sched_rt.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496
  1. /*
  2. * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
  3. * policies)
  4. */
  5. #ifdef CONFIG_SMP
  6. static inline int rt_overloaded(struct rq *rq)
  7. {
  8. return atomic_read(&rq->rd->rto_count);
  9. }
  10. static inline void rt_set_overload(struct rq *rq)
  11. {
  12. if (!rq->online)
  13. return;
  14. cpu_set(rq->cpu, rq->rd->rto_mask);
  15. /*
  16. * Make sure the mask is visible before we set
  17. * the overload count. That is checked to determine
  18. * if we should look at the mask. It would be a shame
  19. * if we looked at the mask, but the mask was not
  20. * updated yet.
  21. */
  22. wmb();
  23. atomic_inc(&rq->rd->rto_count);
  24. }
  25. static inline void rt_clear_overload(struct rq *rq)
  26. {
  27. if (!rq->online)
  28. return;
  29. /* the order here really doesn't matter */
  30. atomic_dec(&rq->rd->rto_count);
  31. cpu_clear(rq->cpu, rq->rd->rto_mask);
  32. }
  33. static void update_rt_migration(struct rq *rq)
  34. {
  35. if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
  36. if (!rq->rt.overloaded) {
  37. rt_set_overload(rq);
  38. rq->rt.overloaded = 1;
  39. }
  40. } else if (rq->rt.overloaded) {
  41. rt_clear_overload(rq);
  42. rq->rt.overloaded = 0;
  43. }
  44. }
  45. #endif /* CONFIG_SMP */
  46. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  47. {
  48. return container_of(rt_se, struct task_struct, rt);
  49. }
  50. static inline int on_rt_rq(struct sched_rt_entity *rt_se)
  51. {
  52. return !list_empty(&rt_se->run_list);
  53. }
  54. #ifdef CONFIG_RT_GROUP_SCHED
  55. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  56. {
  57. if (!rt_rq->tg)
  58. return RUNTIME_INF;
  59. return rt_rq->rt_runtime;
  60. }
  61. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  62. {
  63. return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
  64. }
  65. #define for_each_leaf_rt_rq(rt_rq, rq) \
  66. list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
  67. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  68. {
  69. return rt_rq->rq;
  70. }
  71. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  72. {
  73. return rt_se->rt_rq;
  74. }
  75. #define for_each_sched_rt_entity(rt_se) \
  76. for (; rt_se; rt_se = rt_se->parent)
  77. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  78. {
  79. return rt_se->my_q;
  80. }
  81. static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
  82. static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
  83. static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  84. {
  85. struct sched_rt_entity *rt_se = rt_rq->rt_se;
  86. if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
  87. struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
  88. enqueue_rt_entity(rt_se);
  89. if (rt_rq->highest_prio < curr->prio)
  90. resched_task(curr);
  91. }
  92. }
  93. static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  94. {
  95. struct sched_rt_entity *rt_se = rt_rq->rt_se;
  96. if (rt_se && on_rt_rq(rt_se))
  97. dequeue_rt_entity(rt_se);
  98. }
  99. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  100. {
  101. return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
  102. }
  103. static int rt_se_boosted(struct sched_rt_entity *rt_se)
  104. {
  105. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  106. struct task_struct *p;
  107. if (rt_rq)
  108. return !!rt_rq->rt_nr_boosted;
  109. p = rt_task_of(rt_se);
  110. return p->prio != p->normal_prio;
  111. }
  112. #ifdef CONFIG_SMP
  113. static inline cpumask_t sched_rt_period_mask(void)
  114. {
  115. return cpu_rq(smp_processor_id())->rd->span;
  116. }
  117. #else
  118. static inline cpumask_t sched_rt_period_mask(void)
  119. {
  120. return cpu_online_map;
  121. }
  122. #endif
  123. static inline
  124. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  125. {
  126. return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
  127. }
  128. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  129. {
  130. return &rt_rq->tg->rt_bandwidth;
  131. }
  132. #else /* !CONFIG_RT_GROUP_SCHED */
  133. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  134. {
  135. return rt_rq->rt_runtime;
  136. }
  137. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  138. {
  139. return ktime_to_ns(def_rt_bandwidth.rt_period);
  140. }
  141. #define for_each_leaf_rt_rq(rt_rq, rq) \
  142. for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
  143. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  144. {
  145. return container_of(rt_rq, struct rq, rt);
  146. }
  147. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  148. {
  149. struct task_struct *p = rt_task_of(rt_se);
  150. struct rq *rq = task_rq(p);
  151. return &rq->rt;
  152. }
  153. #define for_each_sched_rt_entity(rt_se) \
  154. for (; rt_se; rt_se = NULL)
  155. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  156. {
  157. return NULL;
  158. }
  159. static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  160. {
  161. }
  162. static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  163. {
  164. }
  165. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  166. {
  167. return rt_rq->rt_throttled;
  168. }
  169. static inline cpumask_t sched_rt_period_mask(void)
  170. {
  171. return cpu_online_map;
  172. }
  173. static inline
  174. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  175. {
  176. return &cpu_rq(cpu)->rt;
  177. }
  178. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  179. {
  180. return &def_rt_bandwidth;
  181. }
  182. #endif /* CONFIG_RT_GROUP_SCHED */
  183. #ifdef CONFIG_SMP
  184. static int do_balance_runtime(struct rt_rq *rt_rq)
  185. {
  186. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  187. struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
  188. int i, weight, more = 0;
  189. u64 rt_period;
  190. weight = cpus_weight(rd->span);
  191. spin_lock(&rt_b->rt_runtime_lock);
  192. rt_period = ktime_to_ns(rt_b->rt_period);
  193. for_each_cpu_mask_nr(i, rd->span) {
  194. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  195. s64 diff;
  196. if (iter == rt_rq)
  197. continue;
  198. spin_lock(&iter->rt_runtime_lock);
  199. if (iter->rt_runtime == RUNTIME_INF)
  200. goto next;
  201. diff = iter->rt_runtime - iter->rt_time;
  202. if (diff > 0) {
  203. diff = div_u64((u64)diff, weight);
  204. if (rt_rq->rt_runtime + diff > rt_period)
  205. diff = rt_period - rt_rq->rt_runtime;
  206. iter->rt_runtime -= diff;
  207. rt_rq->rt_runtime += diff;
  208. more = 1;
  209. if (rt_rq->rt_runtime == rt_period) {
  210. spin_unlock(&iter->rt_runtime_lock);
  211. break;
  212. }
  213. }
  214. next:
  215. spin_unlock(&iter->rt_runtime_lock);
  216. }
  217. spin_unlock(&rt_b->rt_runtime_lock);
  218. return more;
  219. }
  220. static void __disable_runtime(struct rq *rq)
  221. {
  222. struct root_domain *rd = rq->rd;
  223. struct rt_rq *rt_rq;
  224. if (unlikely(!scheduler_running))
  225. return;
  226. for_each_leaf_rt_rq(rt_rq, rq) {
  227. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  228. s64 want;
  229. int i;
  230. spin_lock(&rt_b->rt_runtime_lock);
  231. spin_lock(&rt_rq->rt_runtime_lock);
  232. if (rt_rq->rt_runtime == RUNTIME_INF ||
  233. rt_rq->rt_runtime == rt_b->rt_runtime)
  234. goto balanced;
  235. spin_unlock(&rt_rq->rt_runtime_lock);
  236. want = rt_b->rt_runtime - rt_rq->rt_runtime;
  237. for_each_cpu_mask(i, rd->span) {
  238. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  239. s64 diff;
  240. if (iter == rt_rq)
  241. continue;
  242. spin_lock(&iter->rt_runtime_lock);
  243. if (want > 0) {
  244. diff = min_t(s64, iter->rt_runtime, want);
  245. iter->rt_runtime -= diff;
  246. want -= diff;
  247. } else {
  248. iter->rt_runtime -= want;
  249. want -= want;
  250. }
  251. spin_unlock(&iter->rt_runtime_lock);
  252. if (!want)
  253. break;
  254. }
  255. spin_lock(&rt_rq->rt_runtime_lock);
  256. BUG_ON(want);
  257. balanced:
  258. rt_rq->rt_runtime = RUNTIME_INF;
  259. spin_unlock(&rt_rq->rt_runtime_lock);
  260. spin_unlock(&rt_b->rt_runtime_lock);
  261. }
  262. }
  263. static void disable_runtime(struct rq *rq)
  264. {
  265. unsigned long flags;
  266. spin_lock_irqsave(&rq->lock, flags);
  267. __disable_runtime(rq);
  268. spin_unlock_irqrestore(&rq->lock, flags);
  269. }
  270. static void __enable_runtime(struct rq *rq)
  271. {
  272. struct rt_rq *rt_rq;
  273. if (unlikely(!scheduler_running))
  274. return;
  275. for_each_leaf_rt_rq(rt_rq, rq) {
  276. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  277. spin_lock(&rt_b->rt_runtime_lock);
  278. spin_lock(&rt_rq->rt_runtime_lock);
  279. rt_rq->rt_runtime = rt_b->rt_runtime;
  280. rt_rq->rt_time = 0;
  281. spin_unlock(&rt_rq->rt_runtime_lock);
  282. spin_unlock(&rt_b->rt_runtime_lock);
  283. }
  284. }
  285. static void enable_runtime(struct rq *rq)
  286. {
  287. unsigned long flags;
  288. spin_lock_irqsave(&rq->lock, flags);
  289. __enable_runtime(rq);
  290. spin_unlock_irqrestore(&rq->lock, flags);
  291. }
  292. static int balance_runtime(struct rt_rq *rt_rq)
  293. {
  294. int more = 0;
  295. if (rt_rq->rt_time > rt_rq->rt_runtime) {
  296. spin_unlock(&rt_rq->rt_runtime_lock);
  297. more = do_balance_runtime(rt_rq);
  298. spin_lock(&rt_rq->rt_runtime_lock);
  299. }
  300. return more;
  301. }
  302. #else /* !CONFIG_SMP */
  303. static inline int balance_runtime(struct rt_rq *rt_rq)
  304. {
  305. return 0;
  306. }
  307. #endif /* CONFIG_SMP */
  308. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
  309. {
  310. int i, idle = 1;
  311. cpumask_t span;
  312. if (rt_b->rt_runtime == RUNTIME_INF)
  313. return 1;
  314. span = sched_rt_period_mask();
  315. for_each_cpu_mask(i, span) {
  316. int enqueue = 0;
  317. struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
  318. struct rq *rq = rq_of_rt_rq(rt_rq);
  319. spin_lock(&rq->lock);
  320. if (rt_rq->rt_time) {
  321. u64 runtime;
  322. spin_lock(&rt_rq->rt_runtime_lock);
  323. if (rt_rq->rt_throttled)
  324. balance_runtime(rt_rq);
  325. runtime = rt_rq->rt_runtime;
  326. rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
  327. if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
  328. rt_rq->rt_throttled = 0;
  329. enqueue = 1;
  330. }
  331. if (rt_rq->rt_time || rt_rq->rt_nr_running)
  332. idle = 0;
  333. spin_unlock(&rt_rq->rt_runtime_lock);
  334. } else if (rt_rq->rt_nr_running)
  335. idle = 0;
  336. if (enqueue)
  337. sched_rt_rq_enqueue(rt_rq);
  338. spin_unlock(&rq->lock);
  339. }
  340. return idle;
  341. }
  342. static inline int rt_se_prio(struct sched_rt_entity *rt_se)
  343. {
  344. #ifdef CONFIG_RT_GROUP_SCHED
  345. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  346. if (rt_rq)
  347. return rt_rq->highest_prio;
  348. #endif
  349. return rt_task_of(rt_se)->prio;
  350. }
  351. static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
  352. {
  353. u64 runtime = sched_rt_runtime(rt_rq);
  354. if (runtime == RUNTIME_INF)
  355. return 0;
  356. if (rt_rq->rt_throttled)
  357. return rt_rq_throttled(rt_rq);
  358. if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
  359. return 0;
  360. balance_runtime(rt_rq);
  361. runtime = sched_rt_runtime(rt_rq);
  362. if (runtime == RUNTIME_INF)
  363. return 0;
  364. if (rt_rq->rt_time > runtime) {
  365. rt_rq->rt_throttled = 1;
  366. if (rt_rq_throttled(rt_rq)) {
  367. sched_rt_rq_dequeue(rt_rq);
  368. return 1;
  369. }
  370. }
  371. return 0;
  372. }
  373. /*
  374. * Update the current task's runtime statistics. Skip current tasks that
  375. * are not in our scheduling class.
  376. */
  377. static void update_curr_rt(struct rq *rq)
  378. {
  379. struct task_struct *curr = rq->curr;
  380. struct sched_rt_entity *rt_se = &curr->rt;
  381. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  382. u64 delta_exec;
  383. if (!task_has_rt_policy(curr))
  384. return;
  385. delta_exec = rq->clock - curr->se.exec_start;
  386. if (unlikely((s64)delta_exec < 0))
  387. delta_exec = 0;
  388. schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
  389. curr->se.sum_exec_runtime += delta_exec;
  390. curr->se.exec_start = rq->clock;
  391. cpuacct_charge(curr, delta_exec);
  392. for_each_sched_rt_entity(rt_se) {
  393. rt_rq = rt_rq_of_se(rt_se);
  394. spin_lock(&rt_rq->rt_runtime_lock);
  395. rt_rq->rt_time += delta_exec;
  396. if (sched_rt_runtime_exceeded(rt_rq))
  397. resched_task(curr);
  398. spin_unlock(&rt_rq->rt_runtime_lock);
  399. }
  400. }
  401. static inline
  402. void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  403. {
  404. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  405. rt_rq->rt_nr_running++;
  406. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  407. if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
  408. #ifdef CONFIG_SMP
  409. struct rq *rq = rq_of_rt_rq(rt_rq);
  410. #endif
  411. rt_rq->highest_prio = rt_se_prio(rt_se);
  412. #ifdef CONFIG_SMP
  413. if (rq->online)
  414. cpupri_set(&rq->rd->cpupri, rq->cpu,
  415. rt_se_prio(rt_se));
  416. #endif
  417. }
  418. #endif
  419. #ifdef CONFIG_SMP
  420. if (rt_se->nr_cpus_allowed > 1) {
  421. struct rq *rq = rq_of_rt_rq(rt_rq);
  422. rq->rt.rt_nr_migratory++;
  423. }
  424. update_rt_migration(rq_of_rt_rq(rt_rq));
  425. #endif
  426. #ifdef CONFIG_RT_GROUP_SCHED
  427. if (rt_se_boosted(rt_se))
  428. rt_rq->rt_nr_boosted++;
  429. if (rt_rq->tg)
  430. start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
  431. #else
  432. start_rt_bandwidth(&def_rt_bandwidth);
  433. #endif
  434. }
  435. static inline
  436. void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  437. {
  438. #ifdef CONFIG_SMP
  439. int highest_prio = rt_rq->highest_prio;
  440. #endif
  441. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  442. WARN_ON(!rt_rq->rt_nr_running);
  443. rt_rq->rt_nr_running--;
  444. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  445. if (rt_rq->rt_nr_running) {
  446. struct rt_prio_array *array;
  447. WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
  448. if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
  449. /* recalculate */
  450. array = &rt_rq->active;
  451. rt_rq->highest_prio =
  452. sched_find_first_bit(array->bitmap);
  453. } /* otherwise leave rq->highest prio alone */
  454. } else
  455. rt_rq->highest_prio = MAX_RT_PRIO;
  456. #endif
  457. #ifdef CONFIG_SMP
  458. if (rt_se->nr_cpus_allowed > 1) {
  459. struct rq *rq = rq_of_rt_rq(rt_rq);
  460. rq->rt.rt_nr_migratory--;
  461. }
  462. if (rt_rq->highest_prio != highest_prio) {
  463. struct rq *rq = rq_of_rt_rq(rt_rq);
  464. if (rq->online)
  465. cpupri_set(&rq->rd->cpupri, rq->cpu,
  466. rt_rq->highest_prio);
  467. }
  468. update_rt_migration(rq_of_rt_rq(rt_rq));
  469. #endif /* CONFIG_SMP */
  470. #ifdef CONFIG_RT_GROUP_SCHED
  471. if (rt_se_boosted(rt_se))
  472. rt_rq->rt_nr_boosted--;
  473. WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
  474. #endif
  475. }
  476. static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
  477. {
  478. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  479. struct rt_prio_array *array = &rt_rq->active;
  480. struct rt_rq *group_rq = group_rt_rq(rt_se);
  481. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  482. /*
  483. * Don't enqueue the group if its throttled, or when empty.
  484. * The latter is a consequence of the former when a child group
  485. * get throttled and the current group doesn't have any other
  486. * active members.
  487. */
  488. if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
  489. return;
  490. list_add_tail(&rt_se->run_list, queue);
  491. __set_bit(rt_se_prio(rt_se), array->bitmap);
  492. inc_rt_tasks(rt_se, rt_rq);
  493. }
  494. static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
  495. {
  496. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  497. struct rt_prio_array *array = &rt_rq->active;
  498. list_del_init(&rt_se->run_list);
  499. if (list_empty(array->queue + rt_se_prio(rt_se)))
  500. __clear_bit(rt_se_prio(rt_se), array->bitmap);
  501. dec_rt_tasks(rt_se, rt_rq);
  502. }
  503. /*
  504. * Because the prio of an upper entry depends on the lower
  505. * entries, we must remove entries top - down.
  506. */
  507. static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
  508. {
  509. struct sched_rt_entity *back = NULL;
  510. for_each_sched_rt_entity(rt_se) {
  511. rt_se->back = back;
  512. back = rt_se;
  513. }
  514. for (rt_se = back; rt_se; rt_se = rt_se->back) {
  515. if (on_rt_rq(rt_se))
  516. __dequeue_rt_entity(rt_se);
  517. }
  518. }
  519. static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
  520. {
  521. dequeue_rt_stack(rt_se);
  522. for_each_sched_rt_entity(rt_se)
  523. __enqueue_rt_entity(rt_se);
  524. }
  525. static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
  526. {
  527. dequeue_rt_stack(rt_se);
  528. for_each_sched_rt_entity(rt_se) {
  529. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  530. if (rt_rq && rt_rq->rt_nr_running)
  531. __enqueue_rt_entity(rt_se);
  532. }
  533. }
  534. /*
  535. * Adding/removing a task to/from a priority array:
  536. */
  537. static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
  538. {
  539. struct sched_rt_entity *rt_se = &p->rt;
  540. if (wakeup)
  541. rt_se->timeout = 0;
  542. enqueue_rt_entity(rt_se);
  543. inc_cpu_load(rq, p->se.load.weight);
  544. }
  545. static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
  546. {
  547. struct sched_rt_entity *rt_se = &p->rt;
  548. update_curr_rt(rq);
  549. dequeue_rt_entity(rt_se);
  550. dec_cpu_load(rq, p->se.load.weight);
  551. }
  552. /*
  553. * Put task to the end of the run list without the overhead of dequeue
  554. * followed by enqueue.
  555. */
  556. static void
  557. requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
  558. {
  559. if (on_rt_rq(rt_se)) {
  560. struct rt_prio_array *array = &rt_rq->active;
  561. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  562. if (head)
  563. list_move(&rt_se->run_list, queue);
  564. else
  565. list_move_tail(&rt_se->run_list, queue);
  566. }
  567. }
  568. static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
  569. {
  570. struct sched_rt_entity *rt_se = &p->rt;
  571. struct rt_rq *rt_rq;
  572. for_each_sched_rt_entity(rt_se) {
  573. rt_rq = rt_rq_of_se(rt_se);
  574. requeue_rt_entity(rt_rq, rt_se, head);
  575. }
  576. }
  577. static void yield_task_rt(struct rq *rq)
  578. {
  579. requeue_task_rt(rq, rq->curr, 0);
  580. }
  581. #ifdef CONFIG_SMP
  582. static int find_lowest_rq(struct task_struct *task);
  583. static int select_task_rq_rt(struct task_struct *p, int sync)
  584. {
  585. struct rq *rq = task_rq(p);
  586. /*
  587. * If the current task is an RT task, then
  588. * try to see if we can wake this RT task up on another
  589. * runqueue. Otherwise simply start this RT task
  590. * on its current runqueue.
  591. *
  592. * We want to avoid overloading runqueues. Even if
  593. * the RT task is of higher priority than the current RT task.
  594. * RT tasks behave differently than other tasks. If
  595. * one gets preempted, we try to push it off to another queue.
  596. * So trying to keep a preempting RT task on the same
  597. * cache hot CPU will force the running RT task to
  598. * a cold CPU. So we waste all the cache for the lower
  599. * RT task in hopes of saving some of a RT task
  600. * that is just being woken and probably will have
  601. * cold cache anyway.
  602. */
  603. if (unlikely(rt_task(rq->curr)) &&
  604. (p->rt.nr_cpus_allowed > 1)) {
  605. int cpu = find_lowest_rq(p);
  606. return (cpu == -1) ? task_cpu(p) : cpu;
  607. }
  608. /*
  609. * Otherwise, just let it ride on the affined RQ and the
  610. * post-schedule router will push the preempted task away
  611. */
  612. return task_cpu(p);
  613. }
  614. static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
  615. {
  616. cpumask_t mask;
  617. if (rq->curr->rt.nr_cpus_allowed == 1)
  618. return;
  619. if (p->rt.nr_cpus_allowed != 1
  620. && cpupri_find(&rq->rd->cpupri, p, &mask))
  621. return;
  622. if (!cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
  623. return;
  624. /*
  625. * There appears to be other cpus that can accept
  626. * current and none to run 'p', so lets reschedule
  627. * to try and push current away:
  628. */
  629. requeue_task_rt(rq, p, 1);
  630. resched_task(rq->curr);
  631. }
  632. #endif /* CONFIG_SMP */
  633. /*
  634. * Preempt the current task with a newly woken task if needed:
  635. */
  636. static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
  637. {
  638. if (p->prio < rq->curr->prio) {
  639. resched_task(rq->curr);
  640. return;
  641. }
  642. #ifdef CONFIG_SMP
  643. /*
  644. * If:
  645. *
  646. * - the newly woken task is of equal priority to the current task
  647. * - the newly woken task is non-migratable while current is migratable
  648. * - current will be preempted on the next reschedule
  649. *
  650. * we should check to see if current can readily move to a different
  651. * cpu. If so, we will reschedule to allow the push logic to try
  652. * to move current somewhere else, making room for our non-migratable
  653. * task.
  654. */
  655. if (p->prio == rq->curr->prio && !need_resched())
  656. check_preempt_equal_prio(rq, p);
  657. #endif
  658. }
  659. static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
  660. struct rt_rq *rt_rq)
  661. {
  662. struct rt_prio_array *array = &rt_rq->active;
  663. struct sched_rt_entity *next = NULL;
  664. struct list_head *queue;
  665. int idx;
  666. idx = sched_find_first_bit(array->bitmap);
  667. BUG_ON(idx >= MAX_RT_PRIO);
  668. queue = array->queue + idx;
  669. next = list_entry(queue->next, struct sched_rt_entity, run_list);
  670. return next;
  671. }
  672. static struct task_struct *pick_next_task_rt(struct rq *rq)
  673. {
  674. struct sched_rt_entity *rt_se;
  675. struct task_struct *p;
  676. struct rt_rq *rt_rq;
  677. rt_rq = &rq->rt;
  678. if (unlikely(!rt_rq->rt_nr_running))
  679. return NULL;
  680. if (rt_rq_throttled(rt_rq))
  681. return NULL;
  682. do {
  683. rt_se = pick_next_rt_entity(rq, rt_rq);
  684. BUG_ON(!rt_se);
  685. rt_rq = group_rt_rq(rt_se);
  686. } while (rt_rq);
  687. p = rt_task_of(rt_se);
  688. p->se.exec_start = rq->clock;
  689. return p;
  690. }
  691. static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
  692. {
  693. update_curr_rt(rq);
  694. p->se.exec_start = 0;
  695. }
  696. #ifdef CONFIG_SMP
  697. /* Only try algorithms three times */
  698. #define RT_MAX_TRIES 3
  699. static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
  700. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
  701. static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
  702. {
  703. if (!task_running(rq, p) &&
  704. (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
  705. (p->rt.nr_cpus_allowed > 1))
  706. return 1;
  707. return 0;
  708. }
  709. /* Return the second highest RT task, NULL otherwise */
  710. static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
  711. {
  712. struct task_struct *next = NULL;
  713. struct sched_rt_entity *rt_se;
  714. struct rt_prio_array *array;
  715. struct rt_rq *rt_rq;
  716. int idx;
  717. for_each_leaf_rt_rq(rt_rq, rq) {
  718. array = &rt_rq->active;
  719. idx = sched_find_first_bit(array->bitmap);
  720. next_idx:
  721. if (idx >= MAX_RT_PRIO)
  722. continue;
  723. if (next && next->prio < idx)
  724. continue;
  725. list_for_each_entry(rt_se, array->queue + idx, run_list) {
  726. struct task_struct *p = rt_task_of(rt_se);
  727. if (pick_rt_task(rq, p, cpu)) {
  728. next = p;
  729. break;
  730. }
  731. }
  732. if (!next) {
  733. idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
  734. goto next_idx;
  735. }
  736. }
  737. return next;
  738. }
  739. static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
  740. static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
  741. {
  742. int first;
  743. /* "this_cpu" is cheaper to preempt than a remote processor */
  744. if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
  745. return this_cpu;
  746. first = first_cpu(*mask);
  747. if (first != NR_CPUS)
  748. return first;
  749. return -1;
  750. }
  751. static int find_lowest_rq(struct task_struct *task)
  752. {
  753. struct sched_domain *sd;
  754. cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
  755. int this_cpu = smp_processor_id();
  756. int cpu = task_cpu(task);
  757. if (task->rt.nr_cpus_allowed == 1)
  758. return -1; /* No other targets possible */
  759. if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
  760. return -1; /* No targets found */
  761. /*
  762. * Only consider CPUs that are usable for migration.
  763. * I guess we might want to change cpupri_find() to ignore those
  764. * in the first place.
  765. */
  766. cpus_and(*lowest_mask, *lowest_mask, cpu_active_map);
  767. /*
  768. * At this point we have built a mask of cpus representing the
  769. * lowest priority tasks in the system. Now we want to elect
  770. * the best one based on our affinity and topology.
  771. *
  772. * We prioritize the last cpu that the task executed on since
  773. * it is most likely cache-hot in that location.
  774. */
  775. if (cpu_isset(cpu, *lowest_mask))
  776. return cpu;
  777. /*
  778. * Otherwise, we consult the sched_domains span maps to figure
  779. * out which cpu is logically closest to our hot cache data.
  780. */
  781. if (this_cpu == cpu)
  782. this_cpu = -1; /* Skip this_cpu opt if the same */
  783. for_each_domain(cpu, sd) {
  784. if (sd->flags & SD_WAKE_AFFINE) {
  785. cpumask_t domain_mask;
  786. int best_cpu;
  787. cpus_and(domain_mask, sd->span, *lowest_mask);
  788. best_cpu = pick_optimal_cpu(this_cpu,
  789. &domain_mask);
  790. if (best_cpu != -1)
  791. return best_cpu;
  792. }
  793. }
  794. /*
  795. * And finally, if there were no matches within the domains
  796. * just give the caller *something* to work with from the compatible
  797. * locations.
  798. */
  799. return pick_optimal_cpu(this_cpu, lowest_mask);
  800. }
  801. /* Will lock the rq it finds */
  802. static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
  803. {
  804. struct rq *lowest_rq = NULL;
  805. int tries;
  806. int cpu;
  807. for (tries = 0; tries < RT_MAX_TRIES; tries++) {
  808. cpu = find_lowest_rq(task);
  809. if ((cpu == -1) || (cpu == rq->cpu))
  810. break;
  811. lowest_rq = cpu_rq(cpu);
  812. /* if the prio of this runqueue changed, try again */
  813. if (double_lock_balance(rq, lowest_rq)) {
  814. /*
  815. * We had to unlock the run queue. In
  816. * the mean time, task could have
  817. * migrated already or had its affinity changed.
  818. * Also make sure that it wasn't scheduled on its rq.
  819. */
  820. if (unlikely(task_rq(task) != rq ||
  821. !cpu_isset(lowest_rq->cpu,
  822. task->cpus_allowed) ||
  823. task_running(rq, task) ||
  824. !task->se.on_rq)) {
  825. spin_unlock(&lowest_rq->lock);
  826. lowest_rq = NULL;
  827. break;
  828. }
  829. }
  830. /* If this rq is still suitable use it. */
  831. if (lowest_rq->rt.highest_prio > task->prio)
  832. break;
  833. /* try again */
  834. spin_unlock(&lowest_rq->lock);
  835. lowest_rq = NULL;
  836. }
  837. return lowest_rq;
  838. }
  839. /*
  840. * If the current CPU has more than one RT task, see if the non
  841. * running task can migrate over to a CPU that is running a task
  842. * of lesser priority.
  843. */
  844. static int push_rt_task(struct rq *rq)
  845. {
  846. struct task_struct *next_task;
  847. struct rq *lowest_rq;
  848. int ret = 0;
  849. int paranoid = RT_MAX_TRIES;
  850. if (!rq->rt.overloaded)
  851. return 0;
  852. next_task = pick_next_highest_task_rt(rq, -1);
  853. if (!next_task)
  854. return 0;
  855. retry:
  856. if (unlikely(next_task == rq->curr)) {
  857. WARN_ON(1);
  858. return 0;
  859. }
  860. /*
  861. * It's possible that the next_task slipped in of
  862. * higher priority than current. If that's the case
  863. * just reschedule current.
  864. */
  865. if (unlikely(next_task->prio < rq->curr->prio)) {
  866. resched_task(rq->curr);
  867. return 0;
  868. }
  869. /* We might release rq lock */
  870. get_task_struct(next_task);
  871. /* find_lock_lowest_rq locks the rq if found */
  872. lowest_rq = find_lock_lowest_rq(next_task, rq);
  873. if (!lowest_rq) {
  874. struct task_struct *task;
  875. /*
  876. * find lock_lowest_rq releases rq->lock
  877. * so it is possible that next_task has changed.
  878. * If it has, then try again.
  879. */
  880. task = pick_next_highest_task_rt(rq, -1);
  881. if (unlikely(task != next_task) && task && paranoid--) {
  882. put_task_struct(next_task);
  883. next_task = task;
  884. goto retry;
  885. }
  886. goto out;
  887. }
  888. deactivate_task(rq, next_task, 0);
  889. set_task_cpu(next_task, lowest_rq->cpu);
  890. activate_task(lowest_rq, next_task, 0);
  891. resched_task(lowest_rq->curr);
  892. spin_unlock(&lowest_rq->lock);
  893. ret = 1;
  894. out:
  895. put_task_struct(next_task);
  896. return ret;
  897. }
  898. /*
  899. * TODO: Currently we just use the second highest prio task on
  900. * the queue, and stop when it can't migrate (or there's
  901. * no more RT tasks). There may be a case where a lower
  902. * priority RT task has a different affinity than the
  903. * higher RT task. In this case the lower RT task could
  904. * possibly be able to migrate where as the higher priority
  905. * RT task could not. We currently ignore this issue.
  906. * Enhancements are welcome!
  907. */
  908. static void push_rt_tasks(struct rq *rq)
  909. {
  910. /* push_rt_task will return true if it moved an RT */
  911. while (push_rt_task(rq))
  912. ;
  913. }
  914. static int pull_rt_task(struct rq *this_rq)
  915. {
  916. int this_cpu = this_rq->cpu, ret = 0, cpu;
  917. struct task_struct *p, *next;
  918. struct rq *src_rq;
  919. if (likely(!rt_overloaded(this_rq)))
  920. return 0;
  921. next = pick_next_task_rt(this_rq);
  922. for_each_cpu_mask_nr(cpu, this_rq->rd->rto_mask) {
  923. if (this_cpu == cpu)
  924. continue;
  925. src_rq = cpu_rq(cpu);
  926. /*
  927. * We can potentially drop this_rq's lock in
  928. * double_lock_balance, and another CPU could
  929. * steal our next task - hence we must cause
  930. * the caller to recalculate the next task
  931. * in that case:
  932. */
  933. if (double_lock_balance(this_rq, src_rq)) {
  934. struct task_struct *old_next = next;
  935. next = pick_next_task_rt(this_rq);
  936. if (next != old_next)
  937. ret = 1;
  938. }
  939. /*
  940. * Are there still pullable RT tasks?
  941. */
  942. if (src_rq->rt.rt_nr_running <= 1)
  943. goto skip;
  944. p = pick_next_highest_task_rt(src_rq, this_cpu);
  945. /*
  946. * Do we have an RT task that preempts
  947. * the to-be-scheduled task?
  948. */
  949. if (p && (!next || (p->prio < next->prio))) {
  950. WARN_ON(p == src_rq->curr);
  951. WARN_ON(!p->se.on_rq);
  952. /*
  953. * There's a chance that p is higher in priority
  954. * than what's currently running on its cpu.
  955. * This is just that p is wakeing up and hasn't
  956. * had a chance to schedule. We only pull
  957. * p if it is lower in priority than the
  958. * current task on the run queue or
  959. * this_rq next task is lower in prio than
  960. * the current task on that rq.
  961. */
  962. if (p->prio < src_rq->curr->prio ||
  963. (next && next->prio < src_rq->curr->prio))
  964. goto skip;
  965. ret = 1;
  966. deactivate_task(src_rq, p, 0);
  967. set_task_cpu(p, this_cpu);
  968. activate_task(this_rq, p, 0);
  969. /*
  970. * We continue with the search, just in
  971. * case there's an even higher prio task
  972. * in another runqueue. (low likelyhood
  973. * but possible)
  974. *
  975. * Update next so that we won't pick a task
  976. * on another cpu with a priority lower (or equal)
  977. * than the one we just picked.
  978. */
  979. next = p;
  980. }
  981. skip:
  982. spin_unlock(&src_rq->lock);
  983. }
  984. return ret;
  985. }
  986. static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
  987. {
  988. /* Try to pull RT tasks here if we lower this rq's prio */
  989. if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
  990. pull_rt_task(rq);
  991. }
  992. static void post_schedule_rt(struct rq *rq)
  993. {
  994. /*
  995. * If we have more than one rt_task queued, then
  996. * see if we can push the other rt_tasks off to other CPUS.
  997. * Note we may release the rq lock, and since
  998. * the lock was owned by prev, we need to release it
  999. * first via finish_lock_switch and then reaquire it here.
  1000. */
  1001. if (unlikely(rq->rt.overloaded)) {
  1002. spin_lock_irq(&rq->lock);
  1003. push_rt_tasks(rq);
  1004. spin_unlock_irq(&rq->lock);
  1005. }
  1006. }
  1007. /*
  1008. * If we are not running and we are not going to reschedule soon, we should
  1009. * try to push tasks away now
  1010. */
  1011. static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
  1012. {
  1013. if (!task_running(rq, p) &&
  1014. !test_tsk_need_resched(rq->curr) &&
  1015. rq->rt.overloaded)
  1016. push_rt_tasks(rq);
  1017. }
  1018. static unsigned long
  1019. load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1020. unsigned long max_load_move,
  1021. struct sched_domain *sd, enum cpu_idle_type idle,
  1022. int *all_pinned, int *this_best_prio)
  1023. {
  1024. /* don't touch RT tasks */
  1025. return 0;
  1026. }
  1027. static int
  1028. move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1029. struct sched_domain *sd, enum cpu_idle_type idle)
  1030. {
  1031. /* don't touch RT tasks */
  1032. return 0;
  1033. }
  1034. static void set_cpus_allowed_rt(struct task_struct *p,
  1035. const cpumask_t *new_mask)
  1036. {
  1037. int weight = cpus_weight(*new_mask);
  1038. BUG_ON(!rt_task(p));
  1039. /*
  1040. * Update the migration status of the RQ if we have an RT task
  1041. * which is running AND changing its weight value.
  1042. */
  1043. if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
  1044. struct rq *rq = task_rq(p);
  1045. if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
  1046. rq->rt.rt_nr_migratory++;
  1047. } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
  1048. BUG_ON(!rq->rt.rt_nr_migratory);
  1049. rq->rt.rt_nr_migratory--;
  1050. }
  1051. update_rt_migration(rq);
  1052. }
  1053. p->cpus_allowed = *new_mask;
  1054. p->rt.nr_cpus_allowed = weight;
  1055. }
  1056. /* Assumes rq->lock is held */
  1057. static void rq_online_rt(struct rq *rq)
  1058. {
  1059. if (rq->rt.overloaded)
  1060. rt_set_overload(rq);
  1061. __enable_runtime(rq);
  1062. cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
  1063. }
  1064. /* Assumes rq->lock is held */
  1065. static void rq_offline_rt(struct rq *rq)
  1066. {
  1067. if (rq->rt.overloaded)
  1068. rt_clear_overload(rq);
  1069. __disable_runtime(rq);
  1070. cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
  1071. }
  1072. /*
  1073. * When switch from the rt queue, we bring ourselves to a position
  1074. * that we might want to pull RT tasks from other runqueues.
  1075. */
  1076. static void switched_from_rt(struct rq *rq, struct task_struct *p,
  1077. int running)
  1078. {
  1079. /*
  1080. * If there are other RT tasks then we will reschedule
  1081. * and the scheduling of the other RT tasks will handle
  1082. * the balancing. But if we are the last RT task
  1083. * we may need to handle the pulling of RT tasks
  1084. * now.
  1085. */
  1086. if (!rq->rt.rt_nr_running)
  1087. pull_rt_task(rq);
  1088. }
  1089. #endif /* CONFIG_SMP */
  1090. /*
  1091. * When switching a task to RT, we may overload the runqueue
  1092. * with RT tasks. In this case we try to push them off to
  1093. * other runqueues.
  1094. */
  1095. static void switched_to_rt(struct rq *rq, struct task_struct *p,
  1096. int running)
  1097. {
  1098. int check_resched = 1;
  1099. /*
  1100. * If we are already running, then there's nothing
  1101. * that needs to be done. But if we are not running
  1102. * we may need to preempt the current running task.
  1103. * If that current running task is also an RT task
  1104. * then see if we can move to another run queue.
  1105. */
  1106. if (!running) {
  1107. #ifdef CONFIG_SMP
  1108. if (rq->rt.overloaded && push_rt_task(rq) &&
  1109. /* Don't resched if we changed runqueues */
  1110. rq != task_rq(p))
  1111. check_resched = 0;
  1112. #endif /* CONFIG_SMP */
  1113. if (check_resched && p->prio < rq->curr->prio)
  1114. resched_task(rq->curr);
  1115. }
  1116. }
  1117. /*
  1118. * Priority of the task has changed. This may cause
  1119. * us to initiate a push or pull.
  1120. */
  1121. static void prio_changed_rt(struct rq *rq, struct task_struct *p,
  1122. int oldprio, int running)
  1123. {
  1124. if (running) {
  1125. #ifdef CONFIG_SMP
  1126. /*
  1127. * If our priority decreases while running, we
  1128. * may need to pull tasks to this runqueue.
  1129. */
  1130. if (oldprio < p->prio)
  1131. pull_rt_task(rq);
  1132. /*
  1133. * If there's a higher priority task waiting to run
  1134. * then reschedule. Note, the above pull_rt_task
  1135. * can release the rq lock and p could migrate.
  1136. * Only reschedule if p is still on the same runqueue.
  1137. */
  1138. if (p->prio > rq->rt.highest_prio && rq->curr == p)
  1139. resched_task(p);
  1140. #else
  1141. /* For UP simply resched on drop of prio */
  1142. if (oldprio < p->prio)
  1143. resched_task(p);
  1144. #endif /* CONFIG_SMP */
  1145. } else {
  1146. /*
  1147. * This task is not running, but if it is
  1148. * greater than the current running task
  1149. * then reschedule.
  1150. */
  1151. if (p->prio < rq->curr->prio)
  1152. resched_task(rq->curr);
  1153. }
  1154. }
  1155. static void watchdog(struct rq *rq, struct task_struct *p)
  1156. {
  1157. unsigned long soft, hard;
  1158. if (!p->signal)
  1159. return;
  1160. soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
  1161. hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
  1162. if (soft != RLIM_INFINITY) {
  1163. unsigned long next;
  1164. p->rt.timeout++;
  1165. next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
  1166. if (p->rt.timeout > next)
  1167. p->it_sched_expires = p->se.sum_exec_runtime;
  1168. }
  1169. }
  1170. static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
  1171. {
  1172. update_curr_rt(rq);
  1173. watchdog(rq, p);
  1174. /*
  1175. * RR tasks need a special form of timeslice management.
  1176. * FIFO tasks have no timeslices.
  1177. */
  1178. if (p->policy != SCHED_RR)
  1179. return;
  1180. if (--p->rt.time_slice)
  1181. return;
  1182. p->rt.time_slice = DEF_TIMESLICE;
  1183. /*
  1184. * Requeue to the end of queue if we are not the only element
  1185. * on the queue:
  1186. */
  1187. if (p->rt.run_list.prev != p->rt.run_list.next) {
  1188. requeue_task_rt(rq, p, 0);
  1189. set_tsk_need_resched(p);
  1190. }
  1191. }
  1192. static void set_curr_task_rt(struct rq *rq)
  1193. {
  1194. struct task_struct *p = rq->curr;
  1195. p->se.exec_start = rq->clock;
  1196. }
  1197. static const struct sched_class rt_sched_class = {
  1198. .next = &fair_sched_class,
  1199. .enqueue_task = enqueue_task_rt,
  1200. .dequeue_task = dequeue_task_rt,
  1201. .yield_task = yield_task_rt,
  1202. #ifdef CONFIG_SMP
  1203. .select_task_rq = select_task_rq_rt,
  1204. #endif /* CONFIG_SMP */
  1205. .check_preempt_curr = check_preempt_curr_rt,
  1206. .pick_next_task = pick_next_task_rt,
  1207. .put_prev_task = put_prev_task_rt,
  1208. #ifdef CONFIG_SMP
  1209. .load_balance = load_balance_rt,
  1210. .move_one_task = move_one_task_rt,
  1211. .set_cpus_allowed = set_cpus_allowed_rt,
  1212. .rq_online = rq_online_rt,
  1213. .rq_offline = rq_offline_rt,
  1214. .pre_schedule = pre_schedule_rt,
  1215. .post_schedule = post_schedule_rt,
  1216. .task_wake_up = task_wake_up_rt,
  1217. .switched_from = switched_from_rt,
  1218. #endif
  1219. .set_curr_task = set_curr_task_rt,
  1220. .task_tick = task_tick_rt,
  1221. .prio_changed = prio_changed_rt,
  1222. .switched_to = switched_to_rt,
  1223. };
  1224. #ifdef CONFIG_SCHED_DEBUG
  1225. extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
  1226. static void print_rt_stats(struct seq_file *m, int cpu)
  1227. {
  1228. struct rt_rq *rt_rq;
  1229. rcu_read_lock();
  1230. for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
  1231. print_rt_rq(m, cpu, rt_rq);
  1232. rcu_read_unlock();
  1233. }
  1234. #endif /* CONFIG_SCHED_DEBUG */