bnx2.c 206 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2010 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12. #include <linux/module.h>
  13. #include <linux/moduleparam.h>
  14. #include <linux/kernel.h>
  15. #include <linux/timer.h>
  16. #include <linux/errno.h>
  17. #include <linux/ioport.h>
  18. #include <linux/slab.h>
  19. #include <linux/vmalloc.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/pci.h>
  22. #include <linux/init.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/skbuff.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/bitops.h>
  28. #include <asm/io.h>
  29. #include <asm/irq.h>
  30. #include <linux/delay.h>
  31. #include <asm/byteorder.h>
  32. #include <asm/page.h>
  33. #include <linux/time.h>
  34. #include <linux/ethtool.h>
  35. #include <linux/mii.h>
  36. #include <linux/if_vlan.h>
  37. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  38. #define BCM_VLAN 1
  39. #endif
  40. #include <net/ip.h>
  41. #include <net/tcp.h>
  42. #include <net/checksum.h>
  43. #include <linux/workqueue.h>
  44. #include <linux/crc32.h>
  45. #include <linux/prefetch.h>
  46. #include <linux/cache.h>
  47. #include <linux/firmware.h>
  48. #include <linux/log2.h>
  49. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  50. #define BCM_CNIC 1
  51. #include "cnic_if.h"
  52. #endif
  53. #include "bnx2.h"
  54. #include "bnx2_fw.h"
  55. #define DRV_MODULE_NAME "bnx2"
  56. #define DRV_MODULE_VERSION "2.0.8"
  57. #define DRV_MODULE_RELDATE "Feb 15, 2010"
  58. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j6.fw"
  59. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
  60. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j9.fw"
  61. #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j10.fw"
  62. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j10.fw"
  63. #define RUN_AT(x) (jiffies + (x))
  64. /* Time in jiffies before concluding the transmitter is hung. */
  65. #define TX_TIMEOUT (5*HZ)
  66. static char version[] __devinitdata =
  67. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  68. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  69. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  70. MODULE_LICENSE("GPL");
  71. MODULE_VERSION(DRV_MODULE_VERSION);
  72. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  73. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  74. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  75. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  76. MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
  77. static int disable_msi = 0;
  78. module_param(disable_msi, int, 0);
  79. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  80. typedef enum {
  81. BCM5706 = 0,
  82. NC370T,
  83. NC370I,
  84. BCM5706S,
  85. NC370F,
  86. BCM5708,
  87. BCM5708S,
  88. BCM5709,
  89. BCM5709S,
  90. BCM5716,
  91. BCM5716S,
  92. } board_t;
  93. /* indexed by board_t, above */
  94. static struct {
  95. char *name;
  96. } board_info[] __devinitdata = {
  97. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  98. { "HP NC370T Multifunction Gigabit Server Adapter" },
  99. { "HP NC370i Multifunction Gigabit Server Adapter" },
  100. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  101. { "HP NC370F Multifunction Gigabit Server Adapter" },
  102. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  103. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  104. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  105. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  106. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  107. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  108. };
  109. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  110. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  111. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  112. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  113. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  114. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  115. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  116. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  117. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  118. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  119. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  120. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  121. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  122. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  123. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  124. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  125. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  126. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  127. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  128. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  129. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  130. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  131. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  132. { 0, }
  133. };
  134. static const struct flash_spec flash_table[] =
  135. {
  136. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  137. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  138. /* Slow EEPROM */
  139. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  140. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  141. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  142. "EEPROM - slow"},
  143. /* Expansion entry 0001 */
  144. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  145. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  146. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  147. "Entry 0001"},
  148. /* Saifun SA25F010 (non-buffered flash) */
  149. /* strap, cfg1, & write1 need updates */
  150. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  151. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  152. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  153. "Non-buffered flash (128kB)"},
  154. /* Saifun SA25F020 (non-buffered flash) */
  155. /* strap, cfg1, & write1 need updates */
  156. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  157. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  158. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  159. "Non-buffered flash (256kB)"},
  160. /* Expansion entry 0100 */
  161. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  162. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  163. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  164. "Entry 0100"},
  165. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  166. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  167. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  168. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  169. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  170. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  171. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  172. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  173. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  174. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  175. /* Saifun SA25F005 (non-buffered flash) */
  176. /* strap, cfg1, & write1 need updates */
  177. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  178. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  179. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  180. "Non-buffered flash (64kB)"},
  181. /* Fast EEPROM */
  182. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  183. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  184. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  185. "EEPROM - fast"},
  186. /* Expansion entry 1001 */
  187. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  188. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  189. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  190. "Entry 1001"},
  191. /* Expansion entry 1010 */
  192. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  193. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  194. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  195. "Entry 1010"},
  196. /* ATMEL AT45DB011B (buffered flash) */
  197. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  198. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  199. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  200. "Buffered flash (128kB)"},
  201. /* Expansion entry 1100 */
  202. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  203. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  204. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  205. "Entry 1100"},
  206. /* Expansion entry 1101 */
  207. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  208. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  209. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  210. "Entry 1101"},
  211. /* Ateml Expansion entry 1110 */
  212. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  213. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  214. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  215. "Entry 1110 (Atmel)"},
  216. /* ATMEL AT45DB021B (buffered flash) */
  217. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  218. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  219. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  220. "Buffered flash (256kB)"},
  221. };
  222. static const struct flash_spec flash_5709 = {
  223. .flags = BNX2_NV_BUFFERED,
  224. .page_bits = BCM5709_FLASH_PAGE_BITS,
  225. .page_size = BCM5709_FLASH_PAGE_SIZE,
  226. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  227. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  228. .name = "5709 Buffered flash (256kB)",
  229. };
  230. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  231. static void bnx2_init_napi(struct bnx2 *bp);
  232. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  233. {
  234. u32 diff;
  235. smp_mb();
  236. /* The ring uses 256 indices for 255 entries, one of them
  237. * needs to be skipped.
  238. */
  239. diff = txr->tx_prod - txr->tx_cons;
  240. if (unlikely(diff >= TX_DESC_CNT)) {
  241. diff &= 0xffff;
  242. if (diff == TX_DESC_CNT)
  243. diff = MAX_TX_DESC_CNT;
  244. }
  245. return (bp->tx_ring_size - diff);
  246. }
  247. static u32
  248. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  249. {
  250. u32 val;
  251. spin_lock_bh(&bp->indirect_lock);
  252. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  253. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  254. spin_unlock_bh(&bp->indirect_lock);
  255. return val;
  256. }
  257. static void
  258. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  259. {
  260. spin_lock_bh(&bp->indirect_lock);
  261. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  262. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  263. spin_unlock_bh(&bp->indirect_lock);
  264. }
  265. static void
  266. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  267. {
  268. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  269. }
  270. static u32
  271. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  272. {
  273. return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
  274. }
  275. static void
  276. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  277. {
  278. offset += cid_addr;
  279. spin_lock_bh(&bp->indirect_lock);
  280. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  281. int i;
  282. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  283. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  284. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  285. for (i = 0; i < 5; i++) {
  286. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  287. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  288. break;
  289. udelay(5);
  290. }
  291. } else {
  292. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  293. REG_WR(bp, BNX2_CTX_DATA, val);
  294. }
  295. spin_unlock_bh(&bp->indirect_lock);
  296. }
  297. #ifdef BCM_CNIC
  298. static int
  299. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  300. {
  301. struct bnx2 *bp = netdev_priv(dev);
  302. struct drv_ctl_io *io = &info->data.io;
  303. switch (info->cmd) {
  304. case DRV_CTL_IO_WR_CMD:
  305. bnx2_reg_wr_ind(bp, io->offset, io->data);
  306. break;
  307. case DRV_CTL_IO_RD_CMD:
  308. io->data = bnx2_reg_rd_ind(bp, io->offset);
  309. break;
  310. case DRV_CTL_CTX_WR_CMD:
  311. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  312. break;
  313. default:
  314. return -EINVAL;
  315. }
  316. return 0;
  317. }
  318. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  319. {
  320. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  321. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  322. int sb_id;
  323. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  324. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  325. bnapi->cnic_present = 0;
  326. sb_id = bp->irq_nvecs;
  327. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  328. } else {
  329. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  330. bnapi->cnic_tag = bnapi->last_status_idx;
  331. bnapi->cnic_present = 1;
  332. sb_id = 0;
  333. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  334. }
  335. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  336. cp->irq_arr[0].status_blk = (void *)
  337. ((unsigned long) bnapi->status_blk.msi +
  338. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  339. cp->irq_arr[0].status_blk_num = sb_id;
  340. cp->num_irq = 1;
  341. }
  342. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  343. void *data)
  344. {
  345. struct bnx2 *bp = netdev_priv(dev);
  346. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  347. if (ops == NULL)
  348. return -EINVAL;
  349. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  350. return -EBUSY;
  351. bp->cnic_data = data;
  352. rcu_assign_pointer(bp->cnic_ops, ops);
  353. cp->num_irq = 0;
  354. cp->drv_state = CNIC_DRV_STATE_REGD;
  355. bnx2_setup_cnic_irq_info(bp);
  356. return 0;
  357. }
  358. static int bnx2_unregister_cnic(struct net_device *dev)
  359. {
  360. struct bnx2 *bp = netdev_priv(dev);
  361. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  362. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  363. mutex_lock(&bp->cnic_lock);
  364. cp->drv_state = 0;
  365. bnapi->cnic_present = 0;
  366. rcu_assign_pointer(bp->cnic_ops, NULL);
  367. mutex_unlock(&bp->cnic_lock);
  368. synchronize_rcu();
  369. return 0;
  370. }
  371. struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  372. {
  373. struct bnx2 *bp = netdev_priv(dev);
  374. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  375. cp->drv_owner = THIS_MODULE;
  376. cp->chip_id = bp->chip_id;
  377. cp->pdev = bp->pdev;
  378. cp->io_base = bp->regview;
  379. cp->drv_ctl = bnx2_drv_ctl;
  380. cp->drv_register_cnic = bnx2_register_cnic;
  381. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  382. return cp;
  383. }
  384. EXPORT_SYMBOL(bnx2_cnic_probe);
  385. static void
  386. bnx2_cnic_stop(struct bnx2 *bp)
  387. {
  388. struct cnic_ops *c_ops;
  389. struct cnic_ctl_info info;
  390. mutex_lock(&bp->cnic_lock);
  391. c_ops = bp->cnic_ops;
  392. if (c_ops) {
  393. info.cmd = CNIC_CTL_STOP_CMD;
  394. c_ops->cnic_ctl(bp->cnic_data, &info);
  395. }
  396. mutex_unlock(&bp->cnic_lock);
  397. }
  398. static void
  399. bnx2_cnic_start(struct bnx2 *bp)
  400. {
  401. struct cnic_ops *c_ops;
  402. struct cnic_ctl_info info;
  403. mutex_lock(&bp->cnic_lock);
  404. c_ops = bp->cnic_ops;
  405. if (c_ops) {
  406. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  407. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  408. bnapi->cnic_tag = bnapi->last_status_idx;
  409. }
  410. info.cmd = CNIC_CTL_START_CMD;
  411. c_ops->cnic_ctl(bp->cnic_data, &info);
  412. }
  413. mutex_unlock(&bp->cnic_lock);
  414. }
  415. #else
  416. static void
  417. bnx2_cnic_stop(struct bnx2 *bp)
  418. {
  419. }
  420. static void
  421. bnx2_cnic_start(struct bnx2 *bp)
  422. {
  423. }
  424. #endif
  425. static int
  426. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  427. {
  428. u32 val1;
  429. int i, ret;
  430. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  431. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  432. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  433. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  434. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  435. udelay(40);
  436. }
  437. val1 = (bp->phy_addr << 21) | (reg << 16) |
  438. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  439. BNX2_EMAC_MDIO_COMM_START_BUSY;
  440. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  441. for (i = 0; i < 50; i++) {
  442. udelay(10);
  443. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  444. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  445. udelay(5);
  446. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  447. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  448. break;
  449. }
  450. }
  451. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  452. *val = 0x0;
  453. ret = -EBUSY;
  454. }
  455. else {
  456. *val = val1;
  457. ret = 0;
  458. }
  459. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  460. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  461. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  462. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  463. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  464. udelay(40);
  465. }
  466. return ret;
  467. }
  468. static int
  469. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  470. {
  471. u32 val1;
  472. int i, ret;
  473. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  474. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  475. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  476. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  477. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  478. udelay(40);
  479. }
  480. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  481. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  482. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  483. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  484. for (i = 0; i < 50; i++) {
  485. udelay(10);
  486. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  487. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  488. udelay(5);
  489. break;
  490. }
  491. }
  492. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  493. ret = -EBUSY;
  494. else
  495. ret = 0;
  496. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  497. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  498. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  499. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  500. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  501. udelay(40);
  502. }
  503. return ret;
  504. }
  505. static void
  506. bnx2_disable_int(struct bnx2 *bp)
  507. {
  508. int i;
  509. struct bnx2_napi *bnapi;
  510. for (i = 0; i < bp->irq_nvecs; i++) {
  511. bnapi = &bp->bnx2_napi[i];
  512. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  513. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  514. }
  515. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  516. }
  517. static void
  518. bnx2_enable_int(struct bnx2 *bp)
  519. {
  520. int i;
  521. struct bnx2_napi *bnapi;
  522. for (i = 0; i < bp->irq_nvecs; i++) {
  523. bnapi = &bp->bnx2_napi[i];
  524. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  525. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  526. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  527. bnapi->last_status_idx);
  528. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  529. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  530. bnapi->last_status_idx);
  531. }
  532. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  533. }
  534. static void
  535. bnx2_disable_int_sync(struct bnx2 *bp)
  536. {
  537. int i;
  538. atomic_inc(&bp->intr_sem);
  539. if (!netif_running(bp->dev))
  540. return;
  541. bnx2_disable_int(bp);
  542. for (i = 0; i < bp->irq_nvecs; i++)
  543. synchronize_irq(bp->irq_tbl[i].vector);
  544. }
  545. static void
  546. bnx2_napi_disable(struct bnx2 *bp)
  547. {
  548. int i;
  549. for (i = 0; i < bp->irq_nvecs; i++)
  550. napi_disable(&bp->bnx2_napi[i].napi);
  551. }
  552. static void
  553. bnx2_napi_enable(struct bnx2 *bp)
  554. {
  555. int i;
  556. for (i = 0; i < bp->irq_nvecs; i++)
  557. napi_enable(&bp->bnx2_napi[i].napi);
  558. }
  559. static void
  560. bnx2_netif_stop(struct bnx2 *bp)
  561. {
  562. bnx2_cnic_stop(bp);
  563. if (netif_running(bp->dev)) {
  564. int i;
  565. bnx2_napi_disable(bp);
  566. netif_tx_disable(bp->dev);
  567. /* prevent tx timeout */
  568. for (i = 0; i < bp->dev->num_tx_queues; i++) {
  569. struct netdev_queue *txq;
  570. txq = netdev_get_tx_queue(bp->dev, i);
  571. txq->trans_start = jiffies;
  572. }
  573. }
  574. bnx2_disable_int_sync(bp);
  575. }
  576. static void
  577. bnx2_netif_start(struct bnx2 *bp)
  578. {
  579. if (atomic_dec_and_test(&bp->intr_sem)) {
  580. if (netif_running(bp->dev)) {
  581. netif_tx_wake_all_queues(bp->dev);
  582. bnx2_napi_enable(bp);
  583. bnx2_enable_int(bp);
  584. bnx2_cnic_start(bp);
  585. }
  586. }
  587. }
  588. static void
  589. bnx2_free_tx_mem(struct bnx2 *bp)
  590. {
  591. int i;
  592. for (i = 0; i < bp->num_tx_rings; i++) {
  593. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  594. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  595. if (txr->tx_desc_ring) {
  596. pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
  597. txr->tx_desc_ring,
  598. txr->tx_desc_mapping);
  599. txr->tx_desc_ring = NULL;
  600. }
  601. kfree(txr->tx_buf_ring);
  602. txr->tx_buf_ring = NULL;
  603. }
  604. }
  605. static void
  606. bnx2_free_rx_mem(struct bnx2 *bp)
  607. {
  608. int i;
  609. for (i = 0; i < bp->num_rx_rings; i++) {
  610. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  611. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  612. int j;
  613. for (j = 0; j < bp->rx_max_ring; j++) {
  614. if (rxr->rx_desc_ring[j])
  615. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  616. rxr->rx_desc_ring[j],
  617. rxr->rx_desc_mapping[j]);
  618. rxr->rx_desc_ring[j] = NULL;
  619. }
  620. vfree(rxr->rx_buf_ring);
  621. rxr->rx_buf_ring = NULL;
  622. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  623. if (rxr->rx_pg_desc_ring[j])
  624. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  625. rxr->rx_pg_desc_ring[j],
  626. rxr->rx_pg_desc_mapping[j]);
  627. rxr->rx_pg_desc_ring[j] = NULL;
  628. }
  629. vfree(rxr->rx_pg_ring);
  630. rxr->rx_pg_ring = NULL;
  631. }
  632. }
  633. static int
  634. bnx2_alloc_tx_mem(struct bnx2 *bp)
  635. {
  636. int i;
  637. for (i = 0; i < bp->num_tx_rings; i++) {
  638. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  639. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  640. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  641. if (txr->tx_buf_ring == NULL)
  642. return -ENOMEM;
  643. txr->tx_desc_ring =
  644. pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
  645. &txr->tx_desc_mapping);
  646. if (txr->tx_desc_ring == NULL)
  647. return -ENOMEM;
  648. }
  649. return 0;
  650. }
  651. static int
  652. bnx2_alloc_rx_mem(struct bnx2 *bp)
  653. {
  654. int i;
  655. for (i = 0; i < bp->num_rx_rings; i++) {
  656. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  657. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  658. int j;
  659. rxr->rx_buf_ring =
  660. vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  661. if (rxr->rx_buf_ring == NULL)
  662. return -ENOMEM;
  663. memset(rxr->rx_buf_ring, 0,
  664. SW_RXBD_RING_SIZE * bp->rx_max_ring);
  665. for (j = 0; j < bp->rx_max_ring; j++) {
  666. rxr->rx_desc_ring[j] =
  667. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  668. &rxr->rx_desc_mapping[j]);
  669. if (rxr->rx_desc_ring[j] == NULL)
  670. return -ENOMEM;
  671. }
  672. if (bp->rx_pg_ring_size) {
  673. rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
  674. bp->rx_max_pg_ring);
  675. if (rxr->rx_pg_ring == NULL)
  676. return -ENOMEM;
  677. memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
  678. bp->rx_max_pg_ring);
  679. }
  680. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  681. rxr->rx_pg_desc_ring[j] =
  682. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  683. &rxr->rx_pg_desc_mapping[j]);
  684. if (rxr->rx_pg_desc_ring[j] == NULL)
  685. return -ENOMEM;
  686. }
  687. }
  688. return 0;
  689. }
  690. static void
  691. bnx2_free_mem(struct bnx2 *bp)
  692. {
  693. int i;
  694. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  695. bnx2_free_tx_mem(bp);
  696. bnx2_free_rx_mem(bp);
  697. for (i = 0; i < bp->ctx_pages; i++) {
  698. if (bp->ctx_blk[i]) {
  699. pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
  700. bp->ctx_blk[i],
  701. bp->ctx_blk_mapping[i]);
  702. bp->ctx_blk[i] = NULL;
  703. }
  704. }
  705. if (bnapi->status_blk.msi) {
  706. pci_free_consistent(bp->pdev, bp->status_stats_size,
  707. bnapi->status_blk.msi,
  708. bp->status_blk_mapping);
  709. bnapi->status_blk.msi = NULL;
  710. bp->stats_blk = NULL;
  711. }
  712. }
  713. static int
  714. bnx2_alloc_mem(struct bnx2 *bp)
  715. {
  716. int i, status_blk_size, err;
  717. struct bnx2_napi *bnapi;
  718. void *status_blk;
  719. /* Combine status and statistics blocks into one allocation. */
  720. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  721. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  722. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  723. BNX2_SBLK_MSIX_ALIGN_SIZE);
  724. bp->status_stats_size = status_blk_size +
  725. sizeof(struct statistics_block);
  726. status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
  727. &bp->status_blk_mapping);
  728. if (status_blk == NULL)
  729. goto alloc_mem_err;
  730. memset(status_blk, 0, bp->status_stats_size);
  731. bnapi = &bp->bnx2_napi[0];
  732. bnapi->status_blk.msi = status_blk;
  733. bnapi->hw_tx_cons_ptr =
  734. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  735. bnapi->hw_rx_cons_ptr =
  736. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  737. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  738. for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
  739. struct status_block_msix *sblk;
  740. bnapi = &bp->bnx2_napi[i];
  741. sblk = (void *) (status_blk +
  742. BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  743. bnapi->status_blk.msix = sblk;
  744. bnapi->hw_tx_cons_ptr =
  745. &sblk->status_tx_quick_consumer_index;
  746. bnapi->hw_rx_cons_ptr =
  747. &sblk->status_rx_quick_consumer_index;
  748. bnapi->int_num = i << 24;
  749. }
  750. }
  751. bp->stats_blk = status_blk + status_blk_size;
  752. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  753. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  754. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  755. if (bp->ctx_pages == 0)
  756. bp->ctx_pages = 1;
  757. for (i = 0; i < bp->ctx_pages; i++) {
  758. bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
  759. BCM_PAGE_SIZE,
  760. &bp->ctx_blk_mapping[i]);
  761. if (bp->ctx_blk[i] == NULL)
  762. goto alloc_mem_err;
  763. }
  764. }
  765. err = bnx2_alloc_rx_mem(bp);
  766. if (err)
  767. goto alloc_mem_err;
  768. err = bnx2_alloc_tx_mem(bp);
  769. if (err)
  770. goto alloc_mem_err;
  771. return 0;
  772. alloc_mem_err:
  773. bnx2_free_mem(bp);
  774. return -ENOMEM;
  775. }
  776. static void
  777. bnx2_report_fw_link(struct bnx2 *bp)
  778. {
  779. u32 fw_link_status = 0;
  780. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  781. return;
  782. if (bp->link_up) {
  783. u32 bmsr;
  784. switch (bp->line_speed) {
  785. case SPEED_10:
  786. if (bp->duplex == DUPLEX_HALF)
  787. fw_link_status = BNX2_LINK_STATUS_10HALF;
  788. else
  789. fw_link_status = BNX2_LINK_STATUS_10FULL;
  790. break;
  791. case SPEED_100:
  792. if (bp->duplex == DUPLEX_HALF)
  793. fw_link_status = BNX2_LINK_STATUS_100HALF;
  794. else
  795. fw_link_status = BNX2_LINK_STATUS_100FULL;
  796. break;
  797. case SPEED_1000:
  798. if (bp->duplex == DUPLEX_HALF)
  799. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  800. else
  801. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  802. break;
  803. case SPEED_2500:
  804. if (bp->duplex == DUPLEX_HALF)
  805. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  806. else
  807. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  808. break;
  809. }
  810. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  811. if (bp->autoneg) {
  812. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  813. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  814. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  815. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  816. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  817. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  818. else
  819. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  820. }
  821. }
  822. else
  823. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  824. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  825. }
  826. static char *
  827. bnx2_xceiver_str(struct bnx2 *bp)
  828. {
  829. return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
  830. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  831. "Copper"));
  832. }
  833. static void
  834. bnx2_report_link(struct bnx2 *bp)
  835. {
  836. if (bp->link_up) {
  837. netif_carrier_on(bp->dev);
  838. netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
  839. bnx2_xceiver_str(bp),
  840. bp->line_speed,
  841. bp->duplex == DUPLEX_FULL ? "full" : "half");
  842. if (bp->flow_ctrl) {
  843. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  844. pr_cont(", receive ");
  845. if (bp->flow_ctrl & FLOW_CTRL_TX)
  846. pr_cont("& transmit ");
  847. }
  848. else {
  849. pr_cont(", transmit ");
  850. }
  851. pr_cont("flow control ON");
  852. }
  853. pr_cont("\n");
  854. } else {
  855. netif_carrier_off(bp->dev);
  856. netdev_err(bp->dev, "NIC %s Link is Down\n",
  857. bnx2_xceiver_str(bp));
  858. }
  859. bnx2_report_fw_link(bp);
  860. }
  861. static void
  862. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  863. {
  864. u32 local_adv, remote_adv;
  865. bp->flow_ctrl = 0;
  866. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  867. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  868. if (bp->duplex == DUPLEX_FULL) {
  869. bp->flow_ctrl = bp->req_flow_ctrl;
  870. }
  871. return;
  872. }
  873. if (bp->duplex != DUPLEX_FULL) {
  874. return;
  875. }
  876. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  877. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  878. u32 val;
  879. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  880. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  881. bp->flow_ctrl |= FLOW_CTRL_TX;
  882. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  883. bp->flow_ctrl |= FLOW_CTRL_RX;
  884. return;
  885. }
  886. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  887. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  888. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  889. u32 new_local_adv = 0;
  890. u32 new_remote_adv = 0;
  891. if (local_adv & ADVERTISE_1000XPAUSE)
  892. new_local_adv |= ADVERTISE_PAUSE_CAP;
  893. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  894. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  895. if (remote_adv & ADVERTISE_1000XPAUSE)
  896. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  897. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  898. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  899. local_adv = new_local_adv;
  900. remote_adv = new_remote_adv;
  901. }
  902. /* See Table 28B-3 of 802.3ab-1999 spec. */
  903. if (local_adv & ADVERTISE_PAUSE_CAP) {
  904. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  905. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  906. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  907. }
  908. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  909. bp->flow_ctrl = FLOW_CTRL_RX;
  910. }
  911. }
  912. else {
  913. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  914. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  915. }
  916. }
  917. }
  918. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  919. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  920. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  921. bp->flow_ctrl = FLOW_CTRL_TX;
  922. }
  923. }
  924. }
  925. static int
  926. bnx2_5709s_linkup(struct bnx2 *bp)
  927. {
  928. u32 val, speed;
  929. bp->link_up = 1;
  930. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  931. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  932. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  933. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  934. bp->line_speed = bp->req_line_speed;
  935. bp->duplex = bp->req_duplex;
  936. return 0;
  937. }
  938. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  939. switch (speed) {
  940. case MII_BNX2_GP_TOP_AN_SPEED_10:
  941. bp->line_speed = SPEED_10;
  942. break;
  943. case MII_BNX2_GP_TOP_AN_SPEED_100:
  944. bp->line_speed = SPEED_100;
  945. break;
  946. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  947. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  948. bp->line_speed = SPEED_1000;
  949. break;
  950. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  951. bp->line_speed = SPEED_2500;
  952. break;
  953. }
  954. if (val & MII_BNX2_GP_TOP_AN_FD)
  955. bp->duplex = DUPLEX_FULL;
  956. else
  957. bp->duplex = DUPLEX_HALF;
  958. return 0;
  959. }
  960. static int
  961. bnx2_5708s_linkup(struct bnx2 *bp)
  962. {
  963. u32 val;
  964. bp->link_up = 1;
  965. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  966. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  967. case BCM5708S_1000X_STAT1_SPEED_10:
  968. bp->line_speed = SPEED_10;
  969. break;
  970. case BCM5708S_1000X_STAT1_SPEED_100:
  971. bp->line_speed = SPEED_100;
  972. break;
  973. case BCM5708S_1000X_STAT1_SPEED_1G:
  974. bp->line_speed = SPEED_1000;
  975. break;
  976. case BCM5708S_1000X_STAT1_SPEED_2G5:
  977. bp->line_speed = SPEED_2500;
  978. break;
  979. }
  980. if (val & BCM5708S_1000X_STAT1_FD)
  981. bp->duplex = DUPLEX_FULL;
  982. else
  983. bp->duplex = DUPLEX_HALF;
  984. return 0;
  985. }
  986. static int
  987. bnx2_5706s_linkup(struct bnx2 *bp)
  988. {
  989. u32 bmcr, local_adv, remote_adv, common;
  990. bp->link_up = 1;
  991. bp->line_speed = SPEED_1000;
  992. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  993. if (bmcr & BMCR_FULLDPLX) {
  994. bp->duplex = DUPLEX_FULL;
  995. }
  996. else {
  997. bp->duplex = DUPLEX_HALF;
  998. }
  999. if (!(bmcr & BMCR_ANENABLE)) {
  1000. return 0;
  1001. }
  1002. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1003. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1004. common = local_adv & remote_adv;
  1005. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1006. if (common & ADVERTISE_1000XFULL) {
  1007. bp->duplex = DUPLEX_FULL;
  1008. }
  1009. else {
  1010. bp->duplex = DUPLEX_HALF;
  1011. }
  1012. }
  1013. return 0;
  1014. }
  1015. static int
  1016. bnx2_copper_linkup(struct bnx2 *bp)
  1017. {
  1018. u32 bmcr;
  1019. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1020. if (bmcr & BMCR_ANENABLE) {
  1021. u32 local_adv, remote_adv, common;
  1022. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1023. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1024. common = local_adv & (remote_adv >> 2);
  1025. if (common & ADVERTISE_1000FULL) {
  1026. bp->line_speed = SPEED_1000;
  1027. bp->duplex = DUPLEX_FULL;
  1028. }
  1029. else if (common & ADVERTISE_1000HALF) {
  1030. bp->line_speed = SPEED_1000;
  1031. bp->duplex = DUPLEX_HALF;
  1032. }
  1033. else {
  1034. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1035. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1036. common = local_adv & remote_adv;
  1037. if (common & ADVERTISE_100FULL) {
  1038. bp->line_speed = SPEED_100;
  1039. bp->duplex = DUPLEX_FULL;
  1040. }
  1041. else if (common & ADVERTISE_100HALF) {
  1042. bp->line_speed = SPEED_100;
  1043. bp->duplex = DUPLEX_HALF;
  1044. }
  1045. else if (common & ADVERTISE_10FULL) {
  1046. bp->line_speed = SPEED_10;
  1047. bp->duplex = DUPLEX_FULL;
  1048. }
  1049. else if (common & ADVERTISE_10HALF) {
  1050. bp->line_speed = SPEED_10;
  1051. bp->duplex = DUPLEX_HALF;
  1052. }
  1053. else {
  1054. bp->line_speed = 0;
  1055. bp->link_up = 0;
  1056. }
  1057. }
  1058. }
  1059. else {
  1060. if (bmcr & BMCR_SPEED100) {
  1061. bp->line_speed = SPEED_100;
  1062. }
  1063. else {
  1064. bp->line_speed = SPEED_10;
  1065. }
  1066. if (bmcr & BMCR_FULLDPLX) {
  1067. bp->duplex = DUPLEX_FULL;
  1068. }
  1069. else {
  1070. bp->duplex = DUPLEX_HALF;
  1071. }
  1072. }
  1073. return 0;
  1074. }
  1075. static void
  1076. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1077. {
  1078. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1079. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1080. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1081. val |= 0x02 << 8;
  1082. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1083. u32 lo_water, hi_water;
  1084. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1085. lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
  1086. else
  1087. lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
  1088. if (lo_water >= bp->rx_ring_size)
  1089. lo_water = 0;
  1090. hi_water = min_t(int, bp->rx_ring_size / 4, lo_water + 16);
  1091. if (hi_water <= lo_water)
  1092. lo_water = 0;
  1093. hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
  1094. lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
  1095. if (hi_water > 0xf)
  1096. hi_water = 0xf;
  1097. else if (hi_water == 0)
  1098. lo_water = 0;
  1099. val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
  1100. }
  1101. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1102. }
  1103. static void
  1104. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1105. {
  1106. int i;
  1107. u32 cid;
  1108. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1109. if (i == 1)
  1110. cid = RX_RSS_CID;
  1111. bnx2_init_rx_context(bp, cid);
  1112. }
  1113. }
  1114. static void
  1115. bnx2_set_mac_link(struct bnx2 *bp)
  1116. {
  1117. u32 val;
  1118. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1119. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1120. (bp->duplex == DUPLEX_HALF)) {
  1121. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1122. }
  1123. /* Configure the EMAC mode register. */
  1124. val = REG_RD(bp, BNX2_EMAC_MODE);
  1125. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1126. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1127. BNX2_EMAC_MODE_25G_MODE);
  1128. if (bp->link_up) {
  1129. switch (bp->line_speed) {
  1130. case SPEED_10:
  1131. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  1132. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1133. break;
  1134. }
  1135. /* fall through */
  1136. case SPEED_100:
  1137. val |= BNX2_EMAC_MODE_PORT_MII;
  1138. break;
  1139. case SPEED_2500:
  1140. val |= BNX2_EMAC_MODE_25G_MODE;
  1141. /* fall through */
  1142. case SPEED_1000:
  1143. val |= BNX2_EMAC_MODE_PORT_GMII;
  1144. break;
  1145. }
  1146. }
  1147. else {
  1148. val |= BNX2_EMAC_MODE_PORT_GMII;
  1149. }
  1150. /* Set the MAC to operate in the appropriate duplex mode. */
  1151. if (bp->duplex == DUPLEX_HALF)
  1152. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1153. REG_WR(bp, BNX2_EMAC_MODE, val);
  1154. /* Enable/disable rx PAUSE. */
  1155. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1156. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1157. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1158. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1159. /* Enable/disable tx PAUSE. */
  1160. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  1161. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1162. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1163. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1164. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  1165. /* Acknowledge the interrupt. */
  1166. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1167. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1168. bnx2_init_all_rx_contexts(bp);
  1169. }
  1170. static void
  1171. bnx2_enable_bmsr1(struct bnx2 *bp)
  1172. {
  1173. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1174. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1175. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1176. MII_BNX2_BLK_ADDR_GP_STATUS);
  1177. }
  1178. static void
  1179. bnx2_disable_bmsr1(struct bnx2 *bp)
  1180. {
  1181. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1182. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1183. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1184. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1185. }
  1186. static int
  1187. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1188. {
  1189. u32 up1;
  1190. int ret = 1;
  1191. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1192. return 0;
  1193. if (bp->autoneg & AUTONEG_SPEED)
  1194. bp->advertising |= ADVERTISED_2500baseX_Full;
  1195. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1196. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1197. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1198. if (!(up1 & BCM5708S_UP1_2G5)) {
  1199. up1 |= BCM5708S_UP1_2G5;
  1200. bnx2_write_phy(bp, bp->mii_up1, up1);
  1201. ret = 0;
  1202. }
  1203. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1204. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1205. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1206. return ret;
  1207. }
  1208. static int
  1209. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1210. {
  1211. u32 up1;
  1212. int ret = 0;
  1213. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1214. return 0;
  1215. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1216. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1217. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1218. if (up1 & BCM5708S_UP1_2G5) {
  1219. up1 &= ~BCM5708S_UP1_2G5;
  1220. bnx2_write_phy(bp, bp->mii_up1, up1);
  1221. ret = 1;
  1222. }
  1223. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1224. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1225. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1226. return ret;
  1227. }
  1228. static void
  1229. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1230. {
  1231. u32 bmcr;
  1232. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1233. return;
  1234. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1235. u32 val;
  1236. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1237. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1238. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1239. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1240. val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
  1241. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1242. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1243. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1244. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1245. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1246. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1247. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1248. } else {
  1249. return;
  1250. }
  1251. if (bp->autoneg & AUTONEG_SPEED) {
  1252. bmcr &= ~BMCR_ANENABLE;
  1253. if (bp->req_duplex == DUPLEX_FULL)
  1254. bmcr |= BMCR_FULLDPLX;
  1255. }
  1256. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1257. }
  1258. static void
  1259. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1260. {
  1261. u32 bmcr;
  1262. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1263. return;
  1264. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1265. u32 val;
  1266. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1267. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1268. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1269. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1270. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1271. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1272. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1273. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1274. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1275. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1276. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1277. } else {
  1278. return;
  1279. }
  1280. if (bp->autoneg & AUTONEG_SPEED)
  1281. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1282. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1283. }
  1284. static void
  1285. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1286. {
  1287. u32 val;
  1288. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1289. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1290. if (start)
  1291. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1292. else
  1293. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1294. }
  1295. static int
  1296. bnx2_set_link(struct bnx2 *bp)
  1297. {
  1298. u32 bmsr;
  1299. u8 link_up;
  1300. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1301. bp->link_up = 1;
  1302. return 0;
  1303. }
  1304. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1305. return 0;
  1306. link_up = bp->link_up;
  1307. bnx2_enable_bmsr1(bp);
  1308. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1309. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1310. bnx2_disable_bmsr1(bp);
  1311. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1312. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  1313. u32 val, an_dbg;
  1314. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1315. bnx2_5706s_force_link_dn(bp, 0);
  1316. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1317. }
  1318. val = REG_RD(bp, BNX2_EMAC_STATUS);
  1319. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1320. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1321. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1322. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1323. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1324. bmsr |= BMSR_LSTATUS;
  1325. else
  1326. bmsr &= ~BMSR_LSTATUS;
  1327. }
  1328. if (bmsr & BMSR_LSTATUS) {
  1329. bp->link_up = 1;
  1330. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1331. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1332. bnx2_5706s_linkup(bp);
  1333. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1334. bnx2_5708s_linkup(bp);
  1335. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1336. bnx2_5709s_linkup(bp);
  1337. }
  1338. else {
  1339. bnx2_copper_linkup(bp);
  1340. }
  1341. bnx2_resolve_flow_ctrl(bp);
  1342. }
  1343. else {
  1344. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1345. (bp->autoneg & AUTONEG_SPEED))
  1346. bnx2_disable_forced_2g5(bp);
  1347. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1348. u32 bmcr;
  1349. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1350. bmcr |= BMCR_ANENABLE;
  1351. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1352. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1353. }
  1354. bp->link_up = 0;
  1355. }
  1356. if (bp->link_up != link_up) {
  1357. bnx2_report_link(bp);
  1358. }
  1359. bnx2_set_mac_link(bp);
  1360. return 0;
  1361. }
  1362. static int
  1363. bnx2_reset_phy(struct bnx2 *bp)
  1364. {
  1365. int i;
  1366. u32 reg;
  1367. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1368. #define PHY_RESET_MAX_WAIT 100
  1369. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1370. udelay(10);
  1371. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1372. if (!(reg & BMCR_RESET)) {
  1373. udelay(20);
  1374. break;
  1375. }
  1376. }
  1377. if (i == PHY_RESET_MAX_WAIT) {
  1378. return -EBUSY;
  1379. }
  1380. return 0;
  1381. }
  1382. static u32
  1383. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1384. {
  1385. u32 adv = 0;
  1386. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1387. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1388. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1389. adv = ADVERTISE_1000XPAUSE;
  1390. }
  1391. else {
  1392. adv = ADVERTISE_PAUSE_CAP;
  1393. }
  1394. }
  1395. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1396. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1397. adv = ADVERTISE_1000XPSE_ASYM;
  1398. }
  1399. else {
  1400. adv = ADVERTISE_PAUSE_ASYM;
  1401. }
  1402. }
  1403. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1404. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1405. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1406. }
  1407. else {
  1408. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1409. }
  1410. }
  1411. return adv;
  1412. }
  1413. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1414. static int
  1415. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1416. __releases(&bp->phy_lock)
  1417. __acquires(&bp->phy_lock)
  1418. {
  1419. u32 speed_arg = 0, pause_adv;
  1420. pause_adv = bnx2_phy_get_pause_adv(bp);
  1421. if (bp->autoneg & AUTONEG_SPEED) {
  1422. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1423. if (bp->advertising & ADVERTISED_10baseT_Half)
  1424. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1425. if (bp->advertising & ADVERTISED_10baseT_Full)
  1426. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1427. if (bp->advertising & ADVERTISED_100baseT_Half)
  1428. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1429. if (bp->advertising & ADVERTISED_100baseT_Full)
  1430. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1431. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1432. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1433. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1434. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1435. } else {
  1436. if (bp->req_line_speed == SPEED_2500)
  1437. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1438. else if (bp->req_line_speed == SPEED_1000)
  1439. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1440. else if (bp->req_line_speed == SPEED_100) {
  1441. if (bp->req_duplex == DUPLEX_FULL)
  1442. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1443. else
  1444. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1445. } else if (bp->req_line_speed == SPEED_10) {
  1446. if (bp->req_duplex == DUPLEX_FULL)
  1447. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1448. else
  1449. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1450. }
  1451. }
  1452. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1453. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1454. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1455. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1456. if (port == PORT_TP)
  1457. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1458. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1459. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1460. spin_unlock_bh(&bp->phy_lock);
  1461. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1462. spin_lock_bh(&bp->phy_lock);
  1463. return 0;
  1464. }
  1465. static int
  1466. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1467. __releases(&bp->phy_lock)
  1468. __acquires(&bp->phy_lock)
  1469. {
  1470. u32 adv, bmcr;
  1471. u32 new_adv = 0;
  1472. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1473. return (bnx2_setup_remote_phy(bp, port));
  1474. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1475. u32 new_bmcr;
  1476. int force_link_down = 0;
  1477. if (bp->req_line_speed == SPEED_2500) {
  1478. if (!bnx2_test_and_enable_2g5(bp))
  1479. force_link_down = 1;
  1480. } else if (bp->req_line_speed == SPEED_1000) {
  1481. if (bnx2_test_and_disable_2g5(bp))
  1482. force_link_down = 1;
  1483. }
  1484. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1485. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1486. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1487. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1488. new_bmcr |= BMCR_SPEED1000;
  1489. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1490. if (bp->req_line_speed == SPEED_2500)
  1491. bnx2_enable_forced_2g5(bp);
  1492. else if (bp->req_line_speed == SPEED_1000) {
  1493. bnx2_disable_forced_2g5(bp);
  1494. new_bmcr &= ~0x2000;
  1495. }
  1496. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1497. if (bp->req_line_speed == SPEED_2500)
  1498. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1499. else
  1500. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1501. }
  1502. if (bp->req_duplex == DUPLEX_FULL) {
  1503. adv |= ADVERTISE_1000XFULL;
  1504. new_bmcr |= BMCR_FULLDPLX;
  1505. }
  1506. else {
  1507. adv |= ADVERTISE_1000XHALF;
  1508. new_bmcr &= ~BMCR_FULLDPLX;
  1509. }
  1510. if ((new_bmcr != bmcr) || (force_link_down)) {
  1511. /* Force a link down visible on the other side */
  1512. if (bp->link_up) {
  1513. bnx2_write_phy(bp, bp->mii_adv, adv &
  1514. ~(ADVERTISE_1000XFULL |
  1515. ADVERTISE_1000XHALF));
  1516. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1517. BMCR_ANRESTART | BMCR_ANENABLE);
  1518. bp->link_up = 0;
  1519. netif_carrier_off(bp->dev);
  1520. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1521. bnx2_report_link(bp);
  1522. }
  1523. bnx2_write_phy(bp, bp->mii_adv, adv);
  1524. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1525. } else {
  1526. bnx2_resolve_flow_ctrl(bp);
  1527. bnx2_set_mac_link(bp);
  1528. }
  1529. return 0;
  1530. }
  1531. bnx2_test_and_enable_2g5(bp);
  1532. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1533. new_adv |= ADVERTISE_1000XFULL;
  1534. new_adv |= bnx2_phy_get_pause_adv(bp);
  1535. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1536. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1537. bp->serdes_an_pending = 0;
  1538. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1539. /* Force a link down visible on the other side */
  1540. if (bp->link_up) {
  1541. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1542. spin_unlock_bh(&bp->phy_lock);
  1543. msleep(20);
  1544. spin_lock_bh(&bp->phy_lock);
  1545. }
  1546. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1547. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1548. BMCR_ANENABLE);
  1549. /* Speed up link-up time when the link partner
  1550. * does not autonegotiate which is very common
  1551. * in blade servers. Some blade servers use
  1552. * IPMI for kerboard input and it's important
  1553. * to minimize link disruptions. Autoneg. involves
  1554. * exchanging base pages plus 3 next pages and
  1555. * normally completes in about 120 msec.
  1556. */
  1557. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1558. bp->serdes_an_pending = 1;
  1559. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1560. } else {
  1561. bnx2_resolve_flow_ctrl(bp);
  1562. bnx2_set_mac_link(bp);
  1563. }
  1564. return 0;
  1565. }
  1566. #define ETHTOOL_ALL_FIBRE_SPEED \
  1567. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1568. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1569. (ADVERTISED_1000baseT_Full)
  1570. #define ETHTOOL_ALL_COPPER_SPEED \
  1571. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1572. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1573. ADVERTISED_1000baseT_Full)
  1574. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1575. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1576. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1577. static void
  1578. bnx2_set_default_remote_link(struct bnx2 *bp)
  1579. {
  1580. u32 link;
  1581. if (bp->phy_port == PORT_TP)
  1582. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1583. else
  1584. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1585. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1586. bp->req_line_speed = 0;
  1587. bp->autoneg |= AUTONEG_SPEED;
  1588. bp->advertising = ADVERTISED_Autoneg;
  1589. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1590. bp->advertising |= ADVERTISED_10baseT_Half;
  1591. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1592. bp->advertising |= ADVERTISED_10baseT_Full;
  1593. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1594. bp->advertising |= ADVERTISED_100baseT_Half;
  1595. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1596. bp->advertising |= ADVERTISED_100baseT_Full;
  1597. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1598. bp->advertising |= ADVERTISED_1000baseT_Full;
  1599. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1600. bp->advertising |= ADVERTISED_2500baseX_Full;
  1601. } else {
  1602. bp->autoneg = 0;
  1603. bp->advertising = 0;
  1604. bp->req_duplex = DUPLEX_FULL;
  1605. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1606. bp->req_line_speed = SPEED_10;
  1607. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1608. bp->req_duplex = DUPLEX_HALF;
  1609. }
  1610. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1611. bp->req_line_speed = SPEED_100;
  1612. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1613. bp->req_duplex = DUPLEX_HALF;
  1614. }
  1615. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1616. bp->req_line_speed = SPEED_1000;
  1617. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1618. bp->req_line_speed = SPEED_2500;
  1619. }
  1620. }
  1621. static void
  1622. bnx2_set_default_link(struct bnx2 *bp)
  1623. {
  1624. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1625. bnx2_set_default_remote_link(bp);
  1626. return;
  1627. }
  1628. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1629. bp->req_line_speed = 0;
  1630. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1631. u32 reg;
  1632. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1633. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1634. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1635. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1636. bp->autoneg = 0;
  1637. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1638. bp->req_duplex = DUPLEX_FULL;
  1639. }
  1640. } else
  1641. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1642. }
  1643. static void
  1644. bnx2_send_heart_beat(struct bnx2 *bp)
  1645. {
  1646. u32 msg;
  1647. u32 addr;
  1648. spin_lock(&bp->indirect_lock);
  1649. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1650. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1651. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1652. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1653. spin_unlock(&bp->indirect_lock);
  1654. }
  1655. static void
  1656. bnx2_remote_phy_event(struct bnx2 *bp)
  1657. {
  1658. u32 msg;
  1659. u8 link_up = bp->link_up;
  1660. u8 old_port;
  1661. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1662. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1663. bnx2_send_heart_beat(bp);
  1664. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1665. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1666. bp->link_up = 0;
  1667. else {
  1668. u32 speed;
  1669. bp->link_up = 1;
  1670. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1671. bp->duplex = DUPLEX_FULL;
  1672. switch (speed) {
  1673. case BNX2_LINK_STATUS_10HALF:
  1674. bp->duplex = DUPLEX_HALF;
  1675. case BNX2_LINK_STATUS_10FULL:
  1676. bp->line_speed = SPEED_10;
  1677. break;
  1678. case BNX2_LINK_STATUS_100HALF:
  1679. bp->duplex = DUPLEX_HALF;
  1680. case BNX2_LINK_STATUS_100BASE_T4:
  1681. case BNX2_LINK_STATUS_100FULL:
  1682. bp->line_speed = SPEED_100;
  1683. break;
  1684. case BNX2_LINK_STATUS_1000HALF:
  1685. bp->duplex = DUPLEX_HALF;
  1686. case BNX2_LINK_STATUS_1000FULL:
  1687. bp->line_speed = SPEED_1000;
  1688. break;
  1689. case BNX2_LINK_STATUS_2500HALF:
  1690. bp->duplex = DUPLEX_HALF;
  1691. case BNX2_LINK_STATUS_2500FULL:
  1692. bp->line_speed = SPEED_2500;
  1693. break;
  1694. default:
  1695. bp->line_speed = 0;
  1696. break;
  1697. }
  1698. bp->flow_ctrl = 0;
  1699. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1700. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1701. if (bp->duplex == DUPLEX_FULL)
  1702. bp->flow_ctrl = bp->req_flow_ctrl;
  1703. } else {
  1704. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1705. bp->flow_ctrl |= FLOW_CTRL_TX;
  1706. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1707. bp->flow_ctrl |= FLOW_CTRL_RX;
  1708. }
  1709. old_port = bp->phy_port;
  1710. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1711. bp->phy_port = PORT_FIBRE;
  1712. else
  1713. bp->phy_port = PORT_TP;
  1714. if (old_port != bp->phy_port)
  1715. bnx2_set_default_link(bp);
  1716. }
  1717. if (bp->link_up != link_up)
  1718. bnx2_report_link(bp);
  1719. bnx2_set_mac_link(bp);
  1720. }
  1721. static int
  1722. bnx2_set_remote_link(struct bnx2 *bp)
  1723. {
  1724. u32 evt_code;
  1725. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1726. switch (evt_code) {
  1727. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1728. bnx2_remote_phy_event(bp);
  1729. break;
  1730. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1731. default:
  1732. bnx2_send_heart_beat(bp);
  1733. break;
  1734. }
  1735. return 0;
  1736. }
  1737. static int
  1738. bnx2_setup_copper_phy(struct bnx2 *bp)
  1739. __releases(&bp->phy_lock)
  1740. __acquires(&bp->phy_lock)
  1741. {
  1742. u32 bmcr;
  1743. u32 new_bmcr;
  1744. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1745. if (bp->autoneg & AUTONEG_SPEED) {
  1746. u32 adv_reg, adv1000_reg;
  1747. u32 new_adv_reg = 0;
  1748. u32 new_adv1000_reg = 0;
  1749. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1750. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1751. ADVERTISE_PAUSE_ASYM);
  1752. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1753. adv1000_reg &= PHY_ALL_1000_SPEED;
  1754. if (bp->advertising & ADVERTISED_10baseT_Half)
  1755. new_adv_reg |= ADVERTISE_10HALF;
  1756. if (bp->advertising & ADVERTISED_10baseT_Full)
  1757. new_adv_reg |= ADVERTISE_10FULL;
  1758. if (bp->advertising & ADVERTISED_100baseT_Half)
  1759. new_adv_reg |= ADVERTISE_100HALF;
  1760. if (bp->advertising & ADVERTISED_100baseT_Full)
  1761. new_adv_reg |= ADVERTISE_100FULL;
  1762. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1763. new_adv1000_reg |= ADVERTISE_1000FULL;
  1764. new_adv_reg |= ADVERTISE_CSMA;
  1765. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1766. if ((adv1000_reg != new_adv1000_reg) ||
  1767. (adv_reg != new_adv_reg) ||
  1768. ((bmcr & BMCR_ANENABLE) == 0)) {
  1769. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1770. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1771. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1772. BMCR_ANENABLE);
  1773. }
  1774. else if (bp->link_up) {
  1775. /* Flow ctrl may have changed from auto to forced */
  1776. /* or vice-versa. */
  1777. bnx2_resolve_flow_ctrl(bp);
  1778. bnx2_set_mac_link(bp);
  1779. }
  1780. return 0;
  1781. }
  1782. new_bmcr = 0;
  1783. if (bp->req_line_speed == SPEED_100) {
  1784. new_bmcr |= BMCR_SPEED100;
  1785. }
  1786. if (bp->req_duplex == DUPLEX_FULL) {
  1787. new_bmcr |= BMCR_FULLDPLX;
  1788. }
  1789. if (new_bmcr != bmcr) {
  1790. u32 bmsr;
  1791. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1792. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1793. if (bmsr & BMSR_LSTATUS) {
  1794. /* Force link down */
  1795. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1796. spin_unlock_bh(&bp->phy_lock);
  1797. msleep(50);
  1798. spin_lock_bh(&bp->phy_lock);
  1799. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1800. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1801. }
  1802. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1803. /* Normally, the new speed is setup after the link has
  1804. * gone down and up again. In some cases, link will not go
  1805. * down so we need to set up the new speed here.
  1806. */
  1807. if (bmsr & BMSR_LSTATUS) {
  1808. bp->line_speed = bp->req_line_speed;
  1809. bp->duplex = bp->req_duplex;
  1810. bnx2_resolve_flow_ctrl(bp);
  1811. bnx2_set_mac_link(bp);
  1812. }
  1813. } else {
  1814. bnx2_resolve_flow_ctrl(bp);
  1815. bnx2_set_mac_link(bp);
  1816. }
  1817. return 0;
  1818. }
  1819. static int
  1820. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1821. __releases(&bp->phy_lock)
  1822. __acquires(&bp->phy_lock)
  1823. {
  1824. if (bp->loopback == MAC_LOOPBACK)
  1825. return 0;
  1826. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1827. return (bnx2_setup_serdes_phy(bp, port));
  1828. }
  1829. else {
  1830. return (bnx2_setup_copper_phy(bp));
  1831. }
  1832. }
  1833. static int
  1834. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1835. {
  1836. u32 val;
  1837. bp->mii_bmcr = MII_BMCR + 0x10;
  1838. bp->mii_bmsr = MII_BMSR + 0x10;
  1839. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1840. bp->mii_adv = MII_ADVERTISE + 0x10;
  1841. bp->mii_lpa = MII_LPA + 0x10;
  1842. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1843. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1844. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1845. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1846. if (reset_phy)
  1847. bnx2_reset_phy(bp);
  1848. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1849. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1850. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1851. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1852. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1853. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1854. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1855. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1856. val |= BCM5708S_UP1_2G5;
  1857. else
  1858. val &= ~BCM5708S_UP1_2G5;
  1859. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1860. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1861. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1862. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1863. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1864. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1865. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1866. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1867. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1868. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1869. return 0;
  1870. }
  1871. static int
  1872. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1873. {
  1874. u32 val;
  1875. if (reset_phy)
  1876. bnx2_reset_phy(bp);
  1877. bp->mii_up1 = BCM5708S_UP1;
  1878. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1879. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1880. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1881. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1882. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1883. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1884. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1885. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1886. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1887. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1888. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1889. val |= BCM5708S_UP1_2G5;
  1890. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1891. }
  1892. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1893. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1894. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1895. /* increase tx signal amplitude */
  1896. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1897. BCM5708S_BLK_ADDR_TX_MISC);
  1898. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1899. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1900. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1901. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1902. }
  1903. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1904. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1905. if (val) {
  1906. u32 is_backplane;
  1907. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1908. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1909. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1910. BCM5708S_BLK_ADDR_TX_MISC);
  1911. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1912. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1913. BCM5708S_BLK_ADDR_DIG);
  1914. }
  1915. }
  1916. return 0;
  1917. }
  1918. static int
  1919. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1920. {
  1921. if (reset_phy)
  1922. bnx2_reset_phy(bp);
  1923. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1924. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1925. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1926. if (bp->dev->mtu > 1500) {
  1927. u32 val;
  1928. /* Set extended packet length bit */
  1929. bnx2_write_phy(bp, 0x18, 0x7);
  1930. bnx2_read_phy(bp, 0x18, &val);
  1931. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1932. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1933. bnx2_read_phy(bp, 0x1c, &val);
  1934. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1935. }
  1936. else {
  1937. u32 val;
  1938. bnx2_write_phy(bp, 0x18, 0x7);
  1939. bnx2_read_phy(bp, 0x18, &val);
  1940. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1941. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1942. bnx2_read_phy(bp, 0x1c, &val);
  1943. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1944. }
  1945. return 0;
  1946. }
  1947. static int
  1948. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1949. {
  1950. u32 val;
  1951. if (reset_phy)
  1952. bnx2_reset_phy(bp);
  1953. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1954. bnx2_write_phy(bp, 0x18, 0x0c00);
  1955. bnx2_write_phy(bp, 0x17, 0x000a);
  1956. bnx2_write_phy(bp, 0x15, 0x310b);
  1957. bnx2_write_phy(bp, 0x17, 0x201f);
  1958. bnx2_write_phy(bp, 0x15, 0x9506);
  1959. bnx2_write_phy(bp, 0x17, 0x401f);
  1960. bnx2_write_phy(bp, 0x15, 0x14e2);
  1961. bnx2_write_phy(bp, 0x18, 0x0400);
  1962. }
  1963. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1964. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1965. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1966. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1967. val &= ~(1 << 8);
  1968. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1969. }
  1970. if (bp->dev->mtu > 1500) {
  1971. /* Set extended packet length bit */
  1972. bnx2_write_phy(bp, 0x18, 0x7);
  1973. bnx2_read_phy(bp, 0x18, &val);
  1974. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1975. bnx2_read_phy(bp, 0x10, &val);
  1976. bnx2_write_phy(bp, 0x10, val | 0x1);
  1977. }
  1978. else {
  1979. bnx2_write_phy(bp, 0x18, 0x7);
  1980. bnx2_read_phy(bp, 0x18, &val);
  1981. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1982. bnx2_read_phy(bp, 0x10, &val);
  1983. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1984. }
  1985. /* ethernet@wirespeed */
  1986. bnx2_write_phy(bp, 0x18, 0x7007);
  1987. bnx2_read_phy(bp, 0x18, &val);
  1988. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1989. return 0;
  1990. }
  1991. static int
  1992. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  1993. __releases(&bp->phy_lock)
  1994. __acquires(&bp->phy_lock)
  1995. {
  1996. u32 val;
  1997. int rc = 0;
  1998. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  1999. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  2000. bp->mii_bmcr = MII_BMCR;
  2001. bp->mii_bmsr = MII_BMSR;
  2002. bp->mii_bmsr1 = MII_BMSR;
  2003. bp->mii_adv = MII_ADVERTISE;
  2004. bp->mii_lpa = MII_LPA;
  2005. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2006. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  2007. goto setup_phy;
  2008. bnx2_read_phy(bp, MII_PHYSID1, &val);
  2009. bp->phy_id = val << 16;
  2010. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2011. bp->phy_id |= val & 0xffff;
  2012. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2013. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  2014. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2015. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  2016. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2017. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2018. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2019. }
  2020. else {
  2021. rc = bnx2_init_copper_phy(bp, reset_phy);
  2022. }
  2023. setup_phy:
  2024. if (!rc)
  2025. rc = bnx2_setup_phy(bp, bp->phy_port);
  2026. return rc;
  2027. }
  2028. static int
  2029. bnx2_set_mac_loopback(struct bnx2 *bp)
  2030. {
  2031. u32 mac_mode;
  2032. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2033. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2034. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2035. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2036. bp->link_up = 1;
  2037. return 0;
  2038. }
  2039. static int bnx2_test_link(struct bnx2 *);
  2040. static int
  2041. bnx2_set_phy_loopback(struct bnx2 *bp)
  2042. {
  2043. u32 mac_mode;
  2044. int rc, i;
  2045. spin_lock_bh(&bp->phy_lock);
  2046. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2047. BMCR_SPEED1000);
  2048. spin_unlock_bh(&bp->phy_lock);
  2049. if (rc)
  2050. return rc;
  2051. for (i = 0; i < 10; i++) {
  2052. if (bnx2_test_link(bp) == 0)
  2053. break;
  2054. msleep(100);
  2055. }
  2056. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2057. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2058. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2059. BNX2_EMAC_MODE_25G_MODE);
  2060. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2061. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2062. bp->link_up = 1;
  2063. return 0;
  2064. }
  2065. static int
  2066. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2067. {
  2068. int i;
  2069. u32 val;
  2070. bp->fw_wr_seq++;
  2071. msg_data |= bp->fw_wr_seq;
  2072. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2073. if (!ack)
  2074. return 0;
  2075. /* wait for an acknowledgement. */
  2076. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2077. msleep(10);
  2078. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2079. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2080. break;
  2081. }
  2082. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2083. return 0;
  2084. /* If we timed out, inform the firmware that this is the case. */
  2085. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2086. if (!silent)
  2087. pr_err("fw sync timeout, reset code = %x\n", msg_data);
  2088. msg_data &= ~BNX2_DRV_MSG_CODE;
  2089. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2090. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2091. return -EBUSY;
  2092. }
  2093. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2094. return -EIO;
  2095. return 0;
  2096. }
  2097. static int
  2098. bnx2_init_5709_context(struct bnx2 *bp)
  2099. {
  2100. int i, ret = 0;
  2101. u32 val;
  2102. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2103. val |= (BCM_PAGE_BITS - 8) << 16;
  2104. REG_WR(bp, BNX2_CTX_COMMAND, val);
  2105. for (i = 0; i < 10; i++) {
  2106. val = REG_RD(bp, BNX2_CTX_COMMAND);
  2107. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2108. break;
  2109. udelay(2);
  2110. }
  2111. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2112. return -EBUSY;
  2113. for (i = 0; i < bp->ctx_pages; i++) {
  2114. int j;
  2115. if (bp->ctx_blk[i])
  2116. memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
  2117. else
  2118. return -ENOMEM;
  2119. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2120. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2121. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2122. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2123. (u64) bp->ctx_blk_mapping[i] >> 32);
  2124. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2125. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2126. for (j = 0; j < 10; j++) {
  2127. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2128. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2129. break;
  2130. udelay(5);
  2131. }
  2132. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2133. ret = -EBUSY;
  2134. break;
  2135. }
  2136. }
  2137. return ret;
  2138. }
  2139. static void
  2140. bnx2_init_context(struct bnx2 *bp)
  2141. {
  2142. u32 vcid;
  2143. vcid = 96;
  2144. while (vcid) {
  2145. u32 vcid_addr, pcid_addr, offset;
  2146. int i;
  2147. vcid--;
  2148. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2149. u32 new_vcid;
  2150. vcid_addr = GET_PCID_ADDR(vcid);
  2151. if (vcid & 0x8) {
  2152. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2153. }
  2154. else {
  2155. new_vcid = vcid;
  2156. }
  2157. pcid_addr = GET_PCID_ADDR(new_vcid);
  2158. }
  2159. else {
  2160. vcid_addr = GET_CID_ADDR(vcid);
  2161. pcid_addr = vcid_addr;
  2162. }
  2163. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2164. vcid_addr += (i << PHY_CTX_SHIFT);
  2165. pcid_addr += (i << PHY_CTX_SHIFT);
  2166. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2167. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2168. /* Zero out the context. */
  2169. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2170. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2171. }
  2172. }
  2173. }
  2174. static int
  2175. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2176. {
  2177. u16 *good_mbuf;
  2178. u32 good_mbuf_cnt;
  2179. u32 val;
  2180. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2181. if (good_mbuf == NULL) {
  2182. pr_err("Failed to allocate memory in %s\n", __func__);
  2183. return -ENOMEM;
  2184. }
  2185. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2186. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2187. good_mbuf_cnt = 0;
  2188. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2189. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2190. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2191. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2192. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2193. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2194. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2195. /* The addresses with Bit 9 set are bad memory blocks. */
  2196. if (!(val & (1 << 9))) {
  2197. good_mbuf[good_mbuf_cnt] = (u16) val;
  2198. good_mbuf_cnt++;
  2199. }
  2200. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2201. }
  2202. /* Free the good ones back to the mbuf pool thus discarding
  2203. * all the bad ones. */
  2204. while (good_mbuf_cnt) {
  2205. good_mbuf_cnt--;
  2206. val = good_mbuf[good_mbuf_cnt];
  2207. val = (val << 9) | val | 1;
  2208. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2209. }
  2210. kfree(good_mbuf);
  2211. return 0;
  2212. }
  2213. static void
  2214. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2215. {
  2216. u32 val;
  2217. val = (mac_addr[0] << 8) | mac_addr[1];
  2218. REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2219. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2220. (mac_addr[4] << 8) | mac_addr[5];
  2221. REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2222. }
  2223. static inline int
  2224. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2225. {
  2226. dma_addr_t mapping;
  2227. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2228. struct rx_bd *rxbd =
  2229. &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
  2230. struct page *page = alloc_page(GFP_ATOMIC);
  2231. if (!page)
  2232. return -ENOMEM;
  2233. mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
  2234. PCI_DMA_FROMDEVICE);
  2235. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2236. __free_page(page);
  2237. return -EIO;
  2238. }
  2239. rx_pg->page = page;
  2240. pci_unmap_addr_set(rx_pg, mapping, mapping);
  2241. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2242. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2243. return 0;
  2244. }
  2245. static void
  2246. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2247. {
  2248. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2249. struct page *page = rx_pg->page;
  2250. if (!page)
  2251. return;
  2252. pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
  2253. PCI_DMA_FROMDEVICE);
  2254. __free_page(page);
  2255. rx_pg->page = NULL;
  2256. }
  2257. static inline int
  2258. bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2259. {
  2260. struct sk_buff *skb;
  2261. struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2262. dma_addr_t mapping;
  2263. struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  2264. unsigned long align;
  2265. skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
  2266. if (skb == NULL) {
  2267. return -ENOMEM;
  2268. }
  2269. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  2270. skb_reserve(skb, BNX2_RX_ALIGN - align);
  2271. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  2272. PCI_DMA_FROMDEVICE);
  2273. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2274. dev_kfree_skb(skb);
  2275. return -EIO;
  2276. }
  2277. rx_buf->skb = skb;
  2278. pci_unmap_addr_set(rx_buf, mapping, mapping);
  2279. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2280. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2281. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2282. return 0;
  2283. }
  2284. static int
  2285. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2286. {
  2287. struct status_block *sblk = bnapi->status_blk.msi;
  2288. u32 new_link_state, old_link_state;
  2289. int is_set = 1;
  2290. new_link_state = sblk->status_attn_bits & event;
  2291. old_link_state = sblk->status_attn_bits_ack & event;
  2292. if (new_link_state != old_link_state) {
  2293. if (new_link_state)
  2294. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2295. else
  2296. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2297. } else
  2298. is_set = 0;
  2299. return is_set;
  2300. }
  2301. static void
  2302. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2303. {
  2304. spin_lock(&bp->phy_lock);
  2305. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2306. bnx2_set_link(bp);
  2307. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2308. bnx2_set_remote_link(bp);
  2309. spin_unlock(&bp->phy_lock);
  2310. }
  2311. static inline u16
  2312. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2313. {
  2314. u16 cons;
  2315. /* Tell compiler that status block fields can change. */
  2316. barrier();
  2317. cons = *bnapi->hw_tx_cons_ptr;
  2318. barrier();
  2319. if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
  2320. cons++;
  2321. return cons;
  2322. }
  2323. static int
  2324. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2325. {
  2326. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2327. u16 hw_cons, sw_cons, sw_ring_cons;
  2328. int tx_pkt = 0, index;
  2329. struct netdev_queue *txq;
  2330. index = (bnapi - bp->bnx2_napi);
  2331. txq = netdev_get_tx_queue(bp->dev, index);
  2332. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2333. sw_cons = txr->tx_cons;
  2334. while (sw_cons != hw_cons) {
  2335. struct sw_tx_bd *tx_buf;
  2336. struct sk_buff *skb;
  2337. int i, last;
  2338. sw_ring_cons = TX_RING_IDX(sw_cons);
  2339. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2340. skb = tx_buf->skb;
  2341. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2342. prefetch(&skb->end);
  2343. /* partial BD completions possible with TSO packets */
  2344. if (tx_buf->is_gso) {
  2345. u16 last_idx, last_ring_idx;
  2346. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2347. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2348. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  2349. last_idx++;
  2350. }
  2351. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2352. break;
  2353. }
  2354. }
  2355. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  2356. skb_headlen(skb), PCI_DMA_TODEVICE);
  2357. tx_buf->skb = NULL;
  2358. last = tx_buf->nr_frags;
  2359. for (i = 0; i < last; i++) {
  2360. sw_cons = NEXT_TX_BD(sw_cons);
  2361. pci_unmap_page(bp->pdev,
  2362. pci_unmap_addr(
  2363. &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
  2364. mapping),
  2365. skb_shinfo(skb)->frags[i].size,
  2366. PCI_DMA_TODEVICE);
  2367. }
  2368. sw_cons = NEXT_TX_BD(sw_cons);
  2369. dev_kfree_skb(skb);
  2370. tx_pkt++;
  2371. if (tx_pkt == budget)
  2372. break;
  2373. if (hw_cons == sw_cons)
  2374. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2375. }
  2376. txr->hw_tx_cons = hw_cons;
  2377. txr->tx_cons = sw_cons;
  2378. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2379. * before checking for netif_tx_queue_stopped(). Without the
  2380. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2381. * will miss it and cause the queue to be stopped forever.
  2382. */
  2383. smp_mb();
  2384. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2385. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2386. __netif_tx_lock(txq, smp_processor_id());
  2387. if ((netif_tx_queue_stopped(txq)) &&
  2388. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2389. netif_tx_wake_queue(txq);
  2390. __netif_tx_unlock(txq);
  2391. }
  2392. return tx_pkt;
  2393. }
  2394. static void
  2395. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2396. struct sk_buff *skb, int count)
  2397. {
  2398. struct sw_pg *cons_rx_pg, *prod_rx_pg;
  2399. struct rx_bd *cons_bd, *prod_bd;
  2400. int i;
  2401. u16 hw_prod, prod;
  2402. u16 cons = rxr->rx_pg_cons;
  2403. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2404. /* The caller was unable to allocate a new page to replace the
  2405. * last one in the frags array, so we need to recycle that page
  2406. * and then free the skb.
  2407. */
  2408. if (skb) {
  2409. struct page *page;
  2410. struct skb_shared_info *shinfo;
  2411. shinfo = skb_shinfo(skb);
  2412. shinfo->nr_frags--;
  2413. page = shinfo->frags[shinfo->nr_frags].page;
  2414. shinfo->frags[shinfo->nr_frags].page = NULL;
  2415. cons_rx_pg->page = page;
  2416. dev_kfree_skb(skb);
  2417. }
  2418. hw_prod = rxr->rx_pg_prod;
  2419. for (i = 0; i < count; i++) {
  2420. prod = RX_PG_RING_IDX(hw_prod);
  2421. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2422. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2423. cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2424. prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2425. if (prod != cons) {
  2426. prod_rx_pg->page = cons_rx_pg->page;
  2427. cons_rx_pg->page = NULL;
  2428. pci_unmap_addr_set(prod_rx_pg, mapping,
  2429. pci_unmap_addr(cons_rx_pg, mapping));
  2430. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2431. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2432. }
  2433. cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
  2434. hw_prod = NEXT_RX_BD(hw_prod);
  2435. }
  2436. rxr->rx_pg_prod = hw_prod;
  2437. rxr->rx_pg_cons = cons;
  2438. }
  2439. static inline void
  2440. bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2441. struct sk_buff *skb, u16 cons, u16 prod)
  2442. {
  2443. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  2444. struct rx_bd *cons_bd, *prod_bd;
  2445. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2446. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2447. pci_dma_sync_single_for_device(bp->pdev,
  2448. pci_unmap_addr(cons_rx_buf, mapping),
  2449. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2450. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2451. prod_rx_buf->skb = skb;
  2452. if (cons == prod)
  2453. return;
  2454. pci_unmap_addr_set(prod_rx_buf, mapping,
  2455. pci_unmap_addr(cons_rx_buf, mapping));
  2456. cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2457. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2458. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2459. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2460. }
  2461. static int
  2462. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
  2463. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2464. u32 ring_idx)
  2465. {
  2466. int err;
  2467. u16 prod = ring_idx & 0xffff;
  2468. err = bnx2_alloc_rx_skb(bp, rxr, prod);
  2469. if (unlikely(err)) {
  2470. bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
  2471. if (hdr_len) {
  2472. unsigned int raw_len = len + 4;
  2473. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2474. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2475. }
  2476. return err;
  2477. }
  2478. skb_reserve(skb, BNX2_RX_OFFSET);
  2479. pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
  2480. PCI_DMA_FROMDEVICE);
  2481. if (hdr_len == 0) {
  2482. skb_put(skb, len);
  2483. return 0;
  2484. } else {
  2485. unsigned int i, frag_len, frag_size, pages;
  2486. struct sw_pg *rx_pg;
  2487. u16 pg_cons = rxr->rx_pg_cons;
  2488. u16 pg_prod = rxr->rx_pg_prod;
  2489. frag_size = len + 4 - hdr_len;
  2490. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2491. skb_put(skb, hdr_len);
  2492. for (i = 0; i < pages; i++) {
  2493. dma_addr_t mapping_old;
  2494. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2495. if (unlikely(frag_len <= 4)) {
  2496. unsigned int tail = 4 - frag_len;
  2497. rxr->rx_pg_cons = pg_cons;
  2498. rxr->rx_pg_prod = pg_prod;
  2499. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2500. pages - i);
  2501. skb->len -= tail;
  2502. if (i == 0) {
  2503. skb->tail -= tail;
  2504. } else {
  2505. skb_frag_t *frag =
  2506. &skb_shinfo(skb)->frags[i - 1];
  2507. frag->size -= tail;
  2508. skb->data_len -= tail;
  2509. skb->truesize -= tail;
  2510. }
  2511. return 0;
  2512. }
  2513. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2514. /* Don't unmap yet. If we're unable to allocate a new
  2515. * page, we need to recycle the page and the DMA addr.
  2516. */
  2517. mapping_old = pci_unmap_addr(rx_pg, mapping);
  2518. if (i == pages - 1)
  2519. frag_len -= 4;
  2520. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2521. rx_pg->page = NULL;
  2522. err = bnx2_alloc_rx_page(bp, rxr,
  2523. RX_PG_RING_IDX(pg_prod));
  2524. if (unlikely(err)) {
  2525. rxr->rx_pg_cons = pg_cons;
  2526. rxr->rx_pg_prod = pg_prod;
  2527. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2528. pages - i);
  2529. return err;
  2530. }
  2531. pci_unmap_page(bp->pdev, mapping_old,
  2532. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2533. frag_size -= frag_len;
  2534. skb->data_len += frag_len;
  2535. skb->truesize += frag_len;
  2536. skb->len += frag_len;
  2537. pg_prod = NEXT_RX_BD(pg_prod);
  2538. pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
  2539. }
  2540. rxr->rx_pg_prod = pg_prod;
  2541. rxr->rx_pg_cons = pg_cons;
  2542. }
  2543. return 0;
  2544. }
  2545. static inline u16
  2546. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2547. {
  2548. u16 cons;
  2549. /* Tell compiler that status block fields can change. */
  2550. barrier();
  2551. cons = *bnapi->hw_rx_cons_ptr;
  2552. barrier();
  2553. if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
  2554. cons++;
  2555. return cons;
  2556. }
  2557. static int
  2558. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2559. {
  2560. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2561. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2562. struct l2_fhdr *rx_hdr;
  2563. int rx_pkt = 0, pg_ring_used = 0;
  2564. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2565. sw_cons = rxr->rx_cons;
  2566. sw_prod = rxr->rx_prod;
  2567. /* Memory barrier necessary as speculative reads of the rx
  2568. * buffer can be ahead of the index in the status block
  2569. */
  2570. rmb();
  2571. while (sw_cons != hw_cons) {
  2572. unsigned int len, hdr_len;
  2573. u32 status;
  2574. struct sw_bd *rx_buf;
  2575. struct sk_buff *skb;
  2576. dma_addr_t dma_addr;
  2577. u16 vtag = 0;
  2578. int hw_vlan __maybe_unused = 0;
  2579. sw_ring_cons = RX_RING_IDX(sw_cons);
  2580. sw_ring_prod = RX_RING_IDX(sw_prod);
  2581. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2582. skb = rx_buf->skb;
  2583. rx_buf->skb = NULL;
  2584. dma_addr = pci_unmap_addr(rx_buf, mapping);
  2585. pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
  2586. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2587. PCI_DMA_FROMDEVICE);
  2588. rx_hdr = (struct l2_fhdr *) skb->data;
  2589. len = rx_hdr->l2_fhdr_pkt_len;
  2590. status = rx_hdr->l2_fhdr_status;
  2591. hdr_len = 0;
  2592. if (status & L2_FHDR_STATUS_SPLIT) {
  2593. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2594. pg_ring_used = 1;
  2595. } else if (len > bp->rx_jumbo_thresh) {
  2596. hdr_len = bp->rx_jumbo_thresh;
  2597. pg_ring_used = 1;
  2598. }
  2599. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2600. L2_FHDR_ERRORS_PHY_DECODE |
  2601. L2_FHDR_ERRORS_ALIGNMENT |
  2602. L2_FHDR_ERRORS_TOO_SHORT |
  2603. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2604. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2605. sw_ring_prod);
  2606. if (pg_ring_used) {
  2607. int pages;
  2608. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2609. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2610. }
  2611. goto next_rx;
  2612. }
  2613. len -= 4;
  2614. if (len <= bp->rx_copy_thresh) {
  2615. struct sk_buff *new_skb;
  2616. new_skb = netdev_alloc_skb(bp->dev, len + 6);
  2617. if (new_skb == NULL) {
  2618. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2619. sw_ring_prod);
  2620. goto next_rx;
  2621. }
  2622. /* aligned copy */
  2623. skb_copy_from_linear_data_offset(skb,
  2624. BNX2_RX_OFFSET - 6,
  2625. new_skb->data, len + 6);
  2626. skb_reserve(new_skb, 6);
  2627. skb_put(new_skb, len);
  2628. bnx2_reuse_rx_skb(bp, rxr, skb,
  2629. sw_ring_cons, sw_ring_prod);
  2630. skb = new_skb;
  2631. } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
  2632. dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
  2633. goto next_rx;
  2634. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2635. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
  2636. vtag = rx_hdr->l2_fhdr_vlan_tag;
  2637. #ifdef BCM_VLAN
  2638. if (bp->vlgrp)
  2639. hw_vlan = 1;
  2640. else
  2641. #endif
  2642. {
  2643. struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
  2644. __skb_push(skb, 4);
  2645. memmove(ve, skb->data + 4, ETH_ALEN * 2);
  2646. ve->h_vlan_proto = htons(ETH_P_8021Q);
  2647. ve->h_vlan_TCI = htons(vtag);
  2648. len += 4;
  2649. }
  2650. }
  2651. skb->protocol = eth_type_trans(skb, bp->dev);
  2652. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2653. (ntohs(skb->protocol) != 0x8100)) {
  2654. dev_kfree_skb(skb);
  2655. goto next_rx;
  2656. }
  2657. skb->ip_summed = CHECKSUM_NONE;
  2658. if (bp->rx_csum &&
  2659. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2660. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2661. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2662. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2663. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2664. }
  2665. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2666. #ifdef BCM_VLAN
  2667. if (hw_vlan)
  2668. vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
  2669. else
  2670. #endif
  2671. netif_receive_skb(skb);
  2672. rx_pkt++;
  2673. next_rx:
  2674. sw_cons = NEXT_RX_BD(sw_cons);
  2675. sw_prod = NEXT_RX_BD(sw_prod);
  2676. if ((rx_pkt == budget))
  2677. break;
  2678. /* Refresh hw_cons to see if there is new work */
  2679. if (sw_cons == hw_cons) {
  2680. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2681. rmb();
  2682. }
  2683. }
  2684. rxr->rx_cons = sw_cons;
  2685. rxr->rx_prod = sw_prod;
  2686. if (pg_ring_used)
  2687. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2688. REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2689. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2690. mmiowb();
  2691. return rx_pkt;
  2692. }
  2693. /* MSI ISR - The only difference between this and the INTx ISR
  2694. * is that the MSI interrupt is always serviced.
  2695. */
  2696. static irqreturn_t
  2697. bnx2_msi(int irq, void *dev_instance)
  2698. {
  2699. struct bnx2_napi *bnapi = dev_instance;
  2700. struct bnx2 *bp = bnapi->bp;
  2701. prefetch(bnapi->status_blk.msi);
  2702. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2703. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2704. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2705. /* Return here if interrupt is disabled. */
  2706. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2707. return IRQ_HANDLED;
  2708. napi_schedule(&bnapi->napi);
  2709. return IRQ_HANDLED;
  2710. }
  2711. static irqreturn_t
  2712. bnx2_msi_1shot(int irq, void *dev_instance)
  2713. {
  2714. struct bnx2_napi *bnapi = dev_instance;
  2715. struct bnx2 *bp = bnapi->bp;
  2716. prefetch(bnapi->status_blk.msi);
  2717. /* Return here if interrupt is disabled. */
  2718. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2719. return IRQ_HANDLED;
  2720. napi_schedule(&bnapi->napi);
  2721. return IRQ_HANDLED;
  2722. }
  2723. static irqreturn_t
  2724. bnx2_interrupt(int irq, void *dev_instance)
  2725. {
  2726. struct bnx2_napi *bnapi = dev_instance;
  2727. struct bnx2 *bp = bnapi->bp;
  2728. struct status_block *sblk = bnapi->status_blk.msi;
  2729. /* When using INTx, it is possible for the interrupt to arrive
  2730. * at the CPU before the status block posted prior to the
  2731. * interrupt. Reading a register will flush the status block.
  2732. * When using MSI, the MSI message will always complete after
  2733. * the status block write.
  2734. */
  2735. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2736. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2737. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2738. return IRQ_NONE;
  2739. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2740. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2741. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2742. /* Read back to deassert IRQ immediately to avoid too many
  2743. * spurious interrupts.
  2744. */
  2745. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2746. /* Return here if interrupt is shared and is disabled. */
  2747. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2748. return IRQ_HANDLED;
  2749. if (napi_schedule_prep(&bnapi->napi)) {
  2750. bnapi->last_status_idx = sblk->status_idx;
  2751. __napi_schedule(&bnapi->napi);
  2752. }
  2753. return IRQ_HANDLED;
  2754. }
  2755. static inline int
  2756. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2757. {
  2758. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2759. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2760. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2761. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2762. return 1;
  2763. return 0;
  2764. }
  2765. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2766. STATUS_ATTN_BITS_TIMER_ABORT)
  2767. static inline int
  2768. bnx2_has_work(struct bnx2_napi *bnapi)
  2769. {
  2770. struct status_block *sblk = bnapi->status_blk.msi;
  2771. if (bnx2_has_fast_work(bnapi))
  2772. return 1;
  2773. #ifdef BCM_CNIC
  2774. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2775. return 1;
  2776. #endif
  2777. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2778. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2779. return 1;
  2780. return 0;
  2781. }
  2782. static void
  2783. bnx2_chk_missed_msi(struct bnx2 *bp)
  2784. {
  2785. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2786. u32 msi_ctrl;
  2787. if (bnx2_has_work(bnapi)) {
  2788. msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2789. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2790. return;
  2791. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2792. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2793. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2794. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2795. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2796. }
  2797. }
  2798. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2799. }
  2800. #ifdef BCM_CNIC
  2801. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2802. {
  2803. struct cnic_ops *c_ops;
  2804. if (!bnapi->cnic_present)
  2805. return;
  2806. rcu_read_lock();
  2807. c_ops = rcu_dereference(bp->cnic_ops);
  2808. if (c_ops)
  2809. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2810. bnapi->status_blk.msi);
  2811. rcu_read_unlock();
  2812. }
  2813. #endif
  2814. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2815. {
  2816. struct status_block *sblk = bnapi->status_blk.msi;
  2817. u32 status_attn_bits = sblk->status_attn_bits;
  2818. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2819. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2820. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2821. bnx2_phy_int(bp, bnapi);
  2822. /* This is needed to take care of transient status
  2823. * during link changes.
  2824. */
  2825. REG_WR(bp, BNX2_HC_COMMAND,
  2826. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2827. REG_RD(bp, BNX2_HC_COMMAND);
  2828. }
  2829. }
  2830. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2831. int work_done, int budget)
  2832. {
  2833. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2834. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2835. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2836. bnx2_tx_int(bp, bnapi, 0);
  2837. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2838. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2839. return work_done;
  2840. }
  2841. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2842. {
  2843. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2844. struct bnx2 *bp = bnapi->bp;
  2845. int work_done = 0;
  2846. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2847. while (1) {
  2848. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2849. if (unlikely(work_done >= budget))
  2850. break;
  2851. bnapi->last_status_idx = sblk->status_idx;
  2852. /* status idx must be read before checking for more work. */
  2853. rmb();
  2854. if (likely(!bnx2_has_fast_work(bnapi))) {
  2855. napi_complete(napi);
  2856. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2857. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2858. bnapi->last_status_idx);
  2859. break;
  2860. }
  2861. }
  2862. return work_done;
  2863. }
  2864. static int bnx2_poll(struct napi_struct *napi, int budget)
  2865. {
  2866. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2867. struct bnx2 *bp = bnapi->bp;
  2868. int work_done = 0;
  2869. struct status_block *sblk = bnapi->status_blk.msi;
  2870. while (1) {
  2871. bnx2_poll_link(bp, bnapi);
  2872. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2873. #ifdef BCM_CNIC
  2874. bnx2_poll_cnic(bp, bnapi);
  2875. #endif
  2876. /* bnapi->last_status_idx is used below to tell the hw how
  2877. * much work has been processed, so we must read it before
  2878. * checking for more work.
  2879. */
  2880. bnapi->last_status_idx = sblk->status_idx;
  2881. if (unlikely(work_done >= budget))
  2882. break;
  2883. rmb();
  2884. if (likely(!bnx2_has_work(bnapi))) {
  2885. napi_complete(napi);
  2886. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2887. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2888. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2889. bnapi->last_status_idx);
  2890. break;
  2891. }
  2892. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2893. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2894. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2895. bnapi->last_status_idx);
  2896. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2897. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2898. bnapi->last_status_idx);
  2899. break;
  2900. }
  2901. }
  2902. return work_done;
  2903. }
  2904. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2905. * from set_multicast.
  2906. */
  2907. static void
  2908. bnx2_set_rx_mode(struct net_device *dev)
  2909. {
  2910. struct bnx2 *bp = netdev_priv(dev);
  2911. u32 rx_mode, sort_mode;
  2912. struct netdev_hw_addr *ha;
  2913. int i;
  2914. if (!netif_running(dev))
  2915. return;
  2916. spin_lock_bh(&bp->phy_lock);
  2917. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2918. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2919. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2920. #ifdef BCM_VLAN
  2921. if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2922. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2923. #else
  2924. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  2925. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2926. #endif
  2927. if (dev->flags & IFF_PROMISC) {
  2928. /* Promiscuous mode. */
  2929. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2930. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2931. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2932. }
  2933. else if (dev->flags & IFF_ALLMULTI) {
  2934. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2935. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2936. 0xffffffff);
  2937. }
  2938. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2939. }
  2940. else {
  2941. /* Accept one or more multicast(s). */
  2942. struct dev_mc_list *mclist;
  2943. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2944. u32 regidx;
  2945. u32 bit;
  2946. u32 crc;
  2947. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2948. netdev_for_each_mc_addr(mclist, dev) {
  2949. crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
  2950. bit = crc & 0xff;
  2951. regidx = (bit & 0xe0) >> 5;
  2952. bit &= 0x1f;
  2953. mc_filter[regidx] |= (1 << bit);
  2954. }
  2955. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2956. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2957. mc_filter[i]);
  2958. }
  2959. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2960. }
  2961. if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
  2962. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2963. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2964. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2965. } else if (!(dev->flags & IFF_PROMISC)) {
  2966. /* Add all entries into to the match filter list */
  2967. i = 0;
  2968. netdev_for_each_uc_addr(ha, dev) {
  2969. bnx2_set_mac_addr(bp, ha->addr,
  2970. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  2971. sort_mode |= (1 <<
  2972. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  2973. i++;
  2974. }
  2975. }
  2976. if (rx_mode != bp->rx_mode) {
  2977. bp->rx_mode = rx_mode;
  2978. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  2979. }
  2980. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2981. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  2982. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  2983. spin_unlock_bh(&bp->phy_lock);
  2984. }
  2985. static int __devinit
  2986. check_fw_section(const struct firmware *fw,
  2987. const struct bnx2_fw_file_section *section,
  2988. u32 alignment, bool non_empty)
  2989. {
  2990. u32 offset = be32_to_cpu(section->offset);
  2991. u32 len = be32_to_cpu(section->len);
  2992. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  2993. return -EINVAL;
  2994. if ((non_empty && len == 0) || len > fw->size - offset ||
  2995. len & (alignment - 1))
  2996. return -EINVAL;
  2997. return 0;
  2998. }
  2999. static int __devinit
  3000. check_mips_fw_entry(const struct firmware *fw,
  3001. const struct bnx2_mips_fw_file_entry *entry)
  3002. {
  3003. if (check_fw_section(fw, &entry->text, 4, true) ||
  3004. check_fw_section(fw, &entry->data, 4, false) ||
  3005. check_fw_section(fw, &entry->rodata, 4, false))
  3006. return -EINVAL;
  3007. return 0;
  3008. }
  3009. static int __devinit
  3010. bnx2_request_firmware(struct bnx2 *bp)
  3011. {
  3012. const char *mips_fw_file, *rv2p_fw_file;
  3013. const struct bnx2_mips_fw_file *mips_fw;
  3014. const struct bnx2_rv2p_fw_file *rv2p_fw;
  3015. int rc;
  3016. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3017. mips_fw_file = FW_MIPS_FILE_09;
  3018. if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
  3019. (CHIP_ID(bp) == CHIP_ID_5709_A1))
  3020. rv2p_fw_file = FW_RV2P_FILE_09_Ax;
  3021. else
  3022. rv2p_fw_file = FW_RV2P_FILE_09;
  3023. } else {
  3024. mips_fw_file = FW_MIPS_FILE_06;
  3025. rv2p_fw_file = FW_RV2P_FILE_06;
  3026. }
  3027. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3028. if (rc) {
  3029. pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
  3030. return rc;
  3031. }
  3032. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3033. if (rc) {
  3034. pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
  3035. return rc;
  3036. }
  3037. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3038. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3039. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3040. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3041. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3042. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3043. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3044. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3045. pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
  3046. return -EINVAL;
  3047. }
  3048. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3049. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3050. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3051. pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
  3052. return -EINVAL;
  3053. }
  3054. return 0;
  3055. }
  3056. static u32
  3057. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3058. {
  3059. switch (idx) {
  3060. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3061. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3062. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3063. break;
  3064. }
  3065. return rv2p_code;
  3066. }
  3067. static int
  3068. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3069. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3070. {
  3071. u32 rv2p_code_len, file_offset;
  3072. __be32 *rv2p_code;
  3073. int i;
  3074. u32 val, cmd, addr;
  3075. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3076. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3077. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3078. if (rv2p_proc == RV2P_PROC1) {
  3079. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3080. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3081. } else {
  3082. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3083. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3084. }
  3085. for (i = 0; i < rv2p_code_len; i += 8) {
  3086. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3087. rv2p_code++;
  3088. REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3089. rv2p_code++;
  3090. val = (i / 8) | cmd;
  3091. REG_WR(bp, addr, val);
  3092. }
  3093. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3094. for (i = 0; i < 8; i++) {
  3095. u32 loc, code;
  3096. loc = be32_to_cpu(fw_entry->fixup[i]);
  3097. if (loc && ((loc * 4) < rv2p_code_len)) {
  3098. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3099. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3100. code = be32_to_cpu(*(rv2p_code + loc));
  3101. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3102. REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3103. val = (loc / 2) | cmd;
  3104. REG_WR(bp, addr, val);
  3105. }
  3106. }
  3107. /* Reset the processor, un-stall is done later. */
  3108. if (rv2p_proc == RV2P_PROC1) {
  3109. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3110. }
  3111. else {
  3112. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3113. }
  3114. return 0;
  3115. }
  3116. static int
  3117. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3118. const struct bnx2_mips_fw_file_entry *fw_entry)
  3119. {
  3120. u32 addr, len, file_offset;
  3121. __be32 *data;
  3122. u32 offset;
  3123. u32 val;
  3124. /* Halt the CPU. */
  3125. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3126. val |= cpu_reg->mode_value_halt;
  3127. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3128. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3129. /* Load the Text area. */
  3130. addr = be32_to_cpu(fw_entry->text.addr);
  3131. len = be32_to_cpu(fw_entry->text.len);
  3132. file_offset = be32_to_cpu(fw_entry->text.offset);
  3133. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3134. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3135. if (len) {
  3136. int j;
  3137. for (j = 0; j < (len / 4); j++, offset += 4)
  3138. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3139. }
  3140. /* Load the Data area. */
  3141. addr = be32_to_cpu(fw_entry->data.addr);
  3142. len = be32_to_cpu(fw_entry->data.len);
  3143. file_offset = be32_to_cpu(fw_entry->data.offset);
  3144. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3145. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3146. if (len) {
  3147. int j;
  3148. for (j = 0; j < (len / 4); j++, offset += 4)
  3149. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3150. }
  3151. /* Load the Read-Only area. */
  3152. addr = be32_to_cpu(fw_entry->rodata.addr);
  3153. len = be32_to_cpu(fw_entry->rodata.len);
  3154. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3155. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3156. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3157. if (len) {
  3158. int j;
  3159. for (j = 0; j < (len / 4); j++, offset += 4)
  3160. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3161. }
  3162. /* Clear the pre-fetch instruction. */
  3163. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3164. val = be32_to_cpu(fw_entry->start_addr);
  3165. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3166. /* Start the CPU. */
  3167. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3168. val &= ~cpu_reg->mode_value_halt;
  3169. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3170. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3171. return 0;
  3172. }
  3173. static int
  3174. bnx2_init_cpus(struct bnx2 *bp)
  3175. {
  3176. const struct bnx2_mips_fw_file *mips_fw =
  3177. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3178. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3179. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3180. int rc;
  3181. /* Initialize the RV2P processor. */
  3182. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3183. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3184. /* Initialize the RX Processor. */
  3185. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3186. if (rc)
  3187. goto init_cpu_err;
  3188. /* Initialize the TX Processor. */
  3189. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3190. if (rc)
  3191. goto init_cpu_err;
  3192. /* Initialize the TX Patch-up Processor. */
  3193. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3194. if (rc)
  3195. goto init_cpu_err;
  3196. /* Initialize the Completion Processor. */
  3197. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3198. if (rc)
  3199. goto init_cpu_err;
  3200. /* Initialize the Command Processor. */
  3201. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3202. init_cpu_err:
  3203. return rc;
  3204. }
  3205. static int
  3206. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3207. {
  3208. u16 pmcsr;
  3209. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  3210. switch (state) {
  3211. case PCI_D0: {
  3212. u32 val;
  3213. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3214. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  3215. PCI_PM_CTRL_PME_STATUS);
  3216. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  3217. /* delay required during transition out of D3hot */
  3218. msleep(20);
  3219. val = REG_RD(bp, BNX2_EMAC_MODE);
  3220. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3221. val &= ~BNX2_EMAC_MODE_MPKT;
  3222. REG_WR(bp, BNX2_EMAC_MODE, val);
  3223. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3224. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3225. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3226. break;
  3227. }
  3228. case PCI_D3hot: {
  3229. int i;
  3230. u32 val, wol_msg;
  3231. if (bp->wol) {
  3232. u32 advertising;
  3233. u8 autoneg;
  3234. autoneg = bp->autoneg;
  3235. advertising = bp->advertising;
  3236. if (bp->phy_port == PORT_TP) {
  3237. bp->autoneg = AUTONEG_SPEED;
  3238. bp->advertising = ADVERTISED_10baseT_Half |
  3239. ADVERTISED_10baseT_Full |
  3240. ADVERTISED_100baseT_Half |
  3241. ADVERTISED_100baseT_Full |
  3242. ADVERTISED_Autoneg;
  3243. }
  3244. spin_lock_bh(&bp->phy_lock);
  3245. bnx2_setup_phy(bp, bp->phy_port);
  3246. spin_unlock_bh(&bp->phy_lock);
  3247. bp->autoneg = autoneg;
  3248. bp->advertising = advertising;
  3249. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3250. val = REG_RD(bp, BNX2_EMAC_MODE);
  3251. /* Enable port mode. */
  3252. val &= ~BNX2_EMAC_MODE_PORT;
  3253. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3254. BNX2_EMAC_MODE_ACPI_RCVD |
  3255. BNX2_EMAC_MODE_MPKT;
  3256. if (bp->phy_port == PORT_TP)
  3257. val |= BNX2_EMAC_MODE_PORT_MII;
  3258. else {
  3259. val |= BNX2_EMAC_MODE_PORT_GMII;
  3260. if (bp->line_speed == SPEED_2500)
  3261. val |= BNX2_EMAC_MODE_25G_MODE;
  3262. }
  3263. REG_WR(bp, BNX2_EMAC_MODE, val);
  3264. /* receive all multicast */
  3265. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3266. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3267. 0xffffffff);
  3268. }
  3269. REG_WR(bp, BNX2_EMAC_RX_MODE,
  3270. BNX2_EMAC_RX_MODE_SORT_MODE);
  3271. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  3272. BNX2_RPM_SORT_USER0_MC_EN;
  3273. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3274. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  3275. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  3276. BNX2_RPM_SORT_USER0_ENA);
  3277. /* Need to enable EMAC and RPM for WOL. */
  3278. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3279. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3280. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3281. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3282. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3283. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3284. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3285. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3286. }
  3287. else {
  3288. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3289. }
  3290. if (!(bp->flags & BNX2_FLAG_NO_WOL))
  3291. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
  3292. 1, 0);
  3293. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3294. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3295. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  3296. if (bp->wol)
  3297. pmcsr |= 3;
  3298. }
  3299. else {
  3300. pmcsr |= 3;
  3301. }
  3302. if (bp->wol) {
  3303. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  3304. }
  3305. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3306. pmcsr);
  3307. /* No more memory access after this point until
  3308. * device is brought back to D0.
  3309. */
  3310. udelay(50);
  3311. break;
  3312. }
  3313. default:
  3314. return -EINVAL;
  3315. }
  3316. return 0;
  3317. }
  3318. static int
  3319. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3320. {
  3321. u32 val;
  3322. int j;
  3323. /* Request access to the flash interface. */
  3324. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3325. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3326. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3327. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3328. break;
  3329. udelay(5);
  3330. }
  3331. if (j >= NVRAM_TIMEOUT_COUNT)
  3332. return -EBUSY;
  3333. return 0;
  3334. }
  3335. static int
  3336. bnx2_release_nvram_lock(struct bnx2 *bp)
  3337. {
  3338. int j;
  3339. u32 val;
  3340. /* Relinquish nvram interface. */
  3341. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3342. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3343. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3344. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3345. break;
  3346. udelay(5);
  3347. }
  3348. if (j >= NVRAM_TIMEOUT_COUNT)
  3349. return -EBUSY;
  3350. return 0;
  3351. }
  3352. static int
  3353. bnx2_enable_nvram_write(struct bnx2 *bp)
  3354. {
  3355. u32 val;
  3356. val = REG_RD(bp, BNX2_MISC_CFG);
  3357. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3358. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3359. int j;
  3360. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3361. REG_WR(bp, BNX2_NVM_COMMAND,
  3362. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3363. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3364. udelay(5);
  3365. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3366. if (val & BNX2_NVM_COMMAND_DONE)
  3367. break;
  3368. }
  3369. if (j >= NVRAM_TIMEOUT_COUNT)
  3370. return -EBUSY;
  3371. }
  3372. return 0;
  3373. }
  3374. static void
  3375. bnx2_disable_nvram_write(struct bnx2 *bp)
  3376. {
  3377. u32 val;
  3378. val = REG_RD(bp, BNX2_MISC_CFG);
  3379. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3380. }
  3381. static void
  3382. bnx2_enable_nvram_access(struct bnx2 *bp)
  3383. {
  3384. u32 val;
  3385. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3386. /* Enable both bits, even on read. */
  3387. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3388. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3389. }
  3390. static void
  3391. bnx2_disable_nvram_access(struct bnx2 *bp)
  3392. {
  3393. u32 val;
  3394. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3395. /* Disable both bits, even after read. */
  3396. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3397. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3398. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3399. }
  3400. static int
  3401. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3402. {
  3403. u32 cmd;
  3404. int j;
  3405. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3406. /* Buffered flash, no erase needed */
  3407. return 0;
  3408. /* Build an erase command */
  3409. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3410. BNX2_NVM_COMMAND_DOIT;
  3411. /* Need to clear DONE bit separately. */
  3412. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3413. /* Address of the NVRAM to read from. */
  3414. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3415. /* Issue an erase command. */
  3416. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3417. /* Wait for completion. */
  3418. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3419. u32 val;
  3420. udelay(5);
  3421. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3422. if (val & BNX2_NVM_COMMAND_DONE)
  3423. break;
  3424. }
  3425. if (j >= NVRAM_TIMEOUT_COUNT)
  3426. return -EBUSY;
  3427. return 0;
  3428. }
  3429. static int
  3430. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3431. {
  3432. u32 cmd;
  3433. int j;
  3434. /* Build the command word. */
  3435. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3436. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3437. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3438. offset = ((offset / bp->flash_info->page_size) <<
  3439. bp->flash_info->page_bits) +
  3440. (offset % bp->flash_info->page_size);
  3441. }
  3442. /* Need to clear DONE bit separately. */
  3443. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3444. /* Address of the NVRAM to read from. */
  3445. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3446. /* Issue a read command. */
  3447. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3448. /* Wait for completion. */
  3449. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3450. u32 val;
  3451. udelay(5);
  3452. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3453. if (val & BNX2_NVM_COMMAND_DONE) {
  3454. __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
  3455. memcpy(ret_val, &v, 4);
  3456. break;
  3457. }
  3458. }
  3459. if (j >= NVRAM_TIMEOUT_COUNT)
  3460. return -EBUSY;
  3461. return 0;
  3462. }
  3463. static int
  3464. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3465. {
  3466. u32 cmd;
  3467. __be32 val32;
  3468. int j;
  3469. /* Build the command word. */
  3470. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3471. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3472. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3473. offset = ((offset / bp->flash_info->page_size) <<
  3474. bp->flash_info->page_bits) +
  3475. (offset % bp->flash_info->page_size);
  3476. }
  3477. /* Need to clear DONE bit separately. */
  3478. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3479. memcpy(&val32, val, 4);
  3480. /* Write the data. */
  3481. REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3482. /* Address of the NVRAM to write to. */
  3483. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3484. /* Issue the write command. */
  3485. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3486. /* Wait for completion. */
  3487. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3488. udelay(5);
  3489. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3490. break;
  3491. }
  3492. if (j >= NVRAM_TIMEOUT_COUNT)
  3493. return -EBUSY;
  3494. return 0;
  3495. }
  3496. static int
  3497. bnx2_init_nvram(struct bnx2 *bp)
  3498. {
  3499. u32 val;
  3500. int j, entry_count, rc = 0;
  3501. const struct flash_spec *flash;
  3502. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3503. bp->flash_info = &flash_5709;
  3504. goto get_flash_size;
  3505. }
  3506. /* Determine the selected interface. */
  3507. val = REG_RD(bp, BNX2_NVM_CFG1);
  3508. entry_count = ARRAY_SIZE(flash_table);
  3509. if (val & 0x40000000) {
  3510. /* Flash interface has been reconfigured */
  3511. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3512. j++, flash++) {
  3513. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3514. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3515. bp->flash_info = flash;
  3516. break;
  3517. }
  3518. }
  3519. }
  3520. else {
  3521. u32 mask;
  3522. /* Not yet been reconfigured */
  3523. if (val & (1 << 23))
  3524. mask = FLASH_BACKUP_STRAP_MASK;
  3525. else
  3526. mask = FLASH_STRAP_MASK;
  3527. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3528. j++, flash++) {
  3529. if ((val & mask) == (flash->strapping & mask)) {
  3530. bp->flash_info = flash;
  3531. /* Request access to the flash interface. */
  3532. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3533. return rc;
  3534. /* Enable access to flash interface */
  3535. bnx2_enable_nvram_access(bp);
  3536. /* Reconfigure the flash interface */
  3537. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3538. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3539. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3540. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3541. /* Disable access to flash interface */
  3542. bnx2_disable_nvram_access(bp);
  3543. bnx2_release_nvram_lock(bp);
  3544. break;
  3545. }
  3546. }
  3547. } /* if (val & 0x40000000) */
  3548. if (j == entry_count) {
  3549. bp->flash_info = NULL;
  3550. pr_alert("Unknown flash/EEPROM type\n");
  3551. return -ENODEV;
  3552. }
  3553. get_flash_size:
  3554. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3555. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3556. if (val)
  3557. bp->flash_size = val;
  3558. else
  3559. bp->flash_size = bp->flash_info->total_size;
  3560. return rc;
  3561. }
  3562. static int
  3563. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3564. int buf_size)
  3565. {
  3566. int rc = 0;
  3567. u32 cmd_flags, offset32, len32, extra;
  3568. if (buf_size == 0)
  3569. return 0;
  3570. /* Request access to the flash interface. */
  3571. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3572. return rc;
  3573. /* Enable access to flash interface */
  3574. bnx2_enable_nvram_access(bp);
  3575. len32 = buf_size;
  3576. offset32 = offset;
  3577. extra = 0;
  3578. cmd_flags = 0;
  3579. if (offset32 & 3) {
  3580. u8 buf[4];
  3581. u32 pre_len;
  3582. offset32 &= ~3;
  3583. pre_len = 4 - (offset & 3);
  3584. if (pre_len >= len32) {
  3585. pre_len = len32;
  3586. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3587. BNX2_NVM_COMMAND_LAST;
  3588. }
  3589. else {
  3590. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3591. }
  3592. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3593. if (rc)
  3594. return rc;
  3595. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3596. offset32 += 4;
  3597. ret_buf += pre_len;
  3598. len32 -= pre_len;
  3599. }
  3600. if (len32 & 3) {
  3601. extra = 4 - (len32 & 3);
  3602. len32 = (len32 + 4) & ~3;
  3603. }
  3604. if (len32 == 4) {
  3605. u8 buf[4];
  3606. if (cmd_flags)
  3607. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3608. else
  3609. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3610. BNX2_NVM_COMMAND_LAST;
  3611. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3612. memcpy(ret_buf, buf, 4 - extra);
  3613. }
  3614. else if (len32 > 0) {
  3615. u8 buf[4];
  3616. /* Read the first word. */
  3617. if (cmd_flags)
  3618. cmd_flags = 0;
  3619. else
  3620. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3621. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3622. /* Advance to the next dword. */
  3623. offset32 += 4;
  3624. ret_buf += 4;
  3625. len32 -= 4;
  3626. while (len32 > 4 && rc == 0) {
  3627. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3628. /* Advance to the next dword. */
  3629. offset32 += 4;
  3630. ret_buf += 4;
  3631. len32 -= 4;
  3632. }
  3633. if (rc)
  3634. return rc;
  3635. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3636. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3637. memcpy(ret_buf, buf, 4 - extra);
  3638. }
  3639. /* Disable access to flash interface */
  3640. bnx2_disable_nvram_access(bp);
  3641. bnx2_release_nvram_lock(bp);
  3642. return rc;
  3643. }
  3644. static int
  3645. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3646. int buf_size)
  3647. {
  3648. u32 written, offset32, len32;
  3649. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3650. int rc = 0;
  3651. int align_start, align_end;
  3652. buf = data_buf;
  3653. offset32 = offset;
  3654. len32 = buf_size;
  3655. align_start = align_end = 0;
  3656. if ((align_start = (offset32 & 3))) {
  3657. offset32 &= ~3;
  3658. len32 += align_start;
  3659. if (len32 < 4)
  3660. len32 = 4;
  3661. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3662. return rc;
  3663. }
  3664. if (len32 & 3) {
  3665. align_end = 4 - (len32 & 3);
  3666. len32 += align_end;
  3667. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3668. return rc;
  3669. }
  3670. if (align_start || align_end) {
  3671. align_buf = kmalloc(len32, GFP_KERNEL);
  3672. if (align_buf == NULL)
  3673. return -ENOMEM;
  3674. if (align_start) {
  3675. memcpy(align_buf, start, 4);
  3676. }
  3677. if (align_end) {
  3678. memcpy(align_buf + len32 - 4, end, 4);
  3679. }
  3680. memcpy(align_buf + align_start, data_buf, buf_size);
  3681. buf = align_buf;
  3682. }
  3683. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3684. flash_buffer = kmalloc(264, GFP_KERNEL);
  3685. if (flash_buffer == NULL) {
  3686. rc = -ENOMEM;
  3687. goto nvram_write_end;
  3688. }
  3689. }
  3690. written = 0;
  3691. while ((written < len32) && (rc == 0)) {
  3692. u32 page_start, page_end, data_start, data_end;
  3693. u32 addr, cmd_flags;
  3694. int i;
  3695. /* Find the page_start addr */
  3696. page_start = offset32 + written;
  3697. page_start -= (page_start % bp->flash_info->page_size);
  3698. /* Find the page_end addr */
  3699. page_end = page_start + bp->flash_info->page_size;
  3700. /* Find the data_start addr */
  3701. data_start = (written == 0) ? offset32 : page_start;
  3702. /* Find the data_end addr */
  3703. data_end = (page_end > offset32 + len32) ?
  3704. (offset32 + len32) : page_end;
  3705. /* Request access to the flash interface. */
  3706. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3707. goto nvram_write_end;
  3708. /* Enable access to flash interface */
  3709. bnx2_enable_nvram_access(bp);
  3710. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3711. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3712. int j;
  3713. /* Read the whole page into the buffer
  3714. * (non-buffer flash only) */
  3715. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3716. if (j == (bp->flash_info->page_size - 4)) {
  3717. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3718. }
  3719. rc = bnx2_nvram_read_dword(bp,
  3720. page_start + j,
  3721. &flash_buffer[j],
  3722. cmd_flags);
  3723. if (rc)
  3724. goto nvram_write_end;
  3725. cmd_flags = 0;
  3726. }
  3727. }
  3728. /* Enable writes to flash interface (unlock write-protect) */
  3729. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3730. goto nvram_write_end;
  3731. /* Loop to write back the buffer data from page_start to
  3732. * data_start */
  3733. i = 0;
  3734. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3735. /* Erase the page */
  3736. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3737. goto nvram_write_end;
  3738. /* Re-enable the write again for the actual write */
  3739. bnx2_enable_nvram_write(bp);
  3740. for (addr = page_start; addr < data_start;
  3741. addr += 4, i += 4) {
  3742. rc = bnx2_nvram_write_dword(bp, addr,
  3743. &flash_buffer[i], cmd_flags);
  3744. if (rc != 0)
  3745. goto nvram_write_end;
  3746. cmd_flags = 0;
  3747. }
  3748. }
  3749. /* Loop to write the new data from data_start to data_end */
  3750. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3751. if ((addr == page_end - 4) ||
  3752. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3753. (addr == data_end - 4))) {
  3754. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3755. }
  3756. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3757. cmd_flags);
  3758. if (rc != 0)
  3759. goto nvram_write_end;
  3760. cmd_flags = 0;
  3761. buf += 4;
  3762. }
  3763. /* Loop to write back the buffer data from data_end
  3764. * to page_end */
  3765. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3766. for (addr = data_end; addr < page_end;
  3767. addr += 4, i += 4) {
  3768. if (addr == page_end-4) {
  3769. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3770. }
  3771. rc = bnx2_nvram_write_dword(bp, addr,
  3772. &flash_buffer[i], cmd_flags);
  3773. if (rc != 0)
  3774. goto nvram_write_end;
  3775. cmd_flags = 0;
  3776. }
  3777. }
  3778. /* Disable writes to flash interface (lock write-protect) */
  3779. bnx2_disable_nvram_write(bp);
  3780. /* Disable access to flash interface */
  3781. bnx2_disable_nvram_access(bp);
  3782. bnx2_release_nvram_lock(bp);
  3783. /* Increment written */
  3784. written += data_end - data_start;
  3785. }
  3786. nvram_write_end:
  3787. kfree(flash_buffer);
  3788. kfree(align_buf);
  3789. return rc;
  3790. }
  3791. static void
  3792. bnx2_init_fw_cap(struct bnx2 *bp)
  3793. {
  3794. u32 val, sig = 0;
  3795. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3796. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3797. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3798. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3799. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3800. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3801. return;
  3802. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3803. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3804. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3805. }
  3806. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3807. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3808. u32 link;
  3809. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3810. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3811. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3812. bp->phy_port = PORT_FIBRE;
  3813. else
  3814. bp->phy_port = PORT_TP;
  3815. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3816. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3817. }
  3818. if (netif_running(bp->dev) && sig)
  3819. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3820. }
  3821. static void
  3822. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3823. {
  3824. REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3825. REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3826. REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3827. }
  3828. static int
  3829. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3830. {
  3831. u32 val;
  3832. int i, rc = 0;
  3833. u8 old_port;
  3834. /* Wait for the current PCI transaction to complete before
  3835. * issuing a reset. */
  3836. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3837. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3838. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3839. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3840. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3841. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3842. udelay(5);
  3843. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3844. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3845. /* Deposit a driver reset signature so the firmware knows that
  3846. * this is a soft reset. */
  3847. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3848. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3849. /* Do a dummy read to force the chip to complete all current transaction
  3850. * before we issue a reset. */
  3851. val = REG_RD(bp, BNX2_MISC_ID);
  3852. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3853. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3854. REG_RD(bp, BNX2_MISC_COMMAND);
  3855. udelay(5);
  3856. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3857. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3858. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
  3859. } else {
  3860. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3861. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3862. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3863. /* Chip reset. */
  3864. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3865. /* Reading back any register after chip reset will hang the
  3866. * bus on 5706 A0 and A1. The msleep below provides plenty
  3867. * of margin for write posting.
  3868. */
  3869. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3870. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3871. msleep(20);
  3872. /* Reset takes approximate 30 usec */
  3873. for (i = 0; i < 10; i++) {
  3874. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3875. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3876. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3877. break;
  3878. udelay(10);
  3879. }
  3880. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3881. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3882. pr_err("Chip reset did not complete\n");
  3883. return -EBUSY;
  3884. }
  3885. }
  3886. /* Make sure byte swapping is properly configured. */
  3887. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3888. if (val != 0x01020304) {
  3889. pr_err("Chip not in correct endian mode\n");
  3890. return -ENODEV;
  3891. }
  3892. /* Wait for the firmware to finish its initialization. */
  3893. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3894. if (rc)
  3895. return rc;
  3896. spin_lock_bh(&bp->phy_lock);
  3897. old_port = bp->phy_port;
  3898. bnx2_init_fw_cap(bp);
  3899. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3900. old_port != bp->phy_port)
  3901. bnx2_set_default_remote_link(bp);
  3902. spin_unlock_bh(&bp->phy_lock);
  3903. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3904. /* Adjust the voltage regular to two steps lower. The default
  3905. * of this register is 0x0000000e. */
  3906. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3907. /* Remove bad rbuf memory from the free pool. */
  3908. rc = bnx2_alloc_bad_rbuf(bp);
  3909. }
  3910. if (bp->flags & BNX2_FLAG_USING_MSIX)
  3911. bnx2_setup_msix_tbl(bp);
  3912. return rc;
  3913. }
  3914. static int
  3915. bnx2_init_chip(struct bnx2 *bp)
  3916. {
  3917. u32 val, mtu;
  3918. int rc, i;
  3919. /* Make sure the interrupt is not active. */
  3920. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3921. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3922. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3923. #ifdef __BIG_ENDIAN
  3924. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3925. #endif
  3926. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3927. DMA_READ_CHANS << 12 |
  3928. DMA_WRITE_CHANS << 16;
  3929. val |= (0x2 << 20) | (1 << 11);
  3930. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  3931. val |= (1 << 23);
  3932. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3933. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
  3934. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  3935. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3936. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3937. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3938. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3939. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3940. }
  3941. if (bp->flags & BNX2_FLAG_PCIX) {
  3942. u16 val16;
  3943. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3944. &val16);
  3945. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3946. val16 & ~PCI_X_CMD_ERO);
  3947. }
  3948. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3949. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3950. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3951. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3952. /* Initialize context mapping and zero out the quick contexts. The
  3953. * context block must have already been enabled. */
  3954. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3955. rc = bnx2_init_5709_context(bp);
  3956. if (rc)
  3957. return rc;
  3958. } else
  3959. bnx2_init_context(bp);
  3960. if ((rc = bnx2_init_cpus(bp)) != 0)
  3961. return rc;
  3962. bnx2_init_nvram(bp);
  3963. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3964. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3965. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3966. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  3967. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3968. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  3969. if (CHIP_REV(bp) == CHIP_REV_Ax)
  3970. val |= BNX2_MQ_CONFIG_HALT_DIS;
  3971. }
  3972. REG_WR(bp, BNX2_MQ_CONFIG, val);
  3973. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  3974. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  3975. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  3976. val = (BCM_PAGE_BITS - 8) << 24;
  3977. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  3978. /* Configure page size. */
  3979. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  3980. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  3981. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  3982. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  3983. val = bp->mac_addr[0] +
  3984. (bp->mac_addr[1] << 8) +
  3985. (bp->mac_addr[2] << 16) +
  3986. bp->mac_addr[3] +
  3987. (bp->mac_addr[4] << 8) +
  3988. (bp->mac_addr[5] << 16);
  3989. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  3990. /* Program the MTU. Also include 4 bytes for CRC32. */
  3991. mtu = bp->dev->mtu;
  3992. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  3993. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  3994. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  3995. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  3996. if (mtu < 1500)
  3997. mtu = 1500;
  3998. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  3999. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  4000. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  4001. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  4002. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  4003. bp->bnx2_napi[i].last_status_idx = 0;
  4004. bp->idle_chk_status_idx = 0xffff;
  4005. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  4006. /* Set up how to generate a link change interrupt. */
  4007. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  4008. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  4009. (u64) bp->status_blk_mapping & 0xffffffff);
  4010. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  4011. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  4012. (u64) bp->stats_blk_mapping & 0xffffffff);
  4013. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4014. (u64) bp->stats_blk_mapping >> 32);
  4015. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4016. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4017. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4018. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4019. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4020. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4021. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4022. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4023. REG_WR(bp, BNX2_HC_COM_TICKS,
  4024. (bp->com_ticks_int << 16) | bp->com_ticks);
  4025. REG_WR(bp, BNX2_HC_CMD_TICKS,
  4026. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4027. if (bp->flags & BNX2_FLAG_BROKEN_STATS)
  4028. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4029. else
  4030. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4031. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4032. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  4033. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4034. else {
  4035. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4036. BNX2_HC_CONFIG_COLLECT_STATS;
  4037. }
  4038. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4039. REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4040. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4041. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4042. }
  4043. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4044. val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
  4045. REG_WR(bp, BNX2_HC_CONFIG, val);
  4046. for (i = 1; i < bp->irq_nvecs; i++) {
  4047. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4048. BNX2_HC_SB_CONFIG_1;
  4049. REG_WR(bp, base,
  4050. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4051. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4052. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4053. REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4054. (bp->tx_quick_cons_trip_int << 16) |
  4055. bp->tx_quick_cons_trip);
  4056. REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4057. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4058. REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4059. (bp->rx_quick_cons_trip_int << 16) |
  4060. bp->rx_quick_cons_trip);
  4061. REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4062. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4063. }
  4064. /* Clear internal stats counters. */
  4065. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4066. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4067. /* Initialize the receive filter. */
  4068. bnx2_set_rx_mode(bp->dev);
  4069. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4070. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4071. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4072. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4073. }
  4074. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4075. 1, 0);
  4076. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4077. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4078. udelay(20);
  4079. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  4080. return rc;
  4081. }
  4082. static void
  4083. bnx2_clear_ring_states(struct bnx2 *bp)
  4084. {
  4085. struct bnx2_napi *bnapi;
  4086. struct bnx2_tx_ring_info *txr;
  4087. struct bnx2_rx_ring_info *rxr;
  4088. int i;
  4089. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4090. bnapi = &bp->bnx2_napi[i];
  4091. txr = &bnapi->tx_ring;
  4092. rxr = &bnapi->rx_ring;
  4093. txr->tx_cons = 0;
  4094. txr->hw_tx_cons = 0;
  4095. rxr->rx_prod_bseq = 0;
  4096. rxr->rx_prod = 0;
  4097. rxr->rx_cons = 0;
  4098. rxr->rx_pg_prod = 0;
  4099. rxr->rx_pg_cons = 0;
  4100. }
  4101. }
  4102. static void
  4103. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4104. {
  4105. u32 val, offset0, offset1, offset2, offset3;
  4106. u32 cid_addr = GET_CID_ADDR(cid);
  4107. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4108. offset0 = BNX2_L2CTX_TYPE_XI;
  4109. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4110. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4111. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4112. } else {
  4113. offset0 = BNX2_L2CTX_TYPE;
  4114. offset1 = BNX2_L2CTX_CMD_TYPE;
  4115. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4116. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4117. }
  4118. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4119. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4120. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4121. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4122. val = (u64) txr->tx_desc_mapping >> 32;
  4123. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4124. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4125. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4126. }
  4127. static void
  4128. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4129. {
  4130. struct tx_bd *txbd;
  4131. u32 cid = TX_CID;
  4132. struct bnx2_napi *bnapi;
  4133. struct bnx2_tx_ring_info *txr;
  4134. bnapi = &bp->bnx2_napi[ring_num];
  4135. txr = &bnapi->tx_ring;
  4136. if (ring_num == 0)
  4137. cid = TX_CID;
  4138. else
  4139. cid = TX_TSS_CID + ring_num - 1;
  4140. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4141. txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
  4142. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4143. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4144. txr->tx_prod = 0;
  4145. txr->tx_prod_bseq = 0;
  4146. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4147. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4148. bnx2_init_tx_context(bp, cid, txr);
  4149. }
  4150. static void
  4151. bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
  4152. int num_rings)
  4153. {
  4154. int i;
  4155. struct rx_bd *rxbd;
  4156. for (i = 0; i < num_rings; i++) {
  4157. int j;
  4158. rxbd = &rx_ring[i][0];
  4159. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  4160. rxbd->rx_bd_len = buf_size;
  4161. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4162. }
  4163. if (i == (num_rings - 1))
  4164. j = 0;
  4165. else
  4166. j = i + 1;
  4167. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4168. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4169. }
  4170. }
  4171. static void
  4172. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4173. {
  4174. int i;
  4175. u16 prod, ring_prod;
  4176. u32 cid, rx_cid_addr, val;
  4177. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4178. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4179. if (ring_num == 0)
  4180. cid = RX_CID;
  4181. else
  4182. cid = RX_RSS_CID + ring_num - 1;
  4183. rx_cid_addr = GET_CID_ADDR(cid);
  4184. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4185. bp->rx_buf_use_size, bp->rx_max_ring);
  4186. bnx2_init_rx_context(bp, cid);
  4187. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4188. val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
  4189. REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4190. }
  4191. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4192. if (bp->rx_pg_ring_size) {
  4193. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4194. rxr->rx_pg_desc_mapping,
  4195. PAGE_SIZE, bp->rx_max_pg_ring);
  4196. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4197. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4198. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4199. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4200. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4201. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4202. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4203. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4204. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4205. REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4206. }
  4207. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4208. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4209. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4210. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4211. ring_prod = prod = rxr->rx_pg_prod;
  4212. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4213. if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0) {
  4214. netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
  4215. ring_num, i, bp->rx_pg_ring_size);
  4216. break;
  4217. }
  4218. prod = NEXT_RX_BD(prod);
  4219. ring_prod = RX_PG_RING_IDX(prod);
  4220. }
  4221. rxr->rx_pg_prod = prod;
  4222. ring_prod = prod = rxr->rx_prod;
  4223. for (i = 0; i < bp->rx_ring_size; i++) {
  4224. if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0) {
  4225. netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
  4226. ring_num, i, bp->rx_ring_size);
  4227. break;
  4228. }
  4229. prod = NEXT_RX_BD(prod);
  4230. ring_prod = RX_RING_IDX(prod);
  4231. }
  4232. rxr->rx_prod = prod;
  4233. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4234. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4235. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4236. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4237. REG_WR16(bp, rxr->rx_bidx_addr, prod);
  4238. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4239. }
  4240. static void
  4241. bnx2_init_all_rings(struct bnx2 *bp)
  4242. {
  4243. int i;
  4244. u32 val;
  4245. bnx2_clear_ring_states(bp);
  4246. REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4247. for (i = 0; i < bp->num_tx_rings; i++)
  4248. bnx2_init_tx_ring(bp, i);
  4249. if (bp->num_tx_rings > 1)
  4250. REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4251. (TX_TSS_CID << 7));
  4252. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4253. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4254. for (i = 0; i < bp->num_rx_rings; i++)
  4255. bnx2_init_rx_ring(bp, i);
  4256. if (bp->num_rx_rings > 1) {
  4257. u32 tbl_32;
  4258. u8 *tbl = (u8 *) &tbl_32;
  4259. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
  4260. BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
  4261. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4262. tbl[i % 4] = i % (bp->num_rx_rings - 1);
  4263. if ((i % 4) == 3)
  4264. bnx2_reg_wr_ind(bp,
  4265. BNX2_RXP_SCRATCH_RSS_TBL + i,
  4266. cpu_to_be32(tbl_32));
  4267. }
  4268. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4269. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4270. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4271. }
  4272. }
  4273. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4274. {
  4275. u32 max, num_rings = 1;
  4276. while (ring_size > MAX_RX_DESC_CNT) {
  4277. ring_size -= MAX_RX_DESC_CNT;
  4278. num_rings++;
  4279. }
  4280. /* round to next power of 2 */
  4281. max = max_size;
  4282. while ((max & num_rings) == 0)
  4283. max >>= 1;
  4284. if (num_rings != max)
  4285. max <<= 1;
  4286. return max;
  4287. }
  4288. static void
  4289. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4290. {
  4291. u32 rx_size, rx_space, jumbo_size;
  4292. /* 8 for CRC and VLAN */
  4293. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4294. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4295. sizeof(struct skb_shared_info);
  4296. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4297. bp->rx_pg_ring_size = 0;
  4298. bp->rx_max_pg_ring = 0;
  4299. bp->rx_max_pg_ring_idx = 0;
  4300. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4301. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4302. jumbo_size = size * pages;
  4303. if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
  4304. jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
  4305. bp->rx_pg_ring_size = jumbo_size;
  4306. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4307. MAX_RX_PG_RINGS);
  4308. bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
  4309. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4310. bp->rx_copy_thresh = 0;
  4311. }
  4312. bp->rx_buf_use_size = rx_size;
  4313. /* hw alignment */
  4314. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  4315. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4316. bp->rx_ring_size = size;
  4317. bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
  4318. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  4319. }
  4320. static void
  4321. bnx2_free_tx_skbs(struct bnx2 *bp)
  4322. {
  4323. int i;
  4324. for (i = 0; i < bp->num_tx_rings; i++) {
  4325. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4326. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4327. int j;
  4328. if (txr->tx_buf_ring == NULL)
  4329. continue;
  4330. for (j = 0; j < TX_DESC_CNT; ) {
  4331. struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4332. struct sk_buff *skb = tx_buf->skb;
  4333. int k, last;
  4334. if (skb == NULL) {
  4335. j++;
  4336. continue;
  4337. }
  4338. pci_unmap_single(bp->pdev,
  4339. pci_unmap_addr(tx_buf, mapping),
  4340. skb_headlen(skb),
  4341. PCI_DMA_TODEVICE);
  4342. tx_buf->skb = NULL;
  4343. last = tx_buf->nr_frags;
  4344. j++;
  4345. for (k = 0; k < last; k++, j++) {
  4346. tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
  4347. pci_unmap_page(bp->pdev,
  4348. pci_unmap_addr(tx_buf, mapping),
  4349. skb_shinfo(skb)->frags[k].size,
  4350. PCI_DMA_TODEVICE);
  4351. }
  4352. dev_kfree_skb(skb);
  4353. }
  4354. }
  4355. }
  4356. static void
  4357. bnx2_free_rx_skbs(struct bnx2 *bp)
  4358. {
  4359. int i;
  4360. for (i = 0; i < bp->num_rx_rings; i++) {
  4361. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4362. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4363. int j;
  4364. if (rxr->rx_buf_ring == NULL)
  4365. return;
  4366. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4367. struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4368. struct sk_buff *skb = rx_buf->skb;
  4369. if (skb == NULL)
  4370. continue;
  4371. pci_unmap_single(bp->pdev,
  4372. pci_unmap_addr(rx_buf, mapping),
  4373. bp->rx_buf_use_size,
  4374. PCI_DMA_FROMDEVICE);
  4375. rx_buf->skb = NULL;
  4376. dev_kfree_skb(skb);
  4377. }
  4378. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4379. bnx2_free_rx_page(bp, rxr, j);
  4380. }
  4381. }
  4382. static void
  4383. bnx2_free_skbs(struct bnx2 *bp)
  4384. {
  4385. bnx2_free_tx_skbs(bp);
  4386. bnx2_free_rx_skbs(bp);
  4387. }
  4388. static int
  4389. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4390. {
  4391. int rc;
  4392. rc = bnx2_reset_chip(bp, reset_code);
  4393. bnx2_free_skbs(bp);
  4394. if (rc)
  4395. return rc;
  4396. if ((rc = bnx2_init_chip(bp)) != 0)
  4397. return rc;
  4398. bnx2_init_all_rings(bp);
  4399. return 0;
  4400. }
  4401. static int
  4402. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4403. {
  4404. int rc;
  4405. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4406. return rc;
  4407. spin_lock_bh(&bp->phy_lock);
  4408. bnx2_init_phy(bp, reset_phy);
  4409. bnx2_set_link(bp);
  4410. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4411. bnx2_remote_phy_event(bp);
  4412. spin_unlock_bh(&bp->phy_lock);
  4413. return 0;
  4414. }
  4415. static int
  4416. bnx2_shutdown_chip(struct bnx2 *bp)
  4417. {
  4418. u32 reset_code;
  4419. if (bp->flags & BNX2_FLAG_NO_WOL)
  4420. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4421. else if (bp->wol)
  4422. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4423. else
  4424. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4425. return bnx2_reset_chip(bp, reset_code);
  4426. }
  4427. static int
  4428. bnx2_test_registers(struct bnx2 *bp)
  4429. {
  4430. int ret;
  4431. int i, is_5709;
  4432. static const struct {
  4433. u16 offset;
  4434. u16 flags;
  4435. #define BNX2_FL_NOT_5709 1
  4436. u32 rw_mask;
  4437. u32 ro_mask;
  4438. } reg_tbl[] = {
  4439. { 0x006c, 0, 0x00000000, 0x0000003f },
  4440. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4441. { 0x0094, 0, 0x00000000, 0x00000000 },
  4442. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4443. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4444. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4445. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4446. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4447. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4448. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4449. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4450. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4451. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4452. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4453. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4454. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4455. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4456. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4457. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4458. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4459. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4460. { 0x1000, 0, 0x00000000, 0x00000001 },
  4461. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4462. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4463. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4464. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4465. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4466. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4467. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4468. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4469. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4470. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4471. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4472. { 0x1800, 0, 0x00000000, 0x00000001 },
  4473. { 0x1804, 0, 0x00000000, 0x00000003 },
  4474. { 0x2800, 0, 0x00000000, 0x00000001 },
  4475. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4476. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4477. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4478. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4479. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4480. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4481. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4482. { 0x2840, 0, 0x00000000, 0xffffffff },
  4483. { 0x2844, 0, 0x00000000, 0xffffffff },
  4484. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4485. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4486. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4487. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4488. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4489. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4490. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4491. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4492. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4493. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4494. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4495. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4496. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4497. { 0x5004, 0, 0x00000000, 0x0000007f },
  4498. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4499. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4500. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4501. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4502. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4503. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4504. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4505. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4506. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4507. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4508. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4509. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4510. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4511. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4512. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4513. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4514. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4515. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4516. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4517. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4518. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4519. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4520. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4521. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4522. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4523. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4524. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4525. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4526. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4527. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4528. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4529. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4530. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4531. { 0xffff, 0, 0x00000000, 0x00000000 },
  4532. };
  4533. ret = 0;
  4534. is_5709 = 0;
  4535. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4536. is_5709 = 1;
  4537. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4538. u32 offset, rw_mask, ro_mask, save_val, val;
  4539. u16 flags = reg_tbl[i].flags;
  4540. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4541. continue;
  4542. offset = (u32) reg_tbl[i].offset;
  4543. rw_mask = reg_tbl[i].rw_mask;
  4544. ro_mask = reg_tbl[i].ro_mask;
  4545. save_val = readl(bp->regview + offset);
  4546. writel(0, bp->regview + offset);
  4547. val = readl(bp->regview + offset);
  4548. if ((val & rw_mask) != 0) {
  4549. goto reg_test_err;
  4550. }
  4551. if ((val & ro_mask) != (save_val & ro_mask)) {
  4552. goto reg_test_err;
  4553. }
  4554. writel(0xffffffff, bp->regview + offset);
  4555. val = readl(bp->regview + offset);
  4556. if ((val & rw_mask) != rw_mask) {
  4557. goto reg_test_err;
  4558. }
  4559. if ((val & ro_mask) != (save_val & ro_mask)) {
  4560. goto reg_test_err;
  4561. }
  4562. writel(save_val, bp->regview + offset);
  4563. continue;
  4564. reg_test_err:
  4565. writel(save_val, bp->regview + offset);
  4566. ret = -ENODEV;
  4567. break;
  4568. }
  4569. return ret;
  4570. }
  4571. static int
  4572. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4573. {
  4574. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4575. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4576. int i;
  4577. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4578. u32 offset;
  4579. for (offset = 0; offset < size; offset += 4) {
  4580. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4581. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4582. test_pattern[i]) {
  4583. return -ENODEV;
  4584. }
  4585. }
  4586. }
  4587. return 0;
  4588. }
  4589. static int
  4590. bnx2_test_memory(struct bnx2 *bp)
  4591. {
  4592. int ret = 0;
  4593. int i;
  4594. static struct mem_entry {
  4595. u32 offset;
  4596. u32 len;
  4597. } mem_tbl_5706[] = {
  4598. { 0x60000, 0x4000 },
  4599. { 0xa0000, 0x3000 },
  4600. { 0xe0000, 0x4000 },
  4601. { 0x120000, 0x4000 },
  4602. { 0x1a0000, 0x4000 },
  4603. { 0x160000, 0x4000 },
  4604. { 0xffffffff, 0 },
  4605. },
  4606. mem_tbl_5709[] = {
  4607. { 0x60000, 0x4000 },
  4608. { 0xa0000, 0x3000 },
  4609. { 0xe0000, 0x4000 },
  4610. { 0x120000, 0x4000 },
  4611. { 0x1a0000, 0x4000 },
  4612. { 0xffffffff, 0 },
  4613. };
  4614. struct mem_entry *mem_tbl;
  4615. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4616. mem_tbl = mem_tbl_5709;
  4617. else
  4618. mem_tbl = mem_tbl_5706;
  4619. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4620. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4621. mem_tbl[i].len)) != 0) {
  4622. return ret;
  4623. }
  4624. }
  4625. return ret;
  4626. }
  4627. #define BNX2_MAC_LOOPBACK 0
  4628. #define BNX2_PHY_LOOPBACK 1
  4629. static int
  4630. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4631. {
  4632. unsigned int pkt_size, num_pkts, i;
  4633. struct sk_buff *skb, *rx_skb;
  4634. unsigned char *packet;
  4635. u16 rx_start_idx, rx_idx;
  4636. dma_addr_t map;
  4637. struct tx_bd *txbd;
  4638. struct sw_bd *rx_buf;
  4639. struct l2_fhdr *rx_hdr;
  4640. int ret = -ENODEV;
  4641. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4642. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4643. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4644. tx_napi = bnapi;
  4645. txr = &tx_napi->tx_ring;
  4646. rxr = &bnapi->rx_ring;
  4647. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4648. bp->loopback = MAC_LOOPBACK;
  4649. bnx2_set_mac_loopback(bp);
  4650. }
  4651. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4652. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4653. return 0;
  4654. bp->loopback = PHY_LOOPBACK;
  4655. bnx2_set_phy_loopback(bp);
  4656. }
  4657. else
  4658. return -EINVAL;
  4659. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4660. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4661. if (!skb)
  4662. return -ENOMEM;
  4663. packet = skb_put(skb, pkt_size);
  4664. memcpy(packet, bp->dev->dev_addr, 6);
  4665. memset(packet + 6, 0x0, 8);
  4666. for (i = 14; i < pkt_size; i++)
  4667. packet[i] = (unsigned char) (i & 0xff);
  4668. map = pci_map_single(bp->pdev, skb->data, pkt_size,
  4669. PCI_DMA_TODEVICE);
  4670. if (pci_dma_mapping_error(bp->pdev, map)) {
  4671. dev_kfree_skb(skb);
  4672. return -EIO;
  4673. }
  4674. REG_WR(bp, BNX2_HC_COMMAND,
  4675. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4676. REG_RD(bp, BNX2_HC_COMMAND);
  4677. udelay(5);
  4678. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4679. num_pkts = 0;
  4680. txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
  4681. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4682. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4683. txbd->tx_bd_mss_nbytes = pkt_size;
  4684. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4685. num_pkts++;
  4686. txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
  4687. txr->tx_prod_bseq += pkt_size;
  4688. REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4689. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4690. udelay(100);
  4691. REG_WR(bp, BNX2_HC_COMMAND,
  4692. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4693. REG_RD(bp, BNX2_HC_COMMAND);
  4694. udelay(5);
  4695. pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
  4696. dev_kfree_skb(skb);
  4697. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4698. goto loopback_test_done;
  4699. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4700. if (rx_idx != rx_start_idx + num_pkts) {
  4701. goto loopback_test_done;
  4702. }
  4703. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4704. rx_skb = rx_buf->skb;
  4705. rx_hdr = (struct l2_fhdr *) rx_skb->data;
  4706. skb_reserve(rx_skb, BNX2_RX_OFFSET);
  4707. pci_dma_sync_single_for_cpu(bp->pdev,
  4708. pci_unmap_addr(rx_buf, mapping),
  4709. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  4710. if (rx_hdr->l2_fhdr_status &
  4711. (L2_FHDR_ERRORS_BAD_CRC |
  4712. L2_FHDR_ERRORS_PHY_DECODE |
  4713. L2_FHDR_ERRORS_ALIGNMENT |
  4714. L2_FHDR_ERRORS_TOO_SHORT |
  4715. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4716. goto loopback_test_done;
  4717. }
  4718. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4719. goto loopback_test_done;
  4720. }
  4721. for (i = 14; i < pkt_size; i++) {
  4722. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  4723. goto loopback_test_done;
  4724. }
  4725. }
  4726. ret = 0;
  4727. loopback_test_done:
  4728. bp->loopback = 0;
  4729. return ret;
  4730. }
  4731. #define BNX2_MAC_LOOPBACK_FAILED 1
  4732. #define BNX2_PHY_LOOPBACK_FAILED 2
  4733. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4734. BNX2_PHY_LOOPBACK_FAILED)
  4735. static int
  4736. bnx2_test_loopback(struct bnx2 *bp)
  4737. {
  4738. int rc = 0;
  4739. if (!netif_running(bp->dev))
  4740. return BNX2_LOOPBACK_FAILED;
  4741. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4742. spin_lock_bh(&bp->phy_lock);
  4743. bnx2_init_phy(bp, 1);
  4744. spin_unlock_bh(&bp->phy_lock);
  4745. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4746. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4747. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4748. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4749. return rc;
  4750. }
  4751. #define NVRAM_SIZE 0x200
  4752. #define CRC32_RESIDUAL 0xdebb20e3
  4753. static int
  4754. bnx2_test_nvram(struct bnx2 *bp)
  4755. {
  4756. __be32 buf[NVRAM_SIZE / 4];
  4757. u8 *data = (u8 *) buf;
  4758. int rc = 0;
  4759. u32 magic, csum;
  4760. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4761. goto test_nvram_done;
  4762. magic = be32_to_cpu(buf[0]);
  4763. if (magic != 0x669955aa) {
  4764. rc = -ENODEV;
  4765. goto test_nvram_done;
  4766. }
  4767. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4768. goto test_nvram_done;
  4769. csum = ether_crc_le(0x100, data);
  4770. if (csum != CRC32_RESIDUAL) {
  4771. rc = -ENODEV;
  4772. goto test_nvram_done;
  4773. }
  4774. csum = ether_crc_le(0x100, data + 0x100);
  4775. if (csum != CRC32_RESIDUAL) {
  4776. rc = -ENODEV;
  4777. }
  4778. test_nvram_done:
  4779. return rc;
  4780. }
  4781. static int
  4782. bnx2_test_link(struct bnx2 *bp)
  4783. {
  4784. u32 bmsr;
  4785. if (!netif_running(bp->dev))
  4786. return -ENODEV;
  4787. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4788. if (bp->link_up)
  4789. return 0;
  4790. return -ENODEV;
  4791. }
  4792. spin_lock_bh(&bp->phy_lock);
  4793. bnx2_enable_bmsr1(bp);
  4794. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4795. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4796. bnx2_disable_bmsr1(bp);
  4797. spin_unlock_bh(&bp->phy_lock);
  4798. if (bmsr & BMSR_LSTATUS) {
  4799. return 0;
  4800. }
  4801. return -ENODEV;
  4802. }
  4803. static int
  4804. bnx2_test_intr(struct bnx2 *bp)
  4805. {
  4806. int i;
  4807. u16 status_idx;
  4808. if (!netif_running(bp->dev))
  4809. return -ENODEV;
  4810. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4811. /* This register is not touched during run-time. */
  4812. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4813. REG_RD(bp, BNX2_HC_COMMAND);
  4814. for (i = 0; i < 10; i++) {
  4815. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4816. status_idx) {
  4817. break;
  4818. }
  4819. msleep_interruptible(10);
  4820. }
  4821. if (i < 10)
  4822. return 0;
  4823. return -ENODEV;
  4824. }
  4825. /* Determining link for parallel detection. */
  4826. static int
  4827. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4828. {
  4829. u32 mode_ctl, an_dbg, exp;
  4830. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4831. return 0;
  4832. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4833. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4834. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4835. return 0;
  4836. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4837. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4838. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4839. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4840. return 0;
  4841. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4842. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4843. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4844. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4845. return 0;
  4846. return 1;
  4847. }
  4848. static void
  4849. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4850. {
  4851. int check_link = 1;
  4852. spin_lock(&bp->phy_lock);
  4853. if (bp->serdes_an_pending) {
  4854. bp->serdes_an_pending--;
  4855. check_link = 0;
  4856. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4857. u32 bmcr;
  4858. bp->current_interval = BNX2_TIMER_INTERVAL;
  4859. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4860. if (bmcr & BMCR_ANENABLE) {
  4861. if (bnx2_5706_serdes_has_link(bp)) {
  4862. bmcr &= ~BMCR_ANENABLE;
  4863. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4864. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4865. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4866. }
  4867. }
  4868. }
  4869. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4870. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4871. u32 phy2;
  4872. bnx2_write_phy(bp, 0x17, 0x0f01);
  4873. bnx2_read_phy(bp, 0x15, &phy2);
  4874. if (phy2 & 0x20) {
  4875. u32 bmcr;
  4876. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4877. bmcr |= BMCR_ANENABLE;
  4878. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4879. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4880. }
  4881. } else
  4882. bp->current_interval = BNX2_TIMER_INTERVAL;
  4883. if (check_link) {
  4884. u32 val;
  4885. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4886. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4887. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4888. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4889. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4890. bnx2_5706s_force_link_dn(bp, 1);
  4891. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4892. } else
  4893. bnx2_set_link(bp);
  4894. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  4895. bnx2_set_link(bp);
  4896. }
  4897. spin_unlock(&bp->phy_lock);
  4898. }
  4899. static void
  4900. bnx2_5708_serdes_timer(struct bnx2 *bp)
  4901. {
  4902. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4903. return;
  4904. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  4905. bp->serdes_an_pending = 0;
  4906. return;
  4907. }
  4908. spin_lock(&bp->phy_lock);
  4909. if (bp->serdes_an_pending)
  4910. bp->serdes_an_pending--;
  4911. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4912. u32 bmcr;
  4913. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4914. if (bmcr & BMCR_ANENABLE) {
  4915. bnx2_enable_forced_2g5(bp);
  4916. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  4917. } else {
  4918. bnx2_disable_forced_2g5(bp);
  4919. bp->serdes_an_pending = 2;
  4920. bp->current_interval = BNX2_TIMER_INTERVAL;
  4921. }
  4922. } else
  4923. bp->current_interval = BNX2_TIMER_INTERVAL;
  4924. spin_unlock(&bp->phy_lock);
  4925. }
  4926. static void
  4927. bnx2_timer(unsigned long data)
  4928. {
  4929. struct bnx2 *bp = (struct bnx2 *) data;
  4930. if (!netif_running(bp->dev))
  4931. return;
  4932. if (atomic_read(&bp->intr_sem) != 0)
  4933. goto bnx2_restart_timer;
  4934. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  4935. BNX2_FLAG_USING_MSI)
  4936. bnx2_chk_missed_msi(bp);
  4937. bnx2_send_heart_beat(bp);
  4938. bp->stats_blk->stat_FwRxDrop =
  4939. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  4940. /* workaround occasional corrupted counters */
  4941. if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
  4942. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  4943. BNX2_HC_COMMAND_STATS_NOW);
  4944. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  4945. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  4946. bnx2_5706_serdes_timer(bp);
  4947. else
  4948. bnx2_5708_serdes_timer(bp);
  4949. }
  4950. bnx2_restart_timer:
  4951. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4952. }
  4953. static int
  4954. bnx2_request_irq(struct bnx2 *bp)
  4955. {
  4956. unsigned long flags;
  4957. struct bnx2_irq *irq;
  4958. int rc = 0, i;
  4959. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  4960. flags = 0;
  4961. else
  4962. flags = IRQF_SHARED;
  4963. for (i = 0; i < bp->irq_nvecs; i++) {
  4964. irq = &bp->irq_tbl[i];
  4965. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  4966. &bp->bnx2_napi[i]);
  4967. if (rc)
  4968. break;
  4969. irq->requested = 1;
  4970. }
  4971. return rc;
  4972. }
  4973. static void
  4974. bnx2_free_irq(struct bnx2 *bp)
  4975. {
  4976. struct bnx2_irq *irq;
  4977. int i;
  4978. for (i = 0; i < bp->irq_nvecs; i++) {
  4979. irq = &bp->irq_tbl[i];
  4980. if (irq->requested)
  4981. free_irq(irq->vector, &bp->bnx2_napi[i]);
  4982. irq->requested = 0;
  4983. }
  4984. if (bp->flags & BNX2_FLAG_USING_MSI)
  4985. pci_disable_msi(bp->pdev);
  4986. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  4987. pci_disable_msix(bp->pdev);
  4988. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  4989. }
  4990. static void
  4991. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  4992. {
  4993. int i, rc;
  4994. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  4995. struct net_device *dev = bp->dev;
  4996. const int len = sizeof(bp->irq_tbl[0].name);
  4997. bnx2_setup_msix_tbl(bp);
  4998. REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  4999. REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  5000. REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  5001. /* Need to flush the previous three writes to ensure MSI-X
  5002. * is setup properly */
  5003. REG_RD(bp, BNX2_PCI_MSIX_CONTROL);
  5004. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5005. msix_ent[i].entry = i;
  5006. msix_ent[i].vector = 0;
  5007. }
  5008. rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
  5009. if (rc != 0)
  5010. return;
  5011. bp->irq_nvecs = msix_vecs;
  5012. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  5013. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5014. bp->irq_tbl[i].vector = msix_ent[i].vector;
  5015. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  5016. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  5017. }
  5018. }
  5019. static void
  5020. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  5021. {
  5022. int cpus = num_online_cpus();
  5023. int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
  5024. bp->irq_tbl[0].handler = bnx2_interrupt;
  5025. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  5026. bp->irq_nvecs = 1;
  5027. bp->irq_tbl[0].vector = bp->pdev->irq;
  5028. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
  5029. bnx2_enable_msix(bp, msix_vecs);
  5030. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  5031. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  5032. if (pci_enable_msi(bp->pdev) == 0) {
  5033. bp->flags |= BNX2_FLAG_USING_MSI;
  5034. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5035. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5036. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5037. } else
  5038. bp->irq_tbl[0].handler = bnx2_msi;
  5039. bp->irq_tbl[0].vector = bp->pdev->irq;
  5040. }
  5041. }
  5042. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5043. bp->dev->real_num_tx_queues = bp->num_tx_rings;
  5044. bp->num_rx_rings = bp->irq_nvecs;
  5045. }
  5046. /* Called with rtnl_lock */
  5047. static int
  5048. bnx2_open(struct net_device *dev)
  5049. {
  5050. struct bnx2 *bp = netdev_priv(dev);
  5051. int rc;
  5052. netif_carrier_off(dev);
  5053. bnx2_set_power_state(bp, PCI_D0);
  5054. bnx2_disable_int(bp);
  5055. bnx2_setup_int_mode(bp, disable_msi);
  5056. bnx2_init_napi(bp);
  5057. bnx2_napi_enable(bp);
  5058. rc = bnx2_alloc_mem(bp);
  5059. if (rc)
  5060. goto open_err;
  5061. rc = bnx2_request_irq(bp);
  5062. if (rc)
  5063. goto open_err;
  5064. rc = bnx2_init_nic(bp, 1);
  5065. if (rc)
  5066. goto open_err;
  5067. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5068. atomic_set(&bp->intr_sem, 0);
  5069. memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
  5070. bnx2_enable_int(bp);
  5071. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5072. /* Test MSI to make sure it is working
  5073. * If MSI test fails, go back to INTx mode
  5074. */
  5075. if (bnx2_test_intr(bp) != 0) {
  5076. netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
  5077. bnx2_disable_int(bp);
  5078. bnx2_free_irq(bp);
  5079. bnx2_setup_int_mode(bp, 1);
  5080. rc = bnx2_init_nic(bp, 0);
  5081. if (!rc)
  5082. rc = bnx2_request_irq(bp);
  5083. if (rc) {
  5084. del_timer_sync(&bp->timer);
  5085. goto open_err;
  5086. }
  5087. bnx2_enable_int(bp);
  5088. }
  5089. }
  5090. if (bp->flags & BNX2_FLAG_USING_MSI)
  5091. netdev_info(dev, "using MSI\n");
  5092. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5093. netdev_info(dev, "using MSIX\n");
  5094. netif_tx_start_all_queues(dev);
  5095. return 0;
  5096. open_err:
  5097. bnx2_napi_disable(bp);
  5098. bnx2_free_skbs(bp);
  5099. bnx2_free_irq(bp);
  5100. bnx2_free_mem(bp);
  5101. return rc;
  5102. }
  5103. static void
  5104. bnx2_reset_task(struct work_struct *work)
  5105. {
  5106. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5107. rtnl_lock();
  5108. if (!netif_running(bp->dev)) {
  5109. rtnl_unlock();
  5110. return;
  5111. }
  5112. bnx2_netif_stop(bp);
  5113. bnx2_init_nic(bp, 1);
  5114. atomic_set(&bp->intr_sem, 1);
  5115. bnx2_netif_start(bp);
  5116. rtnl_unlock();
  5117. }
  5118. static void
  5119. bnx2_dump_state(struct bnx2 *bp)
  5120. {
  5121. struct net_device *dev = bp->dev;
  5122. netdev_err(dev, "DEBUG: intr_sem[%x]\n", atomic_read(&bp->intr_sem));
  5123. netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] RPM_MGMT_PKT_CTRL[%08x]\n",
  5124. REG_RD(bp, BNX2_EMAC_TX_STATUS),
  5125. REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
  5126. netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
  5127. bnx2_reg_rd_ind(bp, BNX2_MCP_STATE_P0),
  5128. bnx2_reg_rd_ind(bp, BNX2_MCP_STATE_P1));
  5129. netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
  5130. REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
  5131. if (bp->flags & BNX2_FLAG_USING_MSIX)
  5132. netdev_err(dev, "DEBUG: PBA[%08x]\n",
  5133. REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
  5134. }
  5135. static void
  5136. bnx2_tx_timeout(struct net_device *dev)
  5137. {
  5138. struct bnx2 *bp = netdev_priv(dev);
  5139. bnx2_dump_state(bp);
  5140. /* This allows the netif to be shutdown gracefully before resetting */
  5141. schedule_work(&bp->reset_task);
  5142. }
  5143. #ifdef BCM_VLAN
  5144. /* Called with rtnl_lock */
  5145. static void
  5146. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  5147. {
  5148. struct bnx2 *bp = netdev_priv(dev);
  5149. if (netif_running(dev))
  5150. bnx2_netif_stop(bp);
  5151. bp->vlgrp = vlgrp;
  5152. if (!netif_running(dev))
  5153. return;
  5154. bnx2_set_rx_mode(dev);
  5155. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  5156. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  5157. bnx2_netif_start(bp);
  5158. }
  5159. #endif
  5160. /* Called with netif_tx_lock.
  5161. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5162. * netif_wake_queue().
  5163. */
  5164. static netdev_tx_t
  5165. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5166. {
  5167. struct bnx2 *bp = netdev_priv(dev);
  5168. dma_addr_t mapping;
  5169. struct tx_bd *txbd;
  5170. struct sw_tx_bd *tx_buf;
  5171. u32 len, vlan_tag_flags, last_frag, mss;
  5172. u16 prod, ring_prod;
  5173. int i;
  5174. struct bnx2_napi *bnapi;
  5175. struct bnx2_tx_ring_info *txr;
  5176. struct netdev_queue *txq;
  5177. /* Determine which tx ring we will be placed on */
  5178. i = skb_get_queue_mapping(skb);
  5179. bnapi = &bp->bnx2_napi[i];
  5180. txr = &bnapi->tx_ring;
  5181. txq = netdev_get_tx_queue(dev, i);
  5182. if (unlikely(bnx2_tx_avail(bp, txr) <
  5183. (skb_shinfo(skb)->nr_frags + 1))) {
  5184. netif_tx_stop_queue(txq);
  5185. netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
  5186. return NETDEV_TX_BUSY;
  5187. }
  5188. len = skb_headlen(skb);
  5189. prod = txr->tx_prod;
  5190. ring_prod = TX_RING_IDX(prod);
  5191. vlan_tag_flags = 0;
  5192. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5193. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5194. }
  5195. #ifdef BCM_VLAN
  5196. if (bp->vlgrp && vlan_tx_tag_present(skb)) {
  5197. vlan_tag_flags |=
  5198. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5199. }
  5200. #endif
  5201. if ((mss = skb_shinfo(skb)->gso_size)) {
  5202. u32 tcp_opt_len;
  5203. struct iphdr *iph;
  5204. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5205. tcp_opt_len = tcp_optlen(skb);
  5206. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5207. u32 tcp_off = skb_transport_offset(skb) -
  5208. sizeof(struct ipv6hdr) - ETH_HLEN;
  5209. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5210. TX_BD_FLAGS_SW_FLAGS;
  5211. if (likely(tcp_off == 0))
  5212. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5213. else {
  5214. tcp_off >>= 3;
  5215. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5216. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5217. ((tcp_off & 0x10) <<
  5218. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5219. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5220. }
  5221. } else {
  5222. iph = ip_hdr(skb);
  5223. if (tcp_opt_len || (iph->ihl > 5)) {
  5224. vlan_tag_flags |= ((iph->ihl - 5) +
  5225. (tcp_opt_len >> 2)) << 8;
  5226. }
  5227. }
  5228. } else
  5229. mss = 0;
  5230. mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
  5231. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  5232. dev_kfree_skb(skb);
  5233. return NETDEV_TX_OK;
  5234. }
  5235. tx_buf = &txr->tx_buf_ring[ring_prod];
  5236. tx_buf->skb = skb;
  5237. pci_unmap_addr_set(tx_buf, mapping, mapping);
  5238. txbd = &txr->tx_desc_ring[ring_prod];
  5239. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5240. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5241. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5242. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5243. last_frag = skb_shinfo(skb)->nr_frags;
  5244. tx_buf->nr_frags = last_frag;
  5245. tx_buf->is_gso = skb_is_gso(skb);
  5246. for (i = 0; i < last_frag; i++) {
  5247. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5248. prod = NEXT_TX_BD(prod);
  5249. ring_prod = TX_RING_IDX(prod);
  5250. txbd = &txr->tx_desc_ring[ring_prod];
  5251. len = frag->size;
  5252. mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
  5253. len, PCI_DMA_TODEVICE);
  5254. if (pci_dma_mapping_error(bp->pdev, mapping))
  5255. goto dma_error;
  5256. pci_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
  5257. mapping);
  5258. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5259. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5260. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5261. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5262. }
  5263. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5264. prod = NEXT_TX_BD(prod);
  5265. txr->tx_prod_bseq += skb->len;
  5266. REG_WR16(bp, txr->tx_bidx_addr, prod);
  5267. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5268. mmiowb();
  5269. txr->tx_prod = prod;
  5270. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5271. netif_tx_stop_queue(txq);
  5272. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5273. netif_tx_wake_queue(txq);
  5274. }
  5275. return NETDEV_TX_OK;
  5276. dma_error:
  5277. /* save value of frag that failed */
  5278. last_frag = i;
  5279. /* start back at beginning and unmap skb */
  5280. prod = txr->tx_prod;
  5281. ring_prod = TX_RING_IDX(prod);
  5282. tx_buf = &txr->tx_buf_ring[ring_prod];
  5283. tx_buf->skb = NULL;
  5284. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  5285. skb_headlen(skb), PCI_DMA_TODEVICE);
  5286. /* unmap remaining mapped pages */
  5287. for (i = 0; i < last_frag; i++) {
  5288. prod = NEXT_TX_BD(prod);
  5289. ring_prod = TX_RING_IDX(prod);
  5290. tx_buf = &txr->tx_buf_ring[ring_prod];
  5291. pci_unmap_page(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  5292. skb_shinfo(skb)->frags[i].size,
  5293. PCI_DMA_TODEVICE);
  5294. }
  5295. dev_kfree_skb(skb);
  5296. return NETDEV_TX_OK;
  5297. }
  5298. /* Called with rtnl_lock */
  5299. static int
  5300. bnx2_close(struct net_device *dev)
  5301. {
  5302. struct bnx2 *bp = netdev_priv(dev);
  5303. cancel_work_sync(&bp->reset_task);
  5304. bnx2_disable_int_sync(bp);
  5305. bnx2_napi_disable(bp);
  5306. del_timer_sync(&bp->timer);
  5307. bnx2_shutdown_chip(bp);
  5308. bnx2_free_irq(bp);
  5309. bnx2_free_skbs(bp);
  5310. bnx2_free_mem(bp);
  5311. bp->link_up = 0;
  5312. netif_carrier_off(bp->dev);
  5313. bnx2_set_power_state(bp, PCI_D3hot);
  5314. return 0;
  5315. }
  5316. static void
  5317. bnx2_save_stats(struct bnx2 *bp)
  5318. {
  5319. u32 *hw_stats = (u32 *) bp->stats_blk;
  5320. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  5321. int i;
  5322. /* The 1st 10 counters are 64-bit counters */
  5323. for (i = 0; i < 20; i += 2) {
  5324. u32 hi;
  5325. u64 lo;
  5326. hi = temp_stats[i] + hw_stats[i];
  5327. lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
  5328. if (lo > 0xffffffff)
  5329. hi++;
  5330. temp_stats[i] = hi;
  5331. temp_stats[i + 1] = lo & 0xffffffff;
  5332. }
  5333. for ( ; i < sizeof(struct statistics_block) / 4; i++)
  5334. temp_stats[i] += hw_stats[i];
  5335. }
  5336. #define GET_64BIT_NET_STATS64(ctr) \
  5337. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  5338. (unsigned long) (ctr##_lo)
  5339. #define GET_64BIT_NET_STATS32(ctr) \
  5340. (ctr##_lo)
  5341. #if (BITS_PER_LONG == 64)
  5342. #define GET_64BIT_NET_STATS(ctr) \
  5343. GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
  5344. GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
  5345. #else
  5346. #define GET_64BIT_NET_STATS(ctr) \
  5347. GET_64BIT_NET_STATS32(bp->stats_blk->ctr) + \
  5348. GET_64BIT_NET_STATS32(bp->temp_stats_blk->ctr)
  5349. #endif
  5350. #define GET_32BIT_NET_STATS(ctr) \
  5351. (unsigned long) (bp->stats_blk->ctr + \
  5352. bp->temp_stats_blk->ctr)
  5353. static struct net_device_stats *
  5354. bnx2_get_stats(struct net_device *dev)
  5355. {
  5356. struct bnx2 *bp = netdev_priv(dev);
  5357. struct net_device_stats *net_stats = &dev->stats;
  5358. if (bp->stats_blk == NULL) {
  5359. return net_stats;
  5360. }
  5361. net_stats->rx_packets =
  5362. GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
  5363. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
  5364. GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
  5365. net_stats->tx_packets =
  5366. GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
  5367. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
  5368. GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
  5369. net_stats->rx_bytes =
  5370. GET_64BIT_NET_STATS(stat_IfHCInOctets);
  5371. net_stats->tx_bytes =
  5372. GET_64BIT_NET_STATS(stat_IfHCOutOctets);
  5373. net_stats->multicast =
  5374. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts);
  5375. net_stats->collisions =
  5376. GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
  5377. net_stats->rx_length_errors =
  5378. GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
  5379. GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
  5380. net_stats->rx_over_errors =
  5381. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5382. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
  5383. net_stats->rx_frame_errors =
  5384. GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
  5385. net_stats->rx_crc_errors =
  5386. GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
  5387. net_stats->rx_errors = net_stats->rx_length_errors +
  5388. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5389. net_stats->rx_crc_errors;
  5390. net_stats->tx_aborted_errors =
  5391. GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
  5392. GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
  5393. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  5394. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5395. net_stats->tx_carrier_errors = 0;
  5396. else {
  5397. net_stats->tx_carrier_errors =
  5398. GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
  5399. }
  5400. net_stats->tx_errors =
  5401. GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
  5402. net_stats->tx_aborted_errors +
  5403. net_stats->tx_carrier_errors;
  5404. net_stats->rx_missed_errors =
  5405. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5406. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
  5407. GET_32BIT_NET_STATS(stat_FwRxDrop);
  5408. return net_stats;
  5409. }
  5410. /* All ethtool functions called with rtnl_lock */
  5411. static int
  5412. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5413. {
  5414. struct bnx2 *bp = netdev_priv(dev);
  5415. int support_serdes = 0, support_copper = 0;
  5416. cmd->supported = SUPPORTED_Autoneg;
  5417. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5418. support_serdes = 1;
  5419. support_copper = 1;
  5420. } else if (bp->phy_port == PORT_FIBRE)
  5421. support_serdes = 1;
  5422. else
  5423. support_copper = 1;
  5424. if (support_serdes) {
  5425. cmd->supported |= SUPPORTED_1000baseT_Full |
  5426. SUPPORTED_FIBRE;
  5427. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5428. cmd->supported |= SUPPORTED_2500baseX_Full;
  5429. }
  5430. if (support_copper) {
  5431. cmd->supported |= SUPPORTED_10baseT_Half |
  5432. SUPPORTED_10baseT_Full |
  5433. SUPPORTED_100baseT_Half |
  5434. SUPPORTED_100baseT_Full |
  5435. SUPPORTED_1000baseT_Full |
  5436. SUPPORTED_TP;
  5437. }
  5438. spin_lock_bh(&bp->phy_lock);
  5439. cmd->port = bp->phy_port;
  5440. cmd->advertising = bp->advertising;
  5441. if (bp->autoneg & AUTONEG_SPEED) {
  5442. cmd->autoneg = AUTONEG_ENABLE;
  5443. }
  5444. else {
  5445. cmd->autoneg = AUTONEG_DISABLE;
  5446. }
  5447. if (netif_carrier_ok(dev)) {
  5448. cmd->speed = bp->line_speed;
  5449. cmd->duplex = bp->duplex;
  5450. }
  5451. else {
  5452. cmd->speed = -1;
  5453. cmd->duplex = -1;
  5454. }
  5455. spin_unlock_bh(&bp->phy_lock);
  5456. cmd->transceiver = XCVR_INTERNAL;
  5457. cmd->phy_address = bp->phy_addr;
  5458. return 0;
  5459. }
  5460. static int
  5461. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5462. {
  5463. struct bnx2 *bp = netdev_priv(dev);
  5464. u8 autoneg = bp->autoneg;
  5465. u8 req_duplex = bp->req_duplex;
  5466. u16 req_line_speed = bp->req_line_speed;
  5467. u32 advertising = bp->advertising;
  5468. int err = -EINVAL;
  5469. spin_lock_bh(&bp->phy_lock);
  5470. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5471. goto err_out_unlock;
  5472. if (cmd->port != bp->phy_port &&
  5473. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5474. goto err_out_unlock;
  5475. /* If device is down, we can store the settings only if the user
  5476. * is setting the currently active port.
  5477. */
  5478. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5479. goto err_out_unlock;
  5480. if (cmd->autoneg == AUTONEG_ENABLE) {
  5481. autoneg |= AUTONEG_SPEED;
  5482. advertising = cmd->advertising;
  5483. if (cmd->port == PORT_TP) {
  5484. advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5485. if (!advertising)
  5486. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5487. } else {
  5488. advertising &= ETHTOOL_ALL_FIBRE_SPEED;
  5489. if (!advertising)
  5490. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5491. }
  5492. advertising |= ADVERTISED_Autoneg;
  5493. }
  5494. else {
  5495. if (cmd->port == PORT_FIBRE) {
  5496. if ((cmd->speed != SPEED_1000 &&
  5497. cmd->speed != SPEED_2500) ||
  5498. (cmd->duplex != DUPLEX_FULL))
  5499. goto err_out_unlock;
  5500. if (cmd->speed == SPEED_2500 &&
  5501. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5502. goto err_out_unlock;
  5503. }
  5504. else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
  5505. goto err_out_unlock;
  5506. autoneg &= ~AUTONEG_SPEED;
  5507. req_line_speed = cmd->speed;
  5508. req_duplex = cmd->duplex;
  5509. advertising = 0;
  5510. }
  5511. bp->autoneg = autoneg;
  5512. bp->advertising = advertising;
  5513. bp->req_line_speed = req_line_speed;
  5514. bp->req_duplex = req_duplex;
  5515. err = 0;
  5516. /* If device is down, the new settings will be picked up when it is
  5517. * brought up.
  5518. */
  5519. if (netif_running(dev))
  5520. err = bnx2_setup_phy(bp, cmd->port);
  5521. err_out_unlock:
  5522. spin_unlock_bh(&bp->phy_lock);
  5523. return err;
  5524. }
  5525. static void
  5526. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5527. {
  5528. struct bnx2 *bp = netdev_priv(dev);
  5529. strcpy(info->driver, DRV_MODULE_NAME);
  5530. strcpy(info->version, DRV_MODULE_VERSION);
  5531. strcpy(info->bus_info, pci_name(bp->pdev));
  5532. strcpy(info->fw_version, bp->fw_version);
  5533. }
  5534. #define BNX2_REGDUMP_LEN (32 * 1024)
  5535. static int
  5536. bnx2_get_regs_len(struct net_device *dev)
  5537. {
  5538. return BNX2_REGDUMP_LEN;
  5539. }
  5540. static void
  5541. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5542. {
  5543. u32 *p = _p, i, offset;
  5544. u8 *orig_p = _p;
  5545. struct bnx2 *bp = netdev_priv(dev);
  5546. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  5547. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5548. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5549. 0x1040, 0x1048, 0x1080, 0x10a4,
  5550. 0x1400, 0x1490, 0x1498, 0x14f0,
  5551. 0x1500, 0x155c, 0x1580, 0x15dc,
  5552. 0x1600, 0x1658, 0x1680, 0x16d8,
  5553. 0x1800, 0x1820, 0x1840, 0x1854,
  5554. 0x1880, 0x1894, 0x1900, 0x1984,
  5555. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5556. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5557. 0x2000, 0x2030, 0x23c0, 0x2400,
  5558. 0x2800, 0x2820, 0x2830, 0x2850,
  5559. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5560. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5561. 0x4080, 0x4090, 0x43c0, 0x4458,
  5562. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5563. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5564. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5565. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5566. 0x6800, 0x6848, 0x684c, 0x6860,
  5567. 0x6888, 0x6910, 0x8000 };
  5568. regs->version = 0;
  5569. memset(p, 0, BNX2_REGDUMP_LEN);
  5570. if (!netif_running(bp->dev))
  5571. return;
  5572. i = 0;
  5573. offset = reg_boundaries[0];
  5574. p += offset;
  5575. while (offset < BNX2_REGDUMP_LEN) {
  5576. *p++ = REG_RD(bp, offset);
  5577. offset += 4;
  5578. if (offset == reg_boundaries[i + 1]) {
  5579. offset = reg_boundaries[i + 2];
  5580. p = (u32 *) (orig_p + offset);
  5581. i += 2;
  5582. }
  5583. }
  5584. }
  5585. static void
  5586. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5587. {
  5588. struct bnx2 *bp = netdev_priv(dev);
  5589. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5590. wol->supported = 0;
  5591. wol->wolopts = 0;
  5592. }
  5593. else {
  5594. wol->supported = WAKE_MAGIC;
  5595. if (bp->wol)
  5596. wol->wolopts = WAKE_MAGIC;
  5597. else
  5598. wol->wolopts = 0;
  5599. }
  5600. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5601. }
  5602. static int
  5603. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5604. {
  5605. struct bnx2 *bp = netdev_priv(dev);
  5606. if (wol->wolopts & ~WAKE_MAGIC)
  5607. return -EINVAL;
  5608. if (wol->wolopts & WAKE_MAGIC) {
  5609. if (bp->flags & BNX2_FLAG_NO_WOL)
  5610. return -EINVAL;
  5611. bp->wol = 1;
  5612. }
  5613. else {
  5614. bp->wol = 0;
  5615. }
  5616. return 0;
  5617. }
  5618. static int
  5619. bnx2_nway_reset(struct net_device *dev)
  5620. {
  5621. struct bnx2 *bp = netdev_priv(dev);
  5622. u32 bmcr;
  5623. if (!netif_running(dev))
  5624. return -EAGAIN;
  5625. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5626. return -EINVAL;
  5627. }
  5628. spin_lock_bh(&bp->phy_lock);
  5629. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5630. int rc;
  5631. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5632. spin_unlock_bh(&bp->phy_lock);
  5633. return rc;
  5634. }
  5635. /* Force a link down visible on the other side */
  5636. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5637. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5638. spin_unlock_bh(&bp->phy_lock);
  5639. msleep(20);
  5640. spin_lock_bh(&bp->phy_lock);
  5641. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5642. bp->serdes_an_pending = 1;
  5643. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5644. }
  5645. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5646. bmcr &= ~BMCR_LOOPBACK;
  5647. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5648. spin_unlock_bh(&bp->phy_lock);
  5649. return 0;
  5650. }
  5651. static u32
  5652. bnx2_get_link(struct net_device *dev)
  5653. {
  5654. struct bnx2 *bp = netdev_priv(dev);
  5655. return bp->link_up;
  5656. }
  5657. static int
  5658. bnx2_get_eeprom_len(struct net_device *dev)
  5659. {
  5660. struct bnx2 *bp = netdev_priv(dev);
  5661. if (bp->flash_info == NULL)
  5662. return 0;
  5663. return (int) bp->flash_size;
  5664. }
  5665. static int
  5666. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5667. u8 *eebuf)
  5668. {
  5669. struct bnx2 *bp = netdev_priv(dev);
  5670. int rc;
  5671. if (!netif_running(dev))
  5672. return -EAGAIN;
  5673. /* parameters already validated in ethtool_get_eeprom */
  5674. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5675. return rc;
  5676. }
  5677. static int
  5678. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5679. u8 *eebuf)
  5680. {
  5681. struct bnx2 *bp = netdev_priv(dev);
  5682. int rc;
  5683. if (!netif_running(dev))
  5684. return -EAGAIN;
  5685. /* parameters already validated in ethtool_set_eeprom */
  5686. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5687. return rc;
  5688. }
  5689. static int
  5690. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5691. {
  5692. struct bnx2 *bp = netdev_priv(dev);
  5693. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5694. coal->rx_coalesce_usecs = bp->rx_ticks;
  5695. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5696. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5697. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5698. coal->tx_coalesce_usecs = bp->tx_ticks;
  5699. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5700. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5701. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5702. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5703. return 0;
  5704. }
  5705. static int
  5706. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5707. {
  5708. struct bnx2 *bp = netdev_priv(dev);
  5709. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5710. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5711. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5712. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5713. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5714. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5715. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5716. if (bp->rx_quick_cons_trip_int > 0xff)
  5717. bp->rx_quick_cons_trip_int = 0xff;
  5718. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5719. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5720. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5721. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5722. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5723. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5724. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5725. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5726. 0xff;
  5727. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5728. if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
  5729. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5730. bp->stats_ticks = USEC_PER_SEC;
  5731. }
  5732. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5733. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5734. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5735. if (netif_running(bp->dev)) {
  5736. bnx2_netif_stop(bp);
  5737. bnx2_init_nic(bp, 0);
  5738. bnx2_netif_start(bp);
  5739. }
  5740. return 0;
  5741. }
  5742. static void
  5743. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5744. {
  5745. struct bnx2 *bp = netdev_priv(dev);
  5746. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  5747. ering->rx_mini_max_pending = 0;
  5748. ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
  5749. ering->rx_pending = bp->rx_ring_size;
  5750. ering->rx_mini_pending = 0;
  5751. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5752. ering->tx_max_pending = MAX_TX_DESC_CNT;
  5753. ering->tx_pending = bp->tx_ring_size;
  5754. }
  5755. static int
  5756. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
  5757. {
  5758. if (netif_running(bp->dev)) {
  5759. /* Reset will erase chipset stats; save them */
  5760. bnx2_save_stats(bp);
  5761. bnx2_netif_stop(bp);
  5762. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5763. bnx2_free_skbs(bp);
  5764. bnx2_free_mem(bp);
  5765. }
  5766. bnx2_set_rx_ring_size(bp, rx);
  5767. bp->tx_ring_size = tx;
  5768. if (netif_running(bp->dev)) {
  5769. int rc;
  5770. rc = bnx2_alloc_mem(bp);
  5771. if (!rc)
  5772. rc = bnx2_init_nic(bp, 0);
  5773. if (rc) {
  5774. bnx2_napi_enable(bp);
  5775. dev_close(bp->dev);
  5776. return rc;
  5777. }
  5778. #ifdef BCM_CNIC
  5779. mutex_lock(&bp->cnic_lock);
  5780. /* Let cnic know about the new status block. */
  5781. if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
  5782. bnx2_setup_cnic_irq_info(bp);
  5783. mutex_unlock(&bp->cnic_lock);
  5784. #endif
  5785. bnx2_netif_start(bp);
  5786. }
  5787. return 0;
  5788. }
  5789. static int
  5790. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5791. {
  5792. struct bnx2 *bp = netdev_priv(dev);
  5793. int rc;
  5794. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  5795. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  5796. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  5797. return -EINVAL;
  5798. }
  5799. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
  5800. return rc;
  5801. }
  5802. static void
  5803. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5804. {
  5805. struct bnx2 *bp = netdev_priv(dev);
  5806. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  5807. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  5808. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  5809. }
  5810. static int
  5811. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5812. {
  5813. struct bnx2 *bp = netdev_priv(dev);
  5814. bp->req_flow_ctrl = 0;
  5815. if (epause->rx_pause)
  5816. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  5817. if (epause->tx_pause)
  5818. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  5819. if (epause->autoneg) {
  5820. bp->autoneg |= AUTONEG_FLOW_CTRL;
  5821. }
  5822. else {
  5823. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  5824. }
  5825. if (netif_running(dev)) {
  5826. spin_lock_bh(&bp->phy_lock);
  5827. bnx2_setup_phy(bp, bp->phy_port);
  5828. spin_unlock_bh(&bp->phy_lock);
  5829. }
  5830. return 0;
  5831. }
  5832. static u32
  5833. bnx2_get_rx_csum(struct net_device *dev)
  5834. {
  5835. struct bnx2 *bp = netdev_priv(dev);
  5836. return bp->rx_csum;
  5837. }
  5838. static int
  5839. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  5840. {
  5841. struct bnx2 *bp = netdev_priv(dev);
  5842. bp->rx_csum = data;
  5843. return 0;
  5844. }
  5845. static int
  5846. bnx2_set_tso(struct net_device *dev, u32 data)
  5847. {
  5848. struct bnx2 *bp = netdev_priv(dev);
  5849. if (data) {
  5850. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5851. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5852. dev->features |= NETIF_F_TSO6;
  5853. } else
  5854. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  5855. NETIF_F_TSO_ECN);
  5856. return 0;
  5857. }
  5858. static struct {
  5859. char string[ETH_GSTRING_LEN];
  5860. } bnx2_stats_str_arr[] = {
  5861. { "rx_bytes" },
  5862. { "rx_error_bytes" },
  5863. { "tx_bytes" },
  5864. { "tx_error_bytes" },
  5865. { "rx_ucast_packets" },
  5866. { "rx_mcast_packets" },
  5867. { "rx_bcast_packets" },
  5868. { "tx_ucast_packets" },
  5869. { "tx_mcast_packets" },
  5870. { "tx_bcast_packets" },
  5871. { "tx_mac_errors" },
  5872. { "tx_carrier_errors" },
  5873. { "rx_crc_errors" },
  5874. { "rx_align_errors" },
  5875. { "tx_single_collisions" },
  5876. { "tx_multi_collisions" },
  5877. { "tx_deferred" },
  5878. { "tx_excess_collisions" },
  5879. { "tx_late_collisions" },
  5880. { "tx_total_collisions" },
  5881. { "rx_fragments" },
  5882. { "rx_jabbers" },
  5883. { "rx_undersize_packets" },
  5884. { "rx_oversize_packets" },
  5885. { "rx_64_byte_packets" },
  5886. { "rx_65_to_127_byte_packets" },
  5887. { "rx_128_to_255_byte_packets" },
  5888. { "rx_256_to_511_byte_packets" },
  5889. { "rx_512_to_1023_byte_packets" },
  5890. { "rx_1024_to_1522_byte_packets" },
  5891. { "rx_1523_to_9022_byte_packets" },
  5892. { "tx_64_byte_packets" },
  5893. { "tx_65_to_127_byte_packets" },
  5894. { "tx_128_to_255_byte_packets" },
  5895. { "tx_256_to_511_byte_packets" },
  5896. { "tx_512_to_1023_byte_packets" },
  5897. { "tx_1024_to_1522_byte_packets" },
  5898. { "tx_1523_to_9022_byte_packets" },
  5899. { "rx_xon_frames" },
  5900. { "rx_xoff_frames" },
  5901. { "tx_xon_frames" },
  5902. { "tx_xoff_frames" },
  5903. { "rx_mac_ctrl_frames" },
  5904. { "rx_filtered_packets" },
  5905. { "rx_ftq_discards" },
  5906. { "rx_discards" },
  5907. { "rx_fw_discards" },
  5908. };
  5909. #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
  5910. sizeof(bnx2_stats_str_arr[0]))
  5911. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  5912. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  5913. STATS_OFFSET32(stat_IfHCInOctets_hi),
  5914. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  5915. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  5916. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  5917. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  5918. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  5919. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  5920. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  5921. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  5922. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  5923. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  5924. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  5925. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  5926. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  5927. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  5928. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  5929. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  5930. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  5931. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  5932. STATS_OFFSET32(stat_EtherStatsCollisions),
  5933. STATS_OFFSET32(stat_EtherStatsFragments),
  5934. STATS_OFFSET32(stat_EtherStatsJabbers),
  5935. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  5936. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  5937. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  5938. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  5939. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  5940. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  5941. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  5942. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  5943. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  5944. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  5945. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  5946. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  5947. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  5948. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  5949. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  5950. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  5951. STATS_OFFSET32(stat_XonPauseFramesReceived),
  5952. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  5953. STATS_OFFSET32(stat_OutXonSent),
  5954. STATS_OFFSET32(stat_OutXoffSent),
  5955. STATS_OFFSET32(stat_MacControlFramesReceived),
  5956. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  5957. STATS_OFFSET32(stat_IfInFTQDiscards),
  5958. STATS_OFFSET32(stat_IfInMBUFDiscards),
  5959. STATS_OFFSET32(stat_FwRxDrop),
  5960. };
  5961. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  5962. * skipped because of errata.
  5963. */
  5964. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  5965. 8,0,8,8,8,8,8,8,8,8,
  5966. 4,0,4,4,4,4,4,4,4,4,
  5967. 4,4,4,4,4,4,4,4,4,4,
  5968. 4,4,4,4,4,4,4,4,4,4,
  5969. 4,4,4,4,4,4,4,
  5970. };
  5971. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  5972. 8,0,8,8,8,8,8,8,8,8,
  5973. 4,4,4,4,4,4,4,4,4,4,
  5974. 4,4,4,4,4,4,4,4,4,4,
  5975. 4,4,4,4,4,4,4,4,4,4,
  5976. 4,4,4,4,4,4,4,
  5977. };
  5978. #define BNX2_NUM_TESTS 6
  5979. static struct {
  5980. char string[ETH_GSTRING_LEN];
  5981. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  5982. { "register_test (offline)" },
  5983. { "memory_test (offline)" },
  5984. { "loopback_test (offline)" },
  5985. { "nvram_test (online)" },
  5986. { "interrupt_test (online)" },
  5987. { "link_test (online)" },
  5988. };
  5989. static int
  5990. bnx2_get_sset_count(struct net_device *dev, int sset)
  5991. {
  5992. switch (sset) {
  5993. case ETH_SS_TEST:
  5994. return BNX2_NUM_TESTS;
  5995. case ETH_SS_STATS:
  5996. return BNX2_NUM_STATS;
  5997. default:
  5998. return -EOPNOTSUPP;
  5999. }
  6000. }
  6001. static void
  6002. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  6003. {
  6004. struct bnx2 *bp = netdev_priv(dev);
  6005. bnx2_set_power_state(bp, PCI_D0);
  6006. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  6007. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  6008. int i;
  6009. bnx2_netif_stop(bp);
  6010. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  6011. bnx2_free_skbs(bp);
  6012. if (bnx2_test_registers(bp) != 0) {
  6013. buf[0] = 1;
  6014. etest->flags |= ETH_TEST_FL_FAILED;
  6015. }
  6016. if (bnx2_test_memory(bp) != 0) {
  6017. buf[1] = 1;
  6018. etest->flags |= ETH_TEST_FL_FAILED;
  6019. }
  6020. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  6021. etest->flags |= ETH_TEST_FL_FAILED;
  6022. if (!netif_running(bp->dev))
  6023. bnx2_shutdown_chip(bp);
  6024. else {
  6025. bnx2_init_nic(bp, 1);
  6026. bnx2_netif_start(bp);
  6027. }
  6028. /* wait for link up */
  6029. for (i = 0; i < 7; i++) {
  6030. if (bp->link_up)
  6031. break;
  6032. msleep_interruptible(1000);
  6033. }
  6034. }
  6035. if (bnx2_test_nvram(bp) != 0) {
  6036. buf[3] = 1;
  6037. etest->flags |= ETH_TEST_FL_FAILED;
  6038. }
  6039. if (bnx2_test_intr(bp) != 0) {
  6040. buf[4] = 1;
  6041. etest->flags |= ETH_TEST_FL_FAILED;
  6042. }
  6043. if (bnx2_test_link(bp) != 0) {
  6044. buf[5] = 1;
  6045. etest->flags |= ETH_TEST_FL_FAILED;
  6046. }
  6047. if (!netif_running(bp->dev))
  6048. bnx2_set_power_state(bp, PCI_D3hot);
  6049. }
  6050. static void
  6051. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  6052. {
  6053. switch (stringset) {
  6054. case ETH_SS_STATS:
  6055. memcpy(buf, bnx2_stats_str_arr,
  6056. sizeof(bnx2_stats_str_arr));
  6057. break;
  6058. case ETH_SS_TEST:
  6059. memcpy(buf, bnx2_tests_str_arr,
  6060. sizeof(bnx2_tests_str_arr));
  6061. break;
  6062. }
  6063. }
  6064. static void
  6065. bnx2_get_ethtool_stats(struct net_device *dev,
  6066. struct ethtool_stats *stats, u64 *buf)
  6067. {
  6068. struct bnx2 *bp = netdev_priv(dev);
  6069. int i;
  6070. u32 *hw_stats = (u32 *) bp->stats_blk;
  6071. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  6072. u8 *stats_len_arr = NULL;
  6073. if (hw_stats == NULL) {
  6074. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  6075. return;
  6076. }
  6077. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  6078. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  6079. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  6080. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  6081. stats_len_arr = bnx2_5706_stats_len_arr;
  6082. else
  6083. stats_len_arr = bnx2_5708_stats_len_arr;
  6084. for (i = 0; i < BNX2_NUM_STATS; i++) {
  6085. unsigned long offset;
  6086. if (stats_len_arr[i] == 0) {
  6087. /* skip this counter */
  6088. buf[i] = 0;
  6089. continue;
  6090. }
  6091. offset = bnx2_stats_offset_arr[i];
  6092. if (stats_len_arr[i] == 4) {
  6093. /* 4-byte counter */
  6094. buf[i] = (u64) *(hw_stats + offset) +
  6095. *(temp_stats + offset);
  6096. continue;
  6097. }
  6098. /* 8-byte counter */
  6099. buf[i] = (((u64) *(hw_stats + offset)) << 32) +
  6100. *(hw_stats + offset + 1) +
  6101. (((u64) *(temp_stats + offset)) << 32) +
  6102. *(temp_stats + offset + 1);
  6103. }
  6104. }
  6105. static int
  6106. bnx2_phys_id(struct net_device *dev, u32 data)
  6107. {
  6108. struct bnx2 *bp = netdev_priv(dev);
  6109. int i;
  6110. u32 save;
  6111. bnx2_set_power_state(bp, PCI_D0);
  6112. if (data == 0)
  6113. data = 2;
  6114. save = REG_RD(bp, BNX2_MISC_CFG);
  6115. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6116. for (i = 0; i < (data * 2); i++) {
  6117. if ((i % 2) == 0) {
  6118. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6119. }
  6120. else {
  6121. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6122. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6123. BNX2_EMAC_LED_100MB_OVERRIDE |
  6124. BNX2_EMAC_LED_10MB_OVERRIDE |
  6125. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6126. BNX2_EMAC_LED_TRAFFIC);
  6127. }
  6128. msleep_interruptible(500);
  6129. if (signal_pending(current))
  6130. break;
  6131. }
  6132. REG_WR(bp, BNX2_EMAC_LED, 0);
  6133. REG_WR(bp, BNX2_MISC_CFG, save);
  6134. if (!netif_running(dev))
  6135. bnx2_set_power_state(bp, PCI_D3hot);
  6136. return 0;
  6137. }
  6138. static int
  6139. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  6140. {
  6141. struct bnx2 *bp = netdev_priv(dev);
  6142. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6143. return (ethtool_op_set_tx_ipv6_csum(dev, data));
  6144. else
  6145. return (ethtool_op_set_tx_csum(dev, data));
  6146. }
  6147. static const struct ethtool_ops bnx2_ethtool_ops = {
  6148. .get_settings = bnx2_get_settings,
  6149. .set_settings = bnx2_set_settings,
  6150. .get_drvinfo = bnx2_get_drvinfo,
  6151. .get_regs_len = bnx2_get_regs_len,
  6152. .get_regs = bnx2_get_regs,
  6153. .get_wol = bnx2_get_wol,
  6154. .set_wol = bnx2_set_wol,
  6155. .nway_reset = bnx2_nway_reset,
  6156. .get_link = bnx2_get_link,
  6157. .get_eeprom_len = bnx2_get_eeprom_len,
  6158. .get_eeprom = bnx2_get_eeprom,
  6159. .set_eeprom = bnx2_set_eeprom,
  6160. .get_coalesce = bnx2_get_coalesce,
  6161. .set_coalesce = bnx2_set_coalesce,
  6162. .get_ringparam = bnx2_get_ringparam,
  6163. .set_ringparam = bnx2_set_ringparam,
  6164. .get_pauseparam = bnx2_get_pauseparam,
  6165. .set_pauseparam = bnx2_set_pauseparam,
  6166. .get_rx_csum = bnx2_get_rx_csum,
  6167. .set_rx_csum = bnx2_set_rx_csum,
  6168. .set_tx_csum = bnx2_set_tx_csum,
  6169. .set_sg = ethtool_op_set_sg,
  6170. .set_tso = bnx2_set_tso,
  6171. .self_test = bnx2_self_test,
  6172. .get_strings = bnx2_get_strings,
  6173. .phys_id = bnx2_phys_id,
  6174. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6175. .get_sset_count = bnx2_get_sset_count,
  6176. };
  6177. /* Called with rtnl_lock */
  6178. static int
  6179. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6180. {
  6181. struct mii_ioctl_data *data = if_mii(ifr);
  6182. struct bnx2 *bp = netdev_priv(dev);
  6183. int err;
  6184. switch(cmd) {
  6185. case SIOCGMIIPHY:
  6186. data->phy_id = bp->phy_addr;
  6187. /* fallthru */
  6188. case SIOCGMIIREG: {
  6189. u32 mii_regval;
  6190. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6191. return -EOPNOTSUPP;
  6192. if (!netif_running(dev))
  6193. return -EAGAIN;
  6194. spin_lock_bh(&bp->phy_lock);
  6195. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6196. spin_unlock_bh(&bp->phy_lock);
  6197. data->val_out = mii_regval;
  6198. return err;
  6199. }
  6200. case SIOCSMIIREG:
  6201. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6202. return -EOPNOTSUPP;
  6203. if (!netif_running(dev))
  6204. return -EAGAIN;
  6205. spin_lock_bh(&bp->phy_lock);
  6206. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6207. spin_unlock_bh(&bp->phy_lock);
  6208. return err;
  6209. default:
  6210. /* do nothing */
  6211. break;
  6212. }
  6213. return -EOPNOTSUPP;
  6214. }
  6215. /* Called with rtnl_lock */
  6216. static int
  6217. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6218. {
  6219. struct sockaddr *addr = p;
  6220. struct bnx2 *bp = netdev_priv(dev);
  6221. if (!is_valid_ether_addr(addr->sa_data))
  6222. return -EINVAL;
  6223. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6224. if (netif_running(dev))
  6225. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6226. return 0;
  6227. }
  6228. /* Called with rtnl_lock */
  6229. static int
  6230. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6231. {
  6232. struct bnx2 *bp = netdev_priv(dev);
  6233. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6234. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6235. return -EINVAL;
  6236. dev->mtu = new_mtu;
  6237. return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
  6238. }
  6239. #ifdef CONFIG_NET_POLL_CONTROLLER
  6240. static void
  6241. poll_bnx2(struct net_device *dev)
  6242. {
  6243. struct bnx2 *bp = netdev_priv(dev);
  6244. int i;
  6245. for (i = 0; i < bp->irq_nvecs; i++) {
  6246. disable_irq(bp->irq_tbl[i].vector);
  6247. bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
  6248. enable_irq(bp->irq_tbl[i].vector);
  6249. }
  6250. }
  6251. #endif
  6252. static void __devinit
  6253. bnx2_get_5709_media(struct bnx2 *bp)
  6254. {
  6255. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6256. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6257. u32 strap;
  6258. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6259. return;
  6260. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6261. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6262. return;
  6263. }
  6264. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6265. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6266. else
  6267. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6268. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  6269. switch (strap) {
  6270. case 0x4:
  6271. case 0x5:
  6272. case 0x6:
  6273. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6274. return;
  6275. }
  6276. } else {
  6277. switch (strap) {
  6278. case 0x1:
  6279. case 0x2:
  6280. case 0x4:
  6281. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6282. return;
  6283. }
  6284. }
  6285. }
  6286. static void __devinit
  6287. bnx2_get_pci_speed(struct bnx2 *bp)
  6288. {
  6289. u32 reg;
  6290. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6291. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6292. u32 clkreg;
  6293. bp->flags |= BNX2_FLAG_PCIX;
  6294. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6295. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6296. switch (clkreg) {
  6297. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6298. bp->bus_speed_mhz = 133;
  6299. break;
  6300. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6301. bp->bus_speed_mhz = 100;
  6302. break;
  6303. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6304. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6305. bp->bus_speed_mhz = 66;
  6306. break;
  6307. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6308. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6309. bp->bus_speed_mhz = 50;
  6310. break;
  6311. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6312. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6313. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6314. bp->bus_speed_mhz = 33;
  6315. break;
  6316. }
  6317. }
  6318. else {
  6319. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6320. bp->bus_speed_mhz = 66;
  6321. else
  6322. bp->bus_speed_mhz = 33;
  6323. }
  6324. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6325. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6326. }
  6327. static void __devinit
  6328. bnx2_read_vpd_fw_ver(struct bnx2 *bp)
  6329. {
  6330. int rc, i, j;
  6331. u8 *data;
  6332. unsigned int block_end, rosize, len;
  6333. #define BNX2_VPD_NVRAM_OFFSET 0x300
  6334. #define BNX2_VPD_LEN 128
  6335. #define BNX2_MAX_VER_SLEN 30
  6336. data = kmalloc(256, GFP_KERNEL);
  6337. if (!data)
  6338. return;
  6339. rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
  6340. BNX2_VPD_LEN);
  6341. if (rc)
  6342. goto vpd_done;
  6343. for (i = 0; i < BNX2_VPD_LEN; i += 4) {
  6344. data[i] = data[i + BNX2_VPD_LEN + 3];
  6345. data[i + 1] = data[i + BNX2_VPD_LEN + 2];
  6346. data[i + 2] = data[i + BNX2_VPD_LEN + 1];
  6347. data[i + 3] = data[i + BNX2_VPD_LEN];
  6348. }
  6349. i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  6350. if (i < 0)
  6351. goto vpd_done;
  6352. rosize = pci_vpd_lrdt_size(&data[i]);
  6353. i += PCI_VPD_LRDT_TAG_SIZE;
  6354. block_end = i + rosize;
  6355. if (block_end > BNX2_VPD_LEN)
  6356. goto vpd_done;
  6357. j = pci_vpd_find_info_keyword(data, i, rosize,
  6358. PCI_VPD_RO_KEYWORD_MFR_ID);
  6359. if (j < 0)
  6360. goto vpd_done;
  6361. len = pci_vpd_info_field_size(&data[j]);
  6362. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6363. if (j + len > block_end || len != 4 ||
  6364. memcmp(&data[j], "1028", 4))
  6365. goto vpd_done;
  6366. j = pci_vpd_find_info_keyword(data, i, rosize,
  6367. PCI_VPD_RO_KEYWORD_VENDOR0);
  6368. if (j < 0)
  6369. goto vpd_done;
  6370. len = pci_vpd_info_field_size(&data[j]);
  6371. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6372. if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
  6373. goto vpd_done;
  6374. memcpy(bp->fw_version, &data[j], len);
  6375. bp->fw_version[len] = ' ';
  6376. vpd_done:
  6377. kfree(data);
  6378. }
  6379. static int __devinit
  6380. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6381. {
  6382. struct bnx2 *bp;
  6383. unsigned long mem_len;
  6384. int rc, i, j;
  6385. u32 reg;
  6386. u64 dma_mask, persist_dma_mask;
  6387. SET_NETDEV_DEV(dev, &pdev->dev);
  6388. bp = netdev_priv(dev);
  6389. bp->flags = 0;
  6390. bp->phy_flags = 0;
  6391. bp->temp_stats_blk =
  6392. kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
  6393. if (bp->temp_stats_blk == NULL) {
  6394. rc = -ENOMEM;
  6395. goto err_out;
  6396. }
  6397. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6398. rc = pci_enable_device(pdev);
  6399. if (rc) {
  6400. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  6401. goto err_out;
  6402. }
  6403. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6404. dev_err(&pdev->dev,
  6405. "Cannot find PCI device base address, aborting\n");
  6406. rc = -ENODEV;
  6407. goto err_out_disable;
  6408. }
  6409. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6410. if (rc) {
  6411. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  6412. goto err_out_disable;
  6413. }
  6414. pci_set_master(pdev);
  6415. pci_save_state(pdev);
  6416. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  6417. if (bp->pm_cap == 0) {
  6418. dev_err(&pdev->dev,
  6419. "Cannot find power management capability, aborting\n");
  6420. rc = -EIO;
  6421. goto err_out_release;
  6422. }
  6423. bp->dev = dev;
  6424. bp->pdev = pdev;
  6425. spin_lock_init(&bp->phy_lock);
  6426. spin_lock_init(&bp->indirect_lock);
  6427. #ifdef BCM_CNIC
  6428. mutex_init(&bp->cnic_lock);
  6429. #endif
  6430. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6431. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  6432. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
  6433. dev->mem_end = dev->mem_start + mem_len;
  6434. dev->irq = pdev->irq;
  6435. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  6436. if (!bp->regview) {
  6437. dev_err(&pdev->dev, "Cannot map register space, aborting\n");
  6438. rc = -ENOMEM;
  6439. goto err_out_release;
  6440. }
  6441. /* Configure byte swap and enable write to the reg_window registers.
  6442. * Rely on CPU to do target byte swapping on big endian systems
  6443. * The chip's target access swapping will not swap all accesses
  6444. */
  6445. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  6446. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6447. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6448. bnx2_set_power_state(bp, PCI_D0);
  6449. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  6450. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6451. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  6452. dev_err(&pdev->dev,
  6453. "Cannot find PCIE capability, aborting\n");
  6454. rc = -EIO;
  6455. goto err_out_unmap;
  6456. }
  6457. bp->flags |= BNX2_FLAG_PCIE;
  6458. if (CHIP_REV(bp) == CHIP_REV_Ax)
  6459. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6460. } else {
  6461. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6462. if (bp->pcix_cap == 0) {
  6463. dev_err(&pdev->dev,
  6464. "Cannot find PCIX capability, aborting\n");
  6465. rc = -EIO;
  6466. goto err_out_unmap;
  6467. }
  6468. bp->flags |= BNX2_FLAG_BROKEN_STATS;
  6469. }
  6470. if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
  6471. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
  6472. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6473. }
  6474. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  6475. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  6476. bp->flags |= BNX2_FLAG_MSI_CAP;
  6477. }
  6478. /* 5708 cannot support DMA addresses > 40-bit. */
  6479. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  6480. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6481. else
  6482. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6483. /* Configure DMA attributes. */
  6484. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6485. dev->features |= NETIF_F_HIGHDMA;
  6486. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6487. if (rc) {
  6488. dev_err(&pdev->dev,
  6489. "pci_set_consistent_dma_mask failed, aborting\n");
  6490. goto err_out_unmap;
  6491. }
  6492. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6493. dev_err(&pdev->dev, "System does not support DMA, aborting\n");
  6494. goto err_out_unmap;
  6495. }
  6496. if (!(bp->flags & BNX2_FLAG_PCIE))
  6497. bnx2_get_pci_speed(bp);
  6498. /* 5706A0 may falsely detect SERR and PERR. */
  6499. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6500. reg = REG_RD(bp, PCI_COMMAND);
  6501. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6502. REG_WR(bp, PCI_COMMAND, reg);
  6503. }
  6504. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  6505. !(bp->flags & BNX2_FLAG_PCIX)) {
  6506. dev_err(&pdev->dev,
  6507. "5706 A1 can only be used in a PCIX bus, aborting\n");
  6508. goto err_out_unmap;
  6509. }
  6510. bnx2_init_nvram(bp);
  6511. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6512. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6513. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6514. u32 off = PCI_FUNC(pdev->devfn) << 2;
  6515. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6516. } else
  6517. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6518. /* Get the permanent MAC address. First we need to make sure the
  6519. * firmware is actually running.
  6520. */
  6521. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6522. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6523. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6524. dev_err(&pdev->dev, "Firmware not running, aborting\n");
  6525. rc = -ENODEV;
  6526. goto err_out_unmap;
  6527. }
  6528. bnx2_read_vpd_fw_ver(bp);
  6529. j = strlen(bp->fw_version);
  6530. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6531. for (i = 0; i < 3 && j < 24; i++) {
  6532. u8 num, k, skip0;
  6533. if (i == 0) {
  6534. bp->fw_version[j++] = 'b';
  6535. bp->fw_version[j++] = 'c';
  6536. bp->fw_version[j++] = ' ';
  6537. }
  6538. num = (u8) (reg >> (24 - (i * 8)));
  6539. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6540. if (num >= k || !skip0 || k == 1) {
  6541. bp->fw_version[j++] = (num / k) + '0';
  6542. skip0 = 0;
  6543. }
  6544. }
  6545. if (i != 2)
  6546. bp->fw_version[j++] = '.';
  6547. }
  6548. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6549. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6550. bp->wol = 1;
  6551. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6552. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6553. for (i = 0; i < 30; i++) {
  6554. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6555. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6556. break;
  6557. msleep(10);
  6558. }
  6559. }
  6560. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6561. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6562. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6563. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6564. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6565. if (j < 32)
  6566. bp->fw_version[j++] = ' ';
  6567. for (i = 0; i < 3 && j < 28; i++) {
  6568. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6569. reg = swab32(reg);
  6570. memcpy(&bp->fw_version[j], &reg, 4);
  6571. j += 4;
  6572. }
  6573. }
  6574. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6575. bp->mac_addr[0] = (u8) (reg >> 8);
  6576. bp->mac_addr[1] = (u8) reg;
  6577. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6578. bp->mac_addr[2] = (u8) (reg >> 24);
  6579. bp->mac_addr[3] = (u8) (reg >> 16);
  6580. bp->mac_addr[4] = (u8) (reg >> 8);
  6581. bp->mac_addr[5] = (u8) reg;
  6582. bp->tx_ring_size = MAX_TX_DESC_CNT;
  6583. bnx2_set_rx_ring_size(bp, 255);
  6584. bp->rx_csum = 1;
  6585. bp->tx_quick_cons_trip_int = 2;
  6586. bp->tx_quick_cons_trip = 20;
  6587. bp->tx_ticks_int = 18;
  6588. bp->tx_ticks = 80;
  6589. bp->rx_quick_cons_trip_int = 2;
  6590. bp->rx_quick_cons_trip = 12;
  6591. bp->rx_ticks_int = 18;
  6592. bp->rx_ticks = 18;
  6593. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6594. bp->current_interval = BNX2_TIMER_INTERVAL;
  6595. bp->phy_addr = 1;
  6596. /* Disable WOL support if we are running on a SERDES chip. */
  6597. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6598. bnx2_get_5709_media(bp);
  6599. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  6600. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6601. bp->phy_port = PORT_TP;
  6602. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6603. bp->phy_port = PORT_FIBRE;
  6604. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6605. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6606. bp->flags |= BNX2_FLAG_NO_WOL;
  6607. bp->wol = 0;
  6608. }
  6609. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  6610. /* Don't do parallel detect on this board because of
  6611. * some board problems. The link will not go down
  6612. * if we do parallel detect.
  6613. */
  6614. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6615. pdev->subsystem_device == 0x310c)
  6616. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6617. } else {
  6618. bp->phy_addr = 2;
  6619. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6620. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6621. }
  6622. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  6623. CHIP_NUM(bp) == CHIP_NUM_5708)
  6624. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6625. else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
  6626. (CHIP_REV(bp) == CHIP_REV_Ax ||
  6627. CHIP_REV(bp) == CHIP_REV_Bx))
  6628. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6629. bnx2_init_fw_cap(bp);
  6630. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  6631. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  6632. (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
  6633. !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6634. bp->flags |= BNX2_FLAG_NO_WOL;
  6635. bp->wol = 0;
  6636. }
  6637. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6638. bp->tx_quick_cons_trip_int =
  6639. bp->tx_quick_cons_trip;
  6640. bp->tx_ticks_int = bp->tx_ticks;
  6641. bp->rx_quick_cons_trip_int =
  6642. bp->rx_quick_cons_trip;
  6643. bp->rx_ticks_int = bp->rx_ticks;
  6644. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6645. bp->com_ticks_int = bp->com_ticks;
  6646. bp->cmd_ticks_int = bp->cmd_ticks;
  6647. }
  6648. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6649. *
  6650. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6651. * with byte enables disabled on the unused 32-bit word. This is legal
  6652. * but causes problems on the AMD 8132 which will eventually stop
  6653. * responding after a while.
  6654. *
  6655. * AMD believes this incompatibility is unique to the 5706, and
  6656. * prefers to locally disable MSI rather than globally disabling it.
  6657. */
  6658. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  6659. struct pci_dev *amd_8132 = NULL;
  6660. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6661. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6662. amd_8132))) {
  6663. if (amd_8132->revision >= 0x10 &&
  6664. amd_8132->revision <= 0x13) {
  6665. disable_msi = 1;
  6666. pci_dev_put(amd_8132);
  6667. break;
  6668. }
  6669. }
  6670. }
  6671. bnx2_set_default_link(bp);
  6672. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6673. init_timer(&bp->timer);
  6674. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6675. bp->timer.data = (unsigned long) bp;
  6676. bp->timer.function = bnx2_timer;
  6677. return 0;
  6678. err_out_unmap:
  6679. if (bp->regview) {
  6680. iounmap(bp->regview);
  6681. bp->regview = NULL;
  6682. }
  6683. err_out_release:
  6684. pci_release_regions(pdev);
  6685. err_out_disable:
  6686. pci_disable_device(pdev);
  6687. pci_set_drvdata(pdev, NULL);
  6688. err_out:
  6689. return rc;
  6690. }
  6691. static char * __devinit
  6692. bnx2_bus_string(struct bnx2 *bp, char *str)
  6693. {
  6694. char *s = str;
  6695. if (bp->flags & BNX2_FLAG_PCIE) {
  6696. s += sprintf(s, "PCI Express");
  6697. } else {
  6698. s += sprintf(s, "PCI");
  6699. if (bp->flags & BNX2_FLAG_PCIX)
  6700. s += sprintf(s, "-X");
  6701. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6702. s += sprintf(s, " 32-bit");
  6703. else
  6704. s += sprintf(s, " 64-bit");
  6705. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6706. }
  6707. return str;
  6708. }
  6709. static void __devinit
  6710. bnx2_init_napi(struct bnx2 *bp)
  6711. {
  6712. int i;
  6713. for (i = 0; i < bp->irq_nvecs; i++) {
  6714. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6715. int (*poll)(struct napi_struct *, int);
  6716. if (i == 0)
  6717. poll = bnx2_poll;
  6718. else
  6719. poll = bnx2_poll_msix;
  6720. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6721. bnapi->bp = bp;
  6722. }
  6723. }
  6724. static const struct net_device_ops bnx2_netdev_ops = {
  6725. .ndo_open = bnx2_open,
  6726. .ndo_start_xmit = bnx2_start_xmit,
  6727. .ndo_stop = bnx2_close,
  6728. .ndo_get_stats = bnx2_get_stats,
  6729. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6730. .ndo_do_ioctl = bnx2_ioctl,
  6731. .ndo_validate_addr = eth_validate_addr,
  6732. .ndo_set_mac_address = bnx2_change_mac_addr,
  6733. .ndo_change_mtu = bnx2_change_mtu,
  6734. .ndo_tx_timeout = bnx2_tx_timeout,
  6735. #ifdef BCM_VLAN
  6736. .ndo_vlan_rx_register = bnx2_vlan_rx_register,
  6737. #endif
  6738. #ifdef CONFIG_NET_POLL_CONTROLLER
  6739. .ndo_poll_controller = poll_bnx2,
  6740. #endif
  6741. };
  6742. static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
  6743. {
  6744. #ifdef BCM_VLAN
  6745. dev->vlan_features |= flags;
  6746. #endif
  6747. }
  6748. static int __devinit
  6749. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6750. {
  6751. static int version_printed = 0;
  6752. struct net_device *dev = NULL;
  6753. struct bnx2 *bp;
  6754. int rc;
  6755. char str[40];
  6756. if (version_printed++ == 0)
  6757. pr_info("%s", version);
  6758. /* dev zeroed in init_etherdev */
  6759. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  6760. if (!dev)
  6761. return -ENOMEM;
  6762. rc = bnx2_init_board(pdev, dev);
  6763. if (rc < 0) {
  6764. free_netdev(dev);
  6765. return rc;
  6766. }
  6767. dev->netdev_ops = &bnx2_netdev_ops;
  6768. dev->watchdog_timeo = TX_TIMEOUT;
  6769. dev->ethtool_ops = &bnx2_ethtool_ops;
  6770. bp = netdev_priv(dev);
  6771. pci_set_drvdata(pdev, dev);
  6772. rc = bnx2_request_firmware(bp);
  6773. if (rc)
  6774. goto error;
  6775. memcpy(dev->dev_addr, bp->mac_addr, 6);
  6776. memcpy(dev->perm_addr, bp->mac_addr, 6);
  6777. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  6778. vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
  6779. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6780. dev->features |= NETIF_F_IPV6_CSUM;
  6781. vlan_features_add(dev, NETIF_F_IPV6_CSUM);
  6782. }
  6783. #ifdef BCM_VLAN
  6784. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6785. #endif
  6786. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  6787. vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
  6788. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6789. dev->features |= NETIF_F_TSO6;
  6790. vlan_features_add(dev, NETIF_F_TSO6);
  6791. }
  6792. if ((rc = register_netdev(dev))) {
  6793. dev_err(&pdev->dev, "Cannot register net device\n");
  6794. goto error;
  6795. }
  6796. netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
  6797. board_info[ent->driver_data].name,
  6798. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  6799. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  6800. bnx2_bus_string(bp, str),
  6801. dev->base_addr,
  6802. bp->pdev->irq, dev->dev_addr);
  6803. return 0;
  6804. error:
  6805. if (bp->mips_firmware)
  6806. release_firmware(bp->mips_firmware);
  6807. if (bp->rv2p_firmware)
  6808. release_firmware(bp->rv2p_firmware);
  6809. if (bp->regview)
  6810. iounmap(bp->regview);
  6811. pci_release_regions(pdev);
  6812. pci_disable_device(pdev);
  6813. pci_set_drvdata(pdev, NULL);
  6814. free_netdev(dev);
  6815. return rc;
  6816. }
  6817. static void __devexit
  6818. bnx2_remove_one(struct pci_dev *pdev)
  6819. {
  6820. struct net_device *dev = pci_get_drvdata(pdev);
  6821. struct bnx2 *bp = netdev_priv(dev);
  6822. flush_scheduled_work();
  6823. unregister_netdev(dev);
  6824. if (bp->mips_firmware)
  6825. release_firmware(bp->mips_firmware);
  6826. if (bp->rv2p_firmware)
  6827. release_firmware(bp->rv2p_firmware);
  6828. if (bp->regview)
  6829. iounmap(bp->regview);
  6830. kfree(bp->temp_stats_blk);
  6831. free_netdev(dev);
  6832. pci_release_regions(pdev);
  6833. pci_disable_device(pdev);
  6834. pci_set_drvdata(pdev, NULL);
  6835. }
  6836. static int
  6837. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  6838. {
  6839. struct net_device *dev = pci_get_drvdata(pdev);
  6840. struct bnx2 *bp = netdev_priv(dev);
  6841. /* PCI register 4 needs to be saved whether netif_running() or not.
  6842. * MSI address and data need to be saved if using MSI and
  6843. * netif_running().
  6844. */
  6845. pci_save_state(pdev);
  6846. if (!netif_running(dev))
  6847. return 0;
  6848. flush_scheduled_work();
  6849. bnx2_netif_stop(bp);
  6850. netif_device_detach(dev);
  6851. del_timer_sync(&bp->timer);
  6852. bnx2_shutdown_chip(bp);
  6853. bnx2_free_skbs(bp);
  6854. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  6855. return 0;
  6856. }
  6857. static int
  6858. bnx2_resume(struct pci_dev *pdev)
  6859. {
  6860. struct net_device *dev = pci_get_drvdata(pdev);
  6861. struct bnx2 *bp = netdev_priv(dev);
  6862. pci_restore_state(pdev);
  6863. if (!netif_running(dev))
  6864. return 0;
  6865. bnx2_set_power_state(bp, PCI_D0);
  6866. netif_device_attach(dev);
  6867. bnx2_init_nic(bp, 1);
  6868. bnx2_netif_start(bp);
  6869. return 0;
  6870. }
  6871. /**
  6872. * bnx2_io_error_detected - called when PCI error is detected
  6873. * @pdev: Pointer to PCI device
  6874. * @state: The current pci connection state
  6875. *
  6876. * This function is called after a PCI bus error affecting
  6877. * this device has been detected.
  6878. */
  6879. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  6880. pci_channel_state_t state)
  6881. {
  6882. struct net_device *dev = pci_get_drvdata(pdev);
  6883. struct bnx2 *bp = netdev_priv(dev);
  6884. rtnl_lock();
  6885. netif_device_detach(dev);
  6886. if (state == pci_channel_io_perm_failure) {
  6887. rtnl_unlock();
  6888. return PCI_ERS_RESULT_DISCONNECT;
  6889. }
  6890. if (netif_running(dev)) {
  6891. bnx2_netif_stop(bp);
  6892. del_timer_sync(&bp->timer);
  6893. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  6894. }
  6895. pci_disable_device(pdev);
  6896. rtnl_unlock();
  6897. /* Request a slot slot reset. */
  6898. return PCI_ERS_RESULT_NEED_RESET;
  6899. }
  6900. /**
  6901. * bnx2_io_slot_reset - called after the pci bus has been reset.
  6902. * @pdev: Pointer to PCI device
  6903. *
  6904. * Restart the card from scratch, as if from a cold-boot.
  6905. */
  6906. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  6907. {
  6908. struct net_device *dev = pci_get_drvdata(pdev);
  6909. struct bnx2 *bp = netdev_priv(dev);
  6910. rtnl_lock();
  6911. if (pci_enable_device(pdev)) {
  6912. dev_err(&pdev->dev,
  6913. "Cannot re-enable PCI device after reset\n");
  6914. rtnl_unlock();
  6915. return PCI_ERS_RESULT_DISCONNECT;
  6916. }
  6917. pci_set_master(pdev);
  6918. pci_restore_state(pdev);
  6919. pci_save_state(pdev);
  6920. if (netif_running(dev)) {
  6921. bnx2_set_power_state(bp, PCI_D0);
  6922. bnx2_init_nic(bp, 1);
  6923. }
  6924. rtnl_unlock();
  6925. return PCI_ERS_RESULT_RECOVERED;
  6926. }
  6927. /**
  6928. * bnx2_io_resume - called when traffic can start flowing again.
  6929. * @pdev: Pointer to PCI device
  6930. *
  6931. * This callback is called when the error recovery driver tells us that
  6932. * its OK to resume normal operation.
  6933. */
  6934. static void bnx2_io_resume(struct pci_dev *pdev)
  6935. {
  6936. struct net_device *dev = pci_get_drvdata(pdev);
  6937. struct bnx2 *bp = netdev_priv(dev);
  6938. rtnl_lock();
  6939. if (netif_running(dev))
  6940. bnx2_netif_start(bp);
  6941. netif_device_attach(dev);
  6942. rtnl_unlock();
  6943. }
  6944. static struct pci_error_handlers bnx2_err_handler = {
  6945. .error_detected = bnx2_io_error_detected,
  6946. .slot_reset = bnx2_io_slot_reset,
  6947. .resume = bnx2_io_resume,
  6948. };
  6949. static struct pci_driver bnx2_pci_driver = {
  6950. .name = DRV_MODULE_NAME,
  6951. .id_table = bnx2_pci_tbl,
  6952. .probe = bnx2_init_one,
  6953. .remove = __devexit_p(bnx2_remove_one),
  6954. .suspend = bnx2_suspend,
  6955. .resume = bnx2_resume,
  6956. .err_handler = &bnx2_err_handler,
  6957. };
  6958. static int __init bnx2_init(void)
  6959. {
  6960. return pci_register_driver(&bnx2_pci_driver);
  6961. }
  6962. static void __exit bnx2_cleanup(void)
  6963. {
  6964. pci_unregister_driver(&bnx2_pci_driver);
  6965. }
  6966. module_init(bnx2_init);
  6967. module_exit(bnx2_cleanup);