timer.c 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295
  1. /*
  2. *
  3. * Copyright (C) 2007 Google, Inc.
  4. * Copyright (c) 2009-2012, The Linux Foundation. All rights reserved.
  5. *
  6. * This software is licensed under the terms of the GNU General Public
  7. * License version 2, as published by the Free Software Foundation, and
  8. * may be copied, distributed, and modified under those terms.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. */
  16. #include <linux/clocksource.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/init.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/irq.h>
  21. #include <linux/io.h>
  22. #include <asm/mach/time.h>
  23. #include <asm/hardware/gic.h>
  24. #include <asm/localtimer.h>
  25. #include <asm/sched_clock.h>
  26. #include "common.h"
  27. #define TIMER_MATCH_VAL 0x0000
  28. #define TIMER_COUNT_VAL 0x0004
  29. #define TIMER_ENABLE 0x0008
  30. #define TIMER_ENABLE_CLR_ON_MATCH_EN BIT(1)
  31. #define TIMER_ENABLE_EN BIT(0)
  32. #define TIMER_CLEAR 0x000C
  33. #define DGT_CLK_CTL 0x0030
  34. #define DGT_CLK_CTL_DIV_4 0x3
  35. #define GPT_HZ 32768
  36. #define MSM_DGT_SHIFT 5
  37. static void __iomem *event_base;
  38. static irqreturn_t msm_timer_interrupt(int irq, void *dev_id)
  39. {
  40. struct clock_event_device *evt = *(struct clock_event_device **)dev_id;
  41. /* Stop the timer tick */
  42. if (evt->mode == CLOCK_EVT_MODE_ONESHOT) {
  43. u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
  44. ctrl &= ~TIMER_ENABLE_EN;
  45. writel_relaxed(ctrl, event_base + TIMER_ENABLE);
  46. }
  47. evt->event_handler(evt);
  48. return IRQ_HANDLED;
  49. }
  50. static int msm_timer_set_next_event(unsigned long cycles,
  51. struct clock_event_device *evt)
  52. {
  53. u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
  54. writel_relaxed(0, event_base + TIMER_CLEAR);
  55. writel_relaxed(cycles, event_base + TIMER_MATCH_VAL);
  56. writel_relaxed(ctrl | TIMER_ENABLE_EN, event_base + TIMER_ENABLE);
  57. return 0;
  58. }
  59. static void msm_timer_set_mode(enum clock_event_mode mode,
  60. struct clock_event_device *evt)
  61. {
  62. u32 ctrl;
  63. ctrl = readl_relaxed(event_base + TIMER_ENABLE);
  64. ctrl &= ~(TIMER_ENABLE_EN | TIMER_ENABLE_CLR_ON_MATCH_EN);
  65. switch (mode) {
  66. case CLOCK_EVT_MODE_RESUME:
  67. case CLOCK_EVT_MODE_PERIODIC:
  68. break;
  69. case CLOCK_EVT_MODE_ONESHOT:
  70. /* Timer is enabled in set_next_event */
  71. break;
  72. case CLOCK_EVT_MODE_UNUSED:
  73. case CLOCK_EVT_MODE_SHUTDOWN:
  74. break;
  75. }
  76. writel_relaxed(ctrl, event_base + TIMER_ENABLE);
  77. }
  78. static struct clock_event_device msm_clockevent = {
  79. .name = "gp_timer",
  80. .features = CLOCK_EVT_FEAT_ONESHOT,
  81. .rating = 200,
  82. .set_next_event = msm_timer_set_next_event,
  83. .set_mode = msm_timer_set_mode,
  84. };
  85. static union {
  86. struct clock_event_device *evt;
  87. struct clock_event_device __percpu **percpu_evt;
  88. } msm_evt;
  89. static void __iomem *source_base;
  90. static notrace cycle_t msm_read_timer_count(struct clocksource *cs)
  91. {
  92. return readl_relaxed(source_base + TIMER_COUNT_VAL);
  93. }
  94. static notrace cycle_t msm_read_timer_count_shift(struct clocksource *cs)
  95. {
  96. /*
  97. * Shift timer count down by a constant due to unreliable lower bits
  98. * on some targets.
  99. */
  100. return msm_read_timer_count(cs) >> MSM_DGT_SHIFT;
  101. }
  102. static struct clocksource msm_clocksource = {
  103. .name = "dg_timer",
  104. .rating = 300,
  105. .read = msm_read_timer_count,
  106. .mask = CLOCKSOURCE_MASK(32),
  107. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  108. };
  109. #ifdef CONFIG_LOCAL_TIMERS
  110. static int __cpuinit msm_local_timer_setup(struct clock_event_device *evt)
  111. {
  112. /* Use existing clock_event for cpu 0 */
  113. if (!smp_processor_id())
  114. return 0;
  115. writel_relaxed(0, event_base + TIMER_ENABLE);
  116. writel_relaxed(0, event_base + TIMER_CLEAR);
  117. writel_relaxed(~0, event_base + TIMER_MATCH_VAL);
  118. evt->irq = msm_clockevent.irq;
  119. evt->name = "local_timer";
  120. evt->features = msm_clockevent.features;
  121. evt->rating = msm_clockevent.rating;
  122. evt->set_mode = msm_timer_set_mode;
  123. evt->set_next_event = msm_timer_set_next_event;
  124. evt->shift = msm_clockevent.shift;
  125. evt->mult = div_sc(GPT_HZ, NSEC_PER_SEC, evt->shift);
  126. evt->max_delta_ns = clockevent_delta2ns(0xf0000000, evt);
  127. evt->min_delta_ns = clockevent_delta2ns(4, evt);
  128. *__this_cpu_ptr(msm_evt.percpu_evt) = evt;
  129. clockevents_register_device(evt);
  130. enable_percpu_irq(evt->irq, IRQ_TYPE_EDGE_RISING);
  131. return 0;
  132. }
  133. static void msm_local_timer_stop(struct clock_event_device *evt)
  134. {
  135. evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
  136. disable_percpu_irq(evt->irq);
  137. }
  138. static struct local_timer_ops msm_local_timer_ops __cpuinitdata = {
  139. .setup = msm_local_timer_setup,
  140. .stop = msm_local_timer_stop,
  141. };
  142. #endif /* CONFIG_LOCAL_TIMERS */
  143. static notrace u32 msm_sched_clock_read(void)
  144. {
  145. return msm_clocksource.read(&msm_clocksource);
  146. }
  147. static void __init msm_timer_init(u32 dgt_hz, int sched_bits, int irq,
  148. bool percpu)
  149. {
  150. struct clock_event_device *ce = &msm_clockevent;
  151. struct clocksource *cs = &msm_clocksource;
  152. int res;
  153. writel_relaxed(0, event_base + TIMER_ENABLE);
  154. writel_relaxed(0, event_base + TIMER_CLEAR);
  155. writel_relaxed(~0, event_base + TIMER_MATCH_VAL);
  156. ce->cpumask = cpumask_of(0);
  157. ce->irq = irq;
  158. clockevents_config_and_register(ce, GPT_HZ, 4, 0xffffffff);
  159. if (percpu) {
  160. msm_evt.percpu_evt = alloc_percpu(struct clock_event_device *);
  161. if (!msm_evt.percpu_evt) {
  162. pr_err("memory allocation failed for %s\n", ce->name);
  163. goto err;
  164. }
  165. *__this_cpu_ptr(msm_evt.percpu_evt) = ce;
  166. res = request_percpu_irq(ce->irq, msm_timer_interrupt,
  167. ce->name, msm_evt.percpu_evt);
  168. if (!res) {
  169. enable_percpu_irq(ce->irq, IRQ_TYPE_EDGE_RISING);
  170. #ifdef CONFIG_LOCAL_TIMERS
  171. local_timer_register(&msm_local_timer_ops);
  172. #endif
  173. }
  174. } else {
  175. msm_evt.evt = ce;
  176. res = request_irq(ce->irq, msm_timer_interrupt,
  177. IRQF_TIMER | IRQF_NOBALANCING |
  178. IRQF_TRIGGER_RISING, ce->name, &msm_evt.evt);
  179. }
  180. if (res)
  181. pr_err("request_irq failed for %s\n", ce->name);
  182. err:
  183. writel_relaxed(TIMER_ENABLE_EN, source_base + TIMER_ENABLE);
  184. res = clocksource_register_hz(cs, dgt_hz);
  185. if (res)
  186. pr_err("clocksource_register failed\n");
  187. setup_sched_clock(msm_sched_clock_read, sched_bits, dgt_hz);
  188. }
  189. static int __init msm_timer_map(phys_addr_t event, phys_addr_t source)
  190. {
  191. event_base = ioremap(event, SZ_64);
  192. if (!event_base) {
  193. pr_err("Failed to map event base\n");
  194. return 1;
  195. }
  196. source_base = ioremap(source, SZ_64);
  197. if (!source_base) {
  198. pr_err("Failed to map source base\n");
  199. return 1;
  200. }
  201. return 0;
  202. }
  203. static void __init msm7x01_timer_init(void)
  204. {
  205. struct clocksource *cs = &msm_clocksource;
  206. if (msm_timer_map(0xc0100000, 0xc0100010))
  207. return;
  208. cs->read = msm_read_timer_count_shift;
  209. cs->mask = CLOCKSOURCE_MASK((32 - MSM_DGT_SHIFT));
  210. /* 600 KHz */
  211. msm_timer_init(19200000 >> MSM_DGT_SHIFT, 32 - MSM_DGT_SHIFT, 7,
  212. false);
  213. }
  214. struct sys_timer msm7x01_timer = {
  215. .init = msm7x01_timer_init
  216. };
  217. static void __init msm7x30_timer_init(void)
  218. {
  219. if (msm_timer_map(0xc0100004, 0xc0100024))
  220. return;
  221. msm_timer_init(24576000 / 4, 32, 1, false);
  222. }
  223. struct sys_timer msm7x30_timer = {
  224. .init = msm7x30_timer_init
  225. };
  226. static void __init msm8x60_timer_init(void)
  227. {
  228. if (msm_timer_map(0x02000004, 0x02040024))
  229. return;
  230. writel_relaxed(DGT_CLK_CTL_DIV_4, event_base + DGT_CLK_CTL);
  231. msm_timer_init(27000000 / 4, 32, 17, true);
  232. }
  233. struct sys_timer msm8x60_timer = {
  234. .init = msm8x60_timer_init
  235. };
  236. static void __init msm8960_timer_init(void)
  237. {
  238. if (msm_timer_map(0x0200A004, 0x0208A024))
  239. return;
  240. writel_relaxed(DGT_CLK_CTL_DIV_4, event_base + DGT_CLK_CTL);
  241. msm_timer_init(27000000 / 4, 32, 17, true);
  242. }
  243. struct sys_timer msm8960_timer = {
  244. .init = msm8960_timer_init
  245. };
  246. static void __init qsd8x50_timer_init(void)
  247. {
  248. if (msm_timer_map(0xAC100000, 0xAC100010))
  249. return;
  250. msm_timer_init(19200000 / 4, 32, 7, false);
  251. }
  252. struct sys_timer qsd8x50_timer = {
  253. .init = qsd8x50_timer_init
  254. };