rt2x00queue.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2x00lib
  19. Abstract: rt2x00 queue specific routines.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/dma-mapping.h>
  24. #include "rt2x00.h"
  25. #include "rt2x00lib.h"
  26. struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
  27. struct queue_entry *entry)
  28. {
  29. struct sk_buff *skb;
  30. struct skb_frame_desc *skbdesc;
  31. unsigned int frame_size;
  32. unsigned int head_size = 0;
  33. unsigned int tail_size = 0;
  34. /*
  35. * The frame size includes descriptor size, because the
  36. * hardware directly receive the frame into the skbuffer.
  37. */
  38. frame_size = entry->queue->data_size + entry->queue->desc_size;
  39. /*
  40. * The payload should be aligned to a 4-byte boundary,
  41. * this means we need at least 3 bytes for moving the frame
  42. * into the correct offset.
  43. */
  44. head_size = 4;
  45. /*
  46. * For IV/EIV/ICV assembly we must make sure there is
  47. * at least 8 bytes bytes available in headroom for IV/EIV
  48. * and 4 bytes for ICV data as tailroon.
  49. */
  50. #ifdef CONFIG_RT2X00_LIB_CRYPTO
  51. if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
  52. head_size += 8;
  53. tail_size += 4;
  54. }
  55. #endif /* CONFIG_RT2X00_LIB_CRYPTO */
  56. /*
  57. * Allocate skbuffer.
  58. */
  59. skb = dev_alloc_skb(frame_size + head_size + tail_size);
  60. if (!skb)
  61. return NULL;
  62. /*
  63. * Make sure we not have a frame with the requested bytes
  64. * available in the head and tail.
  65. */
  66. skb_reserve(skb, head_size);
  67. skb_put(skb, frame_size);
  68. /*
  69. * Populate skbdesc.
  70. */
  71. skbdesc = get_skb_frame_desc(skb);
  72. memset(skbdesc, 0, sizeof(*skbdesc));
  73. skbdesc->entry = entry;
  74. if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
  75. skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
  76. skb->data,
  77. skb->len,
  78. DMA_FROM_DEVICE);
  79. skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
  80. }
  81. return skb;
  82. }
  83. void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
  84. {
  85. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  86. /*
  87. * If device has requested headroom, we should make sure that
  88. * is also mapped to the DMA so it can be used for transfering
  89. * additional descriptor information to the hardware.
  90. */
  91. skb_push(skb, rt2x00dev->hw->extra_tx_headroom);
  92. skbdesc->skb_dma =
  93. dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
  94. /*
  95. * Restore data pointer to original location again.
  96. */
  97. skb_pull(skb, rt2x00dev->hw->extra_tx_headroom);
  98. skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
  99. }
  100. EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
  101. void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
  102. {
  103. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  104. if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
  105. dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
  106. DMA_FROM_DEVICE);
  107. skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
  108. }
  109. if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
  110. /*
  111. * Add headroom to the skb length, it has been removed
  112. * by the driver, but it was actually mapped to DMA.
  113. */
  114. dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma,
  115. skb->len + rt2x00dev->hw->extra_tx_headroom,
  116. DMA_TO_DEVICE);
  117. skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
  118. }
  119. }
  120. void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
  121. {
  122. if (!skb)
  123. return;
  124. rt2x00queue_unmap_skb(rt2x00dev, skb);
  125. dev_kfree_skb_any(skb);
  126. }
  127. static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
  128. struct txentry_desc *txdesc)
  129. {
  130. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  131. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
  132. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
  133. struct ieee80211_rate *rate =
  134. ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
  135. const struct rt2x00_rate *hwrate;
  136. unsigned int data_length;
  137. unsigned int duration;
  138. unsigned int residual;
  139. unsigned long irqflags;
  140. memset(txdesc, 0, sizeof(*txdesc));
  141. /*
  142. * Initialize information from queue
  143. */
  144. txdesc->queue = entry->queue->qid;
  145. txdesc->cw_min = entry->queue->cw_min;
  146. txdesc->cw_max = entry->queue->cw_max;
  147. txdesc->aifs = entry->queue->aifs;
  148. /* Data length + CRC + IV/EIV/ICV/MMIC (when using encryption) */
  149. data_length = entry->skb->len + 4;
  150. /*
  151. * Check whether this frame is to be acked.
  152. */
  153. if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
  154. __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
  155. #ifdef CONFIG_RT2X00_LIB_CRYPTO
  156. if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags) &&
  157. !entry->skb->do_not_encrypt) {
  158. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  159. __set_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags);
  160. txdesc->cipher = rt2x00crypto_key_to_cipher(hw_key);
  161. if (hw_key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
  162. __set_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags);
  163. txdesc->key_idx = hw_key->hw_key_idx;
  164. txdesc->iv_offset = ieee80211_get_hdrlen_from_skb(entry->skb);
  165. /*
  166. * Extend frame length to include all encryption overhead
  167. * that will be added by the hardware.
  168. */
  169. data_length += rt2x00crypto_tx_overhead(tx_info);
  170. if (!(hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV))
  171. __set_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags);
  172. if (!(hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_MMIC))
  173. __set_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags);
  174. }
  175. #endif /* CONFIG_RT2X00_LIB_CRYPTO */
  176. /*
  177. * Check if this is a RTS/CTS frame
  178. */
  179. if (ieee80211_is_rts(hdr->frame_control) ||
  180. ieee80211_is_cts(hdr->frame_control)) {
  181. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  182. if (ieee80211_is_rts(hdr->frame_control))
  183. __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
  184. else
  185. __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
  186. if (tx_info->control.rts_cts_rate_idx >= 0)
  187. rate =
  188. ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
  189. }
  190. /*
  191. * Determine retry information.
  192. */
  193. txdesc->retry_limit = tx_info->control.rates[0].count - 1;
  194. if (txdesc->retry_limit >= rt2x00dev->long_retry)
  195. __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
  196. /*
  197. * Check if more fragments are pending
  198. */
  199. if (ieee80211_has_morefrags(hdr->frame_control)) {
  200. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  201. __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
  202. }
  203. /*
  204. * Beacons and probe responses require the tsf timestamp
  205. * to be inserted into the frame.
  206. */
  207. if (ieee80211_is_beacon(hdr->frame_control) ||
  208. ieee80211_is_probe_resp(hdr->frame_control))
  209. __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
  210. /*
  211. * Determine with what IFS priority this frame should be send.
  212. * Set ifs to IFS_SIFS when the this is not the first fragment,
  213. * or this fragment came after RTS/CTS.
  214. */
  215. if (test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
  216. txdesc->ifs = IFS_SIFS;
  217. } else if (tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) {
  218. __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
  219. txdesc->ifs = IFS_BACKOFF;
  220. } else {
  221. txdesc->ifs = IFS_SIFS;
  222. }
  223. /*
  224. * Hardware should insert sequence counter.
  225. * FIXME: We insert a software sequence counter first for
  226. * hardware that doesn't support hardware sequence counting.
  227. *
  228. * This is wrong because beacons are not getting sequence
  229. * numbers assigned properly.
  230. *
  231. * A secondary problem exists for drivers that cannot toggle
  232. * sequence counting per-frame, since those will override the
  233. * sequence counter given by mac80211.
  234. */
  235. if (tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  236. if (likely(tx_info->control.vif)) {
  237. struct rt2x00_intf *intf;
  238. intf = vif_to_intf(tx_info->control.vif);
  239. spin_lock_irqsave(&intf->seqlock, irqflags);
  240. if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
  241. intf->seqno += 0x10;
  242. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  243. hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
  244. spin_unlock_irqrestore(&intf->seqlock, irqflags);
  245. __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
  246. }
  247. }
  248. /*
  249. * PLCP setup
  250. * Length calculation depends on OFDM/CCK rate.
  251. */
  252. hwrate = rt2x00_get_rate(rate->hw_value);
  253. txdesc->signal = hwrate->plcp;
  254. txdesc->service = 0x04;
  255. if (hwrate->flags & DEV_RATE_OFDM) {
  256. __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags);
  257. txdesc->length_high = (data_length >> 6) & 0x3f;
  258. txdesc->length_low = data_length & 0x3f;
  259. } else {
  260. /*
  261. * Convert length to microseconds.
  262. */
  263. residual = GET_DURATION_RES(data_length, hwrate->bitrate);
  264. duration = GET_DURATION(data_length, hwrate->bitrate);
  265. if (residual != 0) {
  266. duration++;
  267. /*
  268. * Check if we need to set the Length Extension
  269. */
  270. if (hwrate->bitrate == 110 && residual <= 30)
  271. txdesc->service |= 0x80;
  272. }
  273. txdesc->length_high = (duration >> 8) & 0xff;
  274. txdesc->length_low = duration & 0xff;
  275. /*
  276. * When preamble is enabled we should set the
  277. * preamble bit for the signal.
  278. */
  279. if (rt2x00_get_rate_preamble(rate->hw_value))
  280. txdesc->signal |= 0x08;
  281. }
  282. }
  283. static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
  284. struct txentry_desc *txdesc)
  285. {
  286. struct data_queue *queue = entry->queue;
  287. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  288. rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
  289. /*
  290. * All processing on the frame has been completed, this means
  291. * it is now ready to be dumped to userspace through debugfs.
  292. */
  293. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
  294. /*
  295. * Check if we need to kick the queue, there are however a few rules
  296. * 1) Don't kick beacon queue
  297. * 2) Don't kick unless this is the last in frame in a burst.
  298. * When the burst flag is set, this frame is always followed
  299. * by another frame which in some way are related to eachother.
  300. * This is true for fragments, RTS or CTS-to-self frames.
  301. * 3) Rule 2 can be broken when the available entries
  302. * in the queue are less then a certain threshold.
  303. */
  304. if (entry->queue->qid == QID_BEACON)
  305. return;
  306. if (rt2x00queue_threshold(queue) ||
  307. !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
  308. rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
  309. }
  310. int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb)
  311. {
  312. struct ieee80211_tx_info *tx_info;
  313. struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
  314. struct txentry_desc txdesc;
  315. struct skb_frame_desc *skbdesc;
  316. unsigned int iv_len = 0;
  317. u8 rate_idx, rate_flags;
  318. if (unlikely(rt2x00queue_full(queue)))
  319. return -ENOBUFS;
  320. if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
  321. ERROR(queue->rt2x00dev,
  322. "Arrived at non-free entry in the non-full queue %d.\n"
  323. "Please file bug report to %s.\n",
  324. queue->qid, DRV_PROJECT);
  325. return -EINVAL;
  326. }
  327. /*
  328. * Copy all TX descriptor information into txdesc,
  329. * after that we are free to use the skb->cb array
  330. * for our information.
  331. */
  332. entry->skb = skb;
  333. rt2x00queue_create_tx_descriptor(entry, &txdesc);
  334. if (IEEE80211_SKB_CB(skb)->control.hw_key != NULL)
  335. iv_len = IEEE80211_SKB_CB(skb)->control.hw_key->iv_len;
  336. /*
  337. * All information is retrieved from the skb->cb array,
  338. * now we should claim ownership of the driver part of that
  339. * array, preserving the bitrate index and flags.
  340. */
  341. tx_info = IEEE80211_SKB_CB(skb);
  342. rate_idx = tx_info->control.rates[0].idx;
  343. rate_flags = tx_info->control.rates[0].flags;
  344. skbdesc = get_skb_frame_desc(skb);
  345. memset(skbdesc, 0, sizeof(*skbdesc));
  346. skbdesc->entry = entry;
  347. skbdesc->tx_rate_idx = rate_idx;
  348. skbdesc->tx_rate_flags = rate_flags;
  349. /*
  350. * When hardware encryption is supported, and this frame
  351. * is to be encrypted, we should strip the IV/EIV data from
  352. * the frame so we can provide it to the driver seperately.
  353. */
  354. if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
  355. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags))
  356. rt2x00crypto_tx_remove_iv(skb, iv_len);
  357. /*
  358. * It could be possible that the queue was corrupted and this
  359. * call failed. Since we always return NETDEV_TX_OK to mac80211,
  360. * this frame will simply be dropped.
  361. */
  362. if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) {
  363. clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
  364. entry->skb = NULL;
  365. return -EIO;
  366. }
  367. if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
  368. rt2x00queue_map_txskb(queue->rt2x00dev, skb);
  369. set_bit(ENTRY_DATA_PENDING, &entry->flags);
  370. rt2x00queue_index_inc(queue, Q_INDEX);
  371. rt2x00queue_write_tx_descriptor(entry, &txdesc);
  372. return 0;
  373. }
  374. int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
  375. struct ieee80211_vif *vif)
  376. {
  377. struct rt2x00_intf *intf = vif_to_intf(vif);
  378. struct skb_frame_desc *skbdesc;
  379. struct txentry_desc txdesc;
  380. __le32 desc[16];
  381. if (unlikely(!intf->beacon))
  382. return -ENOBUFS;
  383. intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
  384. if (!intf->beacon->skb)
  385. return -ENOMEM;
  386. /*
  387. * Copy all TX descriptor information into txdesc,
  388. * after that we are free to use the skb->cb array
  389. * for our information.
  390. */
  391. rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
  392. /*
  393. * For the descriptor we use a local array from where the
  394. * driver can move it to the correct location required for
  395. * the hardware.
  396. */
  397. memset(desc, 0, sizeof(desc));
  398. /*
  399. * Fill in skb descriptor
  400. */
  401. skbdesc = get_skb_frame_desc(intf->beacon->skb);
  402. memset(skbdesc, 0, sizeof(*skbdesc));
  403. skbdesc->desc = desc;
  404. skbdesc->desc_len = intf->beacon->queue->desc_size;
  405. skbdesc->entry = intf->beacon;
  406. /*
  407. * Write TX descriptor into reserved room in front of the beacon.
  408. */
  409. rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
  410. /*
  411. * Send beacon to hardware.
  412. * Also enable beacon generation, which might have been disabled
  413. * by the driver during the config_beacon() callback function.
  414. */
  415. rt2x00dev->ops->lib->write_beacon(intf->beacon);
  416. rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);
  417. return 0;
  418. }
  419. struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
  420. const enum data_queue_qid queue)
  421. {
  422. int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  423. if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
  424. return &rt2x00dev->tx[queue];
  425. if (!rt2x00dev->bcn)
  426. return NULL;
  427. if (queue == QID_BEACON)
  428. return &rt2x00dev->bcn[0];
  429. else if (queue == QID_ATIM && atim)
  430. return &rt2x00dev->bcn[1];
  431. return NULL;
  432. }
  433. EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
  434. struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
  435. enum queue_index index)
  436. {
  437. struct queue_entry *entry;
  438. unsigned long irqflags;
  439. if (unlikely(index >= Q_INDEX_MAX)) {
  440. ERROR(queue->rt2x00dev,
  441. "Entry requested from invalid index type (%d)\n", index);
  442. return NULL;
  443. }
  444. spin_lock_irqsave(&queue->lock, irqflags);
  445. entry = &queue->entries[queue->index[index]];
  446. spin_unlock_irqrestore(&queue->lock, irqflags);
  447. return entry;
  448. }
  449. EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
  450. void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
  451. {
  452. unsigned long irqflags;
  453. if (unlikely(index >= Q_INDEX_MAX)) {
  454. ERROR(queue->rt2x00dev,
  455. "Index change on invalid index type (%d)\n", index);
  456. return;
  457. }
  458. spin_lock_irqsave(&queue->lock, irqflags);
  459. queue->index[index]++;
  460. if (queue->index[index] >= queue->limit)
  461. queue->index[index] = 0;
  462. if (index == Q_INDEX) {
  463. queue->length++;
  464. } else if (index == Q_INDEX_DONE) {
  465. queue->length--;
  466. queue->count++;
  467. }
  468. spin_unlock_irqrestore(&queue->lock, irqflags);
  469. }
  470. static void rt2x00queue_reset(struct data_queue *queue)
  471. {
  472. unsigned long irqflags;
  473. spin_lock_irqsave(&queue->lock, irqflags);
  474. queue->count = 0;
  475. queue->length = 0;
  476. memset(queue->index, 0, sizeof(queue->index));
  477. spin_unlock_irqrestore(&queue->lock, irqflags);
  478. }
  479. void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
  480. {
  481. struct data_queue *queue;
  482. unsigned int i;
  483. queue_for_each(rt2x00dev, queue) {
  484. rt2x00queue_reset(queue);
  485. for (i = 0; i < queue->limit; i++) {
  486. queue->entries[i].flags = 0;
  487. rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
  488. }
  489. }
  490. }
  491. static int rt2x00queue_alloc_entries(struct data_queue *queue,
  492. const struct data_queue_desc *qdesc)
  493. {
  494. struct queue_entry *entries;
  495. unsigned int entry_size;
  496. unsigned int i;
  497. rt2x00queue_reset(queue);
  498. queue->limit = qdesc->entry_num;
  499. queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
  500. queue->data_size = qdesc->data_size;
  501. queue->desc_size = qdesc->desc_size;
  502. /*
  503. * Allocate all queue entries.
  504. */
  505. entry_size = sizeof(*entries) + qdesc->priv_size;
  506. entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
  507. if (!entries)
  508. return -ENOMEM;
  509. #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
  510. ( ((char *)(__base)) + ((__limit) * (__esize)) + \
  511. ((__index) * (__psize)) )
  512. for (i = 0; i < queue->limit; i++) {
  513. entries[i].flags = 0;
  514. entries[i].queue = queue;
  515. entries[i].skb = NULL;
  516. entries[i].entry_idx = i;
  517. entries[i].priv_data =
  518. QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
  519. sizeof(*entries), qdesc->priv_size);
  520. }
  521. #undef QUEUE_ENTRY_PRIV_OFFSET
  522. queue->entries = entries;
  523. return 0;
  524. }
  525. static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
  526. struct data_queue *queue)
  527. {
  528. unsigned int i;
  529. if (!queue->entries)
  530. return;
  531. for (i = 0; i < queue->limit; i++) {
  532. if (queue->entries[i].skb)
  533. rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
  534. }
  535. }
  536. static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
  537. struct data_queue *queue)
  538. {
  539. unsigned int i;
  540. struct sk_buff *skb;
  541. for (i = 0; i < queue->limit; i++) {
  542. skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
  543. if (!skb)
  544. return -ENOMEM;
  545. queue->entries[i].skb = skb;
  546. }
  547. return 0;
  548. }
  549. int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
  550. {
  551. struct data_queue *queue;
  552. int status;
  553. status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
  554. if (status)
  555. goto exit;
  556. tx_queue_for_each(rt2x00dev, queue) {
  557. status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
  558. if (status)
  559. goto exit;
  560. }
  561. status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
  562. if (status)
  563. goto exit;
  564. if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
  565. status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
  566. rt2x00dev->ops->atim);
  567. if (status)
  568. goto exit;
  569. }
  570. status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
  571. if (status)
  572. goto exit;
  573. return 0;
  574. exit:
  575. ERROR(rt2x00dev, "Queue entries allocation failed.\n");
  576. rt2x00queue_uninitialize(rt2x00dev);
  577. return status;
  578. }
  579. void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
  580. {
  581. struct data_queue *queue;
  582. rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
  583. queue_for_each(rt2x00dev, queue) {
  584. kfree(queue->entries);
  585. queue->entries = NULL;
  586. }
  587. }
  588. static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
  589. struct data_queue *queue, enum data_queue_qid qid)
  590. {
  591. spin_lock_init(&queue->lock);
  592. queue->rt2x00dev = rt2x00dev;
  593. queue->qid = qid;
  594. queue->txop = 0;
  595. queue->aifs = 2;
  596. queue->cw_min = 5;
  597. queue->cw_max = 10;
  598. }
  599. int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
  600. {
  601. struct data_queue *queue;
  602. enum data_queue_qid qid;
  603. unsigned int req_atim =
  604. !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  605. /*
  606. * We need the following queues:
  607. * RX: 1
  608. * TX: ops->tx_queues
  609. * Beacon: 1
  610. * Atim: 1 (if required)
  611. */
  612. rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
  613. queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
  614. if (!queue) {
  615. ERROR(rt2x00dev, "Queue allocation failed.\n");
  616. return -ENOMEM;
  617. }
  618. /*
  619. * Initialize pointers
  620. */
  621. rt2x00dev->rx = queue;
  622. rt2x00dev->tx = &queue[1];
  623. rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
  624. /*
  625. * Initialize queue parameters.
  626. * RX: qid = QID_RX
  627. * TX: qid = QID_AC_BE + index
  628. * TX: cw_min: 2^5 = 32.
  629. * TX: cw_max: 2^10 = 1024.
  630. * BCN: qid = QID_BEACON
  631. * ATIM: qid = QID_ATIM
  632. */
  633. rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
  634. qid = QID_AC_BE;
  635. tx_queue_for_each(rt2x00dev, queue)
  636. rt2x00queue_init(rt2x00dev, queue, qid++);
  637. rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
  638. if (req_atim)
  639. rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
  640. return 0;
  641. }
  642. void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
  643. {
  644. kfree(rt2x00dev->rx);
  645. rt2x00dev->rx = NULL;
  646. rt2x00dev->tx = NULL;
  647. rt2x00dev->bcn = NULL;
  648. }