rtc-sa1100.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356
  1. /*
  2. * Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx
  3. *
  4. * Copyright (c) 2000 Nils Faerber
  5. *
  6. * Based on rtc.c by Paul Gortmaker
  7. *
  8. * Original Driver by Nils Faerber <nils@kernelconcepts.de>
  9. *
  10. * Modifications from:
  11. * CIH <cih@coventive.com>
  12. * Nicolas Pitre <nico@fluxnic.net>
  13. * Andrew Christian <andrew.christian@hp.com>
  14. *
  15. * Converted to the RTC subsystem and Driver Model
  16. * by Richard Purdie <rpurdie@rpsys.net>
  17. *
  18. * This program is free software; you can redistribute it and/or
  19. * modify it under the terms of the GNU General Public License
  20. * as published by the Free Software Foundation; either version
  21. * 2 of the License, or (at your option) any later version.
  22. */
  23. #include <linux/platform_device.h>
  24. #include <linux/module.h>
  25. #include <linux/rtc.h>
  26. #include <linux/init.h>
  27. #include <linux/fs.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/string.h>
  30. #include <linux/pm.h>
  31. #include <linux/bitops.h>
  32. #include <mach/hardware.h>
  33. #include <asm/irq.h>
  34. #ifdef CONFIG_ARCH_PXA
  35. #include <mach/regs-rtc.h>
  36. #endif
  37. #define RTC_DEF_DIVIDER (32768 - 1)
  38. #define RTC_DEF_TRIM 0
  39. static const unsigned long RTC_FREQ = 1024;
  40. static struct rtc_time rtc_alarm;
  41. static DEFINE_SPINLOCK(sa1100_rtc_lock);
  42. /*
  43. * Calculate the next alarm time given the requested alarm time mask
  44. * and the current time.
  45. */
  46. static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now,
  47. struct rtc_time *alrm)
  48. {
  49. unsigned long next_time;
  50. unsigned long now_time;
  51. next->tm_year = now->tm_year;
  52. next->tm_mon = now->tm_mon;
  53. next->tm_mday = now->tm_mday;
  54. next->tm_hour = alrm->tm_hour;
  55. next->tm_min = alrm->tm_min;
  56. next->tm_sec = alrm->tm_sec;
  57. rtc_tm_to_time(now, &now_time);
  58. rtc_tm_to_time(next, &next_time);
  59. if (next_time < now_time) {
  60. /* Advance one day */
  61. next_time += 60 * 60 * 24;
  62. rtc_time_to_tm(next_time, next);
  63. }
  64. }
  65. static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
  66. {
  67. struct platform_device *pdev = to_platform_device(dev_id);
  68. struct rtc_device *rtc = platform_get_drvdata(pdev);
  69. unsigned int rtsr;
  70. unsigned long events = 0;
  71. spin_lock(&sa1100_rtc_lock);
  72. rtsr = RTSR;
  73. /* clear interrupt sources */
  74. RTSR = 0;
  75. /* Fix for a nasty initialization problem the in SA11xx RTSR register.
  76. * See also the comments in sa1100_rtc_probe(). */
  77. if (rtsr & (RTSR_ALE | RTSR_HZE)) {
  78. /* This is the original code, before there was the if test
  79. * above. This code does not clear interrupts that were not
  80. * enabled. */
  81. RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2);
  82. } else {
  83. /* For some reason, it is possible to enter this routine
  84. * without interruptions enabled, it has been tested with
  85. * several units (Bug in SA11xx chip?).
  86. *
  87. * This situation leads to an infinite "loop" of interrupt
  88. * routine calling and as a result the processor seems to
  89. * lock on its first call to open(). */
  90. RTSR = RTSR_AL | RTSR_HZ;
  91. }
  92. /* clear alarm interrupt if it has occurred */
  93. if (rtsr & RTSR_AL)
  94. rtsr &= ~RTSR_ALE;
  95. RTSR = rtsr & (RTSR_ALE | RTSR_HZE);
  96. /* update irq data & counter */
  97. if (rtsr & RTSR_AL)
  98. events |= RTC_AF | RTC_IRQF;
  99. if (rtsr & RTSR_HZ)
  100. events |= RTC_UF | RTC_IRQF;
  101. rtc_update_irq(rtc, 1, events);
  102. spin_unlock(&sa1100_rtc_lock);
  103. return IRQ_HANDLED;
  104. }
  105. static int sa1100_rtc_open(struct device *dev)
  106. {
  107. int ret;
  108. struct platform_device *plat_dev = to_platform_device(dev);
  109. struct rtc_device *rtc = platform_get_drvdata(plat_dev);
  110. ret = request_irq(IRQ_RTC1Hz, sa1100_rtc_interrupt, IRQF_DISABLED,
  111. "rtc 1Hz", dev);
  112. if (ret) {
  113. dev_err(dev, "IRQ %d already in use.\n", IRQ_RTC1Hz);
  114. goto fail_ui;
  115. }
  116. ret = request_irq(IRQ_RTCAlrm, sa1100_rtc_interrupt, IRQF_DISABLED,
  117. "rtc Alrm", dev);
  118. if (ret) {
  119. dev_err(dev, "IRQ %d already in use.\n", IRQ_RTCAlrm);
  120. goto fail_ai;
  121. }
  122. rtc->max_user_freq = RTC_FREQ;
  123. rtc_irq_set_freq(rtc, NULL, RTC_FREQ);
  124. return 0;
  125. fail_ai:
  126. free_irq(IRQ_RTC1Hz, dev);
  127. fail_ui:
  128. return ret;
  129. }
  130. static void sa1100_rtc_release(struct device *dev)
  131. {
  132. spin_lock_irq(&sa1100_rtc_lock);
  133. RTSR = 0;
  134. spin_unlock_irq(&sa1100_rtc_lock);
  135. free_irq(IRQ_RTCAlrm, dev);
  136. free_irq(IRQ_RTC1Hz, dev);
  137. }
  138. static int sa1100_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
  139. {
  140. spin_lock_irq(&sa1100_rtc_lock);
  141. if (enabled)
  142. RTSR |= RTSR_ALE;
  143. else
  144. RTSR &= ~RTSR_ALE;
  145. spin_unlock_irq(&sa1100_rtc_lock);
  146. return 0;
  147. }
  148. static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm)
  149. {
  150. rtc_time_to_tm(RCNR, tm);
  151. return 0;
  152. }
  153. static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm)
  154. {
  155. unsigned long time;
  156. int ret;
  157. ret = rtc_tm_to_time(tm, &time);
  158. if (ret == 0)
  159. RCNR = time;
  160. return ret;
  161. }
  162. static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  163. {
  164. u32 rtsr;
  165. memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time));
  166. rtsr = RTSR;
  167. alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0;
  168. alrm->pending = (rtsr & RTSR_AL) ? 1 : 0;
  169. return 0;
  170. }
  171. static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  172. {
  173. struct rtc_time now_tm, alarm_tm;
  174. int ret;
  175. spin_lock_irq(&sa1100_rtc_lock);
  176. now = RCNR;
  177. rtc_time_to_tm(now, &now_tm);
  178. rtc_next_alarm_time(&alarm_tm, &now_tm, alrm->time);
  179. rtc_tm_to_time(&alarm_tm, &time);
  180. RTAR = time;
  181. if (alrm->enabled)
  182. RTSR |= RTSR_ALE;
  183. else
  184. RTSR &= ~RTSR_ALE;
  185. spin_unlock_irq(&sa1100_rtc_lock);
  186. return ret;
  187. }
  188. static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq)
  189. {
  190. seq_printf(seq, "trim/divider\t\t: 0x%08x\n", (u32) RTTR);
  191. seq_printf(seq, "RTSR\t\t\t: 0x%08x\n", (u32)RTSR);
  192. return 0;
  193. }
  194. static const struct rtc_class_ops sa1100_rtc_ops = {
  195. .open = sa1100_rtc_open,
  196. .release = sa1100_rtc_release,
  197. .read_time = sa1100_rtc_read_time,
  198. .set_time = sa1100_rtc_set_time,
  199. .read_alarm = sa1100_rtc_read_alarm,
  200. .set_alarm = sa1100_rtc_set_alarm,
  201. .proc = sa1100_rtc_proc,
  202. .alarm_irq_enable = sa1100_rtc_alarm_irq_enable,
  203. };
  204. static int sa1100_rtc_probe(struct platform_device *pdev)
  205. {
  206. struct rtc_device *rtc;
  207. /*
  208. * According to the manual we should be able to let RTTR be zero
  209. * and then a default diviser for a 32.768KHz clock is used.
  210. * Apparently this doesn't work, at least for my SA1110 rev 5.
  211. * If the clock divider is uninitialized then reset it to the
  212. * default value to get the 1Hz clock.
  213. */
  214. if (RTTR == 0) {
  215. RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
  216. dev_warn(&pdev->dev, "warning: "
  217. "initializing default clock divider/trim value\n");
  218. /* The current RTC value probably doesn't make sense either */
  219. RCNR = 0;
  220. }
  221. device_init_wakeup(&pdev->dev, 1);
  222. rtc = rtc_device_register(pdev->name, &pdev->dev, &sa1100_rtc_ops,
  223. THIS_MODULE);
  224. if (IS_ERR(rtc))
  225. return PTR_ERR(rtc);
  226. platform_set_drvdata(pdev, rtc);
  227. /* Fix for a nasty initialization problem the in SA11xx RTSR register.
  228. * See also the comments in sa1100_rtc_interrupt().
  229. *
  230. * Sometimes bit 1 of the RTSR (RTSR_HZ) will wake up 1, which means an
  231. * interrupt pending, even though interrupts were never enabled.
  232. * In this case, this bit it must be reset before enabling
  233. * interruptions to avoid a nonexistent interrupt to occur.
  234. *
  235. * In principle, the same problem would apply to bit 0, although it has
  236. * never been observed to happen.
  237. *
  238. * This issue is addressed both here and in sa1100_rtc_interrupt().
  239. * If the issue is not addressed here, in the times when the processor
  240. * wakes up with the bit set there will be one spurious interrupt.
  241. *
  242. * The issue is also dealt with in sa1100_rtc_interrupt() to be on the
  243. * safe side, once the condition that lead to this strange
  244. * initialization is unknown and could in principle happen during
  245. * normal processing.
  246. *
  247. * Notice that clearing bit 1 and 0 is accomplished by writting ONES to
  248. * the corresponding bits in RTSR. */
  249. RTSR = RTSR_AL | RTSR_HZ;
  250. return 0;
  251. }
  252. static int sa1100_rtc_remove(struct platform_device *pdev)
  253. {
  254. struct rtc_device *rtc = platform_get_drvdata(pdev);
  255. if (rtc)
  256. rtc_device_unregister(rtc);
  257. return 0;
  258. }
  259. #ifdef CONFIG_PM
  260. static int sa1100_rtc_suspend(struct device *dev)
  261. {
  262. if (device_may_wakeup(dev))
  263. enable_irq_wake(IRQ_RTCAlrm);
  264. return 0;
  265. }
  266. static int sa1100_rtc_resume(struct device *dev)
  267. {
  268. if (device_may_wakeup(dev))
  269. disable_irq_wake(IRQ_RTCAlrm);
  270. return 0;
  271. }
  272. static const struct dev_pm_ops sa1100_rtc_pm_ops = {
  273. .suspend = sa1100_rtc_suspend,
  274. .resume = sa1100_rtc_resume,
  275. };
  276. #endif
  277. static struct platform_driver sa1100_rtc_driver = {
  278. .probe = sa1100_rtc_probe,
  279. .remove = sa1100_rtc_remove,
  280. .driver = {
  281. .name = "sa1100-rtc",
  282. #ifdef CONFIG_PM
  283. .pm = &sa1100_rtc_pm_ops,
  284. #endif
  285. },
  286. };
  287. static int __init sa1100_rtc_init(void)
  288. {
  289. return platform_driver_register(&sa1100_rtc_driver);
  290. }
  291. static void __exit sa1100_rtc_exit(void)
  292. {
  293. platform_driver_unregister(&sa1100_rtc_driver);
  294. }
  295. module_init(sa1100_rtc_init);
  296. module_exit(sa1100_rtc_exit);
  297. MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>");
  298. MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)");
  299. MODULE_LICENSE("GPL");
  300. MODULE_ALIAS("platform:sa1100-rtc");