cpuid.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. * cpuid support routines
  4. *
  5. * derived from arch/x86/kvm/x86.c
  6. *
  7. * Copyright 2011 Red Hat, Inc. and/or its affiliates.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * This work is licensed under the terms of the GNU GPL, version 2. See
  11. * the COPYING file in the top-level directory.
  12. *
  13. */
  14. #include <linux/kvm_host.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/uaccess.h>
  18. #include <asm/user.h>
  19. #include <asm/xsave.h>
  20. #include "cpuid.h"
  21. #include "lapic.h"
  22. #include "mmu.h"
  23. #include "trace.h"
  24. static u32 xstate_required_size(u64 xstate_bv)
  25. {
  26. int feature_bit = 0;
  27. u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  28. xstate_bv &= ~XSTATE_FPSSE;
  29. while (xstate_bv) {
  30. if (xstate_bv & 0x1) {
  31. u32 eax, ebx, ecx, edx;
  32. cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
  33. ret = max(ret, eax + ebx);
  34. }
  35. xstate_bv >>= 1;
  36. feature_bit++;
  37. }
  38. return ret;
  39. }
  40. void kvm_update_cpuid(struct kvm_vcpu *vcpu)
  41. {
  42. struct kvm_cpuid_entry2 *best;
  43. struct kvm_lapic *apic = vcpu->arch.apic;
  44. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  45. if (!best)
  46. return;
  47. /* Update OSXSAVE bit */
  48. if (cpu_has_xsave && best->function == 0x1) {
  49. best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
  50. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  51. best->ecx |= bit(X86_FEATURE_OSXSAVE);
  52. }
  53. if (apic) {
  54. if (best->ecx & bit(X86_FEATURE_TSC_DEADLINE_TIMER))
  55. apic->lapic_timer.timer_mode_mask = 3 << 17;
  56. else
  57. apic->lapic_timer.timer_mode_mask = 1 << 17;
  58. }
  59. best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
  60. if (!best) {
  61. vcpu->arch.guest_supported_xcr0 = 0;
  62. vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  63. } else {
  64. vcpu->arch.guest_supported_xcr0 =
  65. (best->eax | ((u64)best->edx << 32)) &
  66. host_xcr0 & KVM_SUPPORTED_XCR0;
  67. vcpu->arch.guest_xstate_size =
  68. xstate_required_size(vcpu->arch.guest_supported_xcr0);
  69. }
  70. kvm_pmu_cpuid_update(vcpu);
  71. }
  72. static int is_efer_nx(void)
  73. {
  74. unsigned long long efer = 0;
  75. rdmsrl_safe(MSR_EFER, &efer);
  76. return efer & EFER_NX;
  77. }
  78. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  79. {
  80. int i;
  81. struct kvm_cpuid_entry2 *e, *entry;
  82. entry = NULL;
  83. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  84. e = &vcpu->arch.cpuid_entries[i];
  85. if (e->function == 0x80000001) {
  86. entry = e;
  87. break;
  88. }
  89. }
  90. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  91. entry->edx &= ~(1 << 20);
  92. printk(KERN_INFO "kvm: guest NX capability removed\n");
  93. }
  94. }
  95. /* when an old userspace process fills a new kernel module */
  96. int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  97. struct kvm_cpuid *cpuid,
  98. struct kvm_cpuid_entry __user *entries)
  99. {
  100. int r, i;
  101. struct kvm_cpuid_entry *cpuid_entries;
  102. r = -E2BIG;
  103. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  104. goto out;
  105. r = -ENOMEM;
  106. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  107. if (!cpuid_entries)
  108. goto out;
  109. r = -EFAULT;
  110. if (copy_from_user(cpuid_entries, entries,
  111. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  112. goto out_free;
  113. for (i = 0; i < cpuid->nent; i++) {
  114. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  115. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  116. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  117. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  118. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  119. vcpu->arch.cpuid_entries[i].index = 0;
  120. vcpu->arch.cpuid_entries[i].flags = 0;
  121. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  122. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  123. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  124. }
  125. vcpu->arch.cpuid_nent = cpuid->nent;
  126. cpuid_fix_nx_cap(vcpu);
  127. r = 0;
  128. kvm_apic_set_version(vcpu);
  129. kvm_x86_ops->cpuid_update(vcpu);
  130. kvm_update_cpuid(vcpu);
  131. out_free:
  132. vfree(cpuid_entries);
  133. out:
  134. return r;
  135. }
  136. int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  137. struct kvm_cpuid2 *cpuid,
  138. struct kvm_cpuid_entry2 __user *entries)
  139. {
  140. int r;
  141. r = -E2BIG;
  142. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  143. goto out;
  144. r = -EFAULT;
  145. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  146. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  147. goto out;
  148. vcpu->arch.cpuid_nent = cpuid->nent;
  149. kvm_apic_set_version(vcpu);
  150. kvm_x86_ops->cpuid_update(vcpu);
  151. kvm_update_cpuid(vcpu);
  152. return 0;
  153. out:
  154. return r;
  155. }
  156. int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  157. struct kvm_cpuid2 *cpuid,
  158. struct kvm_cpuid_entry2 __user *entries)
  159. {
  160. int r;
  161. r = -E2BIG;
  162. if (cpuid->nent < vcpu->arch.cpuid_nent)
  163. goto out;
  164. r = -EFAULT;
  165. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  166. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  167. goto out;
  168. return 0;
  169. out:
  170. cpuid->nent = vcpu->arch.cpuid_nent;
  171. return r;
  172. }
  173. static void cpuid_mask(u32 *word, int wordnum)
  174. {
  175. *word &= boot_cpu_data.x86_capability[wordnum];
  176. }
  177. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  178. u32 index)
  179. {
  180. entry->function = function;
  181. entry->index = index;
  182. cpuid_count(entry->function, entry->index,
  183. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  184. entry->flags = 0;
  185. }
  186. static bool supported_xcr0_bit(unsigned bit)
  187. {
  188. u64 mask = ((u64)1 << bit);
  189. return mask & KVM_SUPPORTED_XCR0 & host_xcr0;
  190. }
  191. #define F(x) bit(X86_FEATURE_##x)
  192. static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  193. u32 index, int *nent, int maxnent)
  194. {
  195. int r;
  196. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  197. #ifdef CONFIG_X86_64
  198. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  199. ? F(GBPAGES) : 0;
  200. unsigned f_lm = F(LM);
  201. #else
  202. unsigned f_gbpages = 0;
  203. unsigned f_lm = 0;
  204. #endif
  205. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  206. unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
  207. /* cpuid 1.edx */
  208. const u32 kvm_supported_word0_x86_features =
  209. F(FPU) | F(VME) | F(DE) | F(PSE) |
  210. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  211. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  212. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  213. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  214. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  215. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  216. 0 /* HTT, TM, Reserved, PBE */;
  217. /* cpuid 0x80000001.edx */
  218. const u32 kvm_supported_word1_x86_features =
  219. F(FPU) | F(VME) | F(DE) | F(PSE) |
  220. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  221. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  222. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  223. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  224. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  225. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  226. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  227. /* cpuid 1.ecx */
  228. const u32 kvm_supported_word4_x86_features =
  229. F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
  230. 0 /* DS-CPL, VMX, SMX, EST */ |
  231. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  232. F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
  233. F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
  234. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  235. 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
  236. F(F16C) | F(RDRAND);
  237. /* cpuid 0x80000001.ecx */
  238. const u32 kvm_supported_word6_x86_features =
  239. F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
  240. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  241. F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
  242. 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
  243. /* cpuid 0xC0000001.edx */
  244. const u32 kvm_supported_word5_x86_features =
  245. F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
  246. F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
  247. F(PMM) | F(PMM_EN);
  248. /* cpuid 7.0.ebx */
  249. const u32 kvm_supported_word9_x86_features =
  250. F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
  251. F(BMI2) | F(ERMS) | f_invpcid | F(RTM);
  252. /* all calls to cpuid_count() should be made on the same cpu */
  253. get_cpu();
  254. r = -E2BIG;
  255. if (*nent >= maxnent)
  256. goto out;
  257. do_cpuid_1_ent(entry, function, index);
  258. ++*nent;
  259. switch (function) {
  260. case 0:
  261. entry->eax = min(entry->eax, (u32)0xd);
  262. break;
  263. case 1:
  264. entry->edx &= kvm_supported_word0_x86_features;
  265. cpuid_mask(&entry->edx, 0);
  266. entry->ecx &= kvm_supported_word4_x86_features;
  267. cpuid_mask(&entry->ecx, 4);
  268. /* we support x2apic emulation even if host does not support
  269. * it since we emulate x2apic in software */
  270. entry->ecx |= F(X2APIC);
  271. break;
  272. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  273. * may return different values. This forces us to get_cpu() before
  274. * issuing the first command, and also to emulate this annoying behavior
  275. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  276. case 2: {
  277. int t, times = entry->eax & 0xff;
  278. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  279. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  280. for (t = 1; t < times; ++t) {
  281. if (*nent >= maxnent)
  282. goto out;
  283. do_cpuid_1_ent(&entry[t], function, 0);
  284. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  285. ++*nent;
  286. }
  287. break;
  288. }
  289. /* function 4 has additional index. */
  290. case 4: {
  291. int i, cache_type;
  292. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  293. /* read more entries until cache_type is zero */
  294. for (i = 1; ; ++i) {
  295. if (*nent >= maxnent)
  296. goto out;
  297. cache_type = entry[i - 1].eax & 0x1f;
  298. if (!cache_type)
  299. break;
  300. do_cpuid_1_ent(&entry[i], function, i);
  301. entry[i].flags |=
  302. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  303. ++*nent;
  304. }
  305. break;
  306. }
  307. case 7: {
  308. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  309. /* Mask ebx against host capability word 9 */
  310. if (index == 0) {
  311. entry->ebx &= kvm_supported_word9_x86_features;
  312. cpuid_mask(&entry->ebx, 9);
  313. // TSC_ADJUST is emulated
  314. entry->ebx |= F(TSC_ADJUST);
  315. } else
  316. entry->ebx = 0;
  317. entry->eax = 0;
  318. entry->ecx = 0;
  319. entry->edx = 0;
  320. break;
  321. }
  322. case 9:
  323. break;
  324. case 0xa: { /* Architectural Performance Monitoring */
  325. struct x86_pmu_capability cap;
  326. union cpuid10_eax eax;
  327. union cpuid10_edx edx;
  328. perf_get_x86_pmu_capability(&cap);
  329. /*
  330. * Only support guest architectural pmu on a host
  331. * with architectural pmu.
  332. */
  333. if (!cap.version)
  334. memset(&cap, 0, sizeof(cap));
  335. eax.split.version_id = min(cap.version, 2);
  336. eax.split.num_counters = cap.num_counters_gp;
  337. eax.split.bit_width = cap.bit_width_gp;
  338. eax.split.mask_length = cap.events_mask_len;
  339. edx.split.num_counters_fixed = cap.num_counters_fixed;
  340. edx.split.bit_width_fixed = cap.bit_width_fixed;
  341. edx.split.reserved = 0;
  342. entry->eax = eax.full;
  343. entry->ebx = cap.events_mask;
  344. entry->ecx = 0;
  345. entry->edx = edx.full;
  346. break;
  347. }
  348. /* function 0xb has additional index. */
  349. case 0xb: {
  350. int i, level_type;
  351. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  352. /* read more entries until level_type is zero */
  353. for (i = 1; ; ++i) {
  354. if (*nent >= maxnent)
  355. goto out;
  356. level_type = entry[i - 1].ecx & 0xff00;
  357. if (!level_type)
  358. break;
  359. do_cpuid_1_ent(&entry[i], function, i);
  360. entry[i].flags |=
  361. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  362. ++*nent;
  363. }
  364. break;
  365. }
  366. case 0xd: {
  367. int idx, i;
  368. entry->eax &= host_xcr0 & KVM_SUPPORTED_XCR0;
  369. entry->edx &= (host_xcr0 & KVM_SUPPORTED_XCR0) >> 32;
  370. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  371. for (idx = 1, i = 1; idx < 64; ++idx) {
  372. if (*nent >= maxnent)
  373. goto out;
  374. do_cpuid_1_ent(&entry[i], function, idx);
  375. if (entry[i].eax == 0 || !supported_xcr0_bit(idx))
  376. continue;
  377. entry[i].flags |=
  378. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  379. ++*nent;
  380. ++i;
  381. }
  382. break;
  383. }
  384. case KVM_CPUID_SIGNATURE: {
  385. static const char signature[12] = "KVMKVMKVM\0\0";
  386. const u32 *sigptr = (const u32 *)signature;
  387. entry->eax = KVM_CPUID_FEATURES;
  388. entry->ebx = sigptr[0];
  389. entry->ecx = sigptr[1];
  390. entry->edx = sigptr[2];
  391. break;
  392. }
  393. case KVM_CPUID_FEATURES:
  394. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  395. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  396. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  397. (1 << KVM_FEATURE_ASYNC_PF) |
  398. (1 << KVM_FEATURE_PV_EOI) |
  399. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
  400. (1 << KVM_FEATURE_PV_UNHALT);
  401. if (sched_info_on())
  402. entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
  403. entry->ebx = 0;
  404. entry->ecx = 0;
  405. entry->edx = 0;
  406. break;
  407. case 0x80000000:
  408. entry->eax = min(entry->eax, 0x8000001a);
  409. break;
  410. case 0x80000001:
  411. entry->edx &= kvm_supported_word1_x86_features;
  412. cpuid_mask(&entry->edx, 1);
  413. entry->ecx &= kvm_supported_word6_x86_features;
  414. cpuid_mask(&entry->ecx, 6);
  415. break;
  416. case 0x80000008: {
  417. unsigned g_phys_as = (entry->eax >> 16) & 0xff;
  418. unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
  419. unsigned phys_as = entry->eax & 0xff;
  420. if (!g_phys_as)
  421. g_phys_as = phys_as;
  422. entry->eax = g_phys_as | (virt_as << 8);
  423. entry->ebx = entry->edx = 0;
  424. break;
  425. }
  426. case 0x80000019:
  427. entry->ecx = entry->edx = 0;
  428. break;
  429. case 0x8000001a:
  430. break;
  431. case 0x8000001d:
  432. break;
  433. /*Add support for Centaur's CPUID instruction*/
  434. case 0xC0000000:
  435. /*Just support up to 0xC0000004 now*/
  436. entry->eax = min(entry->eax, 0xC0000004);
  437. break;
  438. case 0xC0000001:
  439. entry->edx &= kvm_supported_word5_x86_features;
  440. cpuid_mask(&entry->edx, 5);
  441. break;
  442. case 3: /* Processor serial number */
  443. case 5: /* MONITOR/MWAIT */
  444. case 6: /* Thermal management */
  445. case 0x80000007: /* Advanced power management */
  446. case 0xC0000002:
  447. case 0xC0000003:
  448. case 0xC0000004:
  449. default:
  450. entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
  451. break;
  452. }
  453. kvm_x86_ops->set_supported_cpuid(function, entry);
  454. r = 0;
  455. out:
  456. put_cpu();
  457. return r;
  458. }
  459. #undef F
  460. struct kvm_cpuid_param {
  461. u32 func;
  462. u32 idx;
  463. bool has_leaf_count;
  464. bool (*qualifier)(const struct kvm_cpuid_param *param);
  465. };
  466. static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
  467. {
  468. return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
  469. }
  470. int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  471. struct kvm_cpuid_entry2 __user *entries)
  472. {
  473. struct kvm_cpuid_entry2 *cpuid_entries;
  474. int limit, nent = 0, r = -E2BIG, i;
  475. u32 func;
  476. static const struct kvm_cpuid_param param[] = {
  477. { .func = 0, .has_leaf_count = true },
  478. { .func = 0x80000000, .has_leaf_count = true },
  479. { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
  480. { .func = KVM_CPUID_SIGNATURE },
  481. { .func = KVM_CPUID_FEATURES },
  482. };
  483. if (cpuid->nent < 1)
  484. goto out;
  485. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  486. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  487. r = -ENOMEM;
  488. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  489. if (!cpuid_entries)
  490. goto out;
  491. r = 0;
  492. for (i = 0; i < ARRAY_SIZE(param); i++) {
  493. const struct kvm_cpuid_param *ent = &param[i];
  494. if (ent->qualifier && !ent->qualifier(ent))
  495. continue;
  496. r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
  497. &nent, cpuid->nent);
  498. if (r)
  499. goto out_free;
  500. if (!ent->has_leaf_count)
  501. continue;
  502. limit = cpuid_entries[nent - 1].eax;
  503. for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
  504. r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
  505. &nent, cpuid->nent);
  506. if (r)
  507. goto out_free;
  508. }
  509. r = -EFAULT;
  510. if (copy_to_user(entries, cpuid_entries,
  511. nent * sizeof(struct kvm_cpuid_entry2)))
  512. goto out_free;
  513. cpuid->nent = nent;
  514. r = 0;
  515. out_free:
  516. vfree(cpuid_entries);
  517. out:
  518. return r;
  519. }
  520. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  521. {
  522. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  523. int j, nent = vcpu->arch.cpuid_nent;
  524. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  525. /* when no next entry is found, the current entry[i] is reselected */
  526. for (j = i + 1; ; j = (j + 1) % nent) {
  527. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  528. if (ej->function == e->function) {
  529. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  530. return j;
  531. }
  532. }
  533. return 0; /* silence gcc, even though control never reaches here */
  534. }
  535. /* find an entry with matching function, matching index (if needed), and that
  536. * should be read next (if it's stateful) */
  537. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  538. u32 function, u32 index)
  539. {
  540. if (e->function != function)
  541. return 0;
  542. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  543. return 0;
  544. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  545. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  546. return 0;
  547. return 1;
  548. }
  549. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  550. u32 function, u32 index)
  551. {
  552. int i;
  553. struct kvm_cpuid_entry2 *best = NULL;
  554. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  555. struct kvm_cpuid_entry2 *e;
  556. e = &vcpu->arch.cpuid_entries[i];
  557. if (is_matching_cpuid_entry(e, function, index)) {
  558. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  559. move_to_next_stateful_cpuid_entry(vcpu, i);
  560. best = e;
  561. break;
  562. }
  563. }
  564. return best;
  565. }
  566. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  567. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  568. {
  569. struct kvm_cpuid_entry2 *best;
  570. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  571. if (!best || best->eax < 0x80000008)
  572. goto not_found;
  573. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  574. if (best)
  575. return best->eax & 0xff;
  576. not_found:
  577. return 36;
  578. }
  579. /*
  580. * If no match is found, check whether we exceed the vCPU's limit
  581. * and return the content of the highest valid _standard_ leaf instead.
  582. * This is to satisfy the CPUID specification.
  583. */
  584. static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
  585. u32 function, u32 index)
  586. {
  587. struct kvm_cpuid_entry2 *maxlevel;
  588. maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
  589. if (!maxlevel || maxlevel->eax >= function)
  590. return NULL;
  591. if (function & 0x80000000) {
  592. maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
  593. if (!maxlevel)
  594. return NULL;
  595. }
  596. return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
  597. }
  598. void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
  599. {
  600. u32 function = *eax, index = *ecx;
  601. struct kvm_cpuid_entry2 *best;
  602. best = kvm_find_cpuid_entry(vcpu, function, index);
  603. if (!best)
  604. best = check_cpuid_limit(vcpu, function, index);
  605. if (best) {
  606. *eax = best->eax;
  607. *ebx = best->ebx;
  608. *ecx = best->ecx;
  609. *edx = best->edx;
  610. } else
  611. *eax = *ebx = *ecx = *edx = 0;
  612. }
  613. EXPORT_SYMBOL_GPL(kvm_cpuid);
  614. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  615. {
  616. u32 function, eax, ebx, ecx, edx;
  617. function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  618. ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  619. kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
  620. kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
  621. kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
  622. kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
  623. kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
  624. kvm_x86_ops->skip_emulated_instruction(vcpu);
  625. trace_kvm_cpuid(function, eax, ebx, ecx, edx);
  626. }
  627. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);