;
  5797. sd = &per_cpu(node_domains, i);
  5798. *sd = SD_NODE_INIT;
  5799. sd->span = sched_domain_node_span(cpu_to_node(i));
  5800. sd->parent = p;
  5801. if (p)
  5802. p->child = sd;
  5803. cpus_and(sd->span, sd->span, *cpu_map);
  5804. #endif
  5805. p = sd;
  5806. sd = &per_cpu(phys_domains, i);
  5807. *sd = SD_CPU_INIT;
  5808. sd->span = nodemask;
  5809. sd->parent = p;
  5810. if (p)
  5811. p->child = sd;
  5812. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5813. #ifdef CONFIG_SCHED_MC
  5814. p = sd;
  5815. sd = &per_cpu(core_domains, i);
  5816. *sd = SD_MC_INIT;
  5817. sd->span = cpu_coregroup_map(i);
  5818. cpus_and(sd->span, sd->span, *cpu_map);
  5819. sd->parent = p;
  5820. p->child = sd;
  5821. cpu_to_core_group(i, cpu_map, &sd->groups);
  5822. #endif
  5823. #ifdef CONFIG_SCHED_SMT
  5824. p = sd;
  5825. sd = &per_cpu(cpu_domains, i);
  5826. *sd = SD_SIBLING_INIT;
  5827. sd->span = per_cpu(cpu_sibling_map, i);
  5828. cpus_and(sd->span, sd->span, *cpu_map);
  5829. sd->parent = p;
  5830. p->child = sd;
  5831. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5832. #endif
  5833. }
  5834. #ifdef CONFIG_SCHED_SMT
  5835. /* Set up CPU (sibling) groups */
  5836. for_each_cpu_mask(i, *cpu_map) {
  5837. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5838. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5839. if (i != first_cpu(this_sibling_map))
  5840. continue;
  5841. init_sched_build_groups(this_sibling_map, cpu_map,
  5842. &cpu_to_cpu_group);
  5843. }
  5844. #endif
  5845. #ifdef CONFIG_SCHED_MC
  5846. /* Set up multi-core groups */
  5847. for_each_cpu_mask(i, *cpu_map) {
  5848. cpumask_t this_core_map = cpu_coregroup_map(i);
  5849. cpus_and(this_core_map, this_core_map, *cpu_map);
  5850. if (i != first_cpu(this_core_map))
  5851. continue;
  5852. init_sched_build_groups(this_core_map, cpu_map,
  5853. &cpu_to_core_group);
  5854. }
  5855. #endif
  5856. /* Set up physical groups */
  5857. for (i = 0; i < MAX_NUMNODES; i++) {
  5858. cpumask_t nodemask = node_to_cpumask(i);
  5859. cpus_and(nodemask, nodemask, *cpu_map);
  5860. if (cpus_empty(nodemask))
  5861. continue;
  5862. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5863. }
  5864. #ifdef CONFIG_NUMA
  5865. /* Set up node groups */
  5866. if (sd_allnodes)
  5867. init_sched_build_groups(*cpu_map, cpu_map,
  5868. &cpu_to_allnodes_group);
  5869. for (i = 0; i < MAX_NUMNODES; i++) {
  5870. /* Set up node groups */
  5871. struct sched_group *sg, *prev;
  5872. cpumask_t nodemask = node_to_cpumask(i);
  5873. cpumask_t domainspan;
  5874. cpumask_t covered = CPU_MASK_NONE;
  5875. int j;
  5876. cpus_and(nodemask, nodemask, *cpu_map);
  5877. if (cpus_empty(nodemask)) {
  5878. sched_group_nodes[i] = NULL;
  5879. continue;
  5880. }
  5881. domainspan = sched_domain_node_span(i);
  5882. cpus_and(domainspan, domainspan, *cpu_map);
  5883. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5884. if (!sg) {
  5885. printk(KERN_WARNING "Can not alloc domain group for "
  5886. "node %d\n", i);
  5887. goto error;
  5888. }
  5889. sched_group_nodes[i] = sg;
  5890. for_each_cpu_mask(j, nodemask) {
  5891. struct sched_domain *sd;
  5892. sd = &per_cpu(node_domains, j);
  5893. sd->groups = sg;
  5894. }
  5895. sg->__cpu_power = 0;
  5896. sg->cpumask = nodemask;
  5897. sg->next = sg;
  5898. cpus_or(covered, covered, nodemask);
  5899. prev = sg;
  5900. for (j = 0; j < MAX_NUMNODES; j++) {
  5901. cpumask_t tmp, notcovered;
  5902. int n = (i + j) % MAX_NUMNODES;
  5903. cpus_complement(notcovered, covered);
  5904. cpus_and(tmp, notcovered, *cpu_map);
  5905. cpus_and(tmp, tmp, domainspan);
  5906. if (cpus_empty(tmp))
  5907. break;
  5908. nodemask = node_to_cpumask(n);
  5909. cpus_and(tmp, tmp, nodemask);
  5910. if (cpus_empty(tmp))
  5911. continue;
  5912. sg = kmalloc_node(sizeof(struct sched_group),
  5913. GFP_KERNEL, i);
  5914. if (!sg) {
  5915. printk(KERN_WARNING
  5916. "Can not alloc domain group for node %d\n", j);
  5917. goto error;
  5918. }
  5919. sg->__cpu_power = 0;
  5920. sg->cpumask = tmp;
  5921. sg->next = prev->next;
  5922. cpus_or(covered, covered, tmp);
  5923. prev->next = sg;
  5924. prev = sg;
  5925. }
  5926. }
  5927. #endif
  5928. /* Calculate CPU power for physical packages and nodes */
  5929. #ifdef CONFIG_SCHED_SMT
  5930. for_each_cpu_mask(i, *cpu_map) {
  5931. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5932. init_sched_groups_power(i, sd);
  5933. }
  5934. #endif
  5935. #ifdef CONFIG_SCHED_MC
  5936. for_each_cpu_mask(i, *cpu_map) {
  5937. struct sched_domain *sd = &per_cpu(core_domains, i);
  5938. init_sched_groups_power(i, sd);
  5939. }
  5940. #endif
  5941. for_each_cpu_mask(i, *cpu_map) {
  5942. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5943. init_sched_groups_power(i, sd);
  5944. }
  5945. #ifdef CONFIG_NUMA
  5946. for (i = 0; i < MAX_NUMNODES; i++)
  5947. init_numa_sched_groups_power(sched_group_nodes[i]);
  5948. if (sd_allnodes) {
  5949. struct sched_group *sg;
  5950. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5951. init_numa_sched_groups_power(sg);
  5952. }
  5953. #endif
  5954. /* Attach the domains */
  5955. for_each_cpu_mask(i, *cpu_map) {
  5956. struct sched_domain *sd;
  5957. #ifdef CONFIG_SCHED_SMT
  5958. sd = &per_cpu(cpu_domains, i);
  5959. #elif defined(CONFIG_SCHED_MC)
  5960. sd = &per_cpu(core_domains, i);
  5961. #else
  5962. sd = &per_cpu(phys_domains, i);
  5963. #endif
  5964. cpu_attach_domain(sd, rd, i);
  5965. }
  5966. return 0;
  5967. #ifdef CONFIG_NUMA
  5968. error:
  5969. free_sched_groups(cpu_map);
  5970. return -ENOMEM;
  5971. #endif
  5972. }
  5973. static cpumask_t *doms_cur; /* current sched domains */
  5974. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5975. /*
  5976. * Special case: If a kmalloc of a doms_cur partition (array of
  5977. * cpumask_t) fails, then fallback to a single sched domain,
  5978. * as determined by the single cpumask_t fallback_doms.
  5979. */
  5980. static cpumask_t fallback_doms;
  5981. void __attribute__((weak)) arch_update_cpu_topology(void)
  5982. {
  5983. }
  5984. /*
  5985. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5986. * For now this just excludes isolated cpus, but could be used to
  5987. * exclude other special cases in the future.
  5988. */
  5989. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5990. {
  5991. int err;
  5992. arch_update_cpu_topology();
  5993. ndoms_cur = 1;
  5994. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5995. if (!doms_cur)
  5996. doms_cur = &fallback_doms;
  5997. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5998. err = build_sched_domains(doms_cur);
  5999. register_sched_domain_sysctl();
  6000. return err;
  6001. }
  6002. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  6003. {
  6004. free_sched_groups(cpu_map);
  6005. }
  6006. /*
  6007. * Detach sched domains from a group of cpus specified in cpu_map
  6008. * These cpus will now be attached to the NULL domain
  6009. */
  6010. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6011. {
  6012. int i;
  6013. unregister_sched_domain_sysctl();
  6014. for_each_cpu_mask(i, *cpu_map)
  6015. cpu_attach_domain(NULL, &def_root_domain, i);
  6016. synchronize_sched();
  6017. arch_destroy_sched_domains(cpu_map);
  6018. }
  6019. /*
  6020. * Partition sched domains as specified by the 'ndoms_new'
  6021. * cpumasks in the array doms_new[] of cpumasks. This compares
  6022. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6023. * It destroys each deleted domain and builds each new domain.
  6024. *
  6025. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6026. * The masks don't intersect (don't overlap.) We should setup one
  6027. * sched domain for each mask. CPUs not in any of the cpumasks will
  6028. * not be load balanced. If the same cpumask appears both in the
  6029. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6030. * it as it is.
  6031. *
  6032. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6033. * ownership of it and will kfree it when done with it. If the caller
  6034. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6035. * and partition_sched_domains() will fallback to the single partition
  6036. * 'fallback_doms'.
  6037. *
  6038. * Call with hotplug lock held
  6039. */
  6040. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  6041. {
  6042. int i, j;
  6043. lock_doms_cur();
  6044. /* always unregister in case we don't destroy any domains */
  6045. unregister_sched_domain_sysctl();
  6046. if (doms_new == NULL) {
  6047. ndoms_new = 1;
  6048. doms_new = &fallback_doms;
  6049. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6050. }
  6051. /* Destroy deleted domains */
  6052. for (i = 0; i < ndoms_cur; i++) {
  6053. for (j = 0; j < ndoms_new; j++) {
  6054. if (cpus_equal(doms_cur[i], doms_new[j]))
  6055. goto match1;
  6056. }
  6057. /* no match - a current sched domain not in new doms_new[] */
  6058. detach_destroy_domains(doms_cur + i);
  6059. match1:
  6060. ;
  6061. }
  6062. /* Build new domains */
  6063. for (i = 0; i < ndoms_new; i++) {
  6064. for (j = 0; j < ndoms_cur; j++) {
  6065. if (cpus_equal(doms_new[i], doms_cur[j]))
  6066. goto match2;
  6067. }
  6068. /* no match - add a new doms_new */
  6069. build_sched_domains(doms_new + i);
  6070. match2:
  6071. ;
  6072. }
  6073. /* Remember the new sched domains */
  6074. if (doms_cur != &fallback_doms)
  6075. kfree(doms_cur);
  6076. doms_cur = doms_new;
  6077. ndoms_cur = ndoms_new;
  6078. register_sched_domain_sysctl();
  6079. unlock_doms_cur();
  6080. }
  6081. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6082. int arch_reinit_sched_domains(void)
  6083. {
  6084. int err;
  6085. get_online_cpus();
  6086. detach_destroy_domains(&cpu_online_map);
  6087. err = arch_init_sched_domains(&cpu_online_map);
  6088. put_online_cpus();
  6089. return err;
  6090. }
  6091. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6092. {
  6093. int ret;
  6094. if (buf[0] != '0' && buf[0] != '1')
  6095. return -EINVAL;
  6096. if (smt)
  6097. sched_smt_power_savings = (buf[0] == '1');
  6098. else
  6099. sched_mc_power_savings = (buf[0] == '1');
  6100. ret = arch_reinit_sched_domains();
  6101. return ret ? ret : count;
  6102. }
  6103. #ifdef CONFIG_SCHED_MC
  6104. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6105. {
  6106. return sprintf(page, "%u\n", sched_mc_power_savings);
  6107. }
  6108. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6109. const char *buf, size_t count)
  6110. {
  6111. return sched_power_savings_store(buf, count, 0);
  6112. }
  6113. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6114. sched_mc_power_savings_store);
  6115. #endif
  6116. #ifdef CONFIG_SCHED_SMT
  6117. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6118. {
  6119. return sprintf(page, "%u\n", sched_smt_power_savings);
  6120. }
  6121. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6122. const char *buf, size_t count)
  6123. {
  6124. return sched_power_savings_store(buf, count, 1);
  6125. }
  6126. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6127. sched_smt_power_savings_store);
  6128. #endif
  6129. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6130. {
  6131. int err = 0;
  6132. #ifdef CONFIG_SCHED_SMT
  6133. if (smt_capable())
  6134. err = sysfs_create_file(&cls->kset.kobj,
  6135. &attr_sched_smt_power_savings.attr);
  6136. #endif
  6137. #ifdef CONFIG_SCHED_MC
  6138. if (!err && mc_capable())
  6139. err = sysfs_create_file(&cls->kset.kobj,
  6140. &attr_sched_mc_power_savings.attr);
  6141. #endif
  6142. return err;
  6143. }
  6144. #endif
  6145. /*
  6146. * Force a reinitialization of the sched domains hierarchy. The domains
  6147. * and groups cannot be updated in place without racing with the balancing
  6148. * code, so we temporarily attach all running cpus to the NULL domain
  6149. * which will prevent rebalancing while the sched domains are recalculated.
  6150. */
  6151. static int update_sched_domains(struct notifier_block *nfb,
  6152. unsigned long action, void *hcpu)
  6153. {
  6154. switch (action) {
  6155. case CPU_UP_PREPARE:
  6156. case CPU_UP_PREPARE_FROZEN:
  6157. case CPU_DOWN_PREPARE:
  6158. case CPU_DOWN_PREPARE_FROZEN:
  6159. detach_destroy_domains(&cpu_online_map);
  6160. return NOTIFY_OK;
  6161. case CPU_UP_CANCELED:
  6162. case CPU_UP_CANCELED_FROZEN:
  6163. case CPU_DOWN_FAILED:
  6164. case CPU_DOWN_FAILED_FROZEN:
  6165. case CPU_ONLINE:
  6166. case CPU_ONLINE_FROZEN:
  6167. case CPU_DEAD:
  6168. case CPU_DEAD_FROZEN:
  6169. /*
  6170. * Fall through and re-initialise the domains.
  6171. */
  6172. break;
  6173. default:
  6174. return NOTIFY_DONE;
  6175. }
  6176. /* The hotplug lock is already held by cpu_up/cpu_down */
  6177. arch_init_sched_domains(&cpu_online_map);
  6178. return NOTIFY_OK;
  6179. }
  6180. void __init sched_init_smp(void)
  6181. {
  6182. cpumask_t non_isolated_cpus;
  6183. #if defined(CONFIG_NUMA)
  6184. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6185. GFP_KERNEL);
  6186. BUG_ON(sched_group_nodes_bycpu == NULL);
  6187. #endif
  6188. get_online_cpus();
  6189. arch_init_sched_domains(&cpu_online_map);
  6190. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6191. if (cpus_empty(non_isolated_cpus))
  6192. cpu_set(smp_processor_id(), non_isolated_cpus);
  6193. put_online_cpus();
  6194. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6195. hotcpu_notifier(update_sched_domains, 0);
  6196. /* Move init over to a non-isolated CPU */
  6197. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  6198. BUG();
  6199. sched_init_granularity();
  6200. }
  6201. #else
  6202. void __init sched_init_smp(void)
  6203. {
  6204. #if defined(CONFIG_NUMA)
  6205. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6206. GFP_KERNEL);
  6207. BUG_ON(sched_group_nodes_bycpu == NULL);
  6208. #endif
  6209. sched_init_granularity();
  6210. }
  6211. #endif /* CONFIG_SMP */
  6212. int in_sched_functions(unsigned long addr)
  6213. {
  6214. return in_lock_functions(addr) ||
  6215. (addr >= (unsigned long)__sched_text_start
  6216. && addr < (unsigned long)__sched_text_end);
  6217. }
  6218. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6219. {
  6220. cfs_rq->tasks_timeline = RB_ROOT;
  6221. #ifdef CONFIG_FAIR_GROUP_SCHED
  6222. cfs_rq->rq = rq;
  6223. #endif
  6224. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6225. }
  6226. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6227. {
  6228. struct rt_prio_array *array;
  6229. int i;
  6230. array = &rt_rq->active;
  6231. for (i = 0; i < MAX_RT_PRIO; i++) {
  6232. INIT_LIST_HEAD(array->queue + i);
  6233. __clear_bit(i, array->bitmap);
  6234. }
  6235. /* delimiter for bitsearch: */
  6236. __set_bit(MAX_RT_PRIO, array->bitmap);
  6237. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6238. rt_rq->highest_prio = MAX_RT_PRIO;
  6239. #endif
  6240. #ifdef CONFIG_SMP
  6241. rt_rq->rt_nr_migratory = 0;
  6242. rt_rq->overloaded = 0;
  6243. #endif
  6244. rt_rq->rt_time = 0;
  6245. rt_rq->rt_throttled = 0;
  6246. rt_rq->rt_runtime = 0;
  6247. spin_lock_init(&rt_rq->rt_runtime_lock);
  6248. #ifdef CONFIG_RT_GROUP_SCHED
  6249. rt_rq->rt_nr_boosted = 0;
  6250. rt_rq->rq = rq;
  6251. #endif
  6252. }
  6253. #ifdef CONFIG_FAIR_GROUP_SCHED
  6254. static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
  6255. struct cfs_rq *cfs_rq, struct sched_entity *se,
  6256. int cpu, int add)
  6257. {
  6258. tg->cfs_rq[cpu] = cfs_rq;
  6259. init_cfs_rq(cfs_rq, rq);
  6260. cfs_rq->tg = tg;
  6261. if (add)
  6262. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6263. tg->se[cpu] = se;
  6264. se->cfs_rq = &rq->cfs;
  6265. se->my_q = cfs_rq;
  6266. se->load.weight = tg->shares;
  6267. se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
  6268. se->parent = NULL;
  6269. }
  6270. #endif
  6271. #ifdef CONFIG_RT_GROUP_SCHED
  6272. static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
  6273. struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
  6274. int cpu, int add)
  6275. {
  6276. tg->rt_rq[cpu] = rt_rq;
  6277. init_rt_rq(rt_rq, rq);
  6278. rt_rq->tg = tg;
  6279. rt_rq->rt_se = rt_se;
  6280. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6281. if (add)
  6282. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6283. tg->rt_se[cpu] = rt_se;
  6284. rt_se->rt_rq = &rq->rt;
  6285. rt_se->my_q = rt_rq;
  6286. rt_se->parent = NULL;
  6287. INIT_LIST_HEAD(&rt_se->run_list);
  6288. }
  6289. #endif
  6290. void __init sched_init(void)
  6291. {
  6292. int highest_cpu = 0;
  6293. int i, j;
  6294. unsigned long alloc_size = 0, ptr;
  6295. #ifdef CONFIG_FAIR_GROUP_SCHED
  6296. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6297. #endif
  6298. #ifdef CONFIG_RT_GROUP_SCHED
  6299. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6300. #endif
  6301. /*
  6302. * As sched_init() is called before page_alloc is setup,
  6303. * we use alloc_bootmem().
  6304. */
  6305. if (alloc_size) {
  6306. ptr = (unsigned long)alloc_bootmem_low(alloc_size);
  6307. #ifdef CONFIG_FAIR_GROUP_SCHED
  6308. init_task_group.se = (struct sched_entity **)ptr;
  6309. ptr += nr_cpu_ids * sizeof(void **);
  6310. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6311. ptr += nr_cpu_ids * sizeof(void **);
  6312. #endif
  6313. #ifdef CONFIG_RT_GROUP_SCHED
  6314. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6315. ptr += nr_cpu_ids * sizeof(void **);
  6316. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6317. #endif
  6318. }
  6319. #ifdef CONFIG_SMP
  6320. init_defrootdomain();
  6321. #endif
  6322. init_rt_bandwidth(&def_rt_bandwidth,
  6323. global_rt_period(), global_rt_runtime());
  6324. #ifdef CONFIG_RT_GROUP_SCHED
  6325. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6326. global_rt_period(), global_rt_runtime());
  6327. #endif
  6328. #ifdef CONFIG_GROUP_SCHED
  6329. list_add(&init_task_group.list, &task_groups);
  6330. #endif
  6331. for_each_possible_cpu(i) {
  6332. struct rq *rq;
  6333. rq = cpu_rq(i);
  6334. spin_lock_init(&rq->lock);
  6335. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6336. rq->nr_running = 0;
  6337. rq->clock = 1;
  6338. update_last_tick_seen(rq);
  6339. init_cfs_rq(&rq->cfs, rq);
  6340. init_rt_rq(&rq->rt, rq);
  6341. #ifdef CONFIG_FAIR_GROUP_SCHED
  6342. init_task_group.shares = init_task_group_load;
  6343. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6344. init_tg_cfs_entry(rq, &init_task_group,
  6345. &per_cpu(init_cfs_rq, i),
  6346. &per_cpu(init_sched_entity, i), i, 1);
  6347. #endif
  6348. #ifdef CONFIG_RT_GROUP_SCHED
  6349. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6350. init_tg_rt_entry(rq, &init_task_group,
  6351. &per_cpu(init_rt_rq, i),
  6352. &per_cpu(init_sched_rt_entity, i), i, 1);
  6353. #else
  6354. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6355. #endif
  6356. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6357. rq->cpu_load[j] = 0;
  6358. #ifdef CONFIG_SMP
  6359. rq->sd = NULL;
  6360. rq->rd = NULL;
  6361. rq->active_balance = 0;
  6362. rq->next_balance = jiffies;
  6363. rq->push_cpu = 0;
  6364. rq->cpu = i;
  6365. rq->migration_thread = NULL;
  6366. INIT_LIST_HEAD(&rq->migration_queue);
  6367. rq_attach_root(rq, &def_root_domain);
  6368. #endif
  6369. init_rq_hrtick(rq);
  6370. atomic_set(&rq->nr_iowait, 0);
  6371. highest_cpu = i;
  6372. }
  6373. set_load_weight(&init_task);
  6374. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6375. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6376. #endif
  6377. #ifdef CONFIG_SMP
  6378. nr_cpu_ids = highest_cpu + 1;
  6379. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6380. #endif
  6381. #ifdef CONFIG_RT_MUTEXES
  6382. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6383. #endif
  6384. /*
  6385. * The boot idle thread does lazy MMU switching as well:
  6386. */
  6387. atomic_inc(&init_mm.mm_count);
  6388. enter_lazy_tlb(&init_mm, current);
  6389. /*
  6390. * Make us the idle thread. Technically, schedule() should not be
  6391. * called from this thread, however somewhere below it might be,
  6392. * but because we are the idle thread, we just pick up running again
  6393. * when this runqueue becomes "idle".
  6394. */
  6395. init_idle(current, smp_processor_id());
  6396. /*
  6397. * During early bootup we pretend to be a normal task:
  6398. */
  6399. current->sched_class = &fair_sched_class;
  6400. scheduler_running = 1;
  6401. }
  6402. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6403. void __might_sleep(char *file, int line)
  6404. {
  6405. #ifdef in_atomic
  6406. static unsigned long prev_jiffy; /* ratelimiting */
  6407. if ((in_atomic() || irqs_disabled()) &&
  6408. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6409. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6410. return;
  6411. prev_jiffy = jiffies;
  6412. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6413. " context at %s:%d\n", file, line);
  6414. printk("in_atomic():%d, irqs_disabled():%d\n",
  6415. in_atomic(), irqs_disabled());
  6416. debug_show_held_locks(current);
  6417. if (irqs_disabled())
  6418. print_irqtrace_events(current);
  6419. dump_stack();
  6420. }
  6421. #endif
  6422. }
  6423. EXPORT_SYMBOL(__might_sleep);
  6424. #endif
  6425. #ifdef CONFIG_MAGIC_SYSRQ
  6426. static void normalize_task(struct rq *rq, struct task_struct *p)
  6427. {
  6428. int on_rq;
  6429. update_rq_clock(rq);
  6430. on_rq = p->se.on_rq;
  6431. if (on_rq)
  6432. deactivate_task(rq, p, 0);
  6433. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6434. if (on_rq) {
  6435. activate_task(rq, p, 0);
  6436. resched_task(rq->curr);
  6437. }
  6438. }
  6439. void normalize_rt_tasks(void)
  6440. {
  6441. struct task_struct *g, *p;
  6442. unsigned long flags;
  6443. struct rq *rq;
  6444. read_lock_irqsave(&tasklist_lock, flags);
  6445. do_each_thread(g, p) {
  6446. /*
  6447. * Only normalize user tasks:
  6448. */
  6449. if (!p->mm)
  6450. continue;
  6451. p->se.exec_start = 0;
  6452. #ifdef CONFIG_SCHEDSTATS
  6453. p->se.wait_start = 0;
  6454. p->se.sleep_start = 0;
  6455. p->se.block_start = 0;
  6456. #endif
  6457. task_rq(p)->clock = 0;
  6458. if (!rt_task(p)) {
  6459. /*
  6460. * Renice negative nice level userspace
  6461. * tasks back to 0:
  6462. */
  6463. if (TASK_NICE(p) < 0 && p->mm)
  6464. set_user_nice(p, 0);
  6465. continue;
  6466. }
  6467. spin_lock(&p->pi_lock);
  6468. rq = __task_rq_lock(p);
  6469. normalize_task(rq, p);
  6470. __task_rq_unlock(rq);
  6471. spin_unlock(&p->pi_lock);
  6472. } while_each_thread(g, p);
  6473. read_unlock_irqrestore(&tasklist_lock, flags);
  6474. }
  6475. #endif /* CONFIG_MAGIC_SYSRQ */
  6476. #ifdef CONFIG_IA64
  6477. /*
  6478. * These functions are only useful for the IA64 MCA handling.
  6479. *
  6480. * They can only be called when the whole system has been
  6481. * stopped - every CPU needs to be quiescent, and no scheduling
  6482. * activity can take place. Using them for anything else would
  6483. * be a serious bug, and as a result, they aren't even visible
  6484. * under any other configuration.
  6485. */
  6486. /**
  6487. * curr_task - return the current task for a given cpu.
  6488. * @cpu: the processor in question.
  6489. *
  6490. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6491. */
  6492. struct task_struct *curr_task(int cpu)
  6493. {
  6494. return cpu_curr(cpu);
  6495. }
  6496. /**
  6497. * set_curr_task - set the current task for a given cpu.
  6498. * @cpu: the processor in question.
  6499. * @p: the task pointer to set.
  6500. *
  6501. * Description: This function must only be used when non-maskable interrupts
  6502. * are serviced on a separate stack. It allows the architecture to switch the
  6503. * notion of the current task on a cpu in a non-blocking manner. This function
  6504. * must be called with all CPU's synchronized, and interrupts disabled, the
  6505. * and caller must save the original value of the current task (see
  6506. * curr_task() above) and restore that value before reenabling interrupts and
  6507. * re-starting the system.
  6508. *
  6509. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6510. */
  6511. void set_curr_task(int cpu, struct task_struct *p)
  6512. {
  6513. cpu_curr(cpu) = p;
  6514. }
  6515. #endif
  6516. #ifdef CONFIG_FAIR_GROUP_SCHED
  6517. static void free_fair_sched_group(struct task_group *tg)
  6518. {
  6519. int i;
  6520. for_each_possible_cpu(i) {
  6521. if (tg->cfs_rq)
  6522. kfree(tg->cfs_rq[i]);
  6523. if (tg->se)
  6524. kfree(tg->se[i]);
  6525. }
  6526. kfree(tg->cfs_rq);
  6527. kfree(tg->se);
  6528. }
  6529. static int alloc_fair_sched_group(struct task_group *tg)
  6530. {
  6531. struct cfs_rq *cfs_rq;
  6532. struct sched_entity *se;
  6533. struct rq *rq;
  6534. int i;
  6535. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6536. if (!tg->cfs_rq)
  6537. goto err;
  6538. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6539. if (!tg->se)
  6540. goto err;
  6541. tg->shares = NICE_0_LOAD;
  6542. for_each_possible_cpu(i) {
  6543. rq = cpu_rq(i);
  6544. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  6545. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6546. if (!cfs_rq)
  6547. goto err;
  6548. se = kmalloc_node(sizeof(struct sched_entity),
  6549. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6550. if (!se)
  6551. goto err;
  6552. init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
  6553. }
  6554. return 1;
  6555. err:
  6556. return 0;
  6557. }
  6558. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6559. {
  6560. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6561. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6562. }
  6563. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6564. {
  6565. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6566. }
  6567. #else
  6568. static inline void free_fair_sched_group(struct task_group *tg)
  6569. {
  6570. }
  6571. static inline int alloc_fair_sched_group(struct task_group *tg)
  6572. {
  6573. return 1;
  6574. }
  6575. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6576. {
  6577. }
  6578. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6579. {
  6580. }
  6581. #endif
  6582. #ifdef CONFIG_RT_GROUP_SCHED
  6583. static void free_rt_sched_group(struct task_group *tg)
  6584. {
  6585. int i;
  6586. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6587. for_each_possible_cpu(i) {
  6588. if (tg->rt_rq)
  6589. kfree(tg->rt_rq[i]);
  6590. if (tg->rt_se)
  6591. kfree(tg->rt_se[i]);
  6592. }
  6593. kfree(tg->rt_rq);
  6594. kfree(tg->rt_se);
  6595. }
  6596. static int alloc_rt_sched_group(struct task_group *tg)
  6597. {
  6598. struct rt_rq *rt_rq;
  6599. struct sched_rt_entity *rt_se;
  6600. struct rq *rq;
  6601. int i;
  6602. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6603. if (!tg->rt_rq)
  6604. goto err;
  6605. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6606. if (!tg->rt_se)
  6607. goto err;
  6608. init_rt_bandwidth(&tg->rt_bandwidth,
  6609. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6610. for_each_possible_cpu(i) {
  6611. rq = cpu_rq(i);
  6612. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  6613. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6614. if (!rt_rq)
  6615. goto err;
  6616. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  6617. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6618. if (!rt_se)
  6619. goto err;
  6620. init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
  6621. }
  6622. return 1;
  6623. err:
  6624. return 0;
  6625. }
  6626. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6627. {
  6628. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6629. &cpu_rq(cpu)->leaf_rt_rq_list);
  6630. }
  6631. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6632. {
  6633. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6634. }
  6635. #else
  6636. static inline void free_rt_sched_group(struct task_group *tg)
  6637. {
  6638. }
  6639. static inline int alloc_rt_sched_group(struct task_group *tg)
  6640. {
  6641. return 1;
  6642. }
  6643. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6644. {
  6645. }
  6646. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6647. {
  6648. }
  6649. #endif
  6650. #ifdef CONFIG_GROUP_SCHED
  6651. static void free_sched_group(struct task_group *tg)
  6652. {
  6653. free_fair_sched_group(tg);
  6654. free_rt_sched_group(tg);
  6655. kfree(tg);
  6656. }
  6657. /* allocate runqueue etc for a new task group */
  6658. struct task_group *sched_create_group(void)
  6659. {
  6660. struct task_group *tg;
  6661. unsigned long flags;
  6662. int i;
  6663. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6664. if (!tg)
  6665. return ERR_PTR(-ENOMEM);
  6666. if (!alloc_fair_sched_group(tg))
  6667. goto err;
  6668. if (!alloc_rt_sched_group(tg))
  6669. goto err;
  6670. spin_lock_irqsave(&task_group_lock, flags);
  6671. for_each_possible_cpu(i) {
  6672. register_fair_sched_group(tg, i);
  6673. register_rt_sched_group(tg, i);
  6674. }
  6675. list_add_rcu(&tg->list, &task_groups);
  6676. spin_unlock_irqrestore(&task_group_lock, flags);
  6677. return tg;
  6678. err:
  6679. free_sched_group(tg);
  6680. return ERR_PTR(-ENOMEM);
  6681. }
  6682. /* rcu callback to free various structures associated with a task group */
  6683. static void free_sched_group_rcu(struct rcu_head *rhp)
  6684. {
  6685. /* now it should be safe to free those cfs_rqs */
  6686. free_sched_group(container_of(rhp, struct task_group, rcu));
  6687. }
  6688. /* Destroy runqueue etc associated with a task group */
  6689. void sched_destroy_group(struct task_group *tg)
  6690. {
  6691. unsigned long flags;
  6692. int i;
  6693. spin_lock_irqsave(&task_group_lock, flags);
  6694. for_each_possible_cpu(i) {
  6695. unregister_fair_sched_group(tg, i);
  6696. unregister_rt_sched_group(tg, i);
  6697. }
  6698. list_del_rcu(&tg->list);
  6699. spin_unlock_irqrestore(&task_group_lock, flags);
  6700. /* wait for possible concurrent references to cfs_rqs complete */
  6701. call_rcu(&tg->rcu, free_sched_group_rcu);
  6702. }
  6703. /* change task's runqueue when it moves between groups.
  6704. * The caller of this function should have put the task in its new group
  6705. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6706. * reflect its new group.
  6707. */
  6708. void sched_move_task(struct task_struct *tsk)
  6709. {
  6710. int on_rq, running;
  6711. unsigned long flags;
  6712. struct rq *rq;
  6713. rq = task_rq_lock(tsk, &flags);
  6714. update_rq_clock(rq);
  6715. running = task_current(rq, tsk);
  6716. on_rq = tsk->se.on_rq;
  6717. if (on_rq)
  6718. dequeue_task(rq, tsk, 0);
  6719. if (unlikely(running))
  6720. tsk->sched_class->put_prev_task(rq, tsk);
  6721. set_task_rq(tsk, task_cpu(tsk));
  6722. #ifdef CONFIG_FAIR_GROUP_SCHED
  6723. if (tsk->sched_class->moved_group)
  6724. tsk->sched_class->moved_group(tsk);
  6725. #endif
  6726. if (unlikely(running))
  6727. tsk->sched_class->set_curr_task(rq);
  6728. if (on_rq)
  6729. enqueue_task(rq, tsk, 0);
  6730. task_rq_unlock(rq, &flags);
  6731. }
  6732. #endif
  6733. #ifdef CONFIG_FAIR_GROUP_SCHED
  6734. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6735. {
  6736. struct cfs_rq *cfs_rq = se->cfs_rq;
  6737. struct rq *rq = cfs_rq->rq;
  6738. int on_rq;
  6739. spin_lock_irq(&rq->lock);
  6740. on_rq = se->on_rq;
  6741. if (on_rq)
  6742. dequeue_entity(cfs_rq, se, 0);
  6743. se->load.weight = shares;
  6744. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6745. if (on_rq)
  6746. enqueue_entity(cfs_rq, se, 0);
  6747. spin_unlock_irq(&rq->lock);
  6748. }
  6749. static DEFINE_MUTEX(shares_mutex);
  6750. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6751. {
  6752. int i;
  6753. unsigned long flags;
  6754. /*
  6755. * A weight of 0 or 1 can cause arithmetics problems.
  6756. * (The default weight is 1024 - so there's no practical
  6757. * limitation from this.)
  6758. */
  6759. if (shares < 2)
  6760. shares = 2;
  6761. mutex_lock(&shares_mutex);
  6762. if (tg->shares == shares)
  6763. goto done;
  6764. spin_lock_irqsave(&task_group_lock, flags);
  6765. for_each_possible_cpu(i)
  6766. unregister_fair_sched_group(tg, i);
  6767. spin_unlock_irqrestore(&task_group_lock, flags);
  6768. /* wait for any ongoing reference to this group to finish */
  6769. synchronize_sched();
  6770. /*
  6771. * Now we are free to modify the group's share on each cpu
  6772. * w/o tripping rebalance_share or load_balance_fair.
  6773. */
  6774. tg->shares = shares;
  6775. for_each_possible_cpu(i)
  6776. set_se_shares(tg->se[i], shares);
  6777. /*
  6778. * Enable load balance activity on this group, by inserting it back on
  6779. * each cpu's rq->leaf_cfs_rq_list.
  6780. */
  6781. spin_lock_irqsave(&task_group_lock, flags);
  6782. for_each_possible_cpu(i)
  6783. register_fair_sched_group(tg, i);
  6784. spin_unlock_irqrestore(&task_group_lock, flags);
  6785. done:
  6786. mutex_unlock(&shares_mutex);
  6787. return 0;
  6788. }
  6789. unsigned long sched_group_shares(struct task_group *tg)
  6790. {
  6791. return tg->shares;
  6792. }
  6793. #endif
  6794. #ifdef CONFIG_RT_GROUP_SCHED
  6795. /*
  6796. * Ensure that the real time constraints are schedulable.
  6797. */
  6798. static DEFINE_MUTEX(rt_constraints_mutex);
  6799. static unsigned long to_ratio(u64 period, u64 runtime)
  6800. {
  6801. if (runtime == RUNTIME_INF)
  6802. return 1ULL << 16;
  6803. return div64_64(runtime << 16, period);
  6804. }
  6805. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6806. {
  6807. struct task_group *tgi;
  6808. unsigned long total = 0;
  6809. unsigned long global_ratio =
  6810. to_ratio(global_rt_period(), global_rt_runtime());
  6811. rcu_read_lock();
  6812. list_for_each_entry_rcu(tgi, &task_groups, list) {
  6813. if (tgi == tg)
  6814. continue;
  6815. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  6816. tgi->rt_bandwidth.rt_runtime);
  6817. }
  6818. rcu_read_unlock();
  6819. return total + to_ratio(period, runtime) < global_ratio;
  6820. }
  6821. /* Must be called with tasklist_lock held */
  6822. static inline int tg_has_rt_tasks(struct task_group *tg)
  6823. {
  6824. struct task_struct *g, *p;
  6825. do_each_thread(g, p) {
  6826. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  6827. return 1;
  6828. } while_each_thread(g, p);
  6829. return 0;
  6830. }
  6831. static int tg_set_bandwidth(struct task_group *tg,
  6832. u64 rt_period, u64 rt_runtime)
  6833. {
  6834. int i, err = 0;
  6835. mutex_lock(&rt_constraints_mutex);
  6836. read_lock(&tasklist_lock);
  6837. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  6838. err = -EBUSY;
  6839. goto unlock;
  6840. }
  6841. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  6842. err = -EINVAL;
  6843. goto unlock;
  6844. }
  6845. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6846. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6847. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6848. for_each_possible_cpu(i) {
  6849. struct rt_rq *rt_rq = tg->rt_rq[i];
  6850. spin_lock(&rt_rq->rt_runtime_lock);
  6851. rt_rq->rt_runtime = rt_runtime;
  6852. spin_unlock(&rt_rq->rt_runtime_lock);
  6853. }
  6854. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6855. unlock:
  6856. read_unlock(&tasklist_lock);
  6857. mutex_unlock(&rt_constraints_mutex);
  6858. return err;
  6859. }
  6860. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6861. {
  6862. u64 rt_runtime, rt_period;
  6863. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6864. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6865. if (rt_runtime_us < 0)
  6866. rt_runtime = RUNTIME_INF;
  6867. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  6868. }
  6869. long sched_group_rt_runtime(struct task_group *tg)
  6870. {
  6871. u64 rt_runtime_us;
  6872. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6873. return -1;
  6874. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6875. do_div(rt_runtime_us, NSEC_PER_USEC);
  6876. return rt_runtime_us;
  6877. }
  6878. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6879. {
  6880. u64 rt_runtime, rt_period;
  6881. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6882. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6883. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  6884. }
  6885. long sched_group_rt_period(struct task_group *tg)
  6886. {
  6887. u64 rt_period_us;
  6888. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6889. do_div(rt_period_us, NSEC_PER_USEC);
  6890. return rt_period_us;
  6891. }
  6892. static int sched_rt_global_constraints(void)
  6893. {
  6894. int ret = 0;
  6895. mutex_lock(&rt_constraints_mutex);
  6896. if (!__rt_schedulable(NULL, 1, 0))
  6897. ret = -EINVAL;
  6898. mutex_unlock(&rt_constraints_mutex);
  6899. return ret;
  6900. }
  6901. #else
  6902. static int sched_rt_global_constraints(void)
  6903. {
  6904. unsigned long flags;
  6905. int i;
  6906. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6907. for_each_possible_cpu(i) {
  6908. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6909. spin_lock(&rt_rq->rt_runtime_lock);
  6910. rt_rq->rt_runtime = global_rt_runtime();
  6911. spin_unlock(&rt_rq->rt_runtime_lock);
  6912. }
  6913. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6914. return 0;
  6915. }
  6916. #endif
  6917. int sched_rt_handler(struct ctl_table *table, int write,
  6918. struct file *filp, void __user *buffer, size_t *lenp,
  6919. loff_t *ppos)
  6920. {
  6921. int ret;
  6922. int old_period, old_runtime;
  6923. static DEFINE_MUTEX(mutex);
  6924. mutex_lock(&mutex);
  6925. old_period = sysctl_sched_rt_period;
  6926. old_runtime = sysctl_sched_rt_runtime;
  6927. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  6928. if (!ret && write) {
  6929. ret = sched_rt_global_constraints();
  6930. if (ret) {
  6931. sysctl_sched_rt_period = old_period;
  6932. sysctl_sched_rt_runtime = old_runtime;
  6933. } else {
  6934. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6935. def_rt_bandwidth.rt_period =
  6936. ns_to_ktime(global_rt_period());
  6937. }
  6938. }
  6939. mutex_unlock(&mutex);
  6940. return ret;
  6941. }
  6942. #ifdef CONFIG_CGROUP_SCHED
  6943. /* return corresponding task_group object of a cgroup */
  6944. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6945. {
  6946. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6947. struct task_group, css);
  6948. }
  6949. static struct cgroup_subsys_state *
  6950. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6951. {
  6952. struct task_group *tg;
  6953. if (!cgrp->parent) {
  6954. /* This is early initialization for the top cgroup */
  6955. init_task_group.css.cgroup = cgrp;
  6956. return &init_task_group.css;
  6957. }
  6958. /* we support only 1-level deep hierarchical scheduler atm */
  6959. if (cgrp->parent->parent)
  6960. return ERR_PTR(-EINVAL);
  6961. tg = sched_create_group();
  6962. if (IS_ERR(tg))
  6963. return ERR_PTR(-ENOMEM);
  6964. /* Bind the cgroup to task_group object we just created */
  6965. tg->css.cgroup = cgrp;
  6966. return &tg->css;
  6967. }
  6968. static void
  6969. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6970. {
  6971. struct task_group *tg = cgroup_tg(cgrp);
  6972. sched_destroy_group(tg);
  6973. }
  6974. static int
  6975. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6976. struct task_struct *tsk)
  6977. {
  6978. #ifdef CONFIG_RT_GROUP_SCHED
  6979. /* Don't accept realtime tasks when there is no way for them to run */
  6980. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  6981. return -EINVAL;
  6982. #else
  6983. /* We don't support RT-tasks being in separate groups */
  6984. if (tsk->sched_class != &fair_sched_class)
  6985. return -EINVAL;
  6986. #endif
  6987. return 0;
  6988. }
  6989. static void
  6990. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6991. struct cgroup *old_cont, struct task_struct *tsk)
  6992. {
  6993. sched_move_task(tsk);
  6994. }
  6995. #ifdef CONFIG_FAIR_GROUP_SCHED
  6996. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6997. u64 shareval)
  6998. {
  6999. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7000. }
  7001. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7002. {
  7003. struct task_group *tg = cgroup_tg(cgrp);
  7004. return (u64) tg->shares;
  7005. }
  7006. #endif
  7007. #ifdef CONFIG_RT_GROUP_SCHED
  7008. static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7009. struct file *file,
  7010. const char __user *userbuf,
  7011. size_t nbytes, loff_t *unused_ppos)
  7012. {
  7013. char buffer[64];
  7014. int retval = 0;
  7015. s64 val;
  7016. char *end;
  7017. if (!nbytes)
  7018. return -EINVAL;
  7019. if (nbytes >= sizeof(buffer))
  7020. return -E2BIG;
  7021. if (copy_from_user(buffer, userbuf, nbytes))
  7022. return -EFAULT;
  7023. buffer[nbytes] = 0; /* nul-terminate */
  7024. /* strip newline if necessary */
  7025. if (nbytes && (buffer[nbytes-1] == '\n'))
  7026. buffer[nbytes-1] = 0;
  7027. val = simple_strtoll(buffer, &end, 0);
  7028. if (*end)
  7029. return -EINVAL;
  7030. /* Pass to subsystem */
  7031. retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7032. if (!retval)
  7033. retval = nbytes;
  7034. return retval;
  7035. }
  7036. static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
  7037. struct file *file,
  7038. char __user *buf, size_t nbytes,
  7039. loff_t *ppos)
  7040. {
  7041. char tmp[64];
  7042. long val = sched_group_rt_runtime(cgroup_tg(cgrp));
  7043. int len = sprintf(tmp, "%ld\n", val);
  7044. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  7045. }
  7046. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7047. u64 rt_period_us)
  7048. {
  7049. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7050. }
  7051. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7052. {
  7053. return sched_group_rt_period(cgroup_tg(cgrp));
  7054. }
  7055. #endif
  7056. static struct cftype cpu_files[] = {
  7057. #ifdef CONFIG_FAIR_GROUP_SCHED
  7058. {
  7059. .name = "shares",
  7060. .read_uint = cpu_shares_read_uint,
  7061. .write_uint = cpu_shares_write_uint,
  7062. },
  7063. #endif
  7064. #ifdef CONFIG_RT_GROUP_SCHED
  7065. {
  7066. .name = "rt_runtime_us",
  7067. .read = cpu_rt_runtime_read,
  7068. .write = cpu_rt_runtime_write,
  7069. },
  7070. {
  7071. .name = "rt_period_us",
  7072. .read_uint = cpu_rt_period_read_uint,
  7073. .write_uint = cpu_rt_period_write_uint,
  7074. },
  7075. #endif
  7076. };
  7077. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7078. {
  7079. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7080. }
  7081. struct cgroup_subsys cpu_cgroup_subsys = {
  7082. .name = "cpu",
  7083. .create = cpu_cgroup_create,
  7084. .destroy = cpu_cgroup_destroy,
  7085. .can_attach = cpu_cgroup_can_attach,
  7086. .attach = cpu_cgroup_attach,
  7087. .populate = cpu_cgroup_populate,
  7088. .subsys_id = cpu_cgroup_subsys_id,
  7089. .early_init = 1,
  7090. };
  7091. #endif /* CONFIG_CGROUP_SCHED */
  7092. #ifdef CONFIG_CGROUP_CPUACCT
  7093. /*
  7094. * CPU accounting code for task groups.
  7095. *
  7096. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7097. * (balbir@in.ibm.com).
  7098. */
  7099. /* track cpu usage of a group of tasks */
  7100. struct cpuacct {
  7101. struct cgroup_subsys_state css;
  7102. /* cpuusage holds pointer to a u64-type object on every cpu */
  7103. u64 *cpuusage;
  7104. };
  7105. struct cgroup_subsys cpuacct_subsys;
  7106. /* return cpu accounting group corresponding to this container */
  7107. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7108. {
  7109. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7110. struct cpuacct, css);
  7111. }
  7112. /* return cpu accounting group to which this task belongs */
  7113. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7114. {
  7115. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7116. struct cpuacct, css);
  7117. }
  7118. /* create a new cpu accounting group */
  7119. static struct cgroup_subsys_state *cpuacct_create(
  7120. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7121. {
  7122. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7123. if (!ca)
  7124. return ERR_PTR(-ENOMEM);
  7125. ca->cpuusage = alloc_percpu(u64);
  7126. if (!ca->cpuusage) {
  7127. kfree(ca);
  7128. return ERR_PTR(-ENOMEM);
  7129. }
  7130. return &ca->css;
  7131. }
  7132. /* destroy an existing cpu accounting group */
  7133. static void
  7134. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7135. {
  7136. struct cpuacct *ca = cgroup_ca(cgrp);
  7137. free_percpu(ca->cpuusage);
  7138. kfree(ca);
  7139. }
  7140. /* return total cpu usage (in nanoseconds) of a group */
  7141. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7142. {
  7143. struct cpuacct *ca = cgroup_ca(cgrp);
  7144. u64 totalcpuusage = 0;
  7145. int i;
  7146. for_each_possible_cpu(i) {
  7147. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7148. /*
  7149. * Take rq->lock to make 64-bit addition safe on 32-bit
  7150. * platforms.
  7151. */
  7152. spin_lock_irq(&cpu_rq(i)->lock);
  7153. totalcpuusage += *cpuusage;
  7154. spin_unlock_irq(&cpu_rq(i)->lock);
  7155. }
  7156. return totalcpuusage;
  7157. }
  7158. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7159. u64 reset)
  7160. {
  7161. struct cpuacct *ca = cgroup_ca(cgrp);
  7162. int err = 0;
  7163. int i;
  7164. if (reset) {
  7165. err = -EINVAL;
  7166. goto out;
  7167. }
  7168. for_each_possible_cpu(i) {
  7169. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7170. spin_lock_irq(&cpu_rq(i)->lock);
  7171. *cpuusage = 0;
  7172. spin_unlock_irq(&cpu_rq(i)->lock);
  7173. }
  7174. out:
  7175. return err;
  7176. }
  7177. static struct cftype files[] = {
  7178. {
  7179. .name = "usage",
  7180. .read_uint = cpuusage_read,
  7181. .write_uint = cpuusage_write,
  7182. },
  7183. };
  7184. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7185. {
  7186. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7187. }
  7188. /*
  7189. * charge this task's execution time to its accounting group.
  7190. *
  7191. * called with rq->lock held.
  7192. */
  7193. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7194. {
  7195. struct cpuacct *ca;
  7196. if (!cpuacct_subsys.active)
  7197. return;
  7198. ca = task_ca(tsk);
  7199. if (ca) {
  7200. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7201. *cpuusage += cputime;
  7202. }
  7203. }
  7204. struct cgroup_subsys cpuacct_subsys = {
  7205. .name = "cpuacct",
  7206. .create = cpuacct_create,
  7207. .destroy = cpuacct_destroy,
  7208. .populate = cpuacct_populate,
  7209. .subsys_id = cpuacct_subsys_id,
  7210. };
  7211. #endif /* CONFIG_CGROUP_CPUACCT */