sched_fair.c 107 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. /*
  25. * Targeted preemption latency for CPU-bound tasks:
  26. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  27. *
  28. * NOTE: this latency value is not the same as the concept of
  29. * 'timeslice length' - timeslices in CFS are of variable length
  30. * and have no persistent notion like in traditional, time-slice
  31. * based scheduling concepts.
  32. *
  33. * (to see the precise effective timeslice length of your workload,
  34. * run vmstat and monitor the context-switches (cs) field)
  35. */
  36. unsigned int sysctl_sched_latency = 6000000ULL;
  37. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  38. /*
  39. * The initial- and re-scaling of tunables is configurable
  40. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  41. *
  42. * Options are:
  43. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  44. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  45. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  46. */
  47. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  48. = SCHED_TUNABLESCALING_LOG;
  49. /*
  50. * Minimal preemption granularity for CPU-bound tasks:
  51. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  52. */
  53. unsigned int sysctl_sched_min_granularity = 750000ULL;
  54. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  55. /*
  56. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  57. */
  58. static unsigned int sched_nr_latency = 8;
  59. /*
  60. * After fork, child runs first. If set to 0 (default) then
  61. * parent will (try to) run first.
  62. */
  63. unsigned int sysctl_sched_child_runs_first __read_mostly;
  64. /*
  65. * sys_sched_yield() compat mode
  66. *
  67. * This option switches the agressive yield implementation of the
  68. * old scheduler back on.
  69. */
  70. unsigned int __read_mostly sysctl_sched_compat_yield;
  71. /*
  72. * SCHED_OTHER wake-up granularity.
  73. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  74. *
  75. * This option delays the preemption effects of decoupled workloads
  76. * and reduces their over-scheduling. Synchronous workloads will still
  77. * have immediate wakeup/sleep latencies.
  78. */
  79. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  80. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  81. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  82. /*
  83. * The exponential sliding window over which load is averaged for shares
  84. * distribution.
  85. * (default: 10msec)
  86. */
  87. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  88. static const struct sched_class fair_sched_class;
  89. /**************************************************************
  90. * CFS operations on generic schedulable entities:
  91. */
  92. #ifdef CONFIG_FAIR_GROUP_SCHED
  93. /* cpu runqueue to which this cfs_rq is attached */
  94. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  95. {
  96. return cfs_rq->rq;
  97. }
  98. /* An entity is a task if it doesn't "own" a runqueue */
  99. #define entity_is_task(se) (!se->my_q)
  100. static inline struct task_struct *task_of(struct sched_entity *se)
  101. {
  102. #ifdef CONFIG_SCHED_DEBUG
  103. WARN_ON_ONCE(!entity_is_task(se));
  104. #endif
  105. return container_of(se, struct task_struct, se);
  106. }
  107. /* Walk up scheduling entities hierarchy */
  108. #define for_each_sched_entity(se) \
  109. for (; se; se = se->parent)
  110. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  111. {
  112. return p->se.cfs_rq;
  113. }
  114. /* runqueue on which this entity is (to be) queued */
  115. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  116. {
  117. return se->cfs_rq;
  118. }
  119. /* runqueue "owned" by this group */
  120. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  121. {
  122. return grp->my_q;
  123. }
  124. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  125. * another cpu ('this_cpu')
  126. */
  127. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  128. {
  129. return cfs_rq->tg->cfs_rq[this_cpu];
  130. }
  131. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  132. {
  133. if (!cfs_rq->on_list) {
  134. /*
  135. * Ensure we either appear before our parent (if already
  136. * enqueued) or force our parent to appear after us when it is
  137. * enqueued. The fact that we always enqueue bottom-up
  138. * reduces this to two cases.
  139. */
  140. if (cfs_rq->tg->parent &&
  141. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  142. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  143. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  144. } else {
  145. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  146. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  147. }
  148. cfs_rq->on_list = 1;
  149. }
  150. }
  151. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  152. {
  153. if (cfs_rq->on_list) {
  154. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  155. cfs_rq->on_list = 0;
  156. }
  157. }
  158. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  159. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  160. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  161. /* Do the two (enqueued) entities belong to the same group ? */
  162. static inline int
  163. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  164. {
  165. if (se->cfs_rq == pse->cfs_rq)
  166. return 1;
  167. return 0;
  168. }
  169. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  170. {
  171. return se->parent;
  172. }
  173. /* return depth at which a sched entity is present in the hierarchy */
  174. static inline int depth_se(struct sched_entity *se)
  175. {
  176. int depth = 0;
  177. for_each_sched_entity(se)
  178. depth++;
  179. return depth;
  180. }
  181. static void
  182. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  183. {
  184. int se_depth, pse_depth;
  185. /*
  186. * preemption test can be made between sibling entities who are in the
  187. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  188. * both tasks until we find their ancestors who are siblings of common
  189. * parent.
  190. */
  191. /* First walk up until both entities are at same depth */
  192. se_depth = depth_se(*se);
  193. pse_depth = depth_se(*pse);
  194. while (se_depth > pse_depth) {
  195. se_depth--;
  196. *se = parent_entity(*se);
  197. }
  198. while (pse_depth > se_depth) {
  199. pse_depth--;
  200. *pse = parent_entity(*pse);
  201. }
  202. while (!is_same_group(*se, *pse)) {
  203. *se = parent_entity(*se);
  204. *pse = parent_entity(*pse);
  205. }
  206. }
  207. #else /* !CONFIG_FAIR_GROUP_SCHED */
  208. static inline struct task_struct *task_of(struct sched_entity *se)
  209. {
  210. return container_of(se, struct task_struct, se);
  211. }
  212. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  213. {
  214. return container_of(cfs_rq, struct rq, cfs);
  215. }
  216. #define entity_is_task(se) 1
  217. #define for_each_sched_entity(se) \
  218. for (; se; se = NULL)
  219. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  220. {
  221. return &task_rq(p)->cfs;
  222. }
  223. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  224. {
  225. struct task_struct *p = task_of(se);
  226. struct rq *rq = task_rq(p);
  227. return &rq->cfs;
  228. }
  229. /* runqueue "owned" by this group */
  230. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  231. {
  232. return NULL;
  233. }
  234. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  235. {
  236. return &cpu_rq(this_cpu)->cfs;
  237. }
  238. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  239. {
  240. }
  241. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  242. {
  243. }
  244. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  245. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  246. static inline int
  247. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  248. {
  249. return 1;
  250. }
  251. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  252. {
  253. return NULL;
  254. }
  255. static inline void
  256. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  257. {
  258. }
  259. #endif /* CONFIG_FAIR_GROUP_SCHED */
  260. /**************************************************************
  261. * Scheduling class tree data structure manipulation methods:
  262. */
  263. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  264. {
  265. s64 delta = (s64)(vruntime - min_vruntime);
  266. if (delta > 0)
  267. min_vruntime = vruntime;
  268. return min_vruntime;
  269. }
  270. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  271. {
  272. s64 delta = (s64)(vruntime - min_vruntime);
  273. if (delta < 0)
  274. min_vruntime = vruntime;
  275. return min_vruntime;
  276. }
  277. static inline int entity_before(struct sched_entity *a,
  278. struct sched_entity *b)
  279. {
  280. return (s64)(a->vruntime - b->vruntime) < 0;
  281. }
  282. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  283. {
  284. return se->vruntime - cfs_rq->min_vruntime;
  285. }
  286. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  287. {
  288. u64 vruntime = cfs_rq->min_vruntime;
  289. if (cfs_rq->curr)
  290. vruntime = cfs_rq->curr->vruntime;
  291. if (cfs_rq->rb_leftmost) {
  292. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  293. struct sched_entity,
  294. run_node);
  295. if (!cfs_rq->curr)
  296. vruntime = se->vruntime;
  297. else
  298. vruntime = min_vruntime(vruntime, se->vruntime);
  299. }
  300. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  301. }
  302. /*
  303. * Enqueue an entity into the rb-tree:
  304. */
  305. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  306. {
  307. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  308. struct rb_node *parent = NULL;
  309. struct sched_entity *entry;
  310. s64 key = entity_key(cfs_rq, se);
  311. int leftmost = 1;
  312. /*
  313. * Find the right place in the rbtree:
  314. */
  315. while (*link) {
  316. parent = *link;
  317. entry = rb_entry(parent, struct sched_entity, run_node);
  318. /*
  319. * We dont care about collisions. Nodes with
  320. * the same key stay together.
  321. */
  322. if (key < entity_key(cfs_rq, entry)) {
  323. link = &parent->rb_left;
  324. } else {
  325. link = &parent->rb_right;
  326. leftmost = 0;
  327. }
  328. }
  329. /*
  330. * Maintain a cache of leftmost tree entries (it is frequently
  331. * used):
  332. */
  333. if (leftmost)
  334. cfs_rq->rb_leftmost = &se->run_node;
  335. rb_link_node(&se->run_node, parent, link);
  336. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  337. }
  338. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  339. {
  340. if (cfs_rq->rb_leftmost == &se->run_node) {
  341. struct rb_node *next_node;
  342. next_node = rb_next(&se->run_node);
  343. cfs_rq->rb_leftmost = next_node;
  344. }
  345. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  346. }
  347. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  348. {
  349. struct rb_node *left = cfs_rq->rb_leftmost;
  350. if (!left)
  351. return NULL;
  352. return rb_entry(left, struct sched_entity, run_node);
  353. }
  354. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  355. {
  356. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  357. if (!last)
  358. return NULL;
  359. return rb_entry(last, struct sched_entity, run_node);
  360. }
  361. /**************************************************************
  362. * Scheduling class statistics methods:
  363. */
  364. #ifdef CONFIG_SCHED_DEBUG
  365. int sched_proc_update_handler(struct ctl_table *table, int write,
  366. void __user *buffer, size_t *lenp,
  367. loff_t *ppos)
  368. {
  369. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  370. int factor = get_update_sysctl_factor();
  371. if (ret || !write)
  372. return ret;
  373. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  374. sysctl_sched_min_granularity);
  375. #define WRT_SYSCTL(name) \
  376. (normalized_sysctl_##name = sysctl_##name / (factor))
  377. WRT_SYSCTL(sched_min_granularity);
  378. WRT_SYSCTL(sched_latency);
  379. WRT_SYSCTL(sched_wakeup_granularity);
  380. #undef WRT_SYSCTL
  381. return 0;
  382. }
  383. #endif
  384. /*
  385. * delta /= w
  386. */
  387. static inline unsigned long
  388. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  389. {
  390. if (unlikely(se->load.weight != NICE_0_LOAD))
  391. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  392. return delta;
  393. }
  394. /*
  395. * The idea is to set a period in which each task runs once.
  396. *
  397. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  398. * this period because otherwise the slices get too small.
  399. *
  400. * p = (nr <= nl) ? l : l*nr/nl
  401. */
  402. static u64 __sched_period(unsigned long nr_running)
  403. {
  404. u64 period = sysctl_sched_latency;
  405. unsigned long nr_latency = sched_nr_latency;
  406. if (unlikely(nr_running > nr_latency)) {
  407. period = sysctl_sched_min_granularity;
  408. period *= nr_running;
  409. }
  410. return period;
  411. }
  412. /*
  413. * We calculate the wall-time slice from the period by taking a part
  414. * proportional to the weight.
  415. *
  416. * s = p*P[w/rw]
  417. */
  418. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  419. {
  420. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  421. for_each_sched_entity(se) {
  422. struct load_weight *load;
  423. struct load_weight lw;
  424. cfs_rq = cfs_rq_of(se);
  425. load = &cfs_rq->load;
  426. if (unlikely(!se->on_rq)) {
  427. lw = cfs_rq->load;
  428. update_load_add(&lw, se->load.weight);
  429. load = &lw;
  430. }
  431. slice = calc_delta_mine(slice, se->load.weight, load);
  432. }
  433. return slice;
  434. }
  435. /*
  436. * We calculate the vruntime slice of a to be inserted task
  437. *
  438. * vs = s/w
  439. */
  440. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  441. {
  442. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  443. }
  444. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  445. static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta);
  446. /*
  447. * Update the current task's runtime statistics. Skip current tasks that
  448. * are not in our scheduling class.
  449. */
  450. static inline void
  451. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  452. unsigned long delta_exec)
  453. {
  454. unsigned long delta_exec_weighted;
  455. schedstat_set(curr->statistics.exec_max,
  456. max((u64)delta_exec, curr->statistics.exec_max));
  457. curr->sum_exec_runtime += delta_exec;
  458. schedstat_add(cfs_rq, exec_clock, delta_exec);
  459. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  460. curr->vruntime += delta_exec_weighted;
  461. update_min_vruntime(cfs_rq);
  462. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  463. cfs_rq->load_unacc_exec_time += delta_exec;
  464. #endif
  465. }
  466. static void update_curr(struct cfs_rq *cfs_rq)
  467. {
  468. struct sched_entity *curr = cfs_rq->curr;
  469. u64 now = rq_of(cfs_rq)->clock_task;
  470. unsigned long delta_exec;
  471. if (unlikely(!curr))
  472. return;
  473. /*
  474. * Get the amount of time the current task was running
  475. * since the last time we changed load (this cannot
  476. * overflow on 32 bits):
  477. */
  478. delta_exec = (unsigned long)(now - curr->exec_start);
  479. if (!delta_exec)
  480. return;
  481. __update_curr(cfs_rq, curr, delta_exec);
  482. curr->exec_start = now;
  483. if (entity_is_task(curr)) {
  484. struct task_struct *curtask = task_of(curr);
  485. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  486. cpuacct_charge(curtask, delta_exec);
  487. account_group_exec_runtime(curtask, delta_exec);
  488. }
  489. }
  490. static inline void
  491. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  492. {
  493. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  494. }
  495. /*
  496. * Task is being enqueued - update stats:
  497. */
  498. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  499. {
  500. /*
  501. * Are we enqueueing a waiting task? (for current tasks
  502. * a dequeue/enqueue event is a NOP)
  503. */
  504. if (se != cfs_rq->curr)
  505. update_stats_wait_start(cfs_rq, se);
  506. }
  507. static void
  508. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  509. {
  510. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  511. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  512. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  513. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  514. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  515. #ifdef CONFIG_SCHEDSTATS
  516. if (entity_is_task(se)) {
  517. trace_sched_stat_wait(task_of(se),
  518. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  519. }
  520. #endif
  521. schedstat_set(se->statistics.wait_start, 0);
  522. }
  523. static inline void
  524. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  525. {
  526. /*
  527. * Mark the end of the wait period if dequeueing a
  528. * waiting task:
  529. */
  530. if (se != cfs_rq->curr)
  531. update_stats_wait_end(cfs_rq, se);
  532. }
  533. /*
  534. * We are picking a new current task - update its stats:
  535. */
  536. static inline void
  537. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  538. {
  539. /*
  540. * We are starting a new run period:
  541. */
  542. se->exec_start = rq_of(cfs_rq)->clock_task;
  543. }
  544. /**************************************************
  545. * Scheduling class queueing methods:
  546. */
  547. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  548. static void
  549. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  550. {
  551. cfs_rq->task_weight += weight;
  552. }
  553. #else
  554. static inline void
  555. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  556. {
  557. }
  558. #endif
  559. static void
  560. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  561. {
  562. update_load_add(&cfs_rq->load, se->load.weight);
  563. if (!parent_entity(se))
  564. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  565. if (entity_is_task(se)) {
  566. add_cfs_task_weight(cfs_rq, se->load.weight);
  567. list_add(&se->group_node, &cfs_rq->tasks);
  568. }
  569. cfs_rq->nr_running++;
  570. }
  571. static void
  572. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  573. {
  574. update_load_sub(&cfs_rq->load, se->load.weight);
  575. if (!parent_entity(se))
  576. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  577. if (entity_is_task(se)) {
  578. add_cfs_task_weight(cfs_rq, -se->load.weight);
  579. list_del_init(&se->group_node);
  580. }
  581. cfs_rq->nr_running--;
  582. }
  583. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  584. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  585. int global_update)
  586. {
  587. struct task_group *tg = cfs_rq->tg;
  588. long load_avg;
  589. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  590. load_avg -= cfs_rq->load_contribution;
  591. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  592. atomic_add(load_avg, &tg->load_weight);
  593. cfs_rq->load_contribution += load_avg;
  594. }
  595. }
  596. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  597. {
  598. u64 period = sysctl_sched_shares_window;
  599. u64 now, delta;
  600. unsigned long load = cfs_rq->load.weight;
  601. if (!cfs_rq)
  602. return;
  603. now = rq_of(cfs_rq)->clock;
  604. delta = now - cfs_rq->load_stamp;
  605. /* truncate load history at 4 idle periods */
  606. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  607. now - cfs_rq->load_last > 4 * period) {
  608. cfs_rq->load_period = 0;
  609. cfs_rq->load_avg = 0;
  610. }
  611. cfs_rq->load_stamp = now;
  612. cfs_rq->load_unacc_exec_time = 0;
  613. cfs_rq->load_period += delta;
  614. if (load) {
  615. cfs_rq->load_last = now;
  616. cfs_rq->load_avg += delta * load;
  617. }
  618. /* consider updating load contribution on each fold or truncate */
  619. if (global_update || cfs_rq->load_period > period
  620. || !cfs_rq->load_period)
  621. update_cfs_rq_load_contribution(cfs_rq, global_update);
  622. while (cfs_rq->load_period > period) {
  623. /*
  624. * Inline assembly required to prevent the compiler
  625. * optimising this loop into a divmod call.
  626. * See __iter_div_u64_rem() for another example of this.
  627. */
  628. asm("" : "+rm" (cfs_rq->load_period));
  629. cfs_rq->load_period /= 2;
  630. cfs_rq->load_avg /= 2;
  631. }
  632. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  633. list_del_leaf_cfs_rq(cfs_rq);
  634. }
  635. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  636. unsigned long weight)
  637. {
  638. if (se->on_rq)
  639. account_entity_dequeue(cfs_rq, se);
  640. update_load_set(&se->load, weight);
  641. if (se->on_rq)
  642. account_entity_enqueue(cfs_rq, se);
  643. }
  644. static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
  645. {
  646. struct task_group *tg;
  647. struct sched_entity *se;
  648. long load_weight, load, shares;
  649. if (!cfs_rq)
  650. return;
  651. tg = cfs_rq->tg;
  652. se = tg->se[cpu_of(rq_of(cfs_rq))];
  653. if (!se)
  654. return;
  655. load = cfs_rq->load.weight + weight_delta;
  656. load_weight = atomic_read(&tg->load_weight);
  657. load_weight -= cfs_rq->load_contribution;
  658. load_weight += load;
  659. shares = (tg->shares * load);
  660. if (load_weight)
  661. shares /= load_weight;
  662. if (shares < MIN_SHARES)
  663. shares = MIN_SHARES;
  664. if (shares > tg->shares)
  665. shares = tg->shares;
  666. reweight_entity(cfs_rq_of(se), se, shares);
  667. }
  668. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  669. {
  670. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  671. update_cfs_load(cfs_rq, 0);
  672. update_cfs_shares(cfs_rq, 0);
  673. }
  674. }
  675. #else /* CONFIG_FAIR_GROUP_SCHED */
  676. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  677. {
  678. }
  679. static inline void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
  680. {
  681. }
  682. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  683. {
  684. }
  685. #endif /* CONFIG_FAIR_GROUP_SCHED */
  686. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  687. {
  688. #ifdef CONFIG_SCHEDSTATS
  689. struct task_struct *tsk = NULL;
  690. if (entity_is_task(se))
  691. tsk = task_of(se);
  692. if (se->statistics.sleep_start) {
  693. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  694. if ((s64)delta < 0)
  695. delta = 0;
  696. if (unlikely(delta > se->statistics.sleep_max))
  697. se->statistics.sleep_max = delta;
  698. se->statistics.sleep_start = 0;
  699. se->statistics.sum_sleep_runtime += delta;
  700. if (tsk) {
  701. account_scheduler_latency(tsk, delta >> 10, 1);
  702. trace_sched_stat_sleep(tsk, delta);
  703. }
  704. }
  705. if (se->statistics.block_start) {
  706. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  707. if ((s64)delta < 0)
  708. delta = 0;
  709. if (unlikely(delta > se->statistics.block_max))
  710. se->statistics.block_max = delta;
  711. se->statistics.block_start = 0;
  712. se->statistics.sum_sleep_runtime += delta;
  713. if (tsk) {
  714. if (tsk->in_iowait) {
  715. se->statistics.iowait_sum += delta;
  716. se->statistics.iowait_count++;
  717. trace_sched_stat_iowait(tsk, delta);
  718. }
  719. /*
  720. * Blocking time is in units of nanosecs, so shift by
  721. * 20 to get a milliseconds-range estimation of the
  722. * amount of time that the task spent sleeping:
  723. */
  724. if (unlikely(prof_on == SLEEP_PROFILING)) {
  725. profile_hits(SLEEP_PROFILING,
  726. (void *)get_wchan(tsk),
  727. delta >> 20);
  728. }
  729. account_scheduler_latency(tsk, delta >> 10, 0);
  730. }
  731. }
  732. #endif
  733. }
  734. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  735. {
  736. #ifdef CONFIG_SCHED_DEBUG
  737. s64 d = se->vruntime - cfs_rq->min_vruntime;
  738. if (d < 0)
  739. d = -d;
  740. if (d > 3*sysctl_sched_latency)
  741. schedstat_inc(cfs_rq, nr_spread_over);
  742. #endif
  743. }
  744. static void
  745. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  746. {
  747. u64 vruntime = cfs_rq->min_vruntime;
  748. /*
  749. * The 'current' period is already promised to the current tasks,
  750. * however the extra weight of the new task will slow them down a
  751. * little, place the new task so that it fits in the slot that
  752. * stays open at the end.
  753. */
  754. if (initial && sched_feat(START_DEBIT))
  755. vruntime += sched_vslice(cfs_rq, se);
  756. /* sleeps up to a single latency don't count. */
  757. if (!initial) {
  758. unsigned long thresh = sysctl_sched_latency;
  759. /*
  760. * Halve their sleep time's effect, to allow
  761. * for a gentler effect of sleepers:
  762. */
  763. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  764. thresh >>= 1;
  765. vruntime -= thresh;
  766. }
  767. /* ensure we never gain time by being placed backwards. */
  768. vruntime = max_vruntime(se->vruntime, vruntime);
  769. se->vruntime = vruntime;
  770. }
  771. static void
  772. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  773. {
  774. /*
  775. * Update the normalized vruntime before updating min_vruntime
  776. * through callig update_curr().
  777. */
  778. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  779. se->vruntime += cfs_rq->min_vruntime;
  780. /*
  781. * Update run-time statistics of the 'current'.
  782. */
  783. update_curr(cfs_rq);
  784. update_cfs_load(cfs_rq, 0);
  785. update_cfs_shares(cfs_rq, se->load.weight);
  786. account_entity_enqueue(cfs_rq, se);
  787. if (flags & ENQUEUE_WAKEUP) {
  788. place_entity(cfs_rq, se, 0);
  789. enqueue_sleeper(cfs_rq, se);
  790. }
  791. update_stats_enqueue(cfs_rq, se);
  792. check_spread(cfs_rq, se);
  793. if (se != cfs_rq->curr)
  794. __enqueue_entity(cfs_rq, se);
  795. se->on_rq = 1;
  796. if (cfs_rq->nr_running == 1)
  797. list_add_leaf_cfs_rq(cfs_rq);
  798. }
  799. static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  800. {
  801. if (!se || cfs_rq->last == se)
  802. cfs_rq->last = NULL;
  803. if (!se || cfs_rq->next == se)
  804. cfs_rq->next = NULL;
  805. }
  806. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  807. {
  808. for_each_sched_entity(se)
  809. __clear_buddies(cfs_rq_of(se), se);
  810. }
  811. static void
  812. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  813. {
  814. /*
  815. * Update run-time statistics of the 'current'.
  816. */
  817. update_curr(cfs_rq);
  818. update_stats_dequeue(cfs_rq, se);
  819. if (flags & DEQUEUE_SLEEP) {
  820. #ifdef CONFIG_SCHEDSTATS
  821. if (entity_is_task(se)) {
  822. struct task_struct *tsk = task_of(se);
  823. if (tsk->state & TASK_INTERRUPTIBLE)
  824. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  825. if (tsk->state & TASK_UNINTERRUPTIBLE)
  826. se->statistics.block_start = rq_of(cfs_rq)->clock;
  827. }
  828. #endif
  829. }
  830. clear_buddies(cfs_rq, se);
  831. if (se != cfs_rq->curr)
  832. __dequeue_entity(cfs_rq, se);
  833. se->on_rq = 0;
  834. update_cfs_load(cfs_rq, 0);
  835. account_entity_dequeue(cfs_rq, se);
  836. update_min_vruntime(cfs_rq);
  837. update_cfs_shares(cfs_rq, 0);
  838. /*
  839. * Normalize the entity after updating the min_vruntime because the
  840. * update can refer to the ->curr item and we need to reflect this
  841. * movement in our normalized position.
  842. */
  843. if (!(flags & DEQUEUE_SLEEP))
  844. se->vruntime -= cfs_rq->min_vruntime;
  845. }
  846. /*
  847. * Preempt the current task with a newly woken task if needed:
  848. */
  849. static void
  850. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  851. {
  852. unsigned long ideal_runtime, delta_exec;
  853. ideal_runtime = sched_slice(cfs_rq, curr);
  854. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  855. if (delta_exec > ideal_runtime) {
  856. resched_task(rq_of(cfs_rq)->curr);
  857. /*
  858. * The current task ran long enough, ensure it doesn't get
  859. * re-elected due to buddy favours.
  860. */
  861. clear_buddies(cfs_rq, curr);
  862. return;
  863. }
  864. /*
  865. * Ensure that a task that missed wakeup preemption by a
  866. * narrow margin doesn't have to wait for a full slice.
  867. * This also mitigates buddy induced latencies under load.
  868. */
  869. if (!sched_feat(WAKEUP_PREEMPT))
  870. return;
  871. if (delta_exec < sysctl_sched_min_granularity)
  872. return;
  873. if (cfs_rq->nr_running > 1) {
  874. struct sched_entity *se = __pick_next_entity(cfs_rq);
  875. s64 delta = curr->vruntime - se->vruntime;
  876. if (delta > ideal_runtime)
  877. resched_task(rq_of(cfs_rq)->curr);
  878. }
  879. }
  880. static void
  881. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  882. {
  883. /* 'current' is not kept within the tree. */
  884. if (se->on_rq) {
  885. /*
  886. * Any task has to be enqueued before it get to execute on
  887. * a CPU. So account for the time it spent waiting on the
  888. * runqueue.
  889. */
  890. update_stats_wait_end(cfs_rq, se);
  891. __dequeue_entity(cfs_rq, se);
  892. }
  893. update_stats_curr_start(cfs_rq, se);
  894. cfs_rq->curr = se;
  895. #ifdef CONFIG_SCHEDSTATS
  896. /*
  897. * Track our maximum slice length, if the CPU's load is at
  898. * least twice that of our own weight (i.e. dont track it
  899. * when there are only lesser-weight tasks around):
  900. */
  901. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  902. se->statistics.slice_max = max(se->statistics.slice_max,
  903. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  904. }
  905. #endif
  906. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  907. }
  908. static int
  909. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  910. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  911. {
  912. struct sched_entity *se = __pick_next_entity(cfs_rq);
  913. struct sched_entity *left = se;
  914. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  915. se = cfs_rq->next;
  916. /*
  917. * Prefer last buddy, try to return the CPU to a preempted task.
  918. */
  919. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  920. se = cfs_rq->last;
  921. clear_buddies(cfs_rq, se);
  922. return se;
  923. }
  924. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  925. {
  926. /*
  927. * If still on the runqueue then deactivate_task()
  928. * was not called and update_curr() has to be done:
  929. */
  930. if (prev->on_rq)
  931. update_curr(cfs_rq);
  932. check_spread(cfs_rq, prev);
  933. if (prev->on_rq) {
  934. update_stats_wait_start(cfs_rq, prev);
  935. /* Put 'current' back into the tree. */
  936. __enqueue_entity(cfs_rq, prev);
  937. }
  938. cfs_rq->curr = NULL;
  939. }
  940. static void
  941. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  942. {
  943. /*
  944. * Update run-time statistics of the 'current'.
  945. */
  946. update_curr(cfs_rq);
  947. /*
  948. * Update share accounting for long-running entities.
  949. */
  950. update_entity_shares_tick(cfs_rq);
  951. #ifdef CONFIG_SCHED_HRTICK
  952. /*
  953. * queued ticks are scheduled to match the slice, so don't bother
  954. * validating it and just reschedule.
  955. */
  956. if (queued) {
  957. resched_task(rq_of(cfs_rq)->curr);
  958. return;
  959. }
  960. /*
  961. * don't let the period tick interfere with the hrtick preemption
  962. */
  963. if (!sched_feat(DOUBLE_TICK) &&
  964. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  965. return;
  966. #endif
  967. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  968. check_preempt_tick(cfs_rq, curr);
  969. }
  970. /**************************************************
  971. * CFS operations on tasks:
  972. */
  973. #ifdef CONFIG_SCHED_HRTICK
  974. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  975. {
  976. struct sched_entity *se = &p->se;
  977. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  978. WARN_ON(task_rq(p) != rq);
  979. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  980. u64 slice = sched_slice(cfs_rq, se);
  981. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  982. s64 delta = slice - ran;
  983. if (delta < 0) {
  984. if (rq->curr == p)
  985. resched_task(p);
  986. return;
  987. }
  988. /*
  989. * Don't schedule slices shorter than 10000ns, that just
  990. * doesn't make sense. Rely on vruntime for fairness.
  991. */
  992. if (rq->curr != p)
  993. delta = max_t(s64, 10000LL, delta);
  994. hrtick_start(rq, delta);
  995. }
  996. }
  997. /*
  998. * called from enqueue/dequeue and updates the hrtick when the
  999. * current task is from our class and nr_running is low enough
  1000. * to matter.
  1001. */
  1002. static void hrtick_update(struct rq *rq)
  1003. {
  1004. struct task_struct *curr = rq->curr;
  1005. if (curr->sched_class != &fair_sched_class)
  1006. return;
  1007. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  1008. hrtick_start_fair(rq, curr);
  1009. }
  1010. #else /* !CONFIG_SCHED_HRTICK */
  1011. static inline void
  1012. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1013. {
  1014. }
  1015. static inline void hrtick_update(struct rq *rq)
  1016. {
  1017. }
  1018. #endif
  1019. /*
  1020. * The enqueue_task method is called before nr_running is
  1021. * increased. Here we update the fair scheduling stats and
  1022. * then put the task into the rbtree:
  1023. */
  1024. static void
  1025. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1026. {
  1027. struct cfs_rq *cfs_rq;
  1028. struct sched_entity *se = &p->se;
  1029. for_each_sched_entity(se) {
  1030. if (se->on_rq)
  1031. break;
  1032. cfs_rq = cfs_rq_of(se);
  1033. enqueue_entity(cfs_rq, se, flags);
  1034. flags = ENQUEUE_WAKEUP;
  1035. }
  1036. for_each_sched_entity(se) {
  1037. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1038. update_cfs_load(cfs_rq, 0);
  1039. update_cfs_shares(cfs_rq, 0);
  1040. }
  1041. hrtick_update(rq);
  1042. }
  1043. /*
  1044. * The dequeue_task method is called before nr_running is
  1045. * decreased. We remove the task from the rbtree and
  1046. * update the fair scheduling stats:
  1047. */
  1048. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1049. {
  1050. struct cfs_rq *cfs_rq;
  1051. struct sched_entity *se = &p->se;
  1052. for_each_sched_entity(se) {
  1053. cfs_rq = cfs_rq_of(se);
  1054. dequeue_entity(cfs_rq, se, flags);
  1055. /* Don't dequeue parent if it has other entities besides us */
  1056. if (cfs_rq->load.weight)
  1057. break;
  1058. flags |= DEQUEUE_SLEEP;
  1059. }
  1060. for_each_sched_entity(se) {
  1061. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1062. update_cfs_load(cfs_rq, 0);
  1063. update_cfs_shares(cfs_rq, 0);
  1064. }
  1065. hrtick_update(rq);
  1066. }
  1067. /*
  1068. * sched_yield() support is very simple - we dequeue and enqueue.
  1069. *
  1070. * If compat_yield is turned on then we requeue to the end of the tree.
  1071. */
  1072. static void yield_task_fair(struct rq *rq)
  1073. {
  1074. struct task_struct *curr = rq->curr;
  1075. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1076. struct sched_entity *rightmost, *se = &curr->se;
  1077. /*
  1078. * Are we the only task in the tree?
  1079. */
  1080. if (unlikely(cfs_rq->nr_running == 1))
  1081. return;
  1082. clear_buddies(cfs_rq, se);
  1083. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  1084. update_rq_clock(rq);
  1085. /*
  1086. * Update run-time statistics of the 'current'.
  1087. */
  1088. update_curr(cfs_rq);
  1089. return;
  1090. }
  1091. /*
  1092. * Find the rightmost entry in the rbtree:
  1093. */
  1094. rightmost = __pick_last_entity(cfs_rq);
  1095. /*
  1096. * Already in the rightmost position?
  1097. */
  1098. if (unlikely(!rightmost || entity_before(rightmost, se)))
  1099. return;
  1100. /*
  1101. * Minimally necessary key value to be last in the tree:
  1102. * Upon rescheduling, sched_class::put_prev_task() will place
  1103. * 'current' within the tree based on its new key value.
  1104. */
  1105. se->vruntime = rightmost->vruntime + 1;
  1106. }
  1107. #ifdef CONFIG_SMP
  1108. static void task_waking_fair(struct rq *rq, struct task_struct *p)
  1109. {
  1110. struct sched_entity *se = &p->se;
  1111. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1112. se->vruntime -= cfs_rq->min_vruntime;
  1113. }
  1114. #ifdef CONFIG_FAIR_GROUP_SCHED
  1115. /*
  1116. * effective_load() calculates the load change as seen from the root_task_group
  1117. *
  1118. * Adding load to a group doesn't make a group heavier, but can cause movement
  1119. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1120. * can calculate the shift in shares.
  1121. */
  1122. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  1123. {
  1124. struct sched_entity *se = tg->se[cpu];
  1125. if (!tg->parent)
  1126. return wl;
  1127. for_each_sched_entity(se) {
  1128. long S, rw, s, a, b;
  1129. S = se->my_q->tg->shares;
  1130. s = se->load.weight;
  1131. rw = se->my_q->load.weight;
  1132. a = S*(rw + wl);
  1133. b = S*rw + s*wg;
  1134. wl = s*(a-b);
  1135. if (likely(b))
  1136. wl /= b;
  1137. /*
  1138. * Assume the group is already running and will
  1139. * thus already be accounted for in the weight.
  1140. *
  1141. * That is, moving shares between CPUs, does not
  1142. * alter the group weight.
  1143. */
  1144. wg = 0;
  1145. }
  1146. return wl;
  1147. }
  1148. #else
  1149. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1150. unsigned long wl, unsigned long wg)
  1151. {
  1152. return wl;
  1153. }
  1154. #endif
  1155. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1156. {
  1157. unsigned long this_load, load;
  1158. int idx, this_cpu, prev_cpu;
  1159. unsigned long tl_per_task;
  1160. struct task_group *tg;
  1161. unsigned long weight;
  1162. int balanced;
  1163. idx = sd->wake_idx;
  1164. this_cpu = smp_processor_id();
  1165. prev_cpu = task_cpu(p);
  1166. load = source_load(prev_cpu, idx);
  1167. this_load = target_load(this_cpu, idx);
  1168. /*
  1169. * If sync wakeup then subtract the (maximum possible)
  1170. * effect of the currently running task from the load
  1171. * of the current CPU:
  1172. */
  1173. rcu_read_lock();
  1174. if (sync) {
  1175. tg = task_group(current);
  1176. weight = current->se.load.weight;
  1177. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1178. load += effective_load(tg, prev_cpu, 0, -weight);
  1179. }
  1180. tg = task_group(p);
  1181. weight = p->se.load.weight;
  1182. /*
  1183. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1184. * due to the sync cause above having dropped this_load to 0, we'll
  1185. * always have an imbalance, but there's really nothing you can do
  1186. * about that, so that's good too.
  1187. *
  1188. * Otherwise check if either cpus are near enough in load to allow this
  1189. * task to be woken on this_cpu.
  1190. */
  1191. if (this_load) {
  1192. unsigned long this_eff_load, prev_eff_load;
  1193. this_eff_load = 100;
  1194. this_eff_load *= power_of(prev_cpu);
  1195. this_eff_load *= this_load +
  1196. effective_load(tg, this_cpu, weight, weight);
  1197. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  1198. prev_eff_load *= power_of(this_cpu);
  1199. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  1200. balanced = this_eff_load <= prev_eff_load;
  1201. } else
  1202. balanced = true;
  1203. rcu_read_unlock();
  1204. /*
  1205. * If the currently running task will sleep within
  1206. * a reasonable amount of time then attract this newly
  1207. * woken task:
  1208. */
  1209. if (sync && balanced)
  1210. return 1;
  1211. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  1212. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1213. if (balanced ||
  1214. (this_load <= load &&
  1215. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1216. /*
  1217. * This domain has SD_WAKE_AFFINE and
  1218. * p is cache cold in this domain, and
  1219. * there is no bad imbalance.
  1220. */
  1221. schedstat_inc(sd, ttwu_move_affine);
  1222. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  1223. return 1;
  1224. }
  1225. return 0;
  1226. }
  1227. /*
  1228. * find_idlest_group finds and returns the least busy CPU group within the
  1229. * domain.
  1230. */
  1231. static struct sched_group *
  1232. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1233. int this_cpu, int load_idx)
  1234. {
  1235. struct sched_group *idlest = NULL, *group = sd->groups;
  1236. unsigned long min_load = ULONG_MAX, this_load = 0;
  1237. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1238. do {
  1239. unsigned long load, avg_load;
  1240. int local_group;
  1241. int i;
  1242. /* Skip over this group if it has no CPUs allowed */
  1243. if (!cpumask_intersects(sched_group_cpus(group),
  1244. &p->cpus_allowed))
  1245. continue;
  1246. local_group = cpumask_test_cpu(this_cpu,
  1247. sched_group_cpus(group));
  1248. /* Tally up the load of all CPUs in the group */
  1249. avg_load = 0;
  1250. for_each_cpu(i, sched_group_cpus(group)) {
  1251. /* Bias balancing toward cpus of our domain */
  1252. if (local_group)
  1253. load = source_load(i, load_idx);
  1254. else
  1255. load = target_load(i, load_idx);
  1256. avg_load += load;
  1257. }
  1258. /* Adjust by relative CPU power of the group */
  1259. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1260. if (local_group) {
  1261. this_load = avg_load;
  1262. } else if (avg_load < min_load) {
  1263. min_load = avg_load;
  1264. idlest = group;
  1265. }
  1266. } while (group = group->next, group != sd->groups);
  1267. if (!idlest || 100*this_load < imbalance*min_load)
  1268. return NULL;
  1269. return idlest;
  1270. }
  1271. /*
  1272. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1273. */
  1274. static int
  1275. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1276. {
  1277. unsigned long load, min_load = ULONG_MAX;
  1278. int idlest = -1;
  1279. int i;
  1280. /* Traverse only the allowed CPUs */
  1281. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1282. load = weighted_cpuload(i);
  1283. if (load < min_load || (load == min_load && i == this_cpu)) {
  1284. min_load = load;
  1285. idlest = i;
  1286. }
  1287. }
  1288. return idlest;
  1289. }
  1290. /*
  1291. * Try and locate an idle CPU in the sched_domain.
  1292. */
  1293. static int select_idle_sibling(struct task_struct *p, int target)
  1294. {
  1295. int cpu = smp_processor_id();
  1296. int prev_cpu = task_cpu(p);
  1297. struct sched_domain *sd;
  1298. int i;
  1299. /*
  1300. * If the task is going to be woken-up on this cpu and if it is
  1301. * already idle, then it is the right target.
  1302. */
  1303. if (target == cpu && idle_cpu(cpu))
  1304. return cpu;
  1305. /*
  1306. * If the task is going to be woken-up on the cpu where it previously
  1307. * ran and if it is currently idle, then it the right target.
  1308. */
  1309. if (target == prev_cpu && idle_cpu(prev_cpu))
  1310. return prev_cpu;
  1311. /*
  1312. * Otherwise, iterate the domains and find an elegible idle cpu.
  1313. */
  1314. for_each_domain(target, sd) {
  1315. if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
  1316. break;
  1317. for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
  1318. if (idle_cpu(i)) {
  1319. target = i;
  1320. break;
  1321. }
  1322. }
  1323. /*
  1324. * Lets stop looking for an idle sibling when we reached
  1325. * the domain that spans the current cpu and prev_cpu.
  1326. */
  1327. if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
  1328. cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
  1329. break;
  1330. }
  1331. return target;
  1332. }
  1333. /*
  1334. * sched_balance_self: balance the current task (running on cpu) in domains
  1335. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1336. * SD_BALANCE_EXEC.
  1337. *
  1338. * Balance, ie. select the least loaded group.
  1339. *
  1340. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1341. *
  1342. * preempt must be disabled.
  1343. */
  1344. static int
  1345. select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
  1346. {
  1347. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1348. int cpu = smp_processor_id();
  1349. int prev_cpu = task_cpu(p);
  1350. int new_cpu = cpu;
  1351. int want_affine = 0;
  1352. int want_sd = 1;
  1353. int sync = wake_flags & WF_SYNC;
  1354. if (sd_flag & SD_BALANCE_WAKE) {
  1355. if (cpumask_test_cpu(cpu, &p->cpus_allowed))
  1356. want_affine = 1;
  1357. new_cpu = prev_cpu;
  1358. }
  1359. for_each_domain(cpu, tmp) {
  1360. if (!(tmp->flags & SD_LOAD_BALANCE))
  1361. continue;
  1362. /*
  1363. * If power savings logic is enabled for a domain, see if we
  1364. * are not overloaded, if so, don't balance wider.
  1365. */
  1366. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  1367. unsigned long power = 0;
  1368. unsigned long nr_running = 0;
  1369. unsigned long capacity;
  1370. int i;
  1371. for_each_cpu(i, sched_domain_span(tmp)) {
  1372. power += power_of(i);
  1373. nr_running += cpu_rq(i)->cfs.nr_running;
  1374. }
  1375. capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  1376. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1377. nr_running /= 2;
  1378. if (nr_running < capacity)
  1379. want_sd = 0;
  1380. }
  1381. /*
  1382. * If both cpu and prev_cpu are part of this domain,
  1383. * cpu is a valid SD_WAKE_AFFINE target.
  1384. */
  1385. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  1386. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  1387. affine_sd = tmp;
  1388. want_affine = 0;
  1389. }
  1390. if (!want_sd && !want_affine)
  1391. break;
  1392. if (!(tmp->flags & sd_flag))
  1393. continue;
  1394. if (want_sd)
  1395. sd = tmp;
  1396. }
  1397. if (affine_sd) {
  1398. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  1399. return select_idle_sibling(p, cpu);
  1400. else
  1401. return select_idle_sibling(p, prev_cpu);
  1402. }
  1403. while (sd) {
  1404. int load_idx = sd->forkexec_idx;
  1405. struct sched_group *group;
  1406. int weight;
  1407. if (!(sd->flags & sd_flag)) {
  1408. sd = sd->child;
  1409. continue;
  1410. }
  1411. if (sd_flag & SD_BALANCE_WAKE)
  1412. load_idx = sd->wake_idx;
  1413. group = find_idlest_group(sd, p, cpu, load_idx);
  1414. if (!group) {
  1415. sd = sd->child;
  1416. continue;
  1417. }
  1418. new_cpu = find_idlest_cpu(group, p, cpu);
  1419. if (new_cpu == -1 || new_cpu == cpu) {
  1420. /* Now try balancing at a lower domain level of cpu */
  1421. sd = sd->child;
  1422. continue;
  1423. }
  1424. /* Now try balancing at a lower domain level of new_cpu */
  1425. cpu = new_cpu;
  1426. weight = sd->span_weight;
  1427. sd = NULL;
  1428. for_each_domain(cpu, tmp) {
  1429. if (weight <= tmp->span_weight)
  1430. break;
  1431. if (tmp->flags & sd_flag)
  1432. sd = tmp;
  1433. }
  1434. /* while loop will break here if sd == NULL */
  1435. }
  1436. return new_cpu;
  1437. }
  1438. #endif /* CONFIG_SMP */
  1439. static unsigned long
  1440. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1441. {
  1442. unsigned long gran = sysctl_sched_wakeup_granularity;
  1443. /*
  1444. * Since its curr running now, convert the gran from real-time
  1445. * to virtual-time in his units.
  1446. *
  1447. * By using 'se' instead of 'curr' we penalize light tasks, so
  1448. * they get preempted easier. That is, if 'se' < 'curr' then
  1449. * the resulting gran will be larger, therefore penalizing the
  1450. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1451. * be smaller, again penalizing the lighter task.
  1452. *
  1453. * This is especially important for buddies when the leftmost
  1454. * task is higher priority than the buddy.
  1455. */
  1456. if (unlikely(se->load.weight != NICE_0_LOAD))
  1457. gran = calc_delta_fair(gran, se);
  1458. return gran;
  1459. }
  1460. /*
  1461. * Should 'se' preempt 'curr'.
  1462. *
  1463. * |s1
  1464. * |s2
  1465. * |s3
  1466. * g
  1467. * |<--->|c
  1468. *
  1469. * w(c, s1) = -1
  1470. * w(c, s2) = 0
  1471. * w(c, s3) = 1
  1472. *
  1473. */
  1474. static int
  1475. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1476. {
  1477. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1478. if (vdiff <= 0)
  1479. return -1;
  1480. gran = wakeup_gran(curr, se);
  1481. if (vdiff > gran)
  1482. return 1;
  1483. return 0;
  1484. }
  1485. static void set_last_buddy(struct sched_entity *se)
  1486. {
  1487. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1488. for_each_sched_entity(se)
  1489. cfs_rq_of(se)->last = se;
  1490. }
  1491. }
  1492. static void set_next_buddy(struct sched_entity *se)
  1493. {
  1494. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1495. for_each_sched_entity(se)
  1496. cfs_rq_of(se)->next = se;
  1497. }
  1498. }
  1499. /*
  1500. * Preempt the current task with a newly woken task if needed:
  1501. */
  1502. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1503. {
  1504. struct task_struct *curr = rq->curr;
  1505. struct sched_entity *se = &curr->se, *pse = &p->se;
  1506. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1507. int scale = cfs_rq->nr_running >= sched_nr_latency;
  1508. if (unlikely(se == pse))
  1509. return;
  1510. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
  1511. set_next_buddy(pse);
  1512. /*
  1513. * We can come here with TIF_NEED_RESCHED already set from new task
  1514. * wake up path.
  1515. */
  1516. if (test_tsk_need_resched(curr))
  1517. return;
  1518. /*
  1519. * Batch and idle tasks do not preempt (their preemption is driven by
  1520. * the tick):
  1521. */
  1522. if (unlikely(p->policy != SCHED_NORMAL))
  1523. return;
  1524. /* Idle tasks are by definition preempted by everybody. */
  1525. if (unlikely(curr->policy == SCHED_IDLE))
  1526. goto preempt;
  1527. if (!sched_feat(WAKEUP_PREEMPT))
  1528. return;
  1529. update_curr(cfs_rq);
  1530. find_matching_se(&se, &pse);
  1531. BUG_ON(!pse);
  1532. if (wakeup_preempt_entity(se, pse) == 1)
  1533. goto preempt;
  1534. return;
  1535. preempt:
  1536. resched_task(curr);
  1537. /*
  1538. * Only set the backward buddy when the current task is still
  1539. * on the rq. This can happen when a wakeup gets interleaved
  1540. * with schedule on the ->pre_schedule() or idle_balance()
  1541. * point, either of which can * drop the rq lock.
  1542. *
  1543. * Also, during early boot the idle thread is in the fair class,
  1544. * for obvious reasons its a bad idea to schedule back to it.
  1545. */
  1546. if (unlikely(!se->on_rq || curr == rq->idle))
  1547. return;
  1548. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  1549. set_last_buddy(se);
  1550. }
  1551. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1552. {
  1553. struct task_struct *p;
  1554. struct cfs_rq *cfs_rq = &rq->cfs;
  1555. struct sched_entity *se;
  1556. if (!cfs_rq->nr_running)
  1557. return NULL;
  1558. do {
  1559. se = pick_next_entity(cfs_rq);
  1560. set_next_entity(cfs_rq, se);
  1561. cfs_rq = group_cfs_rq(se);
  1562. } while (cfs_rq);
  1563. p = task_of(se);
  1564. hrtick_start_fair(rq, p);
  1565. return p;
  1566. }
  1567. /*
  1568. * Account for a descheduled task:
  1569. */
  1570. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1571. {
  1572. struct sched_entity *se = &prev->se;
  1573. struct cfs_rq *cfs_rq;
  1574. for_each_sched_entity(se) {
  1575. cfs_rq = cfs_rq_of(se);
  1576. put_prev_entity(cfs_rq, se);
  1577. }
  1578. }
  1579. #ifdef CONFIG_SMP
  1580. /**************************************************
  1581. * Fair scheduling class load-balancing methods:
  1582. */
  1583. /*
  1584. * pull_task - move a task from a remote runqueue to the local runqueue.
  1585. * Both runqueues must be locked.
  1586. */
  1587. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1588. struct rq *this_rq, int this_cpu)
  1589. {
  1590. deactivate_task(src_rq, p, 0);
  1591. set_task_cpu(p, this_cpu);
  1592. activate_task(this_rq, p, 0);
  1593. check_preempt_curr(this_rq, p, 0);
  1594. }
  1595. /*
  1596. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1597. */
  1598. static
  1599. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1600. struct sched_domain *sd, enum cpu_idle_type idle,
  1601. int *all_pinned)
  1602. {
  1603. int tsk_cache_hot = 0;
  1604. /*
  1605. * We do not migrate tasks that are:
  1606. * 1) running (obviously), or
  1607. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1608. * 3) are cache-hot on their current CPU.
  1609. */
  1610. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  1611. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  1612. return 0;
  1613. }
  1614. *all_pinned = 0;
  1615. if (task_running(rq, p)) {
  1616. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  1617. return 0;
  1618. }
  1619. /*
  1620. * Aggressive migration if:
  1621. * 1) task is cache cold, or
  1622. * 2) too many balance attempts have failed.
  1623. */
  1624. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  1625. if (!tsk_cache_hot ||
  1626. sd->nr_balance_failed > sd->cache_nice_tries) {
  1627. #ifdef CONFIG_SCHEDSTATS
  1628. if (tsk_cache_hot) {
  1629. schedstat_inc(sd, lb_hot_gained[idle]);
  1630. schedstat_inc(p, se.statistics.nr_forced_migrations);
  1631. }
  1632. #endif
  1633. return 1;
  1634. }
  1635. if (tsk_cache_hot) {
  1636. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  1637. return 0;
  1638. }
  1639. return 1;
  1640. }
  1641. /*
  1642. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1643. * part of active balancing operations within "domain".
  1644. * Returns 1 if successful and 0 otherwise.
  1645. *
  1646. * Called with both runqueues locked.
  1647. */
  1648. static int
  1649. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1650. struct sched_domain *sd, enum cpu_idle_type idle)
  1651. {
  1652. struct task_struct *p, *n;
  1653. struct cfs_rq *cfs_rq;
  1654. int pinned = 0;
  1655. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  1656. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  1657. if (!can_migrate_task(p, busiest, this_cpu,
  1658. sd, idle, &pinned))
  1659. continue;
  1660. pull_task(busiest, p, this_rq, this_cpu);
  1661. /*
  1662. * Right now, this is only the second place pull_task()
  1663. * is called, so we can safely collect pull_task()
  1664. * stats here rather than inside pull_task().
  1665. */
  1666. schedstat_inc(sd, lb_gained[idle]);
  1667. return 1;
  1668. }
  1669. }
  1670. return 0;
  1671. }
  1672. static unsigned long
  1673. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1674. unsigned long max_load_move, struct sched_domain *sd,
  1675. enum cpu_idle_type idle, int *all_pinned,
  1676. int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
  1677. {
  1678. int loops = 0, pulled = 0, pinned = 0;
  1679. long rem_load_move = max_load_move;
  1680. struct task_struct *p, *n;
  1681. if (max_load_move == 0)
  1682. goto out;
  1683. pinned = 1;
  1684. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  1685. if (loops++ > sysctl_sched_nr_migrate)
  1686. break;
  1687. if ((p->se.load.weight >> 1) > rem_load_move ||
  1688. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
  1689. continue;
  1690. pull_task(busiest, p, this_rq, this_cpu);
  1691. pulled++;
  1692. rem_load_move -= p->se.load.weight;
  1693. #ifdef CONFIG_PREEMPT
  1694. /*
  1695. * NEWIDLE balancing is a source of latency, so preemptible
  1696. * kernels will stop after the first task is pulled to minimize
  1697. * the critical section.
  1698. */
  1699. if (idle == CPU_NEWLY_IDLE)
  1700. break;
  1701. #endif
  1702. /*
  1703. * We only want to steal up to the prescribed amount of
  1704. * weighted load.
  1705. */
  1706. if (rem_load_move <= 0)
  1707. break;
  1708. if (p->prio < *this_best_prio)
  1709. *this_best_prio = p->prio;
  1710. }
  1711. out:
  1712. /*
  1713. * Right now, this is one of only two places pull_task() is called,
  1714. * so we can safely collect pull_task() stats here rather than
  1715. * inside pull_task().
  1716. */
  1717. schedstat_add(sd, lb_gained[idle], pulled);
  1718. if (all_pinned)
  1719. *all_pinned = pinned;
  1720. return max_load_move - rem_load_move;
  1721. }
  1722. #ifdef CONFIG_FAIR_GROUP_SCHED
  1723. /*
  1724. * update tg->load_weight by folding this cpu's load_avg
  1725. */
  1726. static int update_shares_cpu(struct task_group *tg, int cpu)
  1727. {
  1728. struct cfs_rq *cfs_rq;
  1729. unsigned long flags;
  1730. struct rq *rq;
  1731. if (!tg->se[cpu])
  1732. return 0;
  1733. rq = cpu_rq(cpu);
  1734. cfs_rq = tg->cfs_rq[cpu];
  1735. raw_spin_lock_irqsave(&rq->lock, flags);
  1736. update_rq_clock(rq);
  1737. update_cfs_load(cfs_rq, 1);
  1738. /*
  1739. * We need to update shares after updating tg->load_weight in
  1740. * order to adjust the weight of groups with long running tasks.
  1741. */
  1742. update_cfs_shares(cfs_rq, 0);
  1743. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1744. return 0;
  1745. }
  1746. static void update_shares(int cpu)
  1747. {
  1748. struct cfs_rq *cfs_rq;
  1749. struct rq *rq = cpu_rq(cpu);
  1750. rcu_read_lock();
  1751. for_each_leaf_cfs_rq(rq, cfs_rq)
  1752. update_shares_cpu(cfs_rq->tg, cpu);
  1753. rcu_read_unlock();
  1754. }
  1755. static unsigned long
  1756. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1757. unsigned long max_load_move,
  1758. struct sched_domain *sd, enum cpu_idle_type idle,
  1759. int *all_pinned, int *this_best_prio)
  1760. {
  1761. long rem_load_move = max_load_move;
  1762. int busiest_cpu = cpu_of(busiest);
  1763. struct task_group *tg;
  1764. rcu_read_lock();
  1765. update_h_load(busiest_cpu);
  1766. list_for_each_entry_rcu(tg, &task_groups, list) {
  1767. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1768. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1769. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1770. u64 rem_load, moved_load;
  1771. /*
  1772. * empty group
  1773. */
  1774. if (!busiest_cfs_rq->task_weight)
  1775. continue;
  1776. rem_load = (u64)rem_load_move * busiest_weight;
  1777. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1778. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  1779. rem_load, sd, idle, all_pinned, this_best_prio,
  1780. busiest_cfs_rq);
  1781. if (!moved_load)
  1782. continue;
  1783. moved_load *= busiest_h_load;
  1784. moved_load = div_u64(moved_load, busiest_weight + 1);
  1785. rem_load_move -= moved_load;
  1786. if (rem_load_move < 0)
  1787. break;
  1788. }
  1789. rcu_read_unlock();
  1790. return max_load_move - rem_load_move;
  1791. }
  1792. #else
  1793. static inline void update_shares(int cpu)
  1794. {
  1795. }
  1796. static unsigned long
  1797. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1798. unsigned long max_load_move,
  1799. struct sched_domain *sd, enum cpu_idle_type idle,
  1800. int *all_pinned, int *this_best_prio)
  1801. {
  1802. return balance_tasks(this_rq, this_cpu, busiest,
  1803. max_load_move, sd, idle, all_pinned,
  1804. this_best_prio, &busiest->cfs);
  1805. }
  1806. #endif
  1807. /*
  1808. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1809. * this_rq, as part of a balancing operation within domain "sd".
  1810. * Returns 1 if successful and 0 otherwise.
  1811. *
  1812. * Called with both runqueues locked.
  1813. */
  1814. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1815. unsigned long max_load_move,
  1816. struct sched_domain *sd, enum cpu_idle_type idle,
  1817. int *all_pinned)
  1818. {
  1819. unsigned long total_load_moved = 0, load_moved;
  1820. int this_best_prio = this_rq->curr->prio;
  1821. do {
  1822. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  1823. max_load_move - total_load_moved,
  1824. sd, idle, all_pinned, &this_best_prio);
  1825. total_load_moved += load_moved;
  1826. #ifdef CONFIG_PREEMPT
  1827. /*
  1828. * NEWIDLE balancing is a source of latency, so preemptible
  1829. * kernels will stop after the first task is pulled to minimize
  1830. * the critical section.
  1831. */
  1832. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  1833. break;
  1834. if (raw_spin_is_contended(&this_rq->lock) ||
  1835. raw_spin_is_contended(&busiest->lock))
  1836. break;
  1837. #endif
  1838. } while (load_moved && max_load_move > total_load_moved);
  1839. return total_load_moved > 0;
  1840. }
  1841. /********** Helpers for find_busiest_group ************************/
  1842. /*
  1843. * sd_lb_stats - Structure to store the statistics of a sched_domain
  1844. * during load balancing.
  1845. */
  1846. struct sd_lb_stats {
  1847. struct sched_group *busiest; /* Busiest group in this sd */
  1848. struct sched_group *this; /* Local group in this sd */
  1849. unsigned long total_load; /* Total load of all groups in sd */
  1850. unsigned long total_pwr; /* Total power of all groups in sd */
  1851. unsigned long avg_load; /* Average load across all groups in sd */
  1852. /** Statistics of this group */
  1853. unsigned long this_load;
  1854. unsigned long this_load_per_task;
  1855. unsigned long this_nr_running;
  1856. unsigned long this_has_capacity;
  1857. unsigned int this_idle_cpus;
  1858. /* Statistics of the busiest group */
  1859. unsigned int busiest_idle_cpus;
  1860. unsigned long max_load;
  1861. unsigned long busiest_load_per_task;
  1862. unsigned long busiest_nr_running;
  1863. unsigned long busiest_group_capacity;
  1864. unsigned long busiest_has_capacity;
  1865. unsigned int busiest_group_weight;
  1866. int group_imb; /* Is there imbalance in this sd */
  1867. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1868. int power_savings_balance; /* Is powersave balance needed for this sd */
  1869. struct sched_group *group_min; /* Least loaded group in sd */
  1870. struct sched_group *group_leader; /* Group which relieves group_min */
  1871. unsigned long min_load_per_task; /* load_per_task in group_min */
  1872. unsigned long leader_nr_running; /* Nr running of group_leader */
  1873. unsigned long min_nr_running; /* Nr running of group_min */
  1874. #endif
  1875. };
  1876. /*
  1877. * sg_lb_stats - stats of a sched_group required for load_balancing
  1878. */
  1879. struct sg_lb_stats {
  1880. unsigned long avg_load; /*Avg load across the CPUs of the group */
  1881. unsigned long group_load; /* Total load over the CPUs of the group */
  1882. unsigned long sum_nr_running; /* Nr tasks running in the group */
  1883. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  1884. unsigned long group_capacity;
  1885. unsigned long idle_cpus;
  1886. unsigned long group_weight;
  1887. int group_imb; /* Is there an imbalance in the group ? */
  1888. int group_has_capacity; /* Is there extra capacity in the group? */
  1889. };
  1890. /**
  1891. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  1892. * @group: The group whose first cpu is to be returned.
  1893. */
  1894. static inline unsigned int group_first_cpu(struct sched_group *group)
  1895. {
  1896. return cpumask_first(sched_group_cpus(group));
  1897. }
  1898. /**
  1899. * get_sd_load_idx - Obtain the load index for a given sched domain.
  1900. * @sd: The sched_domain whose load_idx is to be obtained.
  1901. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  1902. */
  1903. static inline int get_sd_load_idx(struct sched_domain *sd,
  1904. enum cpu_idle_type idle)
  1905. {
  1906. int load_idx;
  1907. switch (idle) {
  1908. case CPU_NOT_IDLE:
  1909. load_idx = sd->busy_idx;
  1910. break;
  1911. case CPU_NEWLY_IDLE:
  1912. load_idx = sd->newidle_idx;
  1913. break;
  1914. default:
  1915. load_idx = sd->idle_idx;
  1916. break;
  1917. }
  1918. return load_idx;
  1919. }
  1920. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1921. /**
  1922. * init_sd_power_savings_stats - Initialize power savings statistics for
  1923. * the given sched_domain, during load balancing.
  1924. *
  1925. * @sd: Sched domain whose power-savings statistics are to be initialized.
  1926. * @sds: Variable containing the statistics for sd.
  1927. * @idle: Idle status of the CPU at which we're performing load-balancing.
  1928. */
  1929. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  1930. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  1931. {
  1932. /*
  1933. * Busy processors will not participate in power savings
  1934. * balance.
  1935. */
  1936. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  1937. sds->power_savings_balance = 0;
  1938. else {
  1939. sds->power_savings_balance = 1;
  1940. sds->min_nr_running = ULONG_MAX;
  1941. sds->leader_nr_running = 0;
  1942. }
  1943. }
  1944. /**
  1945. * update_sd_power_savings_stats - Update the power saving stats for a
  1946. * sched_domain while performing load balancing.
  1947. *
  1948. * @group: sched_group belonging to the sched_domain under consideration.
  1949. * @sds: Variable containing the statistics of the sched_domain
  1950. * @local_group: Does group contain the CPU for which we're performing
  1951. * load balancing ?
  1952. * @sgs: Variable containing the statistics of the group.
  1953. */
  1954. static inline void update_sd_power_savings_stats(struct sched_group *group,
  1955. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  1956. {
  1957. if (!sds->power_savings_balance)
  1958. return;
  1959. /*
  1960. * If the local group is idle or completely loaded
  1961. * no need to do power savings balance at this domain
  1962. */
  1963. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  1964. !sds->this_nr_running))
  1965. sds->power_savings_balance = 0;
  1966. /*
  1967. * If a group is already running at full capacity or idle,
  1968. * don't include that group in power savings calculations
  1969. */
  1970. if (!sds->power_savings_balance ||
  1971. sgs->sum_nr_running >= sgs->group_capacity ||
  1972. !sgs->sum_nr_running)
  1973. return;
  1974. /*
  1975. * Calculate the group which has the least non-idle load.
  1976. * This is the group from where we need to pick up the load
  1977. * for saving power
  1978. */
  1979. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  1980. (sgs->sum_nr_running == sds->min_nr_running &&
  1981. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  1982. sds->group_min = group;
  1983. sds->min_nr_running = sgs->sum_nr_running;
  1984. sds->min_load_per_task = sgs->sum_weighted_load /
  1985. sgs->sum_nr_running;
  1986. }
  1987. /*
  1988. * Calculate the group which is almost near its
  1989. * capacity but still has some space to pick up some load
  1990. * from other group and save more power
  1991. */
  1992. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  1993. return;
  1994. if (sgs->sum_nr_running > sds->leader_nr_running ||
  1995. (sgs->sum_nr_running == sds->leader_nr_running &&
  1996. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  1997. sds->group_leader = group;
  1998. sds->leader_nr_running = sgs->sum_nr_running;
  1999. }
  2000. }
  2001. /**
  2002. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2003. * @sds: Variable containing the statistics of the sched_domain
  2004. * under consideration.
  2005. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2006. * @imbalance: Variable to store the imbalance.
  2007. *
  2008. * Description:
  2009. * Check if we have potential to perform some power-savings balance.
  2010. * If yes, set the busiest group to be the least loaded group in the
  2011. * sched_domain, so that it's CPUs can be put to idle.
  2012. *
  2013. * Returns 1 if there is potential to perform power-savings balance.
  2014. * Else returns 0.
  2015. */
  2016. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2017. int this_cpu, unsigned long *imbalance)
  2018. {
  2019. if (!sds->power_savings_balance)
  2020. return 0;
  2021. if (sds->this != sds->group_leader ||
  2022. sds->group_leader == sds->group_min)
  2023. return 0;
  2024. *imbalance = sds->min_load_per_task;
  2025. sds->busiest = sds->group_min;
  2026. return 1;
  2027. }
  2028. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2029. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2030. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2031. {
  2032. return;
  2033. }
  2034. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2035. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2036. {
  2037. return;
  2038. }
  2039. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2040. int this_cpu, unsigned long *imbalance)
  2041. {
  2042. return 0;
  2043. }
  2044. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2045. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  2046. {
  2047. return SCHED_LOAD_SCALE;
  2048. }
  2049. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  2050. {
  2051. return default_scale_freq_power(sd, cpu);
  2052. }
  2053. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  2054. {
  2055. unsigned long weight = sd->span_weight;
  2056. unsigned long smt_gain = sd->smt_gain;
  2057. smt_gain /= weight;
  2058. return smt_gain;
  2059. }
  2060. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  2061. {
  2062. return default_scale_smt_power(sd, cpu);
  2063. }
  2064. unsigned long scale_rt_power(int cpu)
  2065. {
  2066. struct rq *rq = cpu_rq(cpu);
  2067. u64 total, available;
  2068. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  2069. if (unlikely(total < rq->rt_avg)) {
  2070. /* Ensures that power won't end up being negative */
  2071. available = 0;
  2072. } else {
  2073. available = total - rq->rt_avg;
  2074. }
  2075. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  2076. total = SCHED_LOAD_SCALE;
  2077. total >>= SCHED_LOAD_SHIFT;
  2078. return div_u64(available, total);
  2079. }
  2080. static void update_cpu_power(struct sched_domain *sd, int cpu)
  2081. {
  2082. unsigned long weight = sd->span_weight;
  2083. unsigned long power = SCHED_LOAD_SCALE;
  2084. struct sched_group *sdg = sd->groups;
  2085. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  2086. if (sched_feat(ARCH_POWER))
  2087. power *= arch_scale_smt_power(sd, cpu);
  2088. else
  2089. power *= default_scale_smt_power(sd, cpu);
  2090. power >>= SCHED_LOAD_SHIFT;
  2091. }
  2092. sdg->cpu_power_orig = power;
  2093. if (sched_feat(ARCH_POWER))
  2094. power *= arch_scale_freq_power(sd, cpu);
  2095. else
  2096. power *= default_scale_freq_power(sd, cpu);
  2097. power >>= SCHED_LOAD_SHIFT;
  2098. power *= scale_rt_power(cpu);
  2099. power >>= SCHED_LOAD_SHIFT;
  2100. if (!power)
  2101. power = 1;
  2102. cpu_rq(cpu)->cpu_power = power;
  2103. sdg->cpu_power = power;
  2104. }
  2105. static void update_group_power(struct sched_domain *sd, int cpu)
  2106. {
  2107. struct sched_domain *child = sd->child;
  2108. struct sched_group *group, *sdg = sd->groups;
  2109. unsigned long power;
  2110. if (!child) {
  2111. update_cpu_power(sd, cpu);
  2112. return;
  2113. }
  2114. power = 0;
  2115. group = child->groups;
  2116. do {
  2117. power += group->cpu_power;
  2118. group = group->next;
  2119. } while (group != child->groups);
  2120. sdg->cpu_power = power;
  2121. }
  2122. /*
  2123. * Try and fix up capacity for tiny siblings, this is needed when
  2124. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  2125. * which on its own isn't powerful enough.
  2126. *
  2127. * See update_sd_pick_busiest() and check_asym_packing().
  2128. */
  2129. static inline int
  2130. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  2131. {
  2132. /*
  2133. * Only siblings can have significantly less than SCHED_LOAD_SCALE
  2134. */
  2135. if (sd->level != SD_LV_SIBLING)
  2136. return 0;
  2137. /*
  2138. * If ~90% of the cpu_power is still there, we're good.
  2139. */
  2140. if (group->cpu_power * 32 > group->cpu_power_orig * 29)
  2141. return 1;
  2142. return 0;
  2143. }
  2144. /**
  2145. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2146. * @sd: The sched_domain whose statistics are to be updated.
  2147. * @group: sched_group whose statistics are to be updated.
  2148. * @this_cpu: Cpu for which load balance is currently performed.
  2149. * @idle: Idle status of this_cpu
  2150. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2151. * @sd_idle: Idle status of the sched_domain containing group.
  2152. * @local_group: Does group contain this_cpu.
  2153. * @cpus: Set of cpus considered for load balancing.
  2154. * @balance: Should we balance.
  2155. * @sgs: variable to hold the statistics for this group.
  2156. */
  2157. static inline void update_sg_lb_stats(struct sched_domain *sd,
  2158. struct sched_group *group, int this_cpu,
  2159. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  2160. int local_group, const struct cpumask *cpus,
  2161. int *balance, struct sg_lb_stats *sgs)
  2162. {
  2163. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  2164. int i;
  2165. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2166. unsigned long avg_load_per_task = 0;
  2167. if (local_group)
  2168. balance_cpu = group_first_cpu(group);
  2169. /* Tally up the load of all CPUs in the group */
  2170. max_cpu_load = 0;
  2171. min_cpu_load = ~0UL;
  2172. max_nr_running = 0;
  2173. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2174. struct rq *rq = cpu_rq(i);
  2175. if (*sd_idle && rq->nr_running)
  2176. *sd_idle = 0;
  2177. /* Bias balancing toward cpus of our domain */
  2178. if (local_group) {
  2179. if (idle_cpu(i) && !first_idle_cpu) {
  2180. first_idle_cpu = 1;
  2181. balance_cpu = i;
  2182. }
  2183. load = target_load(i, load_idx);
  2184. } else {
  2185. load = source_load(i, load_idx);
  2186. if (load > max_cpu_load) {
  2187. max_cpu_load = load;
  2188. max_nr_running = rq->nr_running;
  2189. }
  2190. if (min_cpu_load > load)
  2191. min_cpu_load = load;
  2192. }
  2193. sgs->group_load += load;
  2194. sgs->sum_nr_running += rq->nr_running;
  2195. sgs->sum_weighted_load += weighted_cpuload(i);
  2196. if (idle_cpu(i))
  2197. sgs->idle_cpus++;
  2198. }
  2199. /*
  2200. * First idle cpu or the first cpu(busiest) in this sched group
  2201. * is eligible for doing load balancing at this and above
  2202. * domains. In the newly idle case, we will allow all the cpu's
  2203. * to do the newly idle load balance.
  2204. */
  2205. if (idle != CPU_NEWLY_IDLE && local_group) {
  2206. if (balance_cpu != this_cpu) {
  2207. *balance = 0;
  2208. return;
  2209. }
  2210. update_group_power(sd, this_cpu);
  2211. }
  2212. /* Adjust by relative CPU power of the group */
  2213. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  2214. /*
  2215. * Consider the group unbalanced when the imbalance is larger
  2216. * than the average weight of two tasks.
  2217. *
  2218. * APZ: with cgroup the avg task weight can vary wildly and
  2219. * might not be a suitable number - should we keep a
  2220. * normalized nr_running number somewhere that negates
  2221. * the hierarchy?
  2222. */
  2223. if (sgs->sum_nr_running)
  2224. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  2225. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
  2226. sgs->group_imb = 1;
  2227. sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  2228. if (!sgs->group_capacity)
  2229. sgs->group_capacity = fix_small_capacity(sd, group);
  2230. sgs->group_weight = group->group_weight;
  2231. if (sgs->group_capacity > sgs->sum_nr_running)
  2232. sgs->group_has_capacity = 1;
  2233. }
  2234. /**
  2235. * update_sd_pick_busiest - return 1 on busiest group
  2236. * @sd: sched_domain whose statistics are to be checked
  2237. * @sds: sched_domain statistics
  2238. * @sg: sched_group candidate to be checked for being the busiest
  2239. * @sgs: sched_group statistics
  2240. * @this_cpu: the current cpu
  2241. *
  2242. * Determine if @sg is a busier group than the previously selected
  2243. * busiest group.
  2244. */
  2245. static bool update_sd_pick_busiest(struct sched_domain *sd,
  2246. struct sd_lb_stats *sds,
  2247. struct sched_group *sg,
  2248. struct sg_lb_stats *sgs,
  2249. int this_cpu)
  2250. {
  2251. if (sgs->avg_load <= sds->max_load)
  2252. return false;
  2253. if (sgs->sum_nr_running > sgs->group_capacity)
  2254. return true;
  2255. if (sgs->group_imb)
  2256. return true;
  2257. /*
  2258. * ASYM_PACKING needs to move all the work to the lowest
  2259. * numbered CPUs in the group, therefore mark all groups
  2260. * higher than ourself as busy.
  2261. */
  2262. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  2263. this_cpu < group_first_cpu(sg)) {
  2264. if (!sds->busiest)
  2265. return true;
  2266. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  2267. return true;
  2268. }
  2269. return false;
  2270. }
  2271. /**
  2272. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2273. * @sd: sched_domain whose statistics are to be updated.
  2274. * @this_cpu: Cpu for which load balance is currently performed.
  2275. * @idle: Idle status of this_cpu
  2276. * @sd_idle: Idle status of the sched_domain containing sg.
  2277. * @cpus: Set of cpus considered for load balancing.
  2278. * @balance: Should we balance.
  2279. * @sds: variable to hold the statistics for this sched_domain.
  2280. */
  2281. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  2282. enum cpu_idle_type idle, int *sd_idle,
  2283. const struct cpumask *cpus, int *balance,
  2284. struct sd_lb_stats *sds)
  2285. {
  2286. struct sched_domain *child = sd->child;
  2287. struct sched_group *sg = sd->groups;
  2288. struct sg_lb_stats sgs;
  2289. int load_idx, prefer_sibling = 0;
  2290. if (child && child->flags & SD_PREFER_SIBLING)
  2291. prefer_sibling = 1;
  2292. init_sd_power_savings_stats(sd, sds, idle);
  2293. load_idx = get_sd_load_idx(sd, idle);
  2294. do {
  2295. int local_group;
  2296. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  2297. memset(&sgs, 0, sizeof(sgs));
  2298. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
  2299. local_group, cpus, balance, &sgs);
  2300. if (local_group && !(*balance))
  2301. return;
  2302. sds->total_load += sgs.group_load;
  2303. sds->total_pwr += sg->cpu_power;
  2304. /*
  2305. * In case the child domain prefers tasks go to siblings
  2306. * first, lower the sg capacity to one so that we'll try
  2307. * and move all the excess tasks away. We lower the capacity
  2308. * of a group only if the local group has the capacity to fit
  2309. * these excess tasks, i.e. nr_running < group_capacity. The
  2310. * extra check prevents the case where you always pull from the
  2311. * heaviest group when it is already under-utilized (possible
  2312. * with a large weight task outweighs the tasks on the system).
  2313. */
  2314. if (prefer_sibling && !local_group && sds->this_has_capacity)
  2315. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  2316. if (local_group) {
  2317. sds->this_load = sgs.avg_load;
  2318. sds->this = sg;
  2319. sds->this_nr_running = sgs.sum_nr_running;
  2320. sds->this_load_per_task = sgs.sum_weighted_load;
  2321. sds->this_has_capacity = sgs.group_has_capacity;
  2322. sds->this_idle_cpus = sgs.idle_cpus;
  2323. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  2324. sds->max_load = sgs.avg_load;
  2325. sds->busiest = sg;
  2326. sds->busiest_nr_running = sgs.sum_nr_running;
  2327. sds->busiest_idle_cpus = sgs.idle_cpus;
  2328. sds->busiest_group_capacity = sgs.group_capacity;
  2329. sds->busiest_load_per_task = sgs.sum_weighted_load;
  2330. sds->busiest_has_capacity = sgs.group_has_capacity;
  2331. sds->busiest_group_weight = sgs.group_weight;
  2332. sds->group_imb = sgs.group_imb;
  2333. }
  2334. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  2335. sg = sg->next;
  2336. } while (sg != sd->groups);
  2337. }
  2338. int __weak arch_sd_sibling_asym_packing(void)
  2339. {
  2340. return 0*SD_ASYM_PACKING;
  2341. }
  2342. /**
  2343. * check_asym_packing - Check to see if the group is packed into the
  2344. * sched doman.
  2345. *
  2346. * This is primarily intended to used at the sibling level. Some
  2347. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  2348. * case of POWER7, it can move to lower SMT modes only when higher
  2349. * threads are idle. When in lower SMT modes, the threads will
  2350. * perform better since they share less core resources. Hence when we
  2351. * have idle threads, we want them to be the higher ones.
  2352. *
  2353. * This packing function is run on idle threads. It checks to see if
  2354. * the busiest CPU in this domain (core in the P7 case) has a higher
  2355. * CPU number than the packing function is being run on. Here we are
  2356. * assuming lower CPU number will be equivalent to lower a SMT thread
  2357. * number.
  2358. *
  2359. * Returns 1 when packing is required and a task should be moved to
  2360. * this CPU. The amount of the imbalance is returned in *imbalance.
  2361. *
  2362. * @sd: The sched_domain whose packing is to be checked.
  2363. * @sds: Statistics of the sched_domain which is to be packed
  2364. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2365. * @imbalance: returns amount of imbalanced due to packing.
  2366. */
  2367. static int check_asym_packing(struct sched_domain *sd,
  2368. struct sd_lb_stats *sds,
  2369. int this_cpu, unsigned long *imbalance)
  2370. {
  2371. int busiest_cpu;
  2372. if (!(sd->flags & SD_ASYM_PACKING))
  2373. return 0;
  2374. if (!sds->busiest)
  2375. return 0;
  2376. busiest_cpu = group_first_cpu(sds->busiest);
  2377. if (this_cpu > busiest_cpu)
  2378. return 0;
  2379. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
  2380. SCHED_LOAD_SCALE);
  2381. return 1;
  2382. }
  2383. /**
  2384. * fix_small_imbalance - Calculate the minor imbalance that exists
  2385. * amongst the groups of a sched_domain, during
  2386. * load balancing.
  2387. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  2388. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2389. * @imbalance: Variable to store the imbalance.
  2390. */
  2391. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  2392. int this_cpu, unsigned long *imbalance)
  2393. {
  2394. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  2395. unsigned int imbn = 2;
  2396. unsigned long scaled_busy_load_per_task;
  2397. if (sds->this_nr_running) {
  2398. sds->this_load_per_task /= sds->this_nr_running;
  2399. if (sds->busiest_load_per_task >
  2400. sds->this_load_per_task)
  2401. imbn = 1;
  2402. } else
  2403. sds->this_load_per_task =
  2404. cpu_avg_load_per_task(this_cpu);
  2405. scaled_busy_load_per_task = sds->busiest_load_per_task
  2406. * SCHED_LOAD_SCALE;
  2407. scaled_busy_load_per_task /= sds->busiest->cpu_power;
  2408. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  2409. (scaled_busy_load_per_task * imbn)) {
  2410. *imbalance = sds->busiest_load_per_task;
  2411. return;
  2412. }
  2413. /*
  2414. * OK, we don't have enough imbalance to justify moving tasks,
  2415. * however we may be able to increase total CPU power used by
  2416. * moving them.
  2417. */
  2418. pwr_now += sds->busiest->cpu_power *
  2419. min(sds->busiest_load_per_task, sds->max_load);
  2420. pwr_now += sds->this->cpu_power *
  2421. min(sds->this_load_per_task, sds->this_load);
  2422. pwr_now /= SCHED_LOAD_SCALE;
  2423. /* Amount of load we'd subtract */
  2424. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2425. sds->busiest->cpu_power;
  2426. if (sds->max_load > tmp)
  2427. pwr_move += sds->busiest->cpu_power *
  2428. min(sds->busiest_load_per_task, sds->max_load - tmp);
  2429. /* Amount of load we'd add */
  2430. if (sds->max_load * sds->busiest->cpu_power <
  2431. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  2432. tmp = (sds->max_load * sds->busiest->cpu_power) /
  2433. sds->this->cpu_power;
  2434. else
  2435. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2436. sds->this->cpu_power;
  2437. pwr_move += sds->this->cpu_power *
  2438. min(sds->this_load_per_task, sds->this_load + tmp);
  2439. pwr_move /= SCHED_LOAD_SCALE;
  2440. /* Move if we gain throughput */
  2441. if (pwr_move > pwr_now)
  2442. *imbalance = sds->busiest_load_per_task;
  2443. }
  2444. /**
  2445. * calculate_imbalance - Calculate the amount of imbalance present within the
  2446. * groups of a given sched_domain during load balance.
  2447. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  2448. * @this_cpu: Cpu for which currently load balance is being performed.
  2449. * @imbalance: The variable to store the imbalance.
  2450. */
  2451. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  2452. unsigned long *imbalance)
  2453. {
  2454. unsigned long max_pull, load_above_capacity = ~0UL;
  2455. sds->busiest_load_per_task /= sds->busiest_nr_running;
  2456. if (sds->group_imb) {
  2457. sds->busiest_load_per_task =
  2458. min(sds->busiest_load_per_task, sds->avg_load);
  2459. }
  2460. /*
  2461. * In the presence of smp nice balancing, certain scenarios can have
  2462. * max load less than avg load(as we skip the groups at or below
  2463. * its cpu_power, while calculating max_load..)
  2464. */
  2465. if (sds->max_load < sds->avg_load) {
  2466. *imbalance = 0;
  2467. return fix_small_imbalance(sds, this_cpu, imbalance);
  2468. }
  2469. if (!sds->group_imb) {
  2470. /*
  2471. * Don't want to pull so many tasks that a group would go idle.
  2472. */
  2473. load_above_capacity = (sds->busiest_nr_running -
  2474. sds->busiest_group_capacity);
  2475. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
  2476. load_above_capacity /= sds->busiest->cpu_power;
  2477. }
  2478. /*
  2479. * We're trying to get all the cpus to the average_load, so we don't
  2480. * want to push ourselves above the average load, nor do we wish to
  2481. * reduce the max loaded cpu below the average load. At the same time,
  2482. * we also don't want to reduce the group load below the group capacity
  2483. * (so that we can implement power-savings policies etc). Thus we look
  2484. * for the minimum possible imbalance.
  2485. * Be careful of negative numbers as they'll appear as very large values
  2486. * with unsigned longs.
  2487. */
  2488. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  2489. /* How much load to actually move to equalise the imbalance */
  2490. *imbalance = min(max_pull * sds->busiest->cpu_power,
  2491. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  2492. / SCHED_LOAD_SCALE;
  2493. /*
  2494. * if *imbalance is less than the average load per runnable task
  2495. * there is no gaurantee that any tasks will be moved so we'll have
  2496. * a think about bumping its value to force at least one task to be
  2497. * moved
  2498. */
  2499. if (*imbalance < sds->busiest_load_per_task)
  2500. return fix_small_imbalance(sds, this_cpu, imbalance);
  2501. }
  2502. /******* find_busiest_group() helpers end here *********************/
  2503. /**
  2504. * find_busiest_group - Returns the busiest group within the sched_domain
  2505. * if there is an imbalance. If there isn't an imbalance, and
  2506. * the user has opted for power-savings, it returns a group whose
  2507. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  2508. * such a group exists.
  2509. *
  2510. * Also calculates the amount of weighted load which should be moved
  2511. * to restore balance.
  2512. *
  2513. * @sd: The sched_domain whose busiest group is to be returned.
  2514. * @this_cpu: The cpu for which load balancing is currently being performed.
  2515. * @imbalance: Variable which stores amount of weighted load which should
  2516. * be moved to restore balance/put a group to idle.
  2517. * @idle: The idle status of this_cpu.
  2518. * @sd_idle: The idleness of sd
  2519. * @cpus: The set of CPUs under consideration for load-balancing.
  2520. * @balance: Pointer to a variable indicating if this_cpu
  2521. * is the appropriate cpu to perform load balancing at this_level.
  2522. *
  2523. * Returns: - the busiest group if imbalance exists.
  2524. * - If no imbalance and user has opted for power-savings balance,
  2525. * return the least loaded group whose CPUs can be
  2526. * put to idle by rebalancing its tasks onto our group.
  2527. */
  2528. static struct sched_group *
  2529. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2530. unsigned long *imbalance, enum cpu_idle_type idle,
  2531. int *sd_idle, const struct cpumask *cpus, int *balance)
  2532. {
  2533. struct sd_lb_stats sds;
  2534. memset(&sds, 0, sizeof(sds));
  2535. /*
  2536. * Compute the various statistics relavent for load balancing at
  2537. * this level.
  2538. */
  2539. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  2540. balance, &sds);
  2541. /* Cases where imbalance does not exist from POV of this_cpu */
  2542. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  2543. * at this level.
  2544. * 2) There is no busy sibling group to pull from.
  2545. * 3) This group is the busiest group.
  2546. * 4) This group is more busy than the avg busieness at this
  2547. * sched_domain.
  2548. * 5) The imbalance is within the specified limit.
  2549. *
  2550. * Note: when doing newidle balance, if the local group has excess
  2551. * capacity (i.e. nr_running < group_capacity) and the busiest group
  2552. * does not have any capacity, we force a load balance to pull tasks
  2553. * to the local group. In this case, we skip past checks 3, 4 and 5.
  2554. */
  2555. if (!(*balance))
  2556. goto ret;
  2557. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  2558. check_asym_packing(sd, &sds, this_cpu, imbalance))
  2559. return sds.busiest;
  2560. if (!sds.busiest || sds.busiest_nr_running == 0)
  2561. goto out_balanced;
  2562. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  2563. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  2564. !sds.busiest_has_capacity)
  2565. goto force_balance;
  2566. if (sds.this_load >= sds.max_load)
  2567. goto out_balanced;
  2568. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  2569. if (sds.this_load >= sds.avg_load)
  2570. goto out_balanced;
  2571. /*
  2572. * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
  2573. * And to check for busy balance use !idle_cpu instead of
  2574. * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
  2575. * even when they are idle.
  2576. */
  2577. if (idle == CPU_NEWLY_IDLE || !idle_cpu(this_cpu)) {
  2578. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  2579. goto out_balanced;
  2580. } else {
  2581. /*
  2582. * This cpu is idle. If the busiest group load doesn't
  2583. * have more tasks than the number of available cpu's and
  2584. * there is no imbalance between this and busiest group
  2585. * wrt to idle cpu's, it is balanced.
  2586. */
  2587. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  2588. sds.busiest_nr_running <= sds.busiest_group_weight)
  2589. goto out_balanced;
  2590. }
  2591. force_balance:
  2592. /* Looks like there is an imbalance. Compute it */
  2593. calculate_imbalance(&sds, this_cpu, imbalance);
  2594. return sds.busiest;
  2595. out_balanced:
  2596. /*
  2597. * There is no obvious imbalance. But check if we can do some balancing
  2598. * to save power.
  2599. */
  2600. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  2601. return sds.busiest;
  2602. ret:
  2603. *imbalance = 0;
  2604. return NULL;
  2605. }
  2606. /*
  2607. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2608. */
  2609. static struct rq *
  2610. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  2611. enum cpu_idle_type idle, unsigned long imbalance,
  2612. const struct cpumask *cpus)
  2613. {
  2614. struct rq *busiest = NULL, *rq;
  2615. unsigned long max_load = 0;
  2616. int i;
  2617. for_each_cpu(i, sched_group_cpus(group)) {
  2618. unsigned long power = power_of(i);
  2619. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  2620. unsigned long wl;
  2621. if (!capacity)
  2622. capacity = fix_small_capacity(sd, group);
  2623. if (!cpumask_test_cpu(i, cpus))
  2624. continue;
  2625. rq = cpu_rq(i);
  2626. wl = weighted_cpuload(i);
  2627. /*
  2628. * When comparing with imbalance, use weighted_cpuload()
  2629. * which is not scaled with the cpu power.
  2630. */
  2631. if (capacity && rq->nr_running == 1 && wl > imbalance)
  2632. continue;
  2633. /*
  2634. * For the load comparisons with the other cpu's, consider
  2635. * the weighted_cpuload() scaled with the cpu power, so that
  2636. * the load can be moved away from the cpu that is potentially
  2637. * running at a lower capacity.
  2638. */
  2639. wl = (wl * SCHED_LOAD_SCALE) / power;
  2640. if (wl > max_load) {
  2641. max_load = wl;
  2642. busiest = rq;
  2643. }
  2644. }
  2645. return busiest;
  2646. }
  2647. /*
  2648. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2649. * so long as it is large enough.
  2650. */
  2651. #define MAX_PINNED_INTERVAL 512
  2652. /* Working cpumask for load_balance and load_balance_newidle. */
  2653. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  2654. static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
  2655. int busiest_cpu, int this_cpu)
  2656. {
  2657. if (idle == CPU_NEWLY_IDLE) {
  2658. /*
  2659. * ASYM_PACKING needs to force migrate tasks from busy but
  2660. * higher numbered CPUs in order to pack all tasks in the
  2661. * lowest numbered CPUs.
  2662. */
  2663. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  2664. return 1;
  2665. /*
  2666. * The only task running in a non-idle cpu can be moved to this
  2667. * cpu in an attempt to completely freeup the other CPU
  2668. * package.
  2669. *
  2670. * The package power saving logic comes from
  2671. * find_busiest_group(). If there are no imbalance, then
  2672. * f_b_g() will return NULL. However when sched_mc={1,2} then
  2673. * f_b_g() will select a group from which a running task may be
  2674. * pulled to this cpu in order to make the other package idle.
  2675. * If there is no opportunity to make a package idle and if
  2676. * there are no imbalance, then f_b_g() will return NULL and no
  2677. * action will be taken in load_balance_newidle().
  2678. *
  2679. * Under normal task pull operation due to imbalance, there
  2680. * will be more than one task in the source run queue and
  2681. * move_tasks() will succeed. ld_moved will be true and this
  2682. * active balance code will not be triggered.
  2683. */
  2684. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2685. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2686. return 0;
  2687. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  2688. return 0;
  2689. }
  2690. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  2691. }
  2692. static int active_load_balance_cpu_stop(void *data);
  2693. /*
  2694. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2695. * tasks if there is an imbalance.
  2696. */
  2697. static int load_balance(int this_cpu, struct rq *this_rq,
  2698. struct sched_domain *sd, enum cpu_idle_type idle,
  2699. int *balance)
  2700. {
  2701. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2702. struct sched_group *group;
  2703. unsigned long imbalance;
  2704. struct rq *busiest;
  2705. unsigned long flags;
  2706. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  2707. cpumask_copy(cpus, cpu_active_mask);
  2708. /*
  2709. * When power savings policy is enabled for the parent domain, idle
  2710. * sibling can pick up load irrespective of busy siblings. In this case,
  2711. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2712. * portraying it as CPU_NOT_IDLE.
  2713. */
  2714. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2715. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2716. sd_idle = 1;
  2717. schedstat_inc(sd, lb_count[idle]);
  2718. redo:
  2719. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2720. cpus, balance);
  2721. if (*balance == 0)
  2722. goto out_balanced;
  2723. if (!group) {
  2724. schedstat_inc(sd, lb_nobusyg[idle]);
  2725. goto out_balanced;
  2726. }
  2727. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  2728. if (!busiest) {
  2729. schedstat_inc(sd, lb_nobusyq[idle]);
  2730. goto out_balanced;
  2731. }
  2732. BUG_ON(busiest == this_rq);
  2733. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2734. ld_moved = 0;
  2735. if (busiest->nr_running > 1) {
  2736. /*
  2737. * Attempt to move tasks. If find_busiest_group has found
  2738. * an imbalance but busiest->nr_running <= 1, the group is
  2739. * still unbalanced. ld_moved simply stays zero, so it is
  2740. * correctly treated as an imbalance.
  2741. */
  2742. local_irq_save(flags);
  2743. double_rq_lock(this_rq, busiest);
  2744. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2745. imbalance, sd, idle, &all_pinned);
  2746. double_rq_unlock(this_rq, busiest);
  2747. local_irq_restore(flags);
  2748. /*
  2749. * some other cpu did the load balance for us.
  2750. */
  2751. if (ld_moved && this_cpu != smp_processor_id())
  2752. resched_cpu(this_cpu);
  2753. /* All tasks on this runqueue were pinned by CPU affinity */
  2754. if (unlikely(all_pinned)) {
  2755. cpumask_clear_cpu(cpu_of(busiest), cpus);
  2756. if (!cpumask_empty(cpus))
  2757. goto redo;
  2758. goto out_balanced;
  2759. }
  2760. }
  2761. if (!ld_moved) {
  2762. schedstat_inc(sd, lb_failed[idle]);
  2763. /*
  2764. * Increment the failure counter only on periodic balance.
  2765. * We do not want newidle balance, which can be very
  2766. * frequent, pollute the failure counter causing
  2767. * excessive cache_hot migrations and active balances.
  2768. */
  2769. if (idle != CPU_NEWLY_IDLE)
  2770. sd->nr_balance_failed++;
  2771. if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
  2772. this_cpu)) {
  2773. raw_spin_lock_irqsave(&busiest->lock, flags);
  2774. /* don't kick the active_load_balance_cpu_stop,
  2775. * if the curr task on busiest cpu can't be
  2776. * moved to this_cpu
  2777. */
  2778. if (!cpumask_test_cpu(this_cpu,
  2779. &busiest->curr->cpus_allowed)) {
  2780. raw_spin_unlock_irqrestore(&busiest->lock,
  2781. flags);
  2782. all_pinned = 1;
  2783. goto out_one_pinned;
  2784. }
  2785. /*
  2786. * ->active_balance synchronizes accesses to
  2787. * ->active_balance_work. Once set, it's cleared
  2788. * only after active load balance is finished.
  2789. */
  2790. if (!busiest->active_balance) {
  2791. busiest->active_balance = 1;
  2792. busiest->push_cpu = this_cpu;
  2793. active_balance = 1;
  2794. }
  2795. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  2796. if (active_balance)
  2797. stop_one_cpu_nowait(cpu_of(busiest),
  2798. active_load_balance_cpu_stop, busiest,
  2799. &busiest->active_balance_work);
  2800. /*
  2801. * We've kicked active balancing, reset the failure
  2802. * counter.
  2803. */
  2804. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2805. }
  2806. } else
  2807. sd->nr_balance_failed = 0;
  2808. if (likely(!active_balance)) {
  2809. /* We were unbalanced, so reset the balancing interval */
  2810. sd->balance_interval = sd->min_interval;
  2811. } else {
  2812. /*
  2813. * If we've begun active balancing, start to back off. This
  2814. * case may not be covered by the all_pinned logic if there
  2815. * is only 1 task on the busy runqueue (because we don't call
  2816. * move_tasks).
  2817. */
  2818. if (sd->balance_interval < sd->max_interval)
  2819. sd->balance_interval *= 2;
  2820. }
  2821. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2822. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2823. ld_moved = -1;
  2824. goto out;
  2825. out_balanced:
  2826. schedstat_inc(sd, lb_balanced[idle]);
  2827. sd->nr_balance_failed = 0;
  2828. out_one_pinned:
  2829. /* tune up the balancing interval */
  2830. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2831. (sd->balance_interval < sd->max_interval))
  2832. sd->balance_interval *= 2;
  2833. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2834. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2835. ld_moved = -1;
  2836. else
  2837. ld_moved = 0;
  2838. out:
  2839. return ld_moved;
  2840. }
  2841. /*
  2842. * idle_balance is called by schedule() if this_cpu is about to become
  2843. * idle. Attempts to pull tasks from other CPUs.
  2844. */
  2845. static void idle_balance(int this_cpu, struct rq *this_rq)
  2846. {
  2847. struct sched_domain *sd;
  2848. int pulled_task = 0;
  2849. unsigned long next_balance = jiffies + HZ;
  2850. this_rq->idle_stamp = this_rq->clock;
  2851. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  2852. return;
  2853. /*
  2854. * Drop the rq->lock, but keep IRQ/preempt disabled.
  2855. */
  2856. raw_spin_unlock(&this_rq->lock);
  2857. update_shares(this_cpu);
  2858. for_each_domain(this_cpu, sd) {
  2859. unsigned long interval;
  2860. int balance = 1;
  2861. if (!(sd->flags & SD_LOAD_BALANCE))
  2862. continue;
  2863. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2864. /* If we've pulled tasks over stop searching: */
  2865. pulled_task = load_balance(this_cpu, this_rq,
  2866. sd, CPU_NEWLY_IDLE, &balance);
  2867. }
  2868. interval = msecs_to_jiffies(sd->balance_interval);
  2869. if (time_after(next_balance, sd->last_balance + interval))
  2870. next_balance = sd->last_balance + interval;
  2871. if (pulled_task) {
  2872. this_rq->idle_stamp = 0;
  2873. break;
  2874. }
  2875. }
  2876. raw_spin_lock(&this_rq->lock);
  2877. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2878. /*
  2879. * We are going idle. next_balance may be set based on
  2880. * a busy processor. So reset next_balance.
  2881. */
  2882. this_rq->next_balance = next_balance;
  2883. }
  2884. }
  2885. /*
  2886. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  2887. * running tasks off the busiest CPU onto idle CPUs. It requires at
  2888. * least 1 task to be running on each physical CPU where possible, and
  2889. * avoids physical / logical imbalances.
  2890. */
  2891. static int active_load_balance_cpu_stop(void *data)
  2892. {
  2893. struct rq *busiest_rq = data;
  2894. int busiest_cpu = cpu_of(busiest_rq);
  2895. int target_cpu = busiest_rq->push_cpu;
  2896. struct rq *target_rq = cpu_rq(target_cpu);
  2897. struct sched_domain *sd;
  2898. raw_spin_lock_irq(&busiest_rq->lock);
  2899. /* make sure the requested cpu hasn't gone down in the meantime */
  2900. if (unlikely(busiest_cpu != smp_processor_id() ||
  2901. !busiest_rq->active_balance))
  2902. goto out_unlock;
  2903. /* Is there any task to move? */
  2904. if (busiest_rq->nr_running <= 1)
  2905. goto out_unlock;
  2906. /*
  2907. * This condition is "impossible", if it occurs
  2908. * we need to fix it. Originally reported by
  2909. * Bjorn Helgaas on a 128-cpu setup.
  2910. */
  2911. BUG_ON(busiest_rq == target_rq);
  2912. /* move a task from busiest_rq to target_rq */
  2913. double_lock_balance(busiest_rq, target_rq);
  2914. /* Search for an sd spanning us and the target CPU. */
  2915. for_each_domain(target_cpu, sd) {
  2916. if ((sd->flags & SD_LOAD_BALANCE) &&
  2917. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  2918. break;
  2919. }
  2920. if (likely(sd)) {
  2921. schedstat_inc(sd, alb_count);
  2922. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2923. sd, CPU_IDLE))
  2924. schedstat_inc(sd, alb_pushed);
  2925. else
  2926. schedstat_inc(sd, alb_failed);
  2927. }
  2928. double_unlock_balance(busiest_rq, target_rq);
  2929. out_unlock:
  2930. busiest_rq->active_balance = 0;
  2931. raw_spin_unlock_irq(&busiest_rq->lock);
  2932. return 0;
  2933. }
  2934. #ifdef CONFIG_NO_HZ
  2935. static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
  2936. static void trigger_sched_softirq(void *data)
  2937. {
  2938. raise_softirq_irqoff(SCHED_SOFTIRQ);
  2939. }
  2940. static inline void init_sched_softirq_csd(struct call_single_data *csd)
  2941. {
  2942. csd->func = trigger_sched_softirq;
  2943. csd->info = NULL;
  2944. csd->flags = 0;
  2945. csd->priv = 0;
  2946. }
  2947. /*
  2948. * idle load balancing details
  2949. * - One of the idle CPUs nominates itself as idle load_balancer, while
  2950. * entering idle.
  2951. * - This idle load balancer CPU will also go into tickless mode when
  2952. * it is idle, just like all other idle CPUs
  2953. * - When one of the busy CPUs notice that there may be an idle rebalancing
  2954. * needed, they will kick the idle load balancer, which then does idle
  2955. * load balancing for all the idle CPUs.
  2956. */
  2957. static struct {
  2958. atomic_t load_balancer;
  2959. atomic_t first_pick_cpu;
  2960. atomic_t second_pick_cpu;
  2961. cpumask_var_t idle_cpus_mask;
  2962. cpumask_var_t grp_idle_mask;
  2963. unsigned long next_balance; /* in jiffy units */
  2964. } nohz ____cacheline_aligned;
  2965. int get_nohz_load_balancer(void)
  2966. {
  2967. return atomic_read(&nohz.load_balancer);
  2968. }
  2969. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2970. /**
  2971. * lowest_flag_domain - Return lowest sched_domain containing flag.
  2972. * @cpu: The cpu whose lowest level of sched domain is to
  2973. * be returned.
  2974. * @flag: The flag to check for the lowest sched_domain
  2975. * for the given cpu.
  2976. *
  2977. * Returns the lowest sched_domain of a cpu which contains the given flag.
  2978. */
  2979. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  2980. {
  2981. struct sched_domain *sd;
  2982. for_each_domain(cpu, sd)
  2983. if (sd && (sd->flags & flag))
  2984. break;
  2985. return sd;
  2986. }
  2987. /**
  2988. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  2989. * @cpu: The cpu whose domains we're iterating over.
  2990. * @sd: variable holding the value of the power_savings_sd
  2991. * for cpu.
  2992. * @flag: The flag to filter the sched_domains to be iterated.
  2993. *
  2994. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  2995. * set, starting from the lowest sched_domain to the highest.
  2996. */
  2997. #define for_each_flag_domain(cpu, sd, flag) \
  2998. for (sd = lowest_flag_domain(cpu, flag); \
  2999. (sd && (sd->flags & flag)); sd = sd->parent)
  3000. /**
  3001. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3002. * @ilb_group: group to be checked for semi-idleness
  3003. *
  3004. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3005. *
  3006. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3007. * and atleast one non-idle CPU. This helper function checks if the given
  3008. * sched_group is semi-idle or not.
  3009. */
  3010. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3011. {
  3012. cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
  3013. sched_group_cpus(ilb_group));
  3014. /*
  3015. * A sched_group is semi-idle when it has atleast one busy cpu
  3016. * and atleast one idle cpu.
  3017. */
  3018. if (cpumask_empty(nohz.grp_idle_mask))
  3019. return 0;
  3020. if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
  3021. return 0;
  3022. return 1;
  3023. }
  3024. /**
  3025. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3026. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3027. *
  3028. * Returns: Returns the id of the idle load balancer if it exists,
  3029. * Else, returns >= nr_cpu_ids.
  3030. *
  3031. * This algorithm picks the idle load balancer such that it belongs to a
  3032. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3033. * completely idle packages/cores just for the purpose of idle load balancing
  3034. * when there are other idle cpu's which are better suited for that job.
  3035. */
  3036. static int find_new_ilb(int cpu)
  3037. {
  3038. struct sched_domain *sd;
  3039. struct sched_group *ilb_group;
  3040. /*
  3041. * Have idle load balancer selection from semi-idle packages only
  3042. * when power-aware load balancing is enabled
  3043. */
  3044. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3045. goto out_done;
  3046. /*
  3047. * Optimize for the case when we have no idle CPUs or only one
  3048. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3049. */
  3050. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  3051. goto out_done;
  3052. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3053. ilb_group = sd->groups;
  3054. do {
  3055. if (is_semi_idle_group(ilb_group))
  3056. return cpumask_first(nohz.grp_idle_mask);
  3057. ilb_group = ilb_group->next;
  3058. } while (ilb_group != sd->groups);
  3059. }
  3060. out_done:
  3061. return nr_cpu_ids;
  3062. }
  3063. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3064. static inline int find_new_ilb(int call_cpu)
  3065. {
  3066. return nr_cpu_ids;
  3067. }
  3068. #endif
  3069. /*
  3070. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  3071. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  3072. * CPU (if there is one).
  3073. */
  3074. static void nohz_balancer_kick(int cpu)
  3075. {
  3076. int ilb_cpu;
  3077. nohz.next_balance++;
  3078. ilb_cpu = get_nohz_load_balancer();
  3079. if (ilb_cpu >= nr_cpu_ids) {
  3080. ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
  3081. if (ilb_cpu >= nr_cpu_ids)
  3082. return;
  3083. }
  3084. if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
  3085. struct call_single_data *cp;
  3086. cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
  3087. cp = &per_cpu(remote_sched_softirq_cb, cpu);
  3088. __smp_call_function_single(ilb_cpu, cp, 0);
  3089. }
  3090. return;
  3091. }
  3092. /*
  3093. * This routine will try to nominate the ilb (idle load balancing)
  3094. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3095. * load balancing on behalf of all those cpus.
  3096. *
  3097. * When the ilb owner becomes busy, we will not have new ilb owner until some
  3098. * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
  3099. * idle load balancing by kicking one of the idle CPUs.
  3100. *
  3101. * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
  3102. * ilb owner CPU in future (when there is a need for idle load balancing on
  3103. * behalf of all idle CPUs).
  3104. */
  3105. void select_nohz_load_balancer(int stop_tick)
  3106. {
  3107. int cpu = smp_processor_id();
  3108. if (stop_tick) {
  3109. if (!cpu_active(cpu)) {
  3110. if (atomic_read(&nohz.load_balancer) != cpu)
  3111. return;
  3112. /*
  3113. * If we are going offline and still the leader,
  3114. * give up!
  3115. */
  3116. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3117. nr_cpu_ids) != cpu)
  3118. BUG();
  3119. return;
  3120. }
  3121. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  3122. if (atomic_read(&nohz.first_pick_cpu) == cpu)
  3123. atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
  3124. if (atomic_read(&nohz.second_pick_cpu) == cpu)
  3125. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3126. if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
  3127. int new_ilb;
  3128. /* make me the ilb owner */
  3129. if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
  3130. cpu) != nr_cpu_ids)
  3131. return;
  3132. /*
  3133. * Check to see if there is a more power-efficient
  3134. * ilb.
  3135. */
  3136. new_ilb = find_new_ilb(cpu);
  3137. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3138. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  3139. resched_cpu(new_ilb);
  3140. return;
  3141. }
  3142. return;
  3143. }
  3144. } else {
  3145. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  3146. return;
  3147. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  3148. if (atomic_read(&nohz.load_balancer) == cpu)
  3149. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3150. nr_cpu_ids) != cpu)
  3151. BUG();
  3152. }
  3153. return;
  3154. }
  3155. #endif
  3156. static DEFINE_SPINLOCK(balancing);
  3157. /*
  3158. * It checks each scheduling domain to see if it is due to be balanced,
  3159. * and initiates a balancing operation if so.
  3160. *
  3161. * Balancing parameters are set up in arch_init_sched_domains.
  3162. */
  3163. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3164. {
  3165. int balance = 1;
  3166. struct rq *rq = cpu_rq(cpu);
  3167. unsigned long interval;
  3168. struct sched_domain *sd;
  3169. /* Earliest time when we have to do rebalance again */
  3170. unsigned long next_balance = jiffies + 60*HZ;
  3171. int update_next_balance = 0;
  3172. int need_serialize;
  3173. update_shares(cpu);
  3174. for_each_domain(cpu, sd) {
  3175. if (!(sd->flags & SD_LOAD_BALANCE))
  3176. continue;
  3177. interval = sd->balance_interval;
  3178. if (idle != CPU_IDLE)
  3179. interval *= sd->busy_factor;
  3180. /* scale ms to jiffies */
  3181. interval = msecs_to_jiffies(interval);
  3182. if (unlikely(!interval))
  3183. interval = 1;
  3184. if (interval > HZ*NR_CPUS/10)
  3185. interval = HZ*NR_CPUS/10;
  3186. need_serialize = sd->flags & SD_SERIALIZE;
  3187. if (need_serialize) {
  3188. if (!spin_trylock(&balancing))
  3189. goto out;
  3190. }
  3191. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3192. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3193. /*
  3194. * We've pulled tasks over so either we're no
  3195. * longer idle, or one of our SMT siblings is
  3196. * not idle.
  3197. */
  3198. idle = CPU_NOT_IDLE;
  3199. }
  3200. sd->last_balance = jiffies;
  3201. }
  3202. if (need_serialize)
  3203. spin_unlock(&balancing);
  3204. out:
  3205. if (time_after(next_balance, sd->last_balance + interval)) {
  3206. next_balance = sd->last_balance + interval;
  3207. update_next_balance = 1;
  3208. }
  3209. /*
  3210. * Stop the load balance at this level. There is another
  3211. * CPU in our sched group which is doing load balancing more
  3212. * actively.
  3213. */
  3214. if (!balance)
  3215. break;
  3216. }
  3217. /*
  3218. * next_balance will be updated only when there is a need.
  3219. * When the cpu is attached to null domain for ex, it will not be
  3220. * updated.
  3221. */
  3222. if (likely(update_next_balance))
  3223. rq->next_balance = next_balance;
  3224. }
  3225. #ifdef CONFIG_NO_HZ
  3226. /*
  3227. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3228. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3229. */
  3230. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3231. {
  3232. struct rq *this_rq = cpu_rq(this_cpu);
  3233. struct rq *rq;
  3234. int balance_cpu;
  3235. if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
  3236. return;
  3237. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  3238. if (balance_cpu == this_cpu)
  3239. continue;
  3240. /*
  3241. * If this cpu gets work to do, stop the load balancing
  3242. * work being done for other cpus. Next load
  3243. * balancing owner will pick it up.
  3244. */
  3245. if (need_resched()) {
  3246. this_rq->nohz_balance_kick = 0;
  3247. break;
  3248. }
  3249. raw_spin_lock_irq(&this_rq->lock);
  3250. update_rq_clock(this_rq);
  3251. update_cpu_load(this_rq);
  3252. raw_spin_unlock_irq(&this_rq->lock);
  3253. rebalance_domains(balance_cpu, CPU_IDLE);
  3254. rq = cpu_rq(balance_cpu);
  3255. if (time_after(this_rq->next_balance, rq->next_balance))
  3256. this_rq->next_balance = rq->next_balance;
  3257. }
  3258. nohz.next_balance = this_rq->next_balance;
  3259. this_rq->nohz_balance_kick = 0;
  3260. }
  3261. /*
  3262. * Current heuristic for kicking the idle load balancer
  3263. * - first_pick_cpu is the one of the busy CPUs. It will kick
  3264. * idle load balancer when it has more than one process active. This
  3265. * eliminates the need for idle load balancing altogether when we have
  3266. * only one running process in the system (common case).
  3267. * - If there are more than one busy CPU, idle load balancer may have
  3268. * to run for active_load_balance to happen (i.e., two busy CPUs are
  3269. * SMT or core siblings and can run better if they move to different
  3270. * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
  3271. * which will kick idle load balancer as soon as it has any load.
  3272. */
  3273. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  3274. {
  3275. unsigned long now = jiffies;
  3276. int ret;
  3277. int first_pick_cpu, second_pick_cpu;
  3278. if (time_before(now, nohz.next_balance))
  3279. return 0;
  3280. if (rq->idle_at_tick)
  3281. return 0;
  3282. first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
  3283. second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
  3284. if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
  3285. second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
  3286. return 0;
  3287. ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
  3288. if (ret == nr_cpu_ids || ret == cpu) {
  3289. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3290. if (rq->nr_running > 1)
  3291. return 1;
  3292. } else {
  3293. ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
  3294. if (ret == nr_cpu_ids || ret == cpu) {
  3295. if (rq->nr_running)
  3296. return 1;
  3297. }
  3298. }
  3299. return 0;
  3300. }
  3301. #else
  3302. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  3303. #endif
  3304. /*
  3305. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3306. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  3307. */
  3308. static void run_rebalance_domains(struct softirq_action *h)
  3309. {
  3310. int this_cpu = smp_processor_id();
  3311. struct rq *this_rq = cpu_rq(this_cpu);
  3312. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3313. CPU_IDLE : CPU_NOT_IDLE;
  3314. rebalance_domains(this_cpu, idle);
  3315. /*
  3316. * If this cpu has a pending nohz_balance_kick, then do the
  3317. * balancing on behalf of the other idle cpus whose ticks are
  3318. * stopped.
  3319. */
  3320. nohz_idle_balance(this_cpu, idle);
  3321. }
  3322. static inline int on_null_domain(int cpu)
  3323. {
  3324. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  3325. }
  3326. /*
  3327. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3328. */
  3329. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3330. {
  3331. /* Don't need to rebalance while attached to NULL domain */
  3332. if (time_after_eq(jiffies, rq->next_balance) &&
  3333. likely(!on_null_domain(cpu)))
  3334. raise_softirq(SCHED_SOFTIRQ);
  3335. #ifdef CONFIG_NO_HZ
  3336. else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  3337. nohz_balancer_kick(cpu);
  3338. #endif
  3339. }
  3340. static void rq_online_fair(struct rq *rq)
  3341. {
  3342. update_sysctl();
  3343. }
  3344. static void rq_offline_fair(struct rq *rq)
  3345. {
  3346. update_sysctl();
  3347. }
  3348. #else /* CONFIG_SMP */
  3349. /*
  3350. * on UP we do not need to balance between CPUs:
  3351. */
  3352. static inline void idle_balance(int cpu, struct rq *rq)
  3353. {
  3354. }
  3355. #endif /* CONFIG_SMP */
  3356. /*
  3357. * scheduler tick hitting a task of our scheduling class:
  3358. */
  3359. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  3360. {
  3361. struct cfs_rq *cfs_rq;
  3362. struct sched_entity *se = &curr->se;
  3363. for_each_sched_entity(se) {
  3364. cfs_rq = cfs_rq_of(se);
  3365. entity_tick(cfs_rq, se, queued);
  3366. }
  3367. }
  3368. /*
  3369. * called on fork with the child task as argument from the parent's context
  3370. * - child not yet on the tasklist
  3371. * - preemption disabled
  3372. */
  3373. static void task_fork_fair(struct task_struct *p)
  3374. {
  3375. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  3376. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  3377. int this_cpu = smp_processor_id();
  3378. struct rq *rq = this_rq();
  3379. unsigned long flags;
  3380. raw_spin_lock_irqsave(&rq->lock, flags);
  3381. update_rq_clock(rq);
  3382. if (unlikely(task_cpu(p) != this_cpu)) {
  3383. rcu_read_lock();
  3384. __set_task_cpu(p, this_cpu);
  3385. rcu_read_unlock();
  3386. }
  3387. update_curr(cfs_rq);
  3388. if (curr)
  3389. se->vruntime = curr->vruntime;
  3390. place_entity(cfs_rq, se, 1);
  3391. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  3392. /*
  3393. * Upon rescheduling, sched_class::put_prev_task() will place
  3394. * 'current' within the tree based on its new key value.
  3395. */
  3396. swap(curr->vruntime, se->vruntime);
  3397. resched_task(rq->curr);
  3398. }
  3399. se->vruntime -= cfs_rq->min_vruntime;
  3400. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3401. }
  3402. /*
  3403. * Priority of the task has changed. Check to see if we preempt
  3404. * the current task.
  3405. */
  3406. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  3407. int oldprio, int running)
  3408. {
  3409. /*
  3410. * Reschedule if we are currently running on this runqueue and
  3411. * our priority decreased, or if we are not currently running on
  3412. * this runqueue and our priority is higher than the current's
  3413. */
  3414. if (running) {
  3415. if (p->prio > oldprio)
  3416. resched_task(rq->curr);
  3417. } else
  3418. check_preempt_curr(rq, p, 0);
  3419. }
  3420. /*
  3421. * We switched to the sched_fair class.
  3422. */
  3423. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  3424. int running)
  3425. {
  3426. /*
  3427. * We were most likely switched from sched_rt, so
  3428. * kick off the schedule if running, otherwise just see
  3429. * if we can still preempt the current task.
  3430. */
  3431. if (running)
  3432. resched_task(rq->curr);
  3433. else
  3434. check_preempt_curr(rq, p, 0);
  3435. }
  3436. /* Account for a task changing its policy or group.
  3437. *
  3438. * This routine is mostly called to set cfs_rq->curr field when a task
  3439. * migrates between groups/classes.
  3440. */
  3441. static void set_curr_task_fair(struct rq *rq)
  3442. {
  3443. struct sched_entity *se = &rq->curr->se;
  3444. for_each_sched_entity(se)
  3445. set_next_entity(cfs_rq_of(se), se);
  3446. }
  3447. #ifdef CONFIG_FAIR_GROUP_SCHED
  3448. static void task_move_group_fair(struct task_struct *p, int on_rq)
  3449. {
  3450. /*
  3451. * If the task was not on the rq at the time of this cgroup movement
  3452. * it must have been asleep, sleeping tasks keep their ->vruntime
  3453. * absolute on their old rq until wakeup (needed for the fair sleeper
  3454. * bonus in place_entity()).
  3455. *
  3456. * If it was on the rq, we've just 'preempted' it, which does convert
  3457. * ->vruntime to a relative base.
  3458. *
  3459. * Make sure both cases convert their relative position when migrating
  3460. * to another cgroup's rq. This does somewhat interfere with the
  3461. * fair sleeper stuff for the first placement, but who cares.
  3462. */
  3463. if (!on_rq)
  3464. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  3465. set_task_rq(p, task_cpu(p));
  3466. if (!on_rq)
  3467. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  3468. }
  3469. #endif
  3470. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  3471. {
  3472. struct sched_entity *se = &task->se;
  3473. unsigned int rr_interval = 0;
  3474. /*
  3475. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  3476. * idle runqueue:
  3477. */
  3478. if (rq->cfs.load.weight)
  3479. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  3480. return rr_interval;
  3481. }
  3482. /*
  3483. * All the scheduling class methods:
  3484. */
  3485. static const struct sched_class fair_sched_class = {
  3486. .next = &idle_sched_class,
  3487. .enqueue_task = enqueue_task_fair,
  3488. .dequeue_task = dequeue_task_fair,
  3489. .yield_task = yield_task_fair,
  3490. .check_preempt_curr = check_preempt_wakeup,
  3491. .pick_next_task = pick_next_task_fair,
  3492. .put_prev_task = put_prev_task_fair,
  3493. #ifdef CONFIG_SMP
  3494. .select_task_rq = select_task_rq_fair,
  3495. .rq_online = rq_online_fair,
  3496. .rq_offline = rq_offline_fair,
  3497. .task_waking = task_waking_fair,
  3498. #endif
  3499. .set_curr_task = set_curr_task_fair,
  3500. .task_tick = task_tick_fair,
  3501. .task_fork = task_fork_fair,
  3502. .prio_changed = prio_changed_fair,
  3503. .switched_to = switched_to_fair,
  3504. .get_rr_interval = get_rr_interval_fair,
  3505. #ifdef CONFIG_FAIR_GROUP_SCHED
  3506. .task_move_group = task_move_group_fair,
  3507. #endif
  3508. };
  3509. #ifdef CONFIG_SCHED_DEBUG
  3510. static void print_cfs_stats(struct seq_file *m, int cpu)
  3511. {
  3512. struct cfs_rq *cfs_rq;
  3513. rcu_read_lock();
  3514. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  3515. print_cfs_rq(m, cpu, cfs_rq);
  3516. rcu_read_unlock();
  3517. }
  3518. #endif