ctree.c 103 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. #include "print-tree.h"
  23. #include "locking.h"
  24. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  25. *root, struct btrfs_path *path, int level);
  26. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct btrfs_key *ins_key,
  28. struct btrfs_path *path, int data_size, int extend);
  29. static int push_node_left(struct btrfs_trans_handle *trans,
  30. struct btrfs_root *root, struct extent_buffer *dst,
  31. struct extent_buffer *src, int empty);
  32. static int balance_node_right(struct btrfs_trans_handle *trans,
  33. struct btrfs_root *root,
  34. struct extent_buffer *dst_buf,
  35. struct extent_buffer *src_buf);
  36. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  37. struct btrfs_path *path, int level, int slot);
  38. inline void btrfs_init_path(struct btrfs_path *p)
  39. {
  40. memset(p, 0, sizeof(*p));
  41. }
  42. struct btrfs_path *btrfs_alloc_path(void)
  43. {
  44. struct btrfs_path *path;
  45. path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
  46. if (path) {
  47. btrfs_init_path(path);
  48. path->reada = 1;
  49. }
  50. return path;
  51. }
  52. /* this also releases the path */
  53. void btrfs_free_path(struct btrfs_path *p)
  54. {
  55. btrfs_release_path(NULL, p);
  56. kmem_cache_free(btrfs_path_cachep, p);
  57. }
  58. /*
  59. * path release drops references on the extent buffers in the path
  60. * and it drops any locks held by this path
  61. *
  62. * It is safe to call this on paths that no locks or extent buffers held.
  63. */
  64. void noinline btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  65. {
  66. int i;
  67. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  68. p->slots[i] = 0;
  69. if (!p->nodes[i])
  70. continue;
  71. if (p->locks[i]) {
  72. btrfs_tree_unlock(p->nodes[i]);
  73. p->locks[i] = 0;
  74. }
  75. free_extent_buffer(p->nodes[i]);
  76. p->nodes[i] = NULL;
  77. }
  78. }
  79. /*
  80. * safely gets a reference on the root node of a tree. A lock
  81. * is not taken, so a concurrent writer may put a different node
  82. * at the root of the tree. See btrfs_lock_root_node for the
  83. * looping required.
  84. *
  85. * The extent buffer returned by this has a reference taken, so
  86. * it won't disappear. It may stop being the root of the tree
  87. * at any time because there are no locks held.
  88. */
  89. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  90. {
  91. struct extent_buffer *eb;
  92. spin_lock(&root->node_lock);
  93. eb = root->node;
  94. extent_buffer_get(eb);
  95. spin_unlock(&root->node_lock);
  96. return eb;
  97. }
  98. /* loop around taking references on and locking the root node of the
  99. * tree until you end up with a lock on the root. A locked buffer
  100. * is returned, with a reference held.
  101. */
  102. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  103. {
  104. struct extent_buffer *eb;
  105. while(1) {
  106. eb = btrfs_root_node(root);
  107. btrfs_tree_lock(eb);
  108. spin_lock(&root->node_lock);
  109. if (eb == root->node) {
  110. spin_unlock(&root->node_lock);
  111. break;
  112. }
  113. spin_unlock(&root->node_lock);
  114. btrfs_tree_unlock(eb);
  115. free_extent_buffer(eb);
  116. }
  117. return eb;
  118. }
  119. /* cowonly root (everything not a reference counted cow subvolume), just get
  120. * put onto a simple dirty list. transaction.c walks this to make sure they
  121. * get properly updated on disk.
  122. */
  123. static void add_root_to_dirty_list(struct btrfs_root *root)
  124. {
  125. if (root->track_dirty && list_empty(&root->dirty_list)) {
  126. list_add(&root->dirty_list,
  127. &root->fs_info->dirty_cowonly_roots);
  128. }
  129. }
  130. /*
  131. * used by snapshot creation to make a copy of a root for a tree with
  132. * a given objectid. The buffer with the new root node is returned in
  133. * cow_ret, and this func returns zero on success or a negative error code.
  134. */
  135. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  136. struct btrfs_root *root,
  137. struct extent_buffer *buf,
  138. struct extent_buffer **cow_ret, u64 new_root_objectid)
  139. {
  140. struct extent_buffer *cow;
  141. u32 nritems;
  142. int ret = 0;
  143. int level;
  144. struct btrfs_root *new_root;
  145. new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
  146. if (!new_root)
  147. return -ENOMEM;
  148. memcpy(new_root, root, sizeof(*new_root));
  149. new_root->root_key.objectid = new_root_objectid;
  150. WARN_ON(root->ref_cows && trans->transid !=
  151. root->fs_info->running_transaction->transid);
  152. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  153. level = btrfs_header_level(buf);
  154. nritems = btrfs_header_nritems(buf);
  155. cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
  156. new_root_objectid, trans->transid,
  157. level, buf->start, 0);
  158. if (IS_ERR(cow)) {
  159. kfree(new_root);
  160. return PTR_ERR(cow);
  161. }
  162. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  163. btrfs_set_header_bytenr(cow, cow->start);
  164. btrfs_set_header_generation(cow, trans->transid);
  165. btrfs_set_header_owner(cow, new_root_objectid);
  166. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  167. write_extent_buffer(cow, root->fs_info->fsid,
  168. (unsigned long)btrfs_header_fsid(cow),
  169. BTRFS_FSID_SIZE);
  170. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  171. ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
  172. kfree(new_root);
  173. if (ret)
  174. return ret;
  175. btrfs_mark_buffer_dirty(cow);
  176. *cow_ret = cow;
  177. return 0;
  178. }
  179. /*
  180. * does the dirty work in cow of a single block. The parent block
  181. * (if supplied) is updated to point to the new cow copy. The new
  182. * buffer is marked dirty and returned locked. If you modify the block
  183. * it needs to be marked dirty again.
  184. *
  185. * search_start -- an allocation hint for the new block
  186. *
  187. * empty_size -- a hint that you plan on doing more cow. This is the size in bytes
  188. * the allocator should try to find free next to the block it returns. This is
  189. * just a hint and may be ignored by the allocator.
  190. *
  191. * prealloc_dest -- if you have already reserved a destination for the cow,
  192. * this uses that block instead of allocating a new one. btrfs_alloc_reserved_extent
  193. * is used to finish the allocation.
  194. */
  195. static int noinline __btrfs_cow_block(struct btrfs_trans_handle *trans,
  196. struct btrfs_root *root,
  197. struct extent_buffer *buf,
  198. struct extent_buffer *parent, int parent_slot,
  199. struct extent_buffer **cow_ret,
  200. u64 search_start, u64 empty_size,
  201. u64 prealloc_dest)
  202. {
  203. u64 parent_start;
  204. struct extent_buffer *cow;
  205. u32 nritems;
  206. int ret = 0;
  207. int level;
  208. int unlock_orig = 0;
  209. if (*cow_ret == buf)
  210. unlock_orig = 1;
  211. WARN_ON(!btrfs_tree_locked(buf));
  212. if (parent)
  213. parent_start = parent->start;
  214. else
  215. parent_start = 0;
  216. WARN_ON(root->ref_cows && trans->transid !=
  217. root->fs_info->running_transaction->transid);
  218. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  219. level = btrfs_header_level(buf);
  220. nritems = btrfs_header_nritems(buf);
  221. if (prealloc_dest) {
  222. struct btrfs_key ins;
  223. ins.objectid = prealloc_dest;
  224. ins.offset = buf->len;
  225. ins.type = BTRFS_EXTENT_ITEM_KEY;
  226. ret = btrfs_alloc_reserved_extent(trans, root, parent_start,
  227. root->root_key.objectid,
  228. trans->transid, level, &ins);
  229. BUG_ON(ret);
  230. cow = btrfs_init_new_buffer(trans, root, prealloc_dest,
  231. buf->len);
  232. } else {
  233. cow = btrfs_alloc_free_block(trans, root, buf->len,
  234. parent_start,
  235. root->root_key.objectid,
  236. trans->transid, level,
  237. search_start, empty_size);
  238. }
  239. if (IS_ERR(cow))
  240. return PTR_ERR(cow);
  241. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  242. btrfs_set_header_bytenr(cow, cow->start);
  243. btrfs_set_header_generation(cow, trans->transid);
  244. btrfs_set_header_owner(cow, root->root_key.objectid);
  245. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  246. write_extent_buffer(cow, root->fs_info->fsid,
  247. (unsigned long)btrfs_header_fsid(cow),
  248. BTRFS_FSID_SIZE);
  249. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  250. if (btrfs_header_generation(buf) != trans->transid) {
  251. u32 nr_extents;
  252. ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
  253. if (ret)
  254. return ret;
  255. ret = btrfs_cache_ref(trans, root, buf, nr_extents);
  256. WARN_ON(ret);
  257. } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
  258. /*
  259. * There are only two places that can drop reference to
  260. * tree blocks owned by living reloc trees, one is here,
  261. * the other place is btrfs_drop_subtree. In both places,
  262. * we check reference count while tree block is locked.
  263. * Furthermore, if reference count is one, it won't get
  264. * increased by someone else.
  265. */
  266. u32 refs;
  267. ret = btrfs_lookup_extent_ref(trans, root, buf->start,
  268. buf->len, &refs);
  269. BUG_ON(ret);
  270. if (refs == 1) {
  271. ret = btrfs_update_ref(trans, root, buf, cow,
  272. 0, nritems);
  273. clean_tree_block(trans, root, buf);
  274. } else {
  275. ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
  276. }
  277. BUG_ON(ret);
  278. } else {
  279. ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
  280. if (ret)
  281. return ret;
  282. clean_tree_block(trans, root, buf);
  283. }
  284. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  285. ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
  286. WARN_ON(ret);
  287. }
  288. if (buf == root->node) {
  289. WARN_ON(parent && parent != buf);
  290. spin_lock(&root->node_lock);
  291. root->node = cow;
  292. extent_buffer_get(cow);
  293. spin_unlock(&root->node_lock);
  294. if (buf != root->commit_root) {
  295. btrfs_free_extent(trans, root, buf->start,
  296. buf->len, buf->start,
  297. root->root_key.objectid,
  298. btrfs_header_generation(buf),
  299. level, 1);
  300. }
  301. free_extent_buffer(buf);
  302. add_root_to_dirty_list(root);
  303. } else {
  304. btrfs_set_node_blockptr(parent, parent_slot,
  305. cow->start);
  306. WARN_ON(trans->transid == 0);
  307. btrfs_set_node_ptr_generation(parent, parent_slot,
  308. trans->transid);
  309. btrfs_mark_buffer_dirty(parent);
  310. WARN_ON(btrfs_header_generation(parent) != trans->transid);
  311. btrfs_free_extent(trans, root, buf->start, buf->len,
  312. parent_start, btrfs_header_owner(parent),
  313. btrfs_header_generation(parent), level, 1);
  314. }
  315. if (unlock_orig)
  316. btrfs_tree_unlock(buf);
  317. free_extent_buffer(buf);
  318. btrfs_mark_buffer_dirty(cow);
  319. *cow_ret = cow;
  320. return 0;
  321. }
  322. /*
  323. * cows a single block, see __btrfs_cow_block for the real work.
  324. * This version of it has extra checks so that a block isn't cow'd more than
  325. * once per transaction, as long as it hasn't been written yet
  326. */
  327. int noinline btrfs_cow_block(struct btrfs_trans_handle *trans,
  328. struct btrfs_root *root, struct extent_buffer *buf,
  329. struct extent_buffer *parent, int parent_slot,
  330. struct extent_buffer **cow_ret, u64 prealloc_dest)
  331. {
  332. u64 search_start;
  333. int ret;
  334. if (trans->transaction != root->fs_info->running_transaction) {
  335. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  336. root->fs_info->running_transaction->transid);
  337. WARN_ON(1);
  338. }
  339. if (trans->transid != root->fs_info->generation) {
  340. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  341. root->fs_info->generation);
  342. WARN_ON(1);
  343. }
  344. spin_lock(&root->fs_info->hash_lock);
  345. if (btrfs_header_generation(buf) == trans->transid &&
  346. btrfs_header_owner(buf) == root->root_key.objectid &&
  347. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
  348. *cow_ret = buf;
  349. spin_unlock(&root->fs_info->hash_lock);
  350. WARN_ON(prealloc_dest);
  351. return 0;
  352. }
  353. spin_unlock(&root->fs_info->hash_lock);
  354. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  355. ret = __btrfs_cow_block(trans, root, buf, parent,
  356. parent_slot, cow_ret, search_start, 0,
  357. prealloc_dest);
  358. return ret;
  359. }
  360. /*
  361. * helper function for defrag to decide if two blocks pointed to by a
  362. * node are actually close by
  363. */
  364. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  365. {
  366. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  367. return 1;
  368. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  369. return 1;
  370. return 0;
  371. }
  372. /*
  373. * compare two keys in a memcmp fashion
  374. */
  375. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  376. {
  377. struct btrfs_key k1;
  378. btrfs_disk_key_to_cpu(&k1, disk);
  379. if (k1.objectid > k2->objectid)
  380. return 1;
  381. if (k1.objectid < k2->objectid)
  382. return -1;
  383. if (k1.type > k2->type)
  384. return 1;
  385. if (k1.type < k2->type)
  386. return -1;
  387. if (k1.offset > k2->offset)
  388. return 1;
  389. if (k1.offset < k2->offset)
  390. return -1;
  391. return 0;
  392. }
  393. /*
  394. * same as comp_keys only with two btrfs_key's
  395. */
  396. static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  397. {
  398. if (k1->objectid > k2->objectid)
  399. return 1;
  400. if (k1->objectid < k2->objectid)
  401. return -1;
  402. if (k1->type > k2->type)
  403. return 1;
  404. if (k1->type < k2->type)
  405. return -1;
  406. if (k1->offset > k2->offset)
  407. return 1;
  408. if (k1->offset < k2->offset)
  409. return -1;
  410. return 0;
  411. }
  412. /*
  413. * this is used by the defrag code to go through all the
  414. * leaves pointed to by a node and reallocate them so that
  415. * disk order is close to key order
  416. */
  417. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  418. struct btrfs_root *root, struct extent_buffer *parent,
  419. int start_slot, int cache_only, u64 *last_ret,
  420. struct btrfs_key *progress)
  421. {
  422. struct extent_buffer *cur;
  423. u64 blocknr;
  424. u64 gen;
  425. u64 search_start = *last_ret;
  426. u64 last_block = 0;
  427. u64 other;
  428. u32 parent_nritems;
  429. int end_slot;
  430. int i;
  431. int err = 0;
  432. int parent_level;
  433. int uptodate;
  434. u32 blocksize;
  435. int progress_passed = 0;
  436. struct btrfs_disk_key disk_key;
  437. parent_level = btrfs_header_level(parent);
  438. if (cache_only && parent_level != 1)
  439. return 0;
  440. if (trans->transaction != root->fs_info->running_transaction) {
  441. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  442. root->fs_info->running_transaction->transid);
  443. WARN_ON(1);
  444. }
  445. if (trans->transid != root->fs_info->generation) {
  446. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  447. root->fs_info->generation);
  448. WARN_ON(1);
  449. }
  450. parent_nritems = btrfs_header_nritems(parent);
  451. blocksize = btrfs_level_size(root, parent_level - 1);
  452. end_slot = parent_nritems;
  453. if (parent_nritems == 1)
  454. return 0;
  455. for (i = start_slot; i < end_slot; i++) {
  456. int close = 1;
  457. if (!parent->map_token) {
  458. map_extent_buffer(parent,
  459. btrfs_node_key_ptr_offset(i),
  460. sizeof(struct btrfs_key_ptr),
  461. &parent->map_token, &parent->kaddr,
  462. &parent->map_start, &parent->map_len,
  463. KM_USER1);
  464. }
  465. btrfs_node_key(parent, &disk_key, i);
  466. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  467. continue;
  468. progress_passed = 1;
  469. blocknr = btrfs_node_blockptr(parent, i);
  470. gen = btrfs_node_ptr_generation(parent, i);
  471. if (last_block == 0)
  472. last_block = blocknr;
  473. if (i > 0) {
  474. other = btrfs_node_blockptr(parent, i - 1);
  475. close = close_blocks(blocknr, other, blocksize);
  476. }
  477. if (!close && i < end_slot - 2) {
  478. other = btrfs_node_blockptr(parent, i + 1);
  479. close = close_blocks(blocknr, other, blocksize);
  480. }
  481. if (close) {
  482. last_block = blocknr;
  483. continue;
  484. }
  485. if (parent->map_token) {
  486. unmap_extent_buffer(parent, parent->map_token,
  487. KM_USER1);
  488. parent->map_token = NULL;
  489. }
  490. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  491. if (cur)
  492. uptodate = btrfs_buffer_uptodate(cur, gen);
  493. else
  494. uptodate = 0;
  495. if (!cur || !uptodate) {
  496. if (cache_only) {
  497. free_extent_buffer(cur);
  498. continue;
  499. }
  500. if (!cur) {
  501. cur = read_tree_block(root, blocknr,
  502. blocksize, gen);
  503. } else if (!uptodate) {
  504. btrfs_read_buffer(cur, gen);
  505. }
  506. }
  507. if (search_start == 0)
  508. search_start = last_block;
  509. btrfs_tree_lock(cur);
  510. err = __btrfs_cow_block(trans, root, cur, parent, i,
  511. &cur, search_start,
  512. min(16 * blocksize,
  513. (end_slot - i) * blocksize), 0);
  514. if (err) {
  515. btrfs_tree_unlock(cur);
  516. free_extent_buffer(cur);
  517. break;
  518. }
  519. search_start = cur->start;
  520. last_block = cur->start;
  521. *last_ret = search_start;
  522. btrfs_tree_unlock(cur);
  523. free_extent_buffer(cur);
  524. }
  525. if (parent->map_token) {
  526. unmap_extent_buffer(parent, parent->map_token,
  527. KM_USER1);
  528. parent->map_token = NULL;
  529. }
  530. return err;
  531. }
  532. /*
  533. * The leaf data grows from end-to-front in the node.
  534. * this returns the address of the start of the last item,
  535. * which is the stop of the leaf data stack
  536. */
  537. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  538. struct extent_buffer *leaf)
  539. {
  540. u32 nr = btrfs_header_nritems(leaf);
  541. if (nr == 0)
  542. return BTRFS_LEAF_DATA_SIZE(root);
  543. return btrfs_item_offset_nr(leaf, nr - 1);
  544. }
  545. /*
  546. * extra debugging checks to make sure all the items in a key are
  547. * well formed and in the proper order
  548. */
  549. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  550. int level)
  551. {
  552. struct extent_buffer *parent = NULL;
  553. struct extent_buffer *node = path->nodes[level];
  554. struct btrfs_disk_key parent_key;
  555. struct btrfs_disk_key node_key;
  556. int parent_slot;
  557. int slot;
  558. struct btrfs_key cpukey;
  559. u32 nritems = btrfs_header_nritems(node);
  560. if (path->nodes[level + 1])
  561. parent = path->nodes[level + 1];
  562. slot = path->slots[level];
  563. BUG_ON(nritems == 0);
  564. if (parent) {
  565. parent_slot = path->slots[level + 1];
  566. btrfs_node_key(parent, &parent_key, parent_slot);
  567. btrfs_node_key(node, &node_key, 0);
  568. BUG_ON(memcmp(&parent_key, &node_key,
  569. sizeof(struct btrfs_disk_key)));
  570. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  571. btrfs_header_bytenr(node));
  572. }
  573. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  574. if (slot != 0) {
  575. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  576. btrfs_node_key(node, &node_key, slot);
  577. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  578. }
  579. if (slot < nritems - 1) {
  580. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  581. btrfs_node_key(node, &node_key, slot);
  582. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  583. }
  584. return 0;
  585. }
  586. /*
  587. * extra checking to make sure all the items in a leaf are
  588. * well formed and in the proper order
  589. */
  590. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  591. int level)
  592. {
  593. struct extent_buffer *leaf = path->nodes[level];
  594. struct extent_buffer *parent = NULL;
  595. int parent_slot;
  596. struct btrfs_key cpukey;
  597. struct btrfs_disk_key parent_key;
  598. struct btrfs_disk_key leaf_key;
  599. int slot = path->slots[0];
  600. u32 nritems = btrfs_header_nritems(leaf);
  601. if (path->nodes[level + 1])
  602. parent = path->nodes[level + 1];
  603. if (nritems == 0)
  604. return 0;
  605. if (parent) {
  606. parent_slot = path->slots[level + 1];
  607. btrfs_node_key(parent, &parent_key, parent_slot);
  608. btrfs_item_key(leaf, &leaf_key, 0);
  609. BUG_ON(memcmp(&parent_key, &leaf_key,
  610. sizeof(struct btrfs_disk_key)));
  611. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  612. btrfs_header_bytenr(leaf));
  613. }
  614. #if 0
  615. for (i = 0; nritems > 1 && i < nritems - 2; i++) {
  616. btrfs_item_key_to_cpu(leaf, &cpukey, i + 1);
  617. btrfs_item_key(leaf, &leaf_key, i);
  618. if (comp_keys(&leaf_key, &cpukey) >= 0) {
  619. btrfs_print_leaf(root, leaf);
  620. printk("slot %d offset bad key\n", i);
  621. BUG_ON(1);
  622. }
  623. if (btrfs_item_offset_nr(leaf, i) !=
  624. btrfs_item_end_nr(leaf, i + 1)) {
  625. btrfs_print_leaf(root, leaf);
  626. printk("slot %d offset bad\n", i);
  627. BUG_ON(1);
  628. }
  629. if (i == 0) {
  630. if (btrfs_item_offset_nr(leaf, i) +
  631. btrfs_item_size_nr(leaf, i) !=
  632. BTRFS_LEAF_DATA_SIZE(root)) {
  633. btrfs_print_leaf(root, leaf);
  634. printk("slot %d first offset bad\n", i);
  635. BUG_ON(1);
  636. }
  637. }
  638. }
  639. if (nritems > 0) {
  640. if (btrfs_item_size_nr(leaf, nritems - 1) > 4096) {
  641. btrfs_print_leaf(root, leaf);
  642. printk("slot %d bad size \n", nritems - 1);
  643. BUG_ON(1);
  644. }
  645. }
  646. #endif
  647. if (slot != 0 && slot < nritems - 1) {
  648. btrfs_item_key(leaf, &leaf_key, slot);
  649. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  650. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  651. btrfs_print_leaf(root, leaf);
  652. printk("slot %d offset bad key\n", slot);
  653. BUG_ON(1);
  654. }
  655. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  656. btrfs_item_end_nr(leaf, slot)) {
  657. btrfs_print_leaf(root, leaf);
  658. printk("slot %d offset bad\n", slot);
  659. BUG_ON(1);
  660. }
  661. }
  662. if (slot < nritems - 1) {
  663. btrfs_item_key(leaf, &leaf_key, slot);
  664. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  665. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  666. if (btrfs_item_offset_nr(leaf, slot) !=
  667. btrfs_item_end_nr(leaf, slot + 1)) {
  668. btrfs_print_leaf(root, leaf);
  669. printk("slot %d offset bad\n", slot);
  670. BUG_ON(1);
  671. }
  672. }
  673. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  674. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  675. return 0;
  676. }
  677. static int noinline check_block(struct btrfs_root *root,
  678. struct btrfs_path *path, int level)
  679. {
  680. u64 found_start;
  681. return 0;
  682. if (btrfs_header_level(path->nodes[level]) != level)
  683. printk("warning: bad level %Lu wanted %d found %d\n",
  684. path->nodes[level]->start, level,
  685. btrfs_header_level(path->nodes[level]));
  686. found_start = btrfs_header_bytenr(path->nodes[level]);
  687. if (found_start != path->nodes[level]->start) {
  688. printk("warning: bad bytentr %Lu found %Lu\n",
  689. path->nodes[level]->start, found_start);
  690. }
  691. #if 0
  692. struct extent_buffer *buf = path->nodes[level];
  693. if (memcmp_extent_buffer(buf, root->fs_info->fsid,
  694. (unsigned long)btrfs_header_fsid(buf),
  695. BTRFS_FSID_SIZE)) {
  696. printk("warning bad block %Lu\n", buf->start);
  697. return 1;
  698. }
  699. #endif
  700. if (level == 0)
  701. return check_leaf(root, path, level);
  702. return check_node(root, path, level);
  703. }
  704. /*
  705. * search for key in the extent_buffer. The items start at offset p,
  706. * and they are item_size apart. There are 'max' items in p.
  707. *
  708. * the slot in the array is returned via slot, and it points to
  709. * the place where you would insert key if it is not found in
  710. * the array.
  711. *
  712. * slot may point to max if the key is bigger than all of the keys
  713. */
  714. static noinline int generic_bin_search(struct extent_buffer *eb,
  715. unsigned long p,
  716. int item_size, struct btrfs_key *key,
  717. int max, int *slot)
  718. {
  719. int low = 0;
  720. int high = max;
  721. int mid;
  722. int ret;
  723. struct btrfs_disk_key *tmp = NULL;
  724. struct btrfs_disk_key unaligned;
  725. unsigned long offset;
  726. char *map_token = NULL;
  727. char *kaddr = NULL;
  728. unsigned long map_start = 0;
  729. unsigned long map_len = 0;
  730. int err;
  731. while(low < high) {
  732. mid = (low + high) / 2;
  733. offset = p + mid * item_size;
  734. if (!map_token || offset < map_start ||
  735. (offset + sizeof(struct btrfs_disk_key)) >
  736. map_start + map_len) {
  737. if (map_token) {
  738. unmap_extent_buffer(eb, map_token, KM_USER0);
  739. map_token = NULL;
  740. }
  741. err = map_private_extent_buffer(eb, offset,
  742. sizeof(struct btrfs_disk_key),
  743. &map_token, &kaddr,
  744. &map_start, &map_len, KM_USER0);
  745. if (!err) {
  746. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  747. map_start);
  748. } else {
  749. read_extent_buffer(eb, &unaligned,
  750. offset, sizeof(unaligned));
  751. tmp = &unaligned;
  752. }
  753. } else {
  754. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  755. map_start);
  756. }
  757. ret = comp_keys(tmp, key);
  758. if (ret < 0)
  759. low = mid + 1;
  760. else if (ret > 0)
  761. high = mid;
  762. else {
  763. *slot = mid;
  764. if (map_token)
  765. unmap_extent_buffer(eb, map_token, KM_USER0);
  766. return 0;
  767. }
  768. }
  769. *slot = low;
  770. if (map_token)
  771. unmap_extent_buffer(eb, map_token, KM_USER0);
  772. return 1;
  773. }
  774. /*
  775. * simple bin_search frontend that does the right thing for
  776. * leaves vs nodes
  777. */
  778. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  779. int level, int *slot)
  780. {
  781. if (level == 0) {
  782. return generic_bin_search(eb,
  783. offsetof(struct btrfs_leaf, items),
  784. sizeof(struct btrfs_item),
  785. key, btrfs_header_nritems(eb),
  786. slot);
  787. } else {
  788. return generic_bin_search(eb,
  789. offsetof(struct btrfs_node, ptrs),
  790. sizeof(struct btrfs_key_ptr),
  791. key, btrfs_header_nritems(eb),
  792. slot);
  793. }
  794. return -1;
  795. }
  796. /* given a node and slot number, this reads the blocks it points to. The
  797. * extent buffer is returned with a reference taken (but unlocked).
  798. * NULL is returned on error.
  799. */
  800. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  801. struct extent_buffer *parent, int slot)
  802. {
  803. int level = btrfs_header_level(parent);
  804. if (slot < 0)
  805. return NULL;
  806. if (slot >= btrfs_header_nritems(parent))
  807. return NULL;
  808. BUG_ON(level == 0);
  809. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  810. btrfs_level_size(root, level - 1),
  811. btrfs_node_ptr_generation(parent, slot));
  812. }
  813. /*
  814. * node level balancing, used to make sure nodes are in proper order for
  815. * item deletion. We balance from the top down, so we have to make sure
  816. * that a deletion won't leave an node completely empty later on.
  817. */
  818. static noinline int balance_level(struct btrfs_trans_handle *trans,
  819. struct btrfs_root *root,
  820. struct btrfs_path *path, int level)
  821. {
  822. struct extent_buffer *right = NULL;
  823. struct extent_buffer *mid;
  824. struct extent_buffer *left = NULL;
  825. struct extent_buffer *parent = NULL;
  826. int ret = 0;
  827. int wret;
  828. int pslot;
  829. int orig_slot = path->slots[level];
  830. int err_on_enospc = 0;
  831. u64 orig_ptr;
  832. if (level == 0)
  833. return 0;
  834. mid = path->nodes[level];
  835. WARN_ON(!path->locks[level]);
  836. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  837. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  838. if (level < BTRFS_MAX_LEVEL - 1)
  839. parent = path->nodes[level + 1];
  840. pslot = path->slots[level + 1];
  841. /*
  842. * deal with the case where there is only one pointer in the root
  843. * by promoting the node below to a root
  844. */
  845. if (!parent) {
  846. struct extent_buffer *child;
  847. if (btrfs_header_nritems(mid) != 1)
  848. return 0;
  849. /* promote the child to a root */
  850. child = read_node_slot(root, mid, 0);
  851. btrfs_tree_lock(child);
  852. BUG_ON(!child);
  853. ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 0);
  854. BUG_ON(ret);
  855. spin_lock(&root->node_lock);
  856. root->node = child;
  857. spin_unlock(&root->node_lock);
  858. ret = btrfs_update_extent_ref(trans, root, child->start,
  859. mid->start, child->start,
  860. root->root_key.objectid,
  861. trans->transid, level - 1);
  862. BUG_ON(ret);
  863. add_root_to_dirty_list(root);
  864. btrfs_tree_unlock(child);
  865. path->locks[level] = 0;
  866. path->nodes[level] = NULL;
  867. clean_tree_block(trans, root, mid);
  868. btrfs_tree_unlock(mid);
  869. /* once for the path */
  870. free_extent_buffer(mid);
  871. ret = btrfs_free_extent(trans, root, mid->start, mid->len,
  872. mid->start, root->root_key.objectid,
  873. btrfs_header_generation(mid),
  874. level, 1);
  875. /* once for the root ptr */
  876. free_extent_buffer(mid);
  877. return ret;
  878. }
  879. if (btrfs_header_nritems(mid) >
  880. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  881. return 0;
  882. if (btrfs_header_nritems(mid) < 2)
  883. err_on_enospc = 1;
  884. left = read_node_slot(root, parent, pslot - 1);
  885. if (left) {
  886. btrfs_tree_lock(left);
  887. wret = btrfs_cow_block(trans, root, left,
  888. parent, pslot - 1, &left, 0);
  889. if (wret) {
  890. ret = wret;
  891. goto enospc;
  892. }
  893. }
  894. right = read_node_slot(root, parent, pslot + 1);
  895. if (right) {
  896. btrfs_tree_lock(right);
  897. wret = btrfs_cow_block(trans, root, right,
  898. parent, pslot + 1, &right, 0);
  899. if (wret) {
  900. ret = wret;
  901. goto enospc;
  902. }
  903. }
  904. /* first, try to make some room in the middle buffer */
  905. if (left) {
  906. orig_slot += btrfs_header_nritems(left);
  907. wret = push_node_left(trans, root, left, mid, 1);
  908. if (wret < 0)
  909. ret = wret;
  910. if (btrfs_header_nritems(mid) < 2)
  911. err_on_enospc = 1;
  912. }
  913. /*
  914. * then try to empty the right most buffer into the middle
  915. */
  916. if (right) {
  917. wret = push_node_left(trans, root, mid, right, 1);
  918. if (wret < 0 && wret != -ENOSPC)
  919. ret = wret;
  920. if (btrfs_header_nritems(right) == 0) {
  921. u64 bytenr = right->start;
  922. u64 generation = btrfs_header_generation(parent);
  923. u32 blocksize = right->len;
  924. clean_tree_block(trans, root, right);
  925. btrfs_tree_unlock(right);
  926. free_extent_buffer(right);
  927. right = NULL;
  928. wret = del_ptr(trans, root, path, level + 1, pslot +
  929. 1);
  930. if (wret)
  931. ret = wret;
  932. wret = btrfs_free_extent(trans, root, bytenr,
  933. blocksize, parent->start,
  934. btrfs_header_owner(parent),
  935. generation, level, 1);
  936. if (wret)
  937. ret = wret;
  938. } else {
  939. struct btrfs_disk_key right_key;
  940. btrfs_node_key(right, &right_key, 0);
  941. btrfs_set_node_key(parent, &right_key, pslot + 1);
  942. btrfs_mark_buffer_dirty(parent);
  943. }
  944. }
  945. if (btrfs_header_nritems(mid) == 1) {
  946. /*
  947. * we're not allowed to leave a node with one item in the
  948. * tree during a delete. A deletion from lower in the tree
  949. * could try to delete the only pointer in this node.
  950. * So, pull some keys from the left.
  951. * There has to be a left pointer at this point because
  952. * otherwise we would have pulled some pointers from the
  953. * right
  954. */
  955. BUG_ON(!left);
  956. wret = balance_node_right(trans, root, mid, left);
  957. if (wret < 0) {
  958. ret = wret;
  959. goto enospc;
  960. }
  961. if (wret == 1) {
  962. wret = push_node_left(trans, root, left, mid, 1);
  963. if (wret < 0)
  964. ret = wret;
  965. }
  966. BUG_ON(wret == 1);
  967. }
  968. if (btrfs_header_nritems(mid) == 0) {
  969. /* we've managed to empty the middle node, drop it */
  970. u64 root_gen = btrfs_header_generation(parent);
  971. u64 bytenr = mid->start;
  972. u32 blocksize = mid->len;
  973. clean_tree_block(trans, root, mid);
  974. btrfs_tree_unlock(mid);
  975. free_extent_buffer(mid);
  976. mid = NULL;
  977. wret = del_ptr(trans, root, path, level + 1, pslot);
  978. if (wret)
  979. ret = wret;
  980. wret = btrfs_free_extent(trans, root, bytenr, blocksize,
  981. parent->start,
  982. btrfs_header_owner(parent),
  983. root_gen, level, 1);
  984. if (wret)
  985. ret = wret;
  986. } else {
  987. /* update the parent key to reflect our changes */
  988. struct btrfs_disk_key mid_key;
  989. btrfs_node_key(mid, &mid_key, 0);
  990. btrfs_set_node_key(parent, &mid_key, pslot);
  991. btrfs_mark_buffer_dirty(parent);
  992. }
  993. /* update the path */
  994. if (left) {
  995. if (btrfs_header_nritems(left) > orig_slot) {
  996. extent_buffer_get(left);
  997. /* left was locked after cow */
  998. path->nodes[level] = left;
  999. path->slots[level + 1] -= 1;
  1000. path->slots[level] = orig_slot;
  1001. if (mid) {
  1002. btrfs_tree_unlock(mid);
  1003. free_extent_buffer(mid);
  1004. }
  1005. } else {
  1006. orig_slot -= btrfs_header_nritems(left);
  1007. path->slots[level] = orig_slot;
  1008. }
  1009. }
  1010. /* double check we haven't messed things up */
  1011. check_block(root, path, level);
  1012. if (orig_ptr !=
  1013. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  1014. BUG();
  1015. enospc:
  1016. if (right) {
  1017. btrfs_tree_unlock(right);
  1018. free_extent_buffer(right);
  1019. }
  1020. if (left) {
  1021. if (path->nodes[level] != left)
  1022. btrfs_tree_unlock(left);
  1023. free_extent_buffer(left);
  1024. }
  1025. return ret;
  1026. }
  1027. /* Node balancing for insertion. Here we only split or push nodes around
  1028. * when they are completely full. This is also done top down, so we
  1029. * have to be pessimistic.
  1030. */
  1031. static int noinline push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1032. struct btrfs_root *root,
  1033. struct btrfs_path *path, int level)
  1034. {
  1035. struct extent_buffer *right = NULL;
  1036. struct extent_buffer *mid;
  1037. struct extent_buffer *left = NULL;
  1038. struct extent_buffer *parent = NULL;
  1039. int ret = 0;
  1040. int wret;
  1041. int pslot;
  1042. int orig_slot = path->slots[level];
  1043. u64 orig_ptr;
  1044. if (level == 0)
  1045. return 1;
  1046. mid = path->nodes[level];
  1047. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1048. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  1049. if (level < BTRFS_MAX_LEVEL - 1)
  1050. parent = path->nodes[level + 1];
  1051. pslot = path->slots[level + 1];
  1052. if (!parent)
  1053. return 1;
  1054. left = read_node_slot(root, parent, pslot - 1);
  1055. /* first, try to make some room in the middle buffer */
  1056. if (left) {
  1057. u32 left_nr;
  1058. btrfs_tree_lock(left);
  1059. left_nr = btrfs_header_nritems(left);
  1060. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1061. wret = 1;
  1062. } else {
  1063. ret = btrfs_cow_block(trans, root, left, parent,
  1064. pslot - 1, &left, 0);
  1065. if (ret)
  1066. wret = 1;
  1067. else {
  1068. wret = push_node_left(trans, root,
  1069. left, mid, 0);
  1070. }
  1071. }
  1072. if (wret < 0)
  1073. ret = wret;
  1074. if (wret == 0) {
  1075. struct btrfs_disk_key disk_key;
  1076. orig_slot += left_nr;
  1077. btrfs_node_key(mid, &disk_key, 0);
  1078. btrfs_set_node_key(parent, &disk_key, pslot);
  1079. btrfs_mark_buffer_dirty(parent);
  1080. if (btrfs_header_nritems(left) > orig_slot) {
  1081. path->nodes[level] = left;
  1082. path->slots[level + 1] -= 1;
  1083. path->slots[level] = orig_slot;
  1084. btrfs_tree_unlock(mid);
  1085. free_extent_buffer(mid);
  1086. } else {
  1087. orig_slot -=
  1088. btrfs_header_nritems(left);
  1089. path->slots[level] = orig_slot;
  1090. btrfs_tree_unlock(left);
  1091. free_extent_buffer(left);
  1092. }
  1093. return 0;
  1094. }
  1095. btrfs_tree_unlock(left);
  1096. free_extent_buffer(left);
  1097. }
  1098. right = read_node_slot(root, parent, pslot + 1);
  1099. /*
  1100. * then try to empty the right most buffer into the middle
  1101. */
  1102. if (right) {
  1103. u32 right_nr;
  1104. btrfs_tree_lock(right);
  1105. right_nr = btrfs_header_nritems(right);
  1106. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1107. wret = 1;
  1108. } else {
  1109. ret = btrfs_cow_block(trans, root, right,
  1110. parent, pslot + 1,
  1111. &right, 0);
  1112. if (ret)
  1113. wret = 1;
  1114. else {
  1115. wret = balance_node_right(trans, root,
  1116. right, mid);
  1117. }
  1118. }
  1119. if (wret < 0)
  1120. ret = wret;
  1121. if (wret == 0) {
  1122. struct btrfs_disk_key disk_key;
  1123. btrfs_node_key(right, &disk_key, 0);
  1124. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1125. btrfs_mark_buffer_dirty(parent);
  1126. if (btrfs_header_nritems(mid) <= orig_slot) {
  1127. path->nodes[level] = right;
  1128. path->slots[level + 1] += 1;
  1129. path->slots[level] = orig_slot -
  1130. btrfs_header_nritems(mid);
  1131. btrfs_tree_unlock(mid);
  1132. free_extent_buffer(mid);
  1133. } else {
  1134. btrfs_tree_unlock(right);
  1135. free_extent_buffer(right);
  1136. }
  1137. return 0;
  1138. }
  1139. btrfs_tree_unlock(right);
  1140. free_extent_buffer(right);
  1141. }
  1142. return 1;
  1143. }
  1144. /*
  1145. * readahead one full node of leaves, finding things that are close
  1146. * to the block in 'slot', and triggering ra on them.
  1147. */
  1148. static noinline void reada_for_search(struct btrfs_root *root,
  1149. struct btrfs_path *path,
  1150. int level, int slot, u64 objectid)
  1151. {
  1152. struct extent_buffer *node;
  1153. struct btrfs_disk_key disk_key;
  1154. u32 nritems;
  1155. u64 search;
  1156. u64 lowest_read;
  1157. u64 highest_read;
  1158. u64 nread = 0;
  1159. int direction = path->reada;
  1160. struct extent_buffer *eb;
  1161. u32 nr;
  1162. u32 blocksize;
  1163. u32 nscan = 0;
  1164. if (level != 1)
  1165. return;
  1166. if (!path->nodes[level])
  1167. return;
  1168. node = path->nodes[level];
  1169. search = btrfs_node_blockptr(node, slot);
  1170. blocksize = btrfs_level_size(root, level - 1);
  1171. eb = btrfs_find_tree_block(root, search, blocksize);
  1172. if (eb) {
  1173. free_extent_buffer(eb);
  1174. return;
  1175. }
  1176. highest_read = search;
  1177. lowest_read = search;
  1178. nritems = btrfs_header_nritems(node);
  1179. nr = slot;
  1180. while(1) {
  1181. if (direction < 0) {
  1182. if (nr == 0)
  1183. break;
  1184. nr--;
  1185. } else if (direction > 0) {
  1186. nr++;
  1187. if (nr >= nritems)
  1188. break;
  1189. }
  1190. if (path->reada < 0 && objectid) {
  1191. btrfs_node_key(node, &disk_key, nr);
  1192. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1193. break;
  1194. }
  1195. search = btrfs_node_blockptr(node, nr);
  1196. if ((search >= lowest_read && search <= highest_read) ||
  1197. (search < lowest_read && lowest_read - search <= 16384) ||
  1198. (search > highest_read && search - highest_read <= 16384)) {
  1199. readahead_tree_block(root, search, blocksize,
  1200. btrfs_node_ptr_generation(node, nr));
  1201. nread += blocksize;
  1202. }
  1203. nscan++;
  1204. if (path->reada < 2 && (nread > (64 * 1024) || nscan > 32))
  1205. break;
  1206. if(nread > (256 * 1024) || nscan > 128)
  1207. break;
  1208. if (search < lowest_read)
  1209. lowest_read = search;
  1210. if (search > highest_read)
  1211. highest_read = search;
  1212. }
  1213. }
  1214. /*
  1215. * when we walk down the tree, it is usually safe to unlock the higher layers in
  1216. * the tree. The exceptions are when our path goes through slot 0, because operations
  1217. * on the tree might require changing key pointers higher up in the tree.
  1218. *
  1219. * callers might also have set path->keep_locks, which tells this code to
  1220. * keep the lock if the path points to the last slot in the block. This is
  1221. * part of walking through the tree, and selecting the next slot in the higher
  1222. * block.
  1223. *
  1224. * lowest_unlock sets the lowest level in the tree we're allowed to unlock.
  1225. * so if lowest_unlock is 1, level 0 won't be unlocked
  1226. */
  1227. static noinline void unlock_up(struct btrfs_path *path, int level,
  1228. int lowest_unlock)
  1229. {
  1230. int i;
  1231. int skip_level = level;
  1232. int no_skips = 0;
  1233. struct extent_buffer *t;
  1234. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1235. if (!path->nodes[i])
  1236. break;
  1237. if (!path->locks[i])
  1238. break;
  1239. if (!no_skips && path->slots[i] == 0) {
  1240. skip_level = i + 1;
  1241. continue;
  1242. }
  1243. if (!no_skips && path->keep_locks) {
  1244. u32 nritems;
  1245. t = path->nodes[i];
  1246. nritems = btrfs_header_nritems(t);
  1247. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1248. skip_level = i + 1;
  1249. continue;
  1250. }
  1251. }
  1252. if (skip_level < i && i >= lowest_unlock)
  1253. no_skips = 1;
  1254. t = path->nodes[i];
  1255. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1256. btrfs_tree_unlock(t);
  1257. path->locks[i] = 0;
  1258. }
  1259. }
  1260. }
  1261. /*
  1262. * look for key in the tree. path is filled in with nodes along the way
  1263. * if key is found, we return zero and you can find the item in the leaf
  1264. * level of the path (level 0)
  1265. *
  1266. * If the key isn't found, the path points to the slot where it should
  1267. * be inserted, and 1 is returned. If there are other errors during the
  1268. * search a negative error number is returned.
  1269. *
  1270. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1271. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1272. * possible)
  1273. */
  1274. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1275. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1276. ins_len, int cow)
  1277. {
  1278. struct extent_buffer *b;
  1279. struct extent_buffer *tmp;
  1280. int slot;
  1281. int ret;
  1282. int level;
  1283. int should_reada = p->reada;
  1284. int lowest_unlock = 1;
  1285. int blocksize;
  1286. u8 lowest_level = 0;
  1287. u64 blocknr;
  1288. u64 gen;
  1289. struct btrfs_key prealloc_block;
  1290. lowest_level = p->lowest_level;
  1291. WARN_ON(lowest_level && ins_len > 0);
  1292. WARN_ON(p->nodes[0] != NULL);
  1293. if (ins_len < 0)
  1294. lowest_unlock = 2;
  1295. prealloc_block.objectid = 0;
  1296. again:
  1297. if (p->skip_locking)
  1298. b = btrfs_root_node(root);
  1299. else
  1300. b = btrfs_lock_root_node(root);
  1301. while (b) {
  1302. level = btrfs_header_level(b);
  1303. /*
  1304. * setup the path here so we can release it under lock
  1305. * contention with the cow code
  1306. */
  1307. p->nodes[level] = b;
  1308. if (!p->skip_locking)
  1309. p->locks[level] = 1;
  1310. if (cow) {
  1311. int wret;
  1312. /* is a cow on this block not required */
  1313. spin_lock(&root->fs_info->hash_lock);
  1314. if (btrfs_header_generation(b) == trans->transid &&
  1315. btrfs_header_owner(b) == root->root_key.objectid &&
  1316. !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
  1317. spin_unlock(&root->fs_info->hash_lock);
  1318. goto cow_done;
  1319. }
  1320. spin_unlock(&root->fs_info->hash_lock);
  1321. /* ok, we have to cow, is our old prealloc the right
  1322. * size?
  1323. */
  1324. if (prealloc_block.objectid &&
  1325. prealloc_block.offset != b->len) {
  1326. btrfs_free_reserved_extent(root,
  1327. prealloc_block.objectid,
  1328. prealloc_block.offset);
  1329. prealloc_block.objectid = 0;
  1330. }
  1331. /*
  1332. * for higher level blocks, try not to allocate blocks
  1333. * with the block and the parent locks held.
  1334. */
  1335. if (level > 1 && !prealloc_block.objectid &&
  1336. btrfs_path_lock_waiting(p, level)) {
  1337. u32 size = b->len;
  1338. u64 hint = b->start;
  1339. btrfs_release_path(root, p);
  1340. ret = btrfs_reserve_extent(trans, root,
  1341. size, size, 0,
  1342. hint, (u64)-1,
  1343. &prealloc_block, 0);
  1344. BUG_ON(ret);
  1345. goto again;
  1346. }
  1347. wret = btrfs_cow_block(trans, root, b,
  1348. p->nodes[level + 1],
  1349. p->slots[level + 1],
  1350. &b, prealloc_block.objectid);
  1351. prealloc_block.objectid = 0;
  1352. if (wret) {
  1353. free_extent_buffer(b);
  1354. ret = wret;
  1355. goto done;
  1356. }
  1357. }
  1358. cow_done:
  1359. BUG_ON(!cow && ins_len);
  1360. if (level != btrfs_header_level(b))
  1361. WARN_ON(1);
  1362. level = btrfs_header_level(b);
  1363. p->nodes[level] = b;
  1364. if (!p->skip_locking)
  1365. p->locks[level] = 1;
  1366. ret = check_block(root, p, level);
  1367. if (ret) {
  1368. ret = -1;
  1369. goto done;
  1370. }
  1371. ret = bin_search(b, key, level, &slot);
  1372. if (level != 0) {
  1373. if (ret && slot > 0)
  1374. slot -= 1;
  1375. p->slots[level] = slot;
  1376. if ((p->search_for_split || ins_len > 0) &&
  1377. btrfs_header_nritems(b) >=
  1378. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1379. int sret = split_node(trans, root, p, level);
  1380. BUG_ON(sret > 0);
  1381. if (sret) {
  1382. ret = sret;
  1383. goto done;
  1384. }
  1385. b = p->nodes[level];
  1386. slot = p->slots[level];
  1387. } else if (ins_len < 0) {
  1388. int sret = balance_level(trans, root, p,
  1389. level);
  1390. if (sret) {
  1391. ret = sret;
  1392. goto done;
  1393. }
  1394. b = p->nodes[level];
  1395. if (!b) {
  1396. btrfs_release_path(NULL, p);
  1397. goto again;
  1398. }
  1399. slot = p->slots[level];
  1400. BUG_ON(btrfs_header_nritems(b) == 1);
  1401. }
  1402. unlock_up(p, level, lowest_unlock);
  1403. /* this is only true while dropping a snapshot */
  1404. if (level == lowest_level) {
  1405. ret = 0;
  1406. goto done;
  1407. }
  1408. blocknr = btrfs_node_blockptr(b, slot);
  1409. gen = btrfs_node_ptr_generation(b, slot);
  1410. blocksize = btrfs_level_size(root, level - 1);
  1411. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1412. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1413. b = tmp;
  1414. } else {
  1415. /*
  1416. * reduce lock contention at high levels
  1417. * of the btree by dropping locks before
  1418. * we read.
  1419. */
  1420. if (level > 1) {
  1421. btrfs_release_path(NULL, p);
  1422. if (tmp)
  1423. free_extent_buffer(tmp);
  1424. if (should_reada)
  1425. reada_for_search(root, p,
  1426. level, slot,
  1427. key->objectid);
  1428. tmp = read_tree_block(root, blocknr,
  1429. blocksize, gen);
  1430. if (tmp)
  1431. free_extent_buffer(tmp);
  1432. goto again;
  1433. } else {
  1434. if (tmp)
  1435. free_extent_buffer(tmp);
  1436. if (should_reada)
  1437. reada_for_search(root, p,
  1438. level, slot,
  1439. key->objectid);
  1440. b = read_node_slot(root, b, slot);
  1441. }
  1442. }
  1443. if (!p->skip_locking)
  1444. btrfs_tree_lock(b);
  1445. } else {
  1446. p->slots[level] = slot;
  1447. if (ins_len > 0 && btrfs_leaf_free_space(root, b) <
  1448. sizeof(struct btrfs_item) + ins_len) {
  1449. int sret = split_leaf(trans, root, key,
  1450. p, ins_len, ret == 0);
  1451. BUG_ON(sret > 0);
  1452. if (sret) {
  1453. ret = sret;
  1454. goto done;
  1455. }
  1456. }
  1457. if (!p->search_for_split)
  1458. unlock_up(p, level, lowest_unlock);
  1459. goto done;
  1460. }
  1461. }
  1462. ret = 1;
  1463. done:
  1464. if (prealloc_block.objectid) {
  1465. btrfs_free_reserved_extent(root,
  1466. prealloc_block.objectid,
  1467. prealloc_block.offset);
  1468. }
  1469. return ret;
  1470. }
  1471. int btrfs_merge_path(struct btrfs_trans_handle *trans,
  1472. struct btrfs_root *root,
  1473. struct btrfs_key *node_keys,
  1474. u64 *nodes, int lowest_level)
  1475. {
  1476. struct extent_buffer *eb;
  1477. struct extent_buffer *parent;
  1478. struct btrfs_key key;
  1479. u64 bytenr;
  1480. u64 generation;
  1481. u32 blocksize;
  1482. int level;
  1483. int slot;
  1484. int key_match;
  1485. int ret;
  1486. eb = btrfs_lock_root_node(root);
  1487. ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb, 0);
  1488. BUG_ON(ret);
  1489. parent = eb;
  1490. while (1) {
  1491. level = btrfs_header_level(parent);
  1492. if (level == 0 || level <= lowest_level)
  1493. break;
  1494. ret = bin_search(parent, &node_keys[lowest_level], level,
  1495. &slot);
  1496. if (ret && slot > 0)
  1497. slot--;
  1498. bytenr = btrfs_node_blockptr(parent, slot);
  1499. if (nodes[level - 1] == bytenr)
  1500. break;
  1501. blocksize = btrfs_level_size(root, level - 1);
  1502. generation = btrfs_node_ptr_generation(parent, slot);
  1503. btrfs_node_key_to_cpu(eb, &key, slot);
  1504. key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
  1505. if (generation == trans->transid) {
  1506. eb = read_tree_block(root, bytenr, blocksize,
  1507. generation);
  1508. btrfs_tree_lock(eb);
  1509. }
  1510. /*
  1511. * if node keys match and node pointer hasn't been modified
  1512. * in the running transaction, we can merge the path. for
  1513. * blocks owened by reloc trees, the node pointer check is
  1514. * skipped, this is because these blocks are fully controlled
  1515. * by the space balance code, no one else can modify them.
  1516. */
  1517. if (!nodes[level - 1] || !key_match ||
  1518. (generation == trans->transid &&
  1519. btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
  1520. if (level == 1 || level == lowest_level + 1) {
  1521. if (generation == trans->transid) {
  1522. btrfs_tree_unlock(eb);
  1523. free_extent_buffer(eb);
  1524. }
  1525. break;
  1526. }
  1527. if (generation != trans->transid) {
  1528. eb = read_tree_block(root, bytenr, blocksize,
  1529. generation);
  1530. btrfs_tree_lock(eb);
  1531. }
  1532. ret = btrfs_cow_block(trans, root, eb, parent, slot,
  1533. &eb, 0);
  1534. BUG_ON(ret);
  1535. if (root->root_key.objectid ==
  1536. BTRFS_TREE_RELOC_OBJECTID) {
  1537. if (!nodes[level - 1]) {
  1538. nodes[level - 1] = eb->start;
  1539. memcpy(&node_keys[level - 1], &key,
  1540. sizeof(node_keys[0]));
  1541. } else {
  1542. WARN_ON(1);
  1543. }
  1544. }
  1545. btrfs_tree_unlock(parent);
  1546. free_extent_buffer(parent);
  1547. parent = eb;
  1548. continue;
  1549. }
  1550. btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
  1551. btrfs_set_node_ptr_generation(parent, slot, trans->transid);
  1552. btrfs_mark_buffer_dirty(parent);
  1553. ret = btrfs_inc_extent_ref(trans, root,
  1554. nodes[level - 1],
  1555. blocksize, parent->start,
  1556. btrfs_header_owner(parent),
  1557. btrfs_header_generation(parent),
  1558. level - 1);
  1559. BUG_ON(ret);
  1560. /*
  1561. * If the block was created in the running transaction,
  1562. * it's possible this is the last reference to it, so we
  1563. * should drop the subtree.
  1564. */
  1565. if (generation == trans->transid) {
  1566. ret = btrfs_drop_subtree(trans, root, eb, parent);
  1567. BUG_ON(ret);
  1568. btrfs_tree_unlock(eb);
  1569. free_extent_buffer(eb);
  1570. } else {
  1571. ret = btrfs_free_extent(trans, root, bytenr,
  1572. blocksize, parent->start,
  1573. btrfs_header_owner(parent),
  1574. btrfs_header_generation(parent),
  1575. level - 1, 1);
  1576. BUG_ON(ret);
  1577. }
  1578. break;
  1579. }
  1580. btrfs_tree_unlock(parent);
  1581. free_extent_buffer(parent);
  1582. return 0;
  1583. }
  1584. /*
  1585. * adjust the pointers going up the tree, starting at level
  1586. * making sure the right key of each node is points to 'key'.
  1587. * This is used after shifting pointers to the left, so it stops
  1588. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1589. * higher levels
  1590. *
  1591. * If this fails to write a tree block, it returns -1, but continues
  1592. * fixing up the blocks in ram so the tree is consistent.
  1593. */
  1594. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1595. struct btrfs_root *root, struct btrfs_path *path,
  1596. struct btrfs_disk_key *key, int level)
  1597. {
  1598. int i;
  1599. int ret = 0;
  1600. struct extent_buffer *t;
  1601. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1602. int tslot = path->slots[i];
  1603. if (!path->nodes[i])
  1604. break;
  1605. t = path->nodes[i];
  1606. btrfs_set_node_key(t, key, tslot);
  1607. btrfs_mark_buffer_dirty(path->nodes[i]);
  1608. if (tslot != 0)
  1609. break;
  1610. }
  1611. return ret;
  1612. }
  1613. /*
  1614. * update item key.
  1615. *
  1616. * This function isn't completely safe. It's the caller's responsibility
  1617. * that the new key won't break the order
  1618. */
  1619. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1620. struct btrfs_root *root, struct btrfs_path *path,
  1621. struct btrfs_key *new_key)
  1622. {
  1623. struct btrfs_disk_key disk_key;
  1624. struct extent_buffer *eb;
  1625. int slot;
  1626. eb = path->nodes[0];
  1627. slot = path->slots[0];
  1628. if (slot > 0) {
  1629. btrfs_item_key(eb, &disk_key, slot - 1);
  1630. if (comp_keys(&disk_key, new_key) >= 0)
  1631. return -1;
  1632. }
  1633. if (slot < btrfs_header_nritems(eb) - 1) {
  1634. btrfs_item_key(eb, &disk_key, slot + 1);
  1635. if (comp_keys(&disk_key, new_key) <= 0)
  1636. return -1;
  1637. }
  1638. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1639. btrfs_set_item_key(eb, &disk_key, slot);
  1640. btrfs_mark_buffer_dirty(eb);
  1641. if (slot == 0)
  1642. fixup_low_keys(trans, root, path, &disk_key, 1);
  1643. return 0;
  1644. }
  1645. /*
  1646. * try to push data from one node into the next node left in the
  1647. * tree.
  1648. *
  1649. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1650. * error, and > 0 if there was no room in the left hand block.
  1651. */
  1652. static int push_node_left(struct btrfs_trans_handle *trans,
  1653. struct btrfs_root *root, struct extent_buffer *dst,
  1654. struct extent_buffer *src, int empty)
  1655. {
  1656. int push_items = 0;
  1657. int src_nritems;
  1658. int dst_nritems;
  1659. int ret = 0;
  1660. src_nritems = btrfs_header_nritems(src);
  1661. dst_nritems = btrfs_header_nritems(dst);
  1662. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1663. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1664. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1665. if (!empty && src_nritems <= 8)
  1666. return 1;
  1667. if (push_items <= 0) {
  1668. return 1;
  1669. }
  1670. if (empty) {
  1671. push_items = min(src_nritems, push_items);
  1672. if (push_items < src_nritems) {
  1673. /* leave at least 8 pointers in the node if
  1674. * we aren't going to empty it
  1675. */
  1676. if (src_nritems - push_items < 8) {
  1677. if (push_items <= 8)
  1678. return 1;
  1679. push_items -= 8;
  1680. }
  1681. }
  1682. } else
  1683. push_items = min(src_nritems - 8, push_items);
  1684. copy_extent_buffer(dst, src,
  1685. btrfs_node_key_ptr_offset(dst_nritems),
  1686. btrfs_node_key_ptr_offset(0),
  1687. push_items * sizeof(struct btrfs_key_ptr));
  1688. if (push_items < src_nritems) {
  1689. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1690. btrfs_node_key_ptr_offset(push_items),
  1691. (src_nritems - push_items) *
  1692. sizeof(struct btrfs_key_ptr));
  1693. }
  1694. btrfs_set_header_nritems(src, src_nritems - push_items);
  1695. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1696. btrfs_mark_buffer_dirty(src);
  1697. btrfs_mark_buffer_dirty(dst);
  1698. ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
  1699. BUG_ON(ret);
  1700. return ret;
  1701. }
  1702. /*
  1703. * try to push data from one node into the next node right in the
  1704. * tree.
  1705. *
  1706. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1707. * error, and > 0 if there was no room in the right hand block.
  1708. *
  1709. * this will only push up to 1/2 the contents of the left node over
  1710. */
  1711. static int balance_node_right(struct btrfs_trans_handle *trans,
  1712. struct btrfs_root *root,
  1713. struct extent_buffer *dst,
  1714. struct extent_buffer *src)
  1715. {
  1716. int push_items = 0;
  1717. int max_push;
  1718. int src_nritems;
  1719. int dst_nritems;
  1720. int ret = 0;
  1721. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1722. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1723. src_nritems = btrfs_header_nritems(src);
  1724. dst_nritems = btrfs_header_nritems(dst);
  1725. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1726. if (push_items <= 0) {
  1727. return 1;
  1728. }
  1729. if (src_nritems < 4) {
  1730. return 1;
  1731. }
  1732. max_push = src_nritems / 2 + 1;
  1733. /* don't try to empty the node */
  1734. if (max_push >= src_nritems) {
  1735. return 1;
  1736. }
  1737. if (max_push < push_items)
  1738. push_items = max_push;
  1739. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1740. btrfs_node_key_ptr_offset(0),
  1741. (dst_nritems) *
  1742. sizeof(struct btrfs_key_ptr));
  1743. copy_extent_buffer(dst, src,
  1744. btrfs_node_key_ptr_offset(0),
  1745. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1746. push_items * sizeof(struct btrfs_key_ptr));
  1747. btrfs_set_header_nritems(src, src_nritems - push_items);
  1748. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1749. btrfs_mark_buffer_dirty(src);
  1750. btrfs_mark_buffer_dirty(dst);
  1751. ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
  1752. BUG_ON(ret);
  1753. return ret;
  1754. }
  1755. /*
  1756. * helper function to insert a new root level in the tree.
  1757. * A new node is allocated, and a single item is inserted to
  1758. * point to the existing root
  1759. *
  1760. * returns zero on success or < 0 on failure.
  1761. */
  1762. static int noinline insert_new_root(struct btrfs_trans_handle *trans,
  1763. struct btrfs_root *root,
  1764. struct btrfs_path *path, int level)
  1765. {
  1766. u64 lower_gen;
  1767. struct extent_buffer *lower;
  1768. struct extent_buffer *c;
  1769. struct extent_buffer *old;
  1770. struct btrfs_disk_key lower_key;
  1771. int ret;
  1772. BUG_ON(path->nodes[level]);
  1773. BUG_ON(path->nodes[level-1] != root->node);
  1774. lower = path->nodes[level-1];
  1775. if (level == 1)
  1776. btrfs_item_key(lower, &lower_key, 0);
  1777. else
  1778. btrfs_node_key(lower, &lower_key, 0);
  1779. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1780. root->root_key.objectid, trans->transid,
  1781. level, root->node->start, 0);
  1782. if (IS_ERR(c))
  1783. return PTR_ERR(c);
  1784. memset_extent_buffer(c, 0, 0, root->nodesize);
  1785. btrfs_set_header_nritems(c, 1);
  1786. btrfs_set_header_level(c, level);
  1787. btrfs_set_header_bytenr(c, c->start);
  1788. btrfs_set_header_generation(c, trans->transid);
  1789. btrfs_set_header_owner(c, root->root_key.objectid);
  1790. write_extent_buffer(c, root->fs_info->fsid,
  1791. (unsigned long)btrfs_header_fsid(c),
  1792. BTRFS_FSID_SIZE);
  1793. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1794. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1795. BTRFS_UUID_SIZE);
  1796. btrfs_set_node_key(c, &lower_key, 0);
  1797. btrfs_set_node_blockptr(c, 0, lower->start);
  1798. lower_gen = btrfs_header_generation(lower);
  1799. WARN_ON(lower_gen != trans->transid);
  1800. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1801. btrfs_mark_buffer_dirty(c);
  1802. spin_lock(&root->node_lock);
  1803. old = root->node;
  1804. root->node = c;
  1805. spin_unlock(&root->node_lock);
  1806. ret = btrfs_update_extent_ref(trans, root, lower->start,
  1807. lower->start, c->start,
  1808. root->root_key.objectid,
  1809. trans->transid, level - 1);
  1810. BUG_ON(ret);
  1811. /* the super has an extra ref to root->node */
  1812. free_extent_buffer(old);
  1813. add_root_to_dirty_list(root);
  1814. extent_buffer_get(c);
  1815. path->nodes[level] = c;
  1816. path->locks[level] = 1;
  1817. path->slots[level] = 0;
  1818. return 0;
  1819. }
  1820. /*
  1821. * worker function to insert a single pointer in a node.
  1822. * the node should have enough room for the pointer already
  1823. *
  1824. * slot and level indicate where you want the key to go, and
  1825. * blocknr is the block the key points to.
  1826. *
  1827. * returns zero on success and < 0 on any error
  1828. */
  1829. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1830. *root, struct btrfs_path *path, struct btrfs_disk_key
  1831. *key, u64 bytenr, int slot, int level)
  1832. {
  1833. struct extent_buffer *lower;
  1834. int nritems;
  1835. BUG_ON(!path->nodes[level]);
  1836. lower = path->nodes[level];
  1837. nritems = btrfs_header_nritems(lower);
  1838. if (slot > nritems)
  1839. BUG();
  1840. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1841. BUG();
  1842. if (slot != nritems) {
  1843. memmove_extent_buffer(lower,
  1844. btrfs_node_key_ptr_offset(slot + 1),
  1845. btrfs_node_key_ptr_offset(slot),
  1846. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1847. }
  1848. btrfs_set_node_key(lower, key, slot);
  1849. btrfs_set_node_blockptr(lower, slot, bytenr);
  1850. WARN_ON(trans->transid == 0);
  1851. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1852. btrfs_set_header_nritems(lower, nritems + 1);
  1853. btrfs_mark_buffer_dirty(lower);
  1854. return 0;
  1855. }
  1856. /*
  1857. * split the node at the specified level in path in two.
  1858. * The path is corrected to point to the appropriate node after the split
  1859. *
  1860. * Before splitting this tries to make some room in the node by pushing
  1861. * left and right, if either one works, it returns right away.
  1862. *
  1863. * returns 0 on success and < 0 on failure
  1864. */
  1865. static noinline int split_node(struct btrfs_trans_handle *trans,
  1866. struct btrfs_root *root,
  1867. struct btrfs_path *path, int level)
  1868. {
  1869. struct extent_buffer *c;
  1870. struct extent_buffer *split;
  1871. struct btrfs_disk_key disk_key;
  1872. int mid;
  1873. int ret;
  1874. int wret;
  1875. u32 c_nritems;
  1876. c = path->nodes[level];
  1877. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1878. if (c == root->node) {
  1879. /* trying to split the root, lets make a new one */
  1880. ret = insert_new_root(trans, root, path, level + 1);
  1881. if (ret)
  1882. return ret;
  1883. } else {
  1884. ret = push_nodes_for_insert(trans, root, path, level);
  1885. c = path->nodes[level];
  1886. if (!ret && btrfs_header_nritems(c) <
  1887. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1888. return 0;
  1889. if (ret < 0)
  1890. return ret;
  1891. }
  1892. c_nritems = btrfs_header_nritems(c);
  1893. split = btrfs_alloc_free_block(trans, root, root->nodesize,
  1894. path->nodes[level + 1]->start,
  1895. root->root_key.objectid,
  1896. trans->transid, level, c->start, 0);
  1897. if (IS_ERR(split))
  1898. return PTR_ERR(split);
  1899. btrfs_set_header_flags(split, btrfs_header_flags(c));
  1900. btrfs_set_header_level(split, btrfs_header_level(c));
  1901. btrfs_set_header_bytenr(split, split->start);
  1902. btrfs_set_header_generation(split, trans->transid);
  1903. btrfs_set_header_owner(split, root->root_key.objectid);
  1904. btrfs_set_header_flags(split, 0);
  1905. write_extent_buffer(split, root->fs_info->fsid,
  1906. (unsigned long)btrfs_header_fsid(split),
  1907. BTRFS_FSID_SIZE);
  1908. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1909. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1910. BTRFS_UUID_SIZE);
  1911. mid = (c_nritems + 1) / 2;
  1912. copy_extent_buffer(split, c,
  1913. btrfs_node_key_ptr_offset(0),
  1914. btrfs_node_key_ptr_offset(mid),
  1915. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1916. btrfs_set_header_nritems(split, c_nritems - mid);
  1917. btrfs_set_header_nritems(c, mid);
  1918. ret = 0;
  1919. btrfs_mark_buffer_dirty(c);
  1920. btrfs_mark_buffer_dirty(split);
  1921. btrfs_node_key(split, &disk_key, 0);
  1922. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1923. path->slots[level + 1] + 1,
  1924. level + 1);
  1925. if (wret)
  1926. ret = wret;
  1927. ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
  1928. BUG_ON(ret);
  1929. if (path->slots[level] >= mid) {
  1930. path->slots[level] -= mid;
  1931. btrfs_tree_unlock(c);
  1932. free_extent_buffer(c);
  1933. path->nodes[level] = split;
  1934. path->slots[level + 1] += 1;
  1935. } else {
  1936. btrfs_tree_unlock(split);
  1937. free_extent_buffer(split);
  1938. }
  1939. return ret;
  1940. }
  1941. /*
  1942. * how many bytes are required to store the items in a leaf. start
  1943. * and nr indicate which items in the leaf to check. This totals up the
  1944. * space used both by the item structs and the item data
  1945. */
  1946. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  1947. {
  1948. int data_len;
  1949. int nritems = btrfs_header_nritems(l);
  1950. int end = min(nritems, start + nr) - 1;
  1951. if (!nr)
  1952. return 0;
  1953. data_len = btrfs_item_end_nr(l, start);
  1954. data_len = data_len - btrfs_item_offset_nr(l, end);
  1955. data_len += sizeof(struct btrfs_item) * nr;
  1956. WARN_ON(data_len < 0);
  1957. return data_len;
  1958. }
  1959. /*
  1960. * The space between the end of the leaf items and
  1961. * the start of the leaf data. IOW, how much room
  1962. * the leaf has left for both items and data
  1963. */
  1964. int noinline btrfs_leaf_free_space(struct btrfs_root *root,
  1965. struct extent_buffer *leaf)
  1966. {
  1967. int nritems = btrfs_header_nritems(leaf);
  1968. int ret;
  1969. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  1970. if (ret < 0) {
  1971. printk("leaf free space ret %d, leaf data size %lu, used %d nritems %d\n",
  1972. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  1973. leaf_space_used(leaf, 0, nritems), nritems);
  1974. }
  1975. return ret;
  1976. }
  1977. /*
  1978. * push some data in the path leaf to the right, trying to free up at
  1979. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1980. *
  1981. * returns 1 if the push failed because the other node didn't have enough
  1982. * room, 0 if everything worked out and < 0 if there were major errors.
  1983. */
  1984. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  1985. *root, struct btrfs_path *path, int data_size,
  1986. int empty)
  1987. {
  1988. struct extent_buffer *left = path->nodes[0];
  1989. struct extent_buffer *right;
  1990. struct extent_buffer *upper;
  1991. struct btrfs_disk_key disk_key;
  1992. int slot;
  1993. u32 i;
  1994. int free_space;
  1995. int push_space = 0;
  1996. int push_items = 0;
  1997. struct btrfs_item *item;
  1998. u32 left_nritems;
  1999. u32 nr;
  2000. u32 right_nritems;
  2001. u32 data_end;
  2002. u32 this_item_size;
  2003. int ret;
  2004. slot = path->slots[1];
  2005. if (!path->nodes[1]) {
  2006. return 1;
  2007. }
  2008. upper = path->nodes[1];
  2009. if (slot >= btrfs_header_nritems(upper) - 1)
  2010. return 1;
  2011. WARN_ON(!btrfs_tree_locked(path->nodes[1]));
  2012. right = read_node_slot(root, upper, slot + 1);
  2013. btrfs_tree_lock(right);
  2014. free_space = btrfs_leaf_free_space(root, right);
  2015. if (free_space < data_size + sizeof(struct btrfs_item))
  2016. goto out_unlock;
  2017. /* cow and double check */
  2018. ret = btrfs_cow_block(trans, root, right, upper,
  2019. slot + 1, &right, 0);
  2020. if (ret)
  2021. goto out_unlock;
  2022. free_space = btrfs_leaf_free_space(root, right);
  2023. if (free_space < data_size + sizeof(struct btrfs_item))
  2024. goto out_unlock;
  2025. left_nritems = btrfs_header_nritems(left);
  2026. if (left_nritems == 0)
  2027. goto out_unlock;
  2028. if (empty)
  2029. nr = 0;
  2030. else
  2031. nr = 1;
  2032. if (path->slots[0] >= left_nritems)
  2033. push_space += data_size + sizeof(*item);
  2034. i = left_nritems - 1;
  2035. while (i >= nr) {
  2036. item = btrfs_item_nr(left, i);
  2037. if (!empty && push_items > 0) {
  2038. if (path->slots[0] > i)
  2039. break;
  2040. if (path->slots[0] == i) {
  2041. int space = btrfs_leaf_free_space(root, left);
  2042. if (space + push_space * 2 > free_space)
  2043. break;
  2044. }
  2045. }
  2046. if (path->slots[0] == i)
  2047. push_space += data_size + sizeof(*item);
  2048. if (!left->map_token) {
  2049. map_extent_buffer(left, (unsigned long)item,
  2050. sizeof(struct btrfs_item),
  2051. &left->map_token, &left->kaddr,
  2052. &left->map_start, &left->map_len,
  2053. KM_USER1);
  2054. }
  2055. this_item_size = btrfs_item_size(left, item);
  2056. if (this_item_size + sizeof(*item) + push_space > free_space)
  2057. break;
  2058. push_items++;
  2059. push_space += this_item_size + sizeof(*item);
  2060. if (i == 0)
  2061. break;
  2062. i--;
  2063. }
  2064. if (left->map_token) {
  2065. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2066. left->map_token = NULL;
  2067. }
  2068. if (push_items == 0)
  2069. goto out_unlock;
  2070. if (!empty && push_items == left_nritems)
  2071. WARN_ON(1);
  2072. /* push left to right */
  2073. right_nritems = btrfs_header_nritems(right);
  2074. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2075. push_space -= leaf_data_end(root, left);
  2076. /* make room in the right data area */
  2077. data_end = leaf_data_end(root, right);
  2078. memmove_extent_buffer(right,
  2079. btrfs_leaf_data(right) + data_end - push_space,
  2080. btrfs_leaf_data(right) + data_end,
  2081. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2082. /* copy from the left data area */
  2083. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2084. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2085. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2086. push_space);
  2087. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2088. btrfs_item_nr_offset(0),
  2089. right_nritems * sizeof(struct btrfs_item));
  2090. /* copy the items from left to right */
  2091. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2092. btrfs_item_nr_offset(left_nritems - push_items),
  2093. push_items * sizeof(struct btrfs_item));
  2094. /* update the item pointers */
  2095. right_nritems += push_items;
  2096. btrfs_set_header_nritems(right, right_nritems);
  2097. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2098. for (i = 0; i < right_nritems; i++) {
  2099. item = btrfs_item_nr(right, i);
  2100. if (!right->map_token) {
  2101. map_extent_buffer(right, (unsigned long)item,
  2102. sizeof(struct btrfs_item),
  2103. &right->map_token, &right->kaddr,
  2104. &right->map_start, &right->map_len,
  2105. KM_USER1);
  2106. }
  2107. push_space -= btrfs_item_size(right, item);
  2108. btrfs_set_item_offset(right, item, push_space);
  2109. }
  2110. if (right->map_token) {
  2111. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2112. right->map_token = NULL;
  2113. }
  2114. left_nritems -= push_items;
  2115. btrfs_set_header_nritems(left, left_nritems);
  2116. if (left_nritems)
  2117. btrfs_mark_buffer_dirty(left);
  2118. btrfs_mark_buffer_dirty(right);
  2119. ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
  2120. BUG_ON(ret);
  2121. btrfs_item_key(right, &disk_key, 0);
  2122. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2123. btrfs_mark_buffer_dirty(upper);
  2124. /* then fixup the leaf pointer in the path */
  2125. if (path->slots[0] >= left_nritems) {
  2126. path->slots[0] -= left_nritems;
  2127. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2128. clean_tree_block(trans, root, path->nodes[0]);
  2129. btrfs_tree_unlock(path->nodes[0]);
  2130. free_extent_buffer(path->nodes[0]);
  2131. path->nodes[0] = right;
  2132. path->slots[1] += 1;
  2133. } else {
  2134. btrfs_tree_unlock(right);
  2135. free_extent_buffer(right);
  2136. }
  2137. return 0;
  2138. out_unlock:
  2139. btrfs_tree_unlock(right);
  2140. free_extent_buffer(right);
  2141. return 1;
  2142. }
  2143. /*
  2144. * push some data in the path leaf to the left, trying to free up at
  2145. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2146. */
  2147. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2148. *root, struct btrfs_path *path, int data_size,
  2149. int empty)
  2150. {
  2151. struct btrfs_disk_key disk_key;
  2152. struct extent_buffer *right = path->nodes[0];
  2153. struct extent_buffer *left;
  2154. int slot;
  2155. int i;
  2156. int free_space;
  2157. int push_space = 0;
  2158. int push_items = 0;
  2159. struct btrfs_item *item;
  2160. u32 old_left_nritems;
  2161. u32 right_nritems;
  2162. u32 nr;
  2163. int ret = 0;
  2164. int wret;
  2165. u32 this_item_size;
  2166. u32 old_left_item_size;
  2167. slot = path->slots[1];
  2168. if (slot == 0)
  2169. return 1;
  2170. if (!path->nodes[1])
  2171. return 1;
  2172. right_nritems = btrfs_header_nritems(right);
  2173. if (right_nritems == 0) {
  2174. return 1;
  2175. }
  2176. WARN_ON(!btrfs_tree_locked(path->nodes[1]));
  2177. left = read_node_slot(root, path->nodes[1], slot - 1);
  2178. btrfs_tree_lock(left);
  2179. free_space = btrfs_leaf_free_space(root, left);
  2180. if (free_space < data_size + sizeof(struct btrfs_item)) {
  2181. ret = 1;
  2182. goto out;
  2183. }
  2184. /* cow and double check */
  2185. ret = btrfs_cow_block(trans, root, left,
  2186. path->nodes[1], slot - 1, &left, 0);
  2187. if (ret) {
  2188. /* we hit -ENOSPC, but it isn't fatal here */
  2189. ret = 1;
  2190. goto out;
  2191. }
  2192. free_space = btrfs_leaf_free_space(root, left);
  2193. if (free_space < data_size + sizeof(struct btrfs_item)) {
  2194. ret = 1;
  2195. goto out;
  2196. }
  2197. if (empty)
  2198. nr = right_nritems;
  2199. else
  2200. nr = right_nritems - 1;
  2201. for (i = 0; i < nr; i++) {
  2202. item = btrfs_item_nr(right, i);
  2203. if (!right->map_token) {
  2204. map_extent_buffer(right, (unsigned long)item,
  2205. sizeof(struct btrfs_item),
  2206. &right->map_token, &right->kaddr,
  2207. &right->map_start, &right->map_len,
  2208. KM_USER1);
  2209. }
  2210. if (!empty && push_items > 0) {
  2211. if (path->slots[0] < i)
  2212. break;
  2213. if (path->slots[0] == i) {
  2214. int space = btrfs_leaf_free_space(root, right);
  2215. if (space + push_space * 2 > free_space)
  2216. break;
  2217. }
  2218. }
  2219. if (path->slots[0] == i)
  2220. push_space += data_size + sizeof(*item);
  2221. this_item_size = btrfs_item_size(right, item);
  2222. if (this_item_size + sizeof(*item) + push_space > free_space)
  2223. break;
  2224. push_items++;
  2225. push_space += this_item_size + sizeof(*item);
  2226. }
  2227. if (right->map_token) {
  2228. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2229. right->map_token = NULL;
  2230. }
  2231. if (push_items == 0) {
  2232. ret = 1;
  2233. goto out;
  2234. }
  2235. if (!empty && push_items == btrfs_header_nritems(right))
  2236. WARN_ON(1);
  2237. /* push data from right to left */
  2238. copy_extent_buffer(left, right,
  2239. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2240. btrfs_item_nr_offset(0),
  2241. push_items * sizeof(struct btrfs_item));
  2242. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2243. btrfs_item_offset_nr(right, push_items -1);
  2244. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2245. leaf_data_end(root, left) - push_space,
  2246. btrfs_leaf_data(right) +
  2247. btrfs_item_offset_nr(right, push_items - 1),
  2248. push_space);
  2249. old_left_nritems = btrfs_header_nritems(left);
  2250. BUG_ON(old_left_nritems < 0);
  2251. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2252. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2253. u32 ioff;
  2254. item = btrfs_item_nr(left, i);
  2255. if (!left->map_token) {
  2256. map_extent_buffer(left, (unsigned long)item,
  2257. sizeof(struct btrfs_item),
  2258. &left->map_token, &left->kaddr,
  2259. &left->map_start, &left->map_len,
  2260. KM_USER1);
  2261. }
  2262. ioff = btrfs_item_offset(left, item);
  2263. btrfs_set_item_offset(left, item,
  2264. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2265. }
  2266. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2267. if (left->map_token) {
  2268. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2269. left->map_token = NULL;
  2270. }
  2271. /* fixup right node */
  2272. if (push_items > right_nritems) {
  2273. printk("push items %d nr %u\n", push_items, right_nritems);
  2274. WARN_ON(1);
  2275. }
  2276. if (push_items < right_nritems) {
  2277. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2278. leaf_data_end(root, right);
  2279. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2280. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2281. btrfs_leaf_data(right) +
  2282. leaf_data_end(root, right), push_space);
  2283. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2284. btrfs_item_nr_offset(push_items),
  2285. (btrfs_header_nritems(right) - push_items) *
  2286. sizeof(struct btrfs_item));
  2287. }
  2288. right_nritems -= push_items;
  2289. btrfs_set_header_nritems(right, right_nritems);
  2290. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2291. for (i = 0; i < right_nritems; i++) {
  2292. item = btrfs_item_nr(right, i);
  2293. if (!right->map_token) {
  2294. map_extent_buffer(right, (unsigned long)item,
  2295. sizeof(struct btrfs_item),
  2296. &right->map_token, &right->kaddr,
  2297. &right->map_start, &right->map_len,
  2298. KM_USER1);
  2299. }
  2300. push_space = push_space - btrfs_item_size(right, item);
  2301. btrfs_set_item_offset(right, item, push_space);
  2302. }
  2303. if (right->map_token) {
  2304. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2305. right->map_token = NULL;
  2306. }
  2307. btrfs_mark_buffer_dirty(left);
  2308. if (right_nritems)
  2309. btrfs_mark_buffer_dirty(right);
  2310. ret = btrfs_update_ref(trans, root, right, left,
  2311. old_left_nritems, push_items);
  2312. BUG_ON(ret);
  2313. btrfs_item_key(right, &disk_key, 0);
  2314. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2315. if (wret)
  2316. ret = wret;
  2317. /* then fixup the leaf pointer in the path */
  2318. if (path->slots[0] < push_items) {
  2319. path->slots[0] += old_left_nritems;
  2320. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2321. clean_tree_block(trans, root, path->nodes[0]);
  2322. btrfs_tree_unlock(path->nodes[0]);
  2323. free_extent_buffer(path->nodes[0]);
  2324. path->nodes[0] = left;
  2325. path->slots[1] -= 1;
  2326. } else {
  2327. btrfs_tree_unlock(left);
  2328. free_extent_buffer(left);
  2329. path->slots[0] -= push_items;
  2330. }
  2331. BUG_ON(path->slots[0] < 0);
  2332. return ret;
  2333. out:
  2334. btrfs_tree_unlock(left);
  2335. free_extent_buffer(left);
  2336. return ret;
  2337. }
  2338. /*
  2339. * split the path's leaf in two, making sure there is at least data_size
  2340. * available for the resulting leaf level of the path.
  2341. *
  2342. * returns 0 if all went well and < 0 on failure.
  2343. */
  2344. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2345. struct btrfs_root *root,
  2346. struct btrfs_key *ins_key,
  2347. struct btrfs_path *path, int data_size,
  2348. int extend)
  2349. {
  2350. struct extent_buffer *l;
  2351. u32 nritems;
  2352. int mid;
  2353. int slot;
  2354. struct extent_buffer *right;
  2355. int space_needed = data_size + sizeof(struct btrfs_item);
  2356. int data_copy_size;
  2357. int rt_data_off;
  2358. int i;
  2359. int ret = 0;
  2360. int wret;
  2361. int double_split;
  2362. int num_doubles = 0;
  2363. struct btrfs_disk_key disk_key;
  2364. if (extend && data_size)
  2365. space_needed = data_size;
  2366. /* first try to make some room by pushing left and right */
  2367. if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
  2368. wret = push_leaf_right(trans, root, path, data_size, 0);
  2369. if (wret < 0) {
  2370. return wret;
  2371. }
  2372. if (wret) {
  2373. wret = push_leaf_left(trans, root, path, data_size, 0);
  2374. if (wret < 0)
  2375. return wret;
  2376. }
  2377. l = path->nodes[0];
  2378. /* did the pushes work? */
  2379. if (btrfs_leaf_free_space(root, l) >= space_needed)
  2380. return 0;
  2381. }
  2382. if (!path->nodes[1]) {
  2383. ret = insert_new_root(trans, root, path, 1);
  2384. if (ret)
  2385. return ret;
  2386. }
  2387. again:
  2388. double_split = 0;
  2389. l = path->nodes[0];
  2390. slot = path->slots[0];
  2391. nritems = btrfs_header_nritems(l);
  2392. mid = (nritems + 1)/ 2;
  2393. right = btrfs_alloc_free_block(trans, root, root->leafsize,
  2394. path->nodes[1]->start,
  2395. root->root_key.objectid,
  2396. trans->transid, 0, l->start, 0);
  2397. if (IS_ERR(right)) {
  2398. BUG_ON(1);
  2399. return PTR_ERR(right);
  2400. }
  2401. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2402. btrfs_set_header_bytenr(right, right->start);
  2403. btrfs_set_header_generation(right, trans->transid);
  2404. btrfs_set_header_owner(right, root->root_key.objectid);
  2405. btrfs_set_header_level(right, 0);
  2406. write_extent_buffer(right, root->fs_info->fsid,
  2407. (unsigned long)btrfs_header_fsid(right),
  2408. BTRFS_FSID_SIZE);
  2409. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2410. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2411. BTRFS_UUID_SIZE);
  2412. if (mid <= slot) {
  2413. if (nritems == 1 ||
  2414. leaf_space_used(l, mid, nritems - mid) + space_needed >
  2415. BTRFS_LEAF_DATA_SIZE(root)) {
  2416. if (slot >= nritems) {
  2417. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2418. btrfs_set_header_nritems(right, 0);
  2419. wret = insert_ptr(trans, root, path,
  2420. &disk_key, right->start,
  2421. path->slots[1] + 1, 1);
  2422. if (wret)
  2423. ret = wret;
  2424. btrfs_tree_unlock(path->nodes[0]);
  2425. free_extent_buffer(path->nodes[0]);
  2426. path->nodes[0] = right;
  2427. path->slots[0] = 0;
  2428. path->slots[1] += 1;
  2429. btrfs_mark_buffer_dirty(right);
  2430. return ret;
  2431. }
  2432. mid = slot;
  2433. if (mid != nritems &&
  2434. leaf_space_used(l, mid, nritems - mid) +
  2435. space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
  2436. double_split = 1;
  2437. }
  2438. }
  2439. } else {
  2440. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  2441. BTRFS_LEAF_DATA_SIZE(root)) {
  2442. if (!extend && data_size && slot == 0) {
  2443. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2444. btrfs_set_header_nritems(right, 0);
  2445. wret = insert_ptr(trans, root, path,
  2446. &disk_key,
  2447. right->start,
  2448. path->slots[1], 1);
  2449. if (wret)
  2450. ret = wret;
  2451. btrfs_tree_unlock(path->nodes[0]);
  2452. free_extent_buffer(path->nodes[0]);
  2453. path->nodes[0] = right;
  2454. path->slots[0] = 0;
  2455. if (path->slots[1] == 0) {
  2456. wret = fixup_low_keys(trans, root,
  2457. path, &disk_key, 1);
  2458. if (wret)
  2459. ret = wret;
  2460. }
  2461. btrfs_mark_buffer_dirty(right);
  2462. return ret;
  2463. } else if ((extend || !data_size) && slot == 0) {
  2464. mid = 1;
  2465. } else {
  2466. mid = slot;
  2467. if (mid != nritems &&
  2468. leaf_space_used(l, mid, nritems - mid) +
  2469. space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
  2470. double_split = 1;
  2471. }
  2472. }
  2473. }
  2474. }
  2475. nritems = nritems - mid;
  2476. btrfs_set_header_nritems(right, nritems);
  2477. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2478. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2479. btrfs_item_nr_offset(mid),
  2480. nritems * sizeof(struct btrfs_item));
  2481. copy_extent_buffer(right, l,
  2482. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2483. data_copy_size, btrfs_leaf_data(l) +
  2484. leaf_data_end(root, l), data_copy_size);
  2485. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2486. btrfs_item_end_nr(l, mid);
  2487. for (i = 0; i < nritems; i++) {
  2488. struct btrfs_item *item = btrfs_item_nr(right, i);
  2489. u32 ioff;
  2490. if (!right->map_token) {
  2491. map_extent_buffer(right, (unsigned long)item,
  2492. sizeof(struct btrfs_item),
  2493. &right->map_token, &right->kaddr,
  2494. &right->map_start, &right->map_len,
  2495. KM_USER1);
  2496. }
  2497. ioff = btrfs_item_offset(right, item);
  2498. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2499. }
  2500. if (right->map_token) {
  2501. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2502. right->map_token = NULL;
  2503. }
  2504. btrfs_set_header_nritems(l, mid);
  2505. ret = 0;
  2506. btrfs_item_key(right, &disk_key, 0);
  2507. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2508. path->slots[1] + 1, 1);
  2509. if (wret)
  2510. ret = wret;
  2511. btrfs_mark_buffer_dirty(right);
  2512. btrfs_mark_buffer_dirty(l);
  2513. BUG_ON(path->slots[0] != slot);
  2514. ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
  2515. BUG_ON(ret);
  2516. if (mid <= slot) {
  2517. btrfs_tree_unlock(path->nodes[0]);
  2518. free_extent_buffer(path->nodes[0]);
  2519. path->nodes[0] = right;
  2520. path->slots[0] -= mid;
  2521. path->slots[1] += 1;
  2522. } else {
  2523. btrfs_tree_unlock(right);
  2524. free_extent_buffer(right);
  2525. }
  2526. BUG_ON(path->slots[0] < 0);
  2527. if (double_split) {
  2528. BUG_ON(num_doubles != 0);
  2529. num_doubles++;
  2530. goto again;
  2531. }
  2532. return ret;
  2533. }
  2534. /*
  2535. * This function splits a single item into two items,
  2536. * giving 'new_key' to the new item and splitting the
  2537. * old one at split_offset (from the start of the item).
  2538. *
  2539. * The path may be released by this operation. After
  2540. * the split, the path is pointing to the old item. The
  2541. * new item is going to be in the same node as the old one.
  2542. *
  2543. * Note, the item being split must be smaller enough to live alone on
  2544. * a tree block with room for one extra struct btrfs_item
  2545. *
  2546. * This allows us to split the item in place, keeping a lock on the
  2547. * leaf the entire time.
  2548. */
  2549. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2550. struct btrfs_root *root,
  2551. struct btrfs_path *path,
  2552. struct btrfs_key *new_key,
  2553. unsigned long split_offset)
  2554. {
  2555. u32 item_size;
  2556. struct extent_buffer *leaf;
  2557. struct btrfs_key orig_key;
  2558. struct btrfs_item *item;
  2559. struct btrfs_item *new_item;
  2560. int ret = 0;
  2561. int slot;
  2562. u32 nritems;
  2563. u32 orig_offset;
  2564. struct btrfs_disk_key disk_key;
  2565. char *buf;
  2566. leaf = path->nodes[0];
  2567. btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
  2568. if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
  2569. goto split;
  2570. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2571. btrfs_release_path(root, path);
  2572. path->search_for_split = 1;
  2573. path->keep_locks = 1;
  2574. ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
  2575. path->search_for_split = 0;
  2576. /* if our item isn't there or got smaller, return now */
  2577. if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
  2578. path->slots[0])) {
  2579. path->keep_locks = 0;
  2580. return -EAGAIN;
  2581. }
  2582. ret = split_leaf(trans, root, &orig_key, path, 0, 0);
  2583. path->keep_locks = 0;
  2584. BUG_ON(ret);
  2585. leaf = path->nodes[0];
  2586. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2587. split:
  2588. item = btrfs_item_nr(leaf, path->slots[0]);
  2589. orig_offset = btrfs_item_offset(leaf, item);
  2590. item_size = btrfs_item_size(leaf, item);
  2591. buf = kmalloc(item_size, GFP_NOFS);
  2592. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2593. path->slots[0]), item_size);
  2594. slot = path->slots[0] + 1;
  2595. leaf = path->nodes[0];
  2596. nritems = btrfs_header_nritems(leaf);
  2597. if (slot != nritems) {
  2598. /* shift the items */
  2599. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2600. btrfs_item_nr_offset(slot),
  2601. (nritems - slot) * sizeof(struct btrfs_item));
  2602. }
  2603. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2604. btrfs_set_item_key(leaf, &disk_key, slot);
  2605. new_item = btrfs_item_nr(leaf, slot);
  2606. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2607. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2608. btrfs_set_item_offset(leaf, item,
  2609. orig_offset + item_size - split_offset);
  2610. btrfs_set_item_size(leaf, item, split_offset);
  2611. btrfs_set_header_nritems(leaf, nritems + 1);
  2612. /* write the data for the start of the original item */
  2613. write_extent_buffer(leaf, buf,
  2614. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2615. split_offset);
  2616. /* write the data for the new item */
  2617. write_extent_buffer(leaf, buf + split_offset,
  2618. btrfs_item_ptr_offset(leaf, slot),
  2619. item_size - split_offset);
  2620. btrfs_mark_buffer_dirty(leaf);
  2621. ret = 0;
  2622. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2623. btrfs_print_leaf(root, leaf);
  2624. BUG();
  2625. }
  2626. kfree(buf);
  2627. return ret;
  2628. }
  2629. /*
  2630. * make the item pointed to by the path smaller. new_size indicates
  2631. * how small to make it, and from_end tells us if we just chop bytes
  2632. * off the end of the item or if we shift the item to chop bytes off
  2633. * the front.
  2634. */
  2635. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2636. struct btrfs_root *root,
  2637. struct btrfs_path *path,
  2638. u32 new_size, int from_end)
  2639. {
  2640. int ret = 0;
  2641. int slot;
  2642. int slot_orig;
  2643. struct extent_buffer *leaf;
  2644. struct btrfs_item *item;
  2645. u32 nritems;
  2646. unsigned int data_end;
  2647. unsigned int old_data_start;
  2648. unsigned int old_size;
  2649. unsigned int size_diff;
  2650. int i;
  2651. slot_orig = path->slots[0];
  2652. leaf = path->nodes[0];
  2653. slot = path->slots[0];
  2654. old_size = btrfs_item_size_nr(leaf, slot);
  2655. if (old_size == new_size)
  2656. return 0;
  2657. nritems = btrfs_header_nritems(leaf);
  2658. data_end = leaf_data_end(root, leaf);
  2659. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2660. size_diff = old_size - new_size;
  2661. BUG_ON(slot < 0);
  2662. BUG_ON(slot >= nritems);
  2663. /*
  2664. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2665. */
  2666. /* first correct the data pointers */
  2667. for (i = slot; i < nritems; i++) {
  2668. u32 ioff;
  2669. item = btrfs_item_nr(leaf, i);
  2670. if (!leaf->map_token) {
  2671. map_extent_buffer(leaf, (unsigned long)item,
  2672. sizeof(struct btrfs_item),
  2673. &leaf->map_token, &leaf->kaddr,
  2674. &leaf->map_start, &leaf->map_len,
  2675. KM_USER1);
  2676. }
  2677. ioff = btrfs_item_offset(leaf, item);
  2678. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2679. }
  2680. if (leaf->map_token) {
  2681. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2682. leaf->map_token = NULL;
  2683. }
  2684. /* shift the data */
  2685. if (from_end) {
  2686. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2687. data_end + size_diff, btrfs_leaf_data(leaf) +
  2688. data_end, old_data_start + new_size - data_end);
  2689. } else {
  2690. struct btrfs_disk_key disk_key;
  2691. u64 offset;
  2692. btrfs_item_key(leaf, &disk_key, slot);
  2693. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2694. unsigned long ptr;
  2695. struct btrfs_file_extent_item *fi;
  2696. fi = btrfs_item_ptr(leaf, slot,
  2697. struct btrfs_file_extent_item);
  2698. fi = (struct btrfs_file_extent_item *)(
  2699. (unsigned long)fi - size_diff);
  2700. if (btrfs_file_extent_type(leaf, fi) ==
  2701. BTRFS_FILE_EXTENT_INLINE) {
  2702. ptr = btrfs_item_ptr_offset(leaf, slot);
  2703. memmove_extent_buffer(leaf, ptr,
  2704. (unsigned long)fi,
  2705. offsetof(struct btrfs_file_extent_item,
  2706. disk_bytenr));
  2707. }
  2708. }
  2709. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2710. data_end + size_diff, btrfs_leaf_data(leaf) +
  2711. data_end, old_data_start - data_end);
  2712. offset = btrfs_disk_key_offset(&disk_key);
  2713. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2714. btrfs_set_item_key(leaf, &disk_key, slot);
  2715. if (slot == 0)
  2716. fixup_low_keys(trans, root, path, &disk_key, 1);
  2717. }
  2718. item = btrfs_item_nr(leaf, slot);
  2719. btrfs_set_item_size(leaf, item, new_size);
  2720. btrfs_mark_buffer_dirty(leaf);
  2721. ret = 0;
  2722. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2723. btrfs_print_leaf(root, leaf);
  2724. BUG();
  2725. }
  2726. return ret;
  2727. }
  2728. /*
  2729. * make the item pointed to by the path bigger, data_size is the new size.
  2730. */
  2731. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2732. struct btrfs_root *root, struct btrfs_path *path,
  2733. u32 data_size)
  2734. {
  2735. int ret = 0;
  2736. int slot;
  2737. int slot_orig;
  2738. struct extent_buffer *leaf;
  2739. struct btrfs_item *item;
  2740. u32 nritems;
  2741. unsigned int data_end;
  2742. unsigned int old_data;
  2743. unsigned int old_size;
  2744. int i;
  2745. slot_orig = path->slots[0];
  2746. leaf = path->nodes[0];
  2747. nritems = btrfs_header_nritems(leaf);
  2748. data_end = leaf_data_end(root, leaf);
  2749. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2750. btrfs_print_leaf(root, leaf);
  2751. BUG();
  2752. }
  2753. slot = path->slots[0];
  2754. old_data = btrfs_item_end_nr(leaf, slot);
  2755. BUG_ON(slot < 0);
  2756. if (slot >= nritems) {
  2757. btrfs_print_leaf(root, leaf);
  2758. printk("slot %d too large, nritems %d\n", slot, nritems);
  2759. BUG_ON(1);
  2760. }
  2761. /*
  2762. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2763. */
  2764. /* first correct the data pointers */
  2765. for (i = slot; i < nritems; i++) {
  2766. u32 ioff;
  2767. item = btrfs_item_nr(leaf, i);
  2768. if (!leaf->map_token) {
  2769. map_extent_buffer(leaf, (unsigned long)item,
  2770. sizeof(struct btrfs_item),
  2771. &leaf->map_token, &leaf->kaddr,
  2772. &leaf->map_start, &leaf->map_len,
  2773. KM_USER1);
  2774. }
  2775. ioff = btrfs_item_offset(leaf, item);
  2776. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2777. }
  2778. if (leaf->map_token) {
  2779. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2780. leaf->map_token = NULL;
  2781. }
  2782. /* shift the data */
  2783. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2784. data_end - data_size, btrfs_leaf_data(leaf) +
  2785. data_end, old_data - data_end);
  2786. data_end = old_data;
  2787. old_size = btrfs_item_size_nr(leaf, slot);
  2788. item = btrfs_item_nr(leaf, slot);
  2789. btrfs_set_item_size(leaf, item, old_size + data_size);
  2790. btrfs_mark_buffer_dirty(leaf);
  2791. ret = 0;
  2792. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2793. btrfs_print_leaf(root, leaf);
  2794. BUG();
  2795. }
  2796. return ret;
  2797. }
  2798. /*
  2799. * Given a key and some data, insert items into the tree.
  2800. * This does all the path init required, making room in the tree if needed.
  2801. * Returns the number of keys that were inserted.
  2802. */
  2803. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  2804. struct btrfs_root *root,
  2805. struct btrfs_path *path,
  2806. struct btrfs_key *cpu_key, u32 *data_size,
  2807. int nr)
  2808. {
  2809. struct extent_buffer *leaf;
  2810. struct btrfs_item *item;
  2811. int ret = 0;
  2812. int slot;
  2813. int i;
  2814. u32 nritems;
  2815. u32 total_data = 0;
  2816. u32 total_size = 0;
  2817. unsigned int data_end;
  2818. struct btrfs_disk_key disk_key;
  2819. struct btrfs_key found_key;
  2820. found_key.objectid = 0;
  2821. nr = min_t(int, nr, BTRFS_NODEPTRS_PER_BLOCK(root));
  2822. for (i = 0; i < nr; i++)
  2823. total_data += data_size[i];
  2824. total_data = min_t(u32, total_data, BTRFS_LEAF_DATA_SIZE(root));
  2825. total_size = total_data + (nr * sizeof(struct btrfs_item));
  2826. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  2827. if (ret == 0)
  2828. return -EEXIST;
  2829. if (ret < 0)
  2830. goto out;
  2831. leaf = path->nodes[0];
  2832. nritems = btrfs_header_nritems(leaf);
  2833. data_end = leaf_data_end(root, leaf);
  2834. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  2835. for (i = nr; i >= 0; i--) {
  2836. total_data -= data_size[i];
  2837. total_size -= data_size[i] + sizeof(struct btrfs_item);
  2838. if (total_size < btrfs_leaf_free_space(root, leaf))
  2839. break;
  2840. }
  2841. nr = i;
  2842. }
  2843. slot = path->slots[0];
  2844. BUG_ON(slot < 0);
  2845. if (slot != nritems) {
  2846. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  2847. item = btrfs_item_nr(leaf, slot);
  2848. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  2849. /* figure out how many keys we can insert in here */
  2850. total_data = data_size[0];
  2851. for (i = 1; i < nr; i++) {
  2852. if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  2853. break;
  2854. total_data += data_size[i];
  2855. }
  2856. nr = i;
  2857. if (old_data < data_end) {
  2858. btrfs_print_leaf(root, leaf);
  2859. printk("slot %d old_data %d data_end %d\n",
  2860. slot, old_data, data_end);
  2861. BUG_ON(1);
  2862. }
  2863. /*
  2864. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2865. */
  2866. /* first correct the data pointers */
  2867. WARN_ON(leaf->map_token);
  2868. for (i = slot; i < nritems; i++) {
  2869. u32 ioff;
  2870. item = btrfs_item_nr(leaf, i);
  2871. if (!leaf->map_token) {
  2872. map_extent_buffer(leaf, (unsigned long)item,
  2873. sizeof(struct btrfs_item),
  2874. &leaf->map_token, &leaf->kaddr,
  2875. &leaf->map_start, &leaf->map_len,
  2876. KM_USER1);
  2877. }
  2878. ioff = btrfs_item_offset(leaf, item);
  2879. btrfs_set_item_offset(leaf, item, ioff - total_data);
  2880. }
  2881. if (leaf->map_token) {
  2882. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2883. leaf->map_token = NULL;
  2884. }
  2885. /* shift the items */
  2886. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  2887. btrfs_item_nr_offset(slot),
  2888. (nritems - slot) * sizeof(struct btrfs_item));
  2889. /* shift the data */
  2890. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2891. data_end - total_data, btrfs_leaf_data(leaf) +
  2892. data_end, old_data - data_end);
  2893. data_end = old_data;
  2894. } else {
  2895. /*
  2896. * this sucks but it has to be done, if we are inserting at
  2897. * the end of the leaf only insert 1 of the items, since we
  2898. * have no way of knowing whats on the next leaf and we'd have
  2899. * to drop our current locks to figure it out
  2900. */
  2901. nr = 1;
  2902. }
  2903. /* setup the item for the new data */
  2904. for (i = 0; i < nr; i++) {
  2905. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  2906. btrfs_set_item_key(leaf, &disk_key, slot + i);
  2907. item = btrfs_item_nr(leaf, slot + i);
  2908. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  2909. data_end -= data_size[i];
  2910. btrfs_set_item_size(leaf, item, data_size[i]);
  2911. }
  2912. btrfs_set_header_nritems(leaf, nritems + nr);
  2913. btrfs_mark_buffer_dirty(leaf);
  2914. ret = 0;
  2915. if (slot == 0) {
  2916. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  2917. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2918. }
  2919. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2920. btrfs_print_leaf(root, leaf);
  2921. BUG();
  2922. }
  2923. out:
  2924. if (!ret)
  2925. ret = nr;
  2926. return ret;
  2927. }
  2928. /*
  2929. * Given a key and some data, insert items into the tree.
  2930. * This does all the path init required, making room in the tree if needed.
  2931. */
  2932. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  2933. struct btrfs_root *root,
  2934. struct btrfs_path *path,
  2935. struct btrfs_key *cpu_key, u32 *data_size,
  2936. int nr)
  2937. {
  2938. struct extent_buffer *leaf;
  2939. struct btrfs_item *item;
  2940. int ret = 0;
  2941. int slot;
  2942. int slot_orig;
  2943. int i;
  2944. u32 nritems;
  2945. u32 total_size = 0;
  2946. u32 total_data = 0;
  2947. unsigned int data_end;
  2948. struct btrfs_disk_key disk_key;
  2949. for (i = 0; i < nr; i++) {
  2950. total_data += data_size[i];
  2951. }
  2952. total_size = total_data + (nr * sizeof(struct btrfs_item));
  2953. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  2954. if (ret == 0)
  2955. return -EEXIST;
  2956. if (ret < 0)
  2957. goto out;
  2958. slot_orig = path->slots[0];
  2959. leaf = path->nodes[0];
  2960. nritems = btrfs_header_nritems(leaf);
  2961. data_end = leaf_data_end(root, leaf);
  2962. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  2963. btrfs_print_leaf(root, leaf);
  2964. printk("not enough freespace need %u have %d\n",
  2965. total_size, btrfs_leaf_free_space(root, leaf));
  2966. BUG();
  2967. }
  2968. slot = path->slots[0];
  2969. BUG_ON(slot < 0);
  2970. if (slot != nritems) {
  2971. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  2972. if (old_data < data_end) {
  2973. btrfs_print_leaf(root, leaf);
  2974. printk("slot %d old_data %d data_end %d\n",
  2975. slot, old_data, data_end);
  2976. BUG_ON(1);
  2977. }
  2978. /*
  2979. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2980. */
  2981. /* first correct the data pointers */
  2982. WARN_ON(leaf->map_token);
  2983. for (i = slot; i < nritems; i++) {
  2984. u32 ioff;
  2985. item = btrfs_item_nr(leaf, i);
  2986. if (!leaf->map_token) {
  2987. map_extent_buffer(leaf, (unsigned long)item,
  2988. sizeof(struct btrfs_item),
  2989. &leaf->map_token, &leaf->kaddr,
  2990. &leaf->map_start, &leaf->map_len,
  2991. KM_USER1);
  2992. }
  2993. ioff = btrfs_item_offset(leaf, item);
  2994. btrfs_set_item_offset(leaf, item, ioff - total_data);
  2995. }
  2996. if (leaf->map_token) {
  2997. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2998. leaf->map_token = NULL;
  2999. }
  3000. /* shift the items */
  3001. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3002. btrfs_item_nr_offset(slot),
  3003. (nritems - slot) * sizeof(struct btrfs_item));
  3004. /* shift the data */
  3005. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3006. data_end - total_data, btrfs_leaf_data(leaf) +
  3007. data_end, old_data - data_end);
  3008. data_end = old_data;
  3009. }
  3010. /* setup the item for the new data */
  3011. for (i = 0; i < nr; i++) {
  3012. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3013. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3014. item = btrfs_item_nr(leaf, slot + i);
  3015. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3016. data_end -= data_size[i];
  3017. btrfs_set_item_size(leaf, item, data_size[i]);
  3018. }
  3019. btrfs_set_header_nritems(leaf, nritems + nr);
  3020. btrfs_mark_buffer_dirty(leaf);
  3021. ret = 0;
  3022. if (slot == 0) {
  3023. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3024. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3025. }
  3026. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3027. btrfs_print_leaf(root, leaf);
  3028. BUG();
  3029. }
  3030. out:
  3031. return ret;
  3032. }
  3033. /*
  3034. * Given a key and some data, insert an item into the tree.
  3035. * This does all the path init required, making room in the tree if needed.
  3036. */
  3037. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3038. *root, struct btrfs_key *cpu_key, void *data, u32
  3039. data_size)
  3040. {
  3041. int ret = 0;
  3042. struct btrfs_path *path;
  3043. struct extent_buffer *leaf;
  3044. unsigned long ptr;
  3045. path = btrfs_alloc_path();
  3046. BUG_ON(!path);
  3047. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3048. if (!ret) {
  3049. leaf = path->nodes[0];
  3050. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3051. write_extent_buffer(leaf, data, ptr, data_size);
  3052. btrfs_mark_buffer_dirty(leaf);
  3053. }
  3054. btrfs_free_path(path);
  3055. return ret;
  3056. }
  3057. /*
  3058. * delete the pointer from a given node.
  3059. *
  3060. * the tree should have been previously balanced so the deletion does not
  3061. * empty a node.
  3062. */
  3063. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3064. struct btrfs_path *path, int level, int slot)
  3065. {
  3066. struct extent_buffer *parent = path->nodes[level];
  3067. u32 nritems;
  3068. int ret = 0;
  3069. int wret;
  3070. nritems = btrfs_header_nritems(parent);
  3071. if (slot != nritems -1) {
  3072. memmove_extent_buffer(parent,
  3073. btrfs_node_key_ptr_offset(slot),
  3074. btrfs_node_key_ptr_offset(slot + 1),
  3075. sizeof(struct btrfs_key_ptr) *
  3076. (nritems - slot - 1));
  3077. }
  3078. nritems--;
  3079. btrfs_set_header_nritems(parent, nritems);
  3080. if (nritems == 0 && parent == root->node) {
  3081. BUG_ON(btrfs_header_level(root->node) != 1);
  3082. /* just turn the root into a leaf and break */
  3083. btrfs_set_header_level(root->node, 0);
  3084. } else if (slot == 0) {
  3085. struct btrfs_disk_key disk_key;
  3086. btrfs_node_key(parent, &disk_key, 0);
  3087. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3088. if (wret)
  3089. ret = wret;
  3090. }
  3091. btrfs_mark_buffer_dirty(parent);
  3092. return ret;
  3093. }
  3094. /*
  3095. * a helper function to delete the leaf pointed to by path->slots[1] and
  3096. * path->nodes[1]. bytenr is the node block pointer, but since the callers
  3097. * already know it, it is faster to have them pass it down than to
  3098. * read it out of the node again.
  3099. *
  3100. * This deletes the pointer in path->nodes[1] and frees the leaf
  3101. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3102. *
  3103. * The path must have already been setup for deleting the leaf, including
  3104. * all the proper balancing. path->nodes[1] must be locked.
  3105. */
  3106. noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3107. struct btrfs_root *root,
  3108. struct btrfs_path *path, u64 bytenr)
  3109. {
  3110. int ret;
  3111. u64 root_gen = btrfs_header_generation(path->nodes[1]);
  3112. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3113. if (ret)
  3114. return ret;
  3115. ret = btrfs_free_extent(trans, root, bytenr,
  3116. btrfs_level_size(root, 0),
  3117. path->nodes[1]->start,
  3118. btrfs_header_owner(path->nodes[1]),
  3119. root_gen, 0, 1);
  3120. return ret;
  3121. }
  3122. /*
  3123. * delete the item at the leaf level in path. If that empties
  3124. * the leaf, remove it from the tree
  3125. */
  3126. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3127. struct btrfs_path *path, int slot, int nr)
  3128. {
  3129. struct extent_buffer *leaf;
  3130. struct btrfs_item *item;
  3131. int last_off;
  3132. int dsize = 0;
  3133. int ret = 0;
  3134. int wret;
  3135. int i;
  3136. u32 nritems;
  3137. leaf = path->nodes[0];
  3138. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3139. for (i = 0; i < nr; i++)
  3140. dsize += btrfs_item_size_nr(leaf, slot + i);
  3141. nritems = btrfs_header_nritems(leaf);
  3142. if (slot + nr != nritems) {
  3143. int data_end = leaf_data_end(root, leaf);
  3144. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3145. data_end + dsize,
  3146. btrfs_leaf_data(leaf) + data_end,
  3147. last_off - data_end);
  3148. for (i = slot + nr; i < nritems; i++) {
  3149. u32 ioff;
  3150. item = btrfs_item_nr(leaf, i);
  3151. if (!leaf->map_token) {
  3152. map_extent_buffer(leaf, (unsigned long)item,
  3153. sizeof(struct btrfs_item),
  3154. &leaf->map_token, &leaf->kaddr,
  3155. &leaf->map_start, &leaf->map_len,
  3156. KM_USER1);
  3157. }
  3158. ioff = btrfs_item_offset(leaf, item);
  3159. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3160. }
  3161. if (leaf->map_token) {
  3162. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3163. leaf->map_token = NULL;
  3164. }
  3165. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3166. btrfs_item_nr_offset(slot + nr),
  3167. sizeof(struct btrfs_item) *
  3168. (nritems - slot - nr));
  3169. }
  3170. btrfs_set_header_nritems(leaf, nritems - nr);
  3171. nritems -= nr;
  3172. /* delete the leaf if we've emptied it */
  3173. if (nritems == 0) {
  3174. if (leaf == root->node) {
  3175. btrfs_set_header_level(leaf, 0);
  3176. } else {
  3177. ret = btrfs_del_leaf(trans, root, path, leaf->start);
  3178. BUG_ON(ret);
  3179. }
  3180. } else {
  3181. int used = leaf_space_used(leaf, 0, nritems);
  3182. if (slot == 0) {
  3183. struct btrfs_disk_key disk_key;
  3184. btrfs_item_key(leaf, &disk_key, 0);
  3185. wret = fixup_low_keys(trans, root, path,
  3186. &disk_key, 1);
  3187. if (wret)
  3188. ret = wret;
  3189. }
  3190. /* delete the leaf if it is mostly empty */
  3191. if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
  3192. /* push_leaf_left fixes the path.
  3193. * make sure the path still points to our leaf
  3194. * for possible call to del_ptr below
  3195. */
  3196. slot = path->slots[1];
  3197. extent_buffer_get(leaf);
  3198. wret = push_leaf_left(trans, root, path, 1, 1);
  3199. if (wret < 0 && wret != -ENOSPC)
  3200. ret = wret;
  3201. if (path->nodes[0] == leaf &&
  3202. btrfs_header_nritems(leaf)) {
  3203. wret = push_leaf_right(trans, root, path, 1, 1);
  3204. if (wret < 0 && wret != -ENOSPC)
  3205. ret = wret;
  3206. }
  3207. if (btrfs_header_nritems(leaf) == 0) {
  3208. path->slots[1] = slot;
  3209. ret = btrfs_del_leaf(trans, root, path, leaf->start);
  3210. BUG_ON(ret);
  3211. free_extent_buffer(leaf);
  3212. } else {
  3213. /* if we're still in the path, make sure
  3214. * we're dirty. Otherwise, one of the
  3215. * push_leaf functions must have already
  3216. * dirtied this buffer
  3217. */
  3218. if (path->nodes[0] == leaf)
  3219. btrfs_mark_buffer_dirty(leaf);
  3220. free_extent_buffer(leaf);
  3221. }
  3222. } else {
  3223. btrfs_mark_buffer_dirty(leaf);
  3224. }
  3225. }
  3226. return ret;
  3227. }
  3228. /*
  3229. * search the tree again to find a leaf with lesser keys
  3230. * returns 0 if it found something or 1 if there are no lesser leaves.
  3231. * returns < 0 on io errors.
  3232. *
  3233. * This may release the path, and so you may lose any locks held at the
  3234. * time you call it.
  3235. */
  3236. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3237. {
  3238. struct btrfs_key key;
  3239. struct btrfs_disk_key found_key;
  3240. int ret;
  3241. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3242. if (key.offset > 0)
  3243. key.offset--;
  3244. else if (key.type > 0)
  3245. key.type--;
  3246. else if (key.objectid > 0)
  3247. key.objectid--;
  3248. else
  3249. return 1;
  3250. btrfs_release_path(root, path);
  3251. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3252. if (ret < 0)
  3253. return ret;
  3254. btrfs_item_key(path->nodes[0], &found_key, 0);
  3255. ret = comp_keys(&found_key, &key);
  3256. if (ret < 0)
  3257. return 0;
  3258. return 1;
  3259. }
  3260. /*
  3261. * A helper function to walk down the tree starting at min_key, and looking
  3262. * for nodes or leaves that are either in cache or have a minimum
  3263. * transaction id. This is used by the btree defrag code, and tree logging
  3264. *
  3265. * This does not cow, but it does stuff the starting key it finds back
  3266. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3267. * key and get a writable path.
  3268. *
  3269. * This does lock as it descends, and path->keep_locks should be set
  3270. * to 1 by the caller.
  3271. *
  3272. * This honors path->lowest_level to prevent descent past a given level
  3273. * of the tree.
  3274. *
  3275. * min_trans indicates the oldest transaction that you are interested
  3276. * in walking through. Any nodes or leaves older than min_trans are
  3277. * skipped over (without reading them).
  3278. *
  3279. * returns zero if something useful was found, < 0 on error and 1 if there
  3280. * was nothing in the tree that matched the search criteria.
  3281. */
  3282. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3283. struct btrfs_key *max_key,
  3284. struct btrfs_path *path, int cache_only,
  3285. u64 min_trans)
  3286. {
  3287. struct extent_buffer *cur;
  3288. struct btrfs_key found_key;
  3289. int slot;
  3290. int sret;
  3291. u32 nritems;
  3292. int level;
  3293. int ret = 1;
  3294. WARN_ON(!path->keep_locks);
  3295. again:
  3296. cur = btrfs_lock_root_node(root);
  3297. level = btrfs_header_level(cur);
  3298. WARN_ON(path->nodes[level]);
  3299. path->nodes[level] = cur;
  3300. path->locks[level] = 1;
  3301. if (btrfs_header_generation(cur) < min_trans) {
  3302. ret = 1;
  3303. goto out;
  3304. }
  3305. while(1) {
  3306. nritems = btrfs_header_nritems(cur);
  3307. level = btrfs_header_level(cur);
  3308. sret = bin_search(cur, min_key, level, &slot);
  3309. /* at the lowest level, we're done, setup the path and exit */
  3310. if (level == path->lowest_level) {
  3311. if (slot >= nritems)
  3312. goto find_next_key;
  3313. ret = 0;
  3314. path->slots[level] = slot;
  3315. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3316. goto out;
  3317. }
  3318. if (sret && slot > 0)
  3319. slot--;
  3320. /*
  3321. * check this node pointer against the cache_only and
  3322. * min_trans parameters. If it isn't in cache or is too
  3323. * old, skip to the next one.
  3324. */
  3325. while(slot < nritems) {
  3326. u64 blockptr;
  3327. u64 gen;
  3328. struct extent_buffer *tmp;
  3329. struct btrfs_disk_key disk_key;
  3330. blockptr = btrfs_node_blockptr(cur, slot);
  3331. gen = btrfs_node_ptr_generation(cur, slot);
  3332. if (gen < min_trans) {
  3333. slot++;
  3334. continue;
  3335. }
  3336. if (!cache_only)
  3337. break;
  3338. if (max_key) {
  3339. btrfs_node_key(cur, &disk_key, slot);
  3340. if (comp_keys(&disk_key, max_key) >= 0) {
  3341. ret = 1;
  3342. goto out;
  3343. }
  3344. }
  3345. tmp = btrfs_find_tree_block(root, blockptr,
  3346. btrfs_level_size(root, level - 1));
  3347. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3348. free_extent_buffer(tmp);
  3349. break;
  3350. }
  3351. if (tmp)
  3352. free_extent_buffer(tmp);
  3353. slot++;
  3354. }
  3355. find_next_key:
  3356. /*
  3357. * we didn't find a candidate key in this node, walk forward
  3358. * and find another one
  3359. */
  3360. if (slot >= nritems) {
  3361. path->slots[level] = slot;
  3362. sret = btrfs_find_next_key(root, path, min_key, level,
  3363. cache_only, min_trans);
  3364. if (sret == 0) {
  3365. btrfs_release_path(root, path);
  3366. goto again;
  3367. } else {
  3368. goto out;
  3369. }
  3370. }
  3371. /* save our key for returning back */
  3372. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3373. path->slots[level] = slot;
  3374. if (level == path->lowest_level) {
  3375. ret = 0;
  3376. unlock_up(path, level, 1);
  3377. goto out;
  3378. }
  3379. cur = read_node_slot(root, cur, slot);
  3380. btrfs_tree_lock(cur);
  3381. path->locks[level - 1] = 1;
  3382. path->nodes[level - 1] = cur;
  3383. unlock_up(path, level, 1);
  3384. }
  3385. out:
  3386. if (ret == 0)
  3387. memcpy(min_key, &found_key, sizeof(found_key));
  3388. return ret;
  3389. }
  3390. /*
  3391. * this is similar to btrfs_next_leaf, but does not try to preserve
  3392. * and fixup the path. It looks for and returns the next key in the
  3393. * tree based on the current path and the cache_only and min_trans
  3394. * parameters.
  3395. *
  3396. * 0 is returned if another key is found, < 0 if there are any errors
  3397. * and 1 is returned if there are no higher keys in the tree
  3398. *
  3399. * path->keep_locks should be set to 1 on the search made before
  3400. * calling this function.
  3401. */
  3402. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3403. struct btrfs_key *key, int lowest_level,
  3404. int cache_only, u64 min_trans)
  3405. {
  3406. int level = lowest_level;
  3407. int slot;
  3408. struct extent_buffer *c;
  3409. WARN_ON(!path->keep_locks);
  3410. while(level < BTRFS_MAX_LEVEL) {
  3411. if (!path->nodes[level])
  3412. return 1;
  3413. slot = path->slots[level] + 1;
  3414. c = path->nodes[level];
  3415. next:
  3416. if (slot >= btrfs_header_nritems(c)) {
  3417. level++;
  3418. if (level == BTRFS_MAX_LEVEL) {
  3419. return 1;
  3420. }
  3421. continue;
  3422. }
  3423. if (level == 0)
  3424. btrfs_item_key_to_cpu(c, key, slot);
  3425. else {
  3426. u64 blockptr = btrfs_node_blockptr(c, slot);
  3427. u64 gen = btrfs_node_ptr_generation(c, slot);
  3428. if (cache_only) {
  3429. struct extent_buffer *cur;
  3430. cur = btrfs_find_tree_block(root, blockptr,
  3431. btrfs_level_size(root, level - 1));
  3432. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3433. slot++;
  3434. if (cur)
  3435. free_extent_buffer(cur);
  3436. goto next;
  3437. }
  3438. free_extent_buffer(cur);
  3439. }
  3440. if (gen < min_trans) {
  3441. slot++;
  3442. goto next;
  3443. }
  3444. btrfs_node_key_to_cpu(c, key, slot);
  3445. }
  3446. return 0;
  3447. }
  3448. return 1;
  3449. }
  3450. /*
  3451. * search the tree again to find a leaf with greater keys
  3452. * returns 0 if it found something or 1 if there are no greater leaves.
  3453. * returns < 0 on io errors.
  3454. */
  3455. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3456. {
  3457. int slot;
  3458. int level = 1;
  3459. struct extent_buffer *c;
  3460. struct extent_buffer *next = NULL;
  3461. struct btrfs_key key;
  3462. u32 nritems;
  3463. int ret;
  3464. nritems = btrfs_header_nritems(path->nodes[0]);
  3465. if (nritems == 0) {
  3466. return 1;
  3467. }
  3468. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3469. btrfs_release_path(root, path);
  3470. path->keep_locks = 1;
  3471. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3472. path->keep_locks = 0;
  3473. if (ret < 0)
  3474. return ret;
  3475. nritems = btrfs_header_nritems(path->nodes[0]);
  3476. /*
  3477. * by releasing the path above we dropped all our locks. A balance
  3478. * could have added more items next to the key that used to be
  3479. * at the very end of the block. So, check again here and
  3480. * advance the path if there are now more items available.
  3481. */
  3482. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3483. path->slots[0]++;
  3484. goto done;
  3485. }
  3486. while(level < BTRFS_MAX_LEVEL) {
  3487. if (!path->nodes[level])
  3488. return 1;
  3489. slot = path->slots[level] + 1;
  3490. c = path->nodes[level];
  3491. if (slot >= btrfs_header_nritems(c)) {
  3492. level++;
  3493. if (level == BTRFS_MAX_LEVEL) {
  3494. return 1;
  3495. }
  3496. continue;
  3497. }
  3498. if (next) {
  3499. btrfs_tree_unlock(next);
  3500. free_extent_buffer(next);
  3501. }
  3502. if (level == 1 && (path->locks[1] || path->skip_locking) &&
  3503. path->reada)
  3504. reada_for_search(root, path, level, slot, 0);
  3505. next = read_node_slot(root, c, slot);
  3506. if (!path->skip_locking) {
  3507. WARN_ON(!btrfs_tree_locked(c));
  3508. btrfs_tree_lock(next);
  3509. }
  3510. break;
  3511. }
  3512. path->slots[level] = slot;
  3513. while(1) {
  3514. level--;
  3515. c = path->nodes[level];
  3516. if (path->locks[level])
  3517. btrfs_tree_unlock(c);
  3518. free_extent_buffer(c);
  3519. path->nodes[level] = next;
  3520. path->slots[level] = 0;
  3521. if (!path->skip_locking)
  3522. path->locks[level] = 1;
  3523. if (!level)
  3524. break;
  3525. if (level == 1 && path->locks[1] && path->reada)
  3526. reada_for_search(root, path, level, slot, 0);
  3527. next = read_node_slot(root, next, 0);
  3528. if (!path->skip_locking) {
  3529. WARN_ON(!btrfs_tree_locked(path->nodes[level]));
  3530. btrfs_tree_lock(next);
  3531. }
  3532. }
  3533. done:
  3534. unlock_up(path, 0, 1);
  3535. return 0;
  3536. }
  3537. /*
  3538. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3539. * searching until it gets past min_objectid or finds an item of 'type'
  3540. *
  3541. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3542. */
  3543. int btrfs_previous_item(struct btrfs_root *root,
  3544. struct btrfs_path *path, u64 min_objectid,
  3545. int type)
  3546. {
  3547. struct btrfs_key found_key;
  3548. struct extent_buffer *leaf;
  3549. u32 nritems;
  3550. int ret;
  3551. while(1) {
  3552. if (path->slots[0] == 0) {
  3553. ret = btrfs_prev_leaf(root, path);
  3554. if (ret != 0)
  3555. return ret;
  3556. } else {
  3557. path->slots[0]--;
  3558. }
  3559. leaf = path->nodes[0];
  3560. nritems = btrfs_header_nritems(leaf);
  3561. if (nritems == 0)
  3562. return 1;
  3563. if (path->slots[0] == nritems)
  3564. path->slots[0]--;
  3565. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3566. if (found_key.type == type)
  3567. return 0;
  3568. if (found_key.objectid < min_objectid)
  3569. break;
  3570. if (found_key.objectid == min_objectid &&
  3571. found_key.type < type)
  3572. break;
  3573. }
  3574. return 1;
  3575. }