cxgb3_offload.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439
  1. /*
  2. * Copyright (c) 2006-2008 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33. #include <linux/list.h>
  34. #include <linux/slab.h>
  35. #include <net/neighbour.h>
  36. #include <linux/notifier.h>
  37. #include <linux/atomic.h>
  38. #include <linux/proc_fs.h>
  39. #include <linux/if_vlan.h>
  40. #include <net/netevent.h>
  41. #include <linux/highmem.h>
  42. #include <linux/vmalloc.h>
  43. #include <linux/export.h>
  44. #include "common.h"
  45. #include "regs.h"
  46. #include "cxgb3_ioctl.h"
  47. #include "cxgb3_ctl_defs.h"
  48. #include "cxgb3_defs.h"
  49. #include "l2t.h"
  50. #include "firmware_exports.h"
  51. #include "cxgb3_offload.h"
  52. static LIST_HEAD(client_list);
  53. static LIST_HEAD(ofld_dev_list);
  54. static DEFINE_MUTEX(cxgb3_db_lock);
  55. static DEFINE_RWLOCK(adapter_list_lock);
  56. static LIST_HEAD(adapter_list);
  57. static const unsigned int MAX_ATIDS = 64 * 1024;
  58. static const unsigned int ATID_BASE = 0x10000;
  59. static void cxgb_neigh_update(struct neighbour *neigh);
  60. static void cxgb_redirect(struct dst_entry *old, struct neighbour *old_neigh,
  61. struct dst_entry *new, struct neighbour *new_neigh,
  62. const void *daddr);
  63. static inline int offload_activated(struct t3cdev *tdev)
  64. {
  65. const struct adapter *adapter = tdev2adap(tdev);
  66. return test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
  67. }
  68. /**
  69. * cxgb3_register_client - register an offload client
  70. * @client: the client
  71. *
  72. * Add the client to the client list,
  73. * and call backs the client for each activated offload device
  74. */
  75. void cxgb3_register_client(struct cxgb3_client *client)
  76. {
  77. struct t3cdev *tdev;
  78. mutex_lock(&cxgb3_db_lock);
  79. list_add_tail(&client->client_list, &client_list);
  80. if (client->add) {
  81. list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
  82. if (offload_activated(tdev))
  83. client->add(tdev);
  84. }
  85. }
  86. mutex_unlock(&cxgb3_db_lock);
  87. }
  88. EXPORT_SYMBOL(cxgb3_register_client);
  89. /**
  90. * cxgb3_unregister_client - unregister an offload client
  91. * @client: the client
  92. *
  93. * Remove the client to the client list,
  94. * and call backs the client for each activated offload device.
  95. */
  96. void cxgb3_unregister_client(struct cxgb3_client *client)
  97. {
  98. struct t3cdev *tdev;
  99. mutex_lock(&cxgb3_db_lock);
  100. list_del(&client->client_list);
  101. if (client->remove) {
  102. list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
  103. if (offload_activated(tdev))
  104. client->remove(tdev);
  105. }
  106. }
  107. mutex_unlock(&cxgb3_db_lock);
  108. }
  109. EXPORT_SYMBOL(cxgb3_unregister_client);
  110. /**
  111. * cxgb3_add_clients - activate registered clients for an offload device
  112. * @tdev: the offload device
  113. *
  114. * Call backs all registered clients once a offload device is activated
  115. */
  116. void cxgb3_add_clients(struct t3cdev *tdev)
  117. {
  118. struct cxgb3_client *client;
  119. mutex_lock(&cxgb3_db_lock);
  120. list_for_each_entry(client, &client_list, client_list) {
  121. if (client->add)
  122. client->add(tdev);
  123. }
  124. mutex_unlock(&cxgb3_db_lock);
  125. }
  126. /**
  127. * cxgb3_remove_clients - deactivates registered clients
  128. * for an offload device
  129. * @tdev: the offload device
  130. *
  131. * Call backs all registered clients once a offload device is deactivated
  132. */
  133. void cxgb3_remove_clients(struct t3cdev *tdev)
  134. {
  135. struct cxgb3_client *client;
  136. mutex_lock(&cxgb3_db_lock);
  137. list_for_each_entry(client, &client_list, client_list) {
  138. if (client->remove)
  139. client->remove(tdev);
  140. }
  141. mutex_unlock(&cxgb3_db_lock);
  142. }
  143. void cxgb3_event_notify(struct t3cdev *tdev, u32 event, u32 port)
  144. {
  145. struct cxgb3_client *client;
  146. mutex_lock(&cxgb3_db_lock);
  147. list_for_each_entry(client, &client_list, client_list) {
  148. if (client->event_handler)
  149. client->event_handler(tdev, event, port);
  150. }
  151. mutex_unlock(&cxgb3_db_lock);
  152. }
  153. static struct net_device *get_iff_from_mac(struct adapter *adapter,
  154. const unsigned char *mac,
  155. unsigned int vlan)
  156. {
  157. int i;
  158. for_each_port(adapter, i) {
  159. struct net_device *dev = adapter->port[i];
  160. if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) {
  161. rcu_read_lock();
  162. if (vlan && vlan != VLAN_VID_MASK) {
  163. dev = __vlan_find_dev_deep(dev, vlan);
  164. } else if (netif_is_bond_slave(dev)) {
  165. struct net_device *upper_dev;
  166. while ((upper_dev =
  167. netdev_master_upper_dev_get_rcu(dev)))
  168. dev = upper_dev;
  169. }
  170. rcu_read_unlock();
  171. return dev;
  172. }
  173. }
  174. return NULL;
  175. }
  176. static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
  177. void *data)
  178. {
  179. int i;
  180. int ret = 0;
  181. unsigned int val = 0;
  182. struct ulp_iscsi_info *uiip = data;
  183. switch (req) {
  184. case ULP_ISCSI_GET_PARAMS:
  185. uiip->pdev = adapter->pdev;
  186. uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
  187. uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
  188. uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
  189. val = t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ);
  190. for (i = 0; i < 4; i++, val >>= 8)
  191. uiip->pgsz_factor[i] = val & 0xFF;
  192. val = t3_read_reg(adapter, A_TP_PARA_REG7);
  193. uiip->max_txsz =
  194. uiip->max_rxsz = min((val >> S_PMMAXXFERLEN0)&M_PMMAXXFERLEN0,
  195. (val >> S_PMMAXXFERLEN1)&M_PMMAXXFERLEN1);
  196. /*
  197. * On tx, the iscsi pdu has to be <= tx page size and has to
  198. * fit into the Tx PM FIFO.
  199. */
  200. val = min(adapter->params.tp.tx_pg_size,
  201. t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
  202. uiip->max_txsz = min(val, uiip->max_txsz);
  203. /* set MaxRxData to 16224 */
  204. val = t3_read_reg(adapter, A_TP_PARA_REG2);
  205. if ((val >> S_MAXRXDATA) != 0x3f60) {
  206. val &= (M_RXCOALESCESIZE << S_RXCOALESCESIZE);
  207. val |= V_MAXRXDATA(0x3f60);
  208. pr_info("%s, iscsi set MaxRxData to 16224 (0x%x)\n",
  209. adapter->name, val);
  210. t3_write_reg(adapter, A_TP_PARA_REG2, val);
  211. }
  212. /*
  213. * on rx, the iscsi pdu has to be < rx page size and the
  214. * the max rx data length programmed in TP
  215. */
  216. val = min(adapter->params.tp.rx_pg_size,
  217. ((t3_read_reg(adapter, A_TP_PARA_REG2)) >>
  218. S_MAXRXDATA) & M_MAXRXDATA);
  219. uiip->max_rxsz = min(val, uiip->max_rxsz);
  220. break;
  221. case ULP_ISCSI_SET_PARAMS:
  222. t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
  223. /* program the ddp page sizes */
  224. for (i = 0; i < 4; i++)
  225. val |= (uiip->pgsz_factor[i] & 0xF) << (8 * i);
  226. if (val && (val != t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ))) {
  227. pr_info("%s, setting iscsi pgsz 0x%x, %u,%u,%u,%u\n",
  228. adapter->name, val, uiip->pgsz_factor[0],
  229. uiip->pgsz_factor[1], uiip->pgsz_factor[2],
  230. uiip->pgsz_factor[3]);
  231. t3_write_reg(adapter, A_ULPRX_ISCSI_PSZ, val);
  232. }
  233. break;
  234. default:
  235. ret = -EOPNOTSUPP;
  236. }
  237. return ret;
  238. }
  239. /* Response queue used for RDMA events. */
  240. #define ASYNC_NOTIF_RSPQ 0
  241. static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
  242. {
  243. int ret = 0;
  244. switch (req) {
  245. case RDMA_GET_PARAMS: {
  246. struct rdma_info *rdma = data;
  247. struct pci_dev *pdev = adapter->pdev;
  248. rdma->udbell_physbase = pci_resource_start(pdev, 2);
  249. rdma->udbell_len = pci_resource_len(pdev, 2);
  250. rdma->tpt_base =
  251. t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
  252. rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
  253. rdma->pbl_base =
  254. t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
  255. rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
  256. rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
  257. rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
  258. rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL;
  259. rdma->pdev = pdev;
  260. break;
  261. }
  262. case RDMA_CQ_OP:{
  263. unsigned long flags;
  264. struct rdma_cq_op *rdma = data;
  265. /* may be called in any context */
  266. spin_lock_irqsave(&adapter->sge.reg_lock, flags);
  267. ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op,
  268. rdma->credits);
  269. spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
  270. break;
  271. }
  272. case RDMA_GET_MEM:{
  273. struct ch_mem_range *t = data;
  274. struct mc7 *mem;
  275. if ((t->addr & 7) || (t->len & 7))
  276. return -EINVAL;
  277. if (t->mem_id == MEM_CM)
  278. mem = &adapter->cm;
  279. else if (t->mem_id == MEM_PMRX)
  280. mem = &adapter->pmrx;
  281. else if (t->mem_id == MEM_PMTX)
  282. mem = &adapter->pmtx;
  283. else
  284. return -EINVAL;
  285. ret =
  286. t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
  287. (u64 *) t->buf);
  288. if (ret)
  289. return ret;
  290. break;
  291. }
  292. case RDMA_CQ_SETUP:{
  293. struct rdma_cq_setup *rdma = data;
  294. spin_lock_irq(&adapter->sge.reg_lock);
  295. ret =
  296. t3_sge_init_cqcntxt(adapter, rdma->id,
  297. rdma->base_addr, rdma->size,
  298. ASYNC_NOTIF_RSPQ,
  299. rdma->ovfl_mode, rdma->credits,
  300. rdma->credit_thres);
  301. spin_unlock_irq(&adapter->sge.reg_lock);
  302. break;
  303. }
  304. case RDMA_CQ_DISABLE:
  305. spin_lock_irq(&adapter->sge.reg_lock);
  306. ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
  307. spin_unlock_irq(&adapter->sge.reg_lock);
  308. break;
  309. case RDMA_CTRL_QP_SETUP:{
  310. struct rdma_ctrlqp_setup *rdma = data;
  311. spin_lock_irq(&adapter->sge.reg_lock);
  312. ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
  313. SGE_CNTXT_RDMA,
  314. ASYNC_NOTIF_RSPQ,
  315. rdma->base_addr, rdma->size,
  316. FW_RI_TID_START, 1, 0);
  317. spin_unlock_irq(&adapter->sge.reg_lock);
  318. break;
  319. }
  320. case RDMA_GET_MIB: {
  321. spin_lock(&adapter->stats_lock);
  322. t3_tp_get_mib_stats(adapter, (struct tp_mib_stats *)data);
  323. spin_unlock(&adapter->stats_lock);
  324. break;
  325. }
  326. default:
  327. ret = -EOPNOTSUPP;
  328. }
  329. return ret;
  330. }
  331. static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
  332. {
  333. struct adapter *adapter = tdev2adap(tdev);
  334. struct tid_range *tid;
  335. struct mtutab *mtup;
  336. struct iff_mac *iffmacp;
  337. struct ddp_params *ddpp;
  338. struct adap_ports *ports;
  339. struct ofld_page_info *rx_page_info;
  340. struct tp_params *tp = &adapter->params.tp;
  341. int i;
  342. switch (req) {
  343. case GET_MAX_OUTSTANDING_WR:
  344. *(unsigned int *)data = FW_WR_NUM;
  345. break;
  346. case GET_WR_LEN:
  347. *(unsigned int *)data = WR_FLITS;
  348. break;
  349. case GET_TX_MAX_CHUNK:
  350. *(unsigned int *)data = 1 << 20; /* 1MB */
  351. break;
  352. case GET_TID_RANGE:
  353. tid = data;
  354. tid->num = t3_mc5_size(&adapter->mc5) -
  355. adapter->params.mc5.nroutes -
  356. adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
  357. tid->base = 0;
  358. break;
  359. case GET_STID_RANGE:
  360. tid = data;
  361. tid->num = adapter->params.mc5.nservers;
  362. tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
  363. adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
  364. break;
  365. case GET_L2T_CAPACITY:
  366. *(unsigned int *)data = 2048;
  367. break;
  368. case GET_MTUS:
  369. mtup = data;
  370. mtup->size = NMTUS;
  371. mtup->mtus = adapter->params.mtus;
  372. break;
  373. case GET_IFF_FROM_MAC:
  374. iffmacp = data;
  375. iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
  376. iffmacp->vlan_tag &
  377. VLAN_VID_MASK);
  378. break;
  379. case GET_DDP_PARAMS:
  380. ddpp = data;
  381. ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
  382. ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
  383. ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
  384. break;
  385. case GET_PORTS:
  386. ports = data;
  387. ports->nports = adapter->params.nports;
  388. for_each_port(adapter, i)
  389. ports->lldevs[i] = adapter->port[i];
  390. break;
  391. case ULP_ISCSI_GET_PARAMS:
  392. case ULP_ISCSI_SET_PARAMS:
  393. if (!offload_running(adapter))
  394. return -EAGAIN;
  395. return cxgb_ulp_iscsi_ctl(adapter, req, data);
  396. case RDMA_GET_PARAMS:
  397. case RDMA_CQ_OP:
  398. case RDMA_CQ_SETUP:
  399. case RDMA_CQ_DISABLE:
  400. case RDMA_CTRL_QP_SETUP:
  401. case RDMA_GET_MEM:
  402. case RDMA_GET_MIB:
  403. if (!offload_running(adapter))
  404. return -EAGAIN;
  405. return cxgb_rdma_ctl(adapter, req, data);
  406. case GET_RX_PAGE_INFO:
  407. rx_page_info = data;
  408. rx_page_info->page_size = tp->rx_pg_size;
  409. rx_page_info->num = tp->rx_num_pgs;
  410. break;
  411. case GET_ISCSI_IPV4ADDR: {
  412. struct iscsi_ipv4addr *p = data;
  413. struct port_info *pi = netdev_priv(p->dev);
  414. p->ipv4addr = pi->iscsi_ipv4addr;
  415. break;
  416. }
  417. case GET_EMBEDDED_INFO: {
  418. struct ch_embedded_info *e = data;
  419. spin_lock(&adapter->stats_lock);
  420. t3_get_fw_version(adapter, &e->fw_vers);
  421. t3_get_tp_version(adapter, &e->tp_vers);
  422. spin_unlock(&adapter->stats_lock);
  423. break;
  424. }
  425. default:
  426. return -EOPNOTSUPP;
  427. }
  428. return 0;
  429. }
  430. /*
  431. * Dummy handler for Rx offload packets in case we get an offload packet before
  432. * proper processing is setup. This complains and drops the packet as it isn't
  433. * normal to get offload packets at this stage.
  434. */
  435. static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
  436. int n)
  437. {
  438. while (n--)
  439. dev_kfree_skb_any(skbs[n]);
  440. return 0;
  441. }
  442. static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
  443. {
  444. }
  445. void cxgb3_set_dummy_ops(struct t3cdev *dev)
  446. {
  447. dev->recv = rx_offload_blackhole;
  448. dev->neigh_update = dummy_neigh_update;
  449. }
  450. /*
  451. * Free an active-open TID.
  452. */
  453. void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
  454. {
  455. struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
  456. union active_open_entry *p = atid2entry(t, atid);
  457. void *ctx = p->t3c_tid.ctx;
  458. spin_lock_bh(&t->atid_lock);
  459. p->next = t->afree;
  460. t->afree = p;
  461. t->atids_in_use--;
  462. spin_unlock_bh(&t->atid_lock);
  463. return ctx;
  464. }
  465. EXPORT_SYMBOL(cxgb3_free_atid);
  466. /*
  467. * Free a server TID and return it to the free pool.
  468. */
  469. void cxgb3_free_stid(struct t3cdev *tdev, int stid)
  470. {
  471. struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
  472. union listen_entry *p = stid2entry(t, stid);
  473. spin_lock_bh(&t->stid_lock);
  474. p->next = t->sfree;
  475. t->sfree = p;
  476. t->stids_in_use--;
  477. spin_unlock_bh(&t->stid_lock);
  478. }
  479. EXPORT_SYMBOL(cxgb3_free_stid);
  480. void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
  481. void *ctx, unsigned int tid)
  482. {
  483. struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
  484. t->tid_tab[tid].client = client;
  485. t->tid_tab[tid].ctx = ctx;
  486. atomic_inc(&t->tids_in_use);
  487. }
  488. EXPORT_SYMBOL(cxgb3_insert_tid);
  489. /*
  490. * Populate a TID_RELEASE WR. The skb must be already propely sized.
  491. */
  492. static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
  493. {
  494. struct cpl_tid_release *req;
  495. skb->priority = CPL_PRIORITY_SETUP;
  496. req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
  497. req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
  498. OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
  499. }
  500. static void t3_process_tid_release_list(struct work_struct *work)
  501. {
  502. struct t3c_data *td = container_of(work, struct t3c_data,
  503. tid_release_task);
  504. struct sk_buff *skb;
  505. struct t3cdev *tdev = td->dev;
  506. spin_lock_bh(&td->tid_release_lock);
  507. while (td->tid_release_list) {
  508. struct t3c_tid_entry *p = td->tid_release_list;
  509. td->tid_release_list = p->ctx;
  510. spin_unlock_bh(&td->tid_release_lock);
  511. skb = alloc_skb(sizeof(struct cpl_tid_release),
  512. GFP_KERNEL);
  513. if (!skb)
  514. skb = td->nofail_skb;
  515. if (!skb) {
  516. spin_lock_bh(&td->tid_release_lock);
  517. p->ctx = (void *)td->tid_release_list;
  518. td->tid_release_list = p;
  519. break;
  520. }
  521. mk_tid_release(skb, p - td->tid_maps.tid_tab);
  522. cxgb3_ofld_send(tdev, skb);
  523. p->ctx = NULL;
  524. if (skb == td->nofail_skb)
  525. td->nofail_skb =
  526. alloc_skb(sizeof(struct cpl_tid_release),
  527. GFP_KERNEL);
  528. spin_lock_bh(&td->tid_release_lock);
  529. }
  530. td->release_list_incomplete = (td->tid_release_list == NULL) ? 0 : 1;
  531. spin_unlock_bh(&td->tid_release_lock);
  532. if (!td->nofail_skb)
  533. td->nofail_skb =
  534. alloc_skb(sizeof(struct cpl_tid_release),
  535. GFP_KERNEL);
  536. }
  537. /* use ctx as a next pointer in the tid release list */
  538. void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
  539. {
  540. struct t3c_data *td = T3C_DATA(tdev);
  541. struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
  542. spin_lock_bh(&td->tid_release_lock);
  543. p->ctx = (void *)td->tid_release_list;
  544. p->client = NULL;
  545. td->tid_release_list = p;
  546. if (!p->ctx || td->release_list_incomplete)
  547. schedule_work(&td->tid_release_task);
  548. spin_unlock_bh(&td->tid_release_lock);
  549. }
  550. EXPORT_SYMBOL(cxgb3_queue_tid_release);
  551. /*
  552. * Remove a tid from the TID table. A client may defer processing its last
  553. * CPL message if it is locked at the time it arrives, and while the message
  554. * sits in the client's backlog the TID may be reused for another connection.
  555. * To handle this we atomically switch the TID association if it still points
  556. * to the original client context.
  557. */
  558. void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
  559. {
  560. struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
  561. BUG_ON(tid >= t->ntids);
  562. if (tdev->type == T3A)
  563. (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
  564. else {
  565. struct sk_buff *skb;
  566. skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
  567. if (likely(skb)) {
  568. mk_tid_release(skb, tid);
  569. cxgb3_ofld_send(tdev, skb);
  570. t->tid_tab[tid].ctx = NULL;
  571. } else
  572. cxgb3_queue_tid_release(tdev, tid);
  573. }
  574. atomic_dec(&t->tids_in_use);
  575. }
  576. EXPORT_SYMBOL(cxgb3_remove_tid);
  577. int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
  578. void *ctx)
  579. {
  580. int atid = -1;
  581. struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
  582. spin_lock_bh(&t->atid_lock);
  583. if (t->afree &&
  584. t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
  585. t->ntids) {
  586. union active_open_entry *p = t->afree;
  587. atid = (p - t->atid_tab) + t->atid_base;
  588. t->afree = p->next;
  589. p->t3c_tid.ctx = ctx;
  590. p->t3c_tid.client = client;
  591. t->atids_in_use++;
  592. }
  593. spin_unlock_bh(&t->atid_lock);
  594. return atid;
  595. }
  596. EXPORT_SYMBOL(cxgb3_alloc_atid);
  597. int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
  598. void *ctx)
  599. {
  600. int stid = -1;
  601. struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
  602. spin_lock_bh(&t->stid_lock);
  603. if (t->sfree) {
  604. union listen_entry *p = t->sfree;
  605. stid = (p - t->stid_tab) + t->stid_base;
  606. t->sfree = p->next;
  607. p->t3c_tid.ctx = ctx;
  608. p->t3c_tid.client = client;
  609. t->stids_in_use++;
  610. }
  611. spin_unlock_bh(&t->stid_lock);
  612. return stid;
  613. }
  614. EXPORT_SYMBOL(cxgb3_alloc_stid);
  615. /* Get the t3cdev associated with a net_device */
  616. struct t3cdev *dev2t3cdev(struct net_device *dev)
  617. {
  618. const struct port_info *pi = netdev_priv(dev);
  619. return (struct t3cdev *)pi->adapter;
  620. }
  621. EXPORT_SYMBOL(dev2t3cdev);
  622. static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
  623. {
  624. struct cpl_smt_write_rpl *rpl = cplhdr(skb);
  625. if (rpl->status != CPL_ERR_NONE)
  626. pr_err("Unexpected SMT_WRITE_RPL status %u for entry %u\n",
  627. rpl->status, GET_TID(rpl));
  628. return CPL_RET_BUF_DONE;
  629. }
  630. static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
  631. {
  632. struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
  633. if (rpl->status != CPL_ERR_NONE)
  634. pr_err("Unexpected L2T_WRITE_RPL status %u for entry %u\n",
  635. rpl->status, GET_TID(rpl));
  636. return CPL_RET_BUF_DONE;
  637. }
  638. static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
  639. {
  640. struct cpl_rte_write_rpl *rpl = cplhdr(skb);
  641. if (rpl->status != CPL_ERR_NONE)
  642. pr_err("Unexpected RTE_WRITE_RPL status %u for entry %u\n",
  643. rpl->status, GET_TID(rpl));
  644. return CPL_RET_BUF_DONE;
  645. }
  646. static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
  647. {
  648. struct cpl_act_open_rpl *rpl = cplhdr(skb);
  649. unsigned int atid = G_TID(ntohl(rpl->atid));
  650. struct t3c_tid_entry *t3c_tid;
  651. t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
  652. if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
  653. t3c_tid->client->handlers &&
  654. t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
  655. return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
  656. t3c_tid->
  657. ctx);
  658. } else {
  659. pr_err("%s: received clientless CPL command 0x%x\n",
  660. dev->name, CPL_ACT_OPEN_RPL);
  661. return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
  662. }
  663. }
  664. static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
  665. {
  666. union opcode_tid *p = cplhdr(skb);
  667. unsigned int stid = G_TID(ntohl(p->opcode_tid));
  668. struct t3c_tid_entry *t3c_tid;
  669. t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
  670. if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
  671. t3c_tid->client->handlers[p->opcode]) {
  672. return t3c_tid->client->handlers[p->opcode] (dev, skb,
  673. t3c_tid->ctx);
  674. } else {
  675. pr_err("%s: received clientless CPL command 0x%x\n",
  676. dev->name, p->opcode);
  677. return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
  678. }
  679. }
  680. static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
  681. {
  682. union opcode_tid *p = cplhdr(skb);
  683. unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
  684. struct t3c_tid_entry *t3c_tid;
  685. t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
  686. if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
  687. t3c_tid->client->handlers[p->opcode]) {
  688. return t3c_tid->client->handlers[p->opcode]
  689. (dev, skb, t3c_tid->ctx);
  690. } else {
  691. pr_err("%s: received clientless CPL command 0x%x\n",
  692. dev->name, p->opcode);
  693. return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
  694. }
  695. }
  696. static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
  697. {
  698. struct cpl_pass_accept_req *req = cplhdr(skb);
  699. unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
  700. struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
  701. struct t3c_tid_entry *t3c_tid;
  702. unsigned int tid = GET_TID(req);
  703. if (unlikely(tid >= t->ntids)) {
  704. printk("%s: passive open TID %u too large\n",
  705. dev->name, tid);
  706. t3_fatal_err(tdev2adap(dev));
  707. return CPL_RET_BUF_DONE;
  708. }
  709. t3c_tid = lookup_stid(t, stid);
  710. if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
  711. t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
  712. return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
  713. (dev, skb, t3c_tid->ctx);
  714. } else {
  715. pr_err("%s: received clientless CPL command 0x%x\n",
  716. dev->name, CPL_PASS_ACCEPT_REQ);
  717. return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
  718. }
  719. }
  720. /*
  721. * Returns an sk_buff for a reply CPL message of size len. If the input
  722. * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
  723. * is allocated. The input skb must be of size at least len. Note that this
  724. * operation does not destroy the original skb data even if it decides to reuse
  725. * the buffer.
  726. */
  727. static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
  728. gfp_t gfp)
  729. {
  730. if (likely(!skb_cloned(skb))) {
  731. BUG_ON(skb->len < len);
  732. __skb_trim(skb, len);
  733. skb_get(skb);
  734. } else {
  735. skb = alloc_skb(len, gfp);
  736. if (skb)
  737. __skb_put(skb, len);
  738. }
  739. return skb;
  740. }
  741. static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
  742. {
  743. union opcode_tid *p = cplhdr(skb);
  744. unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
  745. struct t3c_tid_entry *t3c_tid;
  746. t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
  747. if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
  748. t3c_tid->client->handlers[p->opcode]) {
  749. return t3c_tid->client->handlers[p->opcode]
  750. (dev, skb, t3c_tid->ctx);
  751. } else {
  752. struct cpl_abort_req_rss *req = cplhdr(skb);
  753. struct cpl_abort_rpl *rpl;
  754. struct sk_buff *reply_skb;
  755. unsigned int tid = GET_TID(req);
  756. u8 cmd = req->status;
  757. if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
  758. req->status == CPL_ERR_PERSIST_NEG_ADVICE)
  759. goto out;
  760. reply_skb = cxgb3_get_cpl_reply_skb(skb,
  761. sizeof(struct
  762. cpl_abort_rpl),
  763. GFP_ATOMIC);
  764. if (!reply_skb) {
  765. printk("do_abort_req_rss: couldn't get skb!\n");
  766. goto out;
  767. }
  768. reply_skb->priority = CPL_PRIORITY_DATA;
  769. __skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
  770. rpl = cplhdr(reply_skb);
  771. rpl->wr.wr_hi =
  772. htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
  773. rpl->wr.wr_lo = htonl(V_WR_TID(tid));
  774. OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
  775. rpl->cmd = cmd;
  776. cxgb3_ofld_send(dev, reply_skb);
  777. out:
  778. return CPL_RET_BUF_DONE;
  779. }
  780. }
  781. static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
  782. {
  783. struct cpl_act_establish *req = cplhdr(skb);
  784. unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
  785. struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
  786. struct t3c_tid_entry *t3c_tid;
  787. unsigned int tid = GET_TID(req);
  788. if (unlikely(tid >= t->ntids)) {
  789. printk("%s: active establish TID %u too large\n",
  790. dev->name, tid);
  791. t3_fatal_err(tdev2adap(dev));
  792. return CPL_RET_BUF_DONE;
  793. }
  794. t3c_tid = lookup_atid(t, atid);
  795. if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
  796. t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
  797. return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
  798. (dev, skb, t3c_tid->ctx);
  799. } else {
  800. pr_err("%s: received clientless CPL command 0x%x\n",
  801. dev->name, CPL_ACT_ESTABLISH);
  802. return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
  803. }
  804. }
  805. static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
  806. {
  807. struct cpl_trace_pkt *p = cplhdr(skb);
  808. skb->protocol = htons(0xffff);
  809. skb->dev = dev->lldev;
  810. skb_pull(skb, sizeof(*p));
  811. skb_reset_mac_header(skb);
  812. netif_receive_skb(skb);
  813. return 0;
  814. }
  815. /*
  816. * That skb would better have come from process_responses() where we abuse
  817. * ->priority and ->csum to carry our data. NB: if we get to per-arch
  818. * ->csum, the things might get really interesting here.
  819. */
  820. static inline u32 get_hwtid(struct sk_buff *skb)
  821. {
  822. return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff;
  823. }
  824. static inline u32 get_opcode(struct sk_buff *skb)
  825. {
  826. return G_OPCODE(ntohl((__force __be32)skb->csum));
  827. }
  828. static int do_term(struct t3cdev *dev, struct sk_buff *skb)
  829. {
  830. unsigned int hwtid = get_hwtid(skb);
  831. unsigned int opcode = get_opcode(skb);
  832. struct t3c_tid_entry *t3c_tid;
  833. t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
  834. if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
  835. t3c_tid->client->handlers[opcode]) {
  836. return t3c_tid->client->handlers[opcode] (dev, skb,
  837. t3c_tid->ctx);
  838. } else {
  839. pr_err("%s: received clientless CPL command 0x%x\n",
  840. dev->name, opcode);
  841. return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
  842. }
  843. }
  844. static int nb_callback(struct notifier_block *self, unsigned long event,
  845. void *ctx)
  846. {
  847. switch (event) {
  848. case (NETEVENT_NEIGH_UPDATE):{
  849. cxgb_neigh_update((struct neighbour *)ctx);
  850. break;
  851. }
  852. case (NETEVENT_REDIRECT):{
  853. struct netevent_redirect *nr = ctx;
  854. cxgb_redirect(nr->old, nr->old_neigh,
  855. nr->new, nr->new_neigh,
  856. nr->daddr);
  857. cxgb_neigh_update(nr->new_neigh);
  858. break;
  859. }
  860. default:
  861. break;
  862. }
  863. return 0;
  864. }
  865. static struct notifier_block nb = {
  866. .notifier_call = nb_callback
  867. };
  868. /*
  869. * Process a received packet with an unknown/unexpected CPL opcode.
  870. */
  871. static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
  872. {
  873. pr_err("%s: received bad CPL command 0x%x\n", dev->name, *skb->data);
  874. return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
  875. }
  876. /*
  877. * Handlers for each CPL opcode
  878. */
  879. static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
  880. /*
  881. * Add a new handler to the CPL dispatch table. A NULL handler may be supplied
  882. * to unregister an existing handler.
  883. */
  884. void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
  885. {
  886. if (opcode < NUM_CPL_CMDS)
  887. cpl_handlers[opcode] = h ? h : do_bad_cpl;
  888. else
  889. pr_err("T3C: handler registration for opcode %x failed\n",
  890. opcode);
  891. }
  892. EXPORT_SYMBOL(t3_register_cpl_handler);
  893. /*
  894. * T3CDEV's receive method.
  895. */
  896. static int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
  897. {
  898. while (n--) {
  899. struct sk_buff *skb = *skbs++;
  900. unsigned int opcode = get_opcode(skb);
  901. int ret = cpl_handlers[opcode] (dev, skb);
  902. #if VALIDATE_TID
  903. if (ret & CPL_RET_UNKNOWN_TID) {
  904. union opcode_tid *p = cplhdr(skb);
  905. pr_err("%s: CPL message (opcode %u) had unknown TID %u\n",
  906. dev->name, opcode, G_TID(ntohl(p->opcode_tid)));
  907. }
  908. #endif
  909. if (ret & CPL_RET_BUF_DONE)
  910. kfree_skb(skb);
  911. }
  912. return 0;
  913. }
  914. /*
  915. * Sends an sk_buff to a T3C driver after dealing with any active network taps.
  916. */
  917. int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
  918. {
  919. int r;
  920. local_bh_disable();
  921. r = dev->send(dev, skb);
  922. local_bh_enable();
  923. return r;
  924. }
  925. EXPORT_SYMBOL(cxgb3_ofld_send);
  926. static int is_offloading(struct net_device *dev)
  927. {
  928. struct adapter *adapter;
  929. int i;
  930. read_lock_bh(&adapter_list_lock);
  931. list_for_each_entry(adapter, &adapter_list, adapter_list) {
  932. for_each_port(adapter, i) {
  933. if (dev == adapter->port[i]) {
  934. read_unlock_bh(&adapter_list_lock);
  935. return 1;
  936. }
  937. }
  938. }
  939. read_unlock_bh(&adapter_list_lock);
  940. return 0;
  941. }
  942. static void cxgb_neigh_update(struct neighbour *neigh)
  943. {
  944. struct net_device *dev;
  945. if (!neigh)
  946. return;
  947. dev = neigh->dev;
  948. if (dev && (is_offloading(dev))) {
  949. struct t3cdev *tdev = dev2t3cdev(dev);
  950. BUG_ON(!tdev);
  951. t3_l2t_update(tdev, neigh);
  952. }
  953. }
  954. static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
  955. {
  956. struct sk_buff *skb;
  957. struct cpl_set_tcb_field *req;
  958. skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
  959. if (!skb) {
  960. pr_err("%s: cannot allocate skb!\n", __func__);
  961. return;
  962. }
  963. skb->priority = CPL_PRIORITY_CONTROL;
  964. req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req));
  965. req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
  966. OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
  967. req->reply = 0;
  968. req->cpu_idx = 0;
  969. req->word = htons(W_TCB_L2T_IX);
  970. req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
  971. req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
  972. tdev->send(tdev, skb);
  973. }
  974. static void cxgb_redirect(struct dst_entry *old, struct neighbour *old_neigh,
  975. struct dst_entry *new, struct neighbour *new_neigh,
  976. const void *daddr)
  977. {
  978. struct net_device *olddev, *newdev;
  979. struct tid_info *ti;
  980. struct t3cdev *tdev;
  981. u32 tid;
  982. int update_tcb;
  983. struct l2t_entry *e;
  984. struct t3c_tid_entry *te;
  985. olddev = old_neigh->dev;
  986. newdev = new_neigh->dev;
  987. if (!is_offloading(olddev))
  988. return;
  989. if (!is_offloading(newdev)) {
  990. pr_warn("%s: Redirect to non-offload device ignored\n",
  991. __func__);
  992. return;
  993. }
  994. tdev = dev2t3cdev(olddev);
  995. BUG_ON(!tdev);
  996. if (tdev != dev2t3cdev(newdev)) {
  997. pr_warn("%s: Redirect to different offload device ignored\n",
  998. __func__);
  999. return;
  1000. }
  1001. /* Add new L2T entry */
  1002. e = t3_l2t_get(tdev, new, newdev, daddr);
  1003. if (!e) {
  1004. pr_err("%s: couldn't allocate new l2t entry!\n", __func__);
  1005. return;
  1006. }
  1007. /* Walk tid table and notify clients of dst change. */
  1008. ti = &(T3C_DATA(tdev))->tid_maps;
  1009. for (tid = 0; tid < ti->ntids; tid++) {
  1010. te = lookup_tid(ti, tid);
  1011. BUG_ON(!te);
  1012. if (te && te->ctx && te->client && te->client->redirect) {
  1013. update_tcb = te->client->redirect(te->ctx, old, new, e);
  1014. if (update_tcb) {
  1015. rcu_read_lock();
  1016. l2t_hold(L2DATA(tdev), e);
  1017. rcu_read_unlock();
  1018. set_l2t_ix(tdev, tid, e);
  1019. }
  1020. }
  1021. }
  1022. l2t_release(tdev, e);
  1023. }
  1024. /*
  1025. * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
  1026. * The allocated memory is cleared.
  1027. */
  1028. void *cxgb_alloc_mem(unsigned long size)
  1029. {
  1030. void *p = kzalloc(size, GFP_KERNEL);
  1031. if (!p)
  1032. p = vzalloc(size);
  1033. return p;
  1034. }
  1035. /*
  1036. * Free memory allocated through t3_alloc_mem().
  1037. */
  1038. void cxgb_free_mem(void *addr)
  1039. {
  1040. if (is_vmalloc_addr(addr))
  1041. vfree(addr);
  1042. else
  1043. kfree(addr);
  1044. }
  1045. /*
  1046. * Allocate and initialize the TID tables. Returns 0 on success.
  1047. */
  1048. static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
  1049. unsigned int natids, unsigned int nstids,
  1050. unsigned int atid_base, unsigned int stid_base)
  1051. {
  1052. unsigned long size = ntids * sizeof(*t->tid_tab) +
  1053. natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
  1054. t->tid_tab = cxgb_alloc_mem(size);
  1055. if (!t->tid_tab)
  1056. return -ENOMEM;
  1057. t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
  1058. t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
  1059. t->ntids = ntids;
  1060. t->nstids = nstids;
  1061. t->stid_base = stid_base;
  1062. t->sfree = NULL;
  1063. t->natids = natids;
  1064. t->atid_base = atid_base;
  1065. t->afree = NULL;
  1066. t->stids_in_use = t->atids_in_use = 0;
  1067. atomic_set(&t->tids_in_use, 0);
  1068. spin_lock_init(&t->stid_lock);
  1069. spin_lock_init(&t->atid_lock);
  1070. /*
  1071. * Setup the free lists for stid_tab and atid_tab.
  1072. */
  1073. if (nstids) {
  1074. while (--nstids)
  1075. t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
  1076. t->sfree = t->stid_tab;
  1077. }
  1078. if (natids) {
  1079. while (--natids)
  1080. t->atid_tab[natids - 1].next = &t->atid_tab[natids];
  1081. t->afree = t->atid_tab;
  1082. }
  1083. return 0;
  1084. }
  1085. static void free_tid_maps(struct tid_info *t)
  1086. {
  1087. cxgb_free_mem(t->tid_tab);
  1088. }
  1089. static inline void add_adapter(struct adapter *adap)
  1090. {
  1091. write_lock_bh(&adapter_list_lock);
  1092. list_add_tail(&adap->adapter_list, &adapter_list);
  1093. write_unlock_bh(&adapter_list_lock);
  1094. }
  1095. static inline void remove_adapter(struct adapter *adap)
  1096. {
  1097. write_lock_bh(&adapter_list_lock);
  1098. list_del(&adap->adapter_list);
  1099. write_unlock_bh(&adapter_list_lock);
  1100. }
  1101. int cxgb3_offload_activate(struct adapter *adapter)
  1102. {
  1103. struct t3cdev *dev = &adapter->tdev;
  1104. int natids, err;
  1105. struct t3c_data *t;
  1106. struct tid_range stid_range, tid_range;
  1107. struct mtutab mtutab;
  1108. unsigned int l2t_capacity;
  1109. t = kzalloc(sizeof(*t), GFP_KERNEL);
  1110. if (!t)
  1111. return -ENOMEM;
  1112. err = -EOPNOTSUPP;
  1113. if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
  1114. dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
  1115. dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
  1116. dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
  1117. dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
  1118. dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
  1119. goto out_free;
  1120. err = -ENOMEM;
  1121. RCU_INIT_POINTER(dev->l2opt, t3_init_l2t(l2t_capacity));
  1122. if (!L2DATA(dev))
  1123. goto out_free;
  1124. natids = min(tid_range.num / 2, MAX_ATIDS);
  1125. err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
  1126. stid_range.num, ATID_BASE, stid_range.base);
  1127. if (err)
  1128. goto out_free_l2t;
  1129. t->mtus = mtutab.mtus;
  1130. t->nmtus = mtutab.size;
  1131. INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
  1132. spin_lock_init(&t->tid_release_lock);
  1133. INIT_LIST_HEAD(&t->list_node);
  1134. t->dev = dev;
  1135. T3C_DATA(dev) = t;
  1136. dev->recv = process_rx;
  1137. dev->neigh_update = t3_l2t_update;
  1138. /* Register netevent handler once */
  1139. if (list_empty(&adapter_list))
  1140. register_netevent_notifier(&nb);
  1141. t->nofail_skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_KERNEL);
  1142. t->release_list_incomplete = 0;
  1143. add_adapter(adapter);
  1144. return 0;
  1145. out_free_l2t:
  1146. t3_free_l2t(L2DATA(dev));
  1147. RCU_INIT_POINTER(dev->l2opt, NULL);
  1148. out_free:
  1149. kfree(t);
  1150. return err;
  1151. }
  1152. static void clean_l2_data(struct rcu_head *head)
  1153. {
  1154. struct l2t_data *d = container_of(head, struct l2t_data, rcu_head);
  1155. t3_free_l2t(d);
  1156. }
  1157. void cxgb3_offload_deactivate(struct adapter *adapter)
  1158. {
  1159. struct t3cdev *tdev = &adapter->tdev;
  1160. struct t3c_data *t = T3C_DATA(tdev);
  1161. struct l2t_data *d;
  1162. remove_adapter(adapter);
  1163. if (list_empty(&adapter_list))
  1164. unregister_netevent_notifier(&nb);
  1165. free_tid_maps(&t->tid_maps);
  1166. T3C_DATA(tdev) = NULL;
  1167. rcu_read_lock();
  1168. d = L2DATA(tdev);
  1169. rcu_read_unlock();
  1170. RCU_INIT_POINTER(tdev->l2opt, NULL);
  1171. call_rcu(&d->rcu_head, clean_l2_data);
  1172. if (t->nofail_skb)
  1173. kfree_skb(t->nofail_skb);
  1174. kfree(t);
  1175. }
  1176. static inline void register_tdev(struct t3cdev *tdev)
  1177. {
  1178. static int unit;
  1179. mutex_lock(&cxgb3_db_lock);
  1180. snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
  1181. list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
  1182. mutex_unlock(&cxgb3_db_lock);
  1183. }
  1184. static inline void unregister_tdev(struct t3cdev *tdev)
  1185. {
  1186. mutex_lock(&cxgb3_db_lock);
  1187. list_del(&tdev->ofld_dev_list);
  1188. mutex_unlock(&cxgb3_db_lock);
  1189. }
  1190. static inline int adap2type(struct adapter *adapter)
  1191. {
  1192. int type = 0;
  1193. switch (adapter->params.rev) {
  1194. case T3_REV_A:
  1195. type = T3A;
  1196. break;
  1197. case T3_REV_B:
  1198. case T3_REV_B2:
  1199. type = T3B;
  1200. break;
  1201. case T3_REV_C:
  1202. type = T3C;
  1203. break;
  1204. }
  1205. return type;
  1206. }
  1207. void cxgb3_adapter_ofld(struct adapter *adapter)
  1208. {
  1209. struct t3cdev *tdev = &adapter->tdev;
  1210. INIT_LIST_HEAD(&tdev->ofld_dev_list);
  1211. cxgb3_set_dummy_ops(tdev);
  1212. tdev->send = t3_offload_tx;
  1213. tdev->ctl = cxgb_offload_ctl;
  1214. tdev->type = adap2type(adapter);
  1215. register_tdev(tdev);
  1216. }
  1217. void cxgb3_adapter_unofld(struct adapter *adapter)
  1218. {
  1219. struct t3cdev *tdev = &adapter->tdev;
  1220. tdev->recv = NULL;
  1221. tdev->neigh_update = NULL;
  1222. unregister_tdev(tdev);
  1223. }
  1224. void __init cxgb3_offload_init(void)
  1225. {
  1226. int i;
  1227. for (i = 0; i < NUM_CPL_CMDS; ++i)
  1228. cpl_handlers[i] = do_bad_cpl;
  1229. t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
  1230. t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
  1231. t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl);
  1232. t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
  1233. t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
  1234. t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
  1235. t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
  1236. t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
  1237. t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
  1238. t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
  1239. t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
  1240. t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
  1241. t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
  1242. t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
  1243. t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
  1244. t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
  1245. t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
  1246. t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
  1247. t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
  1248. t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
  1249. t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
  1250. t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
  1251. t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
  1252. t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
  1253. t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
  1254. t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);
  1255. }