cthw20k1.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231
  1. /**
  2. * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
  3. *
  4. * This source file is released under GPL v2 license (no other versions).
  5. * See the COPYING file included in the main directory of this source
  6. * distribution for the license terms and conditions.
  7. *
  8. * @File cthw20k1.c
  9. *
  10. * @Brief
  11. * This file contains the implementation of hardware access methord for 20k1.
  12. *
  13. * @Author Liu Chun
  14. * @Date Jun 24 2008
  15. *
  16. */
  17. #include <linux/types.h>
  18. #include <linux/slab.h>
  19. #include <linux/pci.h>
  20. #include <linux/io.h>
  21. #include <linux/string.h>
  22. #include <linux/spinlock.h>
  23. #include <linux/kernel.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/delay.h>
  26. #include "cthw20k1.h"
  27. #include "ct20k1reg.h"
  28. #if BITS_PER_LONG == 32
  29. #define CT_XFI_DMA_MASK DMA_BIT_MASK(32) /* 32 bit PTE */
  30. #else
  31. #define CT_XFI_DMA_MASK DMA_BIT_MASK(64) /* 64 bit PTE */
  32. #endif
  33. struct hw20k1 {
  34. struct hw hw;
  35. spinlock_t reg_20k1_lock;
  36. spinlock_t reg_pci_lock;
  37. };
  38. static u32 hw_read_20kx(struct hw *hw, u32 reg);
  39. static void hw_write_20kx(struct hw *hw, u32 reg, u32 data);
  40. static u32 hw_read_pci(struct hw *hw, u32 reg);
  41. static void hw_write_pci(struct hw *hw, u32 reg, u32 data);
  42. /*
  43. * Type definition block.
  44. * The layout of control structures can be directly applied on 20k2 chip.
  45. */
  46. /*
  47. * SRC control block definitions.
  48. */
  49. /* SRC resource control block */
  50. #define SRCCTL_STATE 0x00000007
  51. #define SRCCTL_BM 0x00000008
  52. #define SRCCTL_RSR 0x00000030
  53. #define SRCCTL_SF 0x000001C0
  54. #define SRCCTL_WR 0x00000200
  55. #define SRCCTL_PM 0x00000400
  56. #define SRCCTL_ROM 0x00001800
  57. #define SRCCTL_VO 0x00002000
  58. #define SRCCTL_ST 0x00004000
  59. #define SRCCTL_IE 0x00008000
  60. #define SRCCTL_ILSZ 0x000F0000
  61. #define SRCCTL_BP 0x00100000
  62. #define SRCCCR_CISZ 0x000007FF
  63. #define SRCCCR_CWA 0x001FF800
  64. #define SRCCCR_D 0x00200000
  65. #define SRCCCR_RS 0x01C00000
  66. #define SRCCCR_NAL 0x3E000000
  67. #define SRCCCR_RA 0xC0000000
  68. #define SRCCA_CA 0x03FFFFFF
  69. #define SRCCA_RS 0x1C000000
  70. #define SRCCA_NAL 0xE0000000
  71. #define SRCSA_SA 0x03FFFFFF
  72. #define SRCLA_LA 0x03FFFFFF
  73. /* Mixer Parameter Ring ram Low and Hight register.
  74. * Fixed-point value in 8.24 format for parameter channel */
  75. #define MPRLH_PITCH 0xFFFFFFFF
  76. /* SRC resource register dirty flags */
  77. union src_dirty {
  78. struct {
  79. u16 ctl:1;
  80. u16 ccr:1;
  81. u16 sa:1;
  82. u16 la:1;
  83. u16 ca:1;
  84. u16 mpr:1;
  85. u16 czbfs:1; /* Clear Z-Buffers */
  86. u16 rsv:9;
  87. } bf;
  88. u16 data;
  89. };
  90. struct src_rsc_ctrl_blk {
  91. unsigned int ctl;
  92. unsigned int ccr;
  93. unsigned int ca;
  94. unsigned int sa;
  95. unsigned int la;
  96. unsigned int mpr;
  97. union src_dirty dirty;
  98. };
  99. /* SRC manager control block */
  100. union src_mgr_dirty {
  101. struct {
  102. u16 enb0:1;
  103. u16 enb1:1;
  104. u16 enb2:1;
  105. u16 enb3:1;
  106. u16 enb4:1;
  107. u16 enb5:1;
  108. u16 enb6:1;
  109. u16 enb7:1;
  110. u16 enbsa:1;
  111. u16 rsv:7;
  112. } bf;
  113. u16 data;
  114. };
  115. struct src_mgr_ctrl_blk {
  116. unsigned int enbsa;
  117. unsigned int enb[8];
  118. union src_mgr_dirty dirty;
  119. };
  120. /* SRCIMP manager control block */
  121. #define SRCAIM_ARC 0x00000FFF
  122. #define SRCAIM_NXT 0x00FF0000
  123. #define SRCAIM_SRC 0xFF000000
  124. struct srcimap {
  125. unsigned int srcaim;
  126. unsigned int idx;
  127. };
  128. /* SRCIMP manager register dirty flags */
  129. union srcimp_mgr_dirty {
  130. struct {
  131. u16 srcimap:1;
  132. u16 rsv:15;
  133. } bf;
  134. u16 data;
  135. };
  136. struct srcimp_mgr_ctrl_blk {
  137. struct srcimap srcimap;
  138. union srcimp_mgr_dirty dirty;
  139. };
  140. /*
  141. * Function implementation block.
  142. */
  143. static int src_get_rsc_ctrl_blk(void **rblk)
  144. {
  145. struct src_rsc_ctrl_blk *blk;
  146. *rblk = NULL;
  147. blk = kzalloc(sizeof(*blk), GFP_KERNEL);
  148. if (NULL == blk)
  149. return -ENOMEM;
  150. *rblk = blk;
  151. return 0;
  152. }
  153. static int src_put_rsc_ctrl_blk(void *blk)
  154. {
  155. kfree((struct src_rsc_ctrl_blk *)blk);
  156. return 0;
  157. }
  158. static int src_set_state(void *blk, unsigned int state)
  159. {
  160. struct src_rsc_ctrl_blk *ctl = blk;
  161. set_field(&ctl->ctl, SRCCTL_STATE, state);
  162. ctl->dirty.bf.ctl = 1;
  163. return 0;
  164. }
  165. static int src_set_bm(void *blk, unsigned int bm)
  166. {
  167. struct src_rsc_ctrl_blk *ctl = blk;
  168. set_field(&ctl->ctl, SRCCTL_BM, bm);
  169. ctl->dirty.bf.ctl = 1;
  170. return 0;
  171. }
  172. static int src_set_rsr(void *blk, unsigned int rsr)
  173. {
  174. struct src_rsc_ctrl_blk *ctl = blk;
  175. set_field(&ctl->ctl, SRCCTL_RSR, rsr);
  176. ctl->dirty.bf.ctl = 1;
  177. return 0;
  178. }
  179. static int src_set_sf(void *blk, unsigned int sf)
  180. {
  181. struct src_rsc_ctrl_blk *ctl = blk;
  182. set_field(&ctl->ctl, SRCCTL_SF, sf);
  183. ctl->dirty.bf.ctl = 1;
  184. return 0;
  185. }
  186. static int src_set_wr(void *blk, unsigned int wr)
  187. {
  188. struct src_rsc_ctrl_blk *ctl = blk;
  189. set_field(&ctl->ctl, SRCCTL_WR, wr);
  190. ctl->dirty.bf.ctl = 1;
  191. return 0;
  192. }
  193. static int src_set_pm(void *blk, unsigned int pm)
  194. {
  195. struct src_rsc_ctrl_blk *ctl = blk;
  196. set_field(&ctl->ctl, SRCCTL_PM, pm);
  197. ctl->dirty.bf.ctl = 1;
  198. return 0;
  199. }
  200. static int src_set_rom(void *blk, unsigned int rom)
  201. {
  202. struct src_rsc_ctrl_blk *ctl = blk;
  203. set_field(&ctl->ctl, SRCCTL_ROM, rom);
  204. ctl->dirty.bf.ctl = 1;
  205. return 0;
  206. }
  207. static int src_set_vo(void *blk, unsigned int vo)
  208. {
  209. struct src_rsc_ctrl_blk *ctl = blk;
  210. set_field(&ctl->ctl, SRCCTL_VO, vo);
  211. ctl->dirty.bf.ctl = 1;
  212. return 0;
  213. }
  214. static int src_set_st(void *blk, unsigned int st)
  215. {
  216. struct src_rsc_ctrl_blk *ctl = blk;
  217. set_field(&ctl->ctl, SRCCTL_ST, st);
  218. ctl->dirty.bf.ctl = 1;
  219. return 0;
  220. }
  221. static int src_set_ie(void *blk, unsigned int ie)
  222. {
  223. struct src_rsc_ctrl_blk *ctl = blk;
  224. set_field(&ctl->ctl, SRCCTL_IE, ie);
  225. ctl->dirty.bf.ctl = 1;
  226. return 0;
  227. }
  228. static int src_set_ilsz(void *blk, unsigned int ilsz)
  229. {
  230. struct src_rsc_ctrl_blk *ctl = blk;
  231. set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz);
  232. ctl->dirty.bf.ctl = 1;
  233. return 0;
  234. }
  235. static int src_set_bp(void *blk, unsigned int bp)
  236. {
  237. struct src_rsc_ctrl_blk *ctl = blk;
  238. set_field(&ctl->ctl, SRCCTL_BP, bp);
  239. ctl->dirty.bf.ctl = 1;
  240. return 0;
  241. }
  242. static int src_set_cisz(void *blk, unsigned int cisz)
  243. {
  244. struct src_rsc_ctrl_blk *ctl = blk;
  245. set_field(&ctl->ccr, SRCCCR_CISZ, cisz);
  246. ctl->dirty.bf.ccr = 1;
  247. return 0;
  248. }
  249. static int src_set_ca(void *blk, unsigned int ca)
  250. {
  251. struct src_rsc_ctrl_blk *ctl = blk;
  252. set_field(&ctl->ca, SRCCA_CA, ca);
  253. ctl->dirty.bf.ca = 1;
  254. return 0;
  255. }
  256. static int src_set_sa(void *blk, unsigned int sa)
  257. {
  258. struct src_rsc_ctrl_blk *ctl = blk;
  259. set_field(&ctl->sa, SRCSA_SA, sa);
  260. ctl->dirty.bf.sa = 1;
  261. return 0;
  262. }
  263. static int src_set_la(void *blk, unsigned int la)
  264. {
  265. struct src_rsc_ctrl_blk *ctl = blk;
  266. set_field(&ctl->la, SRCLA_LA, la);
  267. ctl->dirty.bf.la = 1;
  268. return 0;
  269. }
  270. static int src_set_pitch(void *blk, unsigned int pitch)
  271. {
  272. struct src_rsc_ctrl_blk *ctl = blk;
  273. set_field(&ctl->mpr, MPRLH_PITCH, pitch);
  274. ctl->dirty.bf.mpr = 1;
  275. return 0;
  276. }
  277. static int src_set_clear_zbufs(void *blk, unsigned int clear)
  278. {
  279. ((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0);
  280. return 0;
  281. }
  282. static int src_set_dirty(void *blk, unsigned int flags)
  283. {
  284. ((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
  285. return 0;
  286. }
  287. static int src_set_dirty_all(void *blk)
  288. {
  289. ((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
  290. return 0;
  291. }
  292. #define AR_SLOT_SIZE 4096
  293. #define AR_SLOT_BLOCK_SIZE 16
  294. #define AR_PTS_PITCH 6
  295. #define AR_PARAM_SRC_OFFSET 0x60
  296. static unsigned int src_param_pitch_mixer(unsigned int src_idx)
  297. {
  298. return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE
  299. - AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE;
  300. }
  301. static int src_commit_write(struct hw *hw, unsigned int idx, void *blk)
  302. {
  303. struct src_rsc_ctrl_blk *ctl = blk;
  304. int i = 0;
  305. if (ctl->dirty.bf.czbfs) {
  306. /* Clear Z-Buffer registers */
  307. for (i = 0; i < 8; i++)
  308. hw_write_20kx(hw, SRCUPZ+idx*0x100+i*0x4, 0);
  309. for (i = 0; i < 4; i++)
  310. hw_write_20kx(hw, SRCDN0Z+idx*0x100+i*0x4, 0);
  311. for (i = 0; i < 8; i++)
  312. hw_write_20kx(hw, SRCDN1Z+idx*0x100+i*0x4, 0);
  313. ctl->dirty.bf.czbfs = 0;
  314. }
  315. if (ctl->dirty.bf.mpr) {
  316. /* Take the parameter mixer resource in the same group as that
  317. * the idx src is in for simplicity. Unlike src, all conjugate
  318. * parameter mixer resources must be programmed for
  319. * corresponding conjugate src resources. */
  320. unsigned int pm_idx = src_param_pitch_mixer(idx);
  321. hw_write_20kx(hw, PRING_LO_HI+4*pm_idx, ctl->mpr);
  322. hw_write_20kx(hw, PMOPLO+8*pm_idx, 0x3);
  323. hw_write_20kx(hw, PMOPHI+8*pm_idx, 0x0);
  324. ctl->dirty.bf.mpr = 0;
  325. }
  326. if (ctl->dirty.bf.sa) {
  327. hw_write_20kx(hw, SRCSA+idx*0x100, ctl->sa);
  328. ctl->dirty.bf.sa = 0;
  329. }
  330. if (ctl->dirty.bf.la) {
  331. hw_write_20kx(hw, SRCLA+idx*0x100, ctl->la);
  332. ctl->dirty.bf.la = 0;
  333. }
  334. if (ctl->dirty.bf.ca) {
  335. hw_write_20kx(hw, SRCCA+idx*0x100, ctl->ca);
  336. ctl->dirty.bf.ca = 0;
  337. }
  338. /* Write srccf register */
  339. hw_write_20kx(hw, SRCCF+idx*0x100, 0x0);
  340. if (ctl->dirty.bf.ccr) {
  341. hw_write_20kx(hw, SRCCCR+idx*0x100, ctl->ccr);
  342. ctl->dirty.bf.ccr = 0;
  343. }
  344. if (ctl->dirty.bf.ctl) {
  345. hw_write_20kx(hw, SRCCTL+idx*0x100, ctl->ctl);
  346. ctl->dirty.bf.ctl = 0;
  347. }
  348. return 0;
  349. }
  350. static int src_get_ca(struct hw *hw, unsigned int idx, void *blk)
  351. {
  352. struct src_rsc_ctrl_blk *ctl = blk;
  353. ctl->ca = hw_read_20kx(hw, SRCCA+idx*0x100);
  354. ctl->dirty.bf.ca = 0;
  355. return get_field(ctl->ca, SRCCA_CA);
  356. }
  357. static unsigned int src_get_dirty(void *blk)
  358. {
  359. return ((struct src_rsc_ctrl_blk *)blk)->dirty.data;
  360. }
  361. static unsigned int src_dirty_conj_mask(void)
  362. {
  363. return 0x20;
  364. }
  365. static int src_mgr_enbs_src(void *blk, unsigned int idx)
  366. {
  367. ((struct src_mgr_ctrl_blk *)blk)->enbsa = ~(0x0);
  368. ((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1;
  369. ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
  370. return 0;
  371. }
  372. static int src_mgr_enb_src(void *blk, unsigned int idx)
  373. {
  374. ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
  375. ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
  376. return 0;
  377. }
  378. static int src_mgr_dsb_src(void *blk, unsigned int idx)
  379. {
  380. ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32));
  381. ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
  382. return 0;
  383. }
  384. static int src_mgr_commit_write(struct hw *hw, void *blk)
  385. {
  386. struct src_mgr_ctrl_blk *ctl = blk;
  387. int i = 0;
  388. unsigned int ret = 0;
  389. if (ctl->dirty.bf.enbsa) {
  390. do {
  391. ret = hw_read_20kx(hw, SRCENBSTAT);
  392. } while (ret & 0x1);
  393. hw_write_20kx(hw, SRCENBS, ctl->enbsa);
  394. ctl->dirty.bf.enbsa = 0;
  395. }
  396. for (i = 0; i < 8; i++) {
  397. if ((ctl->dirty.data & (0x1 << i))) {
  398. hw_write_20kx(hw, SRCENB+(i*0x100), ctl->enb[i]);
  399. ctl->dirty.data &= ~(0x1 << i);
  400. }
  401. }
  402. return 0;
  403. }
  404. static int src_mgr_get_ctrl_blk(void **rblk)
  405. {
  406. struct src_mgr_ctrl_blk *blk;
  407. *rblk = NULL;
  408. blk = kzalloc(sizeof(*blk), GFP_KERNEL);
  409. if (NULL == blk)
  410. return -ENOMEM;
  411. *rblk = blk;
  412. return 0;
  413. }
  414. static int src_mgr_put_ctrl_blk(void *blk)
  415. {
  416. kfree((struct src_mgr_ctrl_blk *)blk);
  417. return 0;
  418. }
  419. static int srcimp_mgr_get_ctrl_blk(void **rblk)
  420. {
  421. struct srcimp_mgr_ctrl_blk *blk;
  422. *rblk = NULL;
  423. blk = kzalloc(sizeof(*blk), GFP_KERNEL);
  424. if (NULL == blk)
  425. return -ENOMEM;
  426. *rblk = blk;
  427. return 0;
  428. }
  429. static int srcimp_mgr_put_ctrl_blk(void *blk)
  430. {
  431. kfree((struct srcimp_mgr_ctrl_blk *)blk);
  432. return 0;
  433. }
  434. static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot)
  435. {
  436. struct srcimp_mgr_ctrl_blk *ctl = blk;
  437. set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot);
  438. ctl->dirty.bf.srcimap = 1;
  439. return 0;
  440. }
  441. static int srcimp_mgr_set_imapuser(void *blk, unsigned int user)
  442. {
  443. struct srcimp_mgr_ctrl_blk *ctl = blk;
  444. set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user);
  445. ctl->dirty.bf.srcimap = 1;
  446. return 0;
  447. }
  448. static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next)
  449. {
  450. struct srcimp_mgr_ctrl_blk *ctl = blk;
  451. set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next);
  452. ctl->dirty.bf.srcimap = 1;
  453. return 0;
  454. }
  455. static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr)
  456. {
  457. struct srcimp_mgr_ctrl_blk *ctl = blk;
  458. ctl->srcimap.idx = addr;
  459. ctl->dirty.bf.srcimap = 1;
  460. return 0;
  461. }
  462. static int srcimp_mgr_commit_write(struct hw *hw, void *blk)
  463. {
  464. struct srcimp_mgr_ctrl_blk *ctl = blk;
  465. if (ctl->dirty.bf.srcimap) {
  466. hw_write_20kx(hw, SRCIMAP+ctl->srcimap.idx*0x100,
  467. ctl->srcimap.srcaim);
  468. ctl->dirty.bf.srcimap = 0;
  469. }
  470. return 0;
  471. }
  472. /*
  473. * AMIXER control block definitions.
  474. */
  475. #define AMOPLO_M 0x00000003
  476. #define AMOPLO_X 0x0003FFF0
  477. #define AMOPLO_Y 0xFFFC0000
  478. #define AMOPHI_SADR 0x000000FF
  479. #define AMOPHI_SE 0x80000000
  480. /* AMIXER resource register dirty flags */
  481. union amixer_dirty {
  482. struct {
  483. u16 amoplo:1;
  484. u16 amophi:1;
  485. u16 rsv:14;
  486. } bf;
  487. u16 data;
  488. };
  489. /* AMIXER resource control block */
  490. struct amixer_rsc_ctrl_blk {
  491. unsigned int amoplo;
  492. unsigned int amophi;
  493. union amixer_dirty dirty;
  494. };
  495. static int amixer_set_mode(void *blk, unsigned int mode)
  496. {
  497. struct amixer_rsc_ctrl_blk *ctl = blk;
  498. set_field(&ctl->amoplo, AMOPLO_M, mode);
  499. ctl->dirty.bf.amoplo = 1;
  500. return 0;
  501. }
  502. static int amixer_set_iv(void *blk, unsigned int iv)
  503. {
  504. /* 20k1 amixer does not have this field */
  505. return 0;
  506. }
  507. static int amixer_set_x(void *blk, unsigned int x)
  508. {
  509. struct amixer_rsc_ctrl_blk *ctl = blk;
  510. set_field(&ctl->amoplo, AMOPLO_X, x);
  511. ctl->dirty.bf.amoplo = 1;
  512. return 0;
  513. }
  514. static int amixer_set_y(void *blk, unsigned int y)
  515. {
  516. struct amixer_rsc_ctrl_blk *ctl = blk;
  517. set_field(&ctl->amoplo, AMOPLO_Y, y);
  518. ctl->dirty.bf.amoplo = 1;
  519. return 0;
  520. }
  521. static int amixer_set_sadr(void *blk, unsigned int sadr)
  522. {
  523. struct amixer_rsc_ctrl_blk *ctl = blk;
  524. set_field(&ctl->amophi, AMOPHI_SADR, sadr);
  525. ctl->dirty.bf.amophi = 1;
  526. return 0;
  527. }
  528. static int amixer_set_se(void *blk, unsigned int se)
  529. {
  530. struct amixer_rsc_ctrl_blk *ctl = blk;
  531. set_field(&ctl->amophi, AMOPHI_SE, se);
  532. ctl->dirty.bf.amophi = 1;
  533. return 0;
  534. }
  535. static int amixer_set_dirty(void *blk, unsigned int flags)
  536. {
  537. ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
  538. return 0;
  539. }
  540. static int amixer_set_dirty_all(void *blk)
  541. {
  542. ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
  543. return 0;
  544. }
  545. static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk)
  546. {
  547. struct amixer_rsc_ctrl_blk *ctl = blk;
  548. if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) {
  549. hw_write_20kx(hw, AMOPLO+idx*8, ctl->amoplo);
  550. ctl->dirty.bf.amoplo = 0;
  551. hw_write_20kx(hw, AMOPHI+idx*8, ctl->amophi);
  552. ctl->dirty.bf.amophi = 0;
  553. }
  554. return 0;
  555. }
  556. static int amixer_get_y(void *blk)
  557. {
  558. struct amixer_rsc_ctrl_blk *ctl = blk;
  559. return get_field(ctl->amoplo, AMOPLO_Y);
  560. }
  561. static unsigned int amixer_get_dirty(void *blk)
  562. {
  563. return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data;
  564. }
  565. static int amixer_rsc_get_ctrl_blk(void **rblk)
  566. {
  567. struct amixer_rsc_ctrl_blk *blk;
  568. *rblk = NULL;
  569. blk = kzalloc(sizeof(*blk), GFP_KERNEL);
  570. if (NULL == blk)
  571. return -ENOMEM;
  572. *rblk = blk;
  573. return 0;
  574. }
  575. static int amixer_rsc_put_ctrl_blk(void *blk)
  576. {
  577. kfree((struct amixer_rsc_ctrl_blk *)blk);
  578. return 0;
  579. }
  580. static int amixer_mgr_get_ctrl_blk(void **rblk)
  581. {
  582. /*amixer_mgr_ctrl_blk_t *blk;*/
  583. *rblk = NULL;
  584. /*blk = kzalloc(sizeof(*blk), GFP_KERNEL);
  585. if (NULL == blk)
  586. return -ENOMEM;
  587. *rblk = blk;*/
  588. return 0;
  589. }
  590. static int amixer_mgr_put_ctrl_blk(void *blk)
  591. {
  592. /*kfree((amixer_mgr_ctrl_blk_t *)blk);*/
  593. return 0;
  594. }
  595. /*
  596. * DAIO control block definitions.
  597. */
  598. /* Receiver Sample Rate Tracker Control register */
  599. #define SRTCTL_SRCR 0x000000FF
  600. #define SRTCTL_SRCL 0x0000FF00
  601. #define SRTCTL_RSR 0x00030000
  602. #define SRTCTL_DRAT 0x000C0000
  603. #define SRTCTL_RLE 0x10000000
  604. #define SRTCTL_RLP 0x20000000
  605. #define SRTCTL_EC 0x40000000
  606. #define SRTCTL_ET 0x80000000
  607. /* DAIO Receiver register dirty flags */
  608. union dai_dirty {
  609. struct {
  610. u16 srtctl:1;
  611. u16 rsv:15;
  612. } bf;
  613. u16 data;
  614. };
  615. /* DAIO Receiver control block */
  616. struct dai_ctrl_blk {
  617. unsigned int srtctl;
  618. union dai_dirty dirty;
  619. };
  620. /* S/PDIF Transmitter register dirty flags */
  621. union dao_dirty {
  622. struct {
  623. u16 spos:1;
  624. u16 rsv:15;
  625. } bf;
  626. u16 data;
  627. };
  628. /* S/PDIF Transmitter control block */
  629. struct dao_ctrl_blk {
  630. unsigned int spos; /* S/PDIF Output Channel Status Register */
  631. union dao_dirty dirty;
  632. };
  633. /* Audio Input Mapper RAM */
  634. #define AIM_ARC 0x00000FFF
  635. #define AIM_NXT 0x007F0000
  636. struct daoimap {
  637. unsigned int aim;
  638. unsigned int idx;
  639. };
  640. /* I2S Transmitter/Receiver Control register */
  641. #define I2SCTL_EA 0x00000004
  642. #define I2SCTL_EI 0x00000010
  643. /* S/PDIF Transmitter Control register */
  644. #define SPOCTL_OE 0x00000001
  645. #define SPOCTL_OS 0x0000000E
  646. #define SPOCTL_RIV 0x00000010
  647. #define SPOCTL_LIV 0x00000020
  648. #define SPOCTL_SR 0x000000C0
  649. /* S/PDIF Receiver Control register */
  650. #define SPICTL_EN 0x00000001
  651. #define SPICTL_I24 0x00000002
  652. #define SPICTL_IB 0x00000004
  653. #define SPICTL_SM 0x00000008
  654. #define SPICTL_VM 0x00000010
  655. /* DAIO manager register dirty flags */
  656. union daio_mgr_dirty {
  657. struct {
  658. u32 i2soctl:4;
  659. u32 i2sictl:4;
  660. u32 spoctl:4;
  661. u32 spictl:4;
  662. u32 daoimap:1;
  663. u32 rsv:15;
  664. } bf;
  665. u32 data;
  666. };
  667. /* DAIO manager control block */
  668. struct daio_mgr_ctrl_blk {
  669. unsigned int i2sctl;
  670. unsigned int spoctl;
  671. unsigned int spictl;
  672. struct daoimap daoimap;
  673. union daio_mgr_dirty dirty;
  674. };
  675. static int dai_srt_set_srcr(void *blk, unsigned int src)
  676. {
  677. struct dai_ctrl_blk *ctl = blk;
  678. set_field(&ctl->srtctl, SRTCTL_SRCR, src);
  679. ctl->dirty.bf.srtctl = 1;
  680. return 0;
  681. }
  682. static int dai_srt_set_srcl(void *blk, unsigned int src)
  683. {
  684. struct dai_ctrl_blk *ctl = blk;
  685. set_field(&ctl->srtctl, SRTCTL_SRCL, src);
  686. ctl->dirty.bf.srtctl = 1;
  687. return 0;
  688. }
  689. static int dai_srt_set_rsr(void *blk, unsigned int rsr)
  690. {
  691. struct dai_ctrl_blk *ctl = blk;
  692. set_field(&ctl->srtctl, SRTCTL_RSR, rsr);
  693. ctl->dirty.bf.srtctl = 1;
  694. return 0;
  695. }
  696. static int dai_srt_set_drat(void *blk, unsigned int drat)
  697. {
  698. struct dai_ctrl_blk *ctl = blk;
  699. set_field(&ctl->srtctl, SRTCTL_DRAT, drat);
  700. ctl->dirty.bf.srtctl = 1;
  701. return 0;
  702. }
  703. static int dai_srt_set_ec(void *blk, unsigned int ec)
  704. {
  705. struct dai_ctrl_blk *ctl = blk;
  706. set_field(&ctl->srtctl, SRTCTL_EC, ec ? 1 : 0);
  707. ctl->dirty.bf.srtctl = 1;
  708. return 0;
  709. }
  710. static int dai_srt_set_et(void *blk, unsigned int et)
  711. {
  712. struct dai_ctrl_blk *ctl = blk;
  713. set_field(&ctl->srtctl, SRTCTL_ET, et ? 1 : 0);
  714. ctl->dirty.bf.srtctl = 1;
  715. return 0;
  716. }
  717. static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk)
  718. {
  719. struct dai_ctrl_blk *ctl = blk;
  720. if (ctl->dirty.bf.srtctl) {
  721. if (idx < 4) {
  722. /* S/PDIF SRTs */
  723. hw_write_20kx(hw, SRTSCTL+0x4*idx, ctl->srtctl);
  724. } else {
  725. /* I2S SRT */
  726. hw_write_20kx(hw, SRTICTL, ctl->srtctl);
  727. }
  728. ctl->dirty.bf.srtctl = 0;
  729. }
  730. return 0;
  731. }
  732. static int dai_get_ctrl_blk(void **rblk)
  733. {
  734. struct dai_ctrl_blk *blk;
  735. *rblk = NULL;
  736. blk = kzalloc(sizeof(*blk), GFP_KERNEL);
  737. if (NULL == blk)
  738. return -ENOMEM;
  739. *rblk = blk;
  740. return 0;
  741. }
  742. static int dai_put_ctrl_blk(void *blk)
  743. {
  744. kfree((struct dai_ctrl_blk *)blk);
  745. return 0;
  746. }
  747. static int dao_set_spos(void *blk, unsigned int spos)
  748. {
  749. ((struct dao_ctrl_blk *)blk)->spos = spos;
  750. ((struct dao_ctrl_blk *)blk)->dirty.bf.spos = 1;
  751. return 0;
  752. }
  753. static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk)
  754. {
  755. struct dao_ctrl_blk *ctl = blk;
  756. if (ctl->dirty.bf.spos) {
  757. if (idx < 4) {
  758. /* S/PDIF SPOSx */
  759. hw_write_20kx(hw, SPOS+0x4*idx, ctl->spos);
  760. }
  761. ctl->dirty.bf.spos = 0;
  762. }
  763. return 0;
  764. }
  765. static int dao_get_spos(void *blk, unsigned int *spos)
  766. {
  767. *spos = ((struct dao_ctrl_blk *)blk)->spos;
  768. return 0;
  769. }
  770. static int dao_get_ctrl_blk(void **rblk)
  771. {
  772. struct dao_ctrl_blk *blk;
  773. *rblk = NULL;
  774. blk = kzalloc(sizeof(*blk), GFP_KERNEL);
  775. if (NULL == blk)
  776. return -ENOMEM;
  777. *rblk = blk;
  778. return 0;
  779. }
  780. static int dao_put_ctrl_blk(void *blk)
  781. {
  782. kfree((struct dao_ctrl_blk *)blk);
  783. return 0;
  784. }
  785. static int daio_mgr_enb_dai(void *blk, unsigned int idx)
  786. {
  787. struct daio_mgr_ctrl_blk *ctl = blk;
  788. if (idx < 4) {
  789. /* S/PDIF input */
  790. set_field(&ctl->spictl, SPICTL_EN << (idx*8), 1);
  791. ctl->dirty.bf.spictl |= (0x1 << idx);
  792. } else {
  793. /* I2S input */
  794. idx %= 4;
  795. set_field(&ctl->i2sctl, I2SCTL_EI << (idx*8), 1);
  796. ctl->dirty.bf.i2sictl |= (0x1 << idx);
  797. }
  798. return 0;
  799. }
  800. static int daio_mgr_dsb_dai(void *blk, unsigned int idx)
  801. {
  802. struct daio_mgr_ctrl_blk *ctl = blk;
  803. if (idx < 4) {
  804. /* S/PDIF input */
  805. set_field(&ctl->spictl, SPICTL_EN << (idx*8), 0);
  806. ctl->dirty.bf.spictl |= (0x1 << idx);
  807. } else {
  808. /* I2S input */
  809. idx %= 4;
  810. set_field(&ctl->i2sctl, I2SCTL_EI << (idx*8), 0);
  811. ctl->dirty.bf.i2sictl |= (0x1 << idx);
  812. }
  813. return 0;
  814. }
  815. static int daio_mgr_enb_dao(void *blk, unsigned int idx)
  816. {
  817. struct daio_mgr_ctrl_blk *ctl = blk;
  818. if (idx < 4) {
  819. /* S/PDIF output */
  820. set_field(&ctl->spoctl, SPOCTL_OE << (idx*8), 1);
  821. ctl->dirty.bf.spoctl |= (0x1 << idx);
  822. } else {
  823. /* I2S output */
  824. idx %= 4;
  825. set_field(&ctl->i2sctl, I2SCTL_EA << (idx*8), 1);
  826. ctl->dirty.bf.i2soctl |= (0x1 << idx);
  827. }
  828. return 0;
  829. }
  830. static int daio_mgr_dsb_dao(void *blk, unsigned int idx)
  831. {
  832. struct daio_mgr_ctrl_blk *ctl = blk;
  833. if (idx < 4) {
  834. /* S/PDIF output */
  835. set_field(&ctl->spoctl, SPOCTL_OE << (idx*8), 0);
  836. ctl->dirty.bf.spoctl |= (0x1 << idx);
  837. } else {
  838. /* I2S output */
  839. idx %= 4;
  840. set_field(&ctl->i2sctl, I2SCTL_EA << (idx*8), 0);
  841. ctl->dirty.bf.i2soctl |= (0x1 << idx);
  842. }
  843. return 0;
  844. }
  845. static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf)
  846. {
  847. struct daio_mgr_ctrl_blk *ctl = blk;
  848. if (idx < 4) {
  849. /* S/PDIF output */
  850. switch ((conf & 0x7)) {
  851. case 0:
  852. set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 3);
  853. break; /* CDIF */
  854. case 1:
  855. set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 0);
  856. break;
  857. case 2:
  858. set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 1);
  859. break;
  860. case 4:
  861. set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 2);
  862. break;
  863. default:
  864. break;
  865. }
  866. set_field(&ctl->spoctl, SPOCTL_LIV << (idx*8),
  867. (conf >> 4) & 0x1); /* Non-audio */
  868. set_field(&ctl->spoctl, SPOCTL_RIV << (idx*8),
  869. (conf >> 4) & 0x1); /* Non-audio */
  870. set_field(&ctl->spoctl, SPOCTL_OS << (idx*8),
  871. ((conf >> 3) & 0x1) ? 2 : 2); /* Raw */
  872. ctl->dirty.bf.spoctl |= (0x1 << idx);
  873. } else {
  874. /* I2S output */
  875. /*idx %= 4; */
  876. }
  877. return 0;
  878. }
  879. static int daio_mgr_set_imaparc(void *blk, unsigned int slot)
  880. {
  881. struct daio_mgr_ctrl_blk *ctl = blk;
  882. set_field(&ctl->daoimap.aim, AIM_ARC, slot);
  883. ctl->dirty.bf.daoimap = 1;
  884. return 0;
  885. }
  886. static int daio_mgr_set_imapnxt(void *blk, unsigned int next)
  887. {
  888. struct daio_mgr_ctrl_blk *ctl = blk;
  889. set_field(&ctl->daoimap.aim, AIM_NXT, next);
  890. ctl->dirty.bf.daoimap = 1;
  891. return 0;
  892. }
  893. static int daio_mgr_set_imapaddr(void *blk, unsigned int addr)
  894. {
  895. struct daio_mgr_ctrl_blk *ctl = blk;
  896. ctl->daoimap.idx = addr;
  897. ctl->dirty.bf.daoimap = 1;
  898. return 0;
  899. }
  900. static int daio_mgr_commit_write(struct hw *hw, void *blk)
  901. {
  902. struct daio_mgr_ctrl_blk *ctl = blk;
  903. int i = 0;
  904. if (ctl->dirty.bf.i2sictl || ctl->dirty.bf.i2soctl) {
  905. for (i = 0; i < 4; i++) {
  906. if ((ctl->dirty.bf.i2sictl & (0x1 << i)))
  907. ctl->dirty.bf.i2sictl &= ~(0x1 << i);
  908. if ((ctl->dirty.bf.i2soctl & (0x1 << i)))
  909. ctl->dirty.bf.i2soctl &= ~(0x1 << i);
  910. }
  911. hw_write_20kx(hw, I2SCTL, ctl->i2sctl);
  912. mdelay(1);
  913. }
  914. if (ctl->dirty.bf.spoctl) {
  915. for (i = 0; i < 4; i++) {
  916. if ((ctl->dirty.bf.spoctl & (0x1 << i)))
  917. ctl->dirty.bf.spoctl &= ~(0x1 << i);
  918. }
  919. hw_write_20kx(hw, SPOCTL, ctl->spoctl);
  920. mdelay(1);
  921. }
  922. if (ctl->dirty.bf.spictl) {
  923. for (i = 0; i < 4; i++) {
  924. if ((ctl->dirty.bf.spictl & (0x1 << i)))
  925. ctl->dirty.bf.spictl &= ~(0x1 << i);
  926. }
  927. hw_write_20kx(hw, SPICTL, ctl->spictl);
  928. mdelay(1);
  929. }
  930. if (ctl->dirty.bf.daoimap) {
  931. hw_write_20kx(hw, DAOIMAP+ctl->daoimap.idx*4,
  932. ctl->daoimap.aim);
  933. ctl->dirty.bf.daoimap = 0;
  934. }
  935. return 0;
  936. }
  937. static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk)
  938. {
  939. struct daio_mgr_ctrl_blk *blk;
  940. *rblk = NULL;
  941. blk = kzalloc(sizeof(*blk), GFP_KERNEL);
  942. if (NULL == blk)
  943. return -ENOMEM;
  944. blk->i2sctl = hw_read_20kx(hw, I2SCTL);
  945. blk->spoctl = hw_read_20kx(hw, SPOCTL);
  946. blk->spictl = hw_read_20kx(hw, SPICTL);
  947. *rblk = blk;
  948. return 0;
  949. }
  950. static int daio_mgr_put_ctrl_blk(void *blk)
  951. {
  952. kfree((struct daio_mgr_ctrl_blk *)blk);
  953. return 0;
  954. }
  955. /* Card hardware initialization block */
  956. struct dac_conf {
  957. unsigned int msr; /* master sample rate in rsrs */
  958. };
  959. struct adc_conf {
  960. unsigned int msr; /* master sample rate in rsrs */
  961. unsigned char input; /* the input source of ADC */
  962. unsigned char mic20db; /* boost mic by 20db if input is microphone */
  963. };
  964. struct daio_conf {
  965. unsigned int msr; /* master sample rate in rsrs */
  966. };
  967. struct trn_conf {
  968. unsigned long vm_pgt_phys;
  969. };
  970. static int hw_daio_init(struct hw *hw, const struct daio_conf *info)
  971. {
  972. u32 i2sorg = 0;
  973. u32 spdorg = 0;
  974. /* Read I2S CTL. Keep original value. */
  975. /*i2sorg = hw_read_20kx(hw, I2SCTL);*/
  976. i2sorg = 0x94040404; /* enable all audio out and I2S-D input */
  977. /* Program I2S with proper master sample rate and enable
  978. * the correct I2S channel. */
  979. i2sorg &= 0xfffffffc;
  980. /* Enable S/PDIF-out-A in fixed 24-bit data
  981. * format and default to 48kHz. */
  982. /* Disable all before doing any changes. */
  983. hw_write_20kx(hw, SPOCTL, 0x0);
  984. spdorg = 0x05;
  985. switch (info->msr) {
  986. case 1:
  987. i2sorg |= 1;
  988. spdorg |= (0x0 << 6);
  989. break;
  990. case 2:
  991. i2sorg |= 2;
  992. spdorg |= (0x1 << 6);
  993. break;
  994. case 4:
  995. i2sorg |= 3;
  996. spdorg |= (0x2 << 6);
  997. break;
  998. default:
  999. i2sorg |= 1;
  1000. break;
  1001. }
  1002. hw_write_20kx(hw, I2SCTL, i2sorg);
  1003. hw_write_20kx(hw, SPOCTL, spdorg);
  1004. /* Enable S/PDIF-in-A in fixed 24-bit data format. */
  1005. /* Disable all before doing any changes. */
  1006. hw_write_20kx(hw, SPICTL, 0x0);
  1007. mdelay(1);
  1008. spdorg = 0x0a0a0a0a;
  1009. hw_write_20kx(hw, SPICTL, spdorg);
  1010. mdelay(1);
  1011. return 0;
  1012. }
  1013. /* TRANSPORT operations */
  1014. static int hw_trn_init(struct hw *hw, const struct trn_conf *info)
  1015. {
  1016. u32 trnctl = 0;
  1017. unsigned long ptp_phys_low = 0, ptp_phys_high = 0;
  1018. /* Set up device page table */
  1019. if ((~0UL) == info->vm_pgt_phys) {
  1020. printk(KERN_ERR "Wrong device page table page address!\n");
  1021. return -1;
  1022. }
  1023. trnctl = 0x13; /* 32-bit, 4k-size page */
  1024. ptp_phys_low = (u32)info->vm_pgt_phys;
  1025. ptp_phys_high = upper_32_bits(info->vm_pgt_phys);
  1026. if (sizeof(void *) == 8) /* 64bit address */
  1027. trnctl |= (1 << 2);
  1028. #if 0 /* Only 4k h/w pages for simplicitiy */
  1029. #if PAGE_SIZE == 8192
  1030. trnctl |= (1<<5);
  1031. #endif
  1032. #endif
  1033. hw_write_20kx(hw, PTPALX, ptp_phys_low);
  1034. hw_write_20kx(hw, PTPAHX, ptp_phys_high);
  1035. hw_write_20kx(hw, TRNCTL, trnctl);
  1036. hw_write_20kx(hw, TRNIS, 0x200c01); /* realy needed? */
  1037. return 0;
  1038. }
  1039. /* Card initialization */
  1040. #define GCTL_EAC 0x00000001
  1041. #define GCTL_EAI 0x00000002
  1042. #define GCTL_BEP 0x00000004
  1043. #define GCTL_BES 0x00000008
  1044. #define GCTL_DSP 0x00000010
  1045. #define GCTL_DBP 0x00000020
  1046. #define GCTL_ABP 0x00000040
  1047. #define GCTL_TBP 0x00000080
  1048. #define GCTL_SBP 0x00000100
  1049. #define GCTL_FBP 0x00000200
  1050. #define GCTL_XA 0x00000400
  1051. #define GCTL_ET 0x00000800
  1052. #define GCTL_PR 0x00001000
  1053. #define GCTL_MRL 0x00002000
  1054. #define GCTL_SDE 0x00004000
  1055. #define GCTL_SDI 0x00008000
  1056. #define GCTL_SM 0x00010000
  1057. #define GCTL_SR 0x00020000
  1058. #define GCTL_SD 0x00040000
  1059. #define GCTL_SE 0x00080000
  1060. #define GCTL_AID 0x00100000
  1061. static int hw_pll_init(struct hw *hw, unsigned int rsr)
  1062. {
  1063. unsigned int pllctl;
  1064. int i = 0;
  1065. pllctl = (48000 == rsr) ? 0x1480a001 : 0x1480a731;
  1066. for (i = 0; i < 3; i++) {
  1067. if (hw_read_20kx(hw, PLLCTL) == pllctl)
  1068. break;
  1069. hw_write_20kx(hw, PLLCTL, pllctl);
  1070. mdelay(40);
  1071. }
  1072. if (i >= 3) {
  1073. printk(KERN_ALERT "PLL initialization failed!!!\n");
  1074. return -EBUSY;
  1075. }
  1076. return 0;
  1077. }
  1078. static int hw_auto_init(struct hw *hw)
  1079. {
  1080. unsigned int gctl;
  1081. int i;
  1082. gctl = hw_read_20kx(hw, GCTL);
  1083. set_field(&gctl, GCTL_EAI, 0);
  1084. hw_write_20kx(hw, GCTL, gctl);
  1085. set_field(&gctl, GCTL_EAI, 1);
  1086. hw_write_20kx(hw, GCTL, gctl);
  1087. mdelay(10);
  1088. for (i = 0; i < 400000; i++) {
  1089. gctl = hw_read_20kx(hw, GCTL);
  1090. if (get_field(gctl, GCTL_AID))
  1091. break;
  1092. }
  1093. if (!get_field(gctl, GCTL_AID)) {
  1094. printk(KERN_ALERT "Card Auto-init failed!!!\n");
  1095. return -EBUSY;
  1096. }
  1097. return 0;
  1098. }
  1099. static int i2c_unlock(struct hw *hw)
  1100. {
  1101. if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa)
  1102. return 0;
  1103. hw_write_pci(hw, 0xcc, 0x8c);
  1104. hw_write_pci(hw, 0xcc, 0x0e);
  1105. if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa)
  1106. return 0;
  1107. hw_write_pci(hw, 0xcc, 0xee);
  1108. hw_write_pci(hw, 0xcc, 0xaa);
  1109. if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa)
  1110. return 0;
  1111. return -1;
  1112. }
  1113. static void i2c_lock(struct hw *hw)
  1114. {
  1115. if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa)
  1116. hw_write_pci(hw, 0xcc, 0x00);
  1117. }
  1118. static void i2c_write(struct hw *hw, u32 device, u32 addr, u32 data)
  1119. {
  1120. unsigned int ret = 0;
  1121. do {
  1122. ret = hw_read_pci(hw, 0xEC);
  1123. } while (!(ret & 0x800000));
  1124. hw_write_pci(hw, 0xE0, device);
  1125. hw_write_pci(hw, 0xE4, (data << 8) | (addr & 0xff));
  1126. }
  1127. /* DAC operations */
  1128. static int hw_reset_dac(struct hw *hw)
  1129. {
  1130. u32 i = 0;
  1131. u16 gpioorg = 0;
  1132. unsigned int ret = 0;
  1133. if (i2c_unlock(hw))
  1134. return -1;
  1135. do {
  1136. ret = hw_read_pci(hw, 0xEC);
  1137. } while (!(ret & 0x800000));
  1138. hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */
  1139. /* To be effective, need to reset the DAC twice. */
  1140. for (i = 0; i < 2; i++) {
  1141. /* set gpio */
  1142. mdelay(100);
  1143. gpioorg = (u16)hw_read_20kx(hw, GPIO);
  1144. gpioorg &= 0xfffd;
  1145. hw_write_20kx(hw, GPIO, gpioorg);
  1146. mdelay(1);
  1147. hw_write_20kx(hw, GPIO, gpioorg | 0x2);
  1148. }
  1149. i2c_write(hw, 0x00180080, 0x01, 0x80);
  1150. i2c_write(hw, 0x00180080, 0x02, 0x10);
  1151. i2c_lock(hw);
  1152. return 0;
  1153. }
  1154. static int hw_dac_init(struct hw *hw, const struct dac_conf *info)
  1155. {
  1156. u32 data = 0;
  1157. u16 gpioorg = 0;
  1158. u16 subsys_id = 0;
  1159. unsigned int ret = 0;
  1160. pci_read_config_word(hw->pci, PCI_SUBSYSTEM_ID, &subsys_id);
  1161. if ((subsys_id == 0x0022) || (subsys_id == 0x002F)) {
  1162. /* SB055x, unmute outputs */
  1163. gpioorg = (u16)hw_read_20kx(hw, GPIO);
  1164. gpioorg &= 0xffbf; /* set GPIO6 to low */
  1165. gpioorg |= 2; /* set GPIO1 to high */
  1166. hw_write_20kx(hw, GPIO, gpioorg);
  1167. return 0;
  1168. }
  1169. /* mute outputs */
  1170. gpioorg = (u16)hw_read_20kx(hw, GPIO);
  1171. gpioorg &= 0xffbf;
  1172. hw_write_20kx(hw, GPIO, gpioorg);
  1173. hw_reset_dac(hw);
  1174. if (i2c_unlock(hw))
  1175. return -1;
  1176. hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */
  1177. do {
  1178. ret = hw_read_pci(hw, 0xEC);
  1179. } while (!(ret & 0x800000));
  1180. switch (info->msr) {
  1181. case 1:
  1182. data = 0x24;
  1183. break;
  1184. case 2:
  1185. data = 0x25;
  1186. break;
  1187. case 4:
  1188. data = 0x26;
  1189. break;
  1190. default:
  1191. data = 0x24;
  1192. break;
  1193. }
  1194. i2c_write(hw, 0x00180080, 0x06, data);
  1195. i2c_write(hw, 0x00180080, 0x09, data);
  1196. i2c_write(hw, 0x00180080, 0x0c, data);
  1197. i2c_write(hw, 0x00180080, 0x0f, data);
  1198. i2c_lock(hw);
  1199. /* unmute outputs */
  1200. gpioorg = (u16)hw_read_20kx(hw, GPIO);
  1201. gpioorg = gpioorg | 0x40;
  1202. hw_write_20kx(hw, GPIO, gpioorg);
  1203. return 0;
  1204. }
  1205. /* ADC operations */
  1206. static int is_adc_input_selected_SB055x(struct hw *hw, enum ADCSRC type)
  1207. {
  1208. u32 data = 0;
  1209. return data;
  1210. }
  1211. static int is_adc_input_selected_SBx(struct hw *hw, enum ADCSRC type)
  1212. {
  1213. u32 data = 0;
  1214. data = hw_read_20kx(hw, GPIO);
  1215. switch (type) {
  1216. case ADC_MICIN:
  1217. data = ((data & (0x1<<7)) && (data & (0x1<<8)));
  1218. break;
  1219. case ADC_LINEIN:
  1220. data = (!(data & (0x1<<7)) && (data & (0x1<<8)));
  1221. break;
  1222. case ADC_NONE: /* Digital I/O */
  1223. data = (!(data & (0x1<<8)));
  1224. break;
  1225. default:
  1226. data = 0;
  1227. }
  1228. return data;
  1229. }
  1230. static int is_adc_input_selected_hendrix(struct hw *hw, enum ADCSRC type)
  1231. {
  1232. u32 data = 0;
  1233. data = hw_read_20kx(hw, GPIO);
  1234. switch (type) {
  1235. case ADC_MICIN:
  1236. data = (data & (0x1 << 7)) ? 1 : 0;
  1237. break;
  1238. case ADC_LINEIN:
  1239. data = (data & (0x1 << 7)) ? 0 : 1;
  1240. break;
  1241. default:
  1242. data = 0;
  1243. }
  1244. return data;
  1245. }
  1246. static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type)
  1247. {
  1248. u16 subsys_id = 0;
  1249. pci_read_config_word(hw->pci, PCI_SUBSYSTEM_ID, &subsys_id);
  1250. if ((subsys_id == 0x0022) || (subsys_id == 0x002F)) {
  1251. /* SB055x cards */
  1252. return is_adc_input_selected_SB055x(hw, type);
  1253. } else if ((subsys_id == 0x0029) || (subsys_id == 0x0031)) {
  1254. /* SB073x cards */
  1255. return is_adc_input_selected_hendrix(hw, type);
  1256. } else if ((subsys_id & 0xf000) == 0x6000) {
  1257. /* Vista compatible cards */
  1258. return is_adc_input_selected_hendrix(hw, type);
  1259. } else {
  1260. return is_adc_input_selected_SBx(hw, type);
  1261. }
  1262. }
  1263. static int
  1264. adc_input_select_SB055x(struct hw *hw, enum ADCSRC type, unsigned char boost)
  1265. {
  1266. u32 data = 0;
  1267. /*
  1268. * check and set the following GPIO bits accordingly
  1269. * ADC_Gain = GPIO2
  1270. * DRM_off = GPIO3
  1271. * Mic_Pwr_on = GPIO7
  1272. * Digital_IO_Sel = GPIO8
  1273. * Mic_Sw = GPIO9
  1274. * Aux/MicLine_Sw = GPIO12
  1275. */
  1276. data = hw_read_20kx(hw, GPIO);
  1277. data &= 0xec73;
  1278. switch (type) {
  1279. case ADC_MICIN:
  1280. data |= (0x1<<7) | (0x1<<8) | (0x1<<9) ;
  1281. data |= boost ? (0x1<<2) : 0;
  1282. break;
  1283. case ADC_LINEIN:
  1284. data |= (0x1<<8);
  1285. break;
  1286. case ADC_AUX:
  1287. data |= (0x1<<8) | (0x1<<12);
  1288. break;
  1289. case ADC_NONE:
  1290. data |= (0x1<<12); /* set to digital */
  1291. break;
  1292. default:
  1293. return -1;
  1294. }
  1295. hw_write_20kx(hw, GPIO, data);
  1296. return 0;
  1297. }
  1298. static int
  1299. adc_input_select_SBx(struct hw *hw, enum ADCSRC type, unsigned char boost)
  1300. {
  1301. u32 data = 0;
  1302. u32 i2c_data = 0;
  1303. unsigned int ret = 0;
  1304. if (i2c_unlock(hw))
  1305. return -1;
  1306. do {
  1307. ret = hw_read_pci(hw, 0xEC);
  1308. } while (!(ret & 0x800000)); /* i2c ready poll */
  1309. /* set i2c access mode as Direct Control */
  1310. hw_write_pci(hw, 0xEC, 0x05);
  1311. data = hw_read_20kx(hw, GPIO);
  1312. switch (type) {
  1313. case ADC_MICIN:
  1314. data |= ((0x1 << 7) | (0x1 << 8));
  1315. i2c_data = 0x1; /* Mic-in */
  1316. break;
  1317. case ADC_LINEIN:
  1318. data &= ~(0x1 << 7);
  1319. data |= (0x1 << 8);
  1320. i2c_data = 0x2; /* Line-in */
  1321. break;
  1322. case ADC_NONE:
  1323. data &= ~(0x1 << 8);
  1324. i2c_data = 0x0; /* set to Digital */
  1325. break;
  1326. default:
  1327. i2c_lock(hw);
  1328. return -1;
  1329. }
  1330. hw_write_20kx(hw, GPIO, data);
  1331. i2c_write(hw, 0x001a0080, 0x2a, i2c_data);
  1332. if (boost) {
  1333. i2c_write(hw, 0x001a0080, 0x1c, 0xe7); /* +12dB boost */
  1334. i2c_write(hw, 0x001a0080, 0x1e, 0xe7); /* +12dB boost */
  1335. } else {
  1336. i2c_write(hw, 0x001a0080, 0x1c, 0xcf); /* No boost */
  1337. i2c_write(hw, 0x001a0080, 0x1e, 0xcf); /* No boost */
  1338. }
  1339. i2c_lock(hw);
  1340. return 0;
  1341. }
  1342. static int
  1343. adc_input_select_hendrix(struct hw *hw, enum ADCSRC type, unsigned char boost)
  1344. {
  1345. u32 data = 0;
  1346. u32 i2c_data = 0;
  1347. unsigned int ret = 0;
  1348. if (i2c_unlock(hw))
  1349. return -1;
  1350. do {
  1351. ret = hw_read_pci(hw, 0xEC);
  1352. } while (!(ret & 0x800000)); /* i2c ready poll */
  1353. /* set i2c access mode as Direct Control */
  1354. hw_write_pci(hw, 0xEC, 0x05);
  1355. data = hw_read_20kx(hw, GPIO);
  1356. switch (type) {
  1357. case ADC_MICIN:
  1358. data |= (0x1 << 7);
  1359. i2c_data = 0x1; /* Mic-in */
  1360. break;
  1361. case ADC_LINEIN:
  1362. data &= ~(0x1 << 7);
  1363. i2c_data = 0x2; /* Line-in */
  1364. break;
  1365. default:
  1366. i2c_lock(hw);
  1367. return -1;
  1368. }
  1369. hw_write_20kx(hw, GPIO, data);
  1370. i2c_write(hw, 0x001a0080, 0x2a, i2c_data);
  1371. if (boost) {
  1372. i2c_write(hw, 0x001a0080, 0x1c, 0xe7); /* +12dB boost */
  1373. i2c_write(hw, 0x001a0080, 0x1e, 0xe7); /* +12dB boost */
  1374. } else {
  1375. i2c_write(hw, 0x001a0080, 0x1c, 0xcf); /* No boost */
  1376. i2c_write(hw, 0x001a0080, 0x1e, 0xcf); /* No boost */
  1377. }
  1378. i2c_lock(hw);
  1379. return 0;
  1380. }
  1381. static int hw_adc_input_select(struct hw *hw, enum ADCSRC type)
  1382. {
  1383. u16 subsys_id = 0;
  1384. pci_read_config_word(hw->pci, PCI_SUBSYSTEM_ID, &subsys_id);
  1385. if ((subsys_id == 0x0022) || (subsys_id == 0x002F)) {
  1386. /* SB055x cards */
  1387. return adc_input_select_SB055x(hw, type, (ADC_MICIN == type));
  1388. } else if ((subsys_id == 0x0029) || (subsys_id == 0x0031)) {
  1389. /* SB073x cards */
  1390. return adc_input_select_hendrix(hw, type, (ADC_MICIN == type));
  1391. } else if ((subsys_id & 0xf000) == 0x6000) {
  1392. /* Vista compatible cards */
  1393. return adc_input_select_hendrix(hw, type, (ADC_MICIN == type));
  1394. } else {
  1395. return adc_input_select_SBx(hw, type, (ADC_MICIN == type));
  1396. }
  1397. }
  1398. static int adc_init_SB055x(struct hw *hw, int input, int mic20db)
  1399. {
  1400. return adc_input_select_SB055x(hw, input, mic20db);
  1401. }
  1402. static int adc_init_SBx(struct hw *hw, int input, int mic20db)
  1403. {
  1404. u16 gpioorg;
  1405. u16 input_source;
  1406. u32 adcdata = 0;
  1407. unsigned int ret = 0;
  1408. input_source = 0x100; /* default to analog */
  1409. switch (input) {
  1410. case ADC_MICIN:
  1411. adcdata = 0x1;
  1412. input_source = 0x180; /* set GPIO7 to select Mic */
  1413. break;
  1414. case ADC_LINEIN:
  1415. adcdata = 0x2;
  1416. break;
  1417. case ADC_VIDEO:
  1418. adcdata = 0x4;
  1419. break;
  1420. case ADC_AUX:
  1421. adcdata = 0x8;
  1422. break;
  1423. case ADC_NONE:
  1424. adcdata = 0x0;
  1425. input_source = 0x0; /* set to Digital */
  1426. break;
  1427. default:
  1428. break;
  1429. }
  1430. if (i2c_unlock(hw))
  1431. return -1;
  1432. do {
  1433. ret = hw_read_pci(hw, 0xEC);
  1434. } while (!(ret & 0x800000)); /* i2c ready poll */
  1435. hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */
  1436. i2c_write(hw, 0x001a0080, 0x0e, 0x08);
  1437. i2c_write(hw, 0x001a0080, 0x18, 0x0a);
  1438. i2c_write(hw, 0x001a0080, 0x28, 0x86);
  1439. i2c_write(hw, 0x001a0080, 0x2a, adcdata);
  1440. if (mic20db) {
  1441. i2c_write(hw, 0x001a0080, 0x1c, 0xf7);
  1442. i2c_write(hw, 0x001a0080, 0x1e, 0xf7);
  1443. } else {
  1444. i2c_write(hw, 0x001a0080, 0x1c, 0xcf);
  1445. i2c_write(hw, 0x001a0080, 0x1e, 0xcf);
  1446. }
  1447. if (!(hw_read_20kx(hw, ID0) & 0x100))
  1448. i2c_write(hw, 0x001a0080, 0x16, 0x26);
  1449. i2c_lock(hw);
  1450. gpioorg = (u16)hw_read_20kx(hw, GPIO);
  1451. gpioorg &= 0xfe7f;
  1452. gpioorg |= input_source;
  1453. hw_write_20kx(hw, GPIO, gpioorg);
  1454. return 0;
  1455. }
  1456. static int hw_adc_init(struct hw *hw, const struct adc_conf *info)
  1457. {
  1458. int err = 0;
  1459. u16 subsys_id = 0;
  1460. pci_read_config_word(hw->pci, PCI_SUBSYSTEM_ID, &subsys_id);
  1461. if ((subsys_id == 0x0022) || (subsys_id == 0x002F)) {
  1462. /* Sb055x card */
  1463. err = adc_init_SB055x(hw, info->input, info->mic20db);
  1464. } else {
  1465. err = adc_init_SBx(hw, info->input, info->mic20db);
  1466. }
  1467. return err;
  1468. }
  1469. static int hw_have_digit_io_switch(struct hw *hw)
  1470. {
  1471. u16 subsys_id = 0;
  1472. pci_read_config_word(hw->pci, PCI_SUBSYSTEM_ID, &subsys_id);
  1473. /* SB073x and Vista compatible cards have no digit IO switch */
  1474. return !((subsys_id == 0x0029) || (subsys_id == 0x0031)
  1475. || ((subsys_id & 0xf000) == 0x6000));
  1476. }
  1477. #define CTLBITS(a, b, c, d) (((a) << 24) | ((b) << 16) | ((c) << 8) | (d))
  1478. #define UAA_CFG_PWRSTATUS 0x44
  1479. #define UAA_CFG_SPACE_FLAG 0xA0
  1480. #define UAA_CORE_CHANGE 0x3FFC
  1481. static int uaa_to_xfi(struct pci_dev *pci)
  1482. {
  1483. unsigned int bar0, bar1, bar2, bar3, bar4, bar5;
  1484. unsigned int cmd, irq, cl_size, l_timer, pwr;
  1485. unsigned int is_uaa = 0;
  1486. unsigned int data[4] = {0};
  1487. unsigned int io_base;
  1488. void *mem_base;
  1489. int i = 0;
  1490. const u32 CTLX = CTLBITS('C', 'T', 'L', 'X');
  1491. const u32 CTL_ = CTLBITS('C', 'T', 'L', '-');
  1492. const u32 CTLF = CTLBITS('C', 'T', 'L', 'F');
  1493. const u32 CTLi = CTLBITS('C', 'T', 'L', 'i');
  1494. const u32 CTLA = CTLBITS('C', 'T', 'L', 'A');
  1495. const u32 CTLZ = CTLBITS('C', 'T', 'L', 'Z');
  1496. const u32 CTLL = CTLBITS('C', 'T', 'L', 'L');
  1497. /* By default, Hendrix card UAA Bar0 should be using memory... */
  1498. io_base = pci_resource_start(pci, 0);
  1499. mem_base = ioremap(io_base, pci_resource_len(pci, 0));
  1500. if (NULL == mem_base)
  1501. return -ENOENT;
  1502. /* Read current mode from Mode Change Register */
  1503. for (i = 0; i < 4; i++)
  1504. data[i] = readl(mem_base + UAA_CORE_CHANGE);
  1505. /* Determine current mode... */
  1506. if (data[0] == CTLA) {
  1507. is_uaa = ((data[1] == CTLZ && data[2] == CTLL
  1508. && data[3] == CTLA) || (data[1] == CTLA
  1509. && data[2] == CTLZ && data[3] == CTLL));
  1510. } else if (data[0] == CTLZ) {
  1511. is_uaa = (data[1] == CTLL
  1512. && data[2] == CTLA && data[3] == CTLA);
  1513. } else if (data[0] == CTLL) {
  1514. is_uaa = (data[1] == CTLA
  1515. && data[2] == CTLA && data[3] == CTLZ);
  1516. } else {
  1517. is_uaa = 0;
  1518. }
  1519. if (!is_uaa) {
  1520. /* Not in UAA mode currently. Return directly. */
  1521. iounmap(mem_base);
  1522. return 0;
  1523. }
  1524. pci_read_config_dword(pci, PCI_BASE_ADDRESS_0, &bar0);
  1525. pci_read_config_dword(pci, PCI_BASE_ADDRESS_1, &bar1);
  1526. pci_read_config_dword(pci, PCI_BASE_ADDRESS_2, &bar2);
  1527. pci_read_config_dword(pci, PCI_BASE_ADDRESS_3, &bar3);
  1528. pci_read_config_dword(pci, PCI_BASE_ADDRESS_4, &bar4);
  1529. pci_read_config_dword(pci, PCI_BASE_ADDRESS_5, &bar5);
  1530. pci_read_config_dword(pci, PCI_INTERRUPT_LINE, &irq);
  1531. pci_read_config_dword(pci, PCI_CACHE_LINE_SIZE, &cl_size);
  1532. pci_read_config_dword(pci, PCI_LATENCY_TIMER, &l_timer);
  1533. pci_read_config_dword(pci, UAA_CFG_PWRSTATUS, &pwr);
  1534. pci_read_config_dword(pci, PCI_COMMAND, &cmd);
  1535. /* Set up X-Fi core PCI configuration space. */
  1536. /* Switch to X-Fi config space with BAR0 exposed. */
  1537. pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x87654321);
  1538. /* Copy UAA's BAR5 into X-Fi BAR0 */
  1539. pci_write_config_dword(pci, PCI_BASE_ADDRESS_0, bar5);
  1540. /* Switch to X-Fi config space without BAR0 exposed. */
  1541. pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x12345678);
  1542. pci_write_config_dword(pci, PCI_BASE_ADDRESS_1, bar1);
  1543. pci_write_config_dword(pci, PCI_BASE_ADDRESS_2, bar2);
  1544. pci_write_config_dword(pci, PCI_BASE_ADDRESS_3, bar3);
  1545. pci_write_config_dword(pci, PCI_BASE_ADDRESS_4, bar4);
  1546. pci_write_config_dword(pci, PCI_INTERRUPT_LINE, irq);
  1547. pci_write_config_dword(pci, PCI_CACHE_LINE_SIZE, cl_size);
  1548. pci_write_config_dword(pci, PCI_LATENCY_TIMER, l_timer);
  1549. pci_write_config_dword(pci, UAA_CFG_PWRSTATUS, pwr);
  1550. pci_write_config_dword(pci, PCI_COMMAND, cmd);
  1551. /* Switch to X-Fi mode */
  1552. writel(CTLX, (mem_base + UAA_CORE_CHANGE));
  1553. writel(CTL_, (mem_base + UAA_CORE_CHANGE));
  1554. writel(CTLF, (mem_base + UAA_CORE_CHANGE));
  1555. writel(CTLi, (mem_base + UAA_CORE_CHANGE));
  1556. iounmap(mem_base);
  1557. return 0;
  1558. }
  1559. static int hw_card_start(struct hw *hw)
  1560. {
  1561. int err = 0;
  1562. struct pci_dev *pci = hw->pci;
  1563. u16 subsys_id = 0;
  1564. unsigned int dma_mask = 0;
  1565. err = pci_enable_device(pci);
  1566. if (err < 0)
  1567. return err;
  1568. /* Set DMA transfer mask */
  1569. dma_mask = CT_XFI_DMA_MASK;
  1570. if (pci_set_dma_mask(pci, dma_mask) < 0 ||
  1571. pci_set_consistent_dma_mask(pci, dma_mask) < 0) {
  1572. printk(KERN_ERR "architecture does not support PCI "
  1573. "busmaster DMA with mask 0x%x\n", dma_mask);
  1574. err = -ENXIO;
  1575. goto error1;
  1576. }
  1577. err = pci_request_regions(pci, "XFi");
  1578. if (err < 0)
  1579. goto error1;
  1580. /* Switch to X-Fi mode from UAA mode if neeeded */
  1581. pci_read_config_word(pci, PCI_SUBSYSTEM_ID, &subsys_id);
  1582. if ((0x5 == pci->device) && (0x6000 == (subsys_id & 0x6000))) {
  1583. err = uaa_to_xfi(pci);
  1584. if (err)
  1585. goto error2;
  1586. hw->io_base = pci_resource_start(pci, 5);
  1587. } else {
  1588. hw->io_base = pci_resource_start(pci, 0);
  1589. }
  1590. /*if ((err = request_irq(pci->irq, ct_atc_interrupt, IRQF_SHARED,
  1591. atc->chip_details->nm_card, hw))) {
  1592. goto error2;
  1593. }
  1594. hw->irq = pci->irq;
  1595. */
  1596. pci_set_master(pci);
  1597. return 0;
  1598. error2:
  1599. pci_release_regions(pci);
  1600. hw->io_base = 0;
  1601. error1:
  1602. pci_disable_device(pci);
  1603. return err;
  1604. }
  1605. static int hw_card_stop(struct hw *hw)
  1606. {
  1607. /* TODO: Disable interrupt and so on... */
  1608. return 0;
  1609. }
  1610. static int hw_card_shutdown(struct hw *hw)
  1611. {
  1612. if (hw->irq >= 0)
  1613. free_irq(hw->irq, hw);
  1614. hw->irq = -1;
  1615. if (NULL != ((void *)hw->mem_base))
  1616. iounmap((void *)hw->mem_base);
  1617. hw->mem_base = (unsigned long)NULL;
  1618. if (hw->io_base)
  1619. pci_release_regions(hw->pci);
  1620. hw->io_base = 0;
  1621. pci_disable_device(hw->pci);
  1622. return 0;
  1623. }
  1624. static int hw_card_init(struct hw *hw, struct card_conf *info)
  1625. {
  1626. int err;
  1627. unsigned int gctl;
  1628. u16 subsys_id = 0;
  1629. u32 data = 0;
  1630. struct dac_conf dac_info = {0};
  1631. struct adc_conf adc_info = {0};
  1632. struct daio_conf daio_info = {0};
  1633. struct trn_conf trn_info = {0};
  1634. /* Get PCI io port base address and do Hendrix switch if needed. */
  1635. if (!hw->io_base) {
  1636. err = hw_card_start(hw);
  1637. if (err)
  1638. return err;
  1639. }
  1640. /* PLL init */
  1641. err = hw_pll_init(hw, info->rsr);
  1642. if (err < 0)
  1643. return err;
  1644. /* kick off auto-init */
  1645. err = hw_auto_init(hw);
  1646. if (err < 0)
  1647. return err;
  1648. /* Enable audio ring */
  1649. gctl = hw_read_20kx(hw, GCTL);
  1650. set_field(&gctl, GCTL_EAC, 1);
  1651. set_field(&gctl, GCTL_DBP, 1);
  1652. set_field(&gctl, GCTL_TBP, 1);
  1653. set_field(&gctl, GCTL_FBP, 1);
  1654. set_field(&gctl, GCTL_ET, 1);
  1655. hw_write_20kx(hw, GCTL, gctl);
  1656. mdelay(10);
  1657. /* Reset all global pending interrupts */
  1658. hw_write_20kx(hw, GIE, 0);
  1659. /* Reset all SRC pending interrupts */
  1660. hw_write_20kx(hw, SRCIP, 0);
  1661. mdelay(30);
  1662. pci_read_config_word(hw->pci, PCI_SUBSYSTEM_ID, &subsys_id);
  1663. /* Detect the card ID and configure GPIO accordingly. */
  1664. if ((subsys_id == 0x0022) || (subsys_id == 0x002F)) {
  1665. /* SB055x cards */
  1666. hw_write_20kx(hw, GPIOCTL, 0x13fe);
  1667. } else if ((subsys_id == 0x0029) || (subsys_id == 0x0031)) {
  1668. /* SB073x cards */
  1669. hw_write_20kx(hw, GPIOCTL, 0x00e6);
  1670. } else if ((subsys_id & 0xf000) == 0x6000) {
  1671. /* Vista compatible cards */
  1672. hw_write_20kx(hw, GPIOCTL, 0x00c2);
  1673. } else {
  1674. hw_write_20kx(hw, GPIOCTL, 0x01e6);
  1675. }
  1676. trn_info.vm_pgt_phys = info->vm_pgt_phys;
  1677. err = hw_trn_init(hw, &trn_info);
  1678. if (err < 0)
  1679. return err;
  1680. daio_info.msr = info->msr;
  1681. err = hw_daio_init(hw, &daio_info);
  1682. if (err < 0)
  1683. return err;
  1684. dac_info.msr = info->msr;
  1685. err = hw_dac_init(hw, &dac_info);
  1686. if (err < 0)
  1687. return err;
  1688. adc_info.msr = info->msr;
  1689. adc_info.input = ADC_LINEIN;
  1690. adc_info.mic20db = 0;
  1691. err = hw_adc_init(hw, &adc_info);
  1692. if (err < 0)
  1693. return err;
  1694. data = hw_read_20kx(hw, SRCMCTL);
  1695. data |= 0x1; /* Enables input from the audio ring */
  1696. hw_write_20kx(hw, SRCMCTL, data);
  1697. return 0;
  1698. }
  1699. static u32 hw_read_20kx(struct hw *hw, u32 reg)
  1700. {
  1701. u32 value;
  1702. unsigned long flags;
  1703. spin_lock_irqsave(
  1704. &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags);
  1705. outl(reg, hw->io_base + 0x0);
  1706. value = inl(hw->io_base + 0x4);
  1707. spin_unlock_irqrestore(
  1708. &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags);
  1709. return value;
  1710. }
  1711. static void hw_write_20kx(struct hw *hw, u32 reg, u32 data)
  1712. {
  1713. unsigned long flags;
  1714. spin_lock_irqsave(
  1715. &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags);
  1716. outl(reg, hw->io_base + 0x0);
  1717. outl(data, hw->io_base + 0x4);
  1718. spin_unlock_irqrestore(
  1719. &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags);
  1720. }
  1721. static u32 hw_read_pci(struct hw *hw, u32 reg)
  1722. {
  1723. u32 value;
  1724. unsigned long flags;
  1725. spin_lock_irqsave(
  1726. &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags);
  1727. outl(reg, hw->io_base + 0x10);
  1728. value = inl(hw->io_base + 0x14);
  1729. spin_unlock_irqrestore(
  1730. &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags);
  1731. return value;
  1732. }
  1733. static void hw_write_pci(struct hw *hw, u32 reg, u32 data)
  1734. {
  1735. unsigned long flags;
  1736. spin_lock_irqsave(
  1737. &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags);
  1738. outl(reg, hw->io_base + 0x10);
  1739. outl(data, hw->io_base + 0x14);
  1740. spin_unlock_irqrestore(
  1741. &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags);
  1742. }
  1743. int create_20k1_hw_obj(struct hw **rhw)
  1744. {
  1745. struct hw *hw;
  1746. struct hw20k1 *hw20k1;
  1747. *rhw = NULL;
  1748. hw20k1 = kzalloc(sizeof(*hw20k1), GFP_KERNEL);
  1749. if (NULL == hw20k1)
  1750. return -ENOMEM;
  1751. spin_lock_init(&hw20k1->reg_20k1_lock);
  1752. spin_lock_init(&hw20k1->reg_pci_lock);
  1753. hw = &hw20k1->hw;
  1754. hw->io_base = 0;
  1755. hw->mem_base = (unsigned long)NULL;
  1756. hw->irq = -1;
  1757. hw->card_init = hw_card_init;
  1758. hw->card_stop = hw_card_stop;
  1759. hw->pll_init = hw_pll_init;
  1760. hw->is_adc_source_selected = hw_is_adc_input_selected;
  1761. hw->select_adc_source = hw_adc_input_select;
  1762. hw->have_digit_io_switch = hw_have_digit_io_switch;
  1763. hw->src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk;
  1764. hw->src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk;
  1765. hw->src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk;
  1766. hw->src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk;
  1767. hw->src_set_state = src_set_state;
  1768. hw->src_set_bm = src_set_bm;
  1769. hw->src_set_rsr = src_set_rsr;
  1770. hw->src_set_sf = src_set_sf;
  1771. hw->src_set_wr = src_set_wr;
  1772. hw->src_set_pm = src_set_pm;
  1773. hw->src_set_rom = src_set_rom;
  1774. hw->src_set_vo = src_set_vo;
  1775. hw->src_set_st = src_set_st;
  1776. hw->src_set_ie = src_set_ie;
  1777. hw->src_set_ilsz = src_set_ilsz;
  1778. hw->src_set_bp = src_set_bp;
  1779. hw->src_set_cisz = src_set_cisz;
  1780. hw->src_set_ca = src_set_ca;
  1781. hw->src_set_sa = src_set_sa;
  1782. hw->src_set_la = src_set_la;
  1783. hw->src_set_pitch = src_set_pitch;
  1784. hw->src_set_dirty = src_set_dirty;
  1785. hw->src_set_clear_zbufs = src_set_clear_zbufs;
  1786. hw->src_set_dirty_all = src_set_dirty_all;
  1787. hw->src_commit_write = src_commit_write;
  1788. hw->src_get_ca = src_get_ca;
  1789. hw->src_get_dirty = src_get_dirty;
  1790. hw->src_dirty_conj_mask = src_dirty_conj_mask;
  1791. hw->src_mgr_enbs_src = src_mgr_enbs_src;
  1792. hw->src_mgr_enb_src = src_mgr_enb_src;
  1793. hw->src_mgr_dsb_src = src_mgr_dsb_src;
  1794. hw->src_mgr_commit_write = src_mgr_commit_write;
  1795. hw->srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk;
  1796. hw->srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk;
  1797. hw->srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc;
  1798. hw->srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser;
  1799. hw->srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt;
  1800. hw->srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr;
  1801. hw->srcimp_mgr_commit_write = srcimp_mgr_commit_write;
  1802. hw->amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk;
  1803. hw->amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk;
  1804. hw->amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk;
  1805. hw->amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk;
  1806. hw->amixer_set_mode = amixer_set_mode;
  1807. hw->amixer_set_iv = amixer_set_iv;
  1808. hw->amixer_set_x = amixer_set_x;
  1809. hw->amixer_set_y = amixer_set_y;
  1810. hw->amixer_set_sadr = amixer_set_sadr;
  1811. hw->amixer_set_se = amixer_set_se;
  1812. hw->amixer_set_dirty = amixer_set_dirty;
  1813. hw->amixer_set_dirty_all = amixer_set_dirty_all;
  1814. hw->amixer_commit_write = amixer_commit_write;
  1815. hw->amixer_get_y = amixer_get_y;
  1816. hw->amixer_get_dirty = amixer_get_dirty;
  1817. hw->dai_get_ctrl_blk = dai_get_ctrl_blk;
  1818. hw->dai_put_ctrl_blk = dai_put_ctrl_blk;
  1819. hw->dai_srt_set_srco = dai_srt_set_srcr;
  1820. hw->dai_srt_set_srcm = dai_srt_set_srcl;
  1821. hw->dai_srt_set_rsr = dai_srt_set_rsr;
  1822. hw->dai_srt_set_drat = dai_srt_set_drat;
  1823. hw->dai_srt_set_ec = dai_srt_set_ec;
  1824. hw->dai_srt_set_et = dai_srt_set_et;
  1825. hw->dai_commit_write = dai_commit_write;
  1826. hw->dao_get_ctrl_blk = dao_get_ctrl_blk;
  1827. hw->dao_put_ctrl_blk = dao_put_ctrl_blk;
  1828. hw->dao_set_spos = dao_set_spos;
  1829. hw->dao_commit_write = dao_commit_write;
  1830. hw->dao_get_spos = dao_get_spos;
  1831. hw->daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk;
  1832. hw->daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk;
  1833. hw->daio_mgr_enb_dai = daio_mgr_enb_dai;
  1834. hw->daio_mgr_dsb_dai = daio_mgr_dsb_dai;
  1835. hw->daio_mgr_enb_dao = daio_mgr_enb_dao;
  1836. hw->daio_mgr_dsb_dao = daio_mgr_dsb_dao;
  1837. hw->daio_mgr_dao_init = daio_mgr_dao_init;
  1838. hw->daio_mgr_set_imaparc = daio_mgr_set_imaparc;
  1839. hw->daio_mgr_set_imapnxt = daio_mgr_set_imapnxt;
  1840. hw->daio_mgr_set_imapaddr = daio_mgr_set_imapaddr;
  1841. hw->daio_mgr_commit_write = daio_mgr_commit_write;
  1842. *rhw = hw;
  1843. return 0;
  1844. }
  1845. int destroy_20k1_hw_obj(struct hw *hw)
  1846. {
  1847. if (hw->io_base)
  1848. hw_card_shutdown(hw);
  1849. kfree(container_of(hw, struct hw20k1, hw));
  1850. return 0;
  1851. }