sched.c 219 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include "sched_cpupri.h"
  76. /*
  77. * Convert user-nice values [ -20 ... 0 ... 19 ]
  78. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  79. * and back.
  80. */
  81. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  82. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  83. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  84. /*
  85. * 'User priority' is the nice value converted to something we
  86. * can work with better when scaling various scheduler parameters,
  87. * it's a [ 0 ... 39 ] range.
  88. */
  89. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  90. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  91. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  92. /*
  93. * Helpers for converting nanosecond timing to jiffy resolution
  94. */
  95. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  96. #define NICE_0_LOAD SCHED_LOAD_SCALE
  97. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  98. /*
  99. * These are the 'tuning knobs' of the scheduler:
  100. *
  101. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  102. * Timeslices get refilled after they expire.
  103. */
  104. #define DEF_TIMESLICE (100 * HZ / 1000)
  105. /*
  106. * single value that denotes runtime == period, ie unlimited time.
  107. */
  108. #define RUNTIME_INF ((u64)~0ULL)
  109. #ifdef CONFIG_SMP
  110. /*
  111. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  112. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  113. */
  114. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  115. {
  116. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  117. }
  118. /*
  119. * Each time a sched group cpu_power is changed,
  120. * we must compute its reciprocal value
  121. */
  122. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  123. {
  124. sg->__cpu_power += val;
  125. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  126. }
  127. #endif
  128. static inline int rt_policy(int policy)
  129. {
  130. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  131. return 1;
  132. return 0;
  133. }
  134. static inline int task_has_rt_policy(struct task_struct *p)
  135. {
  136. return rt_policy(p->policy);
  137. }
  138. /*
  139. * This is the priority-queue data structure of the RT scheduling class:
  140. */
  141. struct rt_prio_array {
  142. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  143. struct list_head queue[MAX_RT_PRIO];
  144. };
  145. struct rt_bandwidth {
  146. /* nests inside the rq lock: */
  147. spinlock_t rt_runtime_lock;
  148. ktime_t rt_period;
  149. u64 rt_runtime;
  150. struct hrtimer rt_period_timer;
  151. };
  152. static struct rt_bandwidth def_rt_bandwidth;
  153. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  154. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  155. {
  156. struct rt_bandwidth *rt_b =
  157. container_of(timer, struct rt_bandwidth, rt_period_timer);
  158. ktime_t now;
  159. int overrun;
  160. int idle = 0;
  161. for (;;) {
  162. now = hrtimer_cb_get_time(timer);
  163. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  164. if (!overrun)
  165. break;
  166. idle = do_sched_rt_period_timer(rt_b, overrun);
  167. }
  168. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  169. }
  170. static
  171. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  172. {
  173. rt_b->rt_period = ns_to_ktime(period);
  174. rt_b->rt_runtime = runtime;
  175. spin_lock_init(&rt_b->rt_runtime_lock);
  176. hrtimer_init(&rt_b->rt_period_timer,
  177. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  178. rt_b->rt_period_timer.function = sched_rt_period_timer;
  179. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  180. }
  181. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  182. {
  183. ktime_t now;
  184. if (rt_b->rt_runtime == RUNTIME_INF)
  185. return;
  186. if (hrtimer_active(&rt_b->rt_period_timer))
  187. return;
  188. spin_lock(&rt_b->rt_runtime_lock);
  189. for (;;) {
  190. if (hrtimer_active(&rt_b->rt_period_timer))
  191. break;
  192. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  193. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  194. hrtimer_start(&rt_b->rt_period_timer,
  195. rt_b->rt_period_timer.expires,
  196. HRTIMER_MODE_ABS);
  197. }
  198. spin_unlock(&rt_b->rt_runtime_lock);
  199. }
  200. #ifdef CONFIG_RT_GROUP_SCHED
  201. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  202. {
  203. hrtimer_cancel(&rt_b->rt_period_timer);
  204. }
  205. #endif
  206. /*
  207. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  208. * detach_destroy_domains and partition_sched_domains.
  209. */
  210. static DEFINE_MUTEX(sched_domains_mutex);
  211. #ifdef CONFIG_GROUP_SCHED
  212. #include <linux/cgroup.h>
  213. struct cfs_rq;
  214. static LIST_HEAD(task_groups);
  215. /* task group related information */
  216. struct task_group {
  217. #ifdef CONFIG_CGROUP_SCHED
  218. struct cgroup_subsys_state css;
  219. #endif
  220. #ifdef CONFIG_FAIR_GROUP_SCHED
  221. /* schedulable entities of this group on each cpu */
  222. struct sched_entity **se;
  223. /* runqueue "owned" by this group on each cpu */
  224. struct cfs_rq **cfs_rq;
  225. unsigned long shares;
  226. #endif
  227. #ifdef CONFIG_RT_GROUP_SCHED
  228. struct sched_rt_entity **rt_se;
  229. struct rt_rq **rt_rq;
  230. struct rt_bandwidth rt_bandwidth;
  231. #endif
  232. struct rcu_head rcu;
  233. struct list_head list;
  234. struct task_group *parent;
  235. struct list_head siblings;
  236. struct list_head children;
  237. };
  238. #ifdef CONFIG_USER_SCHED
  239. /*
  240. * Root task group.
  241. * Every UID task group (including init_task_group aka UID-0) will
  242. * be a child to this group.
  243. */
  244. struct task_group root_task_group;
  245. #ifdef CONFIG_FAIR_GROUP_SCHED
  246. /* Default task group's sched entity on each cpu */
  247. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  248. /* Default task group's cfs_rq on each cpu */
  249. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  250. #endif /* CONFIG_FAIR_GROUP_SCHED */
  251. #ifdef CONFIG_RT_GROUP_SCHED
  252. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  253. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  254. #endif /* CONFIG_RT_GROUP_SCHED */
  255. #else /* !CONFIG_FAIR_GROUP_SCHED */
  256. #define root_task_group init_task_group
  257. #endif /* CONFIG_FAIR_GROUP_SCHED */
  258. /* task_group_lock serializes add/remove of task groups and also changes to
  259. * a task group's cpu shares.
  260. */
  261. static DEFINE_SPINLOCK(task_group_lock);
  262. #ifdef CONFIG_FAIR_GROUP_SCHED
  263. #ifdef CONFIG_USER_SCHED
  264. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  265. #else /* !CONFIG_USER_SCHED */
  266. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  267. #endif /* CONFIG_USER_SCHED */
  268. /*
  269. * A weight of 0 or 1 can cause arithmetics problems.
  270. * A weight of a cfs_rq is the sum of weights of which entities
  271. * are queued on this cfs_rq, so a weight of a entity should not be
  272. * too large, so as the shares value of a task group.
  273. * (The default weight is 1024 - so there's no practical
  274. * limitation from this.)
  275. */
  276. #define MIN_SHARES 2
  277. #define MAX_SHARES (1UL << 18)
  278. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  279. #endif
  280. /* Default task group.
  281. * Every task in system belong to this group at bootup.
  282. */
  283. struct task_group init_task_group;
  284. /* return group to which a task belongs */
  285. static inline struct task_group *task_group(struct task_struct *p)
  286. {
  287. struct task_group *tg;
  288. #ifdef CONFIG_USER_SCHED
  289. tg = p->user->tg;
  290. #elif defined(CONFIG_CGROUP_SCHED)
  291. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  292. struct task_group, css);
  293. #else
  294. tg = &init_task_group;
  295. #endif
  296. return tg;
  297. }
  298. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  299. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  300. {
  301. #ifdef CONFIG_FAIR_GROUP_SCHED
  302. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  303. p->se.parent = task_group(p)->se[cpu];
  304. #endif
  305. #ifdef CONFIG_RT_GROUP_SCHED
  306. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  307. p->rt.parent = task_group(p)->rt_se[cpu];
  308. #endif
  309. }
  310. #else
  311. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  312. static inline struct task_group *task_group(struct task_struct *p)
  313. {
  314. return NULL;
  315. }
  316. #endif /* CONFIG_GROUP_SCHED */
  317. /* CFS-related fields in a runqueue */
  318. struct cfs_rq {
  319. struct load_weight load;
  320. unsigned long nr_running;
  321. u64 exec_clock;
  322. u64 min_vruntime;
  323. u64 pair_start;
  324. struct rb_root tasks_timeline;
  325. struct rb_node *rb_leftmost;
  326. struct list_head tasks;
  327. struct list_head *balance_iterator;
  328. /*
  329. * 'curr' points to currently running entity on this cfs_rq.
  330. * It is set to NULL otherwise (i.e when none are currently running).
  331. */
  332. struct sched_entity *curr, *next;
  333. unsigned long nr_spread_over;
  334. #ifdef CONFIG_FAIR_GROUP_SCHED
  335. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  336. /*
  337. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  338. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  339. * (like users, containers etc.)
  340. *
  341. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  342. * list is used during load balance.
  343. */
  344. struct list_head leaf_cfs_rq_list;
  345. struct task_group *tg; /* group that "owns" this runqueue */
  346. #ifdef CONFIG_SMP
  347. /*
  348. * the part of load.weight contributed by tasks
  349. */
  350. unsigned long task_weight;
  351. /*
  352. * h_load = weight * f(tg)
  353. *
  354. * Where f(tg) is the recursive weight fraction assigned to
  355. * this group.
  356. */
  357. unsigned long h_load;
  358. /*
  359. * this cpu's part of tg->shares
  360. */
  361. unsigned long shares;
  362. /*
  363. * load.weight at the time we set shares
  364. */
  365. unsigned long rq_weight;
  366. #endif
  367. #endif
  368. };
  369. /* Real-Time classes' related field in a runqueue: */
  370. struct rt_rq {
  371. struct rt_prio_array active;
  372. unsigned long rt_nr_running;
  373. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  374. int highest_prio; /* highest queued rt task prio */
  375. #endif
  376. #ifdef CONFIG_SMP
  377. unsigned long rt_nr_migratory;
  378. int overloaded;
  379. #endif
  380. int rt_throttled;
  381. u64 rt_time;
  382. u64 rt_runtime;
  383. /* Nests inside the rq lock: */
  384. spinlock_t rt_runtime_lock;
  385. #ifdef CONFIG_RT_GROUP_SCHED
  386. unsigned long rt_nr_boosted;
  387. struct rq *rq;
  388. struct list_head leaf_rt_rq_list;
  389. struct task_group *tg;
  390. struct sched_rt_entity *rt_se;
  391. #endif
  392. };
  393. #ifdef CONFIG_SMP
  394. /*
  395. * We add the notion of a root-domain which will be used to define per-domain
  396. * variables. Each exclusive cpuset essentially defines an island domain by
  397. * fully partitioning the member cpus from any other cpuset. Whenever a new
  398. * exclusive cpuset is created, we also create and attach a new root-domain
  399. * object.
  400. *
  401. */
  402. struct root_domain {
  403. atomic_t refcount;
  404. cpumask_t span;
  405. cpumask_t online;
  406. /*
  407. * The "RT overload" flag: it gets set if a CPU has more than
  408. * one runnable RT task.
  409. */
  410. cpumask_t rto_mask;
  411. atomic_t rto_count;
  412. #ifdef CONFIG_SMP
  413. struct cpupri cpupri;
  414. #endif
  415. };
  416. /*
  417. * By default the system creates a single root-domain with all cpus as
  418. * members (mimicking the global state we have today).
  419. */
  420. static struct root_domain def_root_domain;
  421. #endif
  422. /*
  423. * This is the main, per-CPU runqueue data structure.
  424. *
  425. * Locking rule: those places that want to lock multiple runqueues
  426. * (such as the load balancing or the thread migration code), lock
  427. * acquire operations must be ordered by ascending &runqueue.
  428. */
  429. struct rq {
  430. /* runqueue lock: */
  431. spinlock_t lock;
  432. /*
  433. * nr_running and cpu_load should be in the same cacheline because
  434. * remote CPUs use both these fields when doing load calculation.
  435. */
  436. unsigned long nr_running;
  437. #define CPU_LOAD_IDX_MAX 5
  438. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  439. unsigned char idle_at_tick;
  440. #ifdef CONFIG_NO_HZ
  441. unsigned long last_tick_seen;
  442. unsigned char in_nohz_recently;
  443. #endif
  444. /* capture load from *all* tasks on this cpu: */
  445. struct load_weight load;
  446. unsigned long nr_load_updates;
  447. u64 nr_switches;
  448. struct cfs_rq cfs;
  449. struct rt_rq rt;
  450. #ifdef CONFIG_FAIR_GROUP_SCHED
  451. /* list of leaf cfs_rq on this cpu: */
  452. struct list_head leaf_cfs_rq_list;
  453. #endif
  454. #ifdef CONFIG_RT_GROUP_SCHED
  455. struct list_head leaf_rt_rq_list;
  456. #endif
  457. /*
  458. * This is part of a global counter where only the total sum
  459. * over all CPUs matters. A task can increase this counter on
  460. * one CPU and if it got migrated afterwards it may decrease
  461. * it on another CPU. Always updated under the runqueue lock:
  462. */
  463. unsigned long nr_uninterruptible;
  464. struct task_struct *curr, *idle;
  465. unsigned long next_balance;
  466. struct mm_struct *prev_mm;
  467. u64 clock;
  468. atomic_t nr_iowait;
  469. #ifdef CONFIG_SMP
  470. struct root_domain *rd;
  471. struct sched_domain *sd;
  472. /* For active balancing */
  473. int active_balance;
  474. int push_cpu;
  475. /* cpu of this runqueue: */
  476. int cpu;
  477. int online;
  478. unsigned long avg_load_per_task;
  479. struct task_struct *migration_thread;
  480. struct list_head migration_queue;
  481. #endif
  482. #ifdef CONFIG_SCHED_HRTICK
  483. #ifdef CONFIG_SMP
  484. int hrtick_csd_pending;
  485. struct call_single_data hrtick_csd;
  486. #endif
  487. struct hrtimer hrtick_timer;
  488. #endif
  489. #ifdef CONFIG_SCHEDSTATS
  490. /* latency stats */
  491. struct sched_info rq_sched_info;
  492. /* sys_sched_yield() stats */
  493. unsigned int yld_exp_empty;
  494. unsigned int yld_act_empty;
  495. unsigned int yld_both_empty;
  496. unsigned int yld_count;
  497. /* schedule() stats */
  498. unsigned int sched_switch;
  499. unsigned int sched_count;
  500. unsigned int sched_goidle;
  501. /* try_to_wake_up() stats */
  502. unsigned int ttwu_count;
  503. unsigned int ttwu_local;
  504. /* BKL stats */
  505. unsigned int bkl_count;
  506. #endif
  507. struct lock_class_key rq_lock_key;
  508. };
  509. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  510. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  511. {
  512. rq->curr->sched_class->check_preempt_curr(rq, p);
  513. }
  514. static inline int cpu_of(struct rq *rq)
  515. {
  516. #ifdef CONFIG_SMP
  517. return rq->cpu;
  518. #else
  519. return 0;
  520. #endif
  521. }
  522. /*
  523. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  524. * See detach_destroy_domains: synchronize_sched for details.
  525. *
  526. * The domain tree of any CPU may only be accessed from within
  527. * preempt-disabled sections.
  528. */
  529. #define for_each_domain(cpu, __sd) \
  530. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  531. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  532. #define this_rq() (&__get_cpu_var(runqueues))
  533. #define task_rq(p) cpu_rq(task_cpu(p))
  534. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  535. static inline void update_rq_clock(struct rq *rq)
  536. {
  537. rq->clock = sched_clock_cpu(cpu_of(rq));
  538. }
  539. /*
  540. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  541. */
  542. #ifdef CONFIG_SCHED_DEBUG
  543. # define const_debug __read_mostly
  544. #else
  545. # define const_debug static const
  546. #endif
  547. /**
  548. * runqueue_is_locked
  549. *
  550. * Returns true if the current cpu runqueue is locked.
  551. * This interface allows printk to be called with the runqueue lock
  552. * held and know whether or not it is OK to wake up the klogd.
  553. */
  554. int runqueue_is_locked(void)
  555. {
  556. int cpu = get_cpu();
  557. struct rq *rq = cpu_rq(cpu);
  558. int ret;
  559. ret = spin_is_locked(&rq->lock);
  560. put_cpu();
  561. return ret;
  562. }
  563. /*
  564. * Debugging: various feature bits
  565. */
  566. #define SCHED_FEAT(name, enabled) \
  567. __SCHED_FEAT_##name ,
  568. enum {
  569. #include "sched_features.h"
  570. };
  571. #undef SCHED_FEAT
  572. #define SCHED_FEAT(name, enabled) \
  573. (1UL << __SCHED_FEAT_##name) * enabled |
  574. const_debug unsigned int sysctl_sched_features =
  575. #include "sched_features.h"
  576. 0;
  577. #undef SCHED_FEAT
  578. #ifdef CONFIG_SCHED_DEBUG
  579. #define SCHED_FEAT(name, enabled) \
  580. #name ,
  581. static __read_mostly char *sched_feat_names[] = {
  582. #include "sched_features.h"
  583. NULL
  584. };
  585. #undef SCHED_FEAT
  586. static int sched_feat_open(struct inode *inode, struct file *filp)
  587. {
  588. filp->private_data = inode->i_private;
  589. return 0;
  590. }
  591. static ssize_t
  592. sched_feat_read(struct file *filp, char __user *ubuf,
  593. size_t cnt, loff_t *ppos)
  594. {
  595. char *buf;
  596. int r = 0;
  597. int len = 0;
  598. int i;
  599. for (i = 0; sched_feat_names[i]; i++) {
  600. len += strlen(sched_feat_names[i]);
  601. len += 4;
  602. }
  603. buf = kmalloc(len + 2, GFP_KERNEL);
  604. if (!buf)
  605. return -ENOMEM;
  606. for (i = 0; sched_feat_names[i]; i++) {
  607. if (sysctl_sched_features & (1UL << i))
  608. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  609. else
  610. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  611. }
  612. r += sprintf(buf + r, "\n");
  613. WARN_ON(r >= len + 2);
  614. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  615. kfree(buf);
  616. return r;
  617. }
  618. static ssize_t
  619. sched_feat_write(struct file *filp, const char __user *ubuf,
  620. size_t cnt, loff_t *ppos)
  621. {
  622. char buf[64];
  623. char *cmp = buf;
  624. int neg = 0;
  625. int i;
  626. if (cnt > 63)
  627. cnt = 63;
  628. if (copy_from_user(&buf, ubuf, cnt))
  629. return -EFAULT;
  630. buf[cnt] = 0;
  631. if (strncmp(buf, "NO_", 3) == 0) {
  632. neg = 1;
  633. cmp += 3;
  634. }
  635. for (i = 0; sched_feat_names[i]; i++) {
  636. int len = strlen(sched_feat_names[i]);
  637. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  638. if (neg)
  639. sysctl_sched_features &= ~(1UL << i);
  640. else
  641. sysctl_sched_features |= (1UL << i);
  642. break;
  643. }
  644. }
  645. if (!sched_feat_names[i])
  646. return -EINVAL;
  647. filp->f_pos += cnt;
  648. return cnt;
  649. }
  650. static struct file_operations sched_feat_fops = {
  651. .open = sched_feat_open,
  652. .read = sched_feat_read,
  653. .write = sched_feat_write,
  654. };
  655. static __init int sched_init_debug(void)
  656. {
  657. debugfs_create_file("sched_features", 0644, NULL, NULL,
  658. &sched_feat_fops);
  659. return 0;
  660. }
  661. late_initcall(sched_init_debug);
  662. #endif
  663. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  664. /*
  665. * Number of tasks to iterate in a single balance run.
  666. * Limited because this is done with IRQs disabled.
  667. */
  668. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  669. /*
  670. * ratelimit for updating the group shares.
  671. * default: 0.5ms
  672. */
  673. const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;
  674. /*
  675. * period over which we measure -rt task cpu usage in us.
  676. * default: 1s
  677. */
  678. unsigned int sysctl_sched_rt_period = 1000000;
  679. static __read_mostly int scheduler_running;
  680. /*
  681. * part of the period that we allow rt tasks to run in us.
  682. * default: 0.95s
  683. */
  684. int sysctl_sched_rt_runtime = 950000;
  685. static inline u64 global_rt_period(void)
  686. {
  687. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  688. }
  689. static inline u64 global_rt_runtime(void)
  690. {
  691. if (sysctl_sched_rt_period < 0)
  692. return RUNTIME_INF;
  693. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  694. }
  695. #ifndef prepare_arch_switch
  696. # define prepare_arch_switch(next) do { } while (0)
  697. #endif
  698. #ifndef finish_arch_switch
  699. # define finish_arch_switch(prev) do { } while (0)
  700. #endif
  701. static inline int task_current(struct rq *rq, struct task_struct *p)
  702. {
  703. return rq->curr == p;
  704. }
  705. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  706. static inline int task_running(struct rq *rq, struct task_struct *p)
  707. {
  708. return task_current(rq, p);
  709. }
  710. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  711. {
  712. }
  713. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  714. {
  715. #ifdef CONFIG_DEBUG_SPINLOCK
  716. /* this is a valid case when another task releases the spinlock */
  717. rq->lock.owner = current;
  718. #endif
  719. /*
  720. * If we are tracking spinlock dependencies then we have to
  721. * fix up the runqueue lock - which gets 'carried over' from
  722. * prev into current:
  723. */
  724. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  725. spin_unlock_irq(&rq->lock);
  726. }
  727. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  728. static inline int task_running(struct rq *rq, struct task_struct *p)
  729. {
  730. #ifdef CONFIG_SMP
  731. return p->oncpu;
  732. #else
  733. return task_current(rq, p);
  734. #endif
  735. }
  736. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  737. {
  738. #ifdef CONFIG_SMP
  739. /*
  740. * We can optimise this out completely for !SMP, because the
  741. * SMP rebalancing from interrupt is the only thing that cares
  742. * here.
  743. */
  744. next->oncpu = 1;
  745. #endif
  746. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  747. spin_unlock_irq(&rq->lock);
  748. #else
  749. spin_unlock(&rq->lock);
  750. #endif
  751. }
  752. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  753. {
  754. #ifdef CONFIG_SMP
  755. /*
  756. * After ->oncpu is cleared, the task can be moved to a different CPU.
  757. * We must ensure this doesn't happen until the switch is completely
  758. * finished.
  759. */
  760. smp_wmb();
  761. prev->oncpu = 0;
  762. #endif
  763. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  764. local_irq_enable();
  765. #endif
  766. }
  767. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  768. /*
  769. * __task_rq_lock - lock the runqueue a given task resides on.
  770. * Must be called interrupts disabled.
  771. */
  772. static inline struct rq *__task_rq_lock(struct task_struct *p)
  773. __acquires(rq->lock)
  774. {
  775. for (;;) {
  776. struct rq *rq = task_rq(p);
  777. spin_lock(&rq->lock);
  778. if (likely(rq == task_rq(p)))
  779. return rq;
  780. spin_unlock(&rq->lock);
  781. }
  782. }
  783. /*
  784. * task_rq_lock - lock the runqueue a given task resides on and disable
  785. * interrupts. Note the ordering: we can safely lookup the task_rq without
  786. * explicitly disabling preemption.
  787. */
  788. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  789. __acquires(rq->lock)
  790. {
  791. struct rq *rq;
  792. for (;;) {
  793. local_irq_save(*flags);
  794. rq = task_rq(p);
  795. spin_lock(&rq->lock);
  796. if (likely(rq == task_rq(p)))
  797. return rq;
  798. spin_unlock_irqrestore(&rq->lock, *flags);
  799. }
  800. }
  801. static void __task_rq_unlock(struct rq *rq)
  802. __releases(rq->lock)
  803. {
  804. spin_unlock(&rq->lock);
  805. }
  806. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  807. __releases(rq->lock)
  808. {
  809. spin_unlock_irqrestore(&rq->lock, *flags);
  810. }
  811. /*
  812. * this_rq_lock - lock this runqueue and disable interrupts.
  813. */
  814. static struct rq *this_rq_lock(void)
  815. __acquires(rq->lock)
  816. {
  817. struct rq *rq;
  818. local_irq_disable();
  819. rq = this_rq();
  820. spin_lock(&rq->lock);
  821. return rq;
  822. }
  823. #ifdef CONFIG_SCHED_HRTICK
  824. /*
  825. * Use HR-timers to deliver accurate preemption points.
  826. *
  827. * Its all a bit involved since we cannot program an hrt while holding the
  828. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  829. * reschedule event.
  830. *
  831. * When we get rescheduled we reprogram the hrtick_timer outside of the
  832. * rq->lock.
  833. */
  834. /*
  835. * Use hrtick when:
  836. * - enabled by features
  837. * - hrtimer is actually high res
  838. */
  839. static inline int hrtick_enabled(struct rq *rq)
  840. {
  841. if (!sched_feat(HRTICK))
  842. return 0;
  843. if (!cpu_active(cpu_of(rq)))
  844. return 0;
  845. return hrtimer_is_hres_active(&rq->hrtick_timer);
  846. }
  847. static void hrtick_clear(struct rq *rq)
  848. {
  849. if (hrtimer_active(&rq->hrtick_timer))
  850. hrtimer_cancel(&rq->hrtick_timer);
  851. }
  852. /*
  853. * High-resolution timer tick.
  854. * Runs from hardirq context with interrupts disabled.
  855. */
  856. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  857. {
  858. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  859. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  860. spin_lock(&rq->lock);
  861. update_rq_clock(rq);
  862. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  863. spin_unlock(&rq->lock);
  864. return HRTIMER_NORESTART;
  865. }
  866. #ifdef CONFIG_SMP
  867. /*
  868. * called from hardirq (IPI) context
  869. */
  870. static void __hrtick_start(void *arg)
  871. {
  872. struct rq *rq = arg;
  873. spin_lock(&rq->lock);
  874. hrtimer_restart(&rq->hrtick_timer);
  875. rq->hrtick_csd_pending = 0;
  876. spin_unlock(&rq->lock);
  877. }
  878. /*
  879. * Called to set the hrtick timer state.
  880. *
  881. * called with rq->lock held and irqs disabled
  882. */
  883. static void hrtick_start(struct rq *rq, u64 delay)
  884. {
  885. struct hrtimer *timer = &rq->hrtick_timer;
  886. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  887. timer->expires = time;
  888. if (rq == this_rq()) {
  889. hrtimer_restart(timer);
  890. } else if (!rq->hrtick_csd_pending) {
  891. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  892. rq->hrtick_csd_pending = 1;
  893. }
  894. }
  895. static int
  896. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  897. {
  898. int cpu = (int)(long)hcpu;
  899. switch (action) {
  900. case CPU_UP_CANCELED:
  901. case CPU_UP_CANCELED_FROZEN:
  902. case CPU_DOWN_PREPARE:
  903. case CPU_DOWN_PREPARE_FROZEN:
  904. case CPU_DEAD:
  905. case CPU_DEAD_FROZEN:
  906. hrtick_clear(cpu_rq(cpu));
  907. return NOTIFY_OK;
  908. }
  909. return NOTIFY_DONE;
  910. }
  911. static void init_hrtick(void)
  912. {
  913. hotcpu_notifier(hotplug_hrtick, 0);
  914. }
  915. #else
  916. /*
  917. * Called to set the hrtick timer state.
  918. *
  919. * called with rq->lock held and irqs disabled
  920. */
  921. static void hrtick_start(struct rq *rq, u64 delay)
  922. {
  923. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  924. }
  925. static void init_hrtick(void)
  926. {
  927. }
  928. #endif /* CONFIG_SMP */
  929. static void init_rq_hrtick(struct rq *rq)
  930. {
  931. #ifdef CONFIG_SMP
  932. rq->hrtick_csd_pending = 0;
  933. rq->hrtick_csd.flags = 0;
  934. rq->hrtick_csd.func = __hrtick_start;
  935. rq->hrtick_csd.info = rq;
  936. #endif
  937. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  938. rq->hrtick_timer.function = hrtick;
  939. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  940. }
  941. #else
  942. static inline void hrtick_clear(struct rq *rq)
  943. {
  944. }
  945. static inline void init_rq_hrtick(struct rq *rq)
  946. {
  947. }
  948. static inline void init_hrtick(void)
  949. {
  950. }
  951. #endif
  952. /*
  953. * resched_task - mark a task 'to be rescheduled now'.
  954. *
  955. * On UP this means the setting of the need_resched flag, on SMP it
  956. * might also involve a cross-CPU call to trigger the scheduler on
  957. * the target CPU.
  958. */
  959. #ifdef CONFIG_SMP
  960. #ifndef tsk_is_polling
  961. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  962. #endif
  963. static void resched_task(struct task_struct *p)
  964. {
  965. int cpu;
  966. assert_spin_locked(&task_rq(p)->lock);
  967. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  968. return;
  969. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  970. cpu = task_cpu(p);
  971. if (cpu == smp_processor_id())
  972. return;
  973. /* NEED_RESCHED must be visible before we test polling */
  974. smp_mb();
  975. if (!tsk_is_polling(p))
  976. smp_send_reschedule(cpu);
  977. }
  978. static void resched_cpu(int cpu)
  979. {
  980. struct rq *rq = cpu_rq(cpu);
  981. unsigned long flags;
  982. if (!spin_trylock_irqsave(&rq->lock, flags))
  983. return;
  984. resched_task(cpu_curr(cpu));
  985. spin_unlock_irqrestore(&rq->lock, flags);
  986. }
  987. #ifdef CONFIG_NO_HZ
  988. /*
  989. * When add_timer_on() enqueues a timer into the timer wheel of an
  990. * idle CPU then this timer might expire before the next timer event
  991. * which is scheduled to wake up that CPU. In case of a completely
  992. * idle system the next event might even be infinite time into the
  993. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  994. * leaves the inner idle loop so the newly added timer is taken into
  995. * account when the CPU goes back to idle and evaluates the timer
  996. * wheel for the next timer event.
  997. */
  998. void wake_up_idle_cpu(int cpu)
  999. {
  1000. struct rq *rq = cpu_rq(cpu);
  1001. if (cpu == smp_processor_id())
  1002. return;
  1003. /*
  1004. * This is safe, as this function is called with the timer
  1005. * wheel base lock of (cpu) held. When the CPU is on the way
  1006. * to idle and has not yet set rq->curr to idle then it will
  1007. * be serialized on the timer wheel base lock and take the new
  1008. * timer into account automatically.
  1009. */
  1010. if (rq->curr != rq->idle)
  1011. return;
  1012. /*
  1013. * We can set TIF_RESCHED on the idle task of the other CPU
  1014. * lockless. The worst case is that the other CPU runs the
  1015. * idle task through an additional NOOP schedule()
  1016. */
  1017. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1018. /* NEED_RESCHED must be visible before we test polling */
  1019. smp_mb();
  1020. if (!tsk_is_polling(rq->idle))
  1021. smp_send_reschedule(cpu);
  1022. }
  1023. #endif /* CONFIG_NO_HZ */
  1024. #else /* !CONFIG_SMP */
  1025. static void resched_task(struct task_struct *p)
  1026. {
  1027. assert_spin_locked(&task_rq(p)->lock);
  1028. set_tsk_need_resched(p);
  1029. }
  1030. #endif /* CONFIG_SMP */
  1031. #if BITS_PER_LONG == 32
  1032. # define WMULT_CONST (~0UL)
  1033. #else
  1034. # define WMULT_CONST (1UL << 32)
  1035. #endif
  1036. #define WMULT_SHIFT 32
  1037. /*
  1038. * Shift right and round:
  1039. */
  1040. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1041. /*
  1042. * delta *= weight / lw
  1043. */
  1044. static unsigned long
  1045. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1046. struct load_weight *lw)
  1047. {
  1048. u64 tmp;
  1049. if (!lw->inv_weight) {
  1050. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1051. lw->inv_weight = 1;
  1052. else
  1053. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1054. / (lw->weight+1);
  1055. }
  1056. tmp = (u64)delta_exec * weight;
  1057. /*
  1058. * Check whether we'd overflow the 64-bit multiplication:
  1059. */
  1060. if (unlikely(tmp > WMULT_CONST))
  1061. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1062. WMULT_SHIFT/2);
  1063. else
  1064. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1065. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1066. }
  1067. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1068. {
  1069. lw->weight += inc;
  1070. lw->inv_weight = 0;
  1071. }
  1072. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1073. {
  1074. lw->weight -= dec;
  1075. lw->inv_weight = 0;
  1076. }
  1077. /*
  1078. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1079. * of tasks with abnormal "nice" values across CPUs the contribution that
  1080. * each task makes to its run queue's load is weighted according to its
  1081. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1082. * scaled version of the new time slice allocation that they receive on time
  1083. * slice expiry etc.
  1084. */
  1085. #define WEIGHT_IDLEPRIO 2
  1086. #define WMULT_IDLEPRIO (1 << 31)
  1087. /*
  1088. * Nice levels are multiplicative, with a gentle 10% change for every
  1089. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1090. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1091. * that remained on nice 0.
  1092. *
  1093. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1094. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1095. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1096. * If a task goes up by ~10% and another task goes down by ~10% then
  1097. * the relative distance between them is ~25%.)
  1098. */
  1099. static const int prio_to_weight[40] = {
  1100. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1101. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1102. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1103. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1104. /* 0 */ 1024, 820, 655, 526, 423,
  1105. /* 5 */ 335, 272, 215, 172, 137,
  1106. /* 10 */ 110, 87, 70, 56, 45,
  1107. /* 15 */ 36, 29, 23, 18, 15,
  1108. };
  1109. /*
  1110. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1111. *
  1112. * In cases where the weight does not change often, we can use the
  1113. * precalculated inverse to speed up arithmetics by turning divisions
  1114. * into multiplications:
  1115. */
  1116. static const u32 prio_to_wmult[40] = {
  1117. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1118. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1119. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1120. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1121. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1122. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1123. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1124. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1125. };
  1126. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1127. /*
  1128. * runqueue iterator, to support SMP load-balancing between different
  1129. * scheduling classes, without having to expose their internal data
  1130. * structures to the load-balancing proper:
  1131. */
  1132. struct rq_iterator {
  1133. void *arg;
  1134. struct task_struct *(*start)(void *);
  1135. struct task_struct *(*next)(void *);
  1136. };
  1137. #ifdef CONFIG_SMP
  1138. static unsigned long
  1139. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1140. unsigned long max_load_move, struct sched_domain *sd,
  1141. enum cpu_idle_type idle, int *all_pinned,
  1142. int *this_best_prio, struct rq_iterator *iterator);
  1143. static int
  1144. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1145. struct sched_domain *sd, enum cpu_idle_type idle,
  1146. struct rq_iterator *iterator);
  1147. #endif
  1148. #ifdef CONFIG_CGROUP_CPUACCT
  1149. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1150. #else
  1151. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1152. #endif
  1153. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1154. {
  1155. update_load_add(&rq->load, load);
  1156. }
  1157. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1158. {
  1159. update_load_sub(&rq->load, load);
  1160. }
  1161. #ifdef CONFIG_SMP
  1162. static unsigned long source_load(int cpu, int type);
  1163. static unsigned long target_load(int cpu, int type);
  1164. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1165. static unsigned long cpu_avg_load_per_task(int cpu)
  1166. {
  1167. struct rq *rq = cpu_rq(cpu);
  1168. if (rq->nr_running)
  1169. rq->avg_load_per_task = rq->load.weight / rq->nr_running;
  1170. return rq->avg_load_per_task;
  1171. }
  1172. #ifdef CONFIG_FAIR_GROUP_SCHED
  1173. typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
  1174. /*
  1175. * Iterate the full tree, calling @down when first entering a node and @up when
  1176. * leaving it for the final time.
  1177. */
  1178. static void
  1179. walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
  1180. {
  1181. struct task_group *parent, *child;
  1182. rcu_read_lock();
  1183. parent = &root_task_group;
  1184. down:
  1185. (*down)(parent, cpu, sd);
  1186. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1187. parent = child;
  1188. goto down;
  1189. up:
  1190. continue;
  1191. }
  1192. (*up)(parent, cpu, sd);
  1193. child = parent;
  1194. parent = parent->parent;
  1195. if (parent)
  1196. goto up;
  1197. rcu_read_unlock();
  1198. }
  1199. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1200. /*
  1201. * Calculate and set the cpu's group shares.
  1202. */
  1203. static void
  1204. __update_group_shares_cpu(struct task_group *tg, int cpu,
  1205. unsigned long sd_shares, unsigned long sd_rq_weight)
  1206. {
  1207. int boost = 0;
  1208. unsigned long shares;
  1209. unsigned long rq_weight;
  1210. if (!tg->se[cpu])
  1211. return;
  1212. rq_weight = tg->cfs_rq[cpu]->load.weight;
  1213. /*
  1214. * If there are currently no tasks on the cpu pretend there is one of
  1215. * average load so that when a new task gets to run here it will not
  1216. * get delayed by group starvation.
  1217. */
  1218. if (!rq_weight) {
  1219. boost = 1;
  1220. rq_weight = NICE_0_LOAD;
  1221. }
  1222. if (unlikely(rq_weight > sd_rq_weight))
  1223. rq_weight = sd_rq_weight;
  1224. /*
  1225. * \Sum shares * rq_weight
  1226. * shares = -----------------------
  1227. * \Sum rq_weight
  1228. *
  1229. */
  1230. shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
  1231. /*
  1232. * record the actual number of shares, not the boosted amount.
  1233. */
  1234. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1235. tg->cfs_rq[cpu]->rq_weight = rq_weight;
  1236. if (shares < MIN_SHARES)
  1237. shares = MIN_SHARES;
  1238. else if (shares > MAX_SHARES)
  1239. shares = MAX_SHARES;
  1240. __set_se_shares(tg->se[cpu], shares);
  1241. }
  1242. /*
  1243. * Re-compute the task group their per cpu shares over the given domain.
  1244. * This needs to be done in a bottom-up fashion because the rq weight of a
  1245. * parent group depends on the shares of its child groups.
  1246. */
  1247. static void
  1248. tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
  1249. {
  1250. unsigned long rq_weight = 0;
  1251. unsigned long shares = 0;
  1252. int i;
  1253. for_each_cpu_mask(i, sd->span) {
  1254. rq_weight += tg->cfs_rq[i]->load.weight;
  1255. shares += tg->cfs_rq[i]->shares;
  1256. }
  1257. if ((!shares && rq_weight) || shares > tg->shares)
  1258. shares = tg->shares;
  1259. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1260. shares = tg->shares;
  1261. if (!rq_weight)
  1262. rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
  1263. for_each_cpu_mask(i, sd->span) {
  1264. struct rq *rq = cpu_rq(i);
  1265. unsigned long flags;
  1266. spin_lock_irqsave(&rq->lock, flags);
  1267. __update_group_shares_cpu(tg, i, shares, rq_weight);
  1268. spin_unlock_irqrestore(&rq->lock, flags);
  1269. }
  1270. }
  1271. /*
  1272. * Compute the cpu's hierarchical load factor for each task group.
  1273. * This needs to be done in a top-down fashion because the load of a child
  1274. * group is a fraction of its parents load.
  1275. */
  1276. static void
  1277. tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
  1278. {
  1279. unsigned long load;
  1280. if (!tg->parent) {
  1281. load = cpu_rq(cpu)->load.weight;
  1282. } else {
  1283. load = tg->parent->cfs_rq[cpu]->h_load;
  1284. load *= tg->cfs_rq[cpu]->shares;
  1285. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1286. }
  1287. tg->cfs_rq[cpu]->h_load = load;
  1288. }
  1289. static void
  1290. tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
  1291. {
  1292. }
  1293. static void update_shares(struct sched_domain *sd)
  1294. {
  1295. u64 now = cpu_clock(raw_smp_processor_id());
  1296. s64 elapsed = now - sd->last_update;
  1297. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1298. sd->last_update = now;
  1299. walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
  1300. }
  1301. }
  1302. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1303. {
  1304. spin_unlock(&rq->lock);
  1305. update_shares(sd);
  1306. spin_lock(&rq->lock);
  1307. }
  1308. static void update_h_load(int cpu)
  1309. {
  1310. walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
  1311. }
  1312. #else
  1313. static inline void update_shares(struct sched_domain *sd)
  1314. {
  1315. }
  1316. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1317. {
  1318. }
  1319. #endif
  1320. #endif
  1321. #ifdef CONFIG_FAIR_GROUP_SCHED
  1322. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1323. {
  1324. #ifdef CONFIG_SMP
  1325. cfs_rq->shares = shares;
  1326. #endif
  1327. }
  1328. #endif
  1329. #include "sched_stats.h"
  1330. #include "sched_idletask.c"
  1331. #include "sched_fair.c"
  1332. #include "sched_rt.c"
  1333. #ifdef CONFIG_SCHED_DEBUG
  1334. # include "sched_debug.c"
  1335. #endif
  1336. #define sched_class_highest (&rt_sched_class)
  1337. #define for_each_class(class) \
  1338. for (class = sched_class_highest; class; class = class->next)
  1339. static void inc_nr_running(struct rq *rq)
  1340. {
  1341. rq->nr_running++;
  1342. }
  1343. static void dec_nr_running(struct rq *rq)
  1344. {
  1345. rq->nr_running--;
  1346. }
  1347. static void set_load_weight(struct task_struct *p)
  1348. {
  1349. if (task_has_rt_policy(p)) {
  1350. p->se.load.weight = prio_to_weight[0] * 2;
  1351. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1352. return;
  1353. }
  1354. /*
  1355. * SCHED_IDLE tasks get minimal weight:
  1356. */
  1357. if (p->policy == SCHED_IDLE) {
  1358. p->se.load.weight = WEIGHT_IDLEPRIO;
  1359. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1360. return;
  1361. }
  1362. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1363. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1364. }
  1365. static void update_avg(u64 *avg, u64 sample)
  1366. {
  1367. s64 diff = sample - *avg;
  1368. *avg += diff >> 3;
  1369. }
  1370. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1371. {
  1372. sched_info_queued(p);
  1373. p->sched_class->enqueue_task(rq, p, wakeup);
  1374. p->se.on_rq = 1;
  1375. }
  1376. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1377. {
  1378. if (sleep && p->se.last_wakeup) {
  1379. update_avg(&p->se.avg_overlap,
  1380. p->se.sum_exec_runtime - p->se.last_wakeup);
  1381. p->se.last_wakeup = 0;
  1382. }
  1383. sched_info_dequeued(p);
  1384. p->sched_class->dequeue_task(rq, p, sleep);
  1385. p->se.on_rq = 0;
  1386. }
  1387. /*
  1388. * __normal_prio - return the priority that is based on the static prio
  1389. */
  1390. static inline int __normal_prio(struct task_struct *p)
  1391. {
  1392. return p->static_prio;
  1393. }
  1394. /*
  1395. * Calculate the expected normal priority: i.e. priority
  1396. * without taking RT-inheritance into account. Might be
  1397. * boosted by interactivity modifiers. Changes upon fork,
  1398. * setprio syscalls, and whenever the interactivity
  1399. * estimator recalculates.
  1400. */
  1401. static inline int normal_prio(struct task_struct *p)
  1402. {
  1403. int prio;
  1404. if (task_has_rt_policy(p))
  1405. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1406. else
  1407. prio = __normal_prio(p);
  1408. return prio;
  1409. }
  1410. /*
  1411. * Calculate the current priority, i.e. the priority
  1412. * taken into account by the scheduler. This value might
  1413. * be boosted by RT tasks, or might be boosted by
  1414. * interactivity modifiers. Will be RT if the task got
  1415. * RT-boosted. If not then it returns p->normal_prio.
  1416. */
  1417. static int effective_prio(struct task_struct *p)
  1418. {
  1419. p->normal_prio = normal_prio(p);
  1420. /*
  1421. * If we are RT tasks or we were boosted to RT priority,
  1422. * keep the priority unchanged. Otherwise, update priority
  1423. * to the normal priority:
  1424. */
  1425. if (!rt_prio(p->prio))
  1426. return p->normal_prio;
  1427. return p->prio;
  1428. }
  1429. /*
  1430. * activate_task - move a task to the runqueue.
  1431. */
  1432. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1433. {
  1434. if (task_contributes_to_load(p))
  1435. rq->nr_uninterruptible--;
  1436. enqueue_task(rq, p, wakeup);
  1437. inc_nr_running(rq);
  1438. }
  1439. /*
  1440. * deactivate_task - remove a task from the runqueue.
  1441. */
  1442. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1443. {
  1444. if (task_contributes_to_load(p))
  1445. rq->nr_uninterruptible++;
  1446. dequeue_task(rq, p, sleep);
  1447. dec_nr_running(rq);
  1448. }
  1449. /**
  1450. * task_curr - is this task currently executing on a CPU?
  1451. * @p: the task in question.
  1452. */
  1453. inline int task_curr(const struct task_struct *p)
  1454. {
  1455. return cpu_curr(task_cpu(p)) == p;
  1456. }
  1457. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1458. {
  1459. set_task_rq(p, cpu);
  1460. #ifdef CONFIG_SMP
  1461. /*
  1462. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1463. * successfuly executed on another CPU. We must ensure that updates of
  1464. * per-task data have been completed by this moment.
  1465. */
  1466. smp_wmb();
  1467. task_thread_info(p)->cpu = cpu;
  1468. #endif
  1469. }
  1470. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1471. const struct sched_class *prev_class,
  1472. int oldprio, int running)
  1473. {
  1474. if (prev_class != p->sched_class) {
  1475. if (prev_class->switched_from)
  1476. prev_class->switched_from(rq, p, running);
  1477. p->sched_class->switched_to(rq, p, running);
  1478. } else
  1479. p->sched_class->prio_changed(rq, p, oldprio, running);
  1480. }
  1481. #ifdef CONFIG_SMP
  1482. /* Used instead of source_load when we know the type == 0 */
  1483. static unsigned long weighted_cpuload(const int cpu)
  1484. {
  1485. return cpu_rq(cpu)->load.weight;
  1486. }
  1487. /*
  1488. * Is this task likely cache-hot:
  1489. */
  1490. static int
  1491. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1492. {
  1493. s64 delta;
  1494. /*
  1495. * Buddy candidates are cache hot:
  1496. */
  1497. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1498. return 1;
  1499. if (p->sched_class != &fair_sched_class)
  1500. return 0;
  1501. if (sysctl_sched_migration_cost == -1)
  1502. return 1;
  1503. if (sysctl_sched_migration_cost == 0)
  1504. return 0;
  1505. delta = now - p->se.exec_start;
  1506. return delta < (s64)sysctl_sched_migration_cost;
  1507. }
  1508. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1509. {
  1510. int old_cpu = task_cpu(p);
  1511. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1512. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1513. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1514. u64 clock_offset;
  1515. clock_offset = old_rq->clock - new_rq->clock;
  1516. #ifdef CONFIG_SCHEDSTATS
  1517. if (p->se.wait_start)
  1518. p->se.wait_start -= clock_offset;
  1519. if (p->se.sleep_start)
  1520. p->se.sleep_start -= clock_offset;
  1521. if (p->se.block_start)
  1522. p->se.block_start -= clock_offset;
  1523. if (old_cpu != new_cpu) {
  1524. schedstat_inc(p, se.nr_migrations);
  1525. if (task_hot(p, old_rq->clock, NULL))
  1526. schedstat_inc(p, se.nr_forced2_migrations);
  1527. }
  1528. #endif
  1529. p->se.vruntime -= old_cfsrq->min_vruntime -
  1530. new_cfsrq->min_vruntime;
  1531. __set_task_cpu(p, new_cpu);
  1532. }
  1533. struct migration_req {
  1534. struct list_head list;
  1535. struct task_struct *task;
  1536. int dest_cpu;
  1537. struct completion done;
  1538. };
  1539. /*
  1540. * The task's runqueue lock must be held.
  1541. * Returns true if you have to wait for migration thread.
  1542. */
  1543. static int
  1544. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1545. {
  1546. struct rq *rq = task_rq(p);
  1547. /*
  1548. * If the task is not on a runqueue (and not running), then
  1549. * it is sufficient to simply update the task's cpu field.
  1550. */
  1551. if (!p->se.on_rq && !task_running(rq, p)) {
  1552. set_task_cpu(p, dest_cpu);
  1553. return 0;
  1554. }
  1555. init_completion(&req->done);
  1556. req->task = p;
  1557. req->dest_cpu = dest_cpu;
  1558. list_add(&req->list, &rq->migration_queue);
  1559. return 1;
  1560. }
  1561. /*
  1562. * wait_task_inactive - wait for a thread to unschedule.
  1563. *
  1564. * If @match_state is nonzero, it's the @p->state value just checked and
  1565. * not expected to change. If it changes, i.e. @p might have woken up,
  1566. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1567. * we return a positive number (its total switch count). If a second call
  1568. * a short while later returns the same number, the caller can be sure that
  1569. * @p has remained unscheduled the whole time.
  1570. *
  1571. * The caller must ensure that the task *will* unschedule sometime soon,
  1572. * else this function might spin for a *long* time. This function can't
  1573. * be called with interrupts off, or it may introduce deadlock with
  1574. * smp_call_function() if an IPI is sent by the same process we are
  1575. * waiting to become inactive.
  1576. */
  1577. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1578. {
  1579. unsigned long flags;
  1580. int running, on_rq;
  1581. unsigned long ncsw;
  1582. struct rq *rq;
  1583. for (;;) {
  1584. /*
  1585. * We do the initial early heuristics without holding
  1586. * any task-queue locks at all. We'll only try to get
  1587. * the runqueue lock when things look like they will
  1588. * work out!
  1589. */
  1590. rq = task_rq(p);
  1591. /*
  1592. * If the task is actively running on another CPU
  1593. * still, just relax and busy-wait without holding
  1594. * any locks.
  1595. *
  1596. * NOTE! Since we don't hold any locks, it's not
  1597. * even sure that "rq" stays as the right runqueue!
  1598. * But we don't care, since "task_running()" will
  1599. * return false if the runqueue has changed and p
  1600. * is actually now running somewhere else!
  1601. */
  1602. while (task_running(rq, p)) {
  1603. if (match_state && unlikely(p->state != match_state))
  1604. return 0;
  1605. cpu_relax();
  1606. }
  1607. /*
  1608. * Ok, time to look more closely! We need the rq
  1609. * lock now, to be *sure*. If we're wrong, we'll
  1610. * just go back and repeat.
  1611. */
  1612. rq = task_rq_lock(p, &flags);
  1613. running = task_running(rq, p);
  1614. on_rq = p->se.on_rq;
  1615. ncsw = 0;
  1616. if (!match_state || p->state == match_state) {
  1617. ncsw = p->nivcsw + p->nvcsw;
  1618. if (unlikely(!ncsw))
  1619. ncsw = 1;
  1620. }
  1621. task_rq_unlock(rq, &flags);
  1622. /*
  1623. * If it changed from the expected state, bail out now.
  1624. */
  1625. if (unlikely(!ncsw))
  1626. break;
  1627. /*
  1628. * Was it really running after all now that we
  1629. * checked with the proper locks actually held?
  1630. *
  1631. * Oops. Go back and try again..
  1632. */
  1633. if (unlikely(running)) {
  1634. cpu_relax();
  1635. continue;
  1636. }
  1637. /*
  1638. * It's not enough that it's not actively running,
  1639. * it must be off the runqueue _entirely_, and not
  1640. * preempted!
  1641. *
  1642. * So if it wa still runnable (but just not actively
  1643. * running right now), it's preempted, and we should
  1644. * yield - it could be a while.
  1645. */
  1646. if (unlikely(on_rq)) {
  1647. schedule_timeout_uninterruptible(1);
  1648. continue;
  1649. }
  1650. /*
  1651. * Ahh, all good. It wasn't running, and it wasn't
  1652. * runnable, which means that it will never become
  1653. * running in the future either. We're all done!
  1654. */
  1655. break;
  1656. }
  1657. return ncsw;
  1658. }
  1659. /***
  1660. * kick_process - kick a running thread to enter/exit the kernel
  1661. * @p: the to-be-kicked thread
  1662. *
  1663. * Cause a process which is running on another CPU to enter
  1664. * kernel-mode, without any delay. (to get signals handled.)
  1665. *
  1666. * NOTE: this function doesnt have to take the runqueue lock,
  1667. * because all it wants to ensure is that the remote task enters
  1668. * the kernel. If the IPI races and the task has been migrated
  1669. * to another CPU then no harm is done and the purpose has been
  1670. * achieved as well.
  1671. */
  1672. void kick_process(struct task_struct *p)
  1673. {
  1674. int cpu;
  1675. preempt_disable();
  1676. cpu = task_cpu(p);
  1677. if ((cpu != smp_processor_id()) && task_curr(p))
  1678. smp_send_reschedule(cpu);
  1679. preempt_enable();
  1680. }
  1681. /*
  1682. * Return a low guess at the load of a migration-source cpu weighted
  1683. * according to the scheduling class and "nice" value.
  1684. *
  1685. * We want to under-estimate the load of migration sources, to
  1686. * balance conservatively.
  1687. */
  1688. static unsigned long source_load(int cpu, int type)
  1689. {
  1690. struct rq *rq = cpu_rq(cpu);
  1691. unsigned long total = weighted_cpuload(cpu);
  1692. if (type == 0 || !sched_feat(LB_BIAS))
  1693. return total;
  1694. return min(rq->cpu_load[type-1], total);
  1695. }
  1696. /*
  1697. * Return a high guess at the load of a migration-target cpu weighted
  1698. * according to the scheduling class and "nice" value.
  1699. */
  1700. static unsigned long target_load(int cpu, int type)
  1701. {
  1702. struct rq *rq = cpu_rq(cpu);
  1703. unsigned long total = weighted_cpuload(cpu);
  1704. if (type == 0 || !sched_feat(LB_BIAS))
  1705. return total;
  1706. return max(rq->cpu_load[type-1], total);
  1707. }
  1708. /*
  1709. * find_idlest_group finds and returns the least busy CPU group within the
  1710. * domain.
  1711. */
  1712. static struct sched_group *
  1713. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1714. {
  1715. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1716. unsigned long min_load = ULONG_MAX, this_load = 0;
  1717. int load_idx = sd->forkexec_idx;
  1718. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1719. do {
  1720. unsigned long load, avg_load;
  1721. int local_group;
  1722. int i;
  1723. /* Skip over this group if it has no CPUs allowed */
  1724. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1725. continue;
  1726. local_group = cpu_isset(this_cpu, group->cpumask);
  1727. /* Tally up the load of all CPUs in the group */
  1728. avg_load = 0;
  1729. for_each_cpu_mask_nr(i, group->cpumask) {
  1730. /* Bias balancing toward cpus of our domain */
  1731. if (local_group)
  1732. load = source_load(i, load_idx);
  1733. else
  1734. load = target_load(i, load_idx);
  1735. avg_load += load;
  1736. }
  1737. /* Adjust by relative CPU power of the group */
  1738. avg_load = sg_div_cpu_power(group,
  1739. avg_load * SCHED_LOAD_SCALE);
  1740. if (local_group) {
  1741. this_load = avg_load;
  1742. this = group;
  1743. } else if (avg_load < min_load) {
  1744. min_load = avg_load;
  1745. idlest = group;
  1746. }
  1747. } while (group = group->next, group != sd->groups);
  1748. if (!idlest || 100*this_load < imbalance*min_load)
  1749. return NULL;
  1750. return idlest;
  1751. }
  1752. /*
  1753. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1754. */
  1755. static int
  1756. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1757. cpumask_t *tmp)
  1758. {
  1759. unsigned long load, min_load = ULONG_MAX;
  1760. int idlest = -1;
  1761. int i;
  1762. /* Traverse only the allowed CPUs */
  1763. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1764. for_each_cpu_mask_nr(i, *tmp) {
  1765. load = weighted_cpuload(i);
  1766. if (load < min_load || (load == min_load && i == this_cpu)) {
  1767. min_load = load;
  1768. idlest = i;
  1769. }
  1770. }
  1771. return idlest;
  1772. }
  1773. /*
  1774. * sched_balance_self: balance the current task (running on cpu) in domains
  1775. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1776. * SD_BALANCE_EXEC.
  1777. *
  1778. * Balance, ie. select the least loaded group.
  1779. *
  1780. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1781. *
  1782. * preempt must be disabled.
  1783. */
  1784. static int sched_balance_self(int cpu, int flag)
  1785. {
  1786. struct task_struct *t = current;
  1787. struct sched_domain *tmp, *sd = NULL;
  1788. for_each_domain(cpu, tmp) {
  1789. /*
  1790. * If power savings logic is enabled for a domain, stop there.
  1791. */
  1792. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1793. break;
  1794. if (tmp->flags & flag)
  1795. sd = tmp;
  1796. }
  1797. if (sd)
  1798. update_shares(sd);
  1799. while (sd) {
  1800. cpumask_t span, tmpmask;
  1801. struct sched_group *group;
  1802. int new_cpu, weight;
  1803. if (!(sd->flags & flag)) {
  1804. sd = sd->child;
  1805. continue;
  1806. }
  1807. span = sd->span;
  1808. group = find_idlest_group(sd, t, cpu);
  1809. if (!group) {
  1810. sd = sd->child;
  1811. continue;
  1812. }
  1813. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1814. if (new_cpu == -1 || new_cpu == cpu) {
  1815. /* Now try balancing at a lower domain level of cpu */
  1816. sd = sd->child;
  1817. continue;
  1818. }
  1819. /* Now try balancing at a lower domain level of new_cpu */
  1820. cpu = new_cpu;
  1821. sd = NULL;
  1822. weight = cpus_weight(span);
  1823. for_each_domain(cpu, tmp) {
  1824. if (weight <= cpus_weight(tmp->span))
  1825. break;
  1826. if (tmp->flags & flag)
  1827. sd = tmp;
  1828. }
  1829. /* while loop will break here if sd == NULL */
  1830. }
  1831. return cpu;
  1832. }
  1833. #endif /* CONFIG_SMP */
  1834. /***
  1835. * try_to_wake_up - wake up a thread
  1836. * @p: the to-be-woken-up thread
  1837. * @state: the mask of task states that can be woken
  1838. * @sync: do a synchronous wakeup?
  1839. *
  1840. * Put it on the run-queue if it's not already there. The "current"
  1841. * thread is always on the run-queue (except when the actual
  1842. * re-schedule is in progress), and as such you're allowed to do
  1843. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1844. * runnable without the overhead of this.
  1845. *
  1846. * returns failure only if the task is already active.
  1847. */
  1848. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1849. {
  1850. int cpu, orig_cpu, this_cpu, success = 0;
  1851. unsigned long flags;
  1852. long old_state;
  1853. struct rq *rq;
  1854. if (!sched_feat(SYNC_WAKEUPS))
  1855. sync = 0;
  1856. #ifdef CONFIG_SMP
  1857. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1858. struct sched_domain *sd;
  1859. this_cpu = raw_smp_processor_id();
  1860. cpu = task_cpu(p);
  1861. for_each_domain(this_cpu, sd) {
  1862. if (cpu_isset(cpu, sd->span)) {
  1863. update_shares(sd);
  1864. break;
  1865. }
  1866. }
  1867. }
  1868. #endif
  1869. smp_wmb();
  1870. rq = task_rq_lock(p, &flags);
  1871. old_state = p->state;
  1872. if (!(old_state & state))
  1873. goto out;
  1874. if (p->se.on_rq)
  1875. goto out_running;
  1876. cpu = task_cpu(p);
  1877. orig_cpu = cpu;
  1878. this_cpu = smp_processor_id();
  1879. #ifdef CONFIG_SMP
  1880. if (unlikely(task_running(rq, p)))
  1881. goto out_activate;
  1882. cpu = p->sched_class->select_task_rq(p, sync);
  1883. if (cpu != orig_cpu) {
  1884. set_task_cpu(p, cpu);
  1885. task_rq_unlock(rq, &flags);
  1886. /* might preempt at this point */
  1887. rq = task_rq_lock(p, &flags);
  1888. old_state = p->state;
  1889. if (!(old_state & state))
  1890. goto out;
  1891. if (p->se.on_rq)
  1892. goto out_running;
  1893. this_cpu = smp_processor_id();
  1894. cpu = task_cpu(p);
  1895. }
  1896. #ifdef CONFIG_SCHEDSTATS
  1897. schedstat_inc(rq, ttwu_count);
  1898. if (cpu == this_cpu)
  1899. schedstat_inc(rq, ttwu_local);
  1900. else {
  1901. struct sched_domain *sd;
  1902. for_each_domain(this_cpu, sd) {
  1903. if (cpu_isset(cpu, sd->span)) {
  1904. schedstat_inc(sd, ttwu_wake_remote);
  1905. break;
  1906. }
  1907. }
  1908. }
  1909. #endif /* CONFIG_SCHEDSTATS */
  1910. out_activate:
  1911. #endif /* CONFIG_SMP */
  1912. schedstat_inc(p, se.nr_wakeups);
  1913. if (sync)
  1914. schedstat_inc(p, se.nr_wakeups_sync);
  1915. if (orig_cpu != cpu)
  1916. schedstat_inc(p, se.nr_wakeups_migrate);
  1917. if (cpu == this_cpu)
  1918. schedstat_inc(p, se.nr_wakeups_local);
  1919. else
  1920. schedstat_inc(p, se.nr_wakeups_remote);
  1921. update_rq_clock(rq);
  1922. activate_task(rq, p, 1);
  1923. success = 1;
  1924. out_running:
  1925. trace_mark(kernel_sched_wakeup,
  1926. "pid %d state %ld ## rq %p task %p rq->curr %p",
  1927. p->pid, p->state, rq, p, rq->curr);
  1928. check_preempt_curr(rq, p);
  1929. p->state = TASK_RUNNING;
  1930. #ifdef CONFIG_SMP
  1931. if (p->sched_class->task_wake_up)
  1932. p->sched_class->task_wake_up(rq, p);
  1933. #endif
  1934. out:
  1935. current->se.last_wakeup = current->se.sum_exec_runtime;
  1936. task_rq_unlock(rq, &flags);
  1937. return success;
  1938. }
  1939. int wake_up_process(struct task_struct *p)
  1940. {
  1941. return try_to_wake_up(p, TASK_ALL, 0);
  1942. }
  1943. EXPORT_SYMBOL(wake_up_process);
  1944. int wake_up_state(struct task_struct *p, unsigned int state)
  1945. {
  1946. return try_to_wake_up(p, state, 0);
  1947. }
  1948. /*
  1949. * Perform scheduler related setup for a newly forked process p.
  1950. * p is forked by current.
  1951. *
  1952. * __sched_fork() is basic setup used by init_idle() too:
  1953. */
  1954. static void __sched_fork(struct task_struct *p)
  1955. {
  1956. p->se.exec_start = 0;
  1957. p->se.sum_exec_runtime = 0;
  1958. p->se.prev_sum_exec_runtime = 0;
  1959. p->se.last_wakeup = 0;
  1960. p->se.avg_overlap = 0;
  1961. #ifdef CONFIG_SCHEDSTATS
  1962. p->se.wait_start = 0;
  1963. p->se.sum_sleep_runtime = 0;
  1964. p->se.sleep_start = 0;
  1965. p->se.block_start = 0;
  1966. p->se.sleep_max = 0;
  1967. p->se.block_max = 0;
  1968. p->se.exec_max = 0;
  1969. p->se.slice_max = 0;
  1970. p->se.wait_max = 0;
  1971. #endif
  1972. INIT_LIST_HEAD(&p->rt.run_list);
  1973. p->se.on_rq = 0;
  1974. INIT_LIST_HEAD(&p->se.group_node);
  1975. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1976. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1977. #endif
  1978. /*
  1979. * We mark the process as running here, but have not actually
  1980. * inserted it onto the runqueue yet. This guarantees that
  1981. * nobody will actually run it, and a signal or other external
  1982. * event cannot wake it up and insert it on the runqueue either.
  1983. */
  1984. p->state = TASK_RUNNING;
  1985. }
  1986. /*
  1987. * fork()/clone()-time setup:
  1988. */
  1989. void sched_fork(struct task_struct *p, int clone_flags)
  1990. {
  1991. int cpu = get_cpu();
  1992. __sched_fork(p);
  1993. #ifdef CONFIG_SMP
  1994. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1995. #endif
  1996. set_task_cpu(p, cpu);
  1997. /*
  1998. * Make sure we do not leak PI boosting priority to the child:
  1999. */
  2000. p->prio = current->normal_prio;
  2001. if (!rt_prio(p->prio))
  2002. p->sched_class = &fair_sched_class;
  2003. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2004. if (likely(sched_info_on()))
  2005. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2006. #endif
  2007. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2008. p->oncpu = 0;
  2009. #endif
  2010. #ifdef CONFIG_PREEMPT
  2011. /* Want to start with kernel preemption disabled. */
  2012. task_thread_info(p)->preempt_count = 1;
  2013. #endif
  2014. put_cpu();
  2015. }
  2016. /*
  2017. * wake_up_new_task - wake up a newly created task for the first time.
  2018. *
  2019. * This function will do some initial scheduler statistics housekeeping
  2020. * that must be done for every newly created context, then puts the task
  2021. * on the runqueue and wakes it.
  2022. */
  2023. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2024. {
  2025. unsigned long flags;
  2026. struct rq *rq;
  2027. rq = task_rq_lock(p, &flags);
  2028. BUG_ON(p->state != TASK_RUNNING);
  2029. update_rq_clock(rq);
  2030. p->prio = effective_prio(p);
  2031. if (!p->sched_class->task_new || !current->se.on_rq) {
  2032. activate_task(rq, p, 0);
  2033. } else {
  2034. /*
  2035. * Let the scheduling class do new task startup
  2036. * management (if any):
  2037. */
  2038. p->sched_class->task_new(rq, p);
  2039. inc_nr_running(rq);
  2040. }
  2041. trace_mark(kernel_sched_wakeup_new,
  2042. "pid %d state %ld ## rq %p task %p rq->curr %p",
  2043. p->pid, p->state, rq, p, rq->curr);
  2044. check_preempt_curr(rq, p);
  2045. #ifdef CONFIG_SMP
  2046. if (p->sched_class->task_wake_up)
  2047. p->sched_class->task_wake_up(rq, p);
  2048. #endif
  2049. task_rq_unlock(rq, &flags);
  2050. }
  2051. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2052. /**
  2053. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2054. * @notifier: notifier struct to register
  2055. */
  2056. void preempt_notifier_register(struct preempt_notifier *notifier)
  2057. {
  2058. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2059. }
  2060. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2061. /**
  2062. * preempt_notifier_unregister - no longer interested in preemption notifications
  2063. * @notifier: notifier struct to unregister
  2064. *
  2065. * This is safe to call from within a preemption notifier.
  2066. */
  2067. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2068. {
  2069. hlist_del(&notifier->link);
  2070. }
  2071. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2072. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2073. {
  2074. struct preempt_notifier *notifier;
  2075. struct hlist_node *node;
  2076. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2077. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2078. }
  2079. static void
  2080. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2081. struct task_struct *next)
  2082. {
  2083. struct preempt_notifier *notifier;
  2084. struct hlist_node *node;
  2085. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2086. notifier->ops->sched_out(notifier, next);
  2087. }
  2088. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2089. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2090. {
  2091. }
  2092. static void
  2093. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2094. struct task_struct *next)
  2095. {
  2096. }
  2097. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2098. /**
  2099. * prepare_task_switch - prepare to switch tasks
  2100. * @rq: the runqueue preparing to switch
  2101. * @prev: the current task that is being switched out
  2102. * @next: the task we are going to switch to.
  2103. *
  2104. * This is called with the rq lock held and interrupts off. It must
  2105. * be paired with a subsequent finish_task_switch after the context
  2106. * switch.
  2107. *
  2108. * prepare_task_switch sets up locking and calls architecture specific
  2109. * hooks.
  2110. */
  2111. static inline void
  2112. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2113. struct task_struct *next)
  2114. {
  2115. fire_sched_out_preempt_notifiers(prev, next);
  2116. prepare_lock_switch(rq, next);
  2117. prepare_arch_switch(next);
  2118. }
  2119. /**
  2120. * finish_task_switch - clean up after a task-switch
  2121. * @rq: runqueue associated with task-switch
  2122. * @prev: the thread we just switched away from.
  2123. *
  2124. * finish_task_switch must be called after the context switch, paired
  2125. * with a prepare_task_switch call before the context switch.
  2126. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2127. * and do any other architecture-specific cleanup actions.
  2128. *
  2129. * Note that we may have delayed dropping an mm in context_switch(). If
  2130. * so, we finish that here outside of the runqueue lock. (Doing it
  2131. * with the lock held can cause deadlocks; see schedule() for
  2132. * details.)
  2133. */
  2134. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2135. __releases(rq->lock)
  2136. {
  2137. struct mm_struct *mm = rq->prev_mm;
  2138. long prev_state;
  2139. rq->prev_mm = NULL;
  2140. /*
  2141. * A task struct has one reference for the use as "current".
  2142. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2143. * schedule one last time. The schedule call will never return, and
  2144. * the scheduled task must drop that reference.
  2145. * The test for TASK_DEAD must occur while the runqueue locks are
  2146. * still held, otherwise prev could be scheduled on another cpu, die
  2147. * there before we look at prev->state, and then the reference would
  2148. * be dropped twice.
  2149. * Manfred Spraul <manfred@colorfullife.com>
  2150. */
  2151. prev_state = prev->state;
  2152. finish_arch_switch(prev);
  2153. finish_lock_switch(rq, prev);
  2154. #ifdef CONFIG_SMP
  2155. if (current->sched_class->post_schedule)
  2156. current->sched_class->post_schedule(rq);
  2157. #endif
  2158. fire_sched_in_preempt_notifiers(current);
  2159. if (mm)
  2160. mmdrop(mm);
  2161. if (unlikely(prev_state == TASK_DEAD)) {
  2162. /*
  2163. * Remove function-return probe instances associated with this
  2164. * task and put them back on the free list.
  2165. */
  2166. kprobe_flush_task(prev);
  2167. put_task_struct(prev);
  2168. }
  2169. }
  2170. /**
  2171. * schedule_tail - first thing a freshly forked thread must call.
  2172. * @prev: the thread we just switched away from.
  2173. */
  2174. asmlinkage void schedule_tail(struct task_struct *prev)
  2175. __releases(rq->lock)
  2176. {
  2177. struct rq *rq = this_rq();
  2178. finish_task_switch(rq, prev);
  2179. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2180. /* In this case, finish_task_switch does not reenable preemption */
  2181. preempt_enable();
  2182. #endif
  2183. if (current->set_child_tid)
  2184. put_user(task_pid_vnr(current), current->set_child_tid);
  2185. }
  2186. /*
  2187. * context_switch - switch to the new MM and the new
  2188. * thread's register state.
  2189. */
  2190. static inline void
  2191. context_switch(struct rq *rq, struct task_struct *prev,
  2192. struct task_struct *next)
  2193. {
  2194. struct mm_struct *mm, *oldmm;
  2195. prepare_task_switch(rq, prev, next);
  2196. trace_mark(kernel_sched_schedule,
  2197. "prev_pid %d next_pid %d prev_state %ld "
  2198. "## rq %p prev %p next %p",
  2199. prev->pid, next->pid, prev->state,
  2200. rq, prev, next);
  2201. mm = next->mm;
  2202. oldmm = prev->active_mm;
  2203. /*
  2204. * For paravirt, this is coupled with an exit in switch_to to
  2205. * combine the page table reload and the switch backend into
  2206. * one hypercall.
  2207. */
  2208. arch_enter_lazy_cpu_mode();
  2209. if (unlikely(!mm)) {
  2210. next->active_mm = oldmm;
  2211. atomic_inc(&oldmm->mm_count);
  2212. enter_lazy_tlb(oldmm, next);
  2213. } else
  2214. switch_mm(oldmm, mm, next);
  2215. if (unlikely(!prev->mm)) {
  2216. prev->active_mm = NULL;
  2217. rq->prev_mm = oldmm;
  2218. }
  2219. /*
  2220. * Since the runqueue lock will be released by the next
  2221. * task (which is an invalid locking op but in the case
  2222. * of the scheduler it's an obvious special-case), so we
  2223. * do an early lockdep release here:
  2224. */
  2225. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2226. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2227. #endif
  2228. /* Here we just switch the register state and the stack. */
  2229. switch_to(prev, next, prev);
  2230. barrier();
  2231. /*
  2232. * this_rq must be evaluated again because prev may have moved
  2233. * CPUs since it called schedule(), thus the 'rq' on its stack
  2234. * frame will be invalid.
  2235. */
  2236. finish_task_switch(this_rq(), prev);
  2237. }
  2238. /*
  2239. * nr_running, nr_uninterruptible and nr_context_switches:
  2240. *
  2241. * externally visible scheduler statistics: current number of runnable
  2242. * threads, current number of uninterruptible-sleeping threads, total
  2243. * number of context switches performed since bootup.
  2244. */
  2245. unsigned long nr_running(void)
  2246. {
  2247. unsigned long i, sum = 0;
  2248. for_each_online_cpu(i)
  2249. sum += cpu_rq(i)->nr_running;
  2250. return sum;
  2251. }
  2252. unsigned long nr_uninterruptible(void)
  2253. {
  2254. unsigned long i, sum = 0;
  2255. for_each_possible_cpu(i)
  2256. sum += cpu_rq(i)->nr_uninterruptible;
  2257. /*
  2258. * Since we read the counters lockless, it might be slightly
  2259. * inaccurate. Do not allow it to go below zero though:
  2260. */
  2261. if (unlikely((long)sum < 0))
  2262. sum = 0;
  2263. return sum;
  2264. }
  2265. unsigned long long nr_context_switches(void)
  2266. {
  2267. int i;
  2268. unsigned long long sum = 0;
  2269. for_each_possible_cpu(i)
  2270. sum += cpu_rq(i)->nr_switches;
  2271. return sum;
  2272. }
  2273. unsigned long nr_iowait(void)
  2274. {
  2275. unsigned long i, sum = 0;
  2276. for_each_possible_cpu(i)
  2277. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2278. return sum;
  2279. }
  2280. unsigned long nr_active(void)
  2281. {
  2282. unsigned long i, running = 0, uninterruptible = 0;
  2283. for_each_online_cpu(i) {
  2284. running += cpu_rq(i)->nr_running;
  2285. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2286. }
  2287. if (unlikely((long)uninterruptible < 0))
  2288. uninterruptible = 0;
  2289. return running + uninterruptible;
  2290. }
  2291. /*
  2292. * Update rq->cpu_load[] statistics. This function is usually called every
  2293. * scheduler tick (TICK_NSEC).
  2294. */
  2295. static void update_cpu_load(struct rq *this_rq)
  2296. {
  2297. unsigned long this_load = this_rq->load.weight;
  2298. int i, scale;
  2299. this_rq->nr_load_updates++;
  2300. /* Update our load: */
  2301. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2302. unsigned long old_load, new_load;
  2303. /* scale is effectively 1 << i now, and >> i divides by scale */
  2304. old_load = this_rq->cpu_load[i];
  2305. new_load = this_load;
  2306. /*
  2307. * Round up the averaging division if load is increasing. This
  2308. * prevents us from getting stuck on 9 if the load is 10, for
  2309. * example.
  2310. */
  2311. if (new_load > old_load)
  2312. new_load += scale-1;
  2313. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2314. }
  2315. }
  2316. #ifdef CONFIG_SMP
  2317. /*
  2318. * double_rq_lock - safely lock two runqueues
  2319. *
  2320. * Note this does not disable interrupts like task_rq_lock,
  2321. * you need to do so manually before calling.
  2322. */
  2323. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2324. __acquires(rq1->lock)
  2325. __acquires(rq2->lock)
  2326. {
  2327. BUG_ON(!irqs_disabled());
  2328. if (rq1 == rq2) {
  2329. spin_lock(&rq1->lock);
  2330. __acquire(rq2->lock); /* Fake it out ;) */
  2331. } else {
  2332. if (rq1 < rq2) {
  2333. spin_lock(&rq1->lock);
  2334. spin_lock(&rq2->lock);
  2335. } else {
  2336. spin_lock(&rq2->lock);
  2337. spin_lock(&rq1->lock);
  2338. }
  2339. }
  2340. update_rq_clock(rq1);
  2341. update_rq_clock(rq2);
  2342. }
  2343. /*
  2344. * double_rq_unlock - safely unlock two runqueues
  2345. *
  2346. * Note this does not restore interrupts like task_rq_unlock,
  2347. * you need to do so manually after calling.
  2348. */
  2349. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2350. __releases(rq1->lock)
  2351. __releases(rq2->lock)
  2352. {
  2353. spin_unlock(&rq1->lock);
  2354. if (rq1 != rq2)
  2355. spin_unlock(&rq2->lock);
  2356. else
  2357. __release(rq2->lock);
  2358. }
  2359. /*
  2360. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2361. */
  2362. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2363. __releases(this_rq->lock)
  2364. __acquires(busiest->lock)
  2365. __acquires(this_rq->lock)
  2366. {
  2367. int ret = 0;
  2368. if (unlikely(!irqs_disabled())) {
  2369. /* printk() doesn't work good under rq->lock */
  2370. spin_unlock(&this_rq->lock);
  2371. BUG_ON(1);
  2372. }
  2373. if (unlikely(!spin_trylock(&busiest->lock))) {
  2374. if (busiest < this_rq) {
  2375. spin_unlock(&this_rq->lock);
  2376. spin_lock(&busiest->lock);
  2377. spin_lock(&this_rq->lock);
  2378. ret = 1;
  2379. } else
  2380. spin_lock(&busiest->lock);
  2381. }
  2382. return ret;
  2383. }
  2384. /*
  2385. * If dest_cpu is allowed for this process, migrate the task to it.
  2386. * This is accomplished by forcing the cpu_allowed mask to only
  2387. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2388. * the cpu_allowed mask is restored.
  2389. */
  2390. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2391. {
  2392. struct migration_req req;
  2393. unsigned long flags;
  2394. struct rq *rq;
  2395. rq = task_rq_lock(p, &flags);
  2396. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2397. || unlikely(!cpu_active(dest_cpu)))
  2398. goto out;
  2399. /* force the process onto the specified CPU */
  2400. if (migrate_task(p, dest_cpu, &req)) {
  2401. /* Need to wait for migration thread (might exit: take ref). */
  2402. struct task_struct *mt = rq->migration_thread;
  2403. get_task_struct(mt);
  2404. task_rq_unlock(rq, &flags);
  2405. wake_up_process(mt);
  2406. put_task_struct(mt);
  2407. wait_for_completion(&req.done);
  2408. return;
  2409. }
  2410. out:
  2411. task_rq_unlock(rq, &flags);
  2412. }
  2413. /*
  2414. * sched_exec - execve() is a valuable balancing opportunity, because at
  2415. * this point the task has the smallest effective memory and cache footprint.
  2416. */
  2417. void sched_exec(void)
  2418. {
  2419. int new_cpu, this_cpu = get_cpu();
  2420. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2421. put_cpu();
  2422. if (new_cpu != this_cpu)
  2423. sched_migrate_task(current, new_cpu);
  2424. }
  2425. /*
  2426. * pull_task - move a task from a remote runqueue to the local runqueue.
  2427. * Both runqueues must be locked.
  2428. */
  2429. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2430. struct rq *this_rq, int this_cpu)
  2431. {
  2432. deactivate_task(src_rq, p, 0);
  2433. set_task_cpu(p, this_cpu);
  2434. activate_task(this_rq, p, 0);
  2435. /*
  2436. * Note that idle threads have a prio of MAX_PRIO, for this test
  2437. * to be always true for them.
  2438. */
  2439. check_preempt_curr(this_rq, p);
  2440. }
  2441. /*
  2442. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2443. */
  2444. static
  2445. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2446. struct sched_domain *sd, enum cpu_idle_type idle,
  2447. int *all_pinned)
  2448. {
  2449. /*
  2450. * We do not migrate tasks that are:
  2451. * 1) running (obviously), or
  2452. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2453. * 3) are cache-hot on their current CPU.
  2454. */
  2455. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2456. schedstat_inc(p, se.nr_failed_migrations_affine);
  2457. return 0;
  2458. }
  2459. *all_pinned = 0;
  2460. if (task_running(rq, p)) {
  2461. schedstat_inc(p, se.nr_failed_migrations_running);
  2462. return 0;
  2463. }
  2464. /*
  2465. * Aggressive migration if:
  2466. * 1) task is cache cold, or
  2467. * 2) too many balance attempts have failed.
  2468. */
  2469. if (!task_hot(p, rq->clock, sd) ||
  2470. sd->nr_balance_failed > sd->cache_nice_tries) {
  2471. #ifdef CONFIG_SCHEDSTATS
  2472. if (task_hot(p, rq->clock, sd)) {
  2473. schedstat_inc(sd, lb_hot_gained[idle]);
  2474. schedstat_inc(p, se.nr_forced_migrations);
  2475. }
  2476. #endif
  2477. return 1;
  2478. }
  2479. if (task_hot(p, rq->clock, sd)) {
  2480. schedstat_inc(p, se.nr_failed_migrations_hot);
  2481. return 0;
  2482. }
  2483. return 1;
  2484. }
  2485. static unsigned long
  2486. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2487. unsigned long max_load_move, struct sched_domain *sd,
  2488. enum cpu_idle_type idle, int *all_pinned,
  2489. int *this_best_prio, struct rq_iterator *iterator)
  2490. {
  2491. int loops = 0, pulled = 0, pinned = 0;
  2492. struct task_struct *p;
  2493. long rem_load_move = max_load_move;
  2494. if (max_load_move == 0)
  2495. goto out;
  2496. pinned = 1;
  2497. /*
  2498. * Start the load-balancing iterator:
  2499. */
  2500. p = iterator->start(iterator->arg);
  2501. next:
  2502. if (!p || loops++ > sysctl_sched_nr_migrate)
  2503. goto out;
  2504. if ((p->se.load.weight >> 1) > rem_load_move ||
  2505. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2506. p = iterator->next(iterator->arg);
  2507. goto next;
  2508. }
  2509. pull_task(busiest, p, this_rq, this_cpu);
  2510. pulled++;
  2511. rem_load_move -= p->se.load.weight;
  2512. /*
  2513. * We only want to steal up to the prescribed amount of weighted load.
  2514. */
  2515. if (rem_load_move > 0) {
  2516. if (p->prio < *this_best_prio)
  2517. *this_best_prio = p->prio;
  2518. p = iterator->next(iterator->arg);
  2519. goto next;
  2520. }
  2521. out:
  2522. /*
  2523. * Right now, this is one of only two places pull_task() is called,
  2524. * so we can safely collect pull_task() stats here rather than
  2525. * inside pull_task().
  2526. */
  2527. schedstat_add(sd, lb_gained[idle], pulled);
  2528. if (all_pinned)
  2529. *all_pinned = pinned;
  2530. return max_load_move - rem_load_move;
  2531. }
  2532. /*
  2533. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2534. * this_rq, as part of a balancing operation within domain "sd".
  2535. * Returns 1 if successful and 0 otherwise.
  2536. *
  2537. * Called with both runqueues locked.
  2538. */
  2539. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2540. unsigned long max_load_move,
  2541. struct sched_domain *sd, enum cpu_idle_type idle,
  2542. int *all_pinned)
  2543. {
  2544. const struct sched_class *class = sched_class_highest;
  2545. unsigned long total_load_moved = 0;
  2546. int this_best_prio = this_rq->curr->prio;
  2547. do {
  2548. total_load_moved +=
  2549. class->load_balance(this_rq, this_cpu, busiest,
  2550. max_load_move - total_load_moved,
  2551. sd, idle, all_pinned, &this_best_prio);
  2552. class = class->next;
  2553. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2554. break;
  2555. } while (class && max_load_move > total_load_moved);
  2556. return total_load_moved > 0;
  2557. }
  2558. static int
  2559. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2560. struct sched_domain *sd, enum cpu_idle_type idle,
  2561. struct rq_iterator *iterator)
  2562. {
  2563. struct task_struct *p = iterator->start(iterator->arg);
  2564. int pinned = 0;
  2565. while (p) {
  2566. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2567. pull_task(busiest, p, this_rq, this_cpu);
  2568. /*
  2569. * Right now, this is only the second place pull_task()
  2570. * is called, so we can safely collect pull_task()
  2571. * stats here rather than inside pull_task().
  2572. */
  2573. schedstat_inc(sd, lb_gained[idle]);
  2574. return 1;
  2575. }
  2576. p = iterator->next(iterator->arg);
  2577. }
  2578. return 0;
  2579. }
  2580. /*
  2581. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2582. * part of active balancing operations within "domain".
  2583. * Returns 1 if successful and 0 otherwise.
  2584. *
  2585. * Called with both runqueues locked.
  2586. */
  2587. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2588. struct sched_domain *sd, enum cpu_idle_type idle)
  2589. {
  2590. const struct sched_class *class;
  2591. for (class = sched_class_highest; class; class = class->next)
  2592. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2593. return 1;
  2594. return 0;
  2595. }
  2596. /*
  2597. * find_busiest_group finds and returns the busiest CPU group within the
  2598. * domain. It calculates and returns the amount of weighted load which
  2599. * should be moved to restore balance via the imbalance parameter.
  2600. */
  2601. static struct sched_group *
  2602. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2603. unsigned long *imbalance, enum cpu_idle_type idle,
  2604. int *sd_idle, const cpumask_t *cpus, int *balance)
  2605. {
  2606. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2607. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2608. unsigned long max_pull;
  2609. unsigned long busiest_load_per_task, busiest_nr_running;
  2610. unsigned long this_load_per_task, this_nr_running;
  2611. int load_idx, group_imb = 0;
  2612. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2613. int power_savings_balance = 1;
  2614. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2615. unsigned long min_nr_running = ULONG_MAX;
  2616. struct sched_group *group_min = NULL, *group_leader = NULL;
  2617. #endif
  2618. max_load = this_load = total_load = total_pwr = 0;
  2619. busiest_load_per_task = busiest_nr_running = 0;
  2620. this_load_per_task = this_nr_running = 0;
  2621. if (idle == CPU_NOT_IDLE)
  2622. load_idx = sd->busy_idx;
  2623. else if (idle == CPU_NEWLY_IDLE)
  2624. load_idx = sd->newidle_idx;
  2625. else
  2626. load_idx = sd->idle_idx;
  2627. do {
  2628. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2629. int local_group;
  2630. int i;
  2631. int __group_imb = 0;
  2632. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2633. unsigned long sum_nr_running, sum_weighted_load;
  2634. unsigned long sum_avg_load_per_task;
  2635. unsigned long avg_load_per_task;
  2636. local_group = cpu_isset(this_cpu, group->cpumask);
  2637. if (local_group)
  2638. balance_cpu = first_cpu(group->cpumask);
  2639. /* Tally up the load of all CPUs in the group */
  2640. sum_weighted_load = sum_nr_running = avg_load = 0;
  2641. sum_avg_load_per_task = avg_load_per_task = 0;
  2642. max_cpu_load = 0;
  2643. min_cpu_load = ~0UL;
  2644. for_each_cpu_mask_nr(i, group->cpumask) {
  2645. struct rq *rq;
  2646. if (!cpu_isset(i, *cpus))
  2647. continue;
  2648. rq = cpu_rq(i);
  2649. if (*sd_idle && rq->nr_running)
  2650. *sd_idle = 0;
  2651. /* Bias balancing toward cpus of our domain */
  2652. if (local_group) {
  2653. if (idle_cpu(i) && !first_idle_cpu) {
  2654. first_idle_cpu = 1;
  2655. balance_cpu = i;
  2656. }
  2657. load = target_load(i, load_idx);
  2658. } else {
  2659. load = source_load(i, load_idx);
  2660. if (load > max_cpu_load)
  2661. max_cpu_load = load;
  2662. if (min_cpu_load > load)
  2663. min_cpu_load = load;
  2664. }
  2665. avg_load += load;
  2666. sum_nr_running += rq->nr_running;
  2667. sum_weighted_load += weighted_cpuload(i);
  2668. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2669. }
  2670. /*
  2671. * First idle cpu or the first cpu(busiest) in this sched group
  2672. * is eligible for doing load balancing at this and above
  2673. * domains. In the newly idle case, we will allow all the cpu's
  2674. * to do the newly idle load balance.
  2675. */
  2676. if (idle != CPU_NEWLY_IDLE && local_group &&
  2677. balance_cpu != this_cpu && balance) {
  2678. *balance = 0;
  2679. goto ret;
  2680. }
  2681. total_load += avg_load;
  2682. total_pwr += group->__cpu_power;
  2683. /* Adjust by relative CPU power of the group */
  2684. avg_load = sg_div_cpu_power(group,
  2685. avg_load * SCHED_LOAD_SCALE);
  2686. /*
  2687. * Consider the group unbalanced when the imbalance is larger
  2688. * than the average weight of two tasks.
  2689. *
  2690. * APZ: with cgroup the avg task weight can vary wildly and
  2691. * might not be a suitable number - should we keep a
  2692. * normalized nr_running number somewhere that negates
  2693. * the hierarchy?
  2694. */
  2695. avg_load_per_task = sg_div_cpu_power(group,
  2696. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2697. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2698. __group_imb = 1;
  2699. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2700. if (local_group) {
  2701. this_load = avg_load;
  2702. this = group;
  2703. this_nr_running = sum_nr_running;
  2704. this_load_per_task = sum_weighted_load;
  2705. } else if (avg_load > max_load &&
  2706. (sum_nr_running > group_capacity || __group_imb)) {
  2707. max_load = avg_load;
  2708. busiest = group;
  2709. busiest_nr_running = sum_nr_running;
  2710. busiest_load_per_task = sum_weighted_load;
  2711. group_imb = __group_imb;
  2712. }
  2713. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2714. /*
  2715. * Busy processors will not participate in power savings
  2716. * balance.
  2717. */
  2718. if (idle == CPU_NOT_IDLE ||
  2719. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2720. goto group_next;
  2721. /*
  2722. * If the local group is idle or completely loaded
  2723. * no need to do power savings balance at this domain
  2724. */
  2725. if (local_group && (this_nr_running >= group_capacity ||
  2726. !this_nr_running))
  2727. power_savings_balance = 0;
  2728. /*
  2729. * If a group is already running at full capacity or idle,
  2730. * don't include that group in power savings calculations
  2731. */
  2732. if (!power_savings_balance || sum_nr_running >= group_capacity
  2733. || !sum_nr_running)
  2734. goto group_next;
  2735. /*
  2736. * Calculate the group which has the least non-idle load.
  2737. * This is the group from where we need to pick up the load
  2738. * for saving power
  2739. */
  2740. if ((sum_nr_running < min_nr_running) ||
  2741. (sum_nr_running == min_nr_running &&
  2742. first_cpu(group->cpumask) <
  2743. first_cpu(group_min->cpumask))) {
  2744. group_min = group;
  2745. min_nr_running = sum_nr_running;
  2746. min_load_per_task = sum_weighted_load /
  2747. sum_nr_running;
  2748. }
  2749. /*
  2750. * Calculate the group which is almost near its
  2751. * capacity but still has some space to pick up some load
  2752. * from other group and save more power
  2753. */
  2754. if (sum_nr_running <= group_capacity - 1) {
  2755. if (sum_nr_running > leader_nr_running ||
  2756. (sum_nr_running == leader_nr_running &&
  2757. first_cpu(group->cpumask) >
  2758. first_cpu(group_leader->cpumask))) {
  2759. group_leader = group;
  2760. leader_nr_running = sum_nr_running;
  2761. }
  2762. }
  2763. group_next:
  2764. #endif
  2765. group = group->next;
  2766. } while (group != sd->groups);
  2767. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2768. goto out_balanced;
  2769. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2770. if (this_load >= avg_load ||
  2771. 100*max_load <= sd->imbalance_pct*this_load)
  2772. goto out_balanced;
  2773. busiest_load_per_task /= busiest_nr_running;
  2774. if (group_imb)
  2775. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2776. /*
  2777. * We're trying to get all the cpus to the average_load, so we don't
  2778. * want to push ourselves above the average load, nor do we wish to
  2779. * reduce the max loaded cpu below the average load, as either of these
  2780. * actions would just result in more rebalancing later, and ping-pong
  2781. * tasks around. Thus we look for the minimum possible imbalance.
  2782. * Negative imbalances (*we* are more loaded than anyone else) will
  2783. * be counted as no imbalance for these purposes -- we can't fix that
  2784. * by pulling tasks to us. Be careful of negative numbers as they'll
  2785. * appear as very large values with unsigned longs.
  2786. */
  2787. if (max_load <= busiest_load_per_task)
  2788. goto out_balanced;
  2789. /*
  2790. * In the presence of smp nice balancing, certain scenarios can have
  2791. * max load less than avg load(as we skip the groups at or below
  2792. * its cpu_power, while calculating max_load..)
  2793. */
  2794. if (max_load < avg_load) {
  2795. *imbalance = 0;
  2796. goto small_imbalance;
  2797. }
  2798. /* Don't want to pull so many tasks that a group would go idle */
  2799. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2800. /* How much load to actually move to equalise the imbalance */
  2801. *imbalance = min(max_pull * busiest->__cpu_power,
  2802. (avg_load - this_load) * this->__cpu_power)
  2803. / SCHED_LOAD_SCALE;
  2804. /*
  2805. * if *imbalance is less than the average load per runnable task
  2806. * there is no gaurantee that any tasks will be moved so we'll have
  2807. * a think about bumping its value to force at least one task to be
  2808. * moved
  2809. */
  2810. if (*imbalance < busiest_load_per_task) {
  2811. unsigned long tmp, pwr_now, pwr_move;
  2812. unsigned int imbn;
  2813. small_imbalance:
  2814. pwr_move = pwr_now = 0;
  2815. imbn = 2;
  2816. if (this_nr_running) {
  2817. this_load_per_task /= this_nr_running;
  2818. if (busiest_load_per_task > this_load_per_task)
  2819. imbn = 1;
  2820. } else
  2821. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2822. if (max_load - this_load + 2*busiest_load_per_task >=
  2823. busiest_load_per_task * imbn) {
  2824. *imbalance = busiest_load_per_task;
  2825. return busiest;
  2826. }
  2827. /*
  2828. * OK, we don't have enough imbalance to justify moving tasks,
  2829. * however we may be able to increase total CPU power used by
  2830. * moving them.
  2831. */
  2832. pwr_now += busiest->__cpu_power *
  2833. min(busiest_load_per_task, max_load);
  2834. pwr_now += this->__cpu_power *
  2835. min(this_load_per_task, this_load);
  2836. pwr_now /= SCHED_LOAD_SCALE;
  2837. /* Amount of load we'd subtract */
  2838. tmp = sg_div_cpu_power(busiest,
  2839. busiest_load_per_task * SCHED_LOAD_SCALE);
  2840. if (max_load > tmp)
  2841. pwr_move += busiest->__cpu_power *
  2842. min(busiest_load_per_task, max_load - tmp);
  2843. /* Amount of load we'd add */
  2844. if (max_load * busiest->__cpu_power <
  2845. busiest_load_per_task * SCHED_LOAD_SCALE)
  2846. tmp = sg_div_cpu_power(this,
  2847. max_load * busiest->__cpu_power);
  2848. else
  2849. tmp = sg_div_cpu_power(this,
  2850. busiest_load_per_task * SCHED_LOAD_SCALE);
  2851. pwr_move += this->__cpu_power *
  2852. min(this_load_per_task, this_load + tmp);
  2853. pwr_move /= SCHED_LOAD_SCALE;
  2854. /* Move if we gain throughput */
  2855. if (pwr_move > pwr_now)
  2856. *imbalance = busiest_load_per_task;
  2857. }
  2858. return busiest;
  2859. out_balanced:
  2860. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2861. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2862. goto ret;
  2863. if (this == group_leader && group_leader != group_min) {
  2864. *imbalance = min_load_per_task;
  2865. return group_min;
  2866. }
  2867. #endif
  2868. ret:
  2869. *imbalance = 0;
  2870. return NULL;
  2871. }
  2872. /*
  2873. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2874. */
  2875. static struct rq *
  2876. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2877. unsigned long imbalance, const cpumask_t *cpus)
  2878. {
  2879. struct rq *busiest = NULL, *rq;
  2880. unsigned long max_load = 0;
  2881. int i;
  2882. for_each_cpu_mask_nr(i, group->cpumask) {
  2883. unsigned long wl;
  2884. if (!cpu_isset(i, *cpus))
  2885. continue;
  2886. rq = cpu_rq(i);
  2887. wl = weighted_cpuload(i);
  2888. if (rq->nr_running == 1 && wl > imbalance)
  2889. continue;
  2890. if (wl > max_load) {
  2891. max_load = wl;
  2892. busiest = rq;
  2893. }
  2894. }
  2895. return busiest;
  2896. }
  2897. /*
  2898. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2899. * so long as it is large enough.
  2900. */
  2901. #define MAX_PINNED_INTERVAL 512
  2902. /*
  2903. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2904. * tasks if there is an imbalance.
  2905. */
  2906. static int load_balance(int this_cpu, struct rq *this_rq,
  2907. struct sched_domain *sd, enum cpu_idle_type idle,
  2908. int *balance, cpumask_t *cpus)
  2909. {
  2910. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2911. struct sched_group *group;
  2912. unsigned long imbalance;
  2913. struct rq *busiest;
  2914. unsigned long flags;
  2915. cpus_setall(*cpus);
  2916. /*
  2917. * When power savings policy is enabled for the parent domain, idle
  2918. * sibling can pick up load irrespective of busy siblings. In this case,
  2919. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2920. * portraying it as CPU_NOT_IDLE.
  2921. */
  2922. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2923. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2924. sd_idle = 1;
  2925. schedstat_inc(sd, lb_count[idle]);
  2926. redo:
  2927. update_shares(sd);
  2928. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2929. cpus, balance);
  2930. if (*balance == 0)
  2931. goto out_balanced;
  2932. if (!group) {
  2933. schedstat_inc(sd, lb_nobusyg[idle]);
  2934. goto out_balanced;
  2935. }
  2936. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2937. if (!busiest) {
  2938. schedstat_inc(sd, lb_nobusyq[idle]);
  2939. goto out_balanced;
  2940. }
  2941. BUG_ON(busiest == this_rq);
  2942. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2943. ld_moved = 0;
  2944. if (busiest->nr_running > 1) {
  2945. /*
  2946. * Attempt to move tasks. If find_busiest_group has found
  2947. * an imbalance but busiest->nr_running <= 1, the group is
  2948. * still unbalanced. ld_moved simply stays zero, so it is
  2949. * correctly treated as an imbalance.
  2950. */
  2951. local_irq_save(flags);
  2952. double_rq_lock(this_rq, busiest);
  2953. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2954. imbalance, sd, idle, &all_pinned);
  2955. double_rq_unlock(this_rq, busiest);
  2956. local_irq_restore(flags);
  2957. /*
  2958. * some other cpu did the load balance for us.
  2959. */
  2960. if (ld_moved && this_cpu != smp_processor_id())
  2961. resched_cpu(this_cpu);
  2962. /* All tasks on this runqueue were pinned by CPU affinity */
  2963. if (unlikely(all_pinned)) {
  2964. cpu_clear(cpu_of(busiest), *cpus);
  2965. if (!cpus_empty(*cpus))
  2966. goto redo;
  2967. goto out_balanced;
  2968. }
  2969. }
  2970. if (!ld_moved) {
  2971. schedstat_inc(sd, lb_failed[idle]);
  2972. sd->nr_balance_failed++;
  2973. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2974. spin_lock_irqsave(&busiest->lock, flags);
  2975. /* don't kick the migration_thread, if the curr
  2976. * task on busiest cpu can't be moved to this_cpu
  2977. */
  2978. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2979. spin_unlock_irqrestore(&busiest->lock, flags);
  2980. all_pinned = 1;
  2981. goto out_one_pinned;
  2982. }
  2983. if (!busiest->active_balance) {
  2984. busiest->active_balance = 1;
  2985. busiest->push_cpu = this_cpu;
  2986. active_balance = 1;
  2987. }
  2988. spin_unlock_irqrestore(&busiest->lock, flags);
  2989. if (active_balance)
  2990. wake_up_process(busiest->migration_thread);
  2991. /*
  2992. * We've kicked active balancing, reset the failure
  2993. * counter.
  2994. */
  2995. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2996. }
  2997. } else
  2998. sd->nr_balance_failed = 0;
  2999. if (likely(!active_balance)) {
  3000. /* We were unbalanced, so reset the balancing interval */
  3001. sd->balance_interval = sd->min_interval;
  3002. } else {
  3003. /*
  3004. * If we've begun active balancing, start to back off. This
  3005. * case may not be covered by the all_pinned logic if there
  3006. * is only 1 task on the busy runqueue (because we don't call
  3007. * move_tasks).
  3008. */
  3009. if (sd->balance_interval < sd->max_interval)
  3010. sd->balance_interval *= 2;
  3011. }
  3012. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3013. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3014. ld_moved = -1;
  3015. goto out;
  3016. out_balanced:
  3017. schedstat_inc(sd, lb_balanced[idle]);
  3018. sd->nr_balance_failed = 0;
  3019. out_one_pinned:
  3020. /* tune up the balancing interval */
  3021. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3022. (sd->balance_interval < sd->max_interval))
  3023. sd->balance_interval *= 2;
  3024. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3025. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3026. ld_moved = -1;
  3027. else
  3028. ld_moved = 0;
  3029. out:
  3030. if (ld_moved)
  3031. update_shares(sd);
  3032. return ld_moved;
  3033. }
  3034. /*
  3035. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3036. * tasks if there is an imbalance.
  3037. *
  3038. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3039. * this_rq is locked.
  3040. */
  3041. static int
  3042. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3043. cpumask_t *cpus)
  3044. {
  3045. struct sched_group *group;
  3046. struct rq *busiest = NULL;
  3047. unsigned long imbalance;
  3048. int ld_moved = 0;
  3049. int sd_idle = 0;
  3050. int all_pinned = 0;
  3051. cpus_setall(*cpus);
  3052. /*
  3053. * When power savings policy is enabled for the parent domain, idle
  3054. * sibling can pick up load irrespective of busy siblings. In this case,
  3055. * let the state of idle sibling percolate up as IDLE, instead of
  3056. * portraying it as CPU_NOT_IDLE.
  3057. */
  3058. if (sd->flags & SD_SHARE_CPUPOWER &&
  3059. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3060. sd_idle = 1;
  3061. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3062. redo:
  3063. update_shares_locked(this_rq, sd);
  3064. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3065. &sd_idle, cpus, NULL);
  3066. if (!group) {
  3067. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3068. goto out_balanced;
  3069. }
  3070. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3071. if (!busiest) {
  3072. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3073. goto out_balanced;
  3074. }
  3075. BUG_ON(busiest == this_rq);
  3076. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3077. ld_moved = 0;
  3078. if (busiest->nr_running > 1) {
  3079. /* Attempt to move tasks */
  3080. double_lock_balance(this_rq, busiest);
  3081. /* this_rq->clock is already updated */
  3082. update_rq_clock(busiest);
  3083. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3084. imbalance, sd, CPU_NEWLY_IDLE,
  3085. &all_pinned);
  3086. spin_unlock(&busiest->lock);
  3087. if (unlikely(all_pinned)) {
  3088. cpu_clear(cpu_of(busiest), *cpus);
  3089. if (!cpus_empty(*cpus))
  3090. goto redo;
  3091. }
  3092. }
  3093. if (!ld_moved) {
  3094. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3095. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3096. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3097. return -1;
  3098. } else
  3099. sd->nr_balance_failed = 0;
  3100. update_shares_locked(this_rq, sd);
  3101. return ld_moved;
  3102. out_balanced:
  3103. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3104. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3105. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3106. return -1;
  3107. sd->nr_balance_failed = 0;
  3108. return 0;
  3109. }
  3110. /*
  3111. * idle_balance is called by schedule() if this_cpu is about to become
  3112. * idle. Attempts to pull tasks from other CPUs.
  3113. */
  3114. static void idle_balance(int this_cpu, struct rq *this_rq)
  3115. {
  3116. struct sched_domain *sd;
  3117. int pulled_task = -1;
  3118. unsigned long next_balance = jiffies + HZ;
  3119. cpumask_t tmpmask;
  3120. for_each_domain(this_cpu, sd) {
  3121. unsigned long interval;
  3122. if (!(sd->flags & SD_LOAD_BALANCE))
  3123. continue;
  3124. if (sd->flags & SD_BALANCE_NEWIDLE)
  3125. /* If we've pulled tasks over stop searching: */
  3126. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3127. sd, &tmpmask);
  3128. interval = msecs_to_jiffies(sd->balance_interval);
  3129. if (time_after(next_balance, sd->last_balance + interval))
  3130. next_balance = sd->last_balance + interval;
  3131. if (pulled_task)
  3132. break;
  3133. }
  3134. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3135. /*
  3136. * We are going idle. next_balance may be set based on
  3137. * a busy processor. So reset next_balance.
  3138. */
  3139. this_rq->next_balance = next_balance;
  3140. }
  3141. }
  3142. /*
  3143. * active_load_balance is run by migration threads. It pushes running tasks
  3144. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3145. * running on each physical CPU where possible, and avoids physical /
  3146. * logical imbalances.
  3147. *
  3148. * Called with busiest_rq locked.
  3149. */
  3150. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3151. {
  3152. int target_cpu = busiest_rq->push_cpu;
  3153. struct sched_domain *sd;
  3154. struct rq *target_rq;
  3155. /* Is there any task to move? */
  3156. if (busiest_rq->nr_running <= 1)
  3157. return;
  3158. target_rq = cpu_rq(target_cpu);
  3159. /*
  3160. * This condition is "impossible", if it occurs
  3161. * we need to fix it. Originally reported by
  3162. * Bjorn Helgaas on a 128-cpu setup.
  3163. */
  3164. BUG_ON(busiest_rq == target_rq);
  3165. /* move a task from busiest_rq to target_rq */
  3166. double_lock_balance(busiest_rq, target_rq);
  3167. update_rq_clock(busiest_rq);
  3168. update_rq_clock(target_rq);
  3169. /* Search for an sd spanning us and the target CPU. */
  3170. for_each_domain(target_cpu, sd) {
  3171. if ((sd->flags & SD_LOAD_BALANCE) &&
  3172. cpu_isset(busiest_cpu, sd->span))
  3173. break;
  3174. }
  3175. if (likely(sd)) {
  3176. schedstat_inc(sd, alb_count);
  3177. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3178. sd, CPU_IDLE))
  3179. schedstat_inc(sd, alb_pushed);
  3180. else
  3181. schedstat_inc(sd, alb_failed);
  3182. }
  3183. spin_unlock(&target_rq->lock);
  3184. }
  3185. #ifdef CONFIG_NO_HZ
  3186. static struct {
  3187. atomic_t load_balancer;
  3188. cpumask_t cpu_mask;
  3189. } nohz ____cacheline_aligned = {
  3190. .load_balancer = ATOMIC_INIT(-1),
  3191. .cpu_mask = CPU_MASK_NONE,
  3192. };
  3193. /*
  3194. * This routine will try to nominate the ilb (idle load balancing)
  3195. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3196. * load balancing on behalf of all those cpus. If all the cpus in the system
  3197. * go into this tickless mode, then there will be no ilb owner (as there is
  3198. * no need for one) and all the cpus will sleep till the next wakeup event
  3199. * arrives...
  3200. *
  3201. * For the ilb owner, tick is not stopped. And this tick will be used
  3202. * for idle load balancing. ilb owner will still be part of
  3203. * nohz.cpu_mask..
  3204. *
  3205. * While stopping the tick, this cpu will become the ilb owner if there
  3206. * is no other owner. And will be the owner till that cpu becomes busy
  3207. * or if all cpus in the system stop their ticks at which point
  3208. * there is no need for ilb owner.
  3209. *
  3210. * When the ilb owner becomes busy, it nominates another owner, during the
  3211. * next busy scheduler_tick()
  3212. */
  3213. int select_nohz_load_balancer(int stop_tick)
  3214. {
  3215. int cpu = smp_processor_id();
  3216. if (stop_tick) {
  3217. cpu_set(cpu, nohz.cpu_mask);
  3218. cpu_rq(cpu)->in_nohz_recently = 1;
  3219. /*
  3220. * If we are going offline and still the leader, give up!
  3221. */
  3222. if (!cpu_active(cpu) &&
  3223. atomic_read(&nohz.load_balancer) == cpu) {
  3224. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3225. BUG();
  3226. return 0;
  3227. }
  3228. /* time for ilb owner also to sleep */
  3229. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3230. if (atomic_read(&nohz.load_balancer) == cpu)
  3231. atomic_set(&nohz.load_balancer, -1);
  3232. return 0;
  3233. }
  3234. if (atomic_read(&nohz.load_balancer) == -1) {
  3235. /* make me the ilb owner */
  3236. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3237. return 1;
  3238. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3239. return 1;
  3240. } else {
  3241. if (!cpu_isset(cpu, nohz.cpu_mask))
  3242. return 0;
  3243. cpu_clear(cpu, nohz.cpu_mask);
  3244. if (atomic_read(&nohz.load_balancer) == cpu)
  3245. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3246. BUG();
  3247. }
  3248. return 0;
  3249. }
  3250. #endif
  3251. static DEFINE_SPINLOCK(balancing);
  3252. /*
  3253. * It checks each scheduling domain to see if it is due to be balanced,
  3254. * and initiates a balancing operation if so.
  3255. *
  3256. * Balancing parameters are set up in arch_init_sched_domains.
  3257. */
  3258. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3259. {
  3260. int balance = 1;
  3261. struct rq *rq = cpu_rq(cpu);
  3262. unsigned long interval;
  3263. struct sched_domain *sd;
  3264. /* Earliest time when we have to do rebalance again */
  3265. unsigned long next_balance = jiffies + 60*HZ;
  3266. int update_next_balance = 0;
  3267. int need_serialize;
  3268. cpumask_t tmp;
  3269. for_each_domain(cpu, sd) {
  3270. if (!(sd->flags & SD_LOAD_BALANCE))
  3271. continue;
  3272. interval = sd->balance_interval;
  3273. if (idle != CPU_IDLE)
  3274. interval *= sd->busy_factor;
  3275. /* scale ms to jiffies */
  3276. interval = msecs_to_jiffies(interval);
  3277. if (unlikely(!interval))
  3278. interval = 1;
  3279. if (interval > HZ*NR_CPUS/10)
  3280. interval = HZ*NR_CPUS/10;
  3281. need_serialize = sd->flags & SD_SERIALIZE;
  3282. if (need_serialize) {
  3283. if (!spin_trylock(&balancing))
  3284. goto out;
  3285. }
  3286. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3287. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3288. /*
  3289. * We've pulled tasks over so either we're no
  3290. * longer idle, or one of our SMT siblings is
  3291. * not idle.
  3292. */
  3293. idle = CPU_NOT_IDLE;
  3294. }
  3295. sd->last_balance = jiffies;
  3296. }
  3297. if (need_serialize)
  3298. spin_unlock(&balancing);
  3299. out:
  3300. if (time_after(next_balance, sd->last_balance + interval)) {
  3301. next_balance = sd->last_balance + interval;
  3302. update_next_balance = 1;
  3303. }
  3304. /*
  3305. * Stop the load balance at this level. There is another
  3306. * CPU in our sched group which is doing load balancing more
  3307. * actively.
  3308. */
  3309. if (!balance)
  3310. break;
  3311. }
  3312. /*
  3313. * next_balance will be updated only when there is a need.
  3314. * When the cpu is attached to null domain for ex, it will not be
  3315. * updated.
  3316. */
  3317. if (likely(update_next_balance))
  3318. rq->next_balance = next_balance;
  3319. }
  3320. /*
  3321. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3322. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3323. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3324. */
  3325. static void run_rebalance_domains(struct softirq_action *h)
  3326. {
  3327. int this_cpu = smp_processor_id();
  3328. struct rq *this_rq = cpu_rq(this_cpu);
  3329. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3330. CPU_IDLE : CPU_NOT_IDLE;
  3331. rebalance_domains(this_cpu, idle);
  3332. #ifdef CONFIG_NO_HZ
  3333. /*
  3334. * If this cpu is the owner for idle load balancing, then do the
  3335. * balancing on behalf of the other idle cpus whose ticks are
  3336. * stopped.
  3337. */
  3338. if (this_rq->idle_at_tick &&
  3339. atomic_read(&nohz.load_balancer) == this_cpu) {
  3340. cpumask_t cpus = nohz.cpu_mask;
  3341. struct rq *rq;
  3342. int balance_cpu;
  3343. cpu_clear(this_cpu, cpus);
  3344. for_each_cpu_mask_nr(balance_cpu, cpus) {
  3345. /*
  3346. * If this cpu gets work to do, stop the load balancing
  3347. * work being done for other cpus. Next load
  3348. * balancing owner will pick it up.
  3349. */
  3350. if (need_resched())
  3351. break;
  3352. rebalance_domains(balance_cpu, CPU_IDLE);
  3353. rq = cpu_rq(balance_cpu);
  3354. if (time_after(this_rq->next_balance, rq->next_balance))
  3355. this_rq->next_balance = rq->next_balance;
  3356. }
  3357. }
  3358. #endif
  3359. }
  3360. /*
  3361. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3362. *
  3363. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3364. * idle load balancing owner or decide to stop the periodic load balancing,
  3365. * if the whole system is idle.
  3366. */
  3367. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3368. {
  3369. #ifdef CONFIG_NO_HZ
  3370. /*
  3371. * If we were in the nohz mode recently and busy at the current
  3372. * scheduler tick, then check if we need to nominate new idle
  3373. * load balancer.
  3374. */
  3375. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3376. rq->in_nohz_recently = 0;
  3377. if (atomic_read(&nohz.load_balancer) == cpu) {
  3378. cpu_clear(cpu, nohz.cpu_mask);
  3379. atomic_set(&nohz.load_balancer, -1);
  3380. }
  3381. if (atomic_read(&nohz.load_balancer) == -1) {
  3382. /*
  3383. * simple selection for now: Nominate the
  3384. * first cpu in the nohz list to be the next
  3385. * ilb owner.
  3386. *
  3387. * TBD: Traverse the sched domains and nominate
  3388. * the nearest cpu in the nohz.cpu_mask.
  3389. */
  3390. int ilb = first_cpu(nohz.cpu_mask);
  3391. if (ilb < nr_cpu_ids)
  3392. resched_cpu(ilb);
  3393. }
  3394. }
  3395. /*
  3396. * If this cpu is idle and doing idle load balancing for all the
  3397. * cpus with ticks stopped, is it time for that to stop?
  3398. */
  3399. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3400. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3401. resched_cpu(cpu);
  3402. return;
  3403. }
  3404. /*
  3405. * If this cpu is idle and the idle load balancing is done by
  3406. * someone else, then no need raise the SCHED_SOFTIRQ
  3407. */
  3408. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3409. cpu_isset(cpu, nohz.cpu_mask))
  3410. return;
  3411. #endif
  3412. if (time_after_eq(jiffies, rq->next_balance))
  3413. raise_softirq(SCHED_SOFTIRQ);
  3414. }
  3415. #else /* CONFIG_SMP */
  3416. /*
  3417. * on UP we do not need to balance between CPUs:
  3418. */
  3419. static inline void idle_balance(int cpu, struct rq *rq)
  3420. {
  3421. }
  3422. #endif
  3423. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3424. EXPORT_PER_CPU_SYMBOL(kstat);
  3425. /*
  3426. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3427. * that have not yet been banked in case the task is currently running.
  3428. */
  3429. unsigned long long task_sched_runtime(struct task_struct *p)
  3430. {
  3431. unsigned long flags;
  3432. u64 ns, delta_exec;
  3433. struct rq *rq;
  3434. rq = task_rq_lock(p, &flags);
  3435. ns = p->se.sum_exec_runtime;
  3436. if (task_current(rq, p)) {
  3437. update_rq_clock(rq);
  3438. delta_exec = rq->clock - p->se.exec_start;
  3439. if ((s64)delta_exec > 0)
  3440. ns += delta_exec;
  3441. }
  3442. task_rq_unlock(rq, &flags);
  3443. return ns;
  3444. }
  3445. /*
  3446. * Account user cpu time to a process.
  3447. * @p: the process that the cpu time gets accounted to
  3448. * @cputime: the cpu time spent in user space since the last update
  3449. */
  3450. void account_user_time(struct task_struct *p, cputime_t cputime)
  3451. {
  3452. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3453. cputime64_t tmp;
  3454. p->utime = cputime_add(p->utime, cputime);
  3455. /* Add user time to cpustat. */
  3456. tmp = cputime_to_cputime64(cputime);
  3457. if (TASK_NICE(p) > 0)
  3458. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3459. else
  3460. cpustat->user = cputime64_add(cpustat->user, tmp);
  3461. /* Account for user time used */
  3462. acct_update_integrals(p);
  3463. }
  3464. /*
  3465. * Account guest cpu time to a process.
  3466. * @p: the process that the cpu time gets accounted to
  3467. * @cputime: the cpu time spent in virtual machine since the last update
  3468. */
  3469. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3470. {
  3471. cputime64_t tmp;
  3472. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3473. tmp = cputime_to_cputime64(cputime);
  3474. p->utime = cputime_add(p->utime, cputime);
  3475. p->gtime = cputime_add(p->gtime, cputime);
  3476. cpustat->user = cputime64_add(cpustat->user, tmp);
  3477. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3478. }
  3479. /*
  3480. * Account scaled user cpu time to a process.
  3481. * @p: the process that the cpu time gets accounted to
  3482. * @cputime: the cpu time spent in user space since the last update
  3483. */
  3484. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3485. {
  3486. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3487. }
  3488. /*
  3489. * Account system cpu time to a process.
  3490. * @p: the process that the cpu time gets accounted to
  3491. * @hardirq_offset: the offset to subtract from hardirq_count()
  3492. * @cputime: the cpu time spent in kernel space since the last update
  3493. */
  3494. void account_system_time(struct task_struct *p, int hardirq_offset,
  3495. cputime_t cputime)
  3496. {
  3497. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3498. struct rq *rq = this_rq();
  3499. cputime64_t tmp;
  3500. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3501. account_guest_time(p, cputime);
  3502. return;
  3503. }
  3504. p->stime = cputime_add(p->stime, cputime);
  3505. /* Add system time to cpustat. */
  3506. tmp = cputime_to_cputime64(cputime);
  3507. if (hardirq_count() - hardirq_offset)
  3508. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3509. else if (softirq_count())
  3510. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3511. else if (p != rq->idle)
  3512. cpustat->system = cputime64_add(cpustat->system, tmp);
  3513. else if (atomic_read(&rq->nr_iowait) > 0)
  3514. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3515. else
  3516. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3517. /* Account for system time used */
  3518. acct_update_integrals(p);
  3519. }
  3520. /*
  3521. * Account scaled system cpu time to a process.
  3522. * @p: the process that the cpu time gets accounted to
  3523. * @hardirq_offset: the offset to subtract from hardirq_count()
  3524. * @cputime: the cpu time spent in kernel space since the last update
  3525. */
  3526. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3527. {
  3528. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3529. }
  3530. /*
  3531. * Account for involuntary wait time.
  3532. * @p: the process from which the cpu time has been stolen
  3533. * @steal: the cpu time spent in involuntary wait
  3534. */
  3535. void account_steal_time(struct task_struct *p, cputime_t steal)
  3536. {
  3537. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3538. cputime64_t tmp = cputime_to_cputime64(steal);
  3539. struct rq *rq = this_rq();
  3540. if (p == rq->idle) {
  3541. p->stime = cputime_add(p->stime, steal);
  3542. if (atomic_read(&rq->nr_iowait) > 0)
  3543. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3544. else
  3545. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3546. } else
  3547. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3548. }
  3549. /*
  3550. * This function gets called by the timer code, with HZ frequency.
  3551. * We call it with interrupts disabled.
  3552. *
  3553. * It also gets called by the fork code, when changing the parent's
  3554. * timeslices.
  3555. */
  3556. void scheduler_tick(void)
  3557. {
  3558. int cpu = smp_processor_id();
  3559. struct rq *rq = cpu_rq(cpu);
  3560. struct task_struct *curr = rq->curr;
  3561. sched_clock_tick();
  3562. spin_lock(&rq->lock);
  3563. update_rq_clock(rq);
  3564. update_cpu_load(rq);
  3565. curr->sched_class->task_tick(rq, curr, 0);
  3566. spin_unlock(&rq->lock);
  3567. #ifdef CONFIG_SMP
  3568. rq->idle_at_tick = idle_cpu(cpu);
  3569. trigger_load_balance(rq, cpu);
  3570. #endif
  3571. }
  3572. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3573. defined(CONFIG_PREEMPT_TRACER))
  3574. static inline unsigned long get_parent_ip(unsigned long addr)
  3575. {
  3576. if (in_lock_functions(addr)) {
  3577. addr = CALLER_ADDR2;
  3578. if (in_lock_functions(addr))
  3579. addr = CALLER_ADDR3;
  3580. }
  3581. return addr;
  3582. }
  3583. void __kprobes add_preempt_count(int val)
  3584. {
  3585. #ifdef CONFIG_DEBUG_PREEMPT
  3586. /*
  3587. * Underflow?
  3588. */
  3589. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3590. return;
  3591. #endif
  3592. preempt_count() += val;
  3593. #ifdef CONFIG_DEBUG_PREEMPT
  3594. /*
  3595. * Spinlock count overflowing soon?
  3596. */
  3597. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3598. PREEMPT_MASK - 10);
  3599. #endif
  3600. if (preempt_count() == val)
  3601. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3602. }
  3603. EXPORT_SYMBOL(add_preempt_count);
  3604. void __kprobes sub_preempt_count(int val)
  3605. {
  3606. #ifdef CONFIG_DEBUG_PREEMPT
  3607. /*
  3608. * Underflow?
  3609. */
  3610. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3611. return;
  3612. /*
  3613. * Is the spinlock portion underflowing?
  3614. */
  3615. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3616. !(preempt_count() & PREEMPT_MASK)))
  3617. return;
  3618. #endif
  3619. if (preempt_count() == val)
  3620. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3621. preempt_count() -= val;
  3622. }
  3623. EXPORT_SYMBOL(sub_preempt_count);
  3624. #endif
  3625. /*
  3626. * Print scheduling while atomic bug:
  3627. */
  3628. static noinline void __schedule_bug(struct task_struct *prev)
  3629. {
  3630. struct pt_regs *regs = get_irq_regs();
  3631. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3632. prev->comm, prev->pid, preempt_count());
  3633. debug_show_held_locks(prev);
  3634. print_modules();
  3635. if (irqs_disabled())
  3636. print_irqtrace_events(prev);
  3637. if (regs)
  3638. show_regs(regs);
  3639. else
  3640. dump_stack();
  3641. }
  3642. /*
  3643. * Various schedule()-time debugging checks and statistics:
  3644. */
  3645. static inline void schedule_debug(struct task_struct *prev)
  3646. {
  3647. /*
  3648. * Test if we are atomic. Since do_exit() needs to call into
  3649. * schedule() atomically, we ignore that path for now.
  3650. * Otherwise, whine if we are scheduling when we should not be.
  3651. */
  3652. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3653. __schedule_bug(prev);
  3654. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3655. schedstat_inc(this_rq(), sched_count);
  3656. #ifdef CONFIG_SCHEDSTATS
  3657. if (unlikely(prev->lock_depth >= 0)) {
  3658. schedstat_inc(this_rq(), bkl_count);
  3659. schedstat_inc(prev, sched_info.bkl_count);
  3660. }
  3661. #endif
  3662. }
  3663. /*
  3664. * Pick up the highest-prio task:
  3665. */
  3666. static inline struct task_struct *
  3667. pick_next_task(struct rq *rq, struct task_struct *prev)
  3668. {
  3669. const struct sched_class *class;
  3670. struct task_struct *p;
  3671. /*
  3672. * Optimization: we know that if all tasks are in
  3673. * the fair class we can call that function directly:
  3674. */
  3675. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3676. p = fair_sched_class.pick_next_task(rq);
  3677. if (likely(p))
  3678. return p;
  3679. }
  3680. class = sched_class_highest;
  3681. for ( ; ; ) {
  3682. p = class->pick_next_task(rq);
  3683. if (p)
  3684. return p;
  3685. /*
  3686. * Will never be NULL as the idle class always
  3687. * returns a non-NULL p:
  3688. */
  3689. class = class->next;
  3690. }
  3691. }
  3692. /*
  3693. * schedule() is the main scheduler function.
  3694. */
  3695. asmlinkage void __sched schedule(void)
  3696. {
  3697. struct task_struct *prev, *next;
  3698. unsigned long *switch_count;
  3699. struct rq *rq;
  3700. int cpu;
  3701. need_resched:
  3702. preempt_disable();
  3703. cpu = smp_processor_id();
  3704. rq = cpu_rq(cpu);
  3705. rcu_qsctr_inc(cpu);
  3706. prev = rq->curr;
  3707. switch_count = &prev->nivcsw;
  3708. release_kernel_lock(prev);
  3709. need_resched_nonpreemptible:
  3710. schedule_debug(prev);
  3711. if (sched_feat(HRTICK))
  3712. hrtick_clear(rq);
  3713. /*
  3714. * Do the rq-clock update outside the rq lock:
  3715. */
  3716. local_irq_disable();
  3717. update_rq_clock(rq);
  3718. spin_lock(&rq->lock);
  3719. clear_tsk_need_resched(prev);
  3720. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3721. if (unlikely(signal_pending_state(prev->state, prev)))
  3722. prev->state = TASK_RUNNING;
  3723. else
  3724. deactivate_task(rq, prev, 1);
  3725. switch_count = &prev->nvcsw;
  3726. }
  3727. #ifdef CONFIG_SMP
  3728. if (prev->sched_class->pre_schedule)
  3729. prev->sched_class->pre_schedule(rq, prev);
  3730. #endif
  3731. if (unlikely(!rq->nr_running))
  3732. idle_balance(cpu, rq);
  3733. prev->sched_class->put_prev_task(rq, prev);
  3734. next = pick_next_task(rq, prev);
  3735. if (likely(prev != next)) {
  3736. sched_info_switch(prev, next);
  3737. rq->nr_switches++;
  3738. rq->curr = next;
  3739. ++*switch_count;
  3740. context_switch(rq, prev, next); /* unlocks the rq */
  3741. /*
  3742. * the context switch might have flipped the stack from under
  3743. * us, hence refresh the local variables.
  3744. */
  3745. cpu = smp_processor_id();
  3746. rq = cpu_rq(cpu);
  3747. } else
  3748. spin_unlock_irq(&rq->lock);
  3749. if (unlikely(reacquire_kernel_lock(current) < 0))
  3750. goto need_resched_nonpreemptible;
  3751. preempt_enable_no_resched();
  3752. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3753. goto need_resched;
  3754. }
  3755. EXPORT_SYMBOL(schedule);
  3756. #ifdef CONFIG_PREEMPT
  3757. /*
  3758. * this is the entry point to schedule() from in-kernel preemption
  3759. * off of preempt_enable. Kernel preemptions off return from interrupt
  3760. * occur there and call schedule directly.
  3761. */
  3762. asmlinkage void __sched preempt_schedule(void)
  3763. {
  3764. struct thread_info *ti = current_thread_info();
  3765. /*
  3766. * If there is a non-zero preempt_count or interrupts are disabled,
  3767. * we do not want to preempt the current task. Just return..
  3768. */
  3769. if (likely(ti->preempt_count || irqs_disabled()))
  3770. return;
  3771. do {
  3772. add_preempt_count(PREEMPT_ACTIVE);
  3773. schedule();
  3774. sub_preempt_count(PREEMPT_ACTIVE);
  3775. /*
  3776. * Check again in case we missed a preemption opportunity
  3777. * between schedule and now.
  3778. */
  3779. barrier();
  3780. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3781. }
  3782. EXPORT_SYMBOL(preempt_schedule);
  3783. /*
  3784. * this is the entry point to schedule() from kernel preemption
  3785. * off of irq context.
  3786. * Note, that this is called and return with irqs disabled. This will
  3787. * protect us against recursive calling from irq.
  3788. */
  3789. asmlinkage void __sched preempt_schedule_irq(void)
  3790. {
  3791. struct thread_info *ti = current_thread_info();
  3792. /* Catch callers which need to be fixed */
  3793. BUG_ON(ti->preempt_count || !irqs_disabled());
  3794. do {
  3795. add_preempt_count(PREEMPT_ACTIVE);
  3796. local_irq_enable();
  3797. schedule();
  3798. local_irq_disable();
  3799. sub_preempt_count(PREEMPT_ACTIVE);
  3800. /*
  3801. * Check again in case we missed a preemption opportunity
  3802. * between schedule and now.
  3803. */
  3804. barrier();
  3805. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3806. }
  3807. #endif /* CONFIG_PREEMPT */
  3808. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3809. void *key)
  3810. {
  3811. return try_to_wake_up(curr->private, mode, sync);
  3812. }
  3813. EXPORT_SYMBOL(default_wake_function);
  3814. /*
  3815. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3816. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3817. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3818. *
  3819. * There are circumstances in which we can try to wake a task which has already
  3820. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3821. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3822. */
  3823. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3824. int nr_exclusive, int sync, void *key)
  3825. {
  3826. wait_queue_t *curr, *next;
  3827. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3828. unsigned flags = curr->flags;
  3829. if (curr->func(curr, mode, sync, key) &&
  3830. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3831. break;
  3832. }
  3833. }
  3834. /**
  3835. * __wake_up - wake up threads blocked on a waitqueue.
  3836. * @q: the waitqueue
  3837. * @mode: which threads
  3838. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3839. * @key: is directly passed to the wakeup function
  3840. */
  3841. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3842. int nr_exclusive, void *key)
  3843. {
  3844. unsigned long flags;
  3845. spin_lock_irqsave(&q->lock, flags);
  3846. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3847. spin_unlock_irqrestore(&q->lock, flags);
  3848. }
  3849. EXPORT_SYMBOL(__wake_up);
  3850. /*
  3851. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3852. */
  3853. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3854. {
  3855. __wake_up_common(q, mode, 1, 0, NULL);
  3856. }
  3857. /**
  3858. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3859. * @q: the waitqueue
  3860. * @mode: which threads
  3861. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3862. *
  3863. * The sync wakeup differs that the waker knows that it will schedule
  3864. * away soon, so while the target thread will be woken up, it will not
  3865. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3866. * with each other. This can prevent needless bouncing between CPUs.
  3867. *
  3868. * On UP it can prevent extra preemption.
  3869. */
  3870. void
  3871. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3872. {
  3873. unsigned long flags;
  3874. int sync = 1;
  3875. if (unlikely(!q))
  3876. return;
  3877. if (unlikely(!nr_exclusive))
  3878. sync = 0;
  3879. spin_lock_irqsave(&q->lock, flags);
  3880. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3881. spin_unlock_irqrestore(&q->lock, flags);
  3882. }
  3883. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3884. void complete(struct completion *x)
  3885. {
  3886. unsigned long flags;
  3887. spin_lock_irqsave(&x->wait.lock, flags);
  3888. x->done++;
  3889. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3890. spin_unlock_irqrestore(&x->wait.lock, flags);
  3891. }
  3892. EXPORT_SYMBOL(complete);
  3893. void complete_all(struct completion *x)
  3894. {
  3895. unsigned long flags;
  3896. spin_lock_irqsave(&x->wait.lock, flags);
  3897. x->done += UINT_MAX/2;
  3898. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3899. spin_unlock_irqrestore(&x->wait.lock, flags);
  3900. }
  3901. EXPORT_SYMBOL(complete_all);
  3902. static inline long __sched
  3903. do_wait_for_common(struct completion *x, long timeout, int state)
  3904. {
  3905. if (!x->done) {
  3906. DECLARE_WAITQUEUE(wait, current);
  3907. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3908. __add_wait_queue_tail(&x->wait, &wait);
  3909. do {
  3910. if ((state == TASK_INTERRUPTIBLE &&
  3911. signal_pending(current)) ||
  3912. (state == TASK_KILLABLE &&
  3913. fatal_signal_pending(current))) {
  3914. timeout = -ERESTARTSYS;
  3915. break;
  3916. }
  3917. __set_current_state(state);
  3918. spin_unlock_irq(&x->wait.lock);
  3919. timeout = schedule_timeout(timeout);
  3920. spin_lock_irq(&x->wait.lock);
  3921. } while (!x->done && timeout);
  3922. __remove_wait_queue(&x->wait, &wait);
  3923. if (!x->done)
  3924. return timeout;
  3925. }
  3926. x->done--;
  3927. return timeout ?: 1;
  3928. }
  3929. static long __sched
  3930. wait_for_common(struct completion *x, long timeout, int state)
  3931. {
  3932. might_sleep();
  3933. spin_lock_irq(&x->wait.lock);
  3934. timeout = do_wait_for_common(x, timeout, state);
  3935. spin_unlock_irq(&x->wait.lock);
  3936. return timeout;
  3937. }
  3938. void __sched wait_for_completion(struct completion *x)
  3939. {
  3940. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3941. }
  3942. EXPORT_SYMBOL(wait_for_completion);
  3943. unsigned long __sched
  3944. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3945. {
  3946. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3947. }
  3948. EXPORT_SYMBOL(wait_for_completion_timeout);
  3949. int __sched wait_for_completion_interruptible(struct completion *x)
  3950. {
  3951. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3952. if (t == -ERESTARTSYS)
  3953. return t;
  3954. return 0;
  3955. }
  3956. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3957. unsigned long __sched
  3958. wait_for_completion_interruptible_timeout(struct completion *x,
  3959. unsigned long timeout)
  3960. {
  3961. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3962. }
  3963. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3964. int __sched wait_for_completion_killable(struct completion *x)
  3965. {
  3966. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3967. if (t == -ERESTARTSYS)
  3968. return t;
  3969. return 0;
  3970. }
  3971. EXPORT_SYMBOL(wait_for_completion_killable);
  3972. static long __sched
  3973. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3974. {
  3975. unsigned long flags;
  3976. wait_queue_t wait;
  3977. init_waitqueue_entry(&wait, current);
  3978. __set_current_state(state);
  3979. spin_lock_irqsave(&q->lock, flags);
  3980. __add_wait_queue(q, &wait);
  3981. spin_unlock(&q->lock);
  3982. timeout = schedule_timeout(timeout);
  3983. spin_lock_irq(&q->lock);
  3984. __remove_wait_queue(q, &wait);
  3985. spin_unlock_irqrestore(&q->lock, flags);
  3986. return timeout;
  3987. }
  3988. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3989. {
  3990. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3991. }
  3992. EXPORT_SYMBOL(interruptible_sleep_on);
  3993. long __sched
  3994. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3995. {
  3996. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3997. }
  3998. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3999. void __sched sleep_on(wait_queue_head_t *q)
  4000. {
  4001. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4002. }
  4003. EXPORT_SYMBOL(sleep_on);
  4004. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4005. {
  4006. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4007. }
  4008. EXPORT_SYMBOL(sleep_on_timeout);
  4009. #ifdef CONFIG_RT_MUTEXES
  4010. /*
  4011. * rt_mutex_setprio - set the current priority of a task
  4012. * @p: task
  4013. * @prio: prio value (kernel-internal form)
  4014. *
  4015. * This function changes the 'effective' priority of a task. It does
  4016. * not touch ->normal_prio like __setscheduler().
  4017. *
  4018. * Used by the rt_mutex code to implement priority inheritance logic.
  4019. */
  4020. void rt_mutex_setprio(struct task_struct *p, int prio)
  4021. {
  4022. unsigned long flags;
  4023. int oldprio, on_rq, running;
  4024. struct rq *rq;
  4025. const struct sched_class *prev_class = p->sched_class;
  4026. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4027. rq = task_rq_lock(p, &flags);
  4028. update_rq_clock(rq);
  4029. oldprio = p->prio;
  4030. on_rq = p->se.on_rq;
  4031. running = task_current(rq, p);
  4032. if (on_rq)
  4033. dequeue_task(rq, p, 0);
  4034. if (running)
  4035. p->sched_class->put_prev_task(rq, p);
  4036. if (rt_prio(prio))
  4037. p->sched_class = &rt_sched_class;
  4038. else
  4039. p->sched_class = &fair_sched_class;
  4040. p->prio = prio;
  4041. if (running)
  4042. p->sched_class->set_curr_task(rq);
  4043. if (on_rq) {
  4044. enqueue_task(rq, p, 0);
  4045. check_class_changed(rq, p, prev_class, oldprio, running);
  4046. }
  4047. task_rq_unlock(rq, &flags);
  4048. }
  4049. #endif
  4050. void set_user_nice(struct task_struct *p, long nice)
  4051. {
  4052. int old_prio, delta, on_rq;
  4053. unsigned long flags;
  4054. struct rq *rq;
  4055. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4056. return;
  4057. /*
  4058. * We have to be careful, if called from sys_setpriority(),
  4059. * the task might be in the middle of scheduling on another CPU.
  4060. */
  4061. rq = task_rq_lock(p, &flags);
  4062. update_rq_clock(rq);
  4063. /*
  4064. * The RT priorities are set via sched_setscheduler(), but we still
  4065. * allow the 'normal' nice value to be set - but as expected
  4066. * it wont have any effect on scheduling until the task is
  4067. * SCHED_FIFO/SCHED_RR:
  4068. */
  4069. if (task_has_rt_policy(p)) {
  4070. p->static_prio = NICE_TO_PRIO(nice);
  4071. goto out_unlock;
  4072. }
  4073. on_rq = p->se.on_rq;
  4074. if (on_rq)
  4075. dequeue_task(rq, p, 0);
  4076. p->static_prio = NICE_TO_PRIO(nice);
  4077. set_load_weight(p);
  4078. old_prio = p->prio;
  4079. p->prio = effective_prio(p);
  4080. delta = p->prio - old_prio;
  4081. if (on_rq) {
  4082. enqueue_task(rq, p, 0);
  4083. /*
  4084. * If the task increased its priority or is running and
  4085. * lowered its priority, then reschedule its CPU:
  4086. */
  4087. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4088. resched_task(rq->curr);
  4089. }
  4090. out_unlock:
  4091. task_rq_unlock(rq, &flags);
  4092. }
  4093. EXPORT_SYMBOL(set_user_nice);
  4094. /*
  4095. * can_nice - check if a task can reduce its nice value
  4096. * @p: task
  4097. * @nice: nice value
  4098. */
  4099. int can_nice(const struct task_struct *p, const int nice)
  4100. {
  4101. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4102. int nice_rlim = 20 - nice;
  4103. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4104. capable(CAP_SYS_NICE));
  4105. }
  4106. #ifdef __ARCH_WANT_SYS_NICE
  4107. /*
  4108. * sys_nice - change the priority of the current process.
  4109. * @increment: priority increment
  4110. *
  4111. * sys_setpriority is a more generic, but much slower function that
  4112. * does similar things.
  4113. */
  4114. asmlinkage long sys_nice(int increment)
  4115. {
  4116. long nice, retval;
  4117. /*
  4118. * Setpriority might change our priority at the same moment.
  4119. * We don't have to worry. Conceptually one call occurs first
  4120. * and we have a single winner.
  4121. */
  4122. if (increment < -40)
  4123. increment = -40;
  4124. if (increment > 40)
  4125. increment = 40;
  4126. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4127. if (nice < -20)
  4128. nice = -20;
  4129. if (nice > 19)
  4130. nice = 19;
  4131. if (increment < 0 && !can_nice(current, nice))
  4132. return -EPERM;
  4133. retval = security_task_setnice(current, nice);
  4134. if (retval)
  4135. return retval;
  4136. set_user_nice(current, nice);
  4137. return 0;
  4138. }
  4139. #endif
  4140. /**
  4141. * task_prio - return the priority value of a given task.
  4142. * @p: the task in question.
  4143. *
  4144. * This is the priority value as seen by users in /proc.
  4145. * RT tasks are offset by -200. Normal tasks are centered
  4146. * around 0, value goes from -16 to +15.
  4147. */
  4148. int task_prio(const struct task_struct *p)
  4149. {
  4150. return p->prio - MAX_RT_PRIO;
  4151. }
  4152. /**
  4153. * task_nice - return the nice value of a given task.
  4154. * @p: the task in question.
  4155. */
  4156. int task_nice(const struct task_struct *p)
  4157. {
  4158. return TASK_NICE(p);
  4159. }
  4160. EXPORT_SYMBOL(task_nice);
  4161. /**
  4162. * idle_cpu - is a given cpu idle currently?
  4163. * @cpu: the processor in question.
  4164. */
  4165. int idle_cpu(int cpu)
  4166. {
  4167. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4168. }
  4169. /**
  4170. * idle_task - return the idle task for a given cpu.
  4171. * @cpu: the processor in question.
  4172. */
  4173. struct task_struct *idle_task(int cpu)
  4174. {
  4175. return cpu_rq(cpu)->idle;
  4176. }
  4177. /**
  4178. * find_process_by_pid - find a process with a matching PID value.
  4179. * @pid: the pid in question.
  4180. */
  4181. static struct task_struct *find_process_by_pid(pid_t pid)
  4182. {
  4183. return pid ? find_task_by_vpid(pid) : current;
  4184. }
  4185. /* Actually do priority change: must hold rq lock. */
  4186. static void
  4187. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4188. {
  4189. BUG_ON(p->se.on_rq);
  4190. p->policy = policy;
  4191. switch (p->policy) {
  4192. case SCHED_NORMAL:
  4193. case SCHED_BATCH:
  4194. case SCHED_IDLE:
  4195. p->sched_class = &fair_sched_class;
  4196. break;
  4197. case SCHED_FIFO:
  4198. case SCHED_RR:
  4199. p->sched_class = &rt_sched_class;
  4200. break;
  4201. }
  4202. p->rt_priority = prio;
  4203. p->normal_prio = normal_prio(p);
  4204. /* we are holding p->pi_lock already */
  4205. p->prio = rt_mutex_getprio(p);
  4206. set_load_weight(p);
  4207. }
  4208. static int __sched_setscheduler(struct task_struct *p, int policy,
  4209. struct sched_param *param, bool user)
  4210. {
  4211. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4212. unsigned long flags;
  4213. const struct sched_class *prev_class = p->sched_class;
  4214. struct rq *rq;
  4215. /* may grab non-irq protected spin_locks */
  4216. BUG_ON(in_interrupt());
  4217. recheck:
  4218. /* double check policy once rq lock held */
  4219. if (policy < 0)
  4220. policy = oldpolicy = p->policy;
  4221. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4222. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4223. policy != SCHED_IDLE)
  4224. return -EINVAL;
  4225. /*
  4226. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4227. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4228. * SCHED_BATCH and SCHED_IDLE is 0.
  4229. */
  4230. if (param->sched_priority < 0 ||
  4231. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4232. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4233. return -EINVAL;
  4234. if (rt_policy(policy) != (param->sched_priority != 0))
  4235. return -EINVAL;
  4236. /*
  4237. * Allow unprivileged RT tasks to decrease priority:
  4238. */
  4239. if (user && !capable(CAP_SYS_NICE)) {
  4240. if (rt_policy(policy)) {
  4241. unsigned long rlim_rtprio;
  4242. if (!lock_task_sighand(p, &flags))
  4243. return -ESRCH;
  4244. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4245. unlock_task_sighand(p, &flags);
  4246. /* can't set/change the rt policy */
  4247. if (policy != p->policy && !rlim_rtprio)
  4248. return -EPERM;
  4249. /* can't increase priority */
  4250. if (param->sched_priority > p->rt_priority &&
  4251. param->sched_priority > rlim_rtprio)
  4252. return -EPERM;
  4253. }
  4254. /*
  4255. * Like positive nice levels, dont allow tasks to
  4256. * move out of SCHED_IDLE either:
  4257. */
  4258. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4259. return -EPERM;
  4260. /* can't change other user's priorities */
  4261. if ((current->euid != p->euid) &&
  4262. (current->euid != p->uid))
  4263. return -EPERM;
  4264. }
  4265. #ifdef CONFIG_RT_GROUP_SCHED
  4266. /*
  4267. * Do not allow realtime tasks into groups that have no runtime
  4268. * assigned.
  4269. */
  4270. if (user
  4271. && rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4272. return -EPERM;
  4273. #endif
  4274. retval = security_task_setscheduler(p, policy, param);
  4275. if (retval)
  4276. return retval;
  4277. /*
  4278. * make sure no PI-waiters arrive (or leave) while we are
  4279. * changing the priority of the task:
  4280. */
  4281. spin_lock_irqsave(&p->pi_lock, flags);
  4282. /*
  4283. * To be able to change p->policy safely, the apropriate
  4284. * runqueue lock must be held.
  4285. */
  4286. rq = __task_rq_lock(p);
  4287. /* recheck policy now with rq lock held */
  4288. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4289. policy = oldpolicy = -1;
  4290. __task_rq_unlock(rq);
  4291. spin_unlock_irqrestore(&p->pi_lock, flags);
  4292. goto recheck;
  4293. }
  4294. update_rq_clock(rq);
  4295. on_rq = p->se.on_rq;
  4296. running = task_current(rq, p);
  4297. if (on_rq)
  4298. deactivate_task(rq, p, 0);
  4299. if (running)
  4300. p->sched_class->put_prev_task(rq, p);
  4301. oldprio = p->prio;
  4302. __setscheduler(rq, p, policy, param->sched_priority);
  4303. if (running)
  4304. p->sched_class->set_curr_task(rq);
  4305. if (on_rq) {
  4306. activate_task(rq, p, 0);
  4307. check_class_changed(rq, p, prev_class, oldprio, running);
  4308. }
  4309. __task_rq_unlock(rq);
  4310. spin_unlock_irqrestore(&p->pi_lock, flags);
  4311. rt_mutex_adjust_pi(p);
  4312. return 0;
  4313. }
  4314. /**
  4315. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4316. * @p: the task in question.
  4317. * @policy: new policy.
  4318. * @param: structure containing the new RT priority.
  4319. *
  4320. * NOTE that the task may be already dead.
  4321. */
  4322. int sched_setscheduler(struct task_struct *p, int policy,
  4323. struct sched_param *param)
  4324. {
  4325. return __sched_setscheduler(p, policy, param, true);
  4326. }
  4327. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4328. /**
  4329. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4330. * @p: the task in question.
  4331. * @policy: new policy.
  4332. * @param: structure containing the new RT priority.
  4333. *
  4334. * Just like sched_setscheduler, only don't bother checking if the
  4335. * current context has permission. For example, this is needed in
  4336. * stop_machine(): we create temporary high priority worker threads,
  4337. * but our caller might not have that capability.
  4338. */
  4339. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4340. struct sched_param *param)
  4341. {
  4342. return __sched_setscheduler(p, policy, param, false);
  4343. }
  4344. static int
  4345. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4346. {
  4347. struct sched_param lparam;
  4348. struct task_struct *p;
  4349. int retval;
  4350. if (!param || pid < 0)
  4351. return -EINVAL;
  4352. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4353. return -EFAULT;
  4354. rcu_read_lock();
  4355. retval = -ESRCH;
  4356. p = find_process_by_pid(pid);
  4357. if (p != NULL)
  4358. retval = sched_setscheduler(p, policy, &lparam);
  4359. rcu_read_unlock();
  4360. return retval;
  4361. }
  4362. /**
  4363. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4364. * @pid: the pid in question.
  4365. * @policy: new policy.
  4366. * @param: structure containing the new RT priority.
  4367. */
  4368. asmlinkage long
  4369. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4370. {
  4371. /* negative values for policy are not valid */
  4372. if (policy < 0)
  4373. return -EINVAL;
  4374. return do_sched_setscheduler(pid, policy, param);
  4375. }
  4376. /**
  4377. * sys_sched_setparam - set/change the RT priority of a thread
  4378. * @pid: the pid in question.
  4379. * @param: structure containing the new RT priority.
  4380. */
  4381. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4382. {
  4383. return do_sched_setscheduler(pid, -1, param);
  4384. }
  4385. /**
  4386. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4387. * @pid: the pid in question.
  4388. */
  4389. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4390. {
  4391. struct task_struct *p;
  4392. int retval;
  4393. if (pid < 0)
  4394. return -EINVAL;
  4395. retval = -ESRCH;
  4396. read_lock(&tasklist_lock);
  4397. p = find_process_by_pid(pid);
  4398. if (p) {
  4399. retval = security_task_getscheduler(p);
  4400. if (!retval)
  4401. retval = p->policy;
  4402. }
  4403. read_unlock(&tasklist_lock);
  4404. return retval;
  4405. }
  4406. /**
  4407. * sys_sched_getscheduler - get the RT priority of a thread
  4408. * @pid: the pid in question.
  4409. * @param: structure containing the RT priority.
  4410. */
  4411. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4412. {
  4413. struct sched_param lp;
  4414. struct task_struct *p;
  4415. int retval;
  4416. if (!param || pid < 0)
  4417. return -EINVAL;
  4418. read_lock(&tasklist_lock);
  4419. p = find_process_by_pid(pid);
  4420. retval = -ESRCH;
  4421. if (!p)
  4422. goto out_unlock;
  4423. retval = security_task_getscheduler(p);
  4424. if (retval)
  4425. goto out_unlock;
  4426. lp.sched_priority = p->rt_priority;
  4427. read_unlock(&tasklist_lock);
  4428. /*
  4429. * This one might sleep, we cannot do it with a spinlock held ...
  4430. */
  4431. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4432. return retval;
  4433. out_unlock:
  4434. read_unlock(&tasklist_lock);
  4435. return retval;
  4436. }
  4437. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4438. {
  4439. cpumask_t cpus_allowed;
  4440. cpumask_t new_mask = *in_mask;
  4441. struct task_struct *p;
  4442. int retval;
  4443. get_online_cpus();
  4444. read_lock(&tasklist_lock);
  4445. p = find_process_by_pid(pid);
  4446. if (!p) {
  4447. read_unlock(&tasklist_lock);
  4448. put_online_cpus();
  4449. return -ESRCH;
  4450. }
  4451. /*
  4452. * It is not safe to call set_cpus_allowed with the
  4453. * tasklist_lock held. We will bump the task_struct's
  4454. * usage count and then drop tasklist_lock.
  4455. */
  4456. get_task_struct(p);
  4457. read_unlock(&tasklist_lock);
  4458. retval = -EPERM;
  4459. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4460. !capable(CAP_SYS_NICE))
  4461. goto out_unlock;
  4462. retval = security_task_setscheduler(p, 0, NULL);
  4463. if (retval)
  4464. goto out_unlock;
  4465. cpuset_cpus_allowed(p, &cpus_allowed);
  4466. cpus_and(new_mask, new_mask, cpus_allowed);
  4467. again:
  4468. retval = set_cpus_allowed_ptr(p, &new_mask);
  4469. if (!retval) {
  4470. cpuset_cpus_allowed(p, &cpus_allowed);
  4471. if (!cpus_subset(new_mask, cpus_allowed)) {
  4472. /*
  4473. * We must have raced with a concurrent cpuset
  4474. * update. Just reset the cpus_allowed to the
  4475. * cpuset's cpus_allowed
  4476. */
  4477. new_mask = cpus_allowed;
  4478. goto again;
  4479. }
  4480. }
  4481. out_unlock:
  4482. put_task_struct(p);
  4483. put_online_cpus();
  4484. return retval;
  4485. }
  4486. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4487. cpumask_t *new_mask)
  4488. {
  4489. if (len < sizeof(cpumask_t)) {
  4490. memset(new_mask, 0, sizeof(cpumask_t));
  4491. } else if (len > sizeof(cpumask_t)) {
  4492. len = sizeof(cpumask_t);
  4493. }
  4494. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4495. }
  4496. /**
  4497. * sys_sched_setaffinity - set the cpu affinity of a process
  4498. * @pid: pid of the process
  4499. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4500. * @user_mask_ptr: user-space pointer to the new cpu mask
  4501. */
  4502. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4503. unsigned long __user *user_mask_ptr)
  4504. {
  4505. cpumask_t new_mask;
  4506. int retval;
  4507. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4508. if (retval)
  4509. return retval;
  4510. return sched_setaffinity(pid, &new_mask);
  4511. }
  4512. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4513. {
  4514. struct task_struct *p;
  4515. int retval;
  4516. get_online_cpus();
  4517. read_lock(&tasklist_lock);
  4518. retval = -ESRCH;
  4519. p = find_process_by_pid(pid);
  4520. if (!p)
  4521. goto out_unlock;
  4522. retval = security_task_getscheduler(p);
  4523. if (retval)
  4524. goto out_unlock;
  4525. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4526. out_unlock:
  4527. read_unlock(&tasklist_lock);
  4528. put_online_cpus();
  4529. return retval;
  4530. }
  4531. /**
  4532. * sys_sched_getaffinity - get the cpu affinity of a process
  4533. * @pid: pid of the process
  4534. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4535. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4536. */
  4537. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4538. unsigned long __user *user_mask_ptr)
  4539. {
  4540. int ret;
  4541. cpumask_t mask;
  4542. if (len < sizeof(cpumask_t))
  4543. return -EINVAL;
  4544. ret = sched_getaffinity(pid, &mask);
  4545. if (ret < 0)
  4546. return ret;
  4547. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4548. return -EFAULT;
  4549. return sizeof(cpumask_t);
  4550. }
  4551. /**
  4552. * sys_sched_yield - yield the current processor to other threads.
  4553. *
  4554. * This function yields the current CPU to other tasks. If there are no
  4555. * other threads running on this CPU then this function will return.
  4556. */
  4557. asmlinkage long sys_sched_yield(void)
  4558. {
  4559. struct rq *rq = this_rq_lock();
  4560. schedstat_inc(rq, yld_count);
  4561. current->sched_class->yield_task(rq);
  4562. /*
  4563. * Since we are going to call schedule() anyway, there's
  4564. * no need to preempt or enable interrupts:
  4565. */
  4566. __release(rq->lock);
  4567. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4568. _raw_spin_unlock(&rq->lock);
  4569. preempt_enable_no_resched();
  4570. schedule();
  4571. return 0;
  4572. }
  4573. static void __cond_resched(void)
  4574. {
  4575. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4576. __might_sleep(__FILE__, __LINE__);
  4577. #endif
  4578. /*
  4579. * The BKS might be reacquired before we have dropped
  4580. * PREEMPT_ACTIVE, which could trigger a second
  4581. * cond_resched() call.
  4582. */
  4583. do {
  4584. add_preempt_count(PREEMPT_ACTIVE);
  4585. schedule();
  4586. sub_preempt_count(PREEMPT_ACTIVE);
  4587. } while (need_resched());
  4588. }
  4589. int __sched _cond_resched(void)
  4590. {
  4591. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4592. system_state == SYSTEM_RUNNING) {
  4593. __cond_resched();
  4594. return 1;
  4595. }
  4596. return 0;
  4597. }
  4598. EXPORT_SYMBOL(_cond_resched);
  4599. /*
  4600. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4601. * call schedule, and on return reacquire the lock.
  4602. *
  4603. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4604. * operations here to prevent schedule() from being called twice (once via
  4605. * spin_unlock(), once by hand).
  4606. */
  4607. int cond_resched_lock(spinlock_t *lock)
  4608. {
  4609. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4610. int ret = 0;
  4611. if (spin_needbreak(lock) || resched) {
  4612. spin_unlock(lock);
  4613. if (resched && need_resched())
  4614. __cond_resched();
  4615. else
  4616. cpu_relax();
  4617. ret = 1;
  4618. spin_lock(lock);
  4619. }
  4620. return ret;
  4621. }
  4622. EXPORT_SYMBOL(cond_resched_lock);
  4623. int __sched cond_resched_softirq(void)
  4624. {
  4625. BUG_ON(!in_softirq());
  4626. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4627. local_bh_enable();
  4628. __cond_resched();
  4629. local_bh_disable();
  4630. return 1;
  4631. }
  4632. return 0;
  4633. }
  4634. EXPORT_SYMBOL(cond_resched_softirq);
  4635. /**
  4636. * yield - yield the current processor to other threads.
  4637. *
  4638. * This is a shortcut for kernel-space yielding - it marks the
  4639. * thread runnable and calls sys_sched_yield().
  4640. */
  4641. void __sched yield(void)
  4642. {
  4643. set_current_state(TASK_RUNNING);
  4644. sys_sched_yield();
  4645. }
  4646. EXPORT_SYMBOL(yield);
  4647. /*
  4648. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4649. * that process accounting knows that this is a task in IO wait state.
  4650. *
  4651. * But don't do that if it is a deliberate, throttling IO wait (this task
  4652. * has set its backing_dev_info: the queue against which it should throttle)
  4653. */
  4654. void __sched io_schedule(void)
  4655. {
  4656. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4657. delayacct_blkio_start();
  4658. atomic_inc(&rq->nr_iowait);
  4659. schedule();
  4660. atomic_dec(&rq->nr_iowait);
  4661. delayacct_blkio_end();
  4662. }
  4663. EXPORT_SYMBOL(io_schedule);
  4664. long __sched io_schedule_timeout(long timeout)
  4665. {
  4666. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4667. long ret;
  4668. delayacct_blkio_start();
  4669. atomic_inc(&rq->nr_iowait);
  4670. ret = schedule_timeout(timeout);
  4671. atomic_dec(&rq->nr_iowait);
  4672. delayacct_blkio_end();
  4673. return ret;
  4674. }
  4675. /**
  4676. * sys_sched_get_priority_max - return maximum RT priority.
  4677. * @policy: scheduling class.
  4678. *
  4679. * this syscall returns the maximum rt_priority that can be used
  4680. * by a given scheduling class.
  4681. */
  4682. asmlinkage long sys_sched_get_priority_max(int policy)
  4683. {
  4684. int ret = -EINVAL;
  4685. switch (policy) {
  4686. case SCHED_FIFO:
  4687. case SCHED_RR:
  4688. ret = MAX_USER_RT_PRIO-1;
  4689. break;
  4690. case SCHED_NORMAL:
  4691. case SCHED_BATCH:
  4692. case SCHED_IDLE:
  4693. ret = 0;
  4694. break;
  4695. }
  4696. return ret;
  4697. }
  4698. /**
  4699. * sys_sched_get_priority_min - return minimum RT priority.
  4700. * @policy: scheduling class.
  4701. *
  4702. * this syscall returns the minimum rt_priority that can be used
  4703. * by a given scheduling class.
  4704. */
  4705. asmlinkage long sys_sched_get_priority_min(int policy)
  4706. {
  4707. int ret = -EINVAL;
  4708. switch (policy) {
  4709. case SCHED_FIFO:
  4710. case SCHED_RR:
  4711. ret = 1;
  4712. break;
  4713. case SCHED_NORMAL:
  4714. case SCHED_BATCH:
  4715. case SCHED_IDLE:
  4716. ret = 0;
  4717. }
  4718. return ret;
  4719. }
  4720. /**
  4721. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4722. * @pid: pid of the process.
  4723. * @interval: userspace pointer to the timeslice value.
  4724. *
  4725. * this syscall writes the default timeslice value of a given process
  4726. * into the user-space timespec buffer. A value of '0' means infinity.
  4727. */
  4728. asmlinkage
  4729. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4730. {
  4731. struct task_struct *p;
  4732. unsigned int time_slice;
  4733. int retval;
  4734. struct timespec t;
  4735. if (pid < 0)
  4736. return -EINVAL;
  4737. retval = -ESRCH;
  4738. read_lock(&tasklist_lock);
  4739. p = find_process_by_pid(pid);
  4740. if (!p)
  4741. goto out_unlock;
  4742. retval = security_task_getscheduler(p);
  4743. if (retval)
  4744. goto out_unlock;
  4745. /*
  4746. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4747. * tasks that are on an otherwise idle runqueue:
  4748. */
  4749. time_slice = 0;
  4750. if (p->policy == SCHED_RR) {
  4751. time_slice = DEF_TIMESLICE;
  4752. } else if (p->policy != SCHED_FIFO) {
  4753. struct sched_entity *se = &p->se;
  4754. unsigned long flags;
  4755. struct rq *rq;
  4756. rq = task_rq_lock(p, &flags);
  4757. if (rq->cfs.load.weight)
  4758. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4759. task_rq_unlock(rq, &flags);
  4760. }
  4761. read_unlock(&tasklist_lock);
  4762. jiffies_to_timespec(time_slice, &t);
  4763. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4764. return retval;
  4765. out_unlock:
  4766. read_unlock(&tasklist_lock);
  4767. return retval;
  4768. }
  4769. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4770. void sched_show_task(struct task_struct *p)
  4771. {
  4772. unsigned long free = 0;
  4773. unsigned state;
  4774. state = p->state ? __ffs(p->state) + 1 : 0;
  4775. printk(KERN_INFO "%-13.13s %c", p->comm,
  4776. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4777. #if BITS_PER_LONG == 32
  4778. if (state == TASK_RUNNING)
  4779. printk(KERN_CONT " running ");
  4780. else
  4781. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4782. #else
  4783. if (state == TASK_RUNNING)
  4784. printk(KERN_CONT " running task ");
  4785. else
  4786. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4787. #endif
  4788. #ifdef CONFIG_DEBUG_STACK_USAGE
  4789. {
  4790. unsigned long *n = end_of_stack(p);
  4791. while (!*n)
  4792. n++;
  4793. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4794. }
  4795. #endif
  4796. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4797. task_pid_nr(p), task_pid_nr(p->real_parent));
  4798. show_stack(p, NULL);
  4799. }
  4800. void show_state_filter(unsigned long state_filter)
  4801. {
  4802. struct task_struct *g, *p;
  4803. #if BITS_PER_LONG == 32
  4804. printk(KERN_INFO
  4805. " task PC stack pid father\n");
  4806. #else
  4807. printk(KERN_INFO
  4808. " task PC stack pid father\n");
  4809. #endif
  4810. read_lock(&tasklist_lock);
  4811. do_each_thread(g, p) {
  4812. /*
  4813. * reset the NMI-timeout, listing all files on a slow
  4814. * console might take alot of time:
  4815. */
  4816. touch_nmi_watchdog();
  4817. if (!state_filter || (p->state & state_filter))
  4818. sched_show_task(p);
  4819. } while_each_thread(g, p);
  4820. touch_all_softlockup_watchdogs();
  4821. #ifdef CONFIG_SCHED_DEBUG
  4822. sysrq_sched_debug_show();
  4823. #endif
  4824. read_unlock(&tasklist_lock);
  4825. /*
  4826. * Only show locks if all tasks are dumped:
  4827. */
  4828. if (state_filter == -1)
  4829. debug_show_all_locks();
  4830. }
  4831. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4832. {
  4833. idle->sched_class = &idle_sched_class;
  4834. }
  4835. /**
  4836. * init_idle - set up an idle thread for a given CPU
  4837. * @idle: task in question
  4838. * @cpu: cpu the idle task belongs to
  4839. *
  4840. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4841. * flag, to make booting more robust.
  4842. */
  4843. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4844. {
  4845. struct rq *rq = cpu_rq(cpu);
  4846. unsigned long flags;
  4847. __sched_fork(idle);
  4848. idle->se.exec_start = sched_clock();
  4849. idle->prio = idle->normal_prio = MAX_PRIO;
  4850. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4851. __set_task_cpu(idle, cpu);
  4852. spin_lock_irqsave(&rq->lock, flags);
  4853. rq->curr = rq->idle = idle;
  4854. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4855. idle->oncpu = 1;
  4856. #endif
  4857. spin_unlock_irqrestore(&rq->lock, flags);
  4858. /* Set the preempt count _outside_ the spinlocks! */
  4859. #if defined(CONFIG_PREEMPT)
  4860. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4861. #else
  4862. task_thread_info(idle)->preempt_count = 0;
  4863. #endif
  4864. /*
  4865. * The idle tasks have their own, simple scheduling class:
  4866. */
  4867. idle->sched_class = &idle_sched_class;
  4868. }
  4869. /*
  4870. * In a system that switches off the HZ timer nohz_cpu_mask
  4871. * indicates which cpus entered this state. This is used
  4872. * in the rcu update to wait only for active cpus. For system
  4873. * which do not switch off the HZ timer nohz_cpu_mask should
  4874. * always be CPU_MASK_NONE.
  4875. */
  4876. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4877. /*
  4878. * Increase the granularity value when there are more CPUs,
  4879. * because with more CPUs the 'effective latency' as visible
  4880. * to users decreases. But the relationship is not linear,
  4881. * so pick a second-best guess by going with the log2 of the
  4882. * number of CPUs.
  4883. *
  4884. * This idea comes from the SD scheduler of Con Kolivas:
  4885. */
  4886. static inline void sched_init_granularity(void)
  4887. {
  4888. unsigned int factor = 1 + ilog2(num_online_cpus());
  4889. const unsigned long limit = 200000000;
  4890. sysctl_sched_min_granularity *= factor;
  4891. if (sysctl_sched_min_granularity > limit)
  4892. sysctl_sched_min_granularity = limit;
  4893. sysctl_sched_latency *= factor;
  4894. if (sysctl_sched_latency > limit)
  4895. sysctl_sched_latency = limit;
  4896. sysctl_sched_wakeup_granularity *= factor;
  4897. }
  4898. #ifdef CONFIG_SMP
  4899. /*
  4900. * This is how migration works:
  4901. *
  4902. * 1) we queue a struct migration_req structure in the source CPU's
  4903. * runqueue and wake up that CPU's migration thread.
  4904. * 2) we down() the locked semaphore => thread blocks.
  4905. * 3) migration thread wakes up (implicitly it forces the migrated
  4906. * thread off the CPU)
  4907. * 4) it gets the migration request and checks whether the migrated
  4908. * task is still in the wrong runqueue.
  4909. * 5) if it's in the wrong runqueue then the migration thread removes
  4910. * it and puts it into the right queue.
  4911. * 6) migration thread up()s the semaphore.
  4912. * 7) we wake up and the migration is done.
  4913. */
  4914. /*
  4915. * Change a given task's CPU affinity. Migrate the thread to a
  4916. * proper CPU and schedule it away if the CPU it's executing on
  4917. * is removed from the allowed bitmask.
  4918. *
  4919. * NOTE: the caller must have a valid reference to the task, the
  4920. * task must not exit() & deallocate itself prematurely. The
  4921. * call is not atomic; no spinlocks may be held.
  4922. */
  4923. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  4924. {
  4925. struct migration_req req;
  4926. unsigned long flags;
  4927. struct rq *rq;
  4928. int ret = 0;
  4929. rq = task_rq_lock(p, &flags);
  4930. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  4931. ret = -EINVAL;
  4932. goto out;
  4933. }
  4934. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4935. !cpus_equal(p->cpus_allowed, *new_mask))) {
  4936. ret = -EINVAL;
  4937. goto out;
  4938. }
  4939. if (p->sched_class->set_cpus_allowed)
  4940. p->sched_class->set_cpus_allowed(p, new_mask);
  4941. else {
  4942. p->cpus_allowed = *new_mask;
  4943. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  4944. }
  4945. /* Can the task run on the task's current CPU? If so, we're done */
  4946. if (cpu_isset(task_cpu(p), *new_mask))
  4947. goto out;
  4948. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  4949. /* Need help from migration thread: drop lock and wait. */
  4950. task_rq_unlock(rq, &flags);
  4951. wake_up_process(rq->migration_thread);
  4952. wait_for_completion(&req.done);
  4953. tlb_migrate_finish(p->mm);
  4954. return 0;
  4955. }
  4956. out:
  4957. task_rq_unlock(rq, &flags);
  4958. return ret;
  4959. }
  4960. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4961. /*
  4962. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4963. * this because either it can't run here any more (set_cpus_allowed()
  4964. * away from this CPU, or CPU going down), or because we're
  4965. * attempting to rebalance this task on exec (sched_exec).
  4966. *
  4967. * So we race with normal scheduler movements, but that's OK, as long
  4968. * as the task is no longer on this CPU.
  4969. *
  4970. * Returns non-zero if task was successfully migrated.
  4971. */
  4972. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4973. {
  4974. struct rq *rq_dest, *rq_src;
  4975. int ret = 0, on_rq;
  4976. if (unlikely(!cpu_active(dest_cpu)))
  4977. return ret;
  4978. rq_src = cpu_rq(src_cpu);
  4979. rq_dest = cpu_rq(dest_cpu);
  4980. double_rq_lock(rq_src, rq_dest);
  4981. /* Already moved. */
  4982. if (task_cpu(p) != src_cpu)
  4983. goto done;
  4984. /* Affinity changed (again). */
  4985. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4986. goto fail;
  4987. on_rq = p->se.on_rq;
  4988. if (on_rq)
  4989. deactivate_task(rq_src, p, 0);
  4990. set_task_cpu(p, dest_cpu);
  4991. if (on_rq) {
  4992. activate_task(rq_dest, p, 0);
  4993. check_preempt_curr(rq_dest, p);
  4994. }
  4995. done:
  4996. ret = 1;
  4997. fail:
  4998. double_rq_unlock(rq_src, rq_dest);
  4999. return ret;
  5000. }
  5001. /*
  5002. * migration_thread - this is a highprio system thread that performs
  5003. * thread migration by bumping thread off CPU then 'pushing' onto
  5004. * another runqueue.
  5005. */
  5006. static int migration_thread(void *data)
  5007. {
  5008. int cpu = (long)data;
  5009. struct rq *rq;
  5010. rq = cpu_rq(cpu);
  5011. BUG_ON(rq->migration_thread != current);
  5012. set_current_state(TASK_INTERRUPTIBLE);
  5013. while (!kthread_should_stop()) {
  5014. struct migration_req *req;
  5015. struct list_head *head;
  5016. spin_lock_irq(&rq->lock);
  5017. if (cpu_is_offline(cpu)) {
  5018. spin_unlock_irq(&rq->lock);
  5019. goto wait_to_die;
  5020. }
  5021. if (rq->active_balance) {
  5022. active_load_balance(rq, cpu);
  5023. rq->active_balance = 0;
  5024. }
  5025. head = &rq->migration_queue;
  5026. if (list_empty(head)) {
  5027. spin_unlock_irq(&rq->lock);
  5028. schedule();
  5029. set_current_state(TASK_INTERRUPTIBLE);
  5030. continue;
  5031. }
  5032. req = list_entry(head->next, struct migration_req, list);
  5033. list_del_init(head->next);
  5034. spin_unlock(&rq->lock);
  5035. __migrate_task(req->task, cpu, req->dest_cpu);
  5036. local_irq_enable();
  5037. complete(&req->done);
  5038. }
  5039. __set_current_state(TASK_RUNNING);
  5040. return 0;
  5041. wait_to_die:
  5042. /* Wait for kthread_stop */
  5043. set_current_state(TASK_INTERRUPTIBLE);
  5044. while (!kthread_should_stop()) {
  5045. schedule();
  5046. set_current_state(TASK_INTERRUPTIBLE);
  5047. }
  5048. __set_current_state(TASK_RUNNING);
  5049. return 0;
  5050. }
  5051. #ifdef CONFIG_HOTPLUG_CPU
  5052. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5053. {
  5054. int ret;
  5055. local_irq_disable();
  5056. ret = __migrate_task(p, src_cpu, dest_cpu);
  5057. local_irq_enable();
  5058. return ret;
  5059. }
  5060. /*
  5061. * Figure out where task on dead CPU should go, use force if necessary.
  5062. * NOTE: interrupts should be disabled by the caller
  5063. */
  5064. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5065. {
  5066. unsigned long flags;
  5067. cpumask_t mask;
  5068. struct rq *rq;
  5069. int dest_cpu;
  5070. do {
  5071. /* On same node? */
  5072. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5073. cpus_and(mask, mask, p->cpus_allowed);
  5074. dest_cpu = any_online_cpu(mask);
  5075. /* On any allowed CPU? */
  5076. if (dest_cpu >= nr_cpu_ids)
  5077. dest_cpu = any_online_cpu(p->cpus_allowed);
  5078. /* No more Mr. Nice Guy. */
  5079. if (dest_cpu >= nr_cpu_ids) {
  5080. cpumask_t cpus_allowed;
  5081. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5082. /*
  5083. * Try to stay on the same cpuset, where the
  5084. * current cpuset may be a subset of all cpus.
  5085. * The cpuset_cpus_allowed_locked() variant of
  5086. * cpuset_cpus_allowed() will not block. It must be
  5087. * called within calls to cpuset_lock/cpuset_unlock.
  5088. */
  5089. rq = task_rq_lock(p, &flags);
  5090. p->cpus_allowed = cpus_allowed;
  5091. dest_cpu = any_online_cpu(p->cpus_allowed);
  5092. task_rq_unlock(rq, &flags);
  5093. /*
  5094. * Don't tell them about moving exiting tasks or
  5095. * kernel threads (both mm NULL), since they never
  5096. * leave kernel.
  5097. */
  5098. if (p->mm && printk_ratelimit()) {
  5099. printk(KERN_INFO "process %d (%s) no "
  5100. "longer affine to cpu%d\n",
  5101. task_pid_nr(p), p->comm, dead_cpu);
  5102. }
  5103. }
  5104. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5105. }
  5106. /*
  5107. * While a dead CPU has no uninterruptible tasks queued at this point,
  5108. * it might still have a nonzero ->nr_uninterruptible counter, because
  5109. * for performance reasons the counter is not stricly tracking tasks to
  5110. * their home CPUs. So we just add the counter to another CPU's counter,
  5111. * to keep the global sum constant after CPU-down:
  5112. */
  5113. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5114. {
  5115. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5116. unsigned long flags;
  5117. local_irq_save(flags);
  5118. double_rq_lock(rq_src, rq_dest);
  5119. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5120. rq_src->nr_uninterruptible = 0;
  5121. double_rq_unlock(rq_src, rq_dest);
  5122. local_irq_restore(flags);
  5123. }
  5124. /* Run through task list and migrate tasks from the dead cpu. */
  5125. static void migrate_live_tasks(int src_cpu)
  5126. {
  5127. struct task_struct *p, *t;
  5128. read_lock(&tasklist_lock);
  5129. do_each_thread(t, p) {
  5130. if (p == current)
  5131. continue;
  5132. if (task_cpu(p) == src_cpu)
  5133. move_task_off_dead_cpu(src_cpu, p);
  5134. } while_each_thread(t, p);
  5135. read_unlock(&tasklist_lock);
  5136. }
  5137. /*
  5138. * Schedules idle task to be the next runnable task on current CPU.
  5139. * It does so by boosting its priority to highest possible.
  5140. * Used by CPU offline code.
  5141. */
  5142. void sched_idle_next(void)
  5143. {
  5144. int this_cpu = smp_processor_id();
  5145. struct rq *rq = cpu_rq(this_cpu);
  5146. struct task_struct *p = rq->idle;
  5147. unsigned long flags;
  5148. /* cpu has to be offline */
  5149. BUG_ON(cpu_online(this_cpu));
  5150. /*
  5151. * Strictly not necessary since rest of the CPUs are stopped by now
  5152. * and interrupts disabled on the current cpu.
  5153. */
  5154. spin_lock_irqsave(&rq->lock, flags);
  5155. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5156. update_rq_clock(rq);
  5157. activate_task(rq, p, 0);
  5158. spin_unlock_irqrestore(&rq->lock, flags);
  5159. }
  5160. /*
  5161. * Ensures that the idle task is using init_mm right before its cpu goes
  5162. * offline.
  5163. */
  5164. void idle_task_exit(void)
  5165. {
  5166. struct mm_struct *mm = current->active_mm;
  5167. BUG_ON(cpu_online(smp_processor_id()));
  5168. if (mm != &init_mm)
  5169. switch_mm(mm, &init_mm, current);
  5170. mmdrop(mm);
  5171. }
  5172. /* called under rq->lock with disabled interrupts */
  5173. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5174. {
  5175. struct rq *rq = cpu_rq(dead_cpu);
  5176. /* Must be exiting, otherwise would be on tasklist. */
  5177. BUG_ON(!p->exit_state);
  5178. /* Cannot have done final schedule yet: would have vanished. */
  5179. BUG_ON(p->state == TASK_DEAD);
  5180. get_task_struct(p);
  5181. /*
  5182. * Drop lock around migration; if someone else moves it,
  5183. * that's OK. No task can be added to this CPU, so iteration is
  5184. * fine.
  5185. */
  5186. spin_unlock_irq(&rq->lock);
  5187. move_task_off_dead_cpu(dead_cpu, p);
  5188. spin_lock_irq(&rq->lock);
  5189. put_task_struct(p);
  5190. }
  5191. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5192. static void migrate_dead_tasks(unsigned int dead_cpu)
  5193. {
  5194. struct rq *rq = cpu_rq(dead_cpu);
  5195. struct task_struct *next;
  5196. for ( ; ; ) {
  5197. if (!rq->nr_running)
  5198. break;
  5199. update_rq_clock(rq);
  5200. next = pick_next_task(rq, rq->curr);
  5201. if (!next)
  5202. break;
  5203. next->sched_class->put_prev_task(rq, next);
  5204. migrate_dead(dead_cpu, next);
  5205. }
  5206. }
  5207. #endif /* CONFIG_HOTPLUG_CPU */
  5208. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5209. static struct ctl_table sd_ctl_dir[] = {
  5210. {
  5211. .procname = "sched_domain",
  5212. .mode = 0555,
  5213. },
  5214. {0, },
  5215. };
  5216. static struct ctl_table sd_ctl_root[] = {
  5217. {
  5218. .ctl_name = CTL_KERN,
  5219. .procname = "kernel",
  5220. .mode = 0555,
  5221. .child = sd_ctl_dir,
  5222. },
  5223. {0, },
  5224. };
  5225. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5226. {
  5227. struct ctl_table *entry =
  5228. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5229. return entry;
  5230. }
  5231. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5232. {
  5233. struct ctl_table *entry;
  5234. /*
  5235. * In the intermediate directories, both the child directory and
  5236. * procname are dynamically allocated and could fail but the mode
  5237. * will always be set. In the lowest directory the names are
  5238. * static strings and all have proc handlers.
  5239. */
  5240. for (entry = *tablep; entry->mode; entry++) {
  5241. if (entry->child)
  5242. sd_free_ctl_entry(&entry->child);
  5243. if (entry->proc_handler == NULL)
  5244. kfree(entry->procname);
  5245. }
  5246. kfree(*tablep);
  5247. *tablep = NULL;
  5248. }
  5249. static void
  5250. set_table_entry(struct ctl_table *entry,
  5251. const char *procname, void *data, int maxlen,
  5252. mode_t mode, proc_handler *proc_handler)
  5253. {
  5254. entry->procname = procname;
  5255. entry->data = data;
  5256. entry->maxlen = maxlen;
  5257. entry->mode = mode;
  5258. entry->proc_handler = proc_handler;
  5259. }
  5260. static struct ctl_table *
  5261. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5262. {
  5263. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5264. if (table == NULL)
  5265. return NULL;
  5266. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5267. sizeof(long), 0644, proc_doulongvec_minmax);
  5268. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5269. sizeof(long), 0644, proc_doulongvec_minmax);
  5270. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5271. sizeof(int), 0644, proc_dointvec_minmax);
  5272. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5273. sizeof(int), 0644, proc_dointvec_minmax);
  5274. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5275. sizeof(int), 0644, proc_dointvec_minmax);
  5276. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5277. sizeof(int), 0644, proc_dointvec_minmax);
  5278. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5279. sizeof(int), 0644, proc_dointvec_minmax);
  5280. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5281. sizeof(int), 0644, proc_dointvec_minmax);
  5282. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5283. sizeof(int), 0644, proc_dointvec_minmax);
  5284. set_table_entry(&table[9], "cache_nice_tries",
  5285. &sd->cache_nice_tries,
  5286. sizeof(int), 0644, proc_dointvec_minmax);
  5287. set_table_entry(&table[10], "flags", &sd->flags,
  5288. sizeof(int), 0644, proc_dointvec_minmax);
  5289. /* &table[11] is terminator */
  5290. return table;
  5291. }
  5292. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5293. {
  5294. struct ctl_table *entry, *table;
  5295. struct sched_domain *sd;
  5296. int domain_num = 0, i;
  5297. char buf[32];
  5298. for_each_domain(cpu, sd)
  5299. domain_num++;
  5300. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5301. if (table == NULL)
  5302. return NULL;
  5303. i = 0;
  5304. for_each_domain(cpu, sd) {
  5305. snprintf(buf, 32, "domain%d", i);
  5306. entry->procname = kstrdup(buf, GFP_KERNEL);
  5307. entry->mode = 0555;
  5308. entry->child = sd_alloc_ctl_domain_table(sd);
  5309. entry++;
  5310. i++;
  5311. }
  5312. return table;
  5313. }
  5314. static struct ctl_table_header *sd_sysctl_header;
  5315. static void register_sched_domain_sysctl(void)
  5316. {
  5317. int i, cpu_num = num_online_cpus();
  5318. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5319. char buf[32];
  5320. WARN_ON(sd_ctl_dir[0].child);
  5321. sd_ctl_dir[0].child = entry;
  5322. if (entry == NULL)
  5323. return;
  5324. for_each_online_cpu(i) {
  5325. snprintf(buf, 32, "cpu%d", i);
  5326. entry->procname = kstrdup(buf, GFP_KERNEL);
  5327. entry->mode = 0555;
  5328. entry->child = sd_alloc_ctl_cpu_table(i);
  5329. entry++;
  5330. }
  5331. WARN_ON(sd_sysctl_header);
  5332. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5333. }
  5334. /* may be called multiple times per register */
  5335. static void unregister_sched_domain_sysctl(void)
  5336. {
  5337. if (sd_sysctl_header)
  5338. unregister_sysctl_table(sd_sysctl_header);
  5339. sd_sysctl_header = NULL;
  5340. if (sd_ctl_dir[0].child)
  5341. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5342. }
  5343. #else
  5344. static void register_sched_domain_sysctl(void)
  5345. {
  5346. }
  5347. static void unregister_sched_domain_sysctl(void)
  5348. {
  5349. }
  5350. #endif
  5351. static void set_rq_online(struct rq *rq)
  5352. {
  5353. if (!rq->online) {
  5354. const struct sched_class *class;
  5355. cpu_set(rq->cpu, rq->rd->online);
  5356. rq->online = 1;
  5357. for_each_class(class) {
  5358. if (class->rq_online)
  5359. class->rq_online(rq);
  5360. }
  5361. }
  5362. }
  5363. static void set_rq_offline(struct rq *rq)
  5364. {
  5365. if (rq->online) {
  5366. const struct sched_class *class;
  5367. for_each_class(class) {
  5368. if (class->rq_offline)
  5369. class->rq_offline(rq);
  5370. }
  5371. cpu_clear(rq->cpu, rq->rd->online);
  5372. rq->online = 0;
  5373. }
  5374. }
  5375. /*
  5376. * migration_call - callback that gets triggered when a CPU is added.
  5377. * Here we can start up the necessary migration thread for the new CPU.
  5378. */
  5379. static int __cpuinit
  5380. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5381. {
  5382. struct task_struct *p;
  5383. int cpu = (long)hcpu;
  5384. unsigned long flags;
  5385. struct rq *rq;
  5386. switch (action) {
  5387. case CPU_UP_PREPARE:
  5388. case CPU_UP_PREPARE_FROZEN:
  5389. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5390. if (IS_ERR(p))
  5391. return NOTIFY_BAD;
  5392. kthread_bind(p, cpu);
  5393. /* Must be high prio: stop_machine expects to yield to it. */
  5394. rq = task_rq_lock(p, &flags);
  5395. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5396. task_rq_unlock(rq, &flags);
  5397. cpu_rq(cpu)->migration_thread = p;
  5398. break;
  5399. case CPU_ONLINE:
  5400. case CPU_ONLINE_FROZEN:
  5401. /* Strictly unnecessary, as first user will wake it. */
  5402. wake_up_process(cpu_rq(cpu)->migration_thread);
  5403. /* Update our root-domain */
  5404. rq = cpu_rq(cpu);
  5405. spin_lock_irqsave(&rq->lock, flags);
  5406. if (rq->rd) {
  5407. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5408. set_rq_online(rq);
  5409. }
  5410. spin_unlock_irqrestore(&rq->lock, flags);
  5411. break;
  5412. #ifdef CONFIG_HOTPLUG_CPU
  5413. case CPU_UP_CANCELED:
  5414. case CPU_UP_CANCELED_FROZEN:
  5415. if (!cpu_rq(cpu)->migration_thread)
  5416. break;
  5417. /* Unbind it from offline cpu so it can run. Fall thru. */
  5418. kthread_bind(cpu_rq(cpu)->migration_thread,
  5419. any_online_cpu(cpu_online_map));
  5420. kthread_stop(cpu_rq(cpu)->migration_thread);
  5421. cpu_rq(cpu)->migration_thread = NULL;
  5422. break;
  5423. case CPU_DEAD:
  5424. case CPU_DEAD_FROZEN:
  5425. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5426. migrate_live_tasks(cpu);
  5427. rq = cpu_rq(cpu);
  5428. kthread_stop(rq->migration_thread);
  5429. rq->migration_thread = NULL;
  5430. /* Idle task back to normal (off runqueue, low prio) */
  5431. spin_lock_irq(&rq->lock);
  5432. update_rq_clock(rq);
  5433. deactivate_task(rq, rq->idle, 0);
  5434. rq->idle->static_prio = MAX_PRIO;
  5435. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5436. rq->idle->sched_class = &idle_sched_class;
  5437. migrate_dead_tasks(cpu);
  5438. spin_unlock_irq(&rq->lock);
  5439. cpuset_unlock();
  5440. migrate_nr_uninterruptible(rq);
  5441. BUG_ON(rq->nr_running != 0);
  5442. /*
  5443. * No need to migrate the tasks: it was best-effort if
  5444. * they didn't take sched_hotcpu_mutex. Just wake up
  5445. * the requestors.
  5446. */
  5447. spin_lock_irq(&rq->lock);
  5448. while (!list_empty(&rq->migration_queue)) {
  5449. struct migration_req *req;
  5450. req = list_entry(rq->migration_queue.next,
  5451. struct migration_req, list);
  5452. list_del_init(&req->list);
  5453. complete(&req->done);
  5454. }
  5455. spin_unlock_irq(&rq->lock);
  5456. break;
  5457. case CPU_DYING:
  5458. case CPU_DYING_FROZEN:
  5459. /* Update our root-domain */
  5460. rq = cpu_rq(cpu);
  5461. spin_lock_irqsave(&rq->lock, flags);
  5462. if (rq->rd) {
  5463. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5464. set_rq_offline(rq);
  5465. }
  5466. spin_unlock_irqrestore(&rq->lock, flags);
  5467. break;
  5468. #endif
  5469. }
  5470. return NOTIFY_OK;
  5471. }
  5472. /* Register at highest priority so that task migration (migrate_all_tasks)
  5473. * happens before everything else.
  5474. */
  5475. static struct notifier_block __cpuinitdata migration_notifier = {
  5476. .notifier_call = migration_call,
  5477. .priority = 10
  5478. };
  5479. static int __init migration_init(void)
  5480. {
  5481. void *cpu = (void *)(long)smp_processor_id();
  5482. int err;
  5483. /* Start one for the boot CPU: */
  5484. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5485. BUG_ON(err == NOTIFY_BAD);
  5486. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5487. register_cpu_notifier(&migration_notifier);
  5488. return err;
  5489. }
  5490. early_initcall(migration_init);
  5491. #endif
  5492. #ifdef CONFIG_SMP
  5493. #ifdef CONFIG_SCHED_DEBUG
  5494. static inline const char *sd_level_to_string(enum sched_domain_level lvl)
  5495. {
  5496. switch (lvl) {
  5497. case SD_LV_NONE:
  5498. return "NONE";
  5499. case SD_LV_SIBLING:
  5500. return "SIBLING";
  5501. case SD_LV_MC:
  5502. return "MC";
  5503. case SD_LV_CPU:
  5504. return "CPU";
  5505. case SD_LV_NODE:
  5506. return "NODE";
  5507. case SD_LV_ALLNODES:
  5508. return "ALLNODES";
  5509. case SD_LV_MAX:
  5510. return "MAX";
  5511. }
  5512. return "MAX";
  5513. }
  5514. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5515. cpumask_t *groupmask)
  5516. {
  5517. struct sched_group *group = sd->groups;
  5518. char str[256];
  5519. cpulist_scnprintf(str, sizeof(str), sd->span);
  5520. cpus_clear(*groupmask);
  5521. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5522. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5523. printk("does not load-balance\n");
  5524. if (sd->parent)
  5525. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5526. " has parent");
  5527. return -1;
  5528. }
  5529. printk(KERN_CONT "span %s level %s\n",
  5530. str, sd_level_to_string(sd->level));
  5531. if (!cpu_isset(cpu, sd->span)) {
  5532. printk(KERN_ERR "ERROR: domain->span does not contain "
  5533. "CPU%d\n", cpu);
  5534. }
  5535. if (!cpu_isset(cpu, group->cpumask)) {
  5536. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5537. " CPU%d\n", cpu);
  5538. }
  5539. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5540. do {
  5541. if (!group) {
  5542. printk("\n");
  5543. printk(KERN_ERR "ERROR: group is NULL\n");
  5544. break;
  5545. }
  5546. if (!group->__cpu_power) {
  5547. printk(KERN_CONT "\n");
  5548. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5549. "set\n");
  5550. break;
  5551. }
  5552. if (!cpus_weight(group->cpumask)) {
  5553. printk(KERN_CONT "\n");
  5554. printk(KERN_ERR "ERROR: empty group\n");
  5555. break;
  5556. }
  5557. if (cpus_intersects(*groupmask, group->cpumask)) {
  5558. printk(KERN_CONT "\n");
  5559. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5560. break;
  5561. }
  5562. cpus_or(*groupmask, *groupmask, group->cpumask);
  5563. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5564. printk(KERN_CONT " %s", str);
  5565. group = group->next;
  5566. } while (group != sd->groups);
  5567. printk(KERN_CONT "\n");
  5568. if (!cpus_equal(sd->span, *groupmask))
  5569. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5570. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5571. printk(KERN_ERR "ERROR: parent span is not a superset "
  5572. "of domain->span\n");
  5573. return 0;
  5574. }
  5575. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5576. {
  5577. cpumask_t *groupmask;
  5578. int level = 0;
  5579. if (!sd) {
  5580. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5581. return;
  5582. }
  5583. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5584. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5585. if (!groupmask) {
  5586. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5587. return;
  5588. }
  5589. for (;;) {
  5590. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5591. break;
  5592. level++;
  5593. sd = sd->parent;
  5594. if (!sd)
  5595. break;
  5596. }
  5597. kfree(groupmask);
  5598. }
  5599. #else /* !CONFIG_SCHED_DEBUG */
  5600. # define sched_domain_debug(sd, cpu) do { } while (0)
  5601. #endif /* CONFIG_SCHED_DEBUG */
  5602. static int sd_degenerate(struct sched_domain *sd)
  5603. {
  5604. if (cpus_weight(sd->span) == 1)
  5605. return 1;
  5606. /* Following flags need at least 2 groups */
  5607. if (sd->flags & (SD_LOAD_BALANCE |
  5608. SD_BALANCE_NEWIDLE |
  5609. SD_BALANCE_FORK |
  5610. SD_BALANCE_EXEC |
  5611. SD_SHARE_CPUPOWER |
  5612. SD_SHARE_PKG_RESOURCES)) {
  5613. if (sd->groups != sd->groups->next)
  5614. return 0;
  5615. }
  5616. /* Following flags don't use groups */
  5617. if (sd->flags & (SD_WAKE_IDLE |
  5618. SD_WAKE_AFFINE |
  5619. SD_WAKE_BALANCE))
  5620. return 0;
  5621. return 1;
  5622. }
  5623. static int
  5624. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5625. {
  5626. unsigned long cflags = sd->flags, pflags = parent->flags;
  5627. if (sd_degenerate(parent))
  5628. return 1;
  5629. if (!cpus_equal(sd->span, parent->span))
  5630. return 0;
  5631. /* Does parent contain flags not in child? */
  5632. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5633. if (cflags & SD_WAKE_AFFINE)
  5634. pflags &= ~SD_WAKE_BALANCE;
  5635. /* Flags needing groups don't count if only 1 group in parent */
  5636. if (parent->groups == parent->groups->next) {
  5637. pflags &= ~(SD_LOAD_BALANCE |
  5638. SD_BALANCE_NEWIDLE |
  5639. SD_BALANCE_FORK |
  5640. SD_BALANCE_EXEC |
  5641. SD_SHARE_CPUPOWER |
  5642. SD_SHARE_PKG_RESOURCES);
  5643. }
  5644. if (~cflags & pflags)
  5645. return 0;
  5646. return 1;
  5647. }
  5648. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5649. {
  5650. unsigned long flags;
  5651. spin_lock_irqsave(&rq->lock, flags);
  5652. if (rq->rd) {
  5653. struct root_domain *old_rd = rq->rd;
  5654. if (cpu_isset(rq->cpu, old_rd->online))
  5655. set_rq_offline(rq);
  5656. cpu_clear(rq->cpu, old_rd->span);
  5657. if (atomic_dec_and_test(&old_rd->refcount))
  5658. kfree(old_rd);
  5659. }
  5660. atomic_inc(&rd->refcount);
  5661. rq->rd = rd;
  5662. cpu_set(rq->cpu, rd->span);
  5663. if (cpu_isset(rq->cpu, cpu_online_map))
  5664. set_rq_online(rq);
  5665. spin_unlock_irqrestore(&rq->lock, flags);
  5666. }
  5667. static void init_rootdomain(struct root_domain *rd)
  5668. {
  5669. memset(rd, 0, sizeof(*rd));
  5670. cpus_clear(rd->span);
  5671. cpus_clear(rd->online);
  5672. cpupri_init(&rd->cpupri);
  5673. }
  5674. static void init_defrootdomain(void)
  5675. {
  5676. init_rootdomain(&def_root_domain);
  5677. atomic_set(&def_root_domain.refcount, 1);
  5678. }
  5679. static struct root_domain *alloc_rootdomain(void)
  5680. {
  5681. struct root_domain *rd;
  5682. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5683. if (!rd)
  5684. return NULL;
  5685. init_rootdomain(rd);
  5686. return rd;
  5687. }
  5688. /*
  5689. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5690. * hold the hotplug lock.
  5691. */
  5692. static void
  5693. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5694. {
  5695. struct rq *rq = cpu_rq(cpu);
  5696. struct sched_domain *tmp;
  5697. /* Remove the sched domains which do not contribute to scheduling. */
  5698. for (tmp = sd; tmp; tmp = tmp->parent) {
  5699. struct sched_domain *parent = tmp->parent;
  5700. if (!parent)
  5701. break;
  5702. if (sd_parent_degenerate(tmp, parent)) {
  5703. tmp->parent = parent->parent;
  5704. if (parent->parent)
  5705. parent->parent->child = tmp;
  5706. }
  5707. }
  5708. if (sd && sd_degenerate(sd)) {
  5709. sd = sd->parent;
  5710. if (sd)
  5711. sd->child = NULL;
  5712. }
  5713. sched_domain_debug(sd, cpu);
  5714. rq_attach_root(rq, rd);
  5715. rcu_assign_pointer(rq->sd, sd);
  5716. }
  5717. /* cpus with isolated domains */
  5718. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5719. /* Setup the mask of cpus configured for isolated domains */
  5720. static int __init isolated_cpu_setup(char *str)
  5721. {
  5722. static int __initdata ints[NR_CPUS];
  5723. int i;
  5724. str = get_options(str, ARRAY_SIZE(ints), ints);
  5725. cpus_clear(cpu_isolated_map);
  5726. for (i = 1; i <= ints[0]; i++)
  5727. if (ints[i] < NR_CPUS)
  5728. cpu_set(ints[i], cpu_isolated_map);
  5729. return 1;
  5730. }
  5731. __setup("isolcpus=", isolated_cpu_setup);
  5732. /*
  5733. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5734. * to a function which identifies what group(along with sched group) a CPU
  5735. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5736. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5737. *
  5738. * init_sched_build_groups will build a circular linked list of the groups
  5739. * covered by the given span, and will set each group's ->cpumask correctly,
  5740. * and ->cpu_power to 0.
  5741. */
  5742. static void
  5743. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5744. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5745. struct sched_group **sg,
  5746. cpumask_t *tmpmask),
  5747. cpumask_t *covered, cpumask_t *tmpmask)
  5748. {
  5749. struct sched_group *first = NULL, *last = NULL;
  5750. int i;
  5751. cpus_clear(*covered);
  5752. for_each_cpu_mask_nr(i, *span) {
  5753. struct sched_group *sg;
  5754. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5755. int j;
  5756. if (cpu_isset(i, *covered))
  5757. continue;
  5758. cpus_clear(sg->cpumask);
  5759. sg->__cpu_power = 0;
  5760. for_each_cpu_mask_nr(j, *span) {
  5761. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5762. continue;
  5763. cpu_set(j, *covered);
  5764. cpu_set(j, sg->cpumask);
  5765. }
  5766. if (!first)
  5767. first = sg;
  5768. if (last)
  5769. last->next = sg;
  5770. last = sg;
  5771. }
  5772. last->next = first;
  5773. }
  5774. #define SD_NODES_PER_DOMAIN 16
  5775. #ifdef CONFIG_NUMA
  5776. /**
  5777. * find_next_best_node - find the next node to include in a sched_domain
  5778. * @node: node whose sched_domain we're building
  5779. * @used_nodes: nodes already in the sched_domain
  5780. *
  5781. * Find the next node to include in a given scheduling domain. Simply
  5782. * finds the closest node not already in the @used_nodes map.
  5783. *
  5784. * Should use nodemask_t.
  5785. */
  5786. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5787. {
  5788. int i, n, val, min_val, best_node = 0;
  5789. min_val = INT_MAX;
  5790. for (i = 0; i < nr_node_ids; i++) {
  5791. /* Start at @node */
  5792. n = (node + i) % nr_node_ids;
  5793. if (!nr_cpus_node(n))
  5794. continue;
  5795. /* Skip already used nodes */
  5796. if (node_isset(n, *used_nodes))
  5797. continue;
  5798. /* Simple min distance search */
  5799. val = node_distance(node, n);
  5800. if (val < min_val) {
  5801. min_val = val;
  5802. best_node = n;
  5803. }
  5804. }
  5805. node_set(best_node, *used_nodes);
  5806. return best_node;
  5807. }
  5808. /**
  5809. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5810. * @node: node whose cpumask we're constructing
  5811. * @span: resulting cpumask
  5812. *
  5813. * Given a node, construct a good cpumask for its sched_domain to span. It
  5814. * should be one that prevents unnecessary balancing, but also spreads tasks
  5815. * out optimally.
  5816. */
  5817. static void sched_domain_node_span(int node, cpumask_t *span)
  5818. {
  5819. nodemask_t used_nodes;
  5820. node_to_cpumask_ptr(nodemask, node);
  5821. int i;
  5822. cpus_clear(*span);
  5823. nodes_clear(used_nodes);
  5824. cpus_or(*span, *span, *nodemask);
  5825. node_set(node, used_nodes);
  5826. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5827. int next_node = find_next_best_node(node, &used_nodes);
  5828. node_to_cpumask_ptr_next(nodemask, next_node);
  5829. cpus_or(*span, *span, *nodemask);
  5830. }
  5831. }
  5832. #endif /* CONFIG_NUMA */
  5833. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5834. /*
  5835. * SMT sched-domains:
  5836. */
  5837. #ifdef CONFIG_SCHED_SMT
  5838. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5839. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5840. static int
  5841. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5842. cpumask_t *unused)
  5843. {
  5844. if (sg)
  5845. *sg = &per_cpu(sched_group_cpus, cpu);
  5846. return cpu;
  5847. }
  5848. #endif /* CONFIG_SCHED_SMT */
  5849. /*
  5850. * multi-core sched-domains:
  5851. */
  5852. #ifdef CONFIG_SCHED_MC
  5853. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5854. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5855. #endif /* CONFIG_SCHED_MC */
  5856. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5857. static int
  5858. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5859. cpumask_t *mask)
  5860. {
  5861. int group;
  5862. *mask = per_cpu(cpu_sibling_map, cpu);
  5863. cpus_and(*mask, *mask, *cpu_map);
  5864. group = first_cpu(*mask);
  5865. if (sg)
  5866. *sg = &per_cpu(sched_group_core, group);
  5867. return group;
  5868. }
  5869. #elif defined(CONFIG_SCHED_MC)
  5870. static int
  5871. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5872. cpumask_t *unused)
  5873. {
  5874. if (sg)
  5875. *sg = &per_cpu(sched_group_core, cpu);
  5876. return cpu;
  5877. }
  5878. #endif
  5879. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5880. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5881. static int
  5882. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5883. cpumask_t *mask)
  5884. {
  5885. int group;
  5886. #ifdef CONFIG_SCHED_MC
  5887. *mask = cpu_coregroup_map(cpu);
  5888. cpus_and(*mask, *mask, *cpu_map);
  5889. group = first_cpu(*mask);
  5890. #elif defined(CONFIG_SCHED_SMT)
  5891. *mask = per_cpu(cpu_sibling_map, cpu);
  5892. cpus_and(*mask, *mask, *cpu_map);
  5893. group = first_cpu(*mask);
  5894. #else
  5895. group = cpu;
  5896. #endif
  5897. if (sg)
  5898. *sg = &per_cpu(sched_group_phys, group);
  5899. return group;
  5900. }
  5901. #ifdef CONFIG_NUMA
  5902. /*
  5903. * The init_sched_build_groups can't handle what we want to do with node
  5904. * groups, so roll our own. Now each node has its own list of groups which
  5905. * gets dynamically allocated.
  5906. */
  5907. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5908. static struct sched_group ***sched_group_nodes_bycpu;
  5909. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5910. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5911. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5912. struct sched_group **sg, cpumask_t *nodemask)
  5913. {
  5914. int group;
  5915. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5916. cpus_and(*nodemask, *nodemask, *cpu_map);
  5917. group = first_cpu(*nodemask);
  5918. if (sg)
  5919. *sg = &per_cpu(sched_group_allnodes, group);
  5920. return group;
  5921. }
  5922. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5923. {
  5924. struct sched_group *sg = group_head;
  5925. int j;
  5926. if (!sg)
  5927. return;
  5928. do {
  5929. for_each_cpu_mask_nr(j, sg->cpumask) {
  5930. struct sched_domain *sd;
  5931. sd = &per_cpu(phys_domains, j);
  5932. if (j != first_cpu(sd->groups->cpumask)) {
  5933. /*
  5934. * Only add "power" once for each
  5935. * physical package.
  5936. */
  5937. continue;
  5938. }
  5939. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5940. }
  5941. sg = sg->next;
  5942. } while (sg != group_head);
  5943. }
  5944. #endif /* CONFIG_NUMA */
  5945. #ifdef CONFIG_NUMA
  5946. /* Free memory allocated for various sched_group structures */
  5947. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5948. {
  5949. int cpu, i;
  5950. for_each_cpu_mask_nr(cpu, *cpu_map) {
  5951. struct sched_group **sched_group_nodes
  5952. = sched_group_nodes_bycpu[cpu];
  5953. if (!sched_group_nodes)
  5954. continue;
  5955. for (i = 0; i < nr_node_ids; i++) {
  5956. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5957. *nodemask = node_to_cpumask(i);
  5958. cpus_and(*nodemask, *nodemask, *cpu_map);
  5959. if (cpus_empty(*nodemask))
  5960. continue;
  5961. if (sg == NULL)
  5962. continue;
  5963. sg = sg->next;
  5964. next_sg:
  5965. oldsg = sg;
  5966. sg = sg->next;
  5967. kfree(oldsg);
  5968. if (oldsg != sched_group_nodes[i])
  5969. goto next_sg;
  5970. }
  5971. kfree(sched_group_nodes);
  5972. sched_group_nodes_bycpu[cpu] = NULL;
  5973. }
  5974. }
  5975. #else /* !CONFIG_NUMA */
  5976. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5977. {
  5978. }
  5979. #endif /* CONFIG_NUMA */
  5980. /*
  5981. * Initialize sched groups cpu_power.
  5982. *
  5983. * cpu_power indicates the capacity of sched group, which is used while
  5984. * distributing the load between different sched groups in a sched domain.
  5985. * Typically cpu_power for all the groups in a sched domain will be same unless
  5986. * there are asymmetries in the topology. If there are asymmetries, group
  5987. * having more cpu_power will pickup more load compared to the group having
  5988. * less cpu_power.
  5989. *
  5990. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5991. * the maximum number of tasks a group can handle in the presence of other idle
  5992. * or lightly loaded groups in the same sched domain.
  5993. */
  5994. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5995. {
  5996. struct sched_domain *child;
  5997. struct sched_group *group;
  5998. WARN_ON(!sd || !sd->groups);
  5999. if (cpu != first_cpu(sd->groups->cpumask))
  6000. return;
  6001. child = sd->child;
  6002. sd->groups->__cpu_power = 0;
  6003. /*
  6004. * For perf policy, if the groups in child domain share resources
  6005. * (for example cores sharing some portions of the cache hierarchy
  6006. * or SMT), then set this domain groups cpu_power such that each group
  6007. * can handle only one task, when there are other idle groups in the
  6008. * same sched domain.
  6009. */
  6010. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6011. (child->flags &
  6012. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6013. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6014. return;
  6015. }
  6016. /*
  6017. * add cpu_power of each child group to this groups cpu_power
  6018. */
  6019. group = child->groups;
  6020. do {
  6021. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6022. group = group->next;
  6023. } while (group != child->groups);
  6024. }
  6025. /*
  6026. * Initializers for schedule domains
  6027. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6028. */
  6029. #define SD_INIT(sd, type) sd_init_##type(sd)
  6030. #define SD_INIT_FUNC(type) \
  6031. static noinline void sd_init_##type(struct sched_domain *sd) \
  6032. { \
  6033. memset(sd, 0, sizeof(*sd)); \
  6034. *sd = SD_##type##_INIT; \
  6035. sd->level = SD_LV_##type; \
  6036. }
  6037. SD_INIT_FUNC(CPU)
  6038. #ifdef CONFIG_NUMA
  6039. SD_INIT_FUNC(ALLNODES)
  6040. SD_INIT_FUNC(NODE)
  6041. #endif
  6042. #ifdef CONFIG_SCHED_SMT
  6043. SD_INIT_FUNC(SIBLING)
  6044. #endif
  6045. #ifdef CONFIG_SCHED_MC
  6046. SD_INIT_FUNC(MC)
  6047. #endif
  6048. /*
  6049. * To minimize stack usage kmalloc room for cpumasks and share the
  6050. * space as the usage in build_sched_domains() dictates. Used only
  6051. * if the amount of space is significant.
  6052. */
  6053. struct allmasks {
  6054. cpumask_t tmpmask; /* make this one first */
  6055. union {
  6056. cpumask_t nodemask;
  6057. cpumask_t this_sibling_map;
  6058. cpumask_t this_core_map;
  6059. };
  6060. cpumask_t send_covered;
  6061. #ifdef CONFIG_NUMA
  6062. cpumask_t domainspan;
  6063. cpumask_t covered;
  6064. cpumask_t notcovered;
  6065. #endif
  6066. };
  6067. #if NR_CPUS > 128
  6068. #define SCHED_CPUMASK_ALLOC 1
  6069. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6070. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6071. #else
  6072. #define SCHED_CPUMASK_ALLOC 0
  6073. #define SCHED_CPUMASK_FREE(v)
  6074. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6075. #endif
  6076. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6077. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6078. static int default_relax_domain_level = -1;
  6079. static int __init setup_relax_domain_level(char *str)
  6080. {
  6081. unsigned long val;
  6082. val = simple_strtoul(str, NULL, 0);
  6083. if (val < SD_LV_MAX)
  6084. default_relax_domain_level = val;
  6085. return 1;
  6086. }
  6087. __setup("relax_domain_level=", setup_relax_domain_level);
  6088. static void set_domain_attribute(struct sched_domain *sd,
  6089. struct sched_domain_attr *attr)
  6090. {
  6091. int request;
  6092. if (!attr || attr->relax_domain_level < 0) {
  6093. if (default_relax_domain_level < 0)
  6094. return;
  6095. else
  6096. request = default_relax_domain_level;
  6097. } else
  6098. request = attr->relax_domain_level;
  6099. if (request < sd->level) {
  6100. /* turn off idle balance on this domain */
  6101. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6102. } else {
  6103. /* turn on idle balance on this domain */
  6104. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6105. }
  6106. }
  6107. /*
  6108. * Build sched domains for a given set of cpus and attach the sched domains
  6109. * to the individual cpus
  6110. */
  6111. static int __build_sched_domains(const cpumask_t *cpu_map,
  6112. struct sched_domain_attr *attr)
  6113. {
  6114. int i;
  6115. struct root_domain *rd;
  6116. SCHED_CPUMASK_DECLARE(allmasks);
  6117. cpumask_t *tmpmask;
  6118. #ifdef CONFIG_NUMA
  6119. struct sched_group **sched_group_nodes = NULL;
  6120. int sd_allnodes = 0;
  6121. /*
  6122. * Allocate the per-node list of sched groups
  6123. */
  6124. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6125. GFP_KERNEL);
  6126. if (!sched_group_nodes) {
  6127. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6128. return -ENOMEM;
  6129. }
  6130. #endif
  6131. rd = alloc_rootdomain();
  6132. if (!rd) {
  6133. printk(KERN_WARNING "Cannot alloc root domain\n");
  6134. #ifdef CONFIG_NUMA
  6135. kfree(sched_group_nodes);
  6136. #endif
  6137. return -ENOMEM;
  6138. }
  6139. #if SCHED_CPUMASK_ALLOC
  6140. /* get space for all scratch cpumask variables */
  6141. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6142. if (!allmasks) {
  6143. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6144. kfree(rd);
  6145. #ifdef CONFIG_NUMA
  6146. kfree(sched_group_nodes);
  6147. #endif
  6148. return -ENOMEM;
  6149. }
  6150. #endif
  6151. tmpmask = (cpumask_t *)allmasks;
  6152. #ifdef CONFIG_NUMA
  6153. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6154. #endif
  6155. /*
  6156. * Set up domains for cpus specified by the cpu_map.
  6157. */
  6158. for_each_cpu_mask_nr(i, *cpu_map) {
  6159. struct sched_domain *sd = NULL, *p;
  6160. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6161. *nodemask = node_to_cpumask(cpu_to_node(i));
  6162. cpus_and(*nodemask, *nodemask, *cpu_map);
  6163. #ifdef CONFIG_NUMA
  6164. if (cpus_weight(*cpu_map) >
  6165. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6166. sd = &per_cpu(allnodes_domains, i);
  6167. SD_INIT(sd, ALLNODES);
  6168. set_domain_attribute(sd, attr);
  6169. sd->span = *cpu_map;
  6170. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6171. p = sd;
  6172. sd_allnodes = 1;
  6173. } else
  6174. p = NULL;
  6175. sd = &per_cpu(node_domains, i);
  6176. SD_INIT(sd, NODE);
  6177. set_domain_attribute(sd, attr);
  6178. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6179. sd->parent = p;
  6180. if (p)
  6181. p->child = sd;
  6182. cpus_and(sd->span, sd->span, *cpu_map);
  6183. #endif
  6184. p = sd;
  6185. sd = &per_cpu(phys_domains, i);
  6186. SD_INIT(sd, CPU);
  6187. set_domain_attribute(sd, attr);
  6188. sd->span = *nodemask;
  6189. sd->parent = p;
  6190. if (p)
  6191. p->child = sd;
  6192. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6193. #ifdef CONFIG_SCHED_MC
  6194. p = sd;
  6195. sd = &per_cpu(core_domains, i);
  6196. SD_INIT(sd, MC);
  6197. set_domain_attribute(sd, attr);
  6198. sd->span = cpu_coregroup_map(i);
  6199. cpus_and(sd->span, sd->span, *cpu_map);
  6200. sd->parent = p;
  6201. p->child = sd;
  6202. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6203. #endif
  6204. #ifdef CONFIG_SCHED_SMT
  6205. p = sd;
  6206. sd = &per_cpu(cpu_domains, i);
  6207. SD_INIT(sd, SIBLING);
  6208. set_domain_attribute(sd, attr);
  6209. sd->span = per_cpu(cpu_sibling_map, i);
  6210. cpus_and(sd->span, sd->span, *cpu_map);
  6211. sd->parent = p;
  6212. p->child = sd;
  6213. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6214. #endif
  6215. }
  6216. #ifdef CONFIG_SCHED_SMT
  6217. /* Set up CPU (sibling) groups */
  6218. for_each_cpu_mask_nr(i, *cpu_map) {
  6219. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6220. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6221. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6222. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6223. if (i != first_cpu(*this_sibling_map))
  6224. continue;
  6225. init_sched_build_groups(this_sibling_map, cpu_map,
  6226. &cpu_to_cpu_group,
  6227. send_covered, tmpmask);
  6228. }
  6229. #endif
  6230. #ifdef CONFIG_SCHED_MC
  6231. /* Set up multi-core groups */
  6232. for_each_cpu_mask_nr(i, *cpu_map) {
  6233. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6234. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6235. *this_core_map = cpu_coregroup_map(i);
  6236. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6237. if (i != first_cpu(*this_core_map))
  6238. continue;
  6239. init_sched_build_groups(this_core_map, cpu_map,
  6240. &cpu_to_core_group,
  6241. send_covered, tmpmask);
  6242. }
  6243. #endif
  6244. /* Set up physical groups */
  6245. for (i = 0; i < nr_node_ids; i++) {
  6246. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6247. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6248. *nodemask = node_to_cpumask(i);
  6249. cpus_and(*nodemask, *nodemask, *cpu_map);
  6250. if (cpus_empty(*nodemask))
  6251. continue;
  6252. init_sched_build_groups(nodemask, cpu_map,
  6253. &cpu_to_phys_group,
  6254. send_covered, tmpmask);
  6255. }
  6256. #ifdef CONFIG_NUMA
  6257. /* Set up node groups */
  6258. if (sd_allnodes) {
  6259. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6260. init_sched_build_groups(cpu_map, cpu_map,
  6261. &cpu_to_allnodes_group,
  6262. send_covered, tmpmask);
  6263. }
  6264. for (i = 0; i < nr_node_ids; i++) {
  6265. /* Set up node groups */
  6266. struct sched_group *sg, *prev;
  6267. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6268. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6269. SCHED_CPUMASK_VAR(covered, allmasks);
  6270. int j;
  6271. *nodemask = node_to_cpumask(i);
  6272. cpus_clear(*covered);
  6273. cpus_and(*nodemask, *nodemask, *cpu_map);
  6274. if (cpus_empty(*nodemask)) {
  6275. sched_group_nodes[i] = NULL;
  6276. continue;
  6277. }
  6278. sched_domain_node_span(i, domainspan);
  6279. cpus_and(*domainspan, *domainspan, *cpu_map);
  6280. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6281. if (!sg) {
  6282. printk(KERN_WARNING "Can not alloc domain group for "
  6283. "node %d\n", i);
  6284. goto error;
  6285. }
  6286. sched_group_nodes[i] = sg;
  6287. for_each_cpu_mask_nr(j, *nodemask) {
  6288. struct sched_domain *sd;
  6289. sd = &per_cpu(node_domains, j);
  6290. sd->groups = sg;
  6291. }
  6292. sg->__cpu_power = 0;
  6293. sg->cpumask = *nodemask;
  6294. sg->next = sg;
  6295. cpus_or(*covered, *covered, *nodemask);
  6296. prev = sg;
  6297. for (j = 0; j < nr_node_ids; j++) {
  6298. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6299. int n = (i + j) % nr_node_ids;
  6300. node_to_cpumask_ptr(pnodemask, n);
  6301. cpus_complement(*notcovered, *covered);
  6302. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6303. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6304. if (cpus_empty(*tmpmask))
  6305. break;
  6306. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6307. if (cpus_empty(*tmpmask))
  6308. continue;
  6309. sg = kmalloc_node(sizeof(struct sched_group),
  6310. GFP_KERNEL, i);
  6311. if (!sg) {
  6312. printk(KERN_WARNING
  6313. "Can not alloc domain group for node %d\n", j);
  6314. goto error;
  6315. }
  6316. sg->__cpu_power = 0;
  6317. sg->cpumask = *tmpmask;
  6318. sg->next = prev->next;
  6319. cpus_or(*covered, *covered, *tmpmask);
  6320. prev->next = sg;
  6321. prev = sg;
  6322. }
  6323. }
  6324. #endif
  6325. /* Calculate CPU power for physical packages and nodes */
  6326. #ifdef CONFIG_SCHED_SMT
  6327. for_each_cpu_mask_nr(i, *cpu_map) {
  6328. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6329. init_sched_groups_power(i, sd);
  6330. }
  6331. #endif
  6332. #ifdef CONFIG_SCHED_MC
  6333. for_each_cpu_mask_nr(i, *cpu_map) {
  6334. struct sched_domain *sd = &per_cpu(core_domains, i);
  6335. init_sched_groups_power(i, sd);
  6336. }
  6337. #endif
  6338. for_each_cpu_mask_nr(i, *cpu_map) {
  6339. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6340. init_sched_groups_power(i, sd);
  6341. }
  6342. #ifdef CONFIG_NUMA
  6343. for (i = 0; i < nr_node_ids; i++)
  6344. init_numa_sched_groups_power(sched_group_nodes[i]);
  6345. if (sd_allnodes) {
  6346. struct sched_group *sg;
  6347. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6348. tmpmask);
  6349. init_numa_sched_groups_power(sg);
  6350. }
  6351. #endif
  6352. /* Attach the domains */
  6353. for_each_cpu_mask_nr(i, *cpu_map) {
  6354. struct sched_domain *sd;
  6355. #ifdef CONFIG_SCHED_SMT
  6356. sd = &per_cpu(cpu_domains, i);
  6357. #elif defined(CONFIG_SCHED_MC)
  6358. sd = &per_cpu(core_domains, i);
  6359. #else
  6360. sd = &per_cpu(phys_domains, i);
  6361. #endif
  6362. cpu_attach_domain(sd, rd, i);
  6363. }
  6364. SCHED_CPUMASK_FREE((void *)allmasks);
  6365. return 0;
  6366. #ifdef CONFIG_NUMA
  6367. error:
  6368. free_sched_groups(cpu_map, tmpmask);
  6369. SCHED_CPUMASK_FREE((void *)allmasks);
  6370. return -ENOMEM;
  6371. #endif
  6372. }
  6373. static int build_sched_domains(const cpumask_t *cpu_map)
  6374. {
  6375. return __build_sched_domains(cpu_map, NULL);
  6376. }
  6377. static cpumask_t *doms_cur; /* current sched domains */
  6378. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6379. static struct sched_domain_attr *dattr_cur;
  6380. /* attribues of custom domains in 'doms_cur' */
  6381. /*
  6382. * Special case: If a kmalloc of a doms_cur partition (array of
  6383. * cpumask_t) fails, then fallback to a single sched domain,
  6384. * as determined by the single cpumask_t fallback_doms.
  6385. */
  6386. static cpumask_t fallback_doms;
  6387. void __attribute__((weak)) arch_update_cpu_topology(void)
  6388. {
  6389. }
  6390. /*
  6391. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6392. * For now this just excludes isolated cpus, but could be used to
  6393. * exclude other special cases in the future.
  6394. */
  6395. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6396. {
  6397. int err;
  6398. arch_update_cpu_topology();
  6399. ndoms_cur = 1;
  6400. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6401. if (!doms_cur)
  6402. doms_cur = &fallback_doms;
  6403. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6404. dattr_cur = NULL;
  6405. err = build_sched_domains(doms_cur);
  6406. register_sched_domain_sysctl();
  6407. return err;
  6408. }
  6409. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6410. cpumask_t *tmpmask)
  6411. {
  6412. free_sched_groups(cpu_map, tmpmask);
  6413. }
  6414. /*
  6415. * Detach sched domains from a group of cpus specified in cpu_map
  6416. * These cpus will now be attached to the NULL domain
  6417. */
  6418. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6419. {
  6420. cpumask_t tmpmask;
  6421. int i;
  6422. unregister_sched_domain_sysctl();
  6423. for_each_cpu_mask_nr(i, *cpu_map)
  6424. cpu_attach_domain(NULL, &def_root_domain, i);
  6425. synchronize_sched();
  6426. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6427. }
  6428. /* handle null as "default" */
  6429. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6430. struct sched_domain_attr *new, int idx_new)
  6431. {
  6432. struct sched_domain_attr tmp;
  6433. /* fast path */
  6434. if (!new && !cur)
  6435. return 1;
  6436. tmp = SD_ATTR_INIT;
  6437. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6438. new ? (new + idx_new) : &tmp,
  6439. sizeof(struct sched_domain_attr));
  6440. }
  6441. /*
  6442. * Partition sched domains as specified by the 'ndoms_new'
  6443. * cpumasks in the array doms_new[] of cpumasks. This compares
  6444. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6445. * It destroys each deleted domain and builds each new domain.
  6446. *
  6447. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6448. * The masks don't intersect (don't overlap.) We should setup one
  6449. * sched domain for each mask. CPUs not in any of the cpumasks will
  6450. * not be load balanced. If the same cpumask appears both in the
  6451. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6452. * it as it is.
  6453. *
  6454. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6455. * ownership of it and will kfree it when done with it. If the caller
  6456. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6457. * and partition_sched_domains() will fallback to the single partition
  6458. * 'fallback_doms', it also forces the domains to be rebuilt.
  6459. *
  6460. * Call with hotplug lock held
  6461. */
  6462. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6463. struct sched_domain_attr *dattr_new)
  6464. {
  6465. int i, j;
  6466. mutex_lock(&sched_domains_mutex);
  6467. /* always unregister in case we don't destroy any domains */
  6468. unregister_sched_domain_sysctl();
  6469. if (doms_new == NULL)
  6470. ndoms_new = 0;
  6471. /* Destroy deleted domains */
  6472. for (i = 0; i < ndoms_cur; i++) {
  6473. for (j = 0; j < ndoms_new; j++) {
  6474. if (cpus_equal(doms_cur[i], doms_new[j])
  6475. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6476. goto match1;
  6477. }
  6478. /* no match - a current sched domain not in new doms_new[] */
  6479. detach_destroy_domains(doms_cur + i);
  6480. match1:
  6481. ;
  6482. }
  6483. if (doms_new == NULL) {
  6484. ndoms_cur = 0;
  6485. ndoms_new = 1;
  6486. doms_new = &fallback_doms;
  6487. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6488. dattr_new = NULL;
  6489. }
  6490. /* Build new domains */
  6491. for (i = 0; i < ndoms_new; i++) {
  6492. for (j = 0; j < ndoms_cur; j++) {
  6493. if (cpus_equal(doms_new[i], doms_cur[j])
  6494. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6495. goto match2;
  6496. }
  6497. /* no match - add a new doms_new */
  6498. __build_sched_domains(doms_new + i,
  6499. dattr_new ? dattr_new + i : NULL);
  6500. match2:
  6501. ;
  6502. }
  6503. /* Remember the new sched domains */
  6504. if (doms_cur != &fallback_doms)
  6505. kfree(doms_cur);
  6506. kfree(dattr_cur); /* kfree(NULL) is safe */
  6507. doms_cur = doms_new;
  6508. dattr_cur = dattr_new;
  6509. ndoms_cur = ndoms_new;
  6510. register_sched_domain_sysctl();
  6511. mutex_unlock(&sched_domains_mutex);
  6512. }
  6513. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6514. int arch_reinit_sched_domains(void)
  6515. {
  6516. get_online_cpus();
  6517. rebuild_sched_domains();
  6518. put_online_cpus();
  6519. return 0;
  6520. }
  6521. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6522. {
  6523. int ret;
  6524. if (buf[0] != '0' && buf[0] != '1')
  6525. return -EINVAL;
  6526. if (smt)
  6527. sched_smt_power_savings = (buf[0] == '1');
  6528. else
  6529. sched_mc_power_savings = (buf[0] == '1');
  6530. ret = arch_reinit_sched_domains();
  6531. return ret ? ret : count;
  6532. }
  6533. #ifdef CONFIG_SCHED_MC
  6534. static ssize_t sched_mc_power_savings_show(struct sys_device *dev,
  6535. struct sysdev_attribute *attr, char *page)
  6536. {
  6537. return sprintf(page, "%u\n", sched_mc_power_savings);
  6538. }
  6539. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6540. struct sysdev_attribute *attr,
  6541. const char *buf, size_t count)
  6542. {
  6543. return sched_power_savings_store(buf, count, 0);
  6544. }
  6545. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6546. sched_mc_power_savings_store);
  6547. #endif
  6548. #ifdef CONFIG_SCHED_SMT
  6549. static ssize_t sched_smt_power_savings_show(struct sys_device *dev,
  6550. struct sysdev_attribute *attr, char *page)
  6551. {
  6552. return sprintf(page, "%u\n", sched_smt_power_savings);
  6553. }
  6554. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6555. struct sysdev_attribute *attr,
  6556. const char *buf, size_t count)
  6557. {
  6558. return sched_power_savings_store(buf, count, 1);
  6559. }
  6560. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6561. sched_smt_power_savings_store);
  6562. #endif
  6563. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6564. {
  6565. int err = 0;
  6566. #ifdef CONFIG_SCHED_SMT
  6567. if (smt_capable())
  6568. err = sysfs_create_file(&cls->kset.kobj,
  6569. &attr_sched_smt_power_savings.attr);
  6570. #endif
  6571. #ifdef CONFIG_SCHED_MC
  6572. if (!err && mc_capable())
  6573. err = sysfs_create_file(&cls->kset.kobj,
  6574. &attr_sched_mc_power_savings.attr);
  6575. #endif
  6576. return err;
  6577. }
  6578. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6579. #ifndef CONFIG_CPUSETS
  6580. /*
  6581. * Add online and remove offline CPUs from the scheduler domains.
  6582. * When cpusets are enabled they take over this function.
  6583. */
  6584. static int update_sched_domains(struct notifier_block *nfb,
  6585. unsigned long action, void *hcpu)
  6586. {
  6587. switch (action) {
  6588. case CPU_ONLINE:
  6589. case CPU_ONLINE_FROZEN:
  6590. case CPU_DEAD:
  6591. case CPU_DEAD_FROZEN:
  6592. partition_sched_domains(0, NULL, NULL);
  6593. return NOTIFY_OK;
  6594. default:
  6595. return NOTIFY_DONE;
  6596. }
  6597. }
  6598. #endif
  6599. static int update_runtime(struct notifier_block *nfb,
  6600. unsigned long action, void *hcpu)
  6601. {
  6602. int cpu = (int)(long)hcpu;
  6603. switch (action) {
  6604. case CPU_DOWN_PREPARE:
  6605. case CPU_DOWN_PREPARE_FROZEN:
  6606. disable_runtime(cpu_rq(cpu));
  6607. return NOTIFY_OK;
  6608. case CPU_DOWN_FAILED:
  6609. case CPU_DOWN_FAILED_FROZEN:
  6610. case CPU_ONLINE:
  6611. case CPU_ONLINE_FROZEN:
  6612. enable_runtime(cpu_rq(cpu));
  6613. return NOTIFY_OK;
  6614. default:
  6615. return NOTIFY_DONE;
  6616. }
  6617. }
  6618. void __init sched_init_smp(void)
  6619. {
  6620. cpumask_t non_isolated_cpus;
  6621. #if defined(CONFIG_NUMA)
  6622. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6623. GFP_KERNEL);
  6624. BUG_ON(sched_group_nodes_bycpu == NULL);
  6625. #endif
  6626. get_online_cpus();
  6627. mutex_lock(&sched_domains_mutex);
  6628. arch_init_sched_domains(&cpu_online_map);
  6629. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6630. if (cpus_empty(non_isolated_cpus))
  6631. cpu_set(smp_processor_id(), non_isolated_cpus);
  6632. mutex_unlock(&sched_domains_mutex);
  6633. put_online_cpus();
  6634. #ifndef CONFIG_CPUSETS
  6635. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6636. hotcpu_notifier(update_sched_domains, 0);
  6637. #endif
  6638. /* RT runtime code needs to handle some hotplug events */
  6639. hotcpu_notifier(update_runtime, 0);
  6640. init_hrtick();
  6641. /* Move init over to a non-isolated CPU */
  6642. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6643. BUG();
  6644. sched_init_granularity();
  6645. }
  6646. #else
  6647. void __init sched_init_smp(void)
  6648. {
  6649. sched_init_granularity();
  6650. }
  6651. #endif /* CONFIG_SMP */
  6652. int in_sched_functions(unsigned long addr)
  6653. {
  6654. return in_lock_functions(addr) ||
  6655. (addr >= (unsigned long)__sched_text_start
  6656. && addr < (unsigned long)__sched_text_end);
  6657. }
  6658. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6659. {
  6660. cfs_rq->tasks_timeline = RB_ROOT;
  6661. INIT_LIST_HEAD(&cfs_rq->tasks);
  6662. #ifdef CONFIG_FAIR_GROUP_SCHED
  6663. cfs_rq->rq = rq;
  6664. #endif
  6665. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6666. }
  6667. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6668. {
  6669. struct rt_prio_array *array;
  6670. int i;
  6671. array = &rt_rq->active;
  6672. for (i = 0; i < MAX_RT_PRIO; i++) {
  6673. INIT_LIST_HEAD(array->queue + i);
  6674. __clear_bit(i, array->bitmap);
  6675. }
  6676. /* delimiter for bitsearch: */
  6677. __set_bit(MAX_RT_PRIO, array->bitmap);
  6678. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6679. rt_rq->highest_prio = MAX_RT_PRIO;
  6680. #endif
  6681. #ifdef CONFIG_SMP
  6682. rt_rq->rt_nr_migratory = 0;
  6683. rt_rq->overloaded = 0;
  6684. #endif
  6685. rt_rq->rt_time = 0;
  6686. rt_rq->rt_throttled = 0;
  6687. rt_rq->rt_runtime = 0;
  6688. spin_lock_init(&rt_rq->rt_runtime_lock);
  6689. #ifdef CONFIG_RT_GROUP_SCHED
  6690. rt_rq->rt_nr_boosted = 0;
  6691. rt_rq->rq = rq;
  6692. #endif
  6693. }
  6694. #ifdef CONFIG_FAIR_GROUP_SCHED
  6695. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6696. struct sched_entity *se, int cpu, int add,
  6697. struct sched_entity *parent)
  6698. {
  6699. struct rq *rq = cpu_rq(cpu);
  6700. tg->cfs_rq[cpu] = cfs_rq;
  6701. init_cfs_rq(cfs_rq, rq);
  6702. cfs_rq->tg = tg;
  6703. if (add)
  6704. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6705. tg->se[cpu] = se;
  6706. /* se could be NULL for init_task_group */
  6707. if (!se)
  6708. return;
  6709. if (!parent)
  6710. se->cfs_rq = &rq->cfs;
  6711. else
  6712. se->cfs_rq = parent->my_q;
  6713. se->my_q = cfs_rq;
  6714. se->load.weight = tg->shares;
  6715. se->load.inv_weight = 0;
  6716. se->parent = parent;
  6717. }
  6718. #endif
  6719. #ifdef CONFIG_RT_GROUP_SCHED
  6720. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6721. struct sched_rt_entity *rt_se, int cpu, int add,
  6722. struct sched_rt_entity *parent)
  6723. {
  6724. struct rq *rq = cpu_rq(cpu);
  6725. tg->rt_rq[cpu] = rt_rq;
  6726. init_rt_rq(rt_rq, rq);
  6727. rt_rq->tg = tg;
  6728. rt_rq->rt_se = rt_se;
  6729. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6730. if (add)
  6731. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6732. tg->rt_se[cpu] = rt_se;
  6733. if (!rt_se)
  6734. return;
  6735. if (!parent)
  6736. rt_se->rt_rq = &rq->rt;
  6737. else
  6738. rt_se->rt_rq = parent->my_q;
  6739. rt_se->my_q = rt_rq;
  6740. rt_se->parent = parent;
  6741. INIT_LIST_HEAD(&rt_se->run_list);
  6742. }
  6743. #endif
  6744. void __init sched_init(void)
  6745. {
  6746. int i, j;
  6747. unsigned long alloc_size = 0, ptr;
  6748. #ifdef CONFIG_FAIR_GROUP_SCHED
  6749. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6750. #endif
  6751. #ifdef CONFIG_RT_GROUP_SCHED
  6752. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6753. #endif
  6754. #ifdef CONFIG_USER_SCHED
  6755. alloc_size *= 2;
  6756. #endif
  6757. /*
  6758. * As sched_init() is called before page_alloc is setup,
  6759. * we use alloc_bootmem().
  6760. */
  6761. if (alloc_size) {
  6762. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6763. #ifdef CONFIG_FAIR_GROUP_SCHED
  6764. init_task_group.se = (struct sched_entity **)ptr;
  6765. ptr += nr_cpu_ids * sizeof(void **);
  6766. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6767. ptr += nr_cpu_ids * sizeof(void **);
  6768. #ifdef CONFIG_USER_SCHED
  6769. root_task_group.se = (struct sched_entity **)ptr;
  6770. ptr += nr_cpu_ids * sizeof(void **);
  6771. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6772. ptr += nr_cpu_ids * sizeof(void **);
  6773. #endif /* CONFIG_USER_SCHED */
  6774. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6775. #ifdef CONFIG_RT_GROUP_SCHED
  6776. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6777. ptr += nr_cpu_ids * sizeof(void **);
  6778. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6779. ptr += nr_cpu_ids * sizeof(void **);
  6780. #ifdef CONFIG_USER_SCHED
  6781. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6782. ptr += nr_cpu_ids * sizeof(void **);
  6783. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6784. ptr += nr_cpu_ids * sizeof(void **);
  6785. #endif /* CONFIG_USER_SCHED */
  6786. #endif /* CONFIG_RT_GROUP_SCHED */
  6787. }
  6788. #ifdef CONFIG_SMP
  6789. init_defrootdomain();
  6790. #endif
  6791. init_rt_bandwidth(&def_rt_bandwidth,
  6792. global_rt_period(), global_rt_runtime());
  6793. #ifdef CONFIG_RT_GROUP_SCHED
  6794. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6795. global_rt_period(), global_rt_runtime());
  6796. #ifdef CONFIG_USER_SCHED
  6797. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6798. global_rt_period(), RUNTIME_INF);
  6799. #endif /* CONFIG_USER_SCHED */
  6800. #endif /* CONFIG_RT_GROUP_SCHED */
  6801. #ifdef CONFIG_GROUP_SCHED
  6802. list_add(&init_task_group.list, &task_groups);
  6803. INIT_LIST_HEAD(&init_task_group.children);
  6804. #ifdef CONFIG_USER_SCHED
  6805. INIT_LIST_HEAD(&root_task_group.children);
  6806. init_task_group.parent = &root_task_group;
  6807. list_add(&init_task_group.siblings, &root_task_group.children);
  6808. #endif /* CONFIG_USER_SCHED */
  6809. #endif /* CONFIG_GROUP_SCHED */
  6810. for_each_possible_cpu(i) {
  6811. struct rq *rq;
  6812. rq = cpu_rq(i);
  6813. spin_lock_init(&rq->lock);
  6814. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6815. rq->nr_running = 0;
  6816. init_cfs_rq(&rq->cfs, rq);
  6817. init_rt_rq(&rq->rt, rq);
  6818. #ifdef CONFIG_FAIR_GROUP_SCHED
  6819. init_task_group.shares = init_task_group_load;
  6820. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6821. #ifdef CONFIG_CGROUP_SCHED
  6822. /*
  6823. * How much cpu bandwidth does init_task_group get?
  6824. *
  6825. * In case of task-groups formed thr' the cgroup filesystem, it
  6826. * gets 100% of the cpu resources in the system. This overall
  6827. * system cpu resource is divided among the tasks of
  6828. * init_task_group and its child task-groups in a fair manner,
  6829. * based on each entity's (task or task-group's) weight
  6830. * (se->load.weight).
  6831. *
  6832. * In other words, if init_task_group has 10 tasks of weight
  6833. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6834. * then A0's share of the cpu resource is:
  6835. *
  6836. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6837. *
  6838. * We achieve this by letting init_task_group's tasks sit
  6839. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6840. */
  6841. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6842. #elif defined CONFIG_USER_SCHED
  6843. root_task_group.shares = NICE_0_LOAD;
  6844. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6845. /*
  6846. * In case of task-groups formed thr' the user id of tasks,
  6847. * init_task_group represents tasks belonging to root user.
  6848. * Hence it forms a sibling of all subsequent groups formed.
  6849. * In this case, init_task_group gets only a fraction of overall
  6850. * system cpu resource, based on the weight assigned to root
  6851. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6852. * by letting tasks of init_task_group sit in a separate cfs_rq
  6853. * (init_cfs_rq) and having one entity represent this group of
  6854. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6855. */
  6856. init_tg_cfs_entry(&init_task_group,
  6857. &per_cpu(init_cfs_rq, i),
  6858. &per_cpu(init_sched_entity, i), i, 1,
  6859. root_task_group.se[i]);
  6860. #endif
  6861. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6862. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6863. #ifdef CONFIG_RT_GROUP_SCHED
  6864. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6865. #ifdef CONFIG_CGROUP_SCHED
  6866. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6867. #elif defined CONFIG_USER_SCHED
  6868. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6869. init_tg_rt_entry(&init_task_group,
  6870. &per_cpu(init_rt_rq, i),
  6871. &per_cpu(init_sched_rt_entity, i), i, 1,
  6872. root_task_group.rt_se[i]);
  6873. #endif
  6874. #endif
  6875. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6876. rq->cpu_load[j] = 0;
  6877. #ifdef CONFIG_SMP
  6878. rq->sd = NULL;
  6879. rq->rd = NULL;
  6880. rq->active_balance = 0;
  6881. rq->next_balance = jiffies;
  6882. rq->push_cpu = 0;
  6883. rq->cpu = i;
  6884. rq->online = 0;
  6885. rq->migration_thread = NULL;
  6886. INIT_LIST_HEAD(&rq->migration_queue);
  6887. rq_attach_root(rq, &def_root_domain);
  6888. #endif
  6889. init_rq_hrtick(rq);
  6890. atomic_set(&rq->nr_iowait, 0);
  6891. }
  6892. set_load_weight(&init_task);
  6893. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6894. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6895. #endif
  6896. #ifdef CONFIG_SMP
  6897. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6898. #endif
  6899. #ifdef CONFIG_RT_MUTEXES
  6900. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6901. #endif
  6902. /*
  6903. * The boot idle thread does lazy MMU switching as well:
  6904. */
  6905. atomic_inc(&init_mm.mm_count);
  6906. enter_lazy_tlb(&init_mm, current);
  6907. /*
  6908. * Make us the idle thread. Technically, schedule() should not be
  6909. * called from this thread, however somewhere below it might be,
  6910. * but because we are the idle thread, we just pick up running again
  6911. * when this runqueue becomes "idle".
  6912. */
  6913. init_idle(current, smp_processor_id());
  6914. /*
  6915. * During early bootup we pretend to be a normal task:
  6916. */
  6917. current->sched_class = &fair_sched_class;
  6918. scheduler_running = 1;
  6919. }
  6920. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6921. void __might_sleep(char *file, int line)
  6922. {
  6923. #ifdef in_atomic
  6924. static unsigned long prev_jiffy; /* ratelimiting */
  6925. if ((in_atomic() || irqs_disabled()) &&
  6926. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6927. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6928. return;
  6929. prev_jiffy = jiffies;
  6930. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6931. " context at %s:%d\n", file, line);
  6932. printk("in_atomic():%d, irqs_disabled():%d\n",
  6933. in_atomic(), irqs_disabled());
  6934. debug_show_held_locks(current);
  6935. if (irqs_disabled())
  6936. print_irqtrace_events(current);
  6937. dump_stack();
  6938. }
  6939. #endif
  6940. }
  6941. EXPORT_SYMBOL(__might_sleep);
  6942. #endif
  6943. #ifdef CONFIG_MAGIC_SYSRQ
  6944. static void normalize_task(struct rq *rq, struct task_struct *p)
  6945. {
  6946. int on_rq;
  6947. update_rq_clock(rq);
  6948. on_rq = p->se.on_rq;
  6949. if (on_rq)
  6950. deactivate_task(rq, p, 0);
  6951. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6952. if (on_rq) {
  6953. activate_task(rq, p, 0);
  6954. resched_task(rq->curr);
  6955. }
  6956. }
  6957. void normalize_rt_tasks(void)
  6958. {
  6959. struct task_struct *g, *p;
  6960. unsigned long flags;
  6961. struct rq *rq;
  6962. read_lock_irqsave(&tasklist_lock, flags);
  6963. do_each_thread(g, p) {
  6964. /*
  6965. * Only normalize user tasks:
  6966. */
  6967. if (!p->mm)
  6968. continue;
  6969. p->se.exec_start = 0;
  6970. #ifdef CONFIG_SCHEDSTATS
  6971. p->se.wait_start = 0;
  6972. p->se.sleep_start = 0;
  6973. p->se.block_start = 0;
  6974. #endif
  6975. if (!rt_task(p)) {
  6976. /*
  6977. * Renice negative nice level userspace
  6978. * tasks back to 0:
  6979. */
  6980. if (TASK_NICE(p) < 0 && p->mm)
  6981. set_user_nice(p, 0);
  6982. continue;
  6983. }
  6984. spin_lock(&p->pi_lock);
  6985. rq = __task_rq_lock(p);
  6986. normalize_task(rq, p);
  6987. __task_rq_unlock(rq);
  6988. spin_unlock(&p->pi_lock);
  6989. } while_each_thread(g, p);
  6990. read_unlock_irqrestore(&tasklist_lock, flags);
  6991. }
  6992. #endif /* CONFIG_MAGIC_SYSRQ */
  6993. #ifdef CONFIG_IA64
  6994. /*
  6995. * These functions are only useful for the IA64 MCA handling.
  6996. *
  6997. * They can only be called when the whole system has been
  6998. * stopped - every CPU needs to be quiescent, and no scheduling
  6999. * activity can take place. Using them for anything else would
  7000. * be a serious bug, and as a result, they aren't even visible
  7001. * under any other configuration.
  7002. */
  7003. /**
  7004. * curr_task - return the current task for a given cpu.
  7005. * @cpu: the processor in question.
  7006. *
  7007. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7008. */
  7009. struct task_struct *curr_task(int cpu)
  7010. {
  7011. return cpu_curr(cpu);
  7012. }
  7013. /**
  7014. * set_curr_task - set the current task for a given cpu.
  7015. * @cpu: the processor in question.
  7016. * @p: the task pointer to set.
  7017. *
  7018. * Description: This function must only be used when non-maskable interrupts
  7019. * are serviced on a separate stack. It allows the architecture to switch the
  7020. * notion of the current task on a cpu in a non-blocking manner. This function
  7021. * must be called with all CPU's synchronized, and interrupts disabled, the
  7022. * and caller must save the original value of the current task (see
  7023. * curr_task() above) and restore that value before reenabling interrupts and
  7024. * re-starting the system.
  7025. *
  7026. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7027. */
  7028. void set_curr_task(int cpu, struct task_struct *p)
  7029. {
  7030. cpu_curr(cpu) = p;
  7031. }
  7032. #endif
  7033. #ifdef CONFIG_FAIR_GROUP_SCHED
  7034. static void free_fair_sched_group(struct task_group *tg)
  7035. {
  7036. int i;
  7037. for_each_possible_cpu(i) {
  7038. if (tg->cfs_rq)
  7039. kfree(tg->cfs_rq[i]);
  7040. if (tg->se)
  7041. kfree(tg->se[i]);
  7042. }
  7043. kfree(tg->cfs_rq);
  7044. kfree(tg->se);
  7045. }
  7046. static
  7047. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7048. {
  7049. struct cfs_rq *cfs_rq;
  7050. struct sched_entity *se, *parent_se;
  7051. struct rq *rq;
  7052. int i;
  7053. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7054. if (!tg->cfs_rq)
  7055. goto err;
  7056. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7057. if (!tg->se)
  7058. goto err;
  7059. tg->shares = NICE_0_LOAD;
  7060. for_each_possible_cpu(i) {
  7061. rq = cpu_rq(i);
  7062. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7063. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7064. if (!cfs_rq)
  7065. goto err;
  7066. se = kmalloc_node(sizeof(struct sched_entity),
  7067. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7068. if (!se)
  7069. goto err;
  7070. parent_se = parent ? parent->se[i] : NULL;
  7071. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7072. }
  7073. return 1;
  7074. err:
  7075. return 0;
  7076. }
  7077. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7078. {
  7079. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7080. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7081. }
  7082. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7083. {
  7084. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7085. }
  7086. #else /* !CONFG_FAIR_GROUP_SCHED */
  7087. static inline void free_fair_sched_group(struct task_group *tg)
  7088. {
  7089. }
  7090. static inline
  7091. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7092. {
  7093. return 1;
  7094. }
  7095. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7096. {
  7097. }
  7098. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7099. {
  7100. }
  7101. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7102. #ifdef CONFIG_RT_GROUP_SCHED
  7103. static void free_rt_sched_group(struct task_group *tg)
  7104. {
  7105. int i;
  7106. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7107. for_each_possible_cpu(i) {
  7108. if (tg->rt_rq)
  7109. kfree(tg->rt_rq[i]);
  7110. if (tg->rt_se)
  7111. kfree(tg->rt_se[i]);
  7112. }
  7113. kfree(tg->rt_rq);
  7114. kfree(tg->rt_se);
  7115. }
  7116. static
  7117. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7118. {
  7119. struct rt_rq *rt_rq;
  7120. struct sched_rt_entity *rt_se, *parent_se;
  7121. struct rq *rq;
  7122. int i;
  7123. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7124. if (!tg->rt_rq)
  7125. goto err;
  7126. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7127. if (!tg->rt_se)
  7128. goto err;
  7129. init_rt_bandwidth(&tg->rt_bandwidth,
  7130. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7131. for_each_possible_cpu(i) {
  7132. rq = cpu_rq(i);
  7133. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7134. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7135. if (!rt_rq)
  7136. goto err;
  7137. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7138. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7139. if (!rt_se)
  7140. goto err;
  7141. parent_se = parent ? parent->rt_se[i] : NULL;
  7142. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7143. }
  7144. return 1;
  7145. err:
  7146. return 0;
  7147. }
  7148. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7149. {
  7150. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7151. &cpu_rq(cpu)->leaf_rt_rq_list);
  7152. }
  7153. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7154. {
  7155. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7156. }
  7157. #else /* !CONFIG_RT_GROUP_SCHED */
  7158. static inline void free_rt_sched_group(struct task_group *tg)
  7159. {
  7160. }
  7161. static inline
  7162. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7163. {
  7164. return 1;
  7165. }
  7166. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7167. {
  7168. }
  7169. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7170. {
  7171. }
  7172. #endif /* CONFIG_RT_GROUP_SCHED */
  7173. #ifdef CONFIG_GROUP_SCHED
  7174. static void free_sched_group(struct task_group *tg)
  7175. {
  7176. free_fair_sched_group(tg);
  7177. free_rt_sched_group(tg);
  7178. kfree(tg);
  7179. }
  7180. /* allocate runqueue etc for a new task group */
  7181. struct task_group *sched_create_group(struct task_group *parent)
  7182. {
  7183. struct task_group *tg;
  7184. unsigned long flags;
  7185. int i;
  7186. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7187. if (!tg)
  7188. return ERR_PTR(-ENOMEM);
  7189. if (!alloc_fair_sched_group(tg, parent))
  7190. goto err;
  7191. if (!alloc_rt_sched_group(tg, parent))
  7192. goto err;
  7193. spin_lock_irqsave(&task_group_lock, flags);
  7194. for_each_possible_cpu(i) {
  7195. register_fair_sched_group(tg, i);
  7196. register_rt_sched_group(tg, i);
  7197. }
  7198. list_add_rcu(&tg->list, &task_groups);
  7199. WARN_ON(!parent); /* root should already exist */
  7200. tg->parent = parent;
  7201. list_add_rcu(&tg->siblings, &parent->children);
  7202. INIT_LIST_HEAD(&tg->children);
  7203. spin_unlock_irqrestore(&task_group_lock, flags);
  7204. return tg;
  7205. err:
  7206. free_sched_group(tg);
  7207. return ERR_PTR(-ENOMEM);
  7208. }
  7209. /* rcu callback to free various structures associated with a task group */
  7210. static void free_sched_group_rcu(struct rcu_head *rhp)
  7211. {
  7212. /* now it should be safe to free those cfs_rqs */
  7213. free_sched_group(container_of(rhp, struct task_group, rcu));
  7214. }
  7215. /* Destroy runqueue etc associated with a task group */
  7216. void sched_destroy_group(struct task_group *tg)
  7217. {
  7218. unsigned long flags;
  7219. int i;
  7220. spin_lock_irqsave(&task_group_lock, flags);
  7221. for_each_possible_cpu(i) {
  7222. unregister_fair_sched_group(tg, i);
  7223. unregister_rt_sched_group(tg, i);
  7224. }
  7225. list_del_rcu(&tg->list);
  7226. list_del_rcu(&tg->siblings);
  7227. spin_unlock_irqrestore(&task_group_lock, flags);
  7228. /* wait for possible concurrent references to cfs_rqs complete */
  7229. call_rcu(&tg->rcu, free_sched_group_rcu);
  7230. }
  7231. /* change task's runqueue when it moves between groups.
  7232. * The caller of this function should have put the task in its new group
  7233. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7234. * reflect its new group.
  7235. */
  7236. void sched_move_task(struct task_struct *tsk)
  7237. {
  7238. int on_rq, running;
  7239. unsigned long flags;
  7240. struct rq *rq;
  7241. rq = task_rq_lock(tsk, &flags);
  7242. update_rq_clock(rq);
  7243. running = task_current(rq, tsk);
  7244. on_rq = tsk->se.on_rq;
  7245. if (on_rq)
  7246. dequeue_task(rq, tsk, 0);
  7247. if (unlikely(running))
  7248. tsk->sched_class->put_prev_task(rq, tsk);
  7249. set_task_rq(tsk, task_cpu(tsk));
  7250. #ifdef CONFIG_FAIR_GROUP_SCHED
  7251. if (tsk->sched_class->moved_group)
  7252. tsk->sched_class->moved_group(tsk);
  7253. #endif
  7254. if (unlikely(running))
  7255. tsk->sched_class->set_curr_task(rq);
  7256. if (on_rq)
  7257. enqueue_task(rq, tsk, 0);
  7258. task_rq_unlock(rq, &flags);
  7259. }
  7260. #endif /* CONFIG_GROUP_SCHED */
  7261. #ifdef CONFIG_FAIR_GROUP_SCHED
  7262. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7263. {
  7264. struct cfs_rq *cfs_rq = se->cfs_rq;
  7265. int on_rq;
  7266. on_rq = se->on_rq;
  7267. if (on_rq)
  7268. dequeue_entity(cfs_rq, se, 0);
  7269. se->load.weight = shares;
  7270. se->load.inv_weight = 0;
  7271. if (on_rq)
  7272. enqueue_entity(cfs_rq, se, 0);
  7273. }
  7274. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7275. {
  7276. struct cfs_rq *cfs_rq = se->cfs_rq;
  7277. struct rq *rq = cfs_rq->rq;
  7278. unsigned long flags;
  7279. spin_lock_irqsave(&rq->lock, flags);
  7280. __set_se_shares(se, shares);
  7281. spin_unlock_irqrestore(&rq->lock, flags);
  7282. }
  7283. static DEFINE_MUTEX(shares_mutex);
  7284. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7285. {
  7286. int i;
  7287. unsigned long flags;
  7288. /*
  7289. * We can't change the weight of the root cgroup.
  7290. */
  7291. if (!tg->se[0])
  7292. return -EINVAL;
  7293. if (shares < MIN_SHARES)
  7294. shares = MIN_SHARES;
  7295. else if (shares > MAX_SHARES)
  7296. shares = MAX_SHARES;
  7297. mutex_lock(&shares_mutex);
  7298. if (tg->shares == shares)
  7299. goto done;
  7300. spin_lock_irqsave(&task_group_lock, flags);
  7301. for_each_possible_cpu(i)
  7302. unregister_fair_sched_group(tg, i);
  7303. list_del_rcu(&tg->siblings);
  7304. spin_unlock_irqrestore(&task_group_lock, flags);
  7305. /* wait for any ongoing reference to this group to finish */
  7306. synchronize_sched();
  7307. /*
  7308. * Now we are free to modify the group's share on each cpu
  7309. * w/o tripping rebalance_share or load_balance_fair.
  7310. */
  7311. tg->shares = shares;
  7312. for_each_possible_cpu(i) {
  7313. /*
  7314. * force a rebalance
  7315. */
  7316. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7317. set_se_shares(tg->se[i], shares);
  7318. }
  7319. /*
  7320. * Enable load balance activity on this group, by inserting it back on
  7321. * each cpu's rq->leaf_cfs_rq_list.
  7322. */
  7323. spin_lock_irqsave(&task_group_lock, flags);
  7324. for_each_possible_cpu(i)
  7325. register_fair_sched_group(tg, i);
  7326. list_add_rcu(&tg->siblings, &tg->parent->children);
  7327. spin_unlock_irqrestore(&task_group_lock, flags);
  7328. done:
  7329. mutex_unlock(&shares_mutex);
  7330. return 0;
  7331. }
  7332. unsigned long sched_group_shares(struct task_group *tg)
  7333. {
  7334. return tg->shares;
  7335. }
  7336. #endif
  7337. #ifdef CONFIG_RT_GROUP_SCHED
  7338. /*
  7339. * Ensure that the real time constraints are schedulable.
  7340. */
  7341. static DEFINE_MUTEX(rt_constraints_mutex);
  7342. static unsigned long to_ratio(u64 period, u64 runtime)
  7343. {
  7344. if (runtime == RUNTIME_INF)
  7345. return 1ULL << 16;
  7346. return div64_u64(runtime << 16, period);
  7347. }
  7348. #ifdef CONFIG_CGROUP_SCHED
  7349. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7350. {
  7351. struct task_group *tgi, *parent = tg->parent;
  7352. unsigned long total = 0;
  7353. if (!parent) {
  7354. if (global_rt_period() < period)
  7355. return 0;
  7356. return to_ratio(period, runtime) <
  7357. to_ratio(global_rt_period(), global_rt_runtime());
  7358. }
  7359. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7360. return 0;
  7361. rcu_read_lock();
  7362. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7363. if (tgi == tg)
  7364. continue;
  7365. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7366. tgi->rt_bandwidth.rt_runtime);
  7367. }
  7368. rcu_read_unlock();
  7369. return total + to_ratio(period, runtime) <=
  7370. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7371. parent->rt_bandwidth.rt_runtime);
  7372. }
  7373. #elif defined CONFIG_USER_SCHED
  7374. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7375. {
  7376. struct task_group *tgi;
  7377. unsigned long total = 0;
  7378. unsigned long global_ratio =
  7379. to_ratio(global_rt_period(), global_rt_runtime());
  7380. rcu_read_lock();
  7381. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7382. if (tgi == tg)
  7383. continue;
  7384. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7385. tgi->rt_bandwidth.rt_runtime);
  7386. }
  7387. rcu_read_unlock();
  7388. return total + to_ratio(period, runtime) < global_ratio;
  7389. }
  7390. #endif
  7391. /* Must be called with tasklist_lock held */
  7392. static inline int tg_has_rt_tasks(struct task_group *tg)
  7393. {
  7394. struct task_struct *g, *p;
  7395. do_each_thread(g, p) {
  7396. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7397. return 1;
  7398. } while_each_thread(g, p);
  7399. return 0;
  7400. }
  7401. static int tg_set_bandwidth(struct task_group *tg,
  7402. u64 rt_period, u64 rt_runtime)
  7403. {
  7404. int i, err = 0;
  7405. mutex_lock(&rt_constraints_mutex);
  7406. read_lock(&tasklist_lock);
  7407. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7408. err = -EBUSY;
  7409. goto unlock;
  7410. }
  7411. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7412. err = -EINVAL;
  7413. goto unlock;
  7414. }
  7415. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7416. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7417. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7418. for_each_possible_cpu(i) {
  7419. struct rt_rq *rt_rq = tg->rt_rq[i];
  7420. spin_lock(&rt_rq->rt_runtime_lock);
  7421. rt_rq->rt_runtime = rt_runtime;
  7422. spin_unlock(&rt_rq->rt_runtime_lock);
  7423. }
  7424. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7425. unlock:
  7426. read_unlock(&tasklist_lock);
  7427. mutex_unlock(&rt_constraints_mutex);
  7428. return err;
  7429. }
  7430. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7431. {
  7432. u64 rt_runtime, rt_period;
  7433. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7434. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7435. if (rt_runtime_us < 0)
  7436. rt_runtime = RUNTIME_INF;
  7437. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7438. }
  7439. long sched_group_rt_runtime(struct task_group *tg)
  7440. {
  7441. u64 rt_runtime_us;
  7442. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7443. return -1;
  7444. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7445. do_div(rt_runtime_us, NSEC_PER_USEC);
  7446. return rt_runtime_us;
  7447. }
  7448. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7449. {
  7450. u64 rt_runtime, rt_period;
  7451. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7452. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7453. if (rt_period == 0)
  7454. return -EINVAL;
  7455. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7456. }
  7457. long sched_group_rt_period(struct task_group *tg)
  7458. {
  7459. u64 rt_period_us;
  7460. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7461. do_div(rt_period_us, NSEC_PER_USEC);
  7462. return rt_period_us;
  7463. }
  7464. static int sched_rt_global_constraints(void)
  7465. {
  7466. struct task_group *tg = &root_task_group;
  7467. u64 rt_runtime, rt_period;
  7468. int ret = 0;
  7469. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7470. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7471. mutex_lock(&rt_constraints_mutex);
  7472. if (!__rt_schedulable(tg, rt_period, rt_runtime))
  7473. ret = -EINVAL;
  7474. mutex_unlock(&rt_constraints_mutex);
  7475. return ret;
  7476. }
  7477. #else /* !CONFIG_RT_GROUP_SCHED */
  7478. static int sched_rt_global_constraints(void)
  7479. {
  7480. unsigned long flags;
  7481. int i;
  7482. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7483. for_each_possible_cpu(i) {
  7484. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7485. spin_lock(&rt_rq->rt_runtime_lock);
  7486. rt_rq->rt_runtime = global_rt_runtime();
  7487. spin_unlock(&rt_rq->rt_runtime_lock);
  7488. }
  7489. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7490. return 0;
  7491. }
  7492. #endif /* CONFIG_RT_GROUP_SCHED */
  7493. int sched_rt_handler(struct ctl_table *table, int write,
  7494. struct file *filp, void __user *buffer, size_t *lenp,
  7495. loff_t *ppos)
  7496. {
  7497. int ret;
  7498. int old_period, old_runtime;
  7499. static DEFINE_MUTEX(mutex);
  7500. mutex_lock(&mutex);
  7501. old_period = sysctl_sched_rt_period;
  7502. old_runtime = sysctl_sched_rt_runtime;
  7503. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7504. if (!ret && write) {
  7505. ret = sched_rt_global_constraints();
  7506. if (ret) {
  7507. sysctl_sched_rt_period = old_period;
  7508. sysctl_sched_rt_runtime = old_runtime;
  7509. } else {
  7510. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7511. def_rt_bandwidth.rt_period =
  7512. ns_to_ktime(global_rt_period());
  7513. }
  7514. }
  7515. mutex_unlock(&mutex);
  7516. return ret;
  7517. }
  7518. #ifdef CONFIG_CGROUP_SCHED
  7519. /* return corresponding task_group object of a cgroup */
  7520. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7521. {
  7522. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7523. struct task_group, css);
  7524. }
  7525. static struct cgroup_subsys_state *
  7526. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7527. {
  7528. struct task_group *tg, *parent;
  7529. if (!cgrp->parent) {
  7530. /* This is early initialization for the top cgroup */
  7531. init_task_group.css.cgroup = cgrp;
  7532. return &init_task_group.css;
  7533. }
  7534. parent = cgroup_tg(cgrp->parent);
  7535. tg = sched_create_group(parent);
  7536. if (IS_ERR(tg))
  7537. return ERR_PTR(-ENOMEM);
  7538. /* Bind the cgroup to task_group object we just created */
  7539. tg->css.cgroup = cgrp;
  7540. return &tg->css;
  7541. }
  7542. static void
  7543. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7544. {
  7545. struct task_group *tg = cgroup_tg(cgrp);
  7546. sched_destroy_group(tg);
  7547. }
  7548. static int
  7549. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7550. struct task_struct *tsk)
  7551. {
  7552. #ifdef CONFIG_RT_GROUP_SCHED
  7553. /* Don't accept realtime tasks when there is no way for them to run */
  7554. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7555. return -EINVAL;
  7556. #else
  7557. /* We don't support RT-tasks being in separate groups */
  7558. if (tsk->sched_class != &fair_sched_class)
  7559. return -EINVAL;
  7560. #endif
  7561. return 0;
  7562. }
  7563. static void
  7564. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7565. struct cgroup *old_cont, struct task_struct *tsk)
  7566. {
  7567. sched_move_task(tsk);
  7568. }
  7569. #ifdef CONFIG_FAIR_GROUP_SCHED
  7570. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7571. u64 shareval)
  7572. {
  7573. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7574. }
  7575. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7576. {
  7577. struct task_group *tg = cgroup_tg(cgrp);
  7578. return (u64) tg->shares;
  7579. }
  7580. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7581. #ifdef CONFIG_RT_GROUP_SCHED
  7582. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7583. s64 val)
  7584. {
  7585. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7586. }
  7587. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7588. {
  7589. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7590. }
  7591. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7592. u64 rt_period_us)
  7593. {
  7594. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7595. }
  7596. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7597. {
  7598. return sched_group_rt_period(cgroup_tg(cgrp));
  7599. }
  7600. #endif /* CONFIG_RT_GROUP_SCHED */
  7601. static struct cftype cpu_files[] = {
  7602. #ifdef CONFIG_FAIR_GROUP_SCHED
  7603. {
  7604. .name = "shares",
  7605. .read_u64 = cpu_shares_read_u64,
  7606. .write_u64 = cpu_shares_write_u64,
  7607. },
  7608. #endif
  7609. #ifdef CONFIG_RT_GROUP_SCHED
  7610. {
  7611. .name = "rt_runtime_us",
  7612. .read_s64 = cpu_rt_runtime_read,
  7613. .write_s64 = cpu_rt_runtime_write,
  7614. },
  7615. {
  7616. .name = "rt_period_us",
  7617. .read_u64 = cpu_rt_period_read_uint,
  7618. .write_u64 = cpu_rt_period_write_uint,
  7619. },
  7620. #endif
  7621. };
  7622. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7623. {
  7624. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7625. }
  7626. struct cgroup_subsys cpu_cgroup_subsys = {
  7627. .name = "cpu",
  7628. .create = cpu_cgroup_create,
  7629. .destroy = cpu_cgroup_destroy,
  7630. .can_attach = cpu_cgroup_can_attach,
  7631. .attach = cpu_cgroup_attach,
  7632. .populate = cpu_cgroup_populate,
  7633. .subsys_id = cpu_cgroup_subsys_id,
  7634. .early_init = 1,
  7635. };
  7636. #endif /* CONFIG_CGROUP_SCHED */
  7637. #ifdef CONFIG_CGROUP_CPUACCT
  7638. /*
  7639. * CPU accounting code for task groups.
  7640. *
  7641. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7642. * (balbir@in.ibm.com).
  7643. */
  7644. /* track cpu usage of a group of tasks */
  7645. struct cpuacct {
  7646. struct cgroup_subsys_state css;
  7647. /* cpuusage holds pointer to a u64-type object on every cpu */
  7648. u64 *cpuusage;
  7649. };
  7650. struct cgroup_subsys cpuacct_subsys;
  7651. /* return cpu accounting group corresponding to this container */
  7652. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7653. {
  7654. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7655. struct cpuacct, css);
  7656. }
  7657. /* return cpu accounting group to which this task belongs */
  7658. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7659. {
  7660. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7661. struct cpuacct, css);
  7662. }
  7663. /* create a new cpu accounting group */
  7664. static struct cgroup_subsys_state *cpuacct_create(
  7665. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7666. {
  7667. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7668. if (!ca)
  7669. return ERR_PTR(-ENOMEM);
  7670. ca->cpuusage = alloc_percpu(u64);
  7671. if (!ca->cpuusage) {
  7672. kfree(ca);
  7673. return ERR_PTR(-ENOMEM);
  7674. }
  7675. return &ca->css;
  7676. }
  7677. /* destroy an existing cpu accounting group */
  7678. static void
  7679. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7680. {
  7681. struct cpuacct *ca = cgroup_ca(cgrp);
  7682. free_percpu(ca->cpuusage);
  7683. kfree(ca);
  7684. }
  7685. /* return total cpu usage (in nanoseconds) of a group */
  7686. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7687. {
  7688. struct cpuacct *ca = cgroup_ca(cgrp);
  7689. u64 totalcpuusage = 0;
  7690. int i;
  7691. for_each_possible_cpu(i) {
  7692. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7693. /*
  7694. * Take rq->lock to make 64-bit addition safe on 32-bit
  7695. * platforms.
  7696. */
  7697. spin_lock_irq(&cpu_rq(i)->lock);
  7698. totalcpuusage += *cpuusage;
  7699. spin_unlock_irq(&cpu_rq(i)->lock);
  7700. }
  7701. return totalcpuusage;
  7702. }
  7703. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7704. u64 reset)
  7705. {
  7706. struct cpuacct *ca = cgroup_ca(cgrp);
  7707. int err = 0;
  7708. int i;
  7709. if (reset) {
  7710. err = -EINVAL;
  7711. goto out;
  7712. }
  7713. for_each_possible_cpu(i) {
  7714. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7715. spin_lock_irq(&cpu_rq(i)->lock);
  7716. *cpuusage = 0;
  7717. spin_unlock_irq(&cpu_rq(i)->lock);
  7718. }
  7719. out:
  7720. return err;
  7721. }
  7722. static struct cftype files[] = {
  7723. {
  7724. .name = "usage",
  7725. .read_u64 = cpuusage_read,
  7726. .write_u64 = cpuusage_write,
  7727. },
  7728. };
  7729. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7730. {
  7731. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7732. }
  7733. /*
  7734. * charge this task's execution time to its accounting group.
  7735. *
  7736. * called with rq->lock held.
  7737. */
  7738. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7739. {
  7740. struct cpuacct *ca;
  7741. if (!cpuacct_subsys.active)
  7742. return;
  7743. ca = task_ca(tsk);
  7744. if (ca) {
  7745. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7746. *cpuusage += cputime;
  7747. }
  7748. }
  7749. struct cgroup_subsys cpuacct_subsys = {
  7750. .name = "cpuacct",
  7751. .create = cpuacct_create,
  7752. .destroy = cpuacct_destroy,
  7753. .populate = cpuacct_populate,
  7754. .subsys_id = cpuacct_subsys_id,
  7755. };
  7756. #endif /* CONFIG_CGROUP_CPUACCT */