sched.c 220 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <asm/tlb.h>
  73. #include <asm/irq_regs.h>
  74. /*
  75. * Convert user-nice values [ -20 ... 0 ... 19 ]
  76. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  77. * and back.
  78. */
  79. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  80. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  81. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  82. /*
  83. * 'User priority' is the nice value converted to something we
  84. * can work with better when scaling various scheduler parameters,
  85. * it's a [ 0 ... 39 ] range.
  86. */
  87. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  88. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  89. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  90. /*
  91. * Helpers for converting nanosecond timing to jiffy resolution
  92. */
  93. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  94. #define NICE_0_LOAD SCHED_LOAD_SCALE
  95. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  96. /*
  97. * These are the 'tuning knobs' of the scheduler:
  98. *
  99. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  100. * Timeslices get refilled after they expire.
  101. */
  102. #define DEF_TIMESLICE (100 * HZ / 1000)
  103. /*
  104. * single value that denotes runtime == period, ie unlimited time.
  105. */
  106. #define RUNTIME_INF ((u64)~0ULL)
  107. #ifdef CONFIG_SMP
  108. /*
  109. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  110. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  111. */
  112. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  113. {
  114. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  115. }
  116. /*
  117. * Each time a sched group cpu_power is changed,
  118. * we must compute its reciprocal value
  119. */
  120. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  121. {
  122. sg->__cpu_power += val;
  123. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  124. }
  125. #endif
  126. static inline int rt_policy(int policy)
  127. {
  128. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  129. return 1;
  130. return 0;
  131. }
  132. static inline int task_has_rt_policy(struct task_struct *p)
  133. {
  134. return rt_policy(p->policy);
  135. }
  136. /*
  137. * This is the priority-queue data structure of the RT scheduling class:
  138. */
  139. struct rt_prio_array {
  140. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  141. struct list_head queue[MAX_RT_PRIO];
  142. };
  143. struct rt_bandwidth {
  144. /* nests inside the rq lock: */
  145. spinlock_t rt_runtime_lock;
  146. ktime_t rt_period;
  147. u64 rt_runtime;
  148. struct hrtimer rt_period_timer;
  149. };
  150. static struct rt_bandwidth def_rt_bandwidth;
  151. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  152. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  153. {
  154. struct rt_bandwidth *rt_b =
  155. container_of(timer, struct rt_bandwidth, rt_period_timer);
  156. ktime_t now;
  157. int overrun;
  158. int idle = 0;
  159. for (;;) {
  160. now = hrtimer_cb_get_time(timer);
  161. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  162. if (!overrun)
  163. break;
  164. idle = do_sched_rt_period_timer(rt_b, overrun);
  165. }
  166. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  167. }
  168. static
  169. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  170. {
  171. rt_b->rt_period = ns_to_ktime(period);
  172. rt_b->rt_runtime = runtime;
  173. spin_lock_init(&rt_b->rt_runtime_lock);
  174. hrtimer_init(&rt_b->rt_period_timer,
  175. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  176. rt_b->rt_period_timer.function = sched_rt_period_timer;
  177. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  178. }
  179. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  180. {
  181. ktime_t now;
  182. if (rt_b->rt_runtime == RUNTIME_INF)
  183. return;
  184. if (hrtimer_active(&rt_b->rt_period_timer))
  185. return;
  186. spin_lock(&rt_b->rt_runtime_lock);
  187. for (;;) {
  188. if (hrtimer_active(&rt_b->rt_period_timer))
  189. break;
  190. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  191. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  192. hrtimer_start(&rt_b->rt_period_timer,
  193. rt_b->rt_period_timer.expires,
  194. HRTIMER_MODE_ABS);
  195. }
  196. spin_unlock(&rt_b->rt_runtime_lock);
  197. }
  198. #ifdef CONFIG_RT_GROUP_SCHED
  199. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  200. {
  201. hrtimer_cancel(&rt_b->rt_period_timer);
  202. }
  203. #endif
  204. /*
  205. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  206. * detach_destroy_domains and partition_sched_domains.
  207. */
  208. static DEFINE_MUTEX(sched_domains_mutex);
  209. #ifdef CONFIG_GROUP_SCHED
  210. #include <linux/cgroup.h>
  211. struct cfs_rq;
  212. static LIST_HEAD(task_groups);
  213. /* task group related information */
  214. struct task_group {
  215. #ifdef CONFIG_CGROUP_SCHED
  216. struct cgroup_subsys_state css;
  217. #endif
  218. #ifdef CONFIG_FAIR_GROUP_SCHED
  219. /* schedulable entities of this group on each cpu */
  220. struct sched_entity **se;
  221. /* runqueue "owned" by this group on each cpu */
  222. struct cfs_rq **cfs_rq;
  223. unsigned long shares;
  224. #endif
  225. #ifdef CONFIG_RT_GROUP_SCHED
  226. struct sched_rt_entity **rt_se;
  227. struct rt_rq **rt_rq;
  228. struct rt_bandwidth rt_bandwidth;
  229. #endif
  230. struct rcu_head rcu;
  231. struct list_head list;
  232. struct task_group *parent;
  233. struct list_head siblings;
  234. struct list_head children;
  235. };
  236. #ifdef CONFIG_USER_SCHED
  237. /*
  238. * Root task group.
  239. * Every UID task group (including init_task_group aka UID-0) will
  240. * be a child to this group.
  241. */
  242. struct task_group root_task_group;
  243. #ifdef CONFIG_FAIR_GROUP_SCHED
  244. /* Default task group's sched entity on each cpu */
  245. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  246. /* Default task group's cfs_rq on each cpu */
  247. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  248. #endif
  249. #ifdef CONFIG_RT_GROUP_SCHED
  250. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  251. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  252. #endif
  253. #else
  254. #define root_task_group init_task_group
  255. #endif
  256. /* task_group_lock serializes add/remove of task groups and also changes to
  257. * a task group's cpu shares.
  258. */
  259. static DEFINE_SPINLOCK(task_group_lock);
  260. #ifdef CONFIG_FAIR_GROUP_SCHED
  261. #ifdef CONFIG_USER_SCHED
  262. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  263. #else
  264. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  265. #endif
  266. /*
  267. * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
  268. * (The default weight is 1024 - so there's no practical
  269. * limitation from this.)
  270. */
  271. #define MIN_SHARES 2
  272. #define MAX_SHARES (ULONG_MAX - 1)
  273. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  274. #endif
  275. /* Default task group.
  276. * Every task in system belong to this group at bootup.
  277. */
  278. struct task_group init_task_group;
  279. /* return group to which a task belongs */
  280. static inline struct task_group *task_group(struct task_struct *p)
  281. {
  282. struct task_group *tg;
  283. #ifdef CONFIG_USER_SCHED
  284. tg = p->user->tg;
  285. #elif defined(CONFIG_CGROUP_SCHED)
  286. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  287. struct task_group, css);
  288. #else
  289. tg = &init_task_group;
  290. #endif
  291. return tg;
  292. }
  293. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  294. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  295. {
  296. #ifdef CONFIG_FAIR_GROUP_SCHED
  297. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  298. p->se.parent = task_group(p)->se[cpu];
  299. #endif
  300. #ifdef CONFIG_RT_GROUP_SCHED
  301. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  302. p->rt.parent = task_group(p)->rt_se[cpu];
  303. #endif
  304. }
  305. #else
  306. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  307. #endif /* CONFIG_GROUP_SCHED */
  308. /* CFS-related fields in a runqueue */
  309. struct cfs_rq {
  310. struct load_weight load;
  311. unsigned long nr_running;
  312. u64 exec_clock;
  313. u64 min_vruntime;
  314. struct rb_root tasks_timeline;
  315. struct rb_node *rb_leftmost;
  316. struct list_head tasks;
  317. struct list_head *balance_iterator;
  318. /*
  319. * 'curr' points to currently running entity on this cfs_rq.
  320. * It is set to NULL otherwise (i.e when none are currently running).
  321. */
  322. struct sched_entity *curr, *next;
  323. unsigned long nr_spread_over;
  324. #ifdef CONFIG_FAIR_GROUP_SCHED
  325. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  326. /*
  327. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  328. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  329. * (like users, containers etc.)
  330. *
  331. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  332. * list is used during load balance.
  333. */
  334. struct list_head leaf_cfs_rq_list;
  335. struct task_group *tg; /* group that "owns" this runqueue */
  336. #ifdef CONFIG_SMP
  337. unsigned long task_weight;
  338. unsigned long shares;
  339. /*
  340. * We need space to build a sched_domain wide view of the full task
  341. * group tree, in order to avoid depending on dynamic memory allocation
  342. * during the load balancing we place this in the per cpu task group
  343. * hierarchy. This limits the load balancing to one instance per cpu,
  344. * but more should not be needed anyway.
  345. */
  346. struct aggregate_struct {
  347. /*
  348. * load = weight(cpus) * f(tg)
  349. *
  350. * Where f(tg) is the recursive weight fraction assigned to
  351. * this group.
  352. */
  353. unsigned long load;
  354. /*
  355. * part of the group weight distributed to this span.
  356. */
  357. unsigned long shares;
  358. /*
  359. * The sum of all runqueue weights within this span.
  360. */
  361. unsigned long rq_weight;
  362. /*
  363. * Weight contributed by tasks; this is the part we can
  364. * influence by moving tasks around.
  365. */
  366. unsigned long task_weight;
  367. } aggregate;
  368. #endif
  369. #endif
  370. };
  371. /* Real-Time classes' related field in a runqueue: */
  372. struct rt_rq {
  373. struct rt_prio_array active;
  374. unsigned long rt_nr_running;
  375. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  376. int highest_prio; /* highest queued rt task prio */
  377. #endif
  378. #ifdef CONFIG_SMP
  379. unsigned long rt_nr_migratory;
  380. int overloaded;
  381. #endif
  382. int rt_throttled;
  383. u64 rt_time;
  384. u64 rt_runtime;
  385. /* Nests inside the rq lock: */
  386. spinlock_t rt_runtime_lock;
  387. #ifdef CONFIG_RT_GROUP_SCHED
  388. unsigned long rt_nr_boosted;
  389. struct rq *rq;
  390. struct list_head leaf_rt_rq_list;
  391. struct task_group *tg;
  392. struct sched_rt_entity *rt_se;
  393. #endif
  394. };
  395. #ifdef CONFIG_SMP
  396. /*
  397. * We add the notion of a root-domain which will be used to define per-domain
  398. * variables. Each exclusive cpuset essentially defines an island domain by
  399. * fully partitioning the member cpus from any other cpuset. Whenever a new
  400. * exclusive cpuset is created, we also create and attach a new root-domain
  401. * object.
  402. *
  403. */
  404. struct root_domain {
  405. atomic_t refcount;
  406. cpumask_t span;
  407. cpumask_t online;
  408. /*
  409. * The "RT overload" flag: it gets set if a CPU has more than
  410. * one runnable RT task.
  411. */
  412. cpumask_t rto_mask;
  413. atomic_t rto_count;
  414. };
  415. /*
  416. * By default the system creates a single root-domain with all cpus as
  417. * members (mimicking the global state we have today).
  418. */
  419. static struct root_domain def_root_domain;
  420. #endif
  421. /*
  422. * This is the main, per-CPU runqueue data structure.
  423. *
  424. * Locking rule: those places that want to lock multiple runqueues
  425. * (such as the load balancing or the thread migration code), lock
  426. * acquire operations must be ordered by ascending &runqueue.
  427. */
  428. struct rq {
  429. /* runqueue lock: */
  430. spinlock_t lock;
  431. /*
  432. * nr_running and cpu_load should be in the same cacheline because
  433. * remote CPUs use both these fields when doing load calculation.
  434. */
  435. unsigned long nr_running;
  436. #define CPU_LOAD_IDX_MAX 5
  437. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  438. unsigned char idle_at_tick;
  439. #ifdef CONFIG_NO_HZ
  440. unsigned long last_tick_seen;
  441. unsigned char in_nohz_recently;
  442. #endif
  443. /* capture load from *all* tasks on this cpu: */
  444. struct load_weight load;
  445. unsigned long nr_load_updates;
  446. u64 nr_switches;
  447. struct cfs_rq cfs;
  448. struct rt_rq rt;
  449. #ifdef CONFIG_FAIR_GROUP_SCHED
  450. /* list of leaf cfs_rq on this cpu: */
  451. struct list_head leaf_cfs_rq_list;
  452. #endif
  453. #ifdef CONFIG_RT_GROUP_SCHED
  454. struct list_head leaf_rt_rq_list;
  455. #endif
  456. /*
  457. * This is part of a global counter where only the total sum
  458. * over all CPUs matters. A task can increase this counter on
  459. * one CPU and if it got migrated afterwards it may decrease
  460. * it on another CPU. Always updated under the runqueue lock:
  461. */
  462. unsigned long nr_uninterruptible;
  463. struct task_struct *curr, *idle;
  464. unsigned long next_balance;
  465. struct mm_struct *prev_mm;
  466. u64 clock;
  467. atomic_t nr_iowait;
  468. #ifdef CONFIG_SMP
  469. struct root_domain *rd;
  470. struct sched_domain *sd;
  471. /* For active balancing */
  472. int active_balance;
  473. int push_cpu;
  474. /* cpu of this runqueue: */
  475. int cpu;
  476. struct task_struct *migration_thread;
  477. struct list_head migration_queue;
  478. #endif
  479. #ifdef CONFIG_SCHED_HRTICK
  480. unsigned long hrtick_flags;
  481. ktime_t hrtick_expire;
  482. struct hrtimer hrtick_timer;
  483. #endif
  484. #ifdef CONFIG_SCHEDSTATS
  485. /* latency stats */
  486. struct sched_info rq_sched_info;
  487. /* sys_sched_yield() stats */
  488. unsigned int yld_exp_empty;
  489. unsigned int yld_act_empty;
  490. unsigned int yld_both_empty;
  491. unsigned int yld_count;
  492. /* schedule() stats */
  493. unsigned int sched_switch;
  494. unsigned int sched_count;
  495. unsigned int sched_goidle;
  496. /* try_to_wake_up() stats */
  497. unsigned int ttwu_count;
  498. unsigned int ttwu_local;
  499. /* BKL stats */
  500. unsigned int bkl_count;
  501. #endif
  502. struct lock_class_key rq_lock_key;
  503. };
  504. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  505. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  506. {
  507. rq->curr->sched_class->check_preempt_curr(rq, p);
  508. }
  509. static inline int cpu_of(struct rq *rq)
  510. {
  511. #ifdef CONFIG_SMP
  512. return rq->cpu;
  513. #else
  514. return 0;
  515. #endif
  516. }
  517. /*
  518. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  519. * See detach_destroy_domains: synchronize_sched for details.
  520. *
  521. * The domain tree of any CPU may only be accessed from within
  522. * preempt-disabled sections.
  523. */
  524. #define for_each_domain(cpu, __sd) \
  525. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  526. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  527. #define this_rq() (&__get_cpu_var(runqueues))
  528. #define task_rq(p) cpu_rq(task_cpu(p))
  529. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  530. static inline void update_rq_clock(struct rq *rq)
  531. {
  532. rq->clock = sched_clock_cpu(cpu_of(rq));
  533. }
  534. /*
  535. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  536. */
  537. #ifdef CONFIG_SCHED_DEBUG
  538. # define const_debug __read_mostly
  539. #else
  540. # define const_debug static const
  541. #endif
  542. /*
  543. * Debugging: various feature bits
  544. */
  545. #define SCHED_FEAT(name, enabled) \
  546. __SCHED_FEAT_##name ,
  547. enum {
  548. #include "sched_features.h"
  549. };
  550. #undef SCHED_FEAT
  551. #define SCHED_FEAT(name, enabled) \
  552. (1UL << __SCHED_FEAT_##name) * enabled |
  553. const_debug unsigned int sysctl_sched_features =
  554. #include "sched_features.h"
  555. 0;
  556. #undef SCHED_FEAT
  557. #ifdef CONFIG_SCHED_DEBUG
  558. #define SCHED_FEAT(name, enabled) \
  559. #name ,
  560. static __read_mostly char *sched_feat_names[] = {
  561. #include "sched_features.h"
  562. NULL
  563. };
  564. #undef SCHED_FEAT
  565. static int sched_feat_open(struct inode *inode, struct file *filp)
  566. {
  567. filp->private_data = inode->i_private;
  568. return 0;
  569. }
  570. static ssize_t
  571. sched_feat_read(struct file *filp, char __user *ubuf,
  572. size_t cnt, loff_t *ppos)
  573. {
  574. char *buf;
  575. int r = 0;
  576. int len = 0;
  577. int i;
  578. for (i = 0; sched_feat_names[i]; i++) {
  579. len += strlen(sched_feat_names[i]);
  580. len += 4;
  581. }
  582. buf = kmalloc(len + 2, GFP_KERNEL);
  583. if (!buf)
  584. return -ENOMEM;
  585. for (i = 0; sched_feat_names[i]; i++) {
  586. if (sysctl_sched_features & (1UL << i))
  587. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  588. else
  589. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  590. }
  591. r += sprintf(buf + r, "\n");
  592. WARN_ON(r >= len + 2);
  593. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  594. kfree(buf);
  595. return r;
  596. }
  597. static ssize_t
  598. sched_feat_write(struct file *filp, const char __user *ubuf,
  599. size_t cnt, loff_t *ppos)
  600. {
  601. char buf[64];
  602. char *cmp = buf;
  603. int neg = 0;
  604. int i;
  605. if (cnt > 63)
  606. cnt = 63;
  607. if (copy_from_user(&buf, ubuf, cnt))
  608. return -EFAULT;
  609. buf[cnt] = 0;
  610. if (strncmp(buf, "NO_", 3) == 0) {
  611. neg = 1;
  612. cmp += 3;
  613. }
  614. for (i = 0; sched_feat_names[i]; i++) {
  615. int len = strlen(sched_feat_names[i]);
  616. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  617. if (neg)
  618. sysctl_sched_features &= ~(1UL << i);
  619. else
  620. sysctl_sched_features |= (1UL << i);
  621. break;
  622. }
  623. }
  624. if (!sched_feat_names[i])
  625. return -EINVAL;
  626. filp->f_pos += cnt;
  627. return cnt;
  628. }
  629. static struct file_operations sched_feat_fops = {
  630. .open = sched_feat_open,
  631. .read = sched_feat_read,
  632. .write = sched_feat_write,
  633. };
  634. static __init int sched_init_debug(void)
  635. {
  636. debugfs_create_file("sched_features", 0644, NULL, NULL,
  637. &sched_feat_fops);
  638. return 0;
  639. }
  640. late_initcall(sched_init_debug);
  641. #endif
  642. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  643. /*
  644. * Number of tasks to iterate in a single balance run.
  645. * Limited because this is done with IRQs disabled.
  646. */
  647. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  648. /*
  649. * period over which we measure -rt task cpu usage in us.
  650. * default: 1s
  651. */
  652. unsigned int sysctl_sched_rt_period = 1000000;
  653. static __read_mostly int scheduler_running;
  654. /*
  655. * part of the period that we allow rt tasks to run in us.
  656. * default: 0.95s
  657. */
  658. int sysctl_sched_rt_runtime = 950000;
  659. static inline u64 global_rt_period(void)
  660. {
  661. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  662. }
  663. static inline u64 global_rt_runtime(void)
  664. {
  665. if (sysctl_sched_rt_period < 0)
  666. return RUNTIME_INF;
  667. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  668. }
  669. unsigned long long time_sync_thresh = 100000;
  670. static DEFINE_PER_CPU(unsigned long long, time_offset);
  671. static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
  672. /*
  673. * Global lock which we take every now and then to synchronize
  674. * the CPUs time. This method is not warp-safe, but it's good
  675. * enough to synchronize slowly diverging time sources and thus
  676. * it's good enough for tracing:
  677. */
  678. static DEFINE_SPINLOCK(time_sync_lock);
  679. static unsigned long long prev_global_time;
  680. static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
  681. {
  682. /*
  683. * We want this inlined, to not get tracer function calls
  684. * in this critical section:
  685. */
  686. spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
  687. __raw_spin_lock(&time_sync_lock.raw_lock);
  688. if (time < prev_global_time) {
  689. per_cpu(time_offset, cpu) += prev_global_time - time;
  690. time = prev_global_time;
  691. } else {
  692. prev_global_time = time;
  693. }
  694. __raw_spin_unlock(&time_sync_lock.raw_lock);
  695. spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
  696. return time;
  697. }
  698. static unsigned long long __cpu_clock(int cpu)
  699. {
  700. unsigned long long now;
  701. /*
  702. * Only call sched_clock() if the scheduler has already been
  703. * initialized (some code might call cpu_clock() very early):
  704. */
  705. if (unlikely(!scheduler_running))
  706. return 0;
  707. now = sched_clock_cpu(cpu);
  708. return now;
  709. }
  710. /*
  711. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  712. * clock constructed from sched_clock():
  713. */
  714. unsigned long long cpu_clock(int cpu)
  715. {
  716. unsigned long long prev_cpu_time, time, delta_time;
  717. unsigned long flags;
  718. local_irq_save(flags);
  719. prev_cpu_time = per_cpu(prev_cpu_time, cpu);
  720. time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
  721. delta_time = time-prev_cpu_time;
  722. if (unlikely(delta_time > time_sync_thresh)) {
  723. time = __sync_cpu_clock(time, cpu);
  724. per_cpu(prev_cpu_time, cpu) = time;
  725. }
  726. local_irq_restore(flags);
  727. return time;
  728. }
  729. EXPORT_SYMBOL_GPL(cpu_clock);
  730. #ifndef prepare_arch_switch
  731. # define prepare_arch_switch(next) do { } while (0)
  732. #endif
  733. #ifndef finish_arch_switch
  734. # define finish_arch_switch(prev) do { } while (0)
  735. #endif
  736. static inline int task_current(struct rq *rq, struct task_struct *p)
  737. {
  738. return rq->curr == p;
  739. }
  740. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  741. static inline int task_running(struct rq *rq, struct task_struct *p)
  742. {
  743. return task_current(rq, p);
  744. }
  745. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  746. {
  747. }
  748. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  749. {
  750. #ifdef CONFIG_DEBUG_SPINLOCK
  751. /* this is a valid case when another task releases the spinlock */
  752. rq->lock.owner = current;
  753. #endif
  754. /*
  755. * If we are tracking spinlock dependencies then we have to
  756. * fix up the runqueue lock - which gets 'carried over' from
  757. * prev into current:
  758. */
  759. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  760. spin_unlock_irq(&rq->lock);
  761. }
  762. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  763. static inline int task_running(struct rq *rq, struct task_struct *p)
  764. {
  765. #ifdef CONFIG_SMP
  766. return p->oncpu;
  767. #else
  768. return task_current(rq, p);
  769. #endif
  770. }
  771. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  772. {
  773. #ifdef CONFIG_SMP
  774. /*
  775. * We can optimise this out completely for !SMP, because the
  776. * SMP rebalancing from interrupt is the only thing that cares
  777. * here.
  778. */
  779. next->oncpu = 1;
  780. #endif
  781. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  782. spin_unlock_irq(&rq->lock);
  783. #else
  784. spin_unlock(&rq->lock);
  785. #endif
  786. }
  787. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  788. {
  789. #ifdef CONFIG_SMP
  790. /*
  791. * After ->oncpu is cleared, the task can be moved to a different CPU.
  792. * We must ensure this doesn't happen until the switch is completely
  793. * finished.
  794. */
  795. smp_wmb();
  796. prev->oncpu = 0;
  797. #endif
  798. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  799. local_irq_enable();
  800. #endif
  801. }
  802. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  803. /*
  804. * __task_rq_lock - lock the runqueue a given task resides on.
  805. * Must be called interrupts disabled.
  806. */
  807. static inline struct rq *__task_rq_lock(struct task_struct *p)
  808. __acquires(rq->lock)
  809. {
  810. for (;;) {
  811. struct rq *rq = task_rq(p);
  812. spin_lock(&rq->lock);
  813. if (likely(rq == task_rq(p)))
  814. return rq;
  815. spin_unlock(&rq->lock);
  816. }
  817. }
  818. /*
  819. * task_rq_lock - lock the runqueue a given task resides on and disable
  820. * interrupts. Note the ordering: we can safely lookup the task_rq without
  821. * explicitly disabling preemption.
  822. */
  823. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  824. __acquires(rq->lock)
  825. {
  826. struct rq *rq;
  827. for (;;) {
  828. local_irq_save(*flags);
  829. rq = task_rq(p);
  830. spin_lock(&rq->lock);
  831. if (likely(rq == task_rq(p)))
  832. return rq;
  833. spin_unlock_irqrestore(&rq->lock, *flags);
  834. }
  835. }
  836. static void __task_rq_unlock(struct rq *rq)
  837. __releases(rq->lock)
  838. {
  839. spin_unlock(&rq->lock);
  840. }
  841. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  842. __releases(rq->lock)
  843. {
  844. spin_unlock_irqrestore(&rq->lock, *flags);
  845. }
  846. /*
  847. * this_rq_lock - lock this runqueue and disable interrupts.
  848. */
  849. static struct rq *this_rq_lock(void)
  850. __acquires(rq->lock)
  851. {
  852. struct rq *rq;
  853. local_irq_disable();
  854. rq = this_rq();
  855. spin_lock(&rq->lock);
  856. return rq;
  857. }
  858. static void __resched_task(struct task_struct *p, int tif_bit);
  859. static inline void resched_task(struct task_struct *p)
  860. {
  861. __resched_task(p, TIF_NEED_RESCHED);
  862. }
  863. #ifdef CONFIG_SCHED_HRTICK
  864. /*
  865. * Use HR-timers to deliver accurate preemption points.
  866. *
  867. * Its all a bit involved since we cannot program an hrt while holding the
  868. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  869. * reschedule event.
  870. *
  871. * When we get rescheduled we reprogram the hrtick_timer outside of the
  872. * rq->lock.
  873. */
  874. static inline void resched_hrt(struct task_struct *p)
  875. {
  876. __resched_task(p, TIF_HRTICK_RESCHED);
  877. }
  878. static inline void resched_rq(struct rq *rq)
  879. {
  880. unsigned long flags;
  881. spin_lock_irqsave(&rq->lock, flags);
  882. resched_task(rq->curr);
  883. spin_unlock_irqrestore(&rq->lock, flags);
  884. }
  885. enum {
  886. HRTICK_SET, /* re-programm hrtick_timer */
  887. HRTICK_RESET, /* not a new slice */
  888. HRTICK_BLOCK, /* stop hrtick operations */
  889. };
  890. /*
  891. * Use hrtick when:
  892. * - enabled by features
  893. * - hrtimer is actually high res
  894. */
  895. static inline int hrtick_enabled(struct rq *rq)
  896. {
  897. if (!sched_feat(HRTICK))
  898. return 0;
  899. if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
  900. return 0;
  901. return hrtimer_is_hres_active(&rq->hrtick_timer);
  902. }
  903. /*
  904. * Called to set the hrtick timer state.
  905. *
  906. * called with rq->lock held and irqs disabled
  907. */
  908. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  909. {
  910. assert_spin_locked(&rq->lock);
  911. /*
  912. * preempt at: now + delay
  913. */
  914. rq->hrtick_expire =
  915. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  916. /*
  917. * indicate we need to program the timer
  918. */
  919. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  920. if (reset)
  921. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  922. /*
  923. * New slices are called from the schedule path and don't need a
  924. * forced reschedule.
  925. */
  926. if (reset)
  927. resched_hrt(rq->curr);
  928. }
  929. static void hrtick_clear(struct rq *rq)
  930. {
  931. if (hrtimer_active(&rq->hrtick_timer))
  932. hrtimer_cancel(&rq->hrtick_timer);
  933. }
  934. /*
  935. * Update the timer from the possible pending state.
  936. */
  937. static void hrtick_set(struct rq *rq)
  938. {
  939. ktime_t time;
  940. int set, reset;
  941. unsigned long flags;
  942. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  943. spin_lock_irqsave(&rq->lock, flags);
  944. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  945. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  946. time = rq->hrtick_expire;
  947. clear_thread_flag(TIF_HRTICK_RESCHED);
  948. spin_unlock_irqrestore(&rq->lock, flags);
  949. if (set) {
  950. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  951. if (reset && !hrtimer_active(&rq->hrtick_timer))
  952. resched_rq(rq);
  953. } else
  954. hrtick_clear(rq);
  955. }
  956. /*
  957. * High-resolution timer tick.
  958. * Runs from hardirq context with interrupts disabled.
  959. */
  960. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  961. {
  962. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  963. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  964. spin_lock(&rq->lock);
  965. update_rq_clock(rq);
  966. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  967. spin_unlock(&rq->lock);
  968. return HRTIMER_NORESTART;
  969. }
  970. static void hotplug_hrtick_disable(int cpu)
  971. {
  972. struct rq *rq = cpu_rq(cpu);
  973. unsigned long flags;
  974. spin_lock_irqsave(&rq->lock, flags);
  975. rq->hrtick_flags = 0;
  976. __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  977. spin_unlock_irqrestore(&rq->lock, flags);
  978. hrtick_clear(rq);
  979. }
  980. static void hotplug_hrtick_enable(int cpu)
  981. {
  982. struct rq *rq = cpu_rq(cpu);
  983. unsigned long flags;
  984. spin_lock_irqsave(&rq->lock, flags);
  985. __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  986. spin_unlock_irqrestore(&rq->lock, flags);
  987. }
  988. static int
  989. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  990. {
  991. int cpu = (int)(long)hcpu;
  992. switch (action) {
  993. case CPU_UP_CANCELED:
  994. case CPU_UP_CANCELED_FROZEN:
  995. case CPU_DOWN_PREPARE:
  996. case CPU_DOWN_PREPARE_FROZEN:
  997. case CPU_DEAD:
  998. case CPU_DEAD_FROZEN:
  999. hotplug_hrtick_disable(cpu);
  1000. return NOTIFY_OK;
  1001. case CPU_UP_PREPARE:
  1002. case CPU_UP_PREPARE_FROZEN:
  1003. case CPU_DOWN_FAILED:
  1004. case CPU_DOWN_FAILED_FROZEN:
  1005. case CPU_ONLINE:
  1006. case CPU_ONLINE_FROZEN:
  1007. hotplug_hrtick_enable(cpu);
  1008. return NOTIFY_OK;
  1009. }
  1010. return NOTIFY_DONE;
  1011. }
  1012. static void init_hrtick(void)
  1013. {
  1014. hotcpu_notifier(hotplug_hrtick, 0);
  1015. }
  1016. static void init_rq_hrtick(struct rq *rq)
  1017. {
  1018. rq->hrtick_flags = 0;
  1019. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1020. rq->hrtick_timer.function = hrtick;
  1021. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  1022. }
  1023. void hrtick_resched(void)
  1024. {
  1025. struct rq *rq;
  1026. unsigned long flags;
  1027. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  1028. return;
  1029. local_irq_save(flags);
  1030. rq = cpu_rq(smp_processor_id());
  1031. hrtick_set(rq);
  1032. local_irq_restore(flags);
  1033. }
  1034. #else
  1035. static inline void hrtick_clear(struct rq *rq)
  1036. {
  1037. }
  1038. static inline void hrtick_set(struct rq *rq)
  1039. {
  1040. }
  1041. static inline void init_rq_hrtick(struct rq *rq)
  1042. {
  1043. }
  1044. void hrtick_resched(void)
  1045. {
  1046. }
  1047. static inline void init_hrtick(void)
  1048. {
  1049. }
  1050. #endif
  1051. /*
  1052. * resched_task - mark a task 'to be rescheduled now'.
  1053. *
  1054. * On UP this means the setting of the need_resched flag, on SMP it
  1055. * might also involve a cross-CPU call to trigger the scheduler on
  1056. * the target CPU.
  1057. */
  1058. #ifdef CONFIG_SMP
  1059. #ifndef tsk_is_polling
  1060. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1061. #endif
  1062. static void __resched_task(struct task_struct *p, int tif_bit)
  1063. {
  1064. int cpu;
  1065. assert_spin_locked(&task_rq(p)->lock);
  1066. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  1067. return;
  1068. set_tsk_thread_flag(p, tif_bit);
  1069. cpu = task_cpu(p);
  1070. if (cpu == smp_processor_id())
  1071. return;
  1072. /* NEED_RESCHED must be visible before we test polling */
  1073. smp_mb();
  1074. if (!tsk_is_polling(p))
  1075. smp_send_reschedule(cpu);
  1076. }
  1077. static void resched_cpu(int cpu)
  1078. {
  1079. struct rq *rq = cpu_rq(cpu);
  1080. unsigned long flags;
  1081. if (!spin_trylock_irqsave(&rq->lock, flags))
  1082. return;
  1083. resched_task(cpu_curr(cpu));
  1084. spin_unlock_irqrestore(&rq->lock, flags);
  1085. }
  1086. #ifdef CONFIG_NO_HZ
  1087. /*
  1088. * When add_timer_on() enqueues a timer into the timer wheel of an
  1089. * idle CPU then this timer might expire before the next timer event
  1090. * which is scheduled to wake up that CPU. In case of a completely
  1091. * idle system the next event might even be infinite time into the
  1092. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1093. * leaves the inner idle loop so the newly added timer is taken into
  1094. * account when the CPU goes back to idle and evaluates the timer
  1095. * wheel for the next timer event.
  1096. */
  1097. void wake_up_idle_cpu(int cpu)
  1098. {
  1099. struct rq *rq = cpu_rq(cpu);
  1100. if (cpu == smp_processor_id())
  1101. return;
  1102. /*
  1103. * This is safe, as this function is called with the timer
  1104. * wheel base lock of (cpu) held. When the CPU is on the way
  1105. * to idle and has not yet set rq->curr to idle then it will
  1106. * be serialized on the timer wheel base lock and take the new
  1107. * timer into account automatically.
  1108. */
  1109. if (rq->curr != rq->idle)
  1110. return;
  1111. /*
  1112. * We can set TIF_RESCHED on the idle task of the other CPU
  1113. * lockless. The worst case is that the other CPU runs the
  1114. * idle task through an additional NOOP schedule()
  1115. */
  1116. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1117. /* NEED_RESCHED must be visible before we test polling */
  1118. smp_mb();
  1119. if (!tsk_is_polling(rq->idle))
  1120. smp_send_reschedule(cpu);
  1121. }
  1122. #endif
  1123. #else
  1124. static void __resched_task(struct task_struct *p, int tif_bit)
  1125. {
  1126. assert_spin_locked(&task_rq(p)->lock);
  1127. set_tsk_thread_flag(p, tif_bit);
  1128. }
  1129. #endif
  1130. #if BITS_PER_LONG == 32
  1131. # define WMULT_CONST (~0UL)
  1132. #else
  1133. # define WMULT_CONST (1UL << 32)
  1134. #endif
  1135. #define WMULT_SHIFT 32
  1136. /*
  1137. * Shift right and round:
  1138. */
  1139. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1140. static unsigned long
  1141. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1142. struct load_weight *lw)
  1143. {
  1144. u64 tmp;
  1145. if (!lw->inv_weight)
  1146. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
  1147. tmp = (u64)delta_exec * weight;
  1148. /*
  1149. * Check whether we'd overflow the 64-bit multiplication:
  1150. */
  1151. if (unlikely(tmp > WMULT_CONST))
  1152. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1153. WMULT_SHIFT/2);
  1154. else
  1155. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1156. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1157. }
  1158. static inline unsigned long
  1159. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  1160. {
  1161. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  1162. }
  1163. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1164. {
  1165. lw->weight += inc;
  1166. lw->inv_weight = 0;
  1167. }
  1168. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1169. {
  1170. lw->weight -= dec;
  1171. lw->inv_weight = 0;
  1172. }
  1173. /*
  1174. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1175. * of tasks with abnormal "nice" values across CPUs the contribution that
  1176. * each task makes to its run queue's load is weighted according to its
  1177. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1178. * scaled version of the new time slice allocation that they receive on time
  1179. * slice expiry etc.
  1180. */
  1181. #define WEIGHT_IDLEPRIO 2
  1182. #define WMULT_IDLEPRIO (1 << 31)
  1183. /*
  1184. * Nice levels are multiplicative, with a gentle 10% change for every
  1185. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1186. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1187. * that remained on nice 0.
  1188. *
  1189. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1190. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1191. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1192. * If a task goes up by ~10% and another task goes down by ~10% then
  1193. * the relative distance between them is ~25%.)
  1194. */
  1195. static const int prio_to_weight[40] = {
  1196. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1197. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1198. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1199. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1200. /* 0 */ 1024, 820, 655, 526, 423,
  1201. /* 5 */ 335, 272, 215, 172, 137,
  1202. /* 10 */ 110, 87, 70, 56, 45,
  1203. /* 15 */ 36, 29, 23, 18, 15,
  1204. };
  1205. /*
  1206. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1207. *
  1208. * In cases where the weight does not change often, we can use the
  1209. * precalculated inverse to speed up arithmetics by turning divisions
  1210. * into multiplications:
  1211. */
  1212. static const u32 prio_to_wmult[40] = {
  1213. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1214. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1215. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1216. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1217. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1218. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1219. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1220. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1221. };
  1222. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1223. /*
  1224. * runqueue iterator, to support SMP load-balancing between different
  1225. * scheduling classes, without having to expose their internal data
  1226. * structures to the load-balancing proper:
  1227. */
  1228. struct rq_iterator {
  1229. void *arg;
  1230. struct task_struct *(*start)(void *);
  1231. struct task_struct *(*next)(void *);
  1232. };
  1233. #ifdef CONFIG_SMP
  1234. static unsigned long
  1235. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1236. unsigned long max_load_move, struct sched_domain *sd,
  1237. enum cpu_idle_type idle, int *all_pinned,
  1238. int *this_best_prio, struct rq_iterator *iterator);
  1239. static int
  1240. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1241. struct sched_domain *sd, enum cpu_idle_type idle,
  1242. struct rq_iterator *iterator);
  1243. #endif
  1244. #ifdef CONFIG_CGROUP_CPUACCT
  1245. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1246. #else
  1247. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1248. #endif
  1249. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1250. {
  1251. update_load_add(&rq->load, load);
  1252. }
  1253. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1254. {
  1255. update_load_sub(&rq->load, load);
  1256. }
  1257. #ifdef CONFIG_SMP
  1258. static unsigned long source_load(int cpu, int type);
  1259. static unsigned long target_load(int cpu, int type);
  1260. static unsigned long cpu_avg_load_per_task(int cpu);
  1261. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1262. #ifdef CONFIG_FAIR_GROUP_SCHED
  1263. /*
  1264. * Group load balancing.
  1265. *
  1266. * We calculate a few balance domain wide aggregate numbers; load and weight.
  1267. * Given the pictures below, and assuming each item has equal weight:
  1268. *
  1269. * root 1 - thread
  1270. * / | \ A - group
  1271. * A 1 B
  1272. * /|\ / \
  1273. * C 2 D 3 4
  1274. * | |
  1275. * 5 6
  1276. *
  1277. * load:
  1278. * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
  1279. * which equals 1/9-th of the total load.
  1280. *
  1281. * shares:
  1282. * The weight of this group on the selected cpus.
  1283. *
  1284. * rq_weight:
  1285. * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
  1286. * B would get 2.
  1287. *
  1288. * task_weight:
  1289. * Part of the rq_weight contributed by tasks; all groups except B would
  1290. * get 1, B gets 2.
  1291. */
  1292. static inline struct aggregate_struct *
  1293. aggregate(struct task_group *tg, struct sched_domain *sd)
  1294. {
  1295. return &tg->cfs_rq[sd->first_cpu]->aggregate;
  1296. }
  1297. typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);
  1298. /*
  1299. * Iterate the full tree, calling @down when first entering a node and @up when
  1300. * leaving it for the final time.
  1301. */
  1302. static
  1303. void aggregate_walk_tree(aggregate_func down, aggregate_func up,
  1304. struct sched_domain *sd)
  1305. {
  1306. struct task_group *parent, *child;
  1307. rcu_read_lock();
  1308. parent = &root_task_group;
  1309. down:
  1310. (*down)(parent, sd);
  1311. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1312. parent = child;
  1313. goto down;
  1314. up:
  1315. continue;
  1316. }
  1317. (*up)(parent, sd);
  1318. child = parent;
  1319. parent = parent->parent;
  1320. if (parent)
  1321. goto up;
  1322. rcu_read_unlock();
  1323. }
  1324. /*
  1325. * Calculate the aggregate runqueue weight.
  1326. */
  1327. static
  1328. void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
  1329. {
  1330. unsigned long rq_weight = 0;
  1331. unsigned long task_weight = 0;
  1332. int i;
  1333. for_each_cpu_mask(i, sd->span) {
  1334. rq_weight += tg->cfs_rq[i]->load.weight;
  1335. task_weight += tg->cfs_rq[i]->task_weight;
  1336. }
  1337. aggregate(tg, sd)->rq_weight = rq_weight;
  1338. aggregate(tg, sd)->task_weight = task_weight;
  1339. }
  1340. /*
  1341. * Compute the weight of this group on the given cpus.
  1342. */
  1343. static
  1344. void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
  1345. {
  1346. unsigned long shares = 0;
  1347. int i;
  1348. for_each_cpu_mask(i, sd->span)
  1349. shares += tg->cfs_rq[i]->shares;
  1350. if ((!shares && aggregate(tg, sd)->rq_weight) || shares > tg->shares)
  1351. shares = tg->shares;
  1352. aggregate(tg, sd)->shares = shares;
  1353. }
  1354. /*
  1355. * Compute the load fraction assigned to this group, relies on the aggregate
  1356. * weight and this group's parent's load, i.e. top-down.
  1357. */
  1358. static
  1359. void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
  1360. {
  1361. unsigned long load;
  1362. if (!tg->parent) {
  1363. int i;
  1364. load = 0;
  1365. for_each_cpu_mask(i, sd->span)
  1366. load += cpu_rq(i)->load.weight;
  1367. } else {
  1368. load = aggregate(tg->parent, sd)->load;
  1369. /*
  1370. * shares is our weight in the parent's rq so
  1371. * shares/parent->rq_weight gives our fraction of the load
  1372. */
  1373. load *= aggregate(tg, sd)->shares;
  1374. load /= aggregate(tg->parent, sd)->rq_weight + 1;
  1375. }
  1376. aggregate(tg, sd)->load = load;
  1377. }
  1378. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1379. /*
  1380. * Calculate and set the cpu's group shares.
  1381. */
  1382. static void
  1383. __update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
  1384. int tcpu)
  1385. {
  1386. int boost = 0;
  1387. unsigned long shares;
  1388. unsigned long rq_weight;
  1389. if (!tg->se[tcpu])
  1390. return;
  1391. rq_weight = tg->cfs_rq[tcpu]->load.weight;
  1392. /*
  1393. * If there are currently no tasks on the cpu pretend there is one of
  1394. * average load so that when a new task gets to run here it will not
  1395. * get delayed by group starvation.
  1396. */
  1397. if (!rq_weight) {
  1398. boost = 1;
  1399. rq_weight = NICE_0_LOAD;
  1400. }
  1401. /*
  1402. * \Sum shares * rq_weight
  1403. * shares = -----------------------
  1404. * \Sum rq_weight
  1405. *
  1406. */
  1407. shares = aggregate(tg, sd)->shares * rq_weight;
  1408. shares /= aggregate(tg, sd)->rq_weight + 1;
  1409. /*
  1410. * record the actual number of shares, not the boosted amount.
  1411. */
  1412. tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;
  1413. if (shares < MIN_SHARES)
  1414. shares = MIN_SHARES;
  1415. else if (shares > MAX_SHARES)
  1416. shares = MAX_SHARES;
  1417. __set_se_shares(tg->se[tcpu], shares);
  1418. }
  1419. /*
  1420. * Re-adjust the weights on the cpu the task came from and on the cpu the
  1421. * task went to.
  1422. */
  1423. static void
  1424. __move_group_shares(struct task_group *tg, struct sched_domain *sd,
  1425. int scpu, int dcpu)
  1426. {
  1427. unsigned long shares;
  1428. shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
  1429. __update_group_shares_cpu(tg, sd, scpu);
  1430. __update_group_shares_cpu(tg, sd, dcpu);
  1431. /*
  1432. * ensure we never loose shares due to rounding errors in the
  1433. * above redistribution.
  1434. */
  1435. shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
  1436. if (shares)
  1437. tg->cfs_rq[dcpu]->shares += shares;
  1438. }
  1439. /*
  1440. * Because changing a group's shares changes the weight of the super-group
  1441. * we need to walk up the tree and change all shares until we hit the root.
  1442. */
  1443. static void
  1444. move_group_shares(struct task_group *tg, struct sched_domain *sd,
  1445. int scpu, int dcpu)
  1446. {
  1447. while (tg) {
  1448. __move_group_shares(tg, sd, scpu, dcpu);
  1449. tg = tg->parent;
  1450. }
  1451. }
  1452. static
  1453. void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
  1454. {
  1455. unsigned long shares = aggregate(tg, sd)->shares;
  1456. int i;
  1457. for_each_cpu_mask(i, sd->span) {
  1458. struct rq *rq = cpu_rq(i);
  1459. unsigned long flags;
  1460. spin_lock_irqsave(&rq->lock, flags);
  1461. __update_group_shares_cpu(tg, sd, i);
  1462. spin_unlock_irqrestore(&rq->lock, flags);
  1463. }
  1464. aggregate_group_shares(tg, sd);
  1465. /*
  1466. * ensure we never loose shares due to rounding errors in the
  1467. * above redistribution.
  1468. */
  1469. shares -= aggregate(tg, sd)->shares;
  1470. if (shares) {
  1471. tg->cfs_rq[sd->first_cpu]->shares += shares;
  1472. aggregate(tg, sd)->shares += shares;
  1473. }
  1474. }
  1475. /*
  1476. * Calculate the accumulative weight and recursive load of each task group
  1477. * while walking down the tree.
  1478. */
  1479. static
  1480. void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
  1481. {
  1482. aggregate_group_weight(tg, sd);
  1483. aggregate_group_shares(tg, sd);
  1484. aggregate_group_load(tg, sd);
  1485. }
  1486. /*
  1487. * Rebalance the cpu shares while walking back up the tree.
  1488. */
  1489. static
  1490. void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
  1491. {
  1492. aggregate_group_set_shares(tg, sd);
  1493. }
  1494. static DEFINE_PER_CPU(spinlock_t, aggregate_lock);
  1495. static void __init init_aggregate(void)
  1496. {
  1497. int i;
  1498. for_each_possible_cpu(i)
  1499. spin_lock_init(&per_cpu(aggregate_lock, i));
  1500. }
  1501. static int get_aggregate(struct sched_domain *sd)
  1502. {
  1503. if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
  1504. return 0;
  1505. aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
  1506. return 1;
  1507. }
  1508. static void put_aggregate(struct sched_domain *sd)
  1509. {
  1510. spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
  1511. }
  1512. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1513. {
  1514. cfs_rq->shares = shares;
  1515. }
  1516. #else
  1517. static inline void init_aggregate(void)
  1518. {
  1519. }
  1520. static inline int get_aggregate(struct sched_domain *sd)
  1521. {
  1522. return 0;
  1523. }
  1524. static inline void put_aggregate(struct sched_domain *sd)
  1525. {
  1526. }
  1527. #endif
  1528. #else /* CONFIG_SMP */
  1529. #ifdef CONFIG_FAIR_GROUP_SCHED
  1530. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1531. {
  1532. }
  1533. #endif
  1534. #endif /* CONFIG_SMP */
  1535. #include "sched_stats.h"
  1536. #include "sched_idletask.c"
  1537. #include "sched_fair.c"
  1538. #include "sched_rt.c"
  1539. #ifdef CONFIG_SCHED_DEBUG
  1540. # include "sched_debug.c"
  1541. #endif
  1542. #define sched_class_highest (&rt_sched_class)
  1543. static void inc_nr_running(struct rq *rq)
  1544. {
  1545. rq->nr_running++;
  1546. }
  1547. static void dec_nr_running(struct rq *rq)
  1548. {
  1549. rq->nr_running--;
  1550. }
  1551. static void set_load_weight(struct task_struct *p)
  1552. {
  1553. if (task_has_rt_policy(p)) {
  1554. p->se.load.weight = prio_to_weight[0] * 2;
  1555. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1556. return;
  1557. }
  1558. /*
  1559. * SCHED_IDLE tasks get minimal weight:
  1560. */
  1561. if (p->policy == SCHED_IDLE) {
  1562. p->se.load.weight = WEIGHT_IDLEPRIO;
  1563. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1564. return;
  1565. }
  1566. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1567. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1568. }
  1569. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1570. {
  1571. sched_info_queued(p);
  1572. p->sched_class->enqueue_task(rq, p, wakeup);
  1573. p->se.on_rq = 1;
  1574. }
  1575. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1576. {
  1577. p->sched_class->dequeue_task(rq, p, sleep);
  1578. p->se.on_rq = 0;
  1579. }
  1580. /*
  1581. * __normal_prio - return the priority that is based on the static prio
  1582. */
  1583. static inline int __normal_prio(struct task_struct *p)
  1584. {
  1585. return p->static_prio;
  1586. }
  1587. /*
  1588. * Calculate the expected normal priority: i.e. priority
  1589. * without taking RT-inheritance into account. Might be
  1590. * boosted by interactivity modifiers. Changes upon fork,
  1591. * setprio syscalls, and whenever the interactivity
  1592. * estimator recalculates.
  1593. */
  1594. static inline int normal_prio(struct task_struct *p)
  1595. {
  1596. int prio;
  1597. if (task_has_rt_policy(p))
  1598. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1599. else
  1600. prio = __normal_prio(p);
  1601. return prio;
  1602. }
  1603. /*
  1604. * Calculate the current priority, i.e. the priority
  1605. * taken into account by the scheduler. This value might
  1606. * be boosted by RT tasks, or might be boosted by
  1607. * interactivity modifiers. Will be RT if the task got
  1608. * RT-boosted. If not then it returns p->normal_prio.
  1609. */
  1610. static int effective_prio(struct task_struct *p)
  1611. {
  1612. p->normal_prio = normal_prio(p);
  1613. /*
  1614. * If we are RT tasks or we were boosted to RT priority,
  1615. * keep the priority unchanged. Otherwise, update priority
  1616. * to the normal priority:
  1617. */
  1618. if (!rt_prio(p->prio))
  1619. return p->normal_prio;
  1620. return p->prio;
  1621. }
  1622. /*
  1623. * activate_task - move a task to the runqueue.
  1624. */
  1625. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1626. {
  1627. if (task_contributes_to_load(p))
  1628. rq->nr_uninterruptible--;
  1629. enqueue_task(rq, p, wakeup);
  1630. inc_nr_running(rq);
  1631. }
  1632. /*
  1633. * deactivate_task - remove a task from the runqueue.
  1634. */
  1635. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1636. {
  1637. if (task_contributes_to_load(p))
  1638. rq->nr_uninterruptible++;
  1639. dequeue_task(rq, p, sleep);
  1640. dec_nr_running(rq);
  1641. }
  1642. /**
  1643. * task_curr - is this task currently executing on a CPU?
  1644. * @p: the task in question.
  1645. */
  1646. inline int task_curr(const struct task_struct *p)
  1647. {
  1648. return cpu_curr(task_cpu(p)) == p;
  1649. }
  1650. /* Used instead of source_load when we know the type == 0 */
  1651. unsigned long weighted_cpuload(const int cpu)
  1652. {
  1653. return cpu_rq(cpu)->load.weight;
  1654. }
  1655. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1656. {
  1657. set_task_rq(p, cpu);
  1658. #ifdef CONFIG_SMP
  1659. /*
  1660. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1661. * successfuly executed on another CPU. We must ensure that updates of
  1662. * per-task data have been completed by this moment.
  1663. */
  1664. smp_wmb();
  1665. task_thread_info(p)->cpu = cpu;
  1666. #endif
  1667. }
  1668. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1669. const struct sched_class *prev_class,
  1670. int oldprio, int running)
  1671. {
  1672. if (prev_class != p->sched_class) {
  1673. if (prev_class->switched_from)
  1674. prev_class->switched_from(rq, p, running);
  1675. p->sched_class->switched_to(rq, p, running);
  1676. } else
  1677. p->sched_class->prio_changed(rq, p, oldprio, running);
  1678. }
  1679. #ifdef CONFIG_SMP
  1680. /*
  1681. * Is this task likely cache-hot:
  1682. */
  1683. static int
  1684. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1685. {
  1686. s64 delta;
  1687. /*
  1688. * Buddy candidates are cache hot:
  1689. */
  1690. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1691. return 1;
  1692. if (p->sched_class != &fair_sched_class)
  1693. return 0;
  1694. if (sysctl_sched_migration_cost == -1)
  1695. return 1;
  1696. if (sysctl_sched_migration_cost == 0)
  1697. return 0;
  1698. delta = now - p->se.exec_start;
  1699. return delta < (s64)sysctl_sched_migration_cost;
  1700. }
  1701. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1702. {
  1703. int old_cpu = task_cpu(p);
  1704. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1705. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1706. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1707. u64 clock_offset;
  1708. clock_offset = old_rq->clock - new_rq->clock;
  1709. #ifdef CONFIG_SCHEDSTATS
  1710. if (p->se.wait_start)
  1711. p->se.wait_start -= clock_offset;
  1712. if (p->se.sleep_start)
  1713. p->se.sleep_start -= clock_offset;
  1714. if (p->se.block_start)
  1715. p->se.block_start -= clock_offset;
  1716. if (old_cpu != new_cpu) {
  1717. schedstat_inc(p, se.nr_migrations);
  1718. if (task_hot(p, old_rq->clock, NULL))
  1719. schedstat_inc(p, se.nr_forced2_migrations);
  1720. }
  1721. #endif
  1722. p->se.vruntime -= old_cfsrq->min_vruntime -
  1723. new_cfsrq->min_vruntime;
  1724. __set_task_cpu(p, new_cpu);
  1725. }
  1726. struct migration_req {
  1727. struct list_head list;
  1728. struct task_struct *task;
  1729. int dest_cpu;
  1730. struct completion done;
  1731. };
  1732. /*
  1733. * The task's runqueue lock must be held.
  1734. * Returns true if you have to wait for migration thread.
  1735. */
  1736. static int
  1737. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1738. {
  1739. struct rq *rq = task_rq(p);
  1740. /*
  1741. * If the task is not on a runqueue (and not running), then
  1742. * it is sufficient to simply update the task's cpu field.
  1743. */
  1744. if (!p->se.on_rq && !task_running(rq, p)) {
  1745. set_task_cpu(p, dest_cpu);
  1746. return 0;
  1747. }
  1748. init_completion(&req->done);
  1749. req->task = p;
  1750. req->dest_cpu = dest_cpu;
  1751. list_add(&req->list, &rq->migration_queue);
  1752. return 1;
  1753. }
  1754. /*
  1755. * wait_task_inactive - wait for a thread to unschedule.
  1756. *
  1757. * The caller must ensure that the task *will* unschedule sometime soon,
  1758. * else this function might spin for a *long* time. This function can't
  1759. * be called with interrupts off, or it may introduce deadlock with
  1760. * smp_call_function() if an IPI is sent by the same process we are
  1761. * waiting to become inactive.
  1762. */
  1763. void wait_task_inactive(struct task_struct *p)
  1764. {
  1765. unsigned long flags;
  1766. int running, on_rq;
  1767. struct rq *rq;
  1768. for (;;) {
  1769. /*
  1770. * We do the initial early heuristics without holding
  1771. * any task-queue locks at all. We'll only try to get
  1772. * the runqueue lock when things look like they will
  1773. * work out!
  1774. */
  1775. rq = task_rq(p);
  1776. /*
  1777. * If the task is actively running on another CPU
  1778. * still, just relax and busy-wait without holding
  1779. * any locks.
  1780. *
  1781. * NOTE! Since we don't hold any locks, it's not
  1782. * even sure that "rq" stays as the right runqueue!
  1783. * But we don't care, since "task_running()" will
  1784. * return false if the runqueue has changed and p
  1785. * is actually now running somewhere else!
  1786. */
  1787. while (task_running(rq, p))
  1788. cpu_relax();
  1789. /*
  1790. * Ok, time to look more closely! We need the rq
  1791. * lock now, to be *sure*. If we're wrong, we'll
  1792. * just go back and repeat.
  1793. */
  1794. rq = task_rq_lock(p, &flags);
  1795. running = task_running(rq, p);
  1796. on_rq = p->se.on_rq;
  1797. task_rq_unlock(rq, &flags);
  1798. /*
  1799. * Was it really running after all now that we
  1800. * checked with the proper locks actually held?
  1801. *
  1802. * Oops. Go back and try again..
  1803. */
  1804. if (unlikely(running)) {
  1805. cpu_relax();
  1806. continue;
  1807. }
  1808. /*
  1809. * It's not enough that it's not actively running,
  1810. * it must be off the runqueue _entirely_, and not
  1811. * preempted!
  1812. *
  1813. * So if it wa still runnable (but just not actively
  1814. * running right now), it's preempted, and we should
  1815. * yield - it could be a while.
  1816. */
  1817. if (unlikely(on_rq)) {
  1818. schedule_timeout_uninterruptible(1);
  1819. continue;
  1820. }
  1821. /*
  1822. * Ahh, all good. It wasn't running, and it wasn't
  1823. * runnable, which means that it will never become
  1824. * running in the future either. We're all done!
  1825. */
  1826. break;
  1827. }
  1828. }
  1829. /***
  1830. * kick_process - kick a running thread to enter/exit the kernel
  1831. * @p: the to-be-kicked thread
  1832. *
  1833. * Cause a process which is running on another CPU to enter
  1834. * kernel-mode, without any delay. (to get signals handled.)
  1835. *
  1836. * NOTE: this function doesnt have to take the runqueue lock,
  1837. * because all it wants to ensure is that the remote task enters
  1838. * the kernel. If the IPI races and the task has been migrated
  1839. * to another CPU then no harm is done and the purpose has been
  1840. * achieved as well.
  1841. */
  1842. void kick_process(struct task_struct *p)
  1843. {
  1844. int cpu;
  1845. preempt_disable();
  1846. cpu = task_cpu(p);
  1847. if ((cpu != smp_processor_id()) && task_curr(p))
  1848. smp_send_reschedule(cpu);
  1849. preempt_enable();
  1850. }
  1851. /*
  1852. * Return a low guess at the load of a migration-source cpu weighted
  1853. * according to the scheduling class and "nice" value.
  1854. *
  1855. * We want to under-estimate the load of migration sources, to
  1856. * balance conservatively.
  1857. */
  1858. static unsigned long source_load(int cpu, int type)
  1859. {
  1860. struct rq *rq = cpu_rq(cpu);
  1861. unsigned long total = weighted_cpuload(cpu);
  1862. if (type == 0)
  1863. return total;
  1864. return min(rq->cpu_load[type-1], total);
  1865. }
  1866. /*
  1867. * Return a high guess at the load of a migration-target cpu weighted
  1868. * according to the scheduling class and "nice" value.
  1869. */
  1870. static unsigned long target_load(int cpu, int type)
  1871. {
  1872. struct rq *rq = cpu_rq(cpu);
  1873. unsigned long total = weighted_cpuload(cpu);
  1874. if (type == 0)
  1875. return total;
  1876. return max(rq->cpu_load[type-1], total);
  1877. }
  1878. /*
  1879. * Return the average load per task on the cpu's run queue
  1880. */
  1881. static unsigned long cpu_avg_load_per_task(int cpu)
  1882. {
  1883. struct rq *rq = cpu_rq(cpu);
  1884. unsigned long total = weighted_cpuload(cpu);
  1885. unsigned long n = rq->nr_running;
  1886. return n ? total / n : SCHED_LOAD_SCALE;
  1887. }
  1888. /*
  1889. * find_idlest_group finds and returns the least busy CPU group within the
  1890. * domain.
  1891. */
  1892. static struct sched_group *
  1893. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1894. {
  1895. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1896. unsigned long min_load = ULONG_MAX, this_load = 0;
  1897. int load_idx = sd->forkexec_idx;
  1898. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1899. do {
  1900. unsigned long load, avg_load;
  1901. int local_group;
  1902. int i;
  1903. /* Skip over this group if it has no CPUs allowed */
  1904. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1905. continue;
  1906. local_group = cpu_isset(this_cpu, group->cpumask);
  1907. /* Tally up the load of all CPUs in the group */
  1908. avg_load = 0;
  1909. for_each_cpu_mask(i, group->cpumask) {
  1910. /* Bias balancing toward cpus of our domain */
  1911. if (local_group)
  1912. load = source_load(i, load_idx);
  1913. else
  1914. load = target_load(i, load_idx);
  1915. avg_load += load;
  1916. }
  1917. /* Adjust by relative CPU power of the group */
  1918. avg_load = sg_div_cpu_power(group,
  1919. avg_load * SCHED_LOAD_SCALE);
  1920. if (local_group) {
  1921. this_load = avg_load;
  1922. this = group;
  1923. } else if (avg_load < min_load) {
  1924. min_load = avg_load;
  1925. idlest = group;
  1926. }
  1927. } while (group = group->next, group != sd->groups);
  1928. if (!idlest || 100*this_load < imbalance*min_load)
  1929. return NULL;
  1930. return idlest;
  1931. }
  1932. /*
  1933. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1934. */
  1935. static int
  1936. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1937. cpumask_t *tmp)
  1938. {
  1939. unsigned long load, min_load = ULONG_MAX;
  1940. int idlest = -1;
  1941. int i;
  1942. /* Traverse only the allowed CPUs */
  1943. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1944. for_each_cpu_mask(i, *tmp) {
  1945. load = weighted_cpuload(i);
  1946. if (load < min_load || (load == min_load && i == this_cpu)) {
  1947. min_load = load;
  1948. idlest = i;
  1949. }
  1950. }
  1951. return idlest;
  1952. }
  1953. /*
  1954. * sched_balance_self: balance the current task (running on cpu) in domains
  1955. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1956. * SD_BALANCE_EXEC.
  1957. *
  1958. * Balance, ie. select the least loaded group.
  1959. *
  1960. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1961. *
  1962. * preempt must be disabled.
  1963. */
  1964. static int sched_balance_self(int cpu, int flag)
  1965. {
  1966. struct task_struct *t = current;
  1967. struct sched_domain *tmp, *sd = NULL;
  1968. for_each_domain(cpu, tmp) {
  1969. /*
  1970. * If power savings logic is enabled for a domain, stop there.
  1971. */
  1972. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1973. break;
  1974. if (tmp->flags & flag)
  1975. sd = tmp;
  1976. }
  1977. while (sd) {
  1978. cpumask_t span, tmpmask;
  1979. struct sched_group *group;
  1980. int new_cpu, weight;
  1981. if (!(sd->flags & flag)) {
  1982. sd = sd->child;
  1983. continue;
  1984. }
  1985. span = sd->span;
  1986. group = find_idlest_group(sd, t, cpu);
  1987. if (!group) {
  1988. sd = sd->child;
  1989. continue;
  1990. }
  1991. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1992. if (new_cpu == -1 || new_cpu == cpu) {
  1993. /* Now try balancing at a lower domain level of cpu */
  1994. sd = sd->child;
  1995. continue;
  1996. }
  1997. /* Now try balancing at a lower domain level of new_cpu */
  1998. cpu = new_cpu;
  1999. sd = NULL;
  2000. weight = cpus_weight(span);
  2001. for_each_domain(cpu, tmp) {
  2002. if (weight <= cpus_weight(tmp->span))
  2003. break;
  2004. if (tmp->flags & flag)
  2005. sd = tmp;
  2006. }
  2007. /* while loop will break here if sd == NULL */
  2008. }
  2009. return cpu;
  2010. }
  2011. #endif /* CONFIG_SMP */
  2012. /***
  2013. * try_to_wake_up - wake up a thread
  2014. * @p: the to-be-woken-up thread
  2015. * @state: the mask of task states that can be woken
  2016. * @sync: do a synchronous wakeup?
  2017. *
  2018. * Put it on the run-queue if it's not already there. The "current"
  2019. * thread is always on the run-queue (except when the actual
  2020. * re-schedule is in progress), and as such you're allowed to do
  2021. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2022. * runnable without the overhead of this.
  2023. *
  2024. * returns failure only if the task is already active.
  2025. */
  2026. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  2027. {
  2028. int cpu, orig_cpu, this_cpu, success = 0;
  2029. unsigned long flags;
  2030. long old_state;
  2031. struct rq *rq;
  2032. if (!sched_feat(SYNC_WAKEUPS))
  2033. sync = 0;
  2034. smp_wmb();
  2035. rq = task_rq_lock(p, &flags);
  2036. old_state = p->state;
  2037. if (!(old_state & state))
  2038. goto out;
  2039. if (p->se.on_rq)
  2040. goto out_running;
  2041. cpu = task_cpu(p);
  2042. orig_cpu = cpu;
  2043. this_cpu = smp_processor_id();
  2044. #ifdef CONFIG_SMP
  2045. if (unlikely(task_running(rq, p)))
  2046. goto out_activate;
  2047. cpu = p->sched_class->select_task_rq(p, sync);
  2048. if (cpu != orig_cpu) {
  2049. set_task_cpu(p, cpu);
  2050. task_rq_unlock(rq, &flags);
  2051. /* might preempt at this point */
  2052. rq = task_rq_lock(p, &flags);
  2053. old_state = p->state;
  2054. if (!(old_state & state))
  2055. goto out;
  2056. if (p->se.on_rq)
  2057. goto out_running;
  2058. this_cpu = smp_processor_id();
  2059. cpu = task_cpu(p);
  2060. }
  2061. #ifdef CONFIG_SCHEDSTATS
  2062. schedstat_inc(rq, ttwu_count);
  2063. if (cpu == this_cpu)
  2064. schedstat_inc(rq, ttwu_local);
  2065. else {
  2066. struct sched_domain *sd;
  2067. for_each_domain(this_cpu, sd) {
  2068. if (cpu_isset(cpu, sd->span)) {
  2069. schedstat_inc(sd, ttwu_wake_remote);
  2070. break;
  2071. }
  2072. }
  2073. }
  2074. #endif
  2075. out_activate:
  2076. #endif /* CONFIG_SMP */
  2077. schedstat_inc(p, se.nr_wakeups);
  2078. if (sync)
  2079. schedstat_inc(p, se.nr_wakeups_sync);
  2080. if (orig_cpu != cpu)
  2081. schedstat_inc(p, se.nr_wakeups_migrate);
  2082. if (cpu == this_cpu)
  2083. schedstat_inc(p, se.nr_wakeups_local);
  2084. else
  2085. schedstat_inc(p, se.nr_wakeups_remote);
  2086. update_rq_clock(rq);
  2087. activate_task(rq, p, 1);
  2088. success = 1;
  2089. out_running:
  2090. check_preempt_curr(rq, p);
  2091. p->state = TASK_RUNNING;
  2092. #ifdef CONFIG_SMP
  2093. if (p->sched_class->task_wake_up)
  2094. p->sched_class->task_wake_up(rq, p);
  2095. #endif
  2096. out:
  2097. task_rq_unlock(rq, &flags);
  2098. return success;
  2099. }
  2100. int wake_up_process(struct task_struct *p)
  2101. {
  2102. return try_to_wake_up(p, TASK_ALL, 0);
  2103. }
  2104. EXPORT_SYMBOL(wake_up_process);
  2105. int wake_up_state(struct task_struct *p, unsigned int state)
  2106. {
  2107. return try_to_wake_up(p, state, 0);
  2108. }
  2109. /*
  2110. * Perform scheduler related setup for a newly forked process p.
  2111. * p is forked by current.
  2112. *
  2113. * __sched_fork() is basic setup used by init_idle() too:
  2114. */
  2115. static void __sched_fork(struct task_struct *p)
  2116. {
  2117. p->se.exec_start = 0;
  2118. p->se.sum_exec_runtime = 0;
  2119. p->se.prev_sum_exec_runtime = 0;
  2120. p->se.last_wakeup = 0;
  2121. p->se.avg_overlap = 0;
  2122. #ifdef CONFIG_SCHEDSTATS
  2123. p->se.wait_start = 0;
  2124. p->se.sum_sleep_runtime = 0;
  2125. p->se.sleep_start = 0;
  2126. p->se.block_start = 0;
  2127. p->se.sleep_max = 0;
  2128. p->se.block_max = 0;
  2129. p->se.exec_max = 0;
  2130. p->se.slice_max = 0;
  2131. p->se.wait_max = 0;
  2132. #endif
  2133. INIT_LIST_HEAD(&p->rt.run_list);
  2134. p->se.on_rq = 0;
  2135. INIT_LIST_HEAD(&p->se.group_node);
  2136. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2137. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2138. #endif
  2139. /*
  2140. * We mark the process as running here, but have not actually
  2141. * inserted it onto the runqueue yet. This guarantees that
  2142. * nobody will actually run it, and a signal or other external
  2143. * event cannot wake it up and insert it on the runqueue either.
  2144. */
  2145. p->state = TASK_RUNNING;
  2146. }
  2147. /*
  2148. * fork()/clone()-time setup:
  2149. */
  2150. void sched_fork(struct task_struct *p, int clone_flags)
  2151. {
  2152. int cpu = get_cpu();
  2153. __sched_fork(p);
  2154. #ifdef CONFIG_SMP
  2155. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2156. #endif
  2157. set_task_cpu(p, cpu);
  2158. /*
  2159. * Make sure we do not leak PI boosting priority to the child:
  2160. */
  2161. p->prio = current->normal_prio;
  2162. if (!rt_prio(p->prio))
  2163. p->sched_class = &fair_sched_class;
  2164. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2165. if (likely(sched_info_on()))
  2166. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2167. #endif
  2168. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2169. p->oncpu = 0;
  2170. #endif
  2171. #ifdef CONFIG_PREEMPT
  2172. /* Want to start with kernel preemption disabled. */
  2173. task_thread_info(p)->preempt_count = 1;
  2174. #endif
  2175. put_cpu();
  2176. }
  2177. /*
  2178. * wake_up_new_task - wake up a newly created task for the first time.
  2179. *
  2180. * This function will do some initial scheduler statistics housekeeping
  2181. * that must be done for every newly created context, then puts the task
  2182. * on the runqueue and wakes it.
  2183. */
  2184. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2185. {
  2186. unsigned long flags;
  2187. struct rq *rq;
  2188. rq = task_rq_lock(p, &flags);
  2189. BUG_ON(p->state != TASK_RUNNING);
  2190. update_rq_clock(rq);
  2191. p->prio = effective_prio(p);
  2192. if (!p->sched_class->task_new || !current->se.on_rq) {
  2193. activate_task(rq, p, 0);
  2194. } else {
  2195. /*
  2196. * Let the scheduling class do new task startup
  2197. * management (if any):
  2198. */
  2199. p->sched_class->task_new(rq, p);
  2200. inc_nr_running(rq);
  2201. }
  2202. check_preempt_curr(rq, p);
  2203. #ifdef CONFIG_SMP
  2204. if (p->sched_class->task_wake_up)
  2205. p->sched_class->task_wake_up(rq, p);
  2206. #endif
  2207. task_rq_unlock(rq, &flags);
  2208. }
  2209. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2210. /**
  2211. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2212. * @notifier: notifier struct to register
  2213. */
  2214. void preempt_notifier_register(struct preempt_notifier *notifier)
  2215. {
  2216. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2217. }
  2218. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2219. /**
  2220. * preempt_notifier_unregister - no longer interested in preemption notifications
  2221. * @notifier: notifier struct to unregister
  2222. *
  2223. * This is safe to call from within a preemption notifier.
  2224. */
  2225. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2226. {
  2227. hlist_del(&notifier->link);
  2228. }
  2229. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2230. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2231. {
  2232. struct preempt_notifier *notifier;
  2233. struct hlist_node *node;
  2234. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2235. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2236. }
  2237. static void
  2238. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2239. struct task_struct *next)
  2240. {
  2241. struct preempt_notifier *notifier;
  2242. struct hlist_node *node;
  2243. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2244. notifier->ops->sched_out(notifier, next);
  2245. }
  2246. #else
  2247. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2248. {
  2249. }
  2250. static void
  2251. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2252. struct task_struct *next)
  2253. {
  2254. }
  2255. #endif
  2256. /**
  2257. * prepare_task_switch - prepare to switch tasks
  2258. * @rq: the runqueue preparing to switch
  2259. * @prev: the current task that is being switched out
  2260. * @next: the task we are going to switch to.
  2261. *
  2262. * This is called with the rq lock held and interrupts off. It must
  2263. * be paired with a subsequent finish_task_switch after the context
  2264. * switch.
  2265. *
  2266. * prepare_task_switch sets up locking and calls architecture specific
  2267. * hooks.
  2268. */
  2269. static inline void
  2270. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2271. struct task_struct *next)
  2272. {
  2273. fire_sched_out_preempt_notifiers(prev, next);
  2274. prepare_lock_switch(rq, next);
  2275. prepare_arch_switch(next);
  2276. }
  2277. /**
  2278. * finish_task_switch - clean up after a task-switch
  2279. * @rq: runqueue associated with task-switch
  2280. * @prev: the thread we just switched away from.
  2281. *
  2282. * finish_task_switch must be called after the context switch, paired
  2283. * with a prepare_task_switch call before the context switch.
  2284. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2285. * and do any other architecture-specific cleanup actions.
  2286. *
  2287. * Note that we may have delayed dropping an mm in context_switch(). If
  2288. * so, we finish that here outside of the runqueue lock. (Doing it
  2289. * with the lock held can cause deadlocks; see schedule() for
  2290. * details.)
  2291. */
  2292. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2293. __releases(rq->lock)
  2294. {
  2295. struct mm_struct *mm = rq->prev_mm;
  2296. long prev_state;
  2297. rq->prev_mm = NULL;
  2298. /*
  2299. * A task struct has one reference for the use as "current".
  2300. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2301. * schedule one last time. The schedule call will never return, and
  2302. * the scheduled task must drop that reference.
  2303. * The test for TASK_DEAD must occur while the runqueue locks are
  2304. * still held, otherwise prev could be scheduled on another cpu, die
  2305. * there before we look at prev->state, and then the reference would
  2306. * be dropped twice.
  2307. * Manfred Spraul <manfred@colorfullife.com>
  2308. */
  2309. prev_state = prev->state;
  2310. finish_arch_switch(prev);
  2311. finish_lock_switch(rq, prev);
  2312. #ifdef CONFIG_SMP
  2313. if (current->sched_class->post_schedule)
  2314. current->sched_class->post_schedule(rq);
  2315. #endif
  2316. fire_sched_in_preempt_notifiers(current);
  2317. if (mm)
  2318. mmdrop(mm);
  2319. if (unlikely(prev_state == TASK_DEAD)) {
  2320. /*
  2321. * Remove function-return probe instances associated with this
  2322. * task and put them back on the free list.
  2323. */
  2324. kprobe_flush_task(prev);
  2325. put_task_struct(prev);
  2326. }
  2327. }
  2328. /**
  2329. * schedule_tail - first thing a freshly forked thread must call.
  2330. * @prev: the thread we just switched away from.
  2331. */
  2332. asmlinkage void schedule_tail(struct task_struct *prev)
  2333. __releases(rq->lock)
  2334. {
  2335. struct rq *rq = this_rq();
  2336. finish_task_switch(rq, prev);
  2337. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2338. /* In this case, finish_task_switch does not reenable preemption */
  2339. preempt_enable();
  2340. #endif
  2341. if (current->set_child_tid)
  2342. put_user(task_pid_vnr(current), current->set_child_tid);
  2343. }
  2344. /*
  2345. * context_switch - switch to the new MM and the new
  2346. * thread's register state.
  2347. */
  2348. static inline void
  2349. context_switch(struct rq *rq, struct task_struct *prev,
  2350. struct task_struct *next)
  2351. {
  2352. struct mm_struct *mm, *oldmm;
  2353. prepare_task_switch(rq, prev, next);
  2354. mm = next->mm;
  2355. oldmm = prev->active_mm;
  2356. /*
  2357. * For paravirt, this is coupled with an exit in switch_to to
  2358. * combine the page table reload and the switch backend into
  2359. * one hypercall.
  2360. */
  2361. arch_enter_lazy_cpu_mode();
  2362. if (unlikely(!mm)) {
  2363. next->active_mm = oldmm;
  2364. atomic_inc(&oldmm->mm_count);
  2365. enter_lazy_tlb(oldmm, next);
  2366. } else
  2367. switch_mm(oldmm, mm, next);
  2368. if (unlikely(!prev->mm)) {
  2369. prev->active_mm = NULL;
  2370. rq->prev_mm = oldmm;
  2371. }
  2372. /*
  2373. * Since the runqueue lock will be released by the next
  2374. * task (which is an invalid locking op but in the case
  2375. * of the scheduler it's an obvious special-case), so we
  2376. * do an early lockdep release here:
  2377. */
  2378. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2379. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2380. #endif
  2381. /* Here we just switch the register state and the stack. */
  2382. switch_to(prev, next, prev);
  2383. barrier();
  2384. /*
  2385. * this_rq must be evaluated again because prev may have moved
  2386. * CPUs since it called schedule(), thus the 'rq' on its stack
  2387. * frame will be invalid.
  2388. */
  2389. finish_task_switch(this_rq(), prev);
  2390. }
  2391. /*
  2392. * nr_running, nr_uninterruptible and nr_context_switches:
  2393. *
  2394. * externally visible scheduler statistics: current number of runnable
  2395. * threads, current number of uninterruptible-sleeping threads, total
  2396. * number of context switches performed since bootup.
  2397. */
  2398. unsigned long nr_running(void)
  2399. {
  2400. unsigned long i, sum = 0;
  2401. for_each_online_cpu(i)
  2402. sum += cpu_rq(i)->nr_running;
  2403. return sum;
  2404. }
  2405. unsigned long nr_uninterruptible(void)
  2406. {
  2407. unsigned long i, sum = 0;
  2408. for_each_possible_cpu(i)
  2409. sum += cpu_rq(i)->nr_uninterruptible;
  2410. /*
  2411. * Since we read the counters lockless, it might be slightly
  2412. * inaccurate. Do not allow it to go below zero though:
  2413. */
  2414. if (unlikely((long)sum < 0))
  2415. sum = 0;
  2416. return sum;
  2417. }
  2418. unsigned long long nr_context_switches(void)
  2419. {
  2420. int i;
  2421. unsigned long long sum = 0;
  2422. for_each_possible_cpu(i)
  2423. sum += cpu_rq(i)->nr_switches;
  2424. return sum;
  2425. }
  2426. unsigned long nr_iowait(void)
  2427. {
  2428. unsigned long i, sum = 0;
  2429. for_each_possible_cpu(i)
  2430. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2431. return sum;
  2432. }
  2433. unsigned long nr_active(void)
  2434. {
  2435. unsigned long i, running = 0, uninterruptible = 0;
  2436. for_each_online_cpu(i) {
  2437. running += cpu_rq(i)->nr_running;
  2438. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2439. }
  2440. if (unlikely((long)uninterruptible < 0))
  2441. uninterruptible = 0;
  2442. return running + uninterruptible;
  2443. }
  2444. /*
  2445. * Update rq->cpu_load[] statistics. This function is usually called every
  2446. * scheduler tick (TICK_NSEC).
  2447. */
  2448. static void update_cpu_load(struct rq *this_rq)
  2449. {
  2450. unsigned long this_load = this_rq->load.weight;
  2451. int i, scale;
  2452. this_rq->nr_load_updates++;
  2453. /* Update our load: */
  2454. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2455. unsigned long old_load, new_load;
  2456. /* scale is effectively 1 << i now, and >> i divides by scale */
  2457. old_load = this_rq->cpu_load[i];
  2458. new_load = this_load;
  2459. /*
  2460. * Round up the averaging division if load is increasing. This
  2461. * prevents us from getting stuck on 9 if the load is 10, for
  2462. * example.
  2463. */
  2464. if (new_load > old_load)
  2465. new_load += scale-1;
  2466. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2467. }
  2468. }
  2469. #ifdef CONFIG_SMP
  2470. /*
  2471. * double_rq_lock - safely lock two runqueues
  2472. *
  2473. * Note this does not disable interrupts like task_rq_lock,
  2474. * you need to do so manually before calling.
  2475. */
  2476. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2477. __acquires(rq1->lock)
  2478. __acquires(rq2->lock)
  2479. {
  2480. BUG_ON(!irqs_disabled());
  2481. if (rq1 == rq2) {
  2482. spin_lock(&rq1->lock);
  2483. __acquire(rq2->lock); /* Fake it out ;) */
  2484. } else {
  2485. if (rq1 < rq2) {
  2486. spin_lock(&rq1->lock);
  2487. spin_lock(&rq2->lock);
  2488. } else {
  2489. spin_lock(&rq2->lock);
  2490. spin_lock(&rq1->lock);
  2491. }
  2492. }
  2493. update_rq_clock(rq1);
  2494. update_rq_clock(rq2);
  2495. }
  2496. /*
  2497. * double_rq_unlock - safely unlock two runqueues
  2498. *
  2499. * Note this does not restore interrupts like task_rq_unlock,
  2500. * you need to do so manually after calling.
  2501. */
  2502. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2503. __releases(rq1->lock)
  2504. __releases(rq2->lock)
  2505. {
  2506. spin_unlock(&rq1->lock);
  2507. if (rq1 != rq2)
  2508. spin_unlock(&rq2->lock);
  2509. else
  2510. __release(rq2->lock);
  2511. }
  2512. /*
  2513. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2514. */
  2515. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2516. __releases(this_rq->lock)
  2517. __acquires(busiest->lock)
  2518. __acquires(this_rq->lock)
  2519. {
  2520. int ret = 0;
  2521. if (unlikely(!irqs_disabled())) {
  2522. /* printk() doesn't work good under rq->lock */
  2523. spin_unlock(&this_rq->lock);
  2524. BUG_ON(1);
  2525. }
  2526. if (unlikely(!spin_trylock(&busiest->lock))) {
  2527. if (busiest < this_rq) {
  2528. spin_unlock(&this_rq->lock);
  2529. spin_lock(&busiest->lock);
  2530. spin_lock(&this_rq->lock);
  2531. ret = 1;
  2532. } else
  2533. spin_lock(&busiest->lock);
  2534. }
  2535. return ret;
  2536. }
  2537. /*
  2538. * If dest_cpu is allowed for this process, migrate the task to it.
  2539. * This is accomplished by forcing the cpu_allowed mask to only
  2540. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2541. * the cpu_allowed mask is restored.
  2542. */
  2543. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2544. {
  2545. struct migration_req req;
  2546. unsigned long flags;
  2547. struct rq *rq;
  2548. rq = task_rq_lock(p, &flags);
  2549. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2550. || unlikely(cpu_is_offline(dest_cpu)))
  2551. goto out;
  2552. /* force the process onto the specified CPU */
  2553. if (migrate_task(p, dest_cpu, &req)) {
  2554. /* Need to wait for migration thread (might exit: take ref). */
  2555. struct task_struct *mt = rq->migration_thread;
  2556. get_task_struct(mt);
  2557. task_rq_unlock(rq, &flags);
  2558. wake_up_process(mt);
  2559. put_task_struct(mt);
  2560. wait_for_completion(&req.done);
  2561. return;
  2562. }
  2563. out:
  2564. task_rq_unlock(rq, &flags);
  2565. }
  2566. /*
  2567. * sched_exec - execve() is a valuable balancing opportunity, because at
  2568. * this point the task has the smallest effective memory and cache footprint.
  2569. */
  2570. void sched_exec(void)
  2571. {
  2572. int new_cpu, this_cpu = get_cpu();
  2573. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2574. put_cpu();
  2575. if (new_cpu != this_cpu)
  2576. sched_migrate_task(current, new_cpu);
  2577. }
  2578. /*
  2579. * pull_task - move a task from a remote runqueue to the local runqueue.
  2580. * Both runqueues must be locked.
  2581. */
  2582. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2583. struct rq *this_rq, int this_cpu)
  2584. {
  2585. deactivate_task(src_rq, p, 0);
  2586. set_task_cpu(p, this_cpu);
  2587. activate_task(this_rq, p, 0);
  2588. /*
  2589. * Note that idle threads have a prio of MAX_PRIO, for this test
  2590. * to be always true for them.
  2591. */
  2592. check_preempt_curr(this_rq, p);
  2593. }
  2594. /*
  2595. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2596. */
  2597. static
  2598. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2599. struct sched_domain *sd, enum cpu_idle_type idle,
  2600. int *all_pinned)
  2601. {
  2602. /*
  2603. * We do not migrate tasks that are:
  2604. * 1) running (obviously), or
  2605. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2606. * 3) are cache-hot on their current CPU.
  2607. */
  2608. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2609. schedstat_inc(p, se.nr_failed_migrations_affine);
  2610. return 0;
  2611. }
  2612. *all_pinned = 0;
  2613. if (task_running(rq, p)) {
  2614. schedstat_inc(p, se.nr_failed_migrations_running);
  2615. return 0;
  2616. }
  2617. /*
  2618. * Aggressive migration if:
  2619. * 1) task is cache cold, or
  2620. * 2) too many balance attempts have failed.
  2621. */
  2622. if (!task_hot(p, rq->clock, sd) ||
  2623. sd->nr_balance_failed > sd->cache_nice_tries) {
  2624. #ifdef CONFIG_SCHEDSTATS
  2625. if (task_hot(p, rq->clock, sd)) {
  2626. schedstat_inc(sd, lb_hot_gained[idle]);
  2627. schedstat_inc(p, se.nr_forced_migrations);
  2628. }
  2629. #endif
  2630. return 1;
  2631. }
  2632. if (task_hot(p, rq->clock, sd)) {
  2633. schedstat_inc(p, se.nr_failed_migrations_hot);
  2634. return 0;
  2635. }
  2636. return 1;
  2637. }
  2638. static unsigned long
  2639. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2640. unsigned long max_load_move, struct sched_domain *sd,
  2641. enum cpu_idle_type idle, int *all_pinned,
  2642. int *this_best_prio, struct rq_iterator *iterator)
  2643. {
  2644. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2645. struct task_struct *p;
  2646. long rem_load_move = max_load_move;
  2647. if (max_load_move == 0)
  2648. goto out;
  2649. pinned = 1;
  2650. /*
  2651. * Start the load-balancing iterator:
  2652. */
  2653. p = iterator->start(iterator->arg);
  2654. next:
  2655. if (!p || loops++ > sysctl_sched_nr_migrate)
  2656. goto out;
  2657. /*
  2658. * To help distribute high priority tasks across CPUs we don't
  2659. * skip a task if it will be the highest priority task (i.e. smallest
  2660. * prio value) on its new queue regardless of its load weight
  2661. */
  2662. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2663. SCHED_LOAD_SCALE_FUZZ;
  2664. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2665. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2666. p = iterator->next(iterator->arg);
  2667. goto next;
  2668. }
  2669. pull_task(busiest, p, this_rq, this_cpu);
  2670. pulled++;
  2671. rem_load_move -= p->se.load.weight;
  2672. /*
  2673. * We only want to steal up to the prescribed amount of weighted load.
  2674. */
  2675. if (rem_load_move > 0) {
  2676. if (p->prio < *this_best_prio)
  2677. *this_best_prio = p->prio;
  2678. p = iterator->next(iterator->arg);
  2679. goto next;
  2680. }
  2681. out:
  2682. /*
  2683. * Right now, this is one of only two places pull_task() is called,
  2684. * so we can safely collect pull_task() stats here rather than
  2685. * inside pull_task().
  2686. */
  2687. schedstat_add(sd, lb_gained[idle], pulled);
  2688. if (all_pinned)
  2689. *all_pinned = pinned;
  2690. return max_load_move - rem_load_move;
  2691. }
  2692. /*
  2693. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2694. * this_rq, as part of a balancing operation within domain "sd".
  2695. * Returns 1 if successful and 0 otherwise.
  2696. *
  2697. * Called with both runqueues locked.
  2698. */
  2699. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2700. unsigned long max_load_move,
  2701. struct sched_domain *sd, enum cpu_idle_type idle,
  2702. int *all_pinned)
  2703. {
  2704. const struct sched_class *class = sched_class_highest;
  2705. unsigned long total_load_moved = 0;
  2706. int this_best_prio = this_rq->curr->prio;
  2707. do {
  2708. total_load_moved +=
  2709. class->load_balance(this_rq, this_cpu, busiest,
  2710. max_load_move - total_load_moved,
  2711. sd, idle, all_pinned, &this_best_prio);
  2712. class = class->next;
  2713. } while (class && max_load_move > total_load_moved);
  2714. return total_load_moved > 0;
  2715. }
  2716. static int
  2717. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2718. struct sched_domain *sd, enum cpu_idle_type idle,
  2719. struct rq_iterator *iterator)
  2720. {
  2721. struct task_struct *p = iterator->start(iterator->arg);
  2722. int pinned = 0;
  2723. while (p) {
  2724. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2725. pull_task(busiest, p, this_rq, this_cpu);
  2726. /*
  2727. * Right now, this is only the second place pull_task()
  2728. * is called, so we can safely collect pull_task()
  2729. * stats here rather than inside pull_task().
  2730. */
  2731. schedstat_inc(sd, lb_gained[idle]);
  2732. return 1;
  2733. }
  2734. p = iterator->next(iterator->arg);
  2735. }
  2736. return 0;
  2737. }
  2738. /*
  2739. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2740. * part of active balancing operations within "domain".
  2741. * Returns 1 if successful and 0 otherwise.
  2742. *
  2743. * Called with both runqueues locked.
  2744. */
  2745. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2746. struct sched_domain *sd, enum cpu_idle_type idle)
  2747. {
  2748. const struct sched_class *class;
  2749. for (class = sched_class_highest; class; class = class->next)
  2750. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2751. return 1;
  2752. return 0;
  2753. }
  2754. /*
  2755. * find_busiest_group finds and returns the busiest CPU group within the
  2756. * domain. It calculates and returns the amount of weighted load which
  2757. * should be moved to restore balance via the imbalance parameter.
  2758. */
  2759. static struct sched_group *
  2760. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2761. unsigned long *imbalance, enum cpu_idle_type idle,
  2762. int *sd_idle, const cpumask_t *cpus, int *balance)
  2763. {
  2764. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2765. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2766. unsigned long max_pull;
  2767. unsigned long busiest_load_per_task, busiest_nr_running;
  2768. unsigned long this_load_per_task, this_nr_running;
  2769. int load_idx, group_imb = 0;
  2770. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2771. int power_savings_balance = 1;
  2772. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2773. unsigned long min_nr_running = ULONG_MAX;
  2774. struct sched_group *group_min = NULL, *group_leader = NULL;
  2775. #endif
  2776. max_load = this_load = total_load = total_pwr = 0;
  2777. busiest_load_per_task = busiest_nr_running = 0;
  2778. this_load_per_task = this_nr_running = 0;
  2779. if (idle == CPU_NOT_IDLE)
  2780. load_idx = sd->busy_idx;
  2781. else if (idle == CPU_NEWLY_IDLE)
  2782. load_idx = sd->newidle_idx;
  2783. else
  2784. load_idx = sd->idle_idx;
  2785. do {
  2786. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2787. int local_group;
  2788. int i;
  2789. int __group_imb = 0;
  2790. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2791. unsigned long sum_nr_running, sum_weighted_load;
  2792. local_group = cpu_isset(this_cpu, group->cpumask);
  2793. if (local_group)
  2794. balance_cpu = first_cpu(group->cpumask);
  2795. /* Tally up the load of all CPUs in the group */
  2796. sum_weighted_load = sum_nr_running = avg_load = 0;
  2797. max_cpu_load = 0;
  2798. min_cpu_load = ~0UL;
  2799. for_each_cpu_mask(i, group->cpumask) {
  2800. struct rq *rq;
  2801. if (!cpu_isset(i, *cpus))
  2802. continue;
  2803. rq = cpu_rq(i);
  2804. if (*sd_idle && rq->nr_running)
  2805. *sd_idle = 0;
  2806. /* Bias balancing toward cpus of our domain */
  2807. if (local_group) {
  2808. if (idle_cpu(i) && !first_idle_cpu) {
  2809. first_idle_cpu = 1;
  2810. balance_cpu = i;
  2811. }
  2812. load = target_load(i, load_idx);
  2813. } else {
  2814. load = source_load(i, load_idx);
  2815. if (load > max_cpu_load)
  2816. max_cpu_load = load;
  2817. if (min_cpu_load > load)
  2818. min_cpu_load = load;
  2819. }
  2820. avg_load += load;
  2821. sum_nr_running += rq->nr_running;
  2822. sum_weighted_load += weighted_cpuload(i);
  2823. }
  2824. /*
  2825. * First idle cpu or the first cpu(busiest) in this sched group
  2826. * is eligible for doing load balancing at this and above
  2827. * domains. In the newly idle case, we will allow all the cpu's
  2828. * to do the newly idle load balance.
  2829. */
  2830. if (idle != CPU_NEWLY_IDLE && local_group &&
  2831. balance_cpu != this_cpu && balance) {
  2832. *balance = 0;
  2833. goto ret;
  2834. }
  2835. total_load += avg_load;
  2836. total_pwr += group->__cpu_power;
  2837. /* Adjust by relative CPU power of the group */
  2838. avg_load = sg_div_cpu_power(group,
  2839. avg_load * SCHED_LOAD_SCALE);
  2840. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2841. __group_imb = 1;
  2842. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2843. if (local_group) {
  2844. this_load = avg_load;
  2845. this = group;
  2846. this_nr_running = sum_nr_running;
  2847. this_load_per_task = sum_weighted_load;
  2848. } else if (avg_load > max_load &&
  2849. (sum_nr_running > group_capacity || __group_imb)) {
  2850. max_load = avg_load;
  2851. busiest = group;
  2852. busiest_nr_running = sum_nr_running;
  2853. busiest_load_per_task = sum_weighted_load;
  2854. group_imb = __group_imb;
  2855. }
  2856. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2857. /*
  2858. * Busy processors will not participate in power savings
  2859. * balance.
  2860. */
  2861. if (idle == CPU_NOT_IDLE ||
  2862. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2863. goto group_next;
  2864. /*
  2865. * If the local group is idle or completely loaded
  2866. * no need to do power savings balance at this domain
  2867. */
  2868. if (local_group && (this_nr_running >= group_capacity ||
  2869. !this_nr_running))
  2870. power_savings_balance = 0;
  2871. /*
  2872. * If a group is already running at full capacity or idle,
  2873. * don't include that group in power savings calculations
  2874. */
  2875. if (!power_savings_balance || sum_nr_running >= group_capacity
  2876. || !sum_nr_running)
  2877. goto group_next;
  2878. /*
  2879. * Calculate the group which has the least non-idle load.
  2880. * This is the group from where we need to pick up the load
  2881. * for saving power
  2882. */
  2883. if ((sum_nr_running < min_nr_running) ||
  2884. (sum_nr_running == min_nr_running &&
  2885. first_cpu(group->cpumask) <
  2886. first_cpu(group_min->cpumask))) {
  2887. group_min = group;
  2888. min_nr_running = sum_nr_running;
  2889. min_load_per_task = sum_weighted_load /
  2890. sum_nr_running;
  2891. }
  2892. /*
  2893. * Calculate the group which is almost near its
  2894. * capacity but still has some space to pick up some load
  2895. * from other group and save more power
  2896. */
  2897. if (sum_nr_running <= group_capacity - 1) {
  2898. if (sum_nr_running > leader_nr_running ||
  2899. (sum_nr_running == leader_nr_running &&
  2900. first_cpu(group->cpumask) >
  2901. first_cpu(group_leader->cpumask))) {
  2902. group_leader = group;
  2903. leader_nr_running = sum_nr_running;
  2904. }
  2905. }
  2906. group_next:
  2907. #endif
  2908. group = group->next;
  2909. } while (group != sd->groups);
  2910. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2911. goto out_balanced;
  2912. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2913. if (this_load >= avg_load ||
  2914. 100*max_load <= sd->imbalance_pct*this_load)
  2915. goto out_balanced;
  2916. busiest_load_per_task /= busiest_nr_running;
  2917. if (group_imb)
  2918. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2919. /*
  2920. * We're trying to get all the cpus to the average_load, so we don't
  2921. * want to push ourselves above the average load, nor do we wish to
  2922. * reduce the max loaded cpu below the average load, as either of these
  2923. * actions would just result in more rebalancing later, and ping-pong
  2924. * tasks around. Thus we look for the minimum possible imbalance.
  2925. * Negative imbalances (*we* are more loaded than anyone else) will
  2926. * be counted as no imbalance for these purposes -- we can't fix that
  2927. * by pulling tasks to us. Be careful of negative numbers as they'll
  2928. * appear as very large values with unsigned longs.
  2929. */
  2930. if (max_load <= busiest_load_per_task)
  2931. goto out_balanced;
  2932. /*
  2933. * In the presence of smp nice balancing, certain scenarios can have
  2934. * max load less than avg load(as we skip the groups at or below
  2935. * its cpu_power, while calculating max_load..)
  2936. */
  2937. if (max_load < avg_load) {
  2938. *imbalance = 0;
  2939. goto small_imbalance;
  2940. }
  2941. /* Don't want to pull so many tasks that a group would go idle */
  2942. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2943. /* How much load to actually move to equalise the imbalance */
  2944. *imbalance = min(max_pull * busiest->__cpu_power,
  2945. (avg_load - this_load) * this->__cpu_power)
  2946. / SCHED_LOAD_SCALE;
  2947. /*
  2948. * if *imbalance is less than the average load per runnable task
  2949. * there is no gaurantee that any tasks will be moved so we'll have
  2950. * a think about bumping its value to force at least one task to be
  2951. * moved
  2952. */
  2953. if (*imbalance < busiest_load_per_task) {
  2954. unsigned long tmp, pwr_now, pwr_move;
  2955. unsigned int imbn;
  2956. small_imbalance:
  2957. pwr_move = pwr_now = 0;
  2958. imbn = 2;
  2959. if (this_nr_running) {
  2960. this_load_per_task /= this_nr_running;
  2961. if (busiest_load_per_task > this_load_per_task)
  2962. imbn = 1;
  2963. } else
  2964. this_load_per_task = SCHED_LOAD_SCALE;
  2965. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2966. busiest_load_per_task * imbn) {
  2967. *imbalance = busiest_load_per_task;
  2968. return busiest;
  2969. }
  2970. /*
  2971. * OK, we don't have enough imbalance to justify moving tasks,
  2972. * however we may be able to increase total CPU power used by
  2973. * moving them.
  2974. */
  2975. pwr_now += busiest->__cpu_power *
  2976. min(busiest_load_per_task, max_load);
  2977. pwr_now += this->__cpu_power *
  2978. min(this_load_per_task, this_load);
  2979. pwr_now /= SCHED_LOAD_SCALE;
  2980. /* Amount of load we'd subtract */
  2981. tmp = sg_div_cpu_power(busiest,
  2982. busiest_load_per_task * SCHED_LOAD_SCALE);
  2983. if (max_load > tmp)
  2984. pwr_move += busiest->__cpu_power *
  2985. min(busiest_load_per_task, max_load - tmp);
  2986. /* Amount of load we'd add */
  2987. if (max_load * busiest->__cpu_power <
  2988. busiest_load_per_task * SCHED_LOAD_SCALE)
  2989. tmp = sg_div_cpu_power(this,
  2990. max_load * busiest->__cpu_power);
  2991. else
  2992. tmp = sg_div_cpu_power(this,
  2993. busiest_load_per_task * SCHED_LOAD_SCALE);
  2994. pwr_move += this->__cpu_power *
  2995. min(this_load_per_task, this_load + tmp);
  2996. pwr_move /= SCHED_LOAD_SCALE;
  2997. /* Move if we gain throughput */
  2998. if (pwr_move > pwr_now)
  2999. *imbalance = busiest_load_per_task;
  3000. }
  3001. return busiest;
  3002. out_balanced:
  3003. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3004. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  3005. goto ret;
  3006. if (this == group_leader && group_leader != group_min) {
  3007. *imbalance = min_load_per_task;
  3008. return group_min;
  3009. }
  3010. #endif
  3011. ret:
  3012. *imbalance = 0;
  3013. return NULL;
  3014. }
  3015. /*
  3016. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3017. */
  3018. static struct rq *
  3019. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3020. unsigned long imbalance, const cpumask_t *cpus)
  3021. {
  3022. struct rq *busiest = NULL, *rq;
  3023. unsigned long max_load = 0;
  3024. int i;
  3025. for_each_cpu_mask(i, group->cpumask) {
  3026. unsigned long wl;
  3027. if (!cpu_isset(i, *cpus))
  3028. continue;
  3029. rq = cpu_rq(i);
  3030. wl = weighted_cpuload(i);
  3031. if (rq->nr_running == 1 && wl > imbalance)
  3032. continue;
  3033. if (wl > max_load) {
  3034. max_load = wl;
  3035. busiest = rq;
  3036. }
  3037. }
  3038. return busiest;
  3039. }
  3040. /*
  3041. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3042. * so long as it is large enough.
  3043. */
  3044. #define MAX_PINNED_INTERVAL 512
  3045. /*
  3046. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3047. * tasks if there is an imbalance.
  3048. */
  3049. static int load_balance(int this_cpu, struct rq *this_rq,
  3050. struct sched_domain *sd, enum cpu_idle_type idle,
  3051. int *balance, cpumask_t *cpus)
  3052. {
  3053. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3054. struct sched_group *group;
  3055. unsigned long imbalance;
  3056. struct rq *busiest;
  3057. unsigned long flags;
  3058. int unlock_aggregate;
  3059. cpus_setall(*cpus);
  3060. unlock_aggregate = get_aggregate(sd);
  3061. /*
  3062. * When power savings policy is enabled for the parent domain, idle
  3063. * sibling can pick up load irrespective of busy siblings. In this case,
  3064. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3065. * portraying it as CPU_NOT_IDLE.
  3066. */
  3067. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3068. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3069. sd_idle = 1;
  3070. schedstat_inc(sd, lb_count[idle]);
  3071. redo:
  3072. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3073. cpus, balance);
  3074. if (*balance == 0)
  3075. goto out_balanced;
  3076. if (!group) {
  3077. schedstat_inc(sd, lb_nobusyg[idle]);
  3078. goto out_balanced;
  3079. }
  3080. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3081. if (!busiest) {
  3082. schedstat_inc(sd, lb_nobusyq[idle]);
  3083. goto out_balanced;
  3084. }
  3085. BUG_ON(busiest == this_rq);
  3086. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3087. ld_moved = 0;
  3088. if (busiest->nr_running > 1) {
  3089. /*
  3090. * Attempt to move tasks. If find_busiest_group has found
  3091. * an imbalance but busiest->nr_running <= 1, the group is
  3092. * still unbalanced. ld_moved simply stays zero, so it is
  3093. * correctly treated as an imbalance.
  3094. */
  3095. local_irq_save(flags);
  3096. double_rq_lock(this_rq, busiest);
  3097. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3098. imbalance, sd, idle, &all_pinned);
  3099. double_rq_unlock(this_rq, busiest);
  3100. local_irq_restore(flags);
  3101. /*
  3102. * some other cpu did the load balance for us.
  3103. */
  3104. if (ld_moved && this_cpu != smp_processor_id())
  3105. resched_cpu(this_cpu);
  3106. /* All tasks on this runqueue were pinned by CPU affinity */
  3107. if (unlikely(all_pinned)) {
  3108. cpu_clear(cpu_of(busiest), *cpus);
  3109. if (!cpus_empty(*cpus))
  3110. goto redo;
  3111. goto out_balanced;
  3112. }
  3113. }
  3114. if (!ld_moved) {
  3115. schedstat_inc(sd, lb_failed[idle]);
  3116. sd->nr_balance_failed++;
  3117. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3118. spin_lock_irqsave(&busiest->lock, flags);
  3119. /* don't kick the migration_thread, if the curr
  3120. * task on busiest cpu can't be moved to this_cpu
  3121. */
  3122. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  3123. spin_unlock_irqrestore(&busiest->lock, flags);
  3124. all_pinned = 1;
  3125. goto out_one_pinned;
  3126. }
  3127. if (!busiest->active_balance) {
  3128. busiest->active_balance = 1;
  3129. busiest->push_cpu = this_cpu;
  3130. active_balance = 1;
  3131. }
  3132. spin_unlock_irqrestore(&busiest->lock, flags);
  3133. if (active_balance)
  3134. wake_up_process(busiest->migration_thread);
  3135. /*
  3136. * We've kicked active balancing, reset the failure
  3137. * counter.
  3138. */
  3139. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3140. }
  3141. } else
  3142. sd->nr_balance_failed = 0;
  3143. if (likely(!active_balance)) {
  3144. /* We were unbalanced, so reset the balancing interval */
  3145. sd->balance_interval = sd->min_interval;
  3146. } else {
  3147. /*
  3148. * If we've begun active balancing, start to back off. This
  3149. * case may not be covered by the all_pinned logic if there
  3150. * is only 1 task on the busy runqueue (because we don't call
  3151. * move_tasks).
  3152. */
  3153. if (sd->balance_interval < sd->max_interval)
  3154. sd->balance_interval *= 2;
  3155. }
  3156. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3157. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3158. ld_moved = -1;
  3159. goto out;
  3160. out_balanced:
  3161. schedstat_inc(sd, lb_balanced[idle]);
  3162. sd->nr_balance_failed = 0;
  3163. out_one_pinned:
  3164. /* tune up the balancing interval */
  3165. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3166. (sd->balance_interval < sd->max_interval))
  3167. sd->balance_interval *= 2;
  3168. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3169. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3170. ld_moved = -1;
  3171. else
  3172. ld_moved = 0;
  3173. out:
  3174. if (unlock_aggregate)
  3175. put_aggregate(sd);
  3176. return ld_moved;
  3177. }
  3178. /*
  3179. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3180. * tasks if there is an imbalance.
  3181. *
  3182. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3183. * this_rq is locked.
  3184. */
  3185. static int
  3186. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3187. cpumask_t *cpus)
  3188. {
  3189. struct sched_group *group;
  3190. struct rq *busiest = NULL;
  3191. unsigned long imbalance;
  3192. int ld_moved = 0;
  3193. int sd_idle = 0;
  3194. int all_pinned = 0;
  3195. cpus_setall(*cpus);
  3196. /*
  3197. * When power savings policy is enabled for the parent domain, idle
  3198. * sibling can pick up load irrespective of busy siblings. In this case,
  3199. * let the state of idle sibling percolate up as IDLE, instead of
  3200. * portraying it as CPU_NOT_IDLE.
  3201. */
  3202. if (sd->flags & SD_SHARE_CPUPOWER &&
  3203. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3204. sd_idle = 1;
  3205. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3206. redo:
  3207. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3208. &sd_idle, cpus, NULL);
  3209. if (!group) {
  3210. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3211. goto out_balanced;
  3212. }
  3213. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3214. if (!busiest) {
  3215. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3216. goto out_balanced;
  3217. }
  3218. BUG_ON(busiest == this_rq);
  3219. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3220. ld_moved = 0;
  3221. if (busiest->nr_running > 1) {
  3222. /* Attempt to move tasks */
  3223. double_lock_balance(this_rq, busiest);
  3224. /* this_rq->clock is already updated */
  3225. update_rq_clock(busiest);
  3226. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3227. imbalance, sd, CPU_NEWLY_IDLE,
  3228. &all_pinned);
  3229. spin_unlock(&busiest->lock);
  3230. if (unlikely(all_pinned)) {
  3231. cpu_clear(cpu_of(busiest), *cpus);
  3232. if (!cpus_empty(*cpus))
  3233. goto redo;
  3234. }
  3235. }
  3236. if (!ld_moved) {
  3237. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3238. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3239. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3240. return -1;
  3241. } else
  3242. sd->nr_balance_failed = 0;
  3243. return ld_moved;
  3244. out_balanced:
  3245. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3246. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3247. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3248. return -1;
  3249. sd->nr_balance_failed = 0;
  3250. return 0;
  3251. }
  3252. /*
  3253. * idle_balance is called by schedule() if this_cpu is about to become
  3254. * idle. Attempts to pull tasks from other CPUs.
  3255. */
  3256. static void idle_balance(int this_cpu, struct rq *this_rq)
  3257. {
  3258. struct sched_domain *sd;
  3259. int pulled_task = -1;
  3260. unsigned long next_balance = jiffies + HZ;
  3261. cpumask_t tmpmask;
  3262. for_each_domain(this_cpu, sd) {
  3263. unsigned long interval;
  3264. if (!(sd->flags & SD_LOAD_BALANCE))
  3265. continue;
  3266. if (sd->flags & SD_BALANCE_NEWIDLE)
  3267. /* If we've pulled tasks over stop searching: */
  3268. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3269. sd, &tmpmask);
  3270. interval = msecs_to_jiffies(sd->balance_interval);
  3271. if (time_after(next_balance, sd->last_balance + interval))
  3272. next_balance = sd->last_balance + interval;
  3273. if (pulled_task)
  3274. break;
  3275. }
  3276. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3277. /*
  3278. * We are going idle. next_balance may be set based on
  3279. * a busy processor. So reset next_balance.
  3280. */
  3281. this_rq->next_balance = next_balance;
  3282. }
  3283. }
  3284. /*
  3285. * active_load_balance is run by migration threads. It pushes running tasks
  3286. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3287. * running on each physical CPU where possible, and avoids physical /
  3288. * logical imbalances.
  3289. *
  3290. * Called with busiest_rq locked.
  3291. */
  3292. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3293. {
  3294. int target_cpu = busiest_rq->push_cpu;
  3295. struct sched_domain *sd;
  3296. struct rq *target_rq;
  3297. /* Is there any task to move? */
  3298. if (busiest_rq->nr_running <= 1)
  3299. return;
  3300. target_rq = cpu_rq(target_cpu);
  3301. /*
  3302. * This condition is "impossible", if it occurs
  3303. * we need to fix it. Originally reported by
  3304. * Bjorn Helgaas on a 128-cpu setup.
  3305. */
  3306. BUG_ON(busiest_rq == target_rq);
  3307. /* move a task from busiest_rq to target_rq */
  3308. double_lock_balance(busiest_rq, target_rq);
  3309. update_rq_clock(busiest_rq);
  3310. update_rq_clock(target_rq);
  3311. /* Search for an sd spanning us and the target CPU. */
  3312. for_each_domain(target_cpu, sd) {
  3313. if ((sd->flags & SD_LOAD_BALANCE) &&
  3314. cpu_isset(busiest_cpu, sd->span))
  3315. break;
  3316. }
  3317. if (likely(sd)) {
  3318. schedstat_inc(sd, alb_count);
  3319. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3320. sd, CPU_IDLE))
  3321. schedstat_inc(sd, alb_pushed);
  3322. else
  3323. schedstat_inc(sd, alb_failed);
  3324. }
  3325. spin_unlock(&target_rq->lock);
  3326. }
  3327. #ifdef CONFIG_NO_HZ
  3328. static struct {
  3329. atomic_t load_balancer;
  3330. cpumask_t cpu_mask;
  3331. } nohz ____cacheline_aligned = {
  3332. .load_balancer = ATOMIC_INIT(-1),
  3333. .cpu_mask = CPU_MASK_NONE,
  3334. };
  3335. /*
  3336. * This routine will try to nominate the ilb (idle load balancing)
  3337. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3338. * load balancing on behalf of all those cpus. If all the cpus in the system
  3339. * go into this tickless mode, then there will be no ilb owner (as there is
  3340. * no need for one) and all the cpus will sleep till the next wakeup event
  3341. * arrives...
  3342. *
  3343. * For the ilb owner, tick is not stopped. And this tick will be used
  3344. * for idle load balancing. ilb owner will still be part of
  3345. * nohz.cpu_mask..
  3346. *
  3347. * While stopping the tick, this cpu will become the ilb owner if there
  3348. * is no other owner. And will be the owner till that cpu becomes busy
  3349. * or if all cpus in the system stop their ticks at which point
  3350. * there is no need for ilb owner.
  3351. *
  3352. * When the ilb owner becomes busy, it nominates another owner, during the
  3353. * next busy scheduler_tick()
  3354. */
  3355. int select_nohz_load_balancer(int stop_tick)
  3356. {
  3357. int cpu = smp_processor_id();
  3358. if (stop_tick) {
  3359. cpu_set(cpu, nohz.cpu_mask);
  3360. cpu_rq(cpu)->in_nohz_recently = 1;
  3361. /*
  3362. * If we are going offline and still the leader, give up!
  3363. */
  3364. if (cpu_is_offline(cpu) &&
  3365. atomic_read(&nohz.load_balancer) == cpu) {
  3366. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3367. BUG();
  3368. return 0;
  3369. }
  3370. /* time for ilb owner also to sleep */
  3371. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3372. if (atomic_read(&nohz.load_balancer) == cpu)
  3373. atomic_set(&nohz.load_balancer, -1);
  3374. return 0;
  3375. }
  3376. if (atomic_read(&nohz.load_balancer) == -1) {
  3377. /* make me the ilb owner */
  3378. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3379. return 1;
  3380. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3381. return 1;
  3382. } else {
  3383. if (!cpu_isset(cpu, nohz.cpu_mask))
  3384. return 0;
  3385. cpu_clear(cpu, nohz.cpu_mask);
  3386. if (atomic_read(&nohz.load_balancer) == cpu)
  3387. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3388. BUG();
  3389. }
  3390. return 0;
  3391. }
  3392. #endif
  3393. static DEFINE_SPINLOCK(balancing);
  3394. /*
  3395. * It checks each scheduling domain to see if it is due to be balanced,
  3396. * and initiates a balancing operation if so.
  3397. *
  3398. * Balancing parameters are set up in arch_init_sched_domains.
  3399. */
  3400. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3401. {
  3402. int balance = 1;
  3403. struct rq *rq = cpu_rq(cpu);
  3404. unsigned long interval;
  3405. struct sched_domain *sd;
  3406. /* Earliest time when we have to do rebalance again */
  3407. unsigned long next_balance = jiffies + 60*HZ;
  3408. int update_next_balance = 0;
  3409. cpumask_t tmp;
  3410. for_each_domain(cpu, sd) {
  3411. if (!(sd->flags & SD_LOAD_BALANCE))
  3412. continue;
  3413. interval = sd->balance_interval;
  3414. if (idle != CPU_IDLE)
  3415. interval *= sd->busy_factor;
  3416. /* scale ms to jiffies */
  3417. interval = msecs_to_jiffies(interval);
  3418. if (unlikely(!interval))
  3419. interval = 1;
  3420. if (interval > HZ*NR_CPUS/10)
  3421. interval = HZ*NR_CPUS/10;
  3422. if (sd->flags & SD_SERIALIZE) {
  3423. if (!spin_trylock(&balancing))
  3424. goto out;
  3425. }
  3426. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3427. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3428. /*
  3429. * We've pulled tasks over so either we're no
  3430. * longer idle, or one of our SMT siblings is
  3431. * not idle.
  3432. */
  3433. idle = CPU_NOT_IDLE;
  3434. }
  3435. sd->last_balance = jiffies;
  3436. }
  3437. if (sd->flags & SD_SERIALIZE)
  3438. spin_unlock(&balancing);
  3439. out:
  3440. if (time_after(next_balance, sd->last_balance + interval)) {
  3441. next_balance = sd->last_balance + interval;
  3442. update_next_balance = 1;
  3443. }
  3444. /*
  3445. * Stop the load balance at this level. There is another
  3446. * CPU in our sched group which is doing load balancing more
  3447. * actively.
  3448. */
  3449. if (!balance)
  3450. break;
  3451. }
  3452. /*
  3453. * next_balance will be updated only when there is a need.
  3454. * When the cpu is attached to null domain for ex, it will not be
  3455. * updated.
  3456. */
  3457. if (likely(update_next_balance))
  3458. rq->next_balance = next_balance;
  3459. }
  3460. /*
  3461. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3462. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3463. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3464. */
  3465. static void run_rebalance_domains(struct softirq_action *h)
  3466. {
  3467. int this_cpu = smp_processor_id();
  3468. struct rq *this_rq = cpu_rq(this_cpu);
  3469. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3470. CPU_IDLE : CPU_NOT_IDLE;
  3471. rebalance_domains(this_cpu, idle);
  3472. #ifdef CONFIG_NO_HZ
  3473. /*
  3474. * If this cpu is the owner for idle load balancing, then do the
  3475. * balancing on behalf of the other idle cpus whose ticks are
  3476. * stopped.
  3477. */
  3478. if (this_rq->idle_at_tick &&
  3479. atomic_read(&nohz.load_balancer) == this_cpu) {
  3480. cpumask_t cpus = nohz.cpu_mask;
  3481. struct rq *rq;
  3482. int balance_cpu;
  3483. cpu_clear(this_cpu, cpus);
  3484. for_each_cpu_mask(balance_cpu, cpus) {
  3485. /*
  3486. * If this cpu gets work to do, stop the load balancing
  3487. * work being done for other cpus. Next load
  3488. * balancing owner will pick it up.
  3489. */
  3490. if (need_resched())
  3491. break;
  3492. rebalance_domains(balance_cpu, CPU_IDLE);
  3493. rq = cpu_rq(balance_cpu);
  3494. if (time_after(this_rq->next_balance, rq->next_balance))
  3495. this_rq->next_balance = rq->next_balance;
  3496. }
  3497. }
  3498. #endif
  3499. }
  3500. /*
  3501. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3502. *
  3503. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3504. * idle load balancing owner or decide to stop the periodic load balancing,
  3505. * if the whole system is idle.
  3506. */
  3507. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3508. {
  3509. #ifdef CONFIG_NO_HZ
  3510. /*
  3511. * If we were in the nohz mode recently and busy at the current
  3512. * scheduler tick, then check if we need to nominate new idle
  3513. * load balancer.
  3514. */
  3515. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3516. rq->in_nohz_recently = 0;
  3517. if (atomic_read(&nohz.load_balancer) == cpu) {
  3518. cpu_clear(cpu, nohz.cpu_mask);
  3519. atomic_set(&nohz.load_balancer, -1);
  3520. }
  3521. if (atomic_read(&nohz.load_balancer) == -1) {
  3522. /*
  3523. * simple selection for now: Nominate the
  3524. * first cpu in the nohz list to be the next
  3525. * ilb owner.
  3526. *
  3527. * TBD: Traverse the sched domains and nominate
  3528. * the nearest cpu in the nohz.cpu_mask.
  3529. */
  3530. int ilb = first_cpu(nohz.cpu_mask);
  3531. if (ilb < nr_cpu_ids)
  3532. resched_cpu(ilb);
  3533. }
  3534. }
  3535. /*
  3536. * If this cpu is idle and doing idle load balancing for all the
  3537. * cpus with ticks stopped, is it time for that to stop?
  3538. */
  3539. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3540. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3541. resched_cpu(cpu);
  3542. return;
  3543. }
  3544. /*
  3545. * If this cpu is idle and the idle load balancing is done by
  3546. * someone else, then no need raise the SCHED_SOFTIRQ
  3547. */
  3548. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3549. cpu_isset(cpu, nohz.cpu_mask))
  3550. return;
  3551. #endif
  3552. if (time_after_eq(jiffies, rq->next_balance))
  3553. raise_softirq(SCHED_SOFTIRQ);
  3554. }
  3555. #else /* CONFIG_SMP */
  3556. /*
  3557. * on UP we do not need to balance between CPUs:
  3558. */
  3559. static inline void idle_balance(int cpu, struct rq *rq)
  3560. {
  3561. }
  3562. #endif
  3563. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3564. EXPORT_PER_CPU_SYMBOL(kstat);
  3565. /*
  3566. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3567. * that have not yet been banked in case the task is currently running.
  3568. */
  3569. unsigned long long task_sched_runtime(struct task_struct *p)
  3570. {
  3571. unsigned long flags;
  3572. u64 ns, delta_exec;
  3573. struct rq *rq;
  3574. rq = task_rq_lock(p, &flags);
  3575. ns = p->se.sum_exec_runtime;
  3576. if (task_current(rq, p)) {
  3577. update_rq_clock(rq);
  3578. delta_exec = rq->clock - p->se.exec_start;
  3579. if ((s64)delta_exec > 0)
  3580. ns += delta_exec;
  3581. }
  3582. task_rq_unlock(rq, &flags);
  3583. return ns;
  3584. }
  3585. /*
  3586. * Account user cpu time to a process.
  3587. * @p: the process that the cpu time gets accounted to
  3588. * @cputime: the cpu time spent in user space since the last update
  3589. */
  3590. void account_user_time(struct task_struct *p, cputime_t cputime)
  3591. {
  3592. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3593. cputime64_t tmp;
  3594. p->utime = cputime_add(p->utime, cputime);
  3595. /* Add user time to cpustat. */
  3596. tmp = cputime_to_cputime64(cputime);
  3597. if (TASK_NICE(p) > 0)
  3598. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3599. else
  3600. cpustat->user = cputime64_add(cpustat->user, tmp);
  3601. }
  3602. /*
  3603. * Account guest cpu time to a process.
  3604. * @p: the process that the cpu time gets accounted to
  3605. * @cputime: the cpu time spent in virtual machine since the last update
  3606. */
  3607. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3608. {
  3609. cputime64_t tmp;
  3610. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3611. tmp = cputime_to_cputime64(cputime);
  3612. p->utime = cputime_add(p->utime, cputime);
  3613. p->gtime = cputime_add(p->gtime, cputime);
  3614. cpustat->user = cputime64_add(cpustat->user, tmp);
  3615. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3616. }
  3617. /*
  3618. * Account scaled user cpu time to a process.
  3619. * @p: the process that the cpu time gets accounted to
  3620. * @cputime: the cpu time spent in user space since the last update
  3621. */
  3622. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3623. {
  3624. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3625. }
  3626. /*
  3627. * Account system cpu time to a process.
  3628. * @p: the process that the cpu time gets accounted to
  3629. * @hardirq_offset: the offset to subtract from hardirq_count()
  3630. * @cputime: the cpu time spent in kernel space since the last update
  3631. */
  3632. void account_system_time(struct task_struct *p, int hardirq_offset,
  3633. cputime_t cputime)
  3634. {
  3635. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3636. struct rq *rq = this_rq();
  3637. cputime64_t tmp;
  3638. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3639. account_guest_time(p, cputime);
  3640. return;
  3641. }
  3642. p->stime = cputime_add(p->stime, cputime);
  3643. /* Add system time to cpustat. */
  3644. tmp = cputime_to_cputime64(cputime);
  3645. if (hardirq_count() - hardirq_offset)
  3646. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3647. else if (softirq_count())
  3648. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3649. else if (p != rq->idle)
  3650. cpustat->system = cputime64_add(cpustat->system, tmp);
  3651. else if (atomic_read(&rq->nr_iowait) > 0)
  3652. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3653. else
  3654. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3655. /* Account for system time used */
  3656. acct_update_integrals(p);
  3657. }
  3658. /*
  3659. * Account scaled system cpu time to a process.
  3660. * @p: the process that the cpu time gets accounted to
  3661. * @hardirq_offset: the offset to subtract from hardirq_count()
  3662. * @cputime: the cpu time spent in kernel space since the last update
  3663. */
  3664. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3665. {
  3666. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3667. }
  3668. /*
  3669. * Account for involuntary wait time.
  3670. * @p: the process from which the cpu time has been stolen
  3671. * @steal: the cpu time spent in involuntary wait
  3672. */
  3673. void account_steal_time(struct task_struct *p, cputime_t steal)
  3674. {
  3675. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3676. cputime64_t tmp = cputime_to_cputime64(steal);
  3677. struct rq *rq = this_rq();
  3678. if (p == rq->idle) {
  3679. p->stime = cputime_add(p->stime, steal);
  3680. if (atomic_read(&rq->nr_iowait) > 0)
  3681. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3682. else
  3683. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3684. } else
  3685. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3686. }
  3687. /*
  3688. * This function gets called by the timer code, with HZ frequency.
  3689. * We call it with interrupts disabled.
  3690. *
  3691. * It also gets called by the fork code, when changing the parent's
  3692. * timeslices.
  3693. */
  3694. void scheduler_tick(void)
  3695. {
  3696. int cpu = smp_processor_id();
  3697. struct rq *rq = cpu_rq(cpu);
  3698. struct task_struct *curr = rq->curr;
  3699. sched_clock_tick();
  3700. spin_lock(&rq->lock);
  3701. update_rq_clock(rq);
  3702. update_cpu_load(rq);
  3703. curr->sched_class->task_tick(rq, curr, 0);
  3704. spin_unlock(&rq->lock);
  3705. #ifdef CONFIG_SMP
  3706. rq->idle_at_tick = idle_cpu(cpu);
  3707. trigger_load_balance(rq, cpu);
  3708. #endif
  3709. }
  3710. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3711. void __kprobes add_preempt_count(int val)
  3712. {
  3713. /*
  3714. * Underflow?
  3715. */
  3716. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3717. return;
  3718. preempt_count() += val;
  3719. /*
  3720. * Spinlock count overflowing soon?
  3721. */
  3722. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3723. PREEMPT_MASK - 10);
  3724. }
  3725. EXPORT_SYMBOL(add_preempt_count);
  3726. void __kprobes sub_preempt_count(int val)
  3727. {
  3728. /*
  3729. * Underflow?
  3730. */
  3731. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3732. return;
  3733. /*
  3734. * Is the spinlock portion underflowing?
  3735. */
  3736. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3737. !(preempt_count() & PREEMPT_MASK)))
  3738. return;
  3739. preempt_count() -= val;
  3740. }
  3741. EXPORT_SYMBOL(sub_preempt_count);
  3742. #endif
  3743. /*
  3744. * Print scheduling while atomic bug:
  3745. */
  3746. static noinline void __schedule_bug(struct task_struct *prev)
  3747. {
  3748. struct pt_regs *regs = get_irq_regs();
  3749. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3750. prev->comm, prev->pid, preempt_count());
  3751. debug_show_held_locks(prev);
  3752. if (irqs_disabled())
  3753. print_irqtrace_events(prev);
  3754. if (regs)
  3755. show_regs(regs);
  3756. else
  3757. dump_stack();
  3758. }
  3759. /*
  3760. * Various schedule()-time debugging checks and statistics:
  3761. */
  3762. static inline void schedule_debug(struct task_struct *prev)
  3763. {
  3764. /*
  3765. * Test if we are atomic. Since do_exit() needs to call into
  3766. * schedule() atomically, we ignore that path for now.
  3767. * Otherwise, whine if we are scheduling when we should not be.
  3768. */
  3769. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3770. __schedule_bug(prev);
  3771. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3772. schedstat_inc(this_rq(), sched_count);
  3773. #ifdef CONFIG_SCHEDSTATS
  3774. if (unlikely(prev->lock_depth >= 0)) {
  3775. schedstat_inc(this_rq(), bkl_count);
  3776. schedstat_inc(prev, sched_info.bkl_count);
  3777. }
  3778. #endif
  3779. }
  3780. /*
  3781. * Pick up the highest-prio task:
  3782. */
  3783. static inline struct task_struct *
  3784. pick_next_task(struct rq *rq, struct task_struct *prev)
  3785. {
  3786. const struct sched_class *class;
  3787. struct task_struct *p;
  3788. /*
  3789. * Optimization: we know that if all tasks are in
  3790. * the fair class we can call that function directly:
  3791. */
  3792. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3793. p = fair_sched_class.pick_next_task(rq);
  3794. if (likely(p))
  3795. return p;
  3796. }
  3797. class = sched_class_highest;
  3798. for ( ; ; ) {
  3799. p = class->pick_next_task(rq);
  3800. if (p)
  3801. return p;
  3802. /*
  3803. * Will never be NULL as the idle class always
  3804. * returns a non-NULL p:
  3805. */
  3806. class = class->next;
  3807. }
  3808. }
  3809. /*
  3810. * schedule() is the main scheduler function.
  3811. */
  3812. asmlinkage void __sched schedule(void)
  3813. {
  3814. struct task_struct *prev, *next;
  3815. unsigned long *switch_count;
  3816. struct rq *rq;
  3817. int cpu;
  3818. need_resched:
  3819. preempt_disable();
  3820. cpu = smp_processor_id();
  3821. rq = cpu_rq(cpu);
  3822. rcu_qsctr_inc(cpu);
  3823. prev = rq->curr;
  3824. switch_count = &prev->nivcsw;
  3825. release_kernel_lock(prev);
  3826. need_resched_nonpreemptible:
  3827. schedule_debug(prev);
  3828. hrtick_clear(rq);
  3829. /*
  3830. * Do the rq-clock update outside the rq lock:
  3831. */
  3832. local_irq_disable();
  3833. update_rq_clock(rq);
  3834. spin_lock(&rq->lock);
  3835. clear_tsk_need_resched(prev);
  3836. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3837. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3838. signal_pending(prev))) {
  3839. prev->state = TASK_RUNNING;
  3840. } else {
  3841. deactivate_task(rq, prev, 1);
  3842. }
  3843. switch_count = &prev->nvcsw;
  3844. }
  3845. #ifdef CONFIG_SMP
  3846. if (prev->sched_class->pre_schedule)
  3847. prev->sched_class->pre_schedule(rq, prev);
  3848. #endif
  3849. if (unlikely(!rq->nr_running))
  3850. idle_balance(cpu, rq);
  3851. prev->sched_class->put_prev_task(rq, prev);
  3852. next = pick_next_task(rq, prev);
  3853. if (likely(prev != next)) {
  3854. sched_info_switch(prev, next);
  3855. rq->nr_switches++;
  3856. rq->curr = next;
  3857. ++*switch_count;
  3858. context_switch(rq, prev, next); /* unlocks the rq */
  3859. /*
  3860. * the context switch might have flipped the stack from under
  3861. * us, hence refresh the local variables.
  3862. */
  3863. cpu = smp_processor_id();
  3864. rq = cpu_rq(cpu);
  3865. } else
  3866. spin_unlock_irq(&rq->lock);
  3867. hrtick_set(rq);
  3868. if (unlikely(reacquire_kernel_lock(current) < 0))
  3869. goto need_resched_nonpreemptible;
  3870. preempt_enable_no_resched();
  3871. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3872. goto need_resched;
  3873. }
  3874. EXPORT_SYMBOL(schedule);
  3875. #ifdef CONFIG_PREEMPT
  3876. /*
  3877. * this is the entry point to schedule() from in-kernel preemption
  3878. * off of preempt_enable. Kernel preemptions off return from interrupt
  3879. * occur there and call schedule directly.
  3880. */
  3881. asmlinkage void __sched preempt_schedule(void)
  3882. {
  3883. struct thread_info *ti = current_thread_info();
  3884. /*
  3885. * If there is a non-zero preempt_count or interrupts are disabled,
  3886. * we do not want to preempt the current task. Just return..
  3887. */
  3888. if (likely(ti->preempt_count || irqs_disabled()))
  3889. return;
  3890. do {
  3891. add_preempt_count(PREEMPT_ACTIVE);
  3892. schedule();
  3893. sub_preempt_count(PREEMPT_ACTIVE);
  3894. /*
  3895. * Check again in case we missed a preemption opportunity
  3896. * between schedule and now.
  3897. */
  3898. barrier();
  3899. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3900. }
  3901. EXPORT_SYMBOL(preempt_schedule);
  3902. /*
  3903. * this is the entry point to schedule() from kernel preemption
  3904. * off of irq context.
  3905. * Note, that this is called and return with irqs disabled. This will
  3906. * protect us against recursive calling from irq.
  3907. */
  3908. asmlinkage void __sched preempt_schedule_irq(void)
  3909. {
  3910. struct thread_info *ti = current_thread_info();
  3911. /* Catch callers which need to be fixed */
  3912. BUG_ON(ti->preempt_count || !irqs_disabled());
  3913. do {
  3914. add_preempt_count(PREEMPT_ACTIVE);
  3915. local_irq_enable();
  3916. schedule();
  3917. local_irq_disable();
  3918. sub_preempt_count(PREEMPT_ACTIVE);
  3919. /*
  3920. * Check again in case we missed a preemption opportunity
  3921. * between schedule and now.
  3922. */
  3923. barrier();
  3924. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3925. }
  3926. #endif /* CONFIG_PREEMPT */
  3927. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3928. void *key)
  3929. {
  3930. return try_to_wake_up(curr->private, mode, sync);
  3931. }
  3932. EXPORT_SYMBOL(default_wake_function);
  3933. /*
  3934. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3935. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3936. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3937. *
  3938. * There are circumstances in which we can try to wake a task which has already
  3939. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3940. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3941. */
  3942. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3943. int nr_exclusive, int sync, void *key)
  3944. {
  3945. wait_queue_t *curr, *next;
  3946. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3947. unsigned flags = curr->flags;
  3948. if (curr->func(curr, mode, sync, key) &&
  3949. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3950. break;
  3951. }
  3952. }
  3953. /**
  3954. * __wake_up - wake up threads blocked on a waitqueue.
  3955. * @q: the waitqueue
  3956. * @mode: which threads
  3957. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3958. * @key: is directly passed to the wakeup function
  3959. */
  3960. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3961. int nr_exclusive, void *key)
  3962. {
  3963. unsigned long flags;
  3964. spin_lock_irqsave(&q->lock, flags);
  3965. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3966. spin_unlock_irqrestore(&q->lock, flags);
  3967. }
  3968. EXPORT_SYMBOL(__wake_up);
  3969. /*
  3970. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3971. */
  3972. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3973. {
  3974. __wake_up_common(q, mode, 1, 0, NULL);
  3975. }
  3976. /**
  3977. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3978. * @q: the waitqueue
  3979. * @mode: which threads
  3980. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3981. *
  3982. * The sync wakeup differs that the waker knows that it will schedule
  3983. * away soon, so while the target thread will be woken up, it will not
  3984. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3985. * with each other. This can prevent needless bouncing between CPUs.
  3986. *
  3987. * On UP it can prevent extra preemption.
  3988. */
  3989. void
  3990. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3991. {
  3992. unsigned long flags;
  3993. int sync = 1;
  3994. if (unlikely(!q))
  3995. return;
  3996. if (unlikely(!nr_exclusive))
  3997. sync = 0;
  3998. spin_lock_irqsave(&q->lock, flags);
  3999. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  4000. spin_unlock_irqrestore(&q->lock, flags);
  4001. }
  4002. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4003. void complete(struct completion *x)
  4004. {
  4005. unsigned long flags;
  4006. spin_lock_irqsave(&x->wait.lock, flags);
  4007. x->done++;
  4008. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4009. spin_unlock_irqrestore(&x->wait.lock, flags);
  4010. }
  4011. EXPORT_SYMBOL(complete);
  4012. void complete_all(struct completion *x)
  4013. {
  4014. unsigned long flags;
  4015. spin_lock_irqsave(&x->wait.lock, flags);
  4016. x->done += UINT_MAX/2;
  4017. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4018. spin_unlock_irqrestore(&x->wait.lock, flags);
  4019. }
  4020. EXPORT_SYMBOL(complete_all);
  4021. static inline long __sched
  4022. do_wait_for_common(struct completion *x, long timeout, int state)
  4023. {
  4024. if (!x->done) {
  4025. DECLARE_WAITQUEUE(wait, current);
  4026. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4027. __add_wait_queue_tail(&x->wait, &wait);
  4028. do {
  4029. if ((state == TASK_INTERRUPTIBLE &&
  4030. signal_pending(current)) ||
  4031. (state == TASK_KILLABLE &&
  4032. fatal_signal_pending(current))) {
  4033. __remove_wait_queue(&x->wait, &wait);
  4034. return -ERESTARTSYS;
  4035. }
  4036. __set_current_state(state);
  4037. spin_unlock_irq(&x->wait.lock);
  4038. timeout = schedule_timeout(timeout);
  4039. spin_lock_irq(&x->wait.lock);
  4040. if (!timeout) {
  4041. __remove_wait_queue(&x->wait, &wait);
  4042. return timeout;
  4043. }
  4044. } while (!x->done);
  4045. __remove_wait_queue(&x->wait, &wait);
  4046. }
  4047. x->done--;
  4048. return timeout;
  4049. }
  4050. static long __sched
  4051. wait_for_common(struct completion *x, long timeout, int state)
  4052. {
  4053. might_sleep();
  4054. spin_lock_irq(&x->wait.lock);
  4055. timeout = do_wait_for_common(x, timeout, state);
  4056. spin_unlock_irq(&x->wait.lock);
  4057. return timeout;
  4058. }
  4059. void __sched wait_for_completion(struct completion *x)
  4060. {
  4061. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4062. }
  4063. EXPORT_SYMBOL(wait_for_completion);
  4064. unsigned long __sched
  4065. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4066. {
  4067. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4068. }
  4069. EXPORT_SYMBOL(wait_for_completion_timeout);
  4070. int __sched wait_for_completion_interruptible(struct completion *x)
  4071. {
  4072. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4073. if (t == -ERESTARTSYS)
  4074. return t;
  4075. return 0;
  4076. }
  4077. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4078. unsigned long __sched
  4079. wait_for_completion_interruptible_timeout(struct completion *x,
  4080. unsigned long timeout)
  4081. {
  4082. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4083. }
  4084. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4085. int __sched wait_for_completion_killable(struct completion *x)
  4086. {
  4087. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4088. if (t == -ERESTARTSYS)
  4089. return t;
  4090. return 0;
  4091. }
  4092. EXPORT_SYMBOL(wait_for_completion_killable);
  4093. static long __sched
  4094. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4095. {
  4096. unsigned long flags;
  4097. wait_queue_t wait;
  4098. init_waitqueue_entry(&wait, current);
  4099. __set_current_state(state);
  4100. spin_lock_irqsave(&q->lock, flags);
  4101. __add_wait_queue(q, &wait);
  4102. spin_unlock(&q->lock);
  4103. timeout = schedule_timeout(timeout);
  4104. spin_lock_irq(&q->lock);
  4105. __remove_wait_queue(q, &wait);
  4106. spin_unlock_irqrestore(&q->lock, flags);
  4107. return timeout;
  4108. }
  4109. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4110. {
  4111. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4112. }
  4113. EXPORT_SYMBOL(interruptible_sleep_on);
  4114. long __sched
  4115. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4116. {
  4117. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4118. }
  4119. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4120. void __sched sleep_on(wait_queue_head_t *q)
  4121. {
  4122. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4123. }
  4124. EXPORT_SYMBOL(sleep_on);
  4125. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4126. {
  4127. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4128. }
  4129. EXPORT_SYMBOL(sleep_on_timeout);
  4130. #ifdef CONFIG_RT_MUTEXES
  4131. /*
  4132. * rt_mutex_setprio - set the current priority of a task
  4133. * @p: task
  4134. * @prio: prio value (kernel-internal form)
  4135. *
  4136. * This function changes the 'effective' priority of a task. It does
  4137. * not touch ->normal_prio like __setscheduler().
  4138. *
  4139. * Used by the rt_mutex code to implement priority inheritance logic.
  4140. */
  4141. void rt_mutex_setprio(struct task_struct *p, int prio)
  4142. {
  4143. unsigned long flags;
  4144. int oldprio, on_rq, running;
  4145. struct rq *rq;
  4146. const struct sched_class *prev_class = p->sched_class;
  4147. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4148. rq = task_rq_lock(p, &flags);
  4149. update_rq_clock(rq);
  4150. oldprio = p->prio;
  4151. on_rq = p->se.on_rq;
  4152. running = task_current(rq, p);
  4153. if (on_rq)
  4154. dequeue_task(rq, p, 0);
  4155. if (running)
  4156. p->sched_class->put_prev_task(rq, p);
  4157. if (rt_prio(prio))
  4158. p->sched_class = &rt_sched_class;
  4159. else
  4160. p->sched_class = &fair_sched_class;
  4161. p->prio = prio;
  4162. if (running)
  4163. p->sched_class->set_curr_task(rq);
  4164. if (on_rq) {
  4165. enqueue_task(rq, p, 0);
  4166. check_class_changed(rq, p, prev_class, oldprio, running);
  4167. }
  4168. task_rq_unlock(rq, &flags);
  4169. }
  4170. #endif
  4171. void set_user_nice(struct task_struct *p, long nice)
  4172. {
  4173. int old_prio, delta, on_rq;
  4174. unsigned long flags;
  4175. struct rq *rq;
  4176. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4177. return;
  4178. /*
  4179. * We have to be careful, if called from sys_setpriority(),
  4180. * the task might be in the middle of scheduling on another CPU.
  4181. */
  4182. rq = task_rq_lock(p, &flags);
  4183. update_rq_clock(rq);
  4184. /*
  4185. * The RT priorities are set via sched_setscheduler(), but we still
  4186. * allow the 'normal' nice value to be set - but as expected
  4187. * it wont have any effect on scheduling until the task is
  4188. * SCHED_FIFO/SCHED_RR:
  4189. */
  4190. if (task_has_rt_policy(p)) {
  4191. p->static_prio = NICE_TO_PRIO(nice);
  4192. goto out_unlock;
  4193. }
  4194. on_rq = p->se.on_rq;
  4195. if (on_rq)
  4196. dequeue_task(rq, p, 0);
  4197. p->static_prio = NICE_TO_PRIO(nice);
  4198. set_load_weight(p);
  4199. old_prio = p->prio;
  4200. p->prio = effective_prio(p);
  4201. delta = p->prio - old_prio;
  4202. if (on_rq) {
  4203. enqueue_task(rq, p, 0);
  4204. /*
  4205. * If the task increased its priority or is running and
  4206. * lowered its priority, then reschedule its CPU:
  4207. */
  4208. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4209. resched_task(rq->curr);
  4210. }
  4211. out_unlock:
  4212. task_rq_unlock(rq, &flags);
  4213. }
  4214. EXPORT_SYMBOL(set_user_nice);
  4215. /*
  4216. * can_nice - check if a task can reduce its nice value
  4217. * @p: task
  4218. * @nice: nice value
  4219. */
  4220. int can_nice(const struct task_struct *p, const int nice)
  4221. {
  4222. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4223. int nice_rlim = 20 - nice;
  4224. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4225. capable(CAP_SYS_NICE));
  4226. }
  4227. #ifdef __ARCH_WANT_SYS_NICE
  4228. /*
  4229. * sys_nice - change the priority of the current process.
  4230. * @increment: priority increment
  4231. *
  4232. * sys_setpriority is a more generic, but much slower function that
  4233. * does similar things.
  4234. */
  4235. asmlinkage long sys_nice(int increment)
  4236. {
  4237. long nice, retval;
  4238. /*
  4239. * Setpriority might change our priority at the same moment.
  4240. * We don't have to worry. Conceptually one call occurs first
  4241. * and we have a single winner.
  4242. */
  4243. if (increment < -40)
  4244. increment = -40;
  4245. if (increment > 40)
  4246. increment = 40;
  4247. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4248. if (nice < -20)
  4249. nice = -20;
  4250. if (nice > 19)
  4251. nice = 19;
  4252. if (increment < 0 && !can_nice(current, nice))
  4253. return -EPERM;
  4254. retval = security_task_setnice(current, nice);
  4255. if (retval)
  4256. return retval;
  4257. set_user_nice(current, nice);
  4258. return 0;
  4259. }
  4260. #endif
  4261. /**
  4262. * task_prio - return the priority value of a given task.
  4263. * @p: the task in question.
  4264. *
  4265. * This is the priority value as seen by users in /proc.
  4266. * RT tasks are offset by -200. Normal tasks are centered
  4267. * around 0, value goes from -16 to +15.
  4268. */
  4269. int task_prio(const struct task_struct *p)
  4270. {
  4271. return p->prio - MAX_RT_PRIO;
  4272. }
  4273. /**
  4274. * task_nice - return the nice value of a given task.
  4275. * @p: the task in question.
  4276. */
  4277. int task_nice(const struct task_struct *p)
  4278. {
  4279. return TASK_NICE(p);
  4280. }
  4281. EXPORT_SYMBOL(task_nice);
  4282. /**
  4283. * idle_cpu - is a given cpu idle currently?
  4284. * @cpu: the processor in question.
  4285. */
  4286. int idle_cpu(int cpu)
  4287. {
  4288. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4289. }
  4290. /**
  4291. * idle_task - return the idle task for a given cpu.
  4292. * @cpu: the processor in question.
  4293. */
  4294. struct task_struct *idle_task(int cpu)
  4295. {
  4296. return cpu_rq(cpu)->idle;
  4297. }
  4298. /**
  4299. * find_process_by_pid - find a process with a matching PID value.
  4300. * @pid: the pid in question.
  4301. */
  4302. static struct task_struct *find_process_by_pid(pid_t pid)
  4303. {
  4304. return pid ? find_task_by_vpid(pid) : current;
  4305. }
  4306. /* Actually do priority change: must hold rq lock. */
  4307. static void
  4308. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4309. {
  4310. BUG_ON(p->se.on_rq);
  4311. p->policy = policy;
  4312. switch (p->policy) {
  4313. case SCHED_NORMAL:
  4314. case SCHED_BATCH:
  4315. case SCHED_IDLE:
  4316. p->sched_class = &fair_sched_class;
  4317. break;
  4318. case SCHED_FIFO:
  4319. case SCHED_RR:
  4320. p->sched_class = &rt_sched_class;
  4321. break;
  4322. }
  4323. p->rt_priority = prio;
  4324. p->normal_prio = normal_prio(p);
  4325. /* we are holding p->pi_lock already */
  4326. p->prio = rt_mutex_getprio(p);
  4327. set_load_weight(p);
  4328. }
  4329. /**
  4330. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4331. * @p: the task in question.
  4332. * @policy: new policy.
  4333. * @param: structure containing the new RT priority.
  4334. *
  4335. * NOTE that the task may be already dead.
  4336. */
  4337. int sched_setscheduler(struct task_struct *p, int policy,
  4338. struct sched_param *param)
  4339. {
  4340. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4341. unsigned long flags;
  4342. const struct sched_class *prev_class = p->sched_class;
  4343. struct rq *rq;
  4344. /* may grab non-irq protected spin_locks */
  4345. BUG_ON(in_interrupt());
  4346. recheck:
  4347. /* double check policy once rq lock held */
  4348. if (policy < 0)
  4349. policy = oldpolicy = p->policy;
  4350. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4351. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4352. policy != SCHED_IDLE)
  4353. return -EINVAL;
  4354. /*
  4355. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4356. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4357. * SCHED_BATCH and SCHED_IDLE is 0.
  4358. */
  4359. if (param->sched_priority < 0 ||
  4360. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4361. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4362. return -EINVAL;
  4363. if (rt_policy(policy) != (param->sched_priority != 0))
  4364. return -EINVAL;
  4365. /*
  4366. * Allow unprivileged RT tasks to decrease priority:
  4367. */
  4368. if (!capable(CAP_SYS_NICE)) {
  4369. if (rt_policy(policy)) {
  4370. unsigned long rlim_rtprio;
  4371. if (!lock_task_sighand(p, &flags))
  4372. return -ESRCH;
  4373. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4374. unlock_task_sighand(p, &flags);
  4375. /* can't set/change the rt policy */
  4376. if (policy != p->policy && !rlim_rtprio)
  4377. return -EPERM;
  4378. /* can't increase priority */
  4379. if (param->sched_priority > p->rt_priority &&
  4380. param->sched_priority > rlim_rtprio)
  4381. return -EPERM;
  4382. }
  4383. /*
  4384. * Like positive nice levels, dont allow tasks to
  4385. * move out of SCHED_IDLE either:
  4386. */
  4387. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4388. return -EPERM;
  4389. /* can't change other user's priorities */
  4390. if ((current->euid != p->euid) &&
  4391. (current->euid != p->uid))
  4392. return -EPERM;
  4393. }
  4394. #ifdef CONFIG_RT_GROUP_SCHED
  4395. /*
  4396. * Do not allow realtime tasks into groups that have no runtime
  4397. * assigned.
  4398. */
  4399. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4400. return -EPERM;
  4401. #endif
  4402. retval = security_task_setscheduler(p, policy, param);
  4403. if (retval)
  4404. return retval;
  4405. /*
  4406. * make sure no PI-waiters arrive (or leave) while we are
  4407. * changing the priority of the task:
  4408. */
  4409. spin_lock_irqsave(&p->pi_lock, flags);
  4410. /*
  4411. * To be able to change p->policy safely, the apropriate
  4412. * runqueue lock must be held.
  4413. */
  4414. rq = __task_rq_lock(p);
  4415. /* recheck policy now with rq lock held */
  4416. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4417. policy = oldpolicy = -1;
  4418. __task_rq_unlock(rq);
  4419. spin_unlock_irqrestore(&p->pi_lock, flags);
  4420. goto recheck;
  4421. }
  4422. update_rq_clock(rq);
  4423. on_rq = p->se.on_rq;
  4424. running = task_current(rq, p);
  4425. if (on_rq)
  4426. deactivate_task(rq, p, 0);
  4427. if (running)
  4428. p->sched_class->put_prev_task(rq, p);
  4429. oldprio = p->prio;
  4430. __setscheduler(rq, p, policy, param->sched_priority);
  4431. if (running)
  4432. p->sched_class->set_curr_task(rq);
  4433. if (on_rq) {
  4434. activate_task(rq, p, 0);
  4435. check_class_changed(rq, p, prev_class, oldprio, running);
  4436. }
  4437. __task_rq_unlock(rq);
  4438. spin_unlock_irqrestore(&p->pi_lock, flags);
  4439. rt_mutex_adjust_pi(p);
  4440. return 0;
  4441. }
  4442. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4443. static int
  4444. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4445. {
  4446. struct sched_param lparam;
  4447. struct task_struct *p;
  4448. int retval;
  4449. if (!param || pid < 0)
  4450. return -EINVAL;
  4451. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4452. return -EFAULT;
  4453. rcu_read_lock();
  4454. retval = -ESRCH;
  4455. p = find_process_by_pid(pid);
  4456. if (p != NULL)
  4457. retval = sched_setscheduler(p, policy, &lparam);
  4458. rcu_read_unlock();
  4459. return retval;
  4460. }
  4461. /**
  4462. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4463. * @pid: the pid in question.
  4464. * @policy: new policy.
  4465. * @param: structure containing the new RT priority.
  4466. */
  4467. asmlinkage long
  4468. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4469. {
  4470. /* negative values for policy are not valid */
  4471. if (policy < 0)
  4472. return -EINVAL;
  4473. return do_sched_setscheduler(pid, policy, param);
  4474. }
  4475. /**
  4476. * sys_sched_setparam - set/change the RT priority of a thread
  4477. * @pid: the pid in question.
  4478. * @param: structure containing the new RT priority.
  4479. */
  4480. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4481. {
  4482. return do_sched_setscheduler(pid, -1, param);
  4483. }
  4484. /**
  4485. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4486. * @pid: the pid in question.
  4487. */
  4488. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4489. {
  4490. struct task_struct *p;
  4491. int retval;
  4492. if (pid < 0)
  4493. return -EINVAL;
  4494. retval = -ESRCH;
  4495. read_lock(&tasklist_lock);
  4496. p = find_process_by_pid(pid);
  4497. if (p) {
  4498. retval = security_task_getscheduler(p);
  4499. if (!retval)
  4500. retval = p->policy;
  4501. }
  4502. read_unlock(&tasklist_lock);
  4503. return retval;
  4504. }
  4505. /**
  4506. * sys_sched_getscheduler - get the RT priority of a thread
  4507. * @pid: the pid in question.
  4508. * @param: structure containing the RT priority.
  4509. */
  4510. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4511. {
  4512. struct sched_param lp;
  4513. struct task_struct *p;
  4514. int retval;
  4515. if (!param || pid < 0)
  4516. return -EINVAL;
  4517. read_lock(&tasklist_lock);
  4518. p = find_process_by_pid(pid);
  4519. retval = -ESRCH;
  4520. if (!p)
  4521. goto out_unlock;
  4522. retval = security_task_getscheduler(p);
  4523. if (retval)
  4524. goto out_unlock;
  4525. lp.sched_priority = p->rt_priority;
  4526. read_unlock(&tasklist_lock);
  4527. /*
  4528. * This one might sleep, we cannot do it with a spinlock held ...
  4529. */
  4530. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4531. return retval;
  4532. out_unlock:
  4533. read_unlock(&tasklist_lock);
  4534. return retval;
  4535. }
  4536. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4537. {
  4538. cpumask_t cpus_allowed;
  4539. cpumask_t new_mask = *in_mask;
  4540. struct task_struct *p;
  4541. int retval;
  4542. get_online_cpus();
  4543. read_lock(&tasklist_lock);
  4544. p = find_process_by_pid(pid);
  4545. if (!p) {
  4546. read_unlock(&tasklist_lock);
  4547. put_online_cpus();
  4548. return -ESRCH;
  4549. }
  4550. /*
  4551. * It is not safe to call set_cpus_allowed with the
  4552. * tasklist_lock held. We will bump the task_struct's
  4553. * usage count and then drop tasklist_lock.
  4554. */
  4555. get_task_struct(p);
  4556. read_unlock(&tasklist_lock);
  4557. retval = -EPERM;
  4558. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4559. !capable(CAP_SYS_NICE))
  4560. goto out_unlock;
  4561. retval = security_task_setscheduler(p, 0, NULL);
  4562. if (retval)
  4563. goto out_unlock;
  4564. cpuset_cpus_allowed(p, &cpus_allowed);
  4565. cpus_and(new_mask, new_mask, cpus_allowed);
  4566. again:
  4567. retval = set_cpus_allowed_ptr(p, &new_mask);
  4568. if (!retval) {
  4569. cpuset_cpus_allowed(p, &cpus_allowed);
  4570. if (!cpus_subset(new_mask, cpus_allowed)) {
  4571. /*
  4572. * We must have raced with a concurrent cpuset
  4573. * update. Just reset the cpus_allowed to the
  4574. * cpuset's cpus_allowed
  4575. */
  4576. new_mask = cpus_allowed;
  4577. goto again;
  4578. }
  4579. }
  4580. out_unlock:
  4581. put_task_struct(p);
  4582. put_online_cpus();
  4583. return retval;
  4584. }
  4585. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4586. cpumask_t *new_mask)
  4587. {
  4588. if (len < sizeof(cpumask_t)) {
  4589. memset(new_mask, 0, sizeof(cpumask_t));
  4590. } else if (len > sizeof(cpumask_t)) {
  4591. len = sizeof(cpumask_t);
  4592. }
  4593. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4594. }
  4595. /**
  4596. * sys_sched_setaffinity - set the cpu affinity of a process
  4597. * @pid: pid of the process
  4598. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4599. * @user_mask_ptr: user-space pointer to the new cpu mask
  4600. */
  4601. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4602. unsigned long __user *user_mask_ptr)
  4603. {
  4604. cpumask_t new_mask;
  4605. int retval;
  4606. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4607. if (retval)
  4608. return retval;
  4609. return sched_setaffinity(pid, &new_mask);
  4610. }
  4611. /*
  4612. * Represents all cpu's present in the system
  4613. * In systems capable of hotplug, this map could dynamically grow
  4614. * as new cpu's are detected in the system via any platform specific
  4615. * method, such as ACPI for e.g.
  4616. */
  4617. cpumask_t cpu_present_map __read_mostly;
  4618. EXPORT_SYMBOL(cpu_present_map);
  4619. #ifndef CONFIG_SMP
  4620. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4621. EXPORT_SYMBOL(cpu_online_map);
  4622. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4623. EXPORT_SYMBOL(cpu_possible_map);
  4624. #endif
  4625. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4626. {
  4627. struct task_struct *p;
  4628. int retval;
  4629. get_online_cpus();
  4630. read_lock(&tasklist_lock);
  4631. retval = -ESRCH;
  4632. p = find_process_by_pid(pid);
  4633. if (!p)
  4634. goto out_unlock;
  4635. retval = security_task_getscheduler(p);
  4636. if (retval)
  4637. goto out_unlock;
  4638. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4639. out_unlock:
  4640. read_unlock(&tasklist_lock);
  4641. put_online_cpus();
  4642. return retval;
  4643. }
  4644. /**
  4645. * sys_sched_getaffinity - get the cpu affinity of a process
  4646. * @pid: pid of the process
  4647. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4648. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4649. */
  4650. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4651. unsigned long __user *user_mask_ptr)
  4652. {
  4653. int ret;
  4654. cpumask_t mask;
  4655. if (len < sizeof(cpumask_t))
  4656. return -EINVAL;
  4657. ret = sched_getaffinity(pid, &mask);
  4658. if (ret < 0)
  4659. return ret;
  4660. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4661. return -EFAULT;
  4662. return sizeof(cpumask_t);
  4663. }
  4664. /**
  4665. * sys_sched_yield - yield the current processor to other threads.
  4666. *
  4667. * This function yields the current CPU to other tasks. If there are no
  4668. * other threads running on this CPU then this function will return.
  4669. */
  4670. asmlinkage long sys_sched_yield(void)
  4671. {
  4672. struct rq *rq = this_rq_lock();
  4673. schedstat_inc(rq, yld_count);
  4674. current->sched_class->yield_task(rq);
  4675. /*
  4676. * Since we are going to call schedule() anyway, there's
  4677. * no need to preempt or enable interrupts:
  4678. */
  4679. __release(rq->lock);
  4680. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4681. _raw_spin_unlock(&rq->lock);
  4682. preempt_enable_no_resched();
  4683. schedule();
  4684. return 0;
  4685. }
  4686. static void __cond_resched(void)
  4687. {
  4688. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4689. __might_sleep(__FILE__, __LINE__);
  4690. #endif
  4691. /*
  4692. * The BKS might be reacquired before we have dropped
  4693. * PREEMPT_ACTIVE, which could trigger a second
  4694. * cond_resched() call.
  4695. */
  4696. do {
  4697. add_preempt_count(PREEMPT_ACTIVE);
  4698. schedule();
  4699. sub_preempt_count(PREEMPT_ACTIVE);
  4700. } while (need_resched());
  4701. }
  4702. int __sched _cond_resched(void)
  4703. {
  4704. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4705. system_state == SYSTEM_RUNNING) {
  4706. __cond_resched();
  4707. return 1;
  4708. }
  4709. return 0;
  4710. }
  4711. EXPORT_SYMBOL(_cond_resched);
  4712. /*
  4713. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4714. * call schedule, and on return reacquire the lock.
  4715. *
  4716. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4717. * operations here to prevent schedule() from being called twice (once via
  4718. * spin_unlock(), once by hand).
  4719. */
  4720. int cond_resched_lock(spinlock_t *lock)
  4721. {
  4722. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4723. int ret = 0;
  4724. if (spin_needbreak(lock) || resched) {
  4725. spin_unlock(lock);
  4726. if (resched && need_resched())
  4727. __cond_resched();
  4728. else
  4729. cpu_relax();
  4730. ret = 1;
  4731. spin_lock(lock);
  4732. }
  4733. return ret;
  4734. }
  4735. EXPORT_SYMBOL(cond_resched_lock);
  4736. int __sched cond_resched_softirq(void)
  4737. {
  4738. BUG_ON(!in_softirq());
  4739. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4740. local_bh_enable();
  4741. __cond_resched();
  4742. local_bh_disable();
  4743. return 1;
  4744. }
  4745. return 0;
  4746. }
  4747. EXPORT_SYMBOL(cond_resched_softirq);
  4748. /**
  4749. * yield - yield the current processor to other threads.
  4750. *
  4751. * This is a shortcut for kernel-space yielding - it marks the
  4752. * thread runnable and calls sys_sched_yield().
  4753. */
  4754. void __sched yield(void)
  4755. {
  4756. set_current_state(TASK_RUNNING);
  4757. sys_sched_yield();
  4758. }
  4759. EXPORT_SYMBOL(yield);
  4760. /*
  4761. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4762. * that process accounting knows that this is a task in IO wait state.
  4763. *
  4764. * But don't do that if it is a deliberate, throttling IO wait (this task
  4765. * has set its backing_dev_info: the queue against which it should throttle)
  4766. */
  4767. void __sched io_schedule(void)
  4768. {
  4769. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4770. delayacct_blkio_start();
  4771. atomic_inc(&rq->nr_iowait);
  4772. schedule();
  4773. atomic_dec(&rq->nr_iowait);
  4774. delayacct_blkio_end();
  4775. }
  4776. EXPORT_SYMBOL(io_schedule);
  4777. long __sched io_schedule_timeout(long timeout)
  4778. {
  4779. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4780. long ret;
  4781. delayacct_blkio_start();
  4782. atomic_inc(&rq->nr_iowait);
  4783. ret = schedule_timeout(timeout);
  4784. atomic_dec(&rq->nr_iowait);
  4785. delayacct_blkio_end();
  4786. return ret;
  4787. }
  4788. /**
  4789. * sys_sched_get_priority_max - return maximum RT priority.
  4790. * @policy: scheduling class.
  4791. *
  4792. * this syscall returns the maximum rt_priority that can be used
  4793. * by a given scheduling class.
  4794. */
  4795. asmlinkage long sys_sched_get_priority_max(int policy)
  4796. {
  4797. int ret = -EINVAL;
  4798. switch (policy) {
  4799. case SCHED_FIFO:
  4800. case SCHED_RR:
  4801. ret = MAX_USER_RT_PRIO-1;
  4802. break;
  4803. case SCHED_NORMAL:
  4804. case SCHED_BATCH:
  4805. case SCHED_IDLE:
  4806. ret = 0;
  4807. break;
  4808. }
  4809. return ret;
  4810. }
  4811. /**
  4812. * sys_sched_get_priority_min - return minimum RT priority.
  4813. * @policy: scheduling class.
  4814. *
  4815. * this syscall returns the minimum rt_priority that can be used
  4816. * by a given scheduling class.
  4817. */
  4818. asmlinkage long sys_sched_get_priority_min(int policy)
  4819. {
  4820. int ret = -EINVAL;
  4821. switch (policy) {
  4822. case SCHED_FIFO:
  4823. case SCHED_RR:
  4824. ret = 1;
  4825. break;
  4826. case SCHED_NORMAL:
  4827. case SCHED_BATCH:
  4828. case SCHED_IDLE:
  4829. ret = 0;
  4830. }
  4831. return ret;
  4832. }
  4833. /**
  4834. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4835. * @pid: pid of the process.
  4836. * @interval: userspace pointer to the timeslice value.
  4837. *
  4838. * this syscall writes the default timeslice value of a given process
  4839. * into the user-space timespec buffer. A value of '0' means infinity.
  4840. */
  4841. asmlinkage
  4842. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4843. {
  4844. struct task_struct *p;
  4845. unsigned int time_slice;
  4846. int retval;
  4847. struct timespec t;
  4848. if (pid < 0)
  4849. return -EINVAL;
  4850. retval = -ESRCH;
  4851. read_lock(&tasklist_lock);
  4852. p = find_process_by_pid(pid);
  4853. if (!p)
  4854. goto out_unlock;
  4855. retval = security_task_getscheduler(p);
  4856. if (retval)
  4857. goto out_unlock;
  4858. /*
  4859. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4860. * tasks that are on an otherwise idle runqueue:
  4861. */
  4862. time_slice = 0;
  4863. if (p->policy == SCHED_RR) {
  4864. time_slice = DEF_TIMESLICE;
  4865. } else if (p->policy != SCHED_FIFO) {
  4866. struct sched_entity *se = &p->se;
  4867. unsigned long flags;
  4868. struct rq *rq;
  4869. rq = task_rq_lock(p, &flags);
  4870. if (rq->cfs.load.weight)
  4871. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4872. task_rq_unlock(rq, &flags);
  4873. }
  4874. read_unlock(&tasklist_lock);
  4875. jiffies_to_timespec(time_slice, &t);
  4876. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4877. return retval;
  4878. out_unlock:
  4879. read_unlock(&tasklist_lock);
  4880. return retval;
  4881. }
  4882. static const char stat_nam[] = "RSDTtZX";
  4883. void sched_show_task(struct task_struct *p)
  4884. {
  4885. unsigned long free = 0;
  4886. unsigned state;
  4887. state = p->state ? __ffs(p->state) + 1 : 0;
  4888. printk(KERN_INFO "%-13.13s %c", p->comm,
  4889. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4890. #if BITS_PER_LONG == 32
  4891. if (state == TASK_RUNNING)
  4892. printk(KERN_CONT " running ");
  4893. else
  4894. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4895. #else
  4896. if (state == TASK_RUNNING)
  4897. printk(KERN_CONT " running task ");
  4898. else
  4899. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4900. #endif
  4901. #ifdef CONFIG_DEBUG_STACK_USAGE
  4902. {
  4903. unsigned long *n = end_of_stack(p);
  4904. while (!*n)
  4905. n++;
  4906. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4907. }
  4908. #endif
  4909. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4910. task_pid_nr(p), task_pid_nr(p->real_parent));
  4911. show_stack(p, NULL);
  4912. }
  4913. void show_state_filter(unsigned long state_filter)
  4914. {
  4915. struct task_struct *g, *p;
  4916. #if BITS_PER_LONG == 32
  4917. printk(KERN_INFO
  4918. " task PC stack pid father\n");
  4919. #else
  4920. printk(KERN_INFO
  4921. " task PC stack pid father\n");
  4922. #endif
  4923. read_lock(&tasklist_lock);
  4924. do_each_thread(g, p) {
  4925. /*
  4926. * reset the NMI-timeout, listing all files on a slow
  4927. * console might take alot of time:
  4928. */
  4929. touch_nmi_watchdog();
  4930. if (!state_filter || (p->state & state_filter))
  4931. sched_show_task(p);
  4932. } while_each_thread(g, p);
  4933. touch_all_softlockup_watchdogs();
  4934. #ifdef CONFIG_SCHED_DEBUG
  4935. sysrq_sched_debug_show();
  4936. #endif
  4937. read_unlock(&tasklist_lock);
  4938. /*
  4939. * Only show locks if all tasks are dumped:
  4940. */
  4941. if (state_filter == -1)
  4942. debug_show_all_locks();
  4943. }
  4944. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4945. {
  4946. idle->sched_class = &idle_sched_class;
  4947. }
  4948. /**
  4949. * init_idle - set up an idle thread for a given CPU
  4950. * @idle: task in question
  4951. * @cpu: cpu the idle task belongs to
  4952. *
  4953. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4954. * flag, to make booting more robust.
  4955. */
  4956. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4957. {
  4958. struct rq *rq = cpu_rq(cpu);
  4959. unsigned long flags;
  4960. __sched_fork(idle);
  4961. idle->se.exec_start = sched_clock();
  4962. idle->prio = idle->normal_prio = MAX_PRIO;
  4963. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4964. __set_task_cpu(idle, cpu);
  4965. spin_lock_irqsave(&rq->lock, flags);
  4966. rq->curr = rq->idle = idle;
  4967. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4968. idle->oncpu = 1;
  4969. #endif
  4970. spin_unlock_irqrestore(&rq->lock, flags);
  4971. /* Set the preempt count _outside_ the spinlocks! */
  4972. #if defined(CONFIG_PREEMPT)
  4973. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4974. #else
  4975. task_thread_info(idle)->preempt_count = 0;
  4976. #endif
  4977. /*
  4978. * The idle tasks have their own, simple scheduling class:
  4979. */
  4980. idle->sched_class = &idle_sched_class;
  4981. }
  4982. /*
  4983. * In a system that switches off the HZ timer nohz_cpu_mask
  4984. * indicates which cpus entered this state. This is used
  4985. * in the rcu update to wait only for active cpus. For system
  4986. * which do not switch off the HZ timer nohz_cpu_mask should
  4987. * always be CPU_MASK_NONE.
  4988. */
  4989. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4990. /*
  4991. * Increase the granularity value when there are more CPUs,
  4992. * because with more CPUs the 'effective latency' as visible
  4993. * to users decreases. But the relationship is not linear,
  4994. * so pick a second-best guess by going with the log2 of the
  4995. * number of CPUs.
  4996. *
  4997. * This idea comes from the SD scheduler of Con Kolivas:
  4998. */
  4999. static inline void sched_init_granularity(void)
  5000. {
  5001. unsigned int factor = 1 + ilog2(num_online_cpus());
  5002. const unsigned long limit = 200000000;
  5003. sysctl_sched_min_granularity *= factor;
  5004. if (sysctl_sched_min_granularity > limit)
  5005. sysctl_sched_min_granularity = limit;
  5006. sysctl_sched_latency *= factor;
  5007. if (sysctl_sched_latency > limit)
  5008. sysctl_sched_latency = limit;
  5009. sysctl_sched_wakeup_granularity *= factor;
  5010. }
  5011. #ifdef CONFIG_SMP
  5012. /*
  5013. * This is how migration works:
  5014. *
  5015. * 1) we queue a struct migration_req structure in the source CPU's
  5016. * runqueue and wake up that CPU's migration thread.
  5017. * 2) we down() the locked semaphore => thread blocks.
  5018. * 3) migration thread wakes up (implicitly it forces the migrated
  5019. * thread off the CPU)
  5020. * 4) it gets the migration request and checks whether the migrated
  5021. * task is still in the wrong runqueue.
  5022. * 5) if it's in the wrong runqueue then the migration thread removes
  5023. * it and puts it into the right queue.
  5024. * 6) migration thread up()s the semaphore.
  5025. * 7) we wake up and the migration is done.
  5026. */
  5027. /*
  5028. * Change a given task's CPU affinity. Migrate the thread to a
  5029. * proper CPU and schedule it away if the CPU it's executing on
  5030. * is removed from the allowed bitmask.
  5031. *
  5032. * NOTE: the caller must have a valid reference to the task, the
  5033. * task must not exit() & deallocate itself prematurely. The
  5034. * call is not atomic; no spinlocks may be held.
  5035. */
  5036. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  5037. {
  5038. struct migration_req req;
  5039. unsigned long flags;
  5040. struct rq *rq;
  5041. int ret = 0;
  5042. rq = task_rq_lock(p, &flags);
  5043. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  5044. ret = -EINVAL;
  5045. goto out;
  5046. }
  5047. if (p->sched_class->set_cpus_allowed)
  5048. p->sched_class->set_cpus_allowed(p, new_mask);
  5049. else {
  5050. p->cpus_allowed = *new_mask;
  5051. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5052. }
  5053. /* Can the task run on the task's current CPU? If so, we're done */
  5054. if (cpu_isset(task_cpu(p), *new_mask))
  5055. goto out;
  5056. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  5057. /* Need help from migration thread: drop lock and wait. */
  5058. task_rq_unlock(rq, &flags);
  5059. wake_up_process(rq->migration_thread);
  5060. wait_for_completion(&req.done);
  5061. tlb_migrate_finish(p->mm);
  5062. return 0;
  5063. }
  5064. out:
  5065. task_rq_unlock(rq, &flags);
  5066. return ret;
  5067. }
  5068. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5069. /*
  5070. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5071. * this because either it can't run here any more (set_cpus_allowed()
  5072. * away from this CPU, or CPU going down), or because we're
  5073. * attempting to rebalance this task on exec (sched_exec).
  5074. *
  5075. * So we race with normal scheduler movements, but that's OK, as long
  5076. * as the task is no longer on this CPU.
  5077. *
  5078. * Returns non-zero if task was successfully migrated.
  5079. */
  5080. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5081. {
  5082. struct rq *rq_dest, *rq_src;
  5083. int ret = 0, on_rq;
  5084. if (unlikely(cpu_is_offline(dest_cpu)))
  5085. return ret;
  5086. rq_src = cpu_rq(src_cpu);
  5087. rq_dest = cpu_rq(dest_cpu);
  5088. double_rq_lock(rq_src, rq_dest);
  5089. /* Already moved. */
  5090. if (task_cpu(p) != src_cpu)
  5091. goto out;
  5092. /* Affinity changed (again). */
  5093. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5094. goto out;
  5095. on_rq = p->se.on_rq;
  5096. if (on_rq)
  5097. deactivate_task(rq_src, p, 0);
  5098. set_task_cpu(p, dest_cpu);
  5099. if (on_rq) {
  5100. activate_task(rq_dest, p, 0);
  5101. check_preempt_curr(rq_dest, p);
  5102. }
  5103. ret = 1;
  5104. out:
  5105. double_rq_unlock(rq_src, rq_dest);
  5106. return ret;
  5107. }
  5108. /*
  5109. * migration_thread - this is a highprio system thread that performs
  5110. * thread migration by bumping thread off CPU then 'pushing' onto
  5111. * another runqueue.
  5112. */
  5113. static int migration_thread(void *data)
  5114. {
  5115. int cpu = (long)data;
  5116. struct rq *rq;
  5117. rq = cpu_rq(cpu);
  5118. BUG_ON(rq->migration_thread != current);
  5119. set_current_state(TASK_INTERRUPTIBLE);
  5120. while (!kthread_should_stop()) {
  5121. struct migration_req *req;
  5122. struct list_head *head;
  5123. spin_lock_irq(&rq->lock);
  5124. if (cpu_is_offline(cpu)) {
  5125. spin_unlock_irq(&rq->lock);
  5126. goto wait_to_die;
  5127. }
  5128. if (rq->active_balance) {
  5129. active_load_balance(rq, cpu);
  5130. rq->active_balance = 0;
  5131. }
  5132. head = &rq->migration_queue;
  5133. if (list_empty(head)) {
  5134. spin_unlock_irq(&rq->lock);
  5135. schedule();
  5136. set_current_state(TASK_INTERRUPTIBLE);
  5137. continue;
  5138. }
  5139. req = list_entry(head->next, struct migration_req, list);
  5140. list_del_init(head->next);
  5141. spin_unlock(&rq->lock);
  5142. __migrate_task(req->task, cpu, req->dest_cpu);
  5143. local_irq_enable();
  5144. complete(&req->done);
  5145. }
  5146. __set_current_state(TASK_RUNNING);
  5147. return 0;
  5148. wait_to_die:
  5149. /* Wait for kthread_stop */
  5150. set_current_state(TASK_INTERRUPTIBLE);
  5151. while (!kthread_should_stop()) {
  5152. schedule();
  5153. set_current_state(TASK_INTERRUPTIBLE);
  5154. }
  5155. __set_current_state(TASK_RUNNING);
  5156. return 0;
  5157. }
  5158. #ifdef CONFIG_HOTPLUG_CPU
  5159. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5160. {
  5161. int ret;
  5162. local_irq_disable();
  5163. ret = __migrate_task(p, src_cpu, dest_cpu);
  5164. local_irq_enable();
  5165. return ret;
  5166. }
  5167. /*
  5168. * Figure out where task on dead CPU should go, use force if necessary.
  5169. * NOTE: interrupts should be disabled by the caller
  5170. */
  5171. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5172. {
  5173. unsigned long flags;
  5174. cpumask_t mask;
  5175. struct rq *rq;
  5176. int dest_cpu;
  5177. do {
  5178. /* On same node? */
  5179. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5180. cpus_and(mask, mask, p->cpus_allowed);
  5181. dest_cpu = any_online_cpu(mask);
  5182. /* On any allowed CPU? */
  5183. if (dest_cpu >= nr_cpu_ids)
  5184. dest_cpu = any_online_cpu(p->cpus_allowed);
  5185. /* No more Mr. Nice Guy. */
  5186. if (dest_cpu >= nr_cpu_ids) {
  5187. cpumask_t cpus_allowed;
  5188. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5189. /*
  5190. * Try to stay on the same cpuset, where the
  5191. * current cpuset may be a subset of all cpus.
  5192. * The cpuset_cpus_allowed_locked() variant of
  5193. * cpuset_cpus_allowed() will not block. It must be
  5194. * called within calls to cpuset_lock/cpuset_unlock.
  5195. */
  5196. rq = task_rq_lock(p, &flags);
  5197. p->cpus_allowed = cpus_allowed;
  5198. dest_cpu = any_online_cpu(p->cpus_allowed);
  5199. task_rq_unlock(rq, &flags);
  5200. /*
  5201. * Don't tell them about moving exiting tasks or
  5202. * kernel threads (both mm NULL), since they never
  5203. * leave kernel.
  5204. */
  5205. if (p->mm && printk_ratelimit()) {
  5206. printk(KERN_INFO "process %d (%s) no "
  5207. "longer affine to cpu%d\n",
  5208. task_pid_nr(p), p->comm, dead_cpu);
  5209. }
  5210. }
  5211. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5212. }
  5213. /*
  5214. * While a dead CPU has no uninterruptible tasks queued at this point,
  5215. * it might still have a nonzero ->nr_uninterruptible counter, because
  5216. * for performance reasons the counter is not stricly tracking tasks to
  5217. * their home CPUs. So we just add the counter to another CPU's counter,
  5218. * to keep the global sum constant after CPU-down:
  5219. */
  5220. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5221. {
  5222. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5223. unsigned long flags;
  5224. local_irq_save(flags);
  5225. double_rq_lock(rq_src, rq_dest);
  5226. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5227. rq_src->nr_uninterruptible = 0;
  5228. double_rq_unlock(rq_src, rq_dest);
  5229. local_irq_restore(flags);
  5230. }
  5231. /* Run through task list and migrate tasks from the dead cpu. */
  5232. static void migrate_live_tasks(int src_cpu)
  5233. {
  5234. struct task_struct *p, *t;
  5235. read_lock(&tasklist_lock);
  5236. do_each_thread(t, p) {
  5237. if (p == current)
  5238. continue;
  5239. if (task_cpu(p) == src_cpu)
  5240. move_task_off_dead_cpu(src_cpu, p);
  5241. } while_each_thread(t, p);
  5242. read_unlock(&tasklist_lock);
  5243. }
  5244. /*
  5245. * Schedules idle task to be the next runnable task on current CPU.
  5246. * It does so by boosting its priority to highest possible.
  5247. * Used by CPU offline code.
  5248. */
  5249. void sched_idle_next(void)
  5250. {
  5251. int this_cpu = smp_processor_id();
  5252. struct rq *rq = cpu_rq(this_cpu);
  5253. struct task_struct *p = rq->idle;
  5254. unsigned long flags;
  5255. /* cpu has to be offline */
  5256. BUG_ON(cpu_online(this_cpu));
  5257. /*
  5258. * Strictly not necessary since rest of the CPUs are stopped by now
  5259. * and interrupts disabled on the current cpu.
  5260. */
  5261. spin_lock_irqsave(&rq->lock, flags);
  5262. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5263. update_rq_clock(rq);
  5264. activate_task(rq, p, 0);
  5265. spin_unlock_irqrestore(&rq->lock, flags);
  5266. }
  5267. /*
  5268. * Ensures that the idle task is using init_mm right before its cpu goes
  5269. * offline.
  5270. */
  5271. void idle_task_exit(void)
  5272. {
  5273. struct mm_struct *mm = current->active_mm;
  5274. BUG_ON(cpu_online(smp_processor_id()));
  5275. if (mm != &init_mm)
  5276. switch_mm(mm, &init_mm, current);
  5277. mmdrop(mm);
  5278. }
  5279. /* called under rq->lock with disabled interrupts */
  5280. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5281. {
  5282. struct rq *rq = cpu_rq(dead_cpu);
  5283. /* Must be exiting, otherwise would be on tasklist. */
  5284. BUG_ON(!p->exit_state);
  5285. /* Cannot have done final schedule yet: would have vanished. */
  5286. BUG_ON(p->state == TASK_DEAD);
  5287. get_task_struct(p);
  5288. /*
  5289. * Drop lock around migration; if someone else moves it,
  5290. * that's OK. No task can be added to this CPU, so iteration is
  5291. * fine.
  5292. */
  5293. spin_unlock_irq(&rq->lock);
  5294. move_task_off_dead_cpu(dead_cpu, p);
  5295. spin_lock_irq(&rq->lock);
  5296. put_task_struct(p);
  5297. }
  5298. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5299. static void migrate_dead_tasks(unsigned int dead_cpu)
  5300. {
  5301. struct rq *rq = cpu_rq(dead_cpu);
  5302. struct task_struct *next;
  5303. for ( ; ; ) {
  5304. if (!rq->nr_running)
  5305. break;
  5306. update_rq_clock(rq);
  5307. next = pick_next_task(rq, rq->curr);
  5308. if (!next)
  5309. break;
  5310. migrate_dead(dead_cpu, next);
  5311. }
  5312. }
  5313. #endif /* CONFIG_HOTPLUG_CPU */
  5314. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5315. static struct ctl_table sd_ctl_dir[] = {
  5316. {
  5317. .procname = "sched_domain",
  5318. .mode = 0555,
  5319. },
  5320. {0, },
  5321. };
  5322. static struct ctl_table sd_ctl_root[] = {
  5323. {
  5324. .ctl_name = CTL_KERN,
  5325. .procname = "kernel",
  5326. .mode = 0555,
  5327. .child = sd_ctl_dir,
  5328. },
  5329. {0, },
  5330. };
  5331. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5332. {
  5333. struct ctl_table *entry =
  5334. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5335. return entry;
  5336. }
  5337. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5338. {
  5339. struct ctl_table *entry;
  5340. /*
  5341. * In the intermediate directories, both the child directory and
  5342. * procname are dynamically allocated and could fail but the mode
  5343. * will always be set. In the lowest directory the names are
  5344. * static strings and all have proc handlers.
  5345. */
  5346. for (entry = *tablep; entry->mode; entry++) {
  5347. if (entry->child)
  5348. sd_free_ctl_entry(&entry->child);
  5349. if (entry->proc_handler == NULL)
  5350. kfree(entry->procname);
  5351. }
  5352. kfree(*tablep);
  5353. *tablep = NULL;
  5354. }
  5355. static void
  5356. set_table_entry(struct ctl_table *entry,
  5357. const char *procname, void *data, int maxlen,
  5358. mode_t mode, proc_handler *proc_handler)
  5359. {
  5360. entry->procname = procname;
  5361. entry->data = data;
  5362. entry->maxlen = maxlen;
  5363. entry->mode = mode;
  5364. entry->proc_handler = proc_handler;
  5365. }
  5366. static struct ctl_table *
  5367. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5368. {
  5369. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5370. if (table == NULL)
  5371. return NULL;
  5372. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5373. sizeof(long), 0644, proc_doulongvec_minmax);
  5374. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5375. sizeof(long), 0644, proc_doulongvec_minmax);
  5376. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5377. sizeof(int), 0644, proc_dointvec_minmax);
  5378. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5379. sizeof(int), 0644, proc_dointvec_minmax);
  5380. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5381. sizeof(int), 0644, proc_dointvec_minmax);
  5382. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5383. sizeof(int), 0644, proc_dointvec_minmax);
  5384. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5385. sizeof(int), 0644, proc_dointvec_minmax);
  5386. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5387. sizeof(int), 0644, proc_dointvec_minmax);
  5388. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5389. sizeof(int), 0644, proc_dointvec_minmax);
  5390. set_table_entry(&table[9], "cache_nice_tries",
  5391. &sd->cache_nice_tries,
  5392. sizeof(int), 0644, proc_dointvec_minmax);
  5393. set_table_entry(&table[10], "flags", &sd->flags,
  5394. sizeof(int), 0644, proc_dointvec_minmax);
  5395. /* &table[11] is terminator */
  5396. return table;
  5397. }
  5398. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5399. {
  5400. struct ctl_table *entry, *table;
  5401. struct sched_domain *sd;
  5402. int domain_num = 0, i;
  5403. char buf[32];
  5404. for_each_domain(cpu, sd)
  5405. domain_num++;
  5406. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5407. if (table == NULL)
  5408. return NULL;
  5409. i = 0;
  5410. for_each_domain(cpu, sd) {
  5411. snprintf(buf, 32, "domain%d", i);
  5412. entry->procname = kstrdup(buf, GFP_KERNEL);
  5413. entry->mode = 0555;
  5414. entry->child = sd_alloc_ctl_domain_table(sd);
  5415. entry++;
  5416. i++;
  5417. }
  5418. return table;
  5419. }
  5420. static struct ctl_table_header *sd_sysctl_header;
  5421. static void register_sched_domain_sysctl(void)
  5422. {
  5423. int i, cpu_num = num_online_cpus();
  5424. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5425. char buf[32];
  5426. WARN_ON(sd_ctl_dir[0].child);
  5427. sd_ctl_dir[0].child = entry;
  5428. if (entry == NULL)
  5429. return;
  5430. for_each_online_cpu(i) {
  5431. snprintf(buf, 32, "cpu%d", i);
  5432. entry->procname = kstrdup(buf, GFP_KERNEL);
  5433. entry->mode = 0555;
  5434. entry->child = sd_alloc_ctl_cpu_table(i);
  5435. entry++;
  5436. }
  5437. WARN_ON(sd_sysctl_header);
  5438. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5439. }
  5440. /* may be called multiple times per register */
  5441. static void unregister_sched_domain_sysctl(void)
  5442. {
  5443. if (sd_sysctl_header)
  5444. unregister_sysctl_table(sd_sysctl_header);
  5445. sd_sysctl_header = NULL;
  5446. if (sd_ctl_dir[0].child)
  5447. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5448. }
  5449. #else
  5450. static void register_sched_domain_sysctl(void)
  5451. {
  5452. }
  5453. static void unregister_sched_domain_sysctl(void)
  5454. {
  5455. }
  5456. #endif
  5457. /*
  5458. * migration_call - callback that gets triggered when a CPU is added.
  5459. * Here we can start up the necessary migration thread for the new CPU.
  5460. */
  5461. static int __cpuinit
  5462. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5463. {
  5464. struct task_struct *p;
  5465. int cpu = (long)hcpu;
  5466. unsigned long flags;
  5467. struct rq *rq;
  5468. switch (action) {
  5469. case CPU_UP_PREPARE:
  5470. case CPU_UP_PREPARE_FROZEN:
  5471. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5472. if (IS_ERR(p))
  5473. return NOTIFY_BAD;
  5474. kthread_bind(p, cpu);
  5475. /* Must be high prio: stop_machine expects to yield to it. */
  5476. rq = task_rq_lock(p, &flags);
  5477. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5478. task_rq_unlock(rq, &flags);
  5479. cpu_rq(cpu)->migration_thread = p;
  5480. break;
  5481. case CPU_ONLINE:
  5482. case CPU_ONLINE_FROZEN:
  5483. /* Strictly unnecessary, as first user will wake it. */
  5484. wake_up_process(cpu_rq(cpu)->migration_thread);
  5485. /* Update our root-domain */
  5486. rq = cpu_rq(cpu);
  5487. spin_lock_irqsave(&rq->lock, flags);
  5488. if (rq->rd) {
  5489. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5490. cpu_set(cpu, rq->rd->online);
  5491. }
  5492. spin_unlock_irqrestore(&rq->lock, flags);
  5493. break;
  5494. #ifdef CONFIG_HOTPLUG_CPU
  5495. case CPU_UP_CANCELED:
  5496. case CPU_UP_CANCELED_FROZEN:
  5497. if (!cpu_rq(cpu)->migration_thread)
  5498. break;
  5499. /* Unbind it from offline cpu so it can run. Fall thru. */
  5500. kthread_bind(cpu_rq(cpu)->migration_thread,
  5501. any_online_cpu(cpu_online_map));
  5502. kthread_stop(cpu_rq(cpu)->migration_thread);
  5503. cpu_rq(cpu)->migration_thread = NULL;
  5504. break;
  5505. case CPU_DEAD:
  5506. case CPU_DEAD_FROZEN:
  5507. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5508. migrate_live_tasks(cpu);
  5509. rq = cpu_rq(cpu);
  5510. kthread_stop(rq->migration_thread);
  5511. rq->migration_thread = NULL;
  5512. /* Idle task back to normal (off runqueue, low prio) */
  5513. spin_lock_irq(&rq->lock);
  5514. update_rq_clock(rq);
  5515. deactivate_task(rq, rq->idle, 0);
  5516. rq->idle->static_prio = MAX_PRIO;
  5517. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5518. rq->idle->sched_class = &idle_sched_class;
  5519. migrate_dead_tasks(cpu);
  5520. spin_unlock_irq(&rq->lock);
  5521. cpuset_unlock();
  5522. migrate_nr_uninterruptible(rq);
  5523. BUG_ON(rq->nr_running != 0);
  5524. /*
  5525. * No need to migrate the tasks: it was best-effort if
  5526. * they didn't take sched_hotcpu_mutex. Just wake up
  5527. * the requestors.
  5528. */
  5529. spin_lock_irq(&rq->lock);
  5530. while (!list_empty(&rq->migration_queue)) {
  5531. struct migration_req *req;
  5532. req = list_entry(rq->migration_queue.next,
  5533. struct migration_req, list);
  5534. list_del_init(&req->list);
  5535. complete(&req->done);
  5536. }
  5537. spin_unlock_irq(&rq->lock);
  5538. break;
  5539. case CPU_DYING:
  5540. case CPU_DYING_FROZEN:
  5541. /* Update our root-domain */
  5542. rq = cpu_rq(cpu);
  5543. spin_lock_irqsave(&rq->lock, flags);
  5544. if (rq->rd) {
  5545. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5546. cpu_clear(cpu, rq->rd->online);
  5547. }
  5548. spin_unlock_irqrestore(&rq->lock, flags);
  5549. break;
  5550. #endif
  5551. }
  5552. return NOTIFY_OK;
  5553. }
  5554. /* Register at highest priority so that task migration (migrate_all_tasks)
  5555. * happens before everything else.
  5556. */
  5557. static struct notifier_block __cpuinitdata migration_notifier = {
  5558. .notifier_call = migration_call,
  5559. .priority = 10
  5560. };
  5561. void __init migration_init(void)
  5562. {
  5563. void *cpu = (void *)(long)smp_processor_id();
  5564. int err;
  5565. /* Start one for the boot CPU: */
  5566. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5567. BUG_ON(err == NOTIFY_BAD);
  5568. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5569. register_cpu_notifier(&migration_notifier);
  5570. }
  5571. #endif
  5572. #ifdef CONFIG_SMP
  5573. #ifdef CONFIG_SCHED_DEBUG
  5574. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5575. cpumask_t *groupmask)
  5576. {
  5577. struct sched_group *group = sd->groups;
  5578. char str[256];
  5579. cpulist_scnprintf(str, sizeof(str), sd->span);
  5580. cpus_clear(*groupmask);
  5581. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5582. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5583. printk("does not load-balance\n");
  5584. if (sd->parent)
  5585. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5586. " has parent");
  5587. return -1;
  5588. }
  5589. printk(KERN_CONT "span %s\n", str);
  5590. if (!cpu_isset(cpu, sd->span)) {
  5591. printk(KERN_ERR "ERROR: domain->span does not contain "
  5592. "CPU%d\n", cpu);
  5593. }
  5594. if (!cpu_isset(cpu, group->cpumask)) {
  5595. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5596. " CPU%d\n", cpu);
  5597. }
  5598. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5599. do {
  5600. if (!group) {
  5601. printk("\n");
  5602. printk(KERN_ERR "ERROR: group is NULL\n");
  5603. break;
  5604. }
  5605. if (!group->__cpu_power) {
  5606. printk(KERN_CONT "\n");
  5607. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5608. "set\n");
  5609. break;
  5610. }
  5611. if (!cpus_weight(group->cpumask)) {
  5612. printk(KERN_CONT "\n");
  5613. printk(KERN_ERR "ERROR: empty group\n");
  5614. break;
  5615. }
  5616. if (cpus_intersects(*groupmask, group->cpumask)) {
  5617. printk(KERN_CONT "\n");
  5618. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5619. break;
  5620. }
  5621. cpus_or(*groupmask, *groupmask, group->cpumask);
  5622. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5623. printk(KERN_CONT " %s", str);
  5624. group = group->next;
  5625. } while (group != sd->groups);
  5626. printk(KERN_CONT "\n");
  5627. if (!cpus_equal(sd->span, *groupmask))
  5628. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5629. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5630. printk(KERN_ERR "ERROR: parent span is not a superset "
  5631. "of domain->span\n");
  5632. return 0;
  5633. }
  5634. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5635. {
  5636. cpumask_t *groupmask;
  5637. int level = 0;
  5638. if (!sd) {
  5639. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5640. return;
  5641. }
  5642. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5643. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5644. if (!groupmask) {
  5645. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5646. return;
  5647. }
  5648. for (;;) {
  5649. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5650. break;
  5651. level++;
  5652. sd = sd->parent;
  5653. if (!sd)
  5654. break;
  5655. }
  5656. kfree(groupmask);
  5657. }
  5658. #else
  5659. # define sched_domain_debug(sd, cpu) do { } while (0)
  5660. #endif
  5661. static int sd_degenerate(struct sched_domain *sd)
  5662. {
  5663. if (cpus_weight(sd->span) == 1)
  5664. return 1;
  5665. /* Following flags need at least 2 groups */
  5666. if (sd->flags & (SD_LOAD_BALANCE |
  5667. SD_BALANCE_NEWIDLE |
  5668. SD_BALANCE_FORK |
  5669. SD_BALANCE_EXEC |
  5670. SD_SHARE_CPUPOWER |
  5671. SD_SHARE_PKG_RESOURCES)) {
  5672. if (sd->groups != sd->groups->next)
  5673. return 0;
  5674. }
  5675. /* Following flags don't use groups */
  5676. if (sd->flags & (SD_WAKE_IDLE |
  5677. SD_WAKE_AFFINE |
  5678. SD_WAKE_BALANCE))
  5679. return 0;
  5680. return 1;
  5681. }
  5682. static int
  5683. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5684. {
  5685. unsigned long cflags = sd->flags, pflags = parent->flags;
  5686. if (sd_degenerate(parent))
  5687. return 1;
  5688. if (!cpus_equal(sd->span, parent->span))
  5689. return 0;
  5690. /* Does parent contain flags not in child? */
  5691. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5692. if (cflags & SD_WAKE_AFFINE)
  5693. pflags &= ~SD_WAKE_BALANCE;
  5694. /* Flags needing groups don't count if only 1 group in parent */
  5695. if (parent->groups == parent->groups->next) {
  5696. pflags &= ~(SD_LOAD_BALANCE |
  5697. SD_BALANCE_NEWIDLE |
  5698. SD_BALANCE_FORK |
  5699. SD_BALANCE_EXEC |
  5700. SD_SHARE_CPUPOWER |
  5701. SD_SHARE_PKG_RESOURCES);
  5702. }
  5703. if (~cflags & pflags)
  5704. return 0;
  5705. return 1;
  5706. }
  5707. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5708. {
  5709. unsigned long flags;
  5710. const struct sched_class *class;
  5711. spin_lock_irqsave(&rq->lock, flags);
  5712. if (rq->rd) {
  5713. struct root_domain *old_rd = rq->rd;
  5714. for (class = sched_class_highest; class; class = class->next) {
  5715. if (class->leave_domain)
  5716. class->leave_domain(rq);
  5717. }
  5718. cpu_clear(rq->cpu, old_rd->span);
  5719. cpu_clear(rq->cpu, old_rd->online);
  5720. if (atomic_dec_and_test(&old_rd->refcount))
  5721. kfree(old_rd);
  5722. }
  5723. atomic_inc(&rd->refcount);
  5724. rq->rd = rd;
  5725. cpu_set(rq->cpu, rd->span);
  5726. if (cpu_isset(rq->cpu, cpu_online_map))
  5727. cpu_set(rq->cpu, rd->online);
  5728. for (class = sched_class_highest; class; class = class->next) {
  5729. if (class->join_domain)
  5730. class->join_domain(rq);
  5731. }
  5732. spin_unlock_irqrestore(&rq->lock, flags);
  5733. }
  5734. static void init_rootdomain(struct root_domain *rd)
  5735. {
  5736. memset(rd, 0, sizeof(*rd));
  5737. cpus_clear(rd->span);
  5738. cpus_clear(rd->online);
  5739. }
  5740. static void init_defrootdomain(void)
  5741. {
  5742. init_rootdomain(&def_root_domain);
  5743. atomic_set(&def_root_domain.refcount, 1);
  5744. }
  5745. static struct root_domain *alloc_rootdomain(void)
  5746. {
  5747. struct root_domain *rd;
  5748. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5749. if (!rd)
  5750. return NULL;
  5751. init_rootdomain(rd);
  5752. return rd;
  5753. }
  5754. /*
  5755. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5756. * hold the hotplug lock.
  5757. */
  5758. static void
  5759. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5760. {
  5761. struct rq *rq = cpu_rq(cpu);
  5762. struct sched_domain *tmp;
  5763. /* Remove the sched domains which do not contribute to scheduling. */
  5764. for (tmp = sd; tmp; tmp = tmp->parent) {
  5765. struct sched_domain *parent = tmp->parent;
  5766. if (!parent)
  5767. break;
  5768. if (sd_parent_degenerate(tmp, parent)) {
  5769. tmp->parent = parent->parent;
  5770. if (parent->parent)
  5771. parent->parent->child = tmp;
  5772. }
  5773. }
  5774. if (sd && sd_degenerate(sd)) {
  5775. sd = sd->parent;
  5776. if (sd)
  5777. sd->child = NULL;
  5778. }
  5779. sched_domain_debug(sd, cpu);
  5780. rq_attach_root(rq, rd);
  5781. rcu_assign_pointer(rq->sd, sd);
  5782. }
  5783. /* cpus with isolated domains */
  5784. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5785. /* Setup the mask of cpus configured for isolated domains */
  5786. static int __init isolated_cpu_setup(char *str)
  5787. {
  5788. int ints[NR_CPUS], i;
  5789. str = get_options(str, ARRAY_SIZE(ints), ints);
  5790. cpus_clear(cpu_isolated_map);
  5791. for (i = 1; i <= ints[0]; i++)
  5792. if (ints[i] < NR_CPUS)
  5793. cpu_set(ints[i], cpu_isolated_map);
  5794. return 1;
  5795. }
  5796. __setup("isolcpus=", isolated_cpu_setup);
  5797. /*
  5798. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5799. * to a function which identifies what group(along with sched group) a CPU
  5800. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5801. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5802. *
  5803. * init_sched_build_groups will build a circular linked list of the groups
  5804. * covered by the given span, and will set each group's ->cpumask correctly,
  5805. * and ->cpu_power to 0.
  5806. */
  5807. static void
  5808. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5809. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5810. struct sched_group **sg,
  5811. cpumask_t *tmpmask),
  5812. cpumask_t *covered, cpumask_t *tmpmask)
  5813. {
  5814. struct sched_group *first = NULL, *last = NULL;
  5815. int i;
  5816. cpus_clear(*covered);
  5817. for_each_cpu_mask(i, *span) {
  5818. struct sched_group *sg;
  5819. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5820. int j;
  5821. if (cpu_isset(i, *covered))
  5822. continue;
  5823. cpus_clear(sg->cpumask);
  5824. sg->__cpu_power = 0;
  5825. for_each_cpu_mask(j, *span) {
  5826. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5827. continue;
  5828. cpu_set(j, *covered);
  5829. cpu_set(j, sg->cpumask);
  5830. }
  5831. if (!first)
  5832. first = sg;
  5833. if (last)
  5834. last->next = sg;
  5835. last = sg;
  5836. }
  5837. last->next = first;
  5838. }
  5839. #define SD_NODES_PER_DOMAIN 16
  5840. #ifdef CONFIG_NUMA
  5841. /**
  5842. * find_next_best_node - find the next node to include in a sched_domain
  5843. * @node: node whose sched_domain we're building
  5844. * @used_nodes: nodes already in the sched_domain
  5845. *
  5846. * Find the next node to include in a given scheduling domain. Simply
  5847. * finds the closest node not already in the @used_nodes map.
  5848. *
  5849. * Should use nodemask_t.
  5850. */
  5851. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5852. {
  5853. int i, n, val, min_val, best_node = 0;
  5854. min_val = INT_MAX;
  5855. for (i = 0; i < MAX_NUMNODES; i++) {
  5856. /* Start at @node */
  5857. n = (node + i) % MAX_NUMNODES;
  5858. if (!nr_cpus_node(n))
  5859. continue;
  5860. /* Skip already used nodes */
  5861. if (node_isset(n, *used_nodes))
  5862. continue;
  5863. /* Simple min distance search */
  5864. val = node_distance(node, n);
  5865. if (val < min_val) {
  5866. min_val = val;
  5867. best_node = n;
  5868. }
  5869. }
  5870. node_set(best_node, *used_nodes);
  5871. return best_node;
  5872. }
  5873. /**
  5874. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5875. * @node: node whose cpumask we're constructing
  5876. * @span: resulting cpumask
  5877. *
  5878. * Given a node, construct a good cpumask for its sched_domain to span. It
  5879. * should be one that prevents unnecessary balancing, but also spreads tasks
  5880. * out optimally.
  5881. */
  5882. static void sched_domain_node_span(int node, cpumask_t *span)
  5883. {
  5884. nodemask_t used_nodes;
  5885. node_to_cpumask_ptr(nodemask, node);
  5886. int i;
  5887. cpus_clear(*span);
  5888. nodes_clear(used_nodes);
  5889. cpus_or(*span, *span, *nodemask);
  5890. node_set(node, used_nodes);
  5891. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5892. int next_node = find_next_best_node(node, &used_nodes);
  5893. node_to_cpumask_ptr_next(nodemask, next_node);
  5894. cpus_or(*span, *span, *nodemask);
  5895. }
  5896. }
  5897. #endif
  5898. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5899. /*
  5900. * SMT sched-domains:
  5901. */
  5902. #ifdef CONFIG_SCHED_SMT
  5903. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5904. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5905. static int
  5906. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5907. cpumask_t *unused)
  5908. {
  5909. if (sg)
  5910. *sg = &per_cpu(sched_group_cpus, cpu);
  5911. return cpu;
  5912. }
  5913. #endif
  5914. /*
  5915. * multi-core sched-domains:
  5916. */
  5917. #ifdef CONFIG_SCHED_MC
  5918. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5919. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5920. #endif
  5921. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5922. static int
  5923. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5924. cpumask_t *mask)
  5925. {
  5926. int group;
  5927. *mask = per_cpu(cpu_sibling_map, cpu);
  5928. cpus_and(*mask, *mask, *cpu_map);
  5929. group = first_cpu(*mask);
  5930. if (sg)
  5931. *sg = &per_cpu(sched_group_core, group);
  5932. return group;
  5933. }
  5934. #elif defined(CONFIG_SCHED_MC)
  5935. static int
  5936. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5937. cpumask_t *unused)
  5938. {
  5939. if (sg)
  5940. *sg = &per_cpu(sched_group_core, cpu);
  5941. return cpu;
  5942. }
  5943. #endif
  5944. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5945. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5946. static int
  5947. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5948. cpumask_t *mask)
  5949. {
  5950. int group;
  5951. #ifdef CONFIG_SCHED_MC
  5952. *mask = cpu_coregroup_map(cpu);
  5953. cpus_and(*mask, *mask, *cpu_map);
  5954. group = first_cpu(*mask);
  5955. #elif defined(CONFIG_SCHED_SMT)
  5956. *mask = per_cpu(cpu_sibling_map, cpu);
  5957. cpus_and(*mask, *mask, *cpu_map);
  5958. group = first_cpu(*mask);
  5959. #else
  5960. group = cpu;
  5961. #endif
  5962. if (sg)
  5963. *sg = &per_cpu(sched_group_phys, group);
  5964. return group;
  5965. }
  5966. #ifdef CONFIG_NUMA
  5967. /*
  5968. * The init_sched_build_groups can't handle what we want to do with node
  5969. * groups, so roll our own. Now each node has its own list of groups which
  5970. * gets dynamically allocated.
  5971. */
  5972. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5973. static struct sched_group ***sched_group_nodes_bycpu;
  5974. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5975. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5976. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5977. struct sched_group **sg, cpumask_t *nodemask)
  5978. {
  5979. int group;
  5980. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5981. cpus_and(*nodemask, *nodemask, *cpu_map);
  5982. group = first_cpu(*nodemask);
  5983. if (sg)
  5984. *sg = &per_cpu(sched_group_allnodes, group);
  5985. return group;
  5986. }
  5987. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5988. {
  5989. struct sched_group *sg = group_head;
  5990. int j;
  5991. if (!sg)
  5992. return;
  5993. do {
  5994. for_each_cpu_mask(j, sg->cpumask) {
  5995. struct sched_domain *sd;
  5996. sd = &per_cpu(phys_domains, j);
  5997. if (j != first_cpu(sd->groups->cpumask)) {
  5998. /*
  5999. * Only add "power" once for each
  6000. * physical package.
  6001. */
  6002. continue;
  6003. }
  6004. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6005. }
  6006. sg = sg->next;
  6007. } while (sg != group_head);
  6008. }
  6009. #endif
  6010. #ifdef CONFIG_NUMA
  6011. /* Free memory allocated for various sched_group structures */
  6012. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6013. {
  6014. int cpu, i;
  6015. for_each_cpu_mask(cpu, *cpu_map) {
  6016. struct sched_group **sched_group_nodes
  6017. = sched_group_nodes_bycpu[cpu];
  6018. if (!sched_group_nodes)
  6019. continue;
  6020. for (i = 0; i < MAX_NUMNODES; i++) {
  6021. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6022. *nodemask = node_to_cpumask(i);
  6023. cpus_and(*nodemask, *nodemask, *cpu_map);
  6024. if (cpus_empty(*nodemask))
  6025. continue;
  6026. if (sg == NULL)
  6027. continue;
  6028. sg = sg->next;
  6029. next_sg:
  6030. oldsg = sg;
  6031. sg = sg->next;
  6032. kfree(oldsg);
  6033. if (oldsg != sched_group_nodes[i])
  6034. goto next_sg;
  6035. }
  6036. kfree(sched_group_nodes);
  6037. sched_group_nodes_bycpu[cpu] = NULL;
  6038. }
  6039. }
  6040. #else
  6041. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6042. {
  6043. }
  6044. #endif
  6045. /*
  6046. * Initialize sched groups cpu_power.
  6047. *
  6048. * cpu_power indicates the capacity of sched group, which is used while
  6049. * distributing the load between different sched groups in a sched domain.
  6050. * Typically cpu_power for all the groups in a sched domain will be same unless
  6051. * there are asymmetries in the topology. If there are asymmetries, group
  6052. * having more cpu_power will pickup more load compared to the group having
  6053. * less cpu_power.
  6054. *
  6055. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6056. * the maximum number of tasks a group can handle in the presence of other idle
  6057. * or lightly loaded groups in the same sched domain.
  6058. */
  6059. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6060. {
  6061. struct sched_domain *child;
  6062. struct sched_group *group;
  6063. WARN_ON(!sd || !sd->groups);
  6064. if (cpu != first_cpu(sd->groups->cpumask))
  6065. return;
  6066. child = sd->child;
  6067. sd->groups->__cpu_power = 0;
  6068. /*
  6069. * For perf policy, if the groups in child domain share resources
  6070. * (for example cores sharing some portions of the cache hierarchy
  6071. * or SMT), then set this domain groups cpu_power such that each group
  6072. * can handle only one task, when there are other idle groups in the
  6073. * same sched domain.
  6074. */
  6075. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6076. (child->flags &
  6077. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6078. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6079. return;
  6080. }
  6081. /*
  6082. * add cpu_power of each child group to this groups cpu_power
  6083. */
  6084. group = child->groups;
  6085. do {
  6086. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6087. group = group->next;
  6088. } while (group != child->groups);
  6089. }
  6090. /*
  6091. * Initializers for schedule domains
  6092. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6093. */
  6094. #define SD_INIT(sd, type) sd_init_##type(sd)
  6095. #define SD_INIT_FUNC(type) \
  6096. static noinline void sd_init_##type(struct sched_domain *sd) \
  6097. { \
  6098. memset(sd, 0, sizeof(*sd)); \
  6099. *sd = SD_##type##_INIT; \
  6100. sd->level = SD_LV_##type; \
  6101. }
  6102. SD_INIT_FUNC(CPU)
  6103. #ifdef CONFIG_NUMA
  6104. SD_INIT_FUNC(ALLNODES)
  6105. SD_INIT_FUNC(NODE)
  6106. #endif
  6107. #ifdef CONFIG_SCHED_SMT
  6108. SD_INIT_FUNC(SIBLING)
  6109. #endif
  6110. #ifdef CONFIG_SCHED_MC
  6111. SD_INIT_FUNC(MC)
  6112. #endif
  6113. /*
  6114. * To minimize stack usage kmalloc room for cpumasks and share the
  6115. * space as the usage in build_sched_domains() dictates. Used only
  6116. * if the amount of space is significant.
  6117. */
  6118. struct allmasks {
  6119. cpumask_t tmpmask; /* make this one first */
  6120. union {
  6121. cpumask_t nodemask;
  6122. cpumask_t this_sibling_map;
  6123. cpumask_t this_core_map;
  6124. };
  6125. cpumask_t send_covered;
  6126. #ifdef CONFIG_NUMA
  6127. cpumask_t domainspan;
  6128. cpumask_t covered;
  6129. cpumask_t notcovered;
  6130. #endif
  6131. };
  6132. #if NR_CPUS > 128
  6133. #define SCHED_CPUMASK_ALLOC 1
  6134. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6135. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6136. #else
  6137. #define SCHED_CPUMASK_ALLOC 0
  6138. #define SCHED_CPUMASK_FREE(v)
  6139. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6140. #endif
  6141. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6142. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6143. static int default_relax_domain_level = -1;
  6144. static int __init setup_relax_domain_level(char *str)
  6145. {
  6146. default_relax_domain_level = simple_strtoul(str, NULL, 0);
  6147. return 1;
  6148. }
  6149. __setup("relax_domain_level=", setup_relax_domain_level);
  6150. static void set_domain_attribute(struct sched_domain *sd,
  6151. struct sched_domain_attr *attr)
  6152. {
  6153. int request;
  6154. if (!attr || attr->relax_domain_level < 0) {
  6155. if (default_relax_domain_level < 0)
  6156. return;
  6157. else
  6158. request = default_relax_domain_level;
  6159. } else
  6160. request = attr->relax_domain_level;
  6161. if (request < sd->level) {
  6162. /* turn off idle balance on this domain */
  6163. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6164. } else {
  6165. /* turn on idle balance on this domain */
  6166. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6167. }
  6168. }
  6169. /*
  6170. * Build sched domains for a given set of cpus and attach the sched domains
  6171. * to the individual cpus
  6172. */
  6173. static int __build_sched_domains(const cpumask_t *cpu_map,
  6174. struct sched_domain_attr *attr)
  6175. {
  6176. int i;
  6177. struct root_domain *rd;
  6178. SCHED_CPUMASK_DECLARE(allmasks);
  6179. cpumask_t *tmpmask;
  6180. #ifdef CONFIG_NUMA
  6181. struct sched_group **sched_group_nodes = NULL;
  6182. int sd_allnodes = 0;
  6183. /*
  6184. * Allocate the per-node list of sched groups
  6185. */
  6186. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  6187. GFP_KERNEL);
  6188. if (!sched_group_nodes) {
  6189. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6190. return -ENOMEM;
  6191. }
  6192. #endif
  6193. rd = alloc_rootdomain();
  6194. if (!rd) {
  6195. printk(KERN_WARNING "Cannot alloc root domain\n");
  6196. #ifdef CONFIG_NUMA
  6197. kfree(sched_group_nodes);
  6198. #endif
  6199. return -ENOMEM;
  6200. }
  6201. #if SCHED_CPUMASK_ALLOC
  6202. /* get space for all scratch cpumask variables */
  6203. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6204. if (!allmasks) {
  6205. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6206. kfree(rd);
  6207. #ifdef CONFIG_NUMA
  6208. kfree(sched_group_nodes);
  6209. #endif
  6210. return -ENOMEM;
  6211. }
  6212. #endif
  6213. tmpmask = (cpumask_t *)allmasks;
  6214. #ifdef CONFIG_NUMA
  6215. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6216. #endif
  6217. /*
  6218. * Set up domains for cpus specified by the cpu_map.
  6219. */
  6220. for_each_cpu_mask(i, *cpu_map) {
  6221. struct sched_domain *sd = NULL, *p;
  6222. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6223. *nodemask = node_to_cpumask(cpu_to_node(i));
  6224. cpus_and(*nodemask, *nodemask, *cpu_map);
  6225. #ifdef CONFIG_NUMA
  6226. if (cpus_weight(*cpu_map) >
  6227. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6228. sd = &per_cpu(allnodes_domains, i);
  6229. SD_INIT(sd, ALLNODES);
  6230. set_domain_attribute(sd, attr);
  6231. sd->span = *cpu_map;
  6232. sd->first_cpu = first_cpu(sd->span);
  6233. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6234. p = sd;
  6235. sd_allnodes = 1;
  6236. } else
  6237. p = NULL;
  6238. sd = &per_cpu(node_domains, i);
  6239. SD_INIT(sd, NODE);
  6240. set_domain_attribute(sd, attr);
  6241. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6242. sd->first_cpu = first_cpu(sd->span);
  6243. sd->parent = p;
  6244. if (p)
  6245. p->child = sd;
  6246. cpus_and(sd->span, sd->span, *cpu_map);
  6247. #endif
  6248. p = sd;
  6249. sd = &per_cpu(phys_domains, i);
  6250. SD_INIT(sd, CPU);
  6251. set_domain_attribute(sd, attr);
  6252. sd->span = *nodemask;
  6253. sd->first_cpu = first_cpu(sd->span);
  6254. sd->parent = p;
  6255. if (p)
  6256. p->child = sd;
  6257. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6258. #ifdef CONFIG_SCHED_MC
  6259. p = sd;
  6260. sd = &per_cpu(core_domains, i);
  6261. SD_INIT(sd, MC);
  6262. set_domain_attribute(sd, attr);
  6263. sd->span = cpu_coregroup_map(i);
  6264. sd->first_cpu = first_cpu(sd->span);
  6265. cpus_and(sd->span, sd->span, *cpu_map);
  6266. sd->parent = p;
  6267. p->child = sd;
  6268. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6269. #endif
  6270. #ifdef CONFIG_SCHED_SMT
  6271. p = sd;
  6272. sd = &per_cpu(cpu_domains, i);
  6273. SD_INIT(sd, SIBLING);
  6274. set_domain_attribute(sd, attr);
  6275. sd->span = per_cpu(cpu_sibling_map, i);
  6276. sd->first_cpu = first_cpu(sd->span);
  6277. cpus_and(sd->span, sd->span, *cpu_map);
  6278. sd->parent = p;
  6279. p->child = sd;
  6280. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6281. #endif
  6282. }
  6283. #ifdef CONFIG_SCHED_SMT
  6284. /* Set up CPU (sibling) groups */
  6285. for_each_cpu_mask(i, *cpu_map) {
  6286. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6287. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6288. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6289. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6290. if (i != first_cpu(*this_sibling_map))
  6291. continue;
  6292. init_sched_build_groups(this_sibling_map, cpu_map,
  6293. &cpu_to_cpu_group,
  6294. send_covered, tmpmask);
  6295. }
  6296. #endif
  6297. #ifdef CONFIG_SCHED_MC
  6298. /* Set up multi-core groups */
  6299. for_each_cpu_mask(i, *cpu_map) {
  6300. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6301. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6302. *this_core_map = cpu_coregroup_map(i);
  6303. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6304. if (i != first_cpu(*this_core_map))
  6305. continue;
  6306. init_sched_build_groups(this_core_map, cpu_map,
  6307. &cpu_to_core_group,
  6308. send_covered, tmpmask);
  6309. }
  6310. #endif
  6311. /* Set up physical groups */
  6312. for (i = 0; i < MAX_NUMNODES; i++) {
  6313. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6314. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6315. *nodemask = node_to_cpumask(i);
  6316. cpus_and(*nodemask, *nodemask, *cpu_map);
  6317. if (cpus_empty(*nodemask))
  6318. continue;
  6319. init_sched_build_groups(nodemask, cpu_map,
  6320. &cpu_to_phys_group,
  6321. send_covered, tmpmask);
  6322. }
  6323. #ifdef CONFIG_NUMA
  6324. /* Set up node groups */
  6325. if (sd_allnodes) {
  6326. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6327. init_sched_build_groups(cpu_map, cpu_map,
  6328. &cpu_to_allnodes_group,
  6329. send_covered, tmpmask);
  6330. }
  6331. for (i = 0; i < MAX_NUMNODES; i++) {
  6332. /* Set up node groups */
  6333. struct sched_group *sg, *prev;
  6334. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6335. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6336. SCHED_CPUMASK_VAR(covered, allmasks);
  6337. int j;
  6338. *nodemask = node_to_cpumask(i);
  6339. cpus_clear(*covered);
  6340. cpus_and(*nodemask, *nodemask, *cpu_map);
  6341. if (cpus_empty(*nodemask)) {
  6342. sched_group_nodes[i] = NULL;
  6343. continue;
  6344. }
  6345. sched_domain_node_span(i, domainspan);
  6346. cpus_and(*domainspan, *domainspan, *cpu_map);
  6347. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6348. if (!sg) {
  6349. printk(KERN_WARNING "Can not alloc domain group for "
  6350. "node %d\n", i);
  6351. goto error;
  6352. }
  6353. sched_group_nodes[i] = sg;
  6354. for_each_cpu_mask(j, *nodemask) {
  6355. struct sched_domain *sd;
  6356. sd = &per_cpu(node_domains, j);
  6357. sd->groups = sg;
  6358. }
  6359. sg->__cpu_power = 0;
  6360. sg->cpumask = *nodemask;
  6361. sg->next = sg;
  6362. cpus_or(*covered, *covered, *nodemask);
  6363. prev = sg;
  6364. for (j = 0; j < MAX_NUMNODES; j++) {
  6365. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6366. int n = (i + j) % MAX_NUMNODES;
  6367. node_to_cpumask_ptr(pnodemask, n);
  6368. cpus_complement(*notcovered, *covered);
  6369. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6370. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6371. if (cpus_empty(*tmpmask))
  6372. break;
  6373. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6374. if (cpus_empty(*tmpmask))
  6375. continue;
  6376. sg = kmalloc_node(sizeof(struct sched_group),
  6377. GFP_KERNEL, i);
  6378. if (!sg) {
  6379. printk(KERN_WARNING
  6380. "Can not alloc domain group for node %d\n", j);
  6381. goto error;
  6382. }
  6383. sg->__cpu_power = 0;
  6384. sg->cpumask = *tmpmask;
  6385. sg->next = prev->next;
  6386. cpus_or(*covered, *covered, *tmpmask);
  6387. prev->next = sg;
  6388. prev = sg;
  6389. }
  6390. }
  6391. #endif
  6392. /* Calculate CPU power for physical packages and nodes */
  6393. #ifdef CONFIG_SCHED_SMT
  6394. for_each_cpu_mask(i, *cpu_map) {
  6395. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6396. init_sched_groups_power(i, sd);
  6397. }
  6398. #endif
  6399. #ifdef CONFIG_SCHED_MC
  6400. for_each_cpu_mask(i, *cpu_map) {
  6401. struct sched_domain *sd = &per_cpu(core_domains, i);
  6402. init_sched_groups_power(i, sd);
  6403. }
  6404. #endif
  6405. for_each_cpu_mask(i, *cpu_map) {
  6406. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6407. init_sched_groups_power(i, sd);
  6408. }
  6409. #ifdef CONFIG_NUMA
  6410. for (i = 0; i < MAX_NUMNODES; i++)
  6411. init_numa_sched_groups_power(sched_group_nodes[i]);
  6412. if (sd_allnodes) {
  6413. struct sched_group *sg;
  6414. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6415. tmpmask);
  6416. init_numa_sched_groups_power(sg);
  6417. }
  6418. #endif
  6419. /* Attach the domains */
  6420. for_each_cpu_mask(i, *cpu_map) {
  6421. struct sched_domain *sd;
  6422. #ifdef CONFIG_SCHED_SMT
  6423. sd = &per_cpu(cpu_domains, i);
  6424. #elif defined(CONFIG_SCHED_MC)
  6425. sd = &per_cpu(core_domains, i);
  6426. #else
  6427. sd = &per_cpu(phys_domains, i);
  6428. #endif
  6429. cpu_attach_domain(sd, rd, i);
  6430. }
  6431. SCHED_CPUMASK_FREE((void *)allmasks);
  6432. return 0;
  6433. #ifdef CONFIG_NUMA
  6434. error:
  6435. free_sched_groups(cpu_map, tmpmask);
  6436. SCHED_CPUMASK_FREE((void *)allmasks);
  6437. return -ENOMEM;
  6438. #endif
  6439. }
  6440. static int build_sched_domains(const cpumask_t *cpu_map)
  6441. {
  6442. return __build_sched_domains(cpu_map, NULL);
  6443. }
  6444. static cpumask_t *doms_cur; /* current sched domains */
  6445. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6446. static struct sched_domain_attr *dattr_cur;
  6447. /* attribues of custom domains in 'doms_cur' */
  6448. /*
  6449. * Special case: If a kmalloc of a doms_cur partition (array of
  6450. * cpumask_t) fails, then fallback to a single sched domain,
  6451. * as determined by the single cpumask_t fallback_doms.
  6452. */
  6453. static cpumask_t fallback_doms;
  6454. void __attribute__((weak)) arch_update_cpu_topology(void)
  6455. {
  6456. }
  6457. /*
  6458. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6459. * For now this just excludes isolated cpus, but could be used to
  6460. * exclude other special cases in the future.
  6461. */
  6462. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6463. {
  6464. int err;
  6465. arch_update_cpu_topology();
  6466. ndoms_cur = 1;
  6467. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6468. if (!doms_cur)
  6469. doms_cur = &fallback_doms;
  6470. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6471. dattr_cur = NULL;
  6472. err = build_sched_domains(doms_cur);
  6473. register_sched_domain_sysctl();
  6474. return err;
  6475. }
  6476. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6477. cpumask_t *tmpmask)
  6478. {
  6479. free_sched_groups(cpu_map, tmpmask);
  6480. }
  6481. /*
  6482. * Detach sched domains from a group of cpus specified in cpu_map
  6483. * These cpus will now be attached to the NULL domain
  6484. */
  6485. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6486. {
  6487. cpumask_t tmpmask;
  6488. int i;
  6489. unregister_sched_domain_sysctl();
  6490. for_each_cpu_mask(i, *cpu_map)
  6491. cpu_attach_domain(NULL, &def_root_domain, i);
  6492. synchronize_sched();
  6493. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6494. }
  6495. /* handle null as "default" */
  6496. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6497. struct sched_domain_attr *new, int idx_new)
  6498. {
  6499. struct sched_domain_attr tmp;
  6500. /* fast path */
  6501. if (!new && !cur)
  6502. return 1;
  6503. tmp = SD_ATTR_INIT;
  6504. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6505. new ? (new + idx_new) : &tmp,
  6506. sizeof(struct sched_domain_attr));
  6507. }
  6508. /*
  6509. * Partition sched domains as specified by the 'ndoms_new'
  6510. * cpumasks in the array doms_new[] of cpumasks. This compares
  6511. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6512. * It destroys each deleted domain and builds each new domain.
  6513. *
  6514. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6515. * The masks don't intersect (don't overlap.) We should setup one
  6516. * sched domain for each mask. CPUs not in any of the cpumasks will
  6517. * not be load balanced. If the same cpumask appears both in the
  6518. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6519. * it as it is.
  6520. *
  6521. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6522. * ownership of it and will kfree it when done with it. If the caller
  6523. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6524. * and partition_sched_domains() will fallback to the single partition
  6525. * 'fallback_doms'.
  6526. *
  6527. * Call with hotplug lock held
  6528. */
  6529. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6530. struct sched_domain_attr *dattr_new)
  6531. {
  6532. int i, j;
  6533. mutex_lock(&sched_domains_mutex);
  6534. /* always unregister in case we don't destroy any domains */
  6535. unregister_sched_domain_sysctl();
  6536. if (doms_new == NULL) {
  6537. ndoms_new = 1;
  6538. doms_new = &fallback_doms;
  6539. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6540. dattr_new = NULL;
  6541. }
  6542. /* Destroy deleted domains */
  6543. for (i = 0; i < ndoms_cur; i++) {
  6544. for (j = 0; j < ndoms_new; j++) {
  6545. if (cpus_equal(doms_cur[i], doms_new[j])
  6546. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6547. goto match1;
  6548. }
  6549. /* no match - a current sched domain not in new doms_new[] */
  6550. detach_destroy_domains(doms_cur + i);
  6551. match1:
  6552. ;
  6553. }
  6554. /* Build new domains */
  6555. for (i = 0; i < ndoms_new; i++) {
  6556. for (j = 0; j < ndoms_cur; j++) {
  6557. if (cpus_equal(doms_new[i], doms_cur[j])
  6558. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6559. goto match2;
  6560. }
  6561. /* no match - add a new doms_new */
  6562. __build_sched_domains(doms_new + i,
  6563. dattr_new ? dattr_new + i : NULL);
  6564. match2:
  6565. ;
  6566. }
  6567. /* Remember the new sched domains */
  6568. if (doms_cur != &fallback_doms)
  6569. kfree(doms_cur);
  6570. kfree(dattr_cur); /* kfree(NULL) is safe */
  6571. doms_cur = doms_new;
  6572. dattr_cur = dattr_new;
  6573. ndoms_cur = ndoms_new;
  6574. register_sched_domain_sysctl();
  6575. mutex_unlock(&sched_domains_mutex);
  6576. }
  6577. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6578. int arch_reinit_sched_domains(void)
  6579. {
  6580. int err;
  6581. get_online_cpus();
  6582. mutex_lock(&sched_domains_mutex);
  6583. detach_destroy_domains(&cpu_online_map);
  6584. err = arch_init_sched_domains(&cpu_online_map);
  6585. mutex_unlock(&sched_domains_mutex);
  6586. put_online_cpus();
  6587. return err;
  6588. }
  6589. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6590. {
  6591. int ret;
  6592. if (buf[0] != '0' && buf[0] != '1')
  6593. return -EINVAL;
  6594. if (smt)
  6595. sched_smt_power_savings = (buf[0] == '1');
  6596. else
  6597. sched_mc_power_savings = (buf[0] == '1');
  6598. ret = arch_reinit_sched_domains();
  6599. return ret ? ret : count;
  6600. }
  6601. #ifdef CONFIG_SCHED_MC
  6602. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6603. {
  6604. return sprintf(page, "%u\n", sched_mc_power_savings);
  6605. }
  6606. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6607. const char *buf, size_t count)
  6608. {
  6609. return sched_power_savings_store(buf, count, 0);
  6610. }
  6611. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6612. sched_mc_power_savings_store);
  6613. #endif
  6614. #ifdef CONFIG_SCHED_SMT
  6615. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6616. {
  6617. return sprintf(page, "%u\n", sched_smt_power_savings);
  6618. }
  6619. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6620. const char *buf, size_t count)
  6621. {
  6622. return sched_power_savings_store(buf, count, 1);
  6623. }
  6624. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6625. sched_smt_power_savings_store);
  6626. #endif
  6627. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6628. {
  6629. int err = 0;
  6630. #ifdef CONFIG_SCHED_SMT
  6631. if (smt_capable())
  6632. err = sysfs_create_file(&cls->kset.kobj,
  6633. &attr_sched_smt_power_savings.attr);
  6634. #endif
  6635. #ifdef CONFIG_SCHED_MC
  6636. if (!err && mc_capable())
  6637. err = sysfs_create_file(&cls->kset.kobj,
  6638. &attr_sched_mc_power_savings.attr);
  6639. #endif
  6640. return err;
  6641. }
  6642. #endif
  6643. /*
  6644. * Force a reinitialization of the sched domains hierarchy. The domains
  6645. * and groups cannot be updated in place without racing with the balancing
  6646. * code, so we temporarily attach all running cpus to the NULL domain
  6647. * which will prevent rebalancing while the sched domains are recalculated.
  6648. */
  6649. static int update_sched_domains(struct notifier_block *nfb,
  6650. unsigned long action, void *hcpu)
  6651. {
  6652. switch (action) {
  6653. case CPU_UP_PREPARE:
  6654. case CPU_UP_PREPARE_FROZEN:
  6655. case CPU_DOWN_PREPARE:
  6656. case CPU_DOWN_PREPARE_FROZEN:
  6657. detach_destroy_domains(&cpu_online_map);
  6658. return NOTIFY_OK;
  6659. case CPU_UP_CANCELED:
  6660. case CPU_UP_CANCELED_FROZEN:
  6661. case CPU_DOWN_FAILED:
  6662. case CPU_DOWN_FAILED_FROZEN:
  6663. case CPU_ONLINE:
  6664. case CPU_ONLINE_FROZEN:
  6665. case CPU_DEAD:
  6666. case CPU_DEAD_FROZEN:
  6667. /*
  6668. * Fall through and re-initialise the domains.
  6669. */
  6670. break;
  6671. default:
  6672. return NOTIFY_DONE;
  6673. }
  6674. /* The hotplug lock is already held by cpu_up/cpu_down */
  6675. arch_init_sched_domains(&cpu_online_map);
  6676. return NOTIFY_OK;
  6677. }
  6678. void __init sched_init_smp(void)
  6679. {
  6680. cpumask_t non_isolated_cpus;
  6681. #if defined(CONFIG_NUMA)
  6682. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6683. GFP_KERNEL);
  6684. BUG_ON(sched_group_nodes_bycpu == NULL);
  6685. #endif
  6686. get_online_cpus();
  6687. mutex_lock(&sched_domains_mutex);
  6688. arch_init_sched_domains(&cpu_online_map);
  6689. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6690. if (cpus_empty(non_isolated_cpus))
  6691. cpu_set(smp_processor_id(), non_isolated_cpus);
  6692. mutex_unlock(&sched_domains_mutex);
  6693. put_online_cpus();
  6694. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6695. hotcpu_notifier(update_sched_domains, 0);
  6696. init_hrtick();
  6697. /* Move init over to a non-isolated CPU */
  6698. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6699. BUG();
  6700. sched_init_granularity();
  6701. }
  6702. #else
  6703. void __init sched_init_smp(void)
  6704. {
  6705. sched_init_granularity();
  6706. }
  6707. #endif /* CONFIG_SMP */
  6708. int in_sched_functions(unsigned long addr)
  6709. {
  6710. return in_lock_functions(addr) ||
  6711. (addr >= (unsigned long)__sched_text_start
  6712. && addr < (unsigned long)__sched_text_end);
  6713. }
  6714. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6715. {
  6716. cfs_rq->tasks_timeline = RB_ROOT;
  6717. INIT_LIST_HEAD(&cfs_rq->tasks);
  6718. #ifdef CONFIG_FAIR_GROUP_SCHED
  6719. cfs_rq->rq = rq;
  6720. #endif
  6721. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6722. }
  6723. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6724. {
  6725. struct rt_prio_array *array;
  6726. int i;
  6727. array = &rt_rq->active;
  6728. for (i = 0; i < MAX_RT_PRIO; i++) {
  6729. INIT_LIST_HEAD(array->queue + i);
  6730. __clear_bit(i, array->bitmap);
  6731. }
  6732. /* delimiter for bitsearch: */
  6733. __set_bit(MAX_RT_PRIO, array->bitmap);
  6734. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6735. rt_rq->highest_prio = MAX_RT_PRIO;
  6736. #endif
  6737. #ifdef CONFIG_SMP
  6738. rt_rq->rt_nr_migratory = 0;
  6739. rt_rq->overloaded = 0;
  6740. #endif
  6741. rt_rq->rt_time = 0;
  6742. rt_rq->rt_throttled = 0;
  6743. rt_rq->rt_runtime = 0;
  6744. spin_lock_init(&rt_rq->rt_runtime_lock);
  6745. #ifdef CONFIG_RT_GROUP_SCHED
  6746. rt_rq->rt_nr_boosted = 0;
  6747. rt_rq->rq = rq;
  6748. #endif
  6749. }
  6750. #ifdef CONFIG_FAIR_GROUP_SCHED
  6751. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6752. struct sched_entity *se, int cpu, int add,
  6753. struct sched_entity *parent)
  6754. {
  6755. struct rq *rq = cpu_rq(cpu);
  6756. tg->cfs_rq[cpu] = cfs_rq;
  6757. init_cfs_rq(cfs_rq, rq);
  6758. cfs_rq->tg = tg;
  6759. if (add)
  6760. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6761. tg->se[cpu] = se;
  6762. /* se could be NULL for init_task_group */
  6763. if (!se)
  6764. return;
  6765. if (!parent)
  6766. se->cfs_rq = &rq->cfs;
  6767. else
  6768. se->cfs_rq = parent->my_q;
  6769. se->my_q = cfs_rq;
  6770. se->load.weight = tg->shares;
  6771. se->load.inv_weight = 0;
  6772. se->parent = parent;
  6773. }
  6774. #endif
  6775. #ifdef CONFIG_RT_GROUP_SCHED
  6776. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6777. struct sched_rt_entity *rt_se, int cpu, int add,
  6778. struct sched_rt_entity *parent)
  6779. {
  6780. struct rq *rq = cpu_rq(cpu);
  6781. tg->rt_rq[cpu] = rt_rq;
  6782. init_rt_rq(rt_rq, rq);
  6783. rt_rq->tg = tg;
  6784. rt_rq->rt_se = rt_se;
  6785. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6786. if (add)
  6787. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6788. tg->rt_se[cpu] = rt_se;
  6789. if (!rt_se)
  6790. return;
  6791. if (!parent)
  6792. rt_se->rt_rq = &rq->rt;
  6793. else
  6794. rt_se->rt_rq = parent->my_q;
  6795. rt_se->rt_rq = &rq->rt;
  6796. rt_se->my_q = rt_rq;
  6797. rt_se->parent = parent;
  6798. INIT_LIST_HEAD(&rt_se->run_list);
  6799. }
  6800. #endif
  6801. void __init sched_init(void)
  6802. {
  6803. int i, j;
  6804. unsigned long alloc_size = 0, ptr;
  6805. #ifdef CONFIG_FAIR_GROUP_SCHED
  6806. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6807. #endif
  6808. #ifdef CONFIG_RT_GROUP_SCHED
  6809. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6810. #endif
  6811. #ifdef CONFIG_USER_SCHED
  6812. alloc_size *= 2;
  6813. #endif
  6814. /*
  6815. * As sched_init() is called before page_alloc is setup,
  6816. * we use alloc_bootmem().
  6817. */
  6818. if (alloc_size) {
  6819. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6820. #ifdef CONFIG_FAIR_GROUP_SCHED
  6821. init_task_group.se = (struct sched_entity **)ptr;
  6822. ptr += nr_cpu_ids * sizeof(void **);
  6823. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6824. ptr += nr_cpu_ids * sizeof(void **);
  6825. #ifdef CONFIG_USER_SCHED
  6826. root_task_group.se = (struct sched_entity **)ptr;
  6827. ptr += nr_cpu_ids * sizeof(void **);
  6828. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6829. ptr += nr_cpu_ids * sizeof(void **);
  6830. #endif
  6831. #endif
  6832. #ifdef CONFIG_RT_GROUP_SCHED
  6833. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6834. ptr += nr_cpu_ids * sizeof(void **);
  6835. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6836. ptr += nr_cpu_ids * sizeof(void **);
  6837. #ifdef CONFIG_USER_SCHED
  6838. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6839. ptr += nr_cpu_ids * sizeof(void **);
  6840. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6841. ptr += nr_cpu_ids * sizeof(void **);
  6842. #endif
  6843. #endif
  6844. }
  6845. #ifdef CONFIG_SMP
  6846. init_aggregate();
  6847. init_defrootdomain();
  6848. #endif
  6849. init_rt_bandwidth(&def_rt_bandwidth,
  6850. global_rt_period(), global_rt_runtime());
  6851. #ifdef CONFIG_RT_GROUP_SCHED
  6852. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6853. global_rt_period(), global_rt_runtime());
  6854. #ifdef CONFIG_USER_SCHED
  6855. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6856. global_rt_period(), RUNTIME_INF);
  6857. #endif
  6858. #endif
  6859. #ifdef CONFIG_GROUP_SCHED
  6860. list_add(&init_task_group.list, &task_groups);
  6861. INIT_LIST_HEAD(&init_task_group.children);
  6862. #ifdef CONFIG_USER_SCHED
  6863. INIT_LIST_HEAD(&root_task_group.children);
  6864. init_task_group.parent = &root_task_group;
  6865. list_add(&init_task_group.siblings, &root_task_group.children);
  6866. #endif
  6867. #endif
  6868. for_each_possible_cpu(i) {
  6869. struct rq *rq;
  6870. rq = cpu_rq(i);
  6871. spin_lock_init(&rq->lock);
  6872. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6873. rq->nr_running = 0;
  6874. init_cfs_rq(&rq->cfs, rq);
  6875. init_rt_rq(&rq->rt, rq);
  6876. #ifdef CONFIG_FAIR_GROUP_SCHED
  6877. init_task_group.shares = init_task_group_load;
  6878. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6879. #ifdef CONFIG_CGROUP_SCHED
  6880. /*
  6881. * How much cpu bandwidth does init_task_group get?
  6882. *
  6883. * In case of task-groups formed thr' the cgroup filesystem, it
  6884. * gets 100% of the cpu resources in the system. This overall
  6885. * system cpu resource is divided among the tasks of
  6886. * init_task_group and its child task-groups in a fair manner,
  6887. * based on each entity's (task or task-group's) weight
  6888. * (se->load.weight).
  6889. *
  6890. * In other words, if init_task_group has 10 tasks of weight
  6891. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6892. * then A0's share of the cpu resource is:
  6893. *
  6894. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6895. *
  6896. * We achieve this by letting init_task_group's tasks sit
  6897. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6898. */
  6899. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6900. #elif defined CONFIG_USER_SCHED
  6901. root_task_group.shares = NICE_0_LOAD;
  6902. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6903. /*
  6904. * In case of task-groups formed thr' the user id of tasks,
  6905. * init_task_group represents tasks belonging to root user.
  6906. * Hence it forms a sibling of all subsequent groups formed.
  6907. * In this case, init_task_group gets only a fraction of overall
  6908. * system cpu resource, based on the weight assigned to root
  6909. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6910. * by letting tasks of init_task_group sit in a separate cfs_rq
  6911. * (init_cfs_rq) and having one entity represent this group of
  6912. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6913. */
  6914. init_tg_cfs_entry(&init_task_group,
  6915. &per_cpu(init_cfs_rq, i),
  6916. &per_cpu(init_sched_entity, i), i, 1,
  6917. root_task_group.se[i]);
  6918. #endif
  6919. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6920. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6921. #ifdef CONFIG_RT_GROUP_SCHED
  6922. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6923. #ifdef CONFIG_CGROUP_SCHED
  6924. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6925. #elif defined CONFIG_USER_SCHED
  6926. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6927. init_tg_rt_entry(&init_task_group,
  6928. &per_cpu(init_rt_rq, i),
  6929. &per_cpu(init_sched_rt_entity, i), i, 1,
  6930. root_task_group.rt_se[i]);
  6931. #endif
  6932. #endif
  6933. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6934. rq->cpu_load[j] = 0;
  6935. #ifdef CONFIG_SMP
  6936. rq->sd = NULL;
  6937. rq->rd = NULL;
  6938. rq->active_balance = 0;
  6939. rq->next_balance = jiffies;
  6940. rq->push_cpu = 0;
  6941. rq->cpu = i;
  6942. rq->migration_thread = NULL;
  6943. INIT_LIST_HEAD(&rq->migration_queue);
  6944. rq_attach_root(rq, &def_root_domain);
  6945. #endif
  6946. init_rq_hrtick(rq);
  6947. atomic_set(&rq->nr_iowait, 0);
  6948. }
  6949. set_load_weight(&init_task);
  6950. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6951. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6952. #endif
  6953. #ifdef CONFIG_SMP
  6954. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6955. #endif
  6956. #ifdef CONFIG_RT_MUTEXES
  6957. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6958. #endif
  6959. /*
  6960. * The boot idle thread does lazy MMU switching as well:
  6961. */
  6962. atomic_inc(&init_mm.mm_count);
  6963. enter_lazy_tlb(&init_mm, current);
  6964. /*
  6965. * Make us the idle thread. Technically, schedule() should not be
  6966. * called from this thread, however somewhere below it might be,
  6967. * but because we are the idle thread, we just pick up running again
  6968. * when this runqueue becomes "idle".
  6969. */
  6970. init_idle(current, smp_processor_id());
  6971. /*
  6972. * During early bootup we pretend to be a normal task:
  6973. */
  6974. current->sched_class = &fair_sched_class;
  6975. scheduler_running = 1;
  6976. }
  6977. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6978. void __might_sleep(char *file, int line)
  6979. {
  6980. #ifdef in_atomic
  6981. static unsigned long prev_jiffy; /* ratelimiting */
  6982. if ((in_atomic() || irqs_disabled()) &&
  6983. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6984. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6985. return;
  6986. prev_jiffy = jiffies;
  6987. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6988. " context at %s:%d\n", file, line);
  6989. printk("in_atomic():%d, irqs_disabled():%d\n",
  6990. in_atomic(), irqs_disabled());
  6991. debug_show_held_locks(current);
  6992. if (irqs_disabled())
  6993. print_irqtrace_events(current);
  6994. dump_stack();
  6995. }
  6996. #endif
  6997. }
  6998. EXPORT_SYMBOL(__might_sleep);
  6999. #endif
  7000. #ifdef CONFIG_MAGIC_SYSRQ
  7001. static void normalize_task(struct rq *rq, struct task_struct *p)
  7002. {
  7003. int on_rq;
  7004. update_rq_clock(rq);
  7005. on_rq = p->se.on_rq;
  7006. if (on_rq)
  7007. deactivate_task(rq, p, 0);
  7008. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7009. if (on_rq) {
  7010. activate_task(rq, p, 0);
  7011. resched_task(rq->curr);
  7012. }
  7013. }
  7014. void normalize_rt_tasks(void)
  7015. {
  7016. struct task_struct *g, *p;
  7017. unsigned long flags;
  7018. struct rq *rq;
  7019. read_lock_irqsave(&tasklist_lock, flags);
  7020. do_each_thread(g, p) {
  7021. /*
  7022. * Only normalize user tasks:
  7023. */
  7024. if (!p->mm)
  7025. continue;
  7026. p->se.exec_start = 0;
  7027. #ifdef CONFIG_SCHEDSTATS
  7028. p->se.wait_start = 0;
  7029. p->se.sleep_start = 0;
  7030. p->se.block_start = 0;
  7031. #endif
  7032. if (!rt_task(p)) {
  7033. /*
  7034. * Renice negative nice level userspace
  7035. * tasks back to 0:
  7036. */
  7037. if (TASK_NICE(p) < 0 && p->mm)
  7038. set_user_nice(p, 0);
  7039. continue;
  7040. }
  7041. spin_lock(&p->pi_lock);
  7042. rq = __task_rq_lock(p);
  7043. normalize_task(rq, p);
  7044. __task_rq_unlock(rq);
  7045. spin_unlock(&p->pi_lock);
  7046. } while_each_thread(g, p);
  7047. read_unlock_irqrestore(&tasklist_lock, flags);
  7048. }
  7049. #endif /* CONFIG_MAGIC_SYSRQ */
  7050. #ifdef CONFIG_IA64
  7051. /*
  7052. * These functions are only useful for the IA64 MCA handling.
  7053. *
  7054. * They can only be called when the whole system has been
  7055. * stopped - every CPU needs to be quiescent, and no scheduling
  7056. * activity can take place. Using them for anything else would
  7057. * be a serious bug, and as a result, they aren't even visible
  7058. * under any other configuration.
  7059. */
  7060. /**
  7061. * curr_task - return the current task for a given cpu.
  7062. * @cpu: the processor in question.
  7063. *
  7064. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7065. */
  7066. struct task_struct *curr_task(int cpu)
  7067. {
  7068. return cpu_curr(cpu);
  7069. }
  7070. /**
  7071. * set_curr_task - set the current task for a given cpu.
  7072. * @cpu: the processor in question.
  7073. * @p: the task pointer to set.
  7074. *
  7075. * Description: This function must only be used when non-maskable interrupts
  7076. * are serviced on a separate stack. It allows the architecture to switch the
  7077. * notion of the current task on a cpu in a non-blocking manner. This function
  7078. * must be called with all CPU's synchronized, and interrupts disabled, the
  7079. * and caller must save the original value of the current task (see
  7080. * curr_task() above) and restore that value before reenabling interrupts and
  7081. * re-starting the system.
  7082. *
  7083. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7084. */
  7085. void set_curr_task(int cpu, struct task_struct *p)
  7086. {
  7087. cpu_curr(cpu) = p;
  7088. }
  7089. #endif
  7090. #ifdef CONFIG_FAIR_GROUP_SCHED
  7091. static void free_fair_sched_group(struct task_group *tg)
  7092. {
  7093. int i;
  7094. for_each_possible_cpu(i) {
  7095. if (tg->cfs_rq)
  7096. kfree(tg->cfs_rq[i]);
  7097. if (tg->se)
  7098. kfree(tg->se[i]);
  7099. }
  7100. kfree(tg->cfs_rq);
  7101. kfree(tg->se);
  7102. }
  7103. static
  7104. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7105. {
  7106. struct cfs_rq *cfs_rq;
  7107. struct sched_entity *se, *parent_se;
  7108. struct rq *rq;
  7109. int i;
  7110. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7111. if (!tg->cfs_rq)
  7112. goto err;
  7113. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7114. if (!tg->se)
  7115. goto err;
  7116. tg->shares = NICE_0_LOAD;
  7117. for_each_possible_cpu(i) {
  7118. rq = cpu_rq(i);
  7119. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7120. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7121. if (!cfs_rq)
  7122. goto err;
  7123. se = kmalloc_node(sizeof(struct sched_entity),
  7124. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7125. if (!se)
  7126. goto err;
  7127. parent_se = parent ? parent->se[i] : NULL;
  7128. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7129. }
  7130. return 1;
  7131. err:
  7132. return 0;
  7133. }
  7134. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7135. {
  7136. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7137. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7138. }
  7139. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7140. {
  7141. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7142. }
  7143. #else
  7144. static inline void free_fair_sched_group(struct task_group *tg)
  7145. {
  7146. }
  7147. static inline
  7148. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7149. {
  7150. return 1;
  7151. }
  7152. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7153. {
  7154. }
  7155. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7156. {
  7157. }
  7158. #endif
  7159. #ifdef CONFIG_RT_GROUP_SCHED
  7160. static void free_rt_sched_group(struct task_group *tg)
  7161. {
  7162. int i;
  7163. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7164. for_each_possible_cpu(i) {
  7165. if (tg->rt_rq)
  7166. kfree(tg->rt_rq[i]);
  7167. if (tg->rt_se)
  7168. kfree(tg->rt_se[i]);
  7169. }
  7170. kfree(tg->rt_rq);
  7171. kfree(tg->rt_se);
  7172. }
  7173. static
  7174. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7175. {
  7176. struct rt_rq *rt_rq;
  7177. struct sched_rt_entity *rt_se, *parent_se;
  7178. struct rq *rq;
  7179. int i;
  7180. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7181. if (!tg->rt_rq)
  7182. goto err;
  7183. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7184. if (!tg->rt_se)
  7185. goto err;
  7186. init_rt_bandwidth(&tg->rt_bandwidth,
  7187. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7188. for_each_possible_cpu(i) {
  7189. rq = cpu_rq(i);
  7190. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7191. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7192. if (!rt_rq)
  7193. goto err;
  7194. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7195. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7196. if (!rt_se)
  7197. goto err;
  7198. parent_se = parent ? parent->rt_se[i] : NULL;
  7199. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7200. }
  7201. return 1;
  7202. err:
  7203. return 0;
  7204. }
  7205. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7206. {
  7207. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7208. &cpu_rq(cpu)->leaf_rt_rq_list);
  7209. }
  7210. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7211. {
  7212. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7213. }
  7214. #else
  7215. static inline void free_rt_sched_group(struct task_group *tg)
  7216. {
  7217. }
  7218. static inline
  7219. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7220. {
  7221. return 1;
  7222. }
  7223. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7224. {
  7225. }
  7226. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7227. {
  7228. }
  7229. #endif
  7230. #ifdef CONFIG_GROUP_SCHED
  7231. static void free_sched_group(struct task_group *tg)
  7232. {
  7233. free_fair_sched_group(tg);
  7234. free_rt_sched_group(tg);
  7235. kfree(tg);
  7236. }
  7237. /* allocate runqueue etc for a new task group */
  7238. struct task_group *sched_create_group(struct task_group *parent)
  7239. {
  7240. struct task_group *tg;
  7241. unsigned long flags;
  7242. int i;
  7243. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7244. if (!tg)
  7245. return ERR_PTR(-ENOMEM);
  7246. if (!alloc_fair_sched_group(tg, parent))
  7247. goto err;
  7248. if (!alloc_rt_sched_group(tg, parent))
  7249. goto err;
  7250. spin_lock_irqsave(&task_group_lock, flags);
  7251. for_each_possible_cpu(i) {
  7252. register_fair_sched_group(tg, i);
  7253. register_rt_sched_group(tg, i);
  7254. }
  7255. list_add_rcu(&tg->list, &task_groups);
  7256. WARN_ON(!parent); /* root should already exist */
  7257. tg->parent = parent;
  7258. list_add_rcu(&tg->siblings, &parent->children);
  7259. INIT_LIST_HEAD(&tg->children);
  7260. spin_unlock_irqrestore(&task_group_lock, flags);
  7261. return tg;
  7262. err:
  7263. free_sched_group(tg);
  7264. return ERR_PTR(-ENOMEM);
  7265. }
  7266. /* rcu callback to free various structures associated with a task group */
  7267. static void free_sched_group_rcu(struct rcu_head *rhp)
  7268. {
  7269. /* now it should be safe to free those cfs_rqs */
  7270. free_sched_group(container_of(rhp, struct task_group, rcu));
  7271. }
  7272. /* Destroy runqueue etc associated with a task group */
  7273. void sched_destroy_group(struct task_group *tg)
  7274. {
  7275. unsigned long flags;
  7276. int i;
  7277. spin_lock_irqsave(&task_group_lock, flags);
  7278. for_each_possible_cpu(i) {
  7279. unregister_fair_sched_group(tg, i);
  7280. unregister_rt_sched_group(tg, i);
  7281. }
  7282. list_del_rcu(&tg->list);
  7283. list_del_rcu(&tg->siblings);
  7284. spin_unlock_irqrestore(&task_group_lock, flags);
  7285. /* wait for possible concurrent references to cfs_rqs complete */
  7286. call_rcu(&tg->rcu, free_sched_group_rcu);
  7287. }
  7288. /* change task's runqueue when it moves between groups.
  7289. * The caller of this function should have put the task in its new group
  7290. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7291. * reflect its new group.
  7292. */
  7293. void sched_move_task(struct task_struct *tsk)
  7294. {
  7295. int on_rq, running;
  7296. unsigned long flags;
  7297. struct rq *rq;
  7298. rq = task_rq_lock(tsk, &flags);
  7299. update_rq_clock(rq);
  7300. running = task_current(rq, tsk);
  7301. on_rq = tsk->se.on_rq;
  7302. if (on_rq)
  7303. dequeue_task(rq, tsk, 0);
  7304. if (unlikely(running))
  7305. tsk->sched_class->put_prev_task(rq, tsk);
  7306. set_task_rq(tsk, task_cpu(tsk));
  7307. #ifdef CONFIG_FAIR_GROUP_SCHED
  7308. if (tsk->sched_class->moved_group)
  7309. tsk->sched_class->moved_group(tsk);
  7310. #endif
  7311. if (unlikely(running))
  7312. tsk->sched_class->set_curr_task(rq);
  7313. if (on_rq)
  7314. enqueue_task(rq, tsk, 0);
  7315. task_rq_unlock(rq, &flags);
  7316. }
  7317. #endif
  7318. #ifdef CONFIG_FAIR_GROUP_SCHED
  7319. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7320. {
  7321. struct cfs_rq *cfs_rq = se->cfs_rq;
  7322. int on_rq;
  7323. on_rq = se->on_rq;
  7324. if (on_rq)
  7325. dequeue_entity(cfs_rq, se, 0);
  7326. se->load.weight = shares;
  7327. se->load.inv_weight = 0;
  7328. if (on_rq)
  7329. enqueue_entity(cfs_rq, se, 0);
  7330. }
  7331. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7332. {
  7333. struct cfs_rq *cfs_rq = se->cfs_rq;
  7334. struct rq *rq = cfs_rq->rq;
  7335. unsigned long flags;
  7336. spin_lock_irqsave(&rq->lock, flags);
  7337. __set_se_shares(se, shares);
  7338. spin_unlock_irqrestore(&rq->lock, flags);
  7339. }
  7340. static DEFINE_MUTEX(shares_mutex);
  7341. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7342. {
  7343. int i;
  7344. unsigned long flags;
  7345. /*
  7346. * We can't change the weight of the root cgroup.
  7347. */
  7348. if (!tg->se[0])
  7349. return -EINVAL;
  7350. if (shares < MIN_SHARES)
  7351. shares = MIN_SHARES;
  7352. else if (shares > MAX_SHARES)
  7353. shares = MAX_SHARES;
  7354. mutex_lock(&shares_mutex);
  7355. if (tg->shares == shares)
  7356. goto done;
  7357. spin_lock_irqsave(&task_group_lock, flags);
  7358. for_each_possible_cpu(i)
  7359. unregister_fair_sched_group(tg, i);
  7360. list_del_rcu(&tg->siblings);
  7361. spin_unlock_irqrestore(&task_group_lock, flags);
  7362. /* wait for any ongoing reference to this group to finish */
  7363. synchronize_sched();
  7364. /*
  7365. * Now we are free to modify the group's share on each cpu
  7366. * w/o tripping rebalance_share or load_balance_fair.
  7367. */
  7368. tg->shares = shares;
  7369. for_each_possible_cpu(i) {
  7370. /*
  7371. * force a rebalance
  7372. */
  7373. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7374. set_se_shares(tg->se[i], shares);
  7375. }
  7376. /*
  7377. * Enable load balance activity on this group, by inserting it back on
  7378. * each cpu's rq->leaf_cfs_rq_list.
  7379. */
  7380. spin_lock_irqsave(&task_group_lock, flags);
  7381. for_each_possible_cpu(i)
  7382. register_fair_sched_group(tg, i);
  7383. list_add_rcu(&tg->siblings, &tg->parent->children);
  7384. spin_unlock_irqrestore(&task_group_lock, flags);
  7385. done:
  7386. mutex_unlock(&shares_mutex);
  7387. return 0;
  7388. }
  7389. unsigned long sched_group_shares(struct task_group *tg)
  7390. {
  7391. return tg->shares;
  7392. }
  7393. #endif
  7394. #ifdef CONFIG_RT_GROUP_SCHED
  7395. /*
  7396. * Ensure that the real time constraints are schedulable.
  7397. */
  7398. static DEFINE_MUTEX(rt_constraints_mutex);
  7399. static unsigned long to_ratio(u64 period, u64 runtime)
  7400. {
  7401. if (runtime == RUNTIME_INF)
  7402. return 1ULL << 16;
  7403. return div64_u64(runtime << 16, period);
  7404. }
  7405. #ifdef CONFIG_CGROUP_SCHED
  7406. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7407. {
  7408. struct task_group *tgi, *parent = tg->parent;
  7409. unsigned long total = 0;
  7410. if (!parent) {
  7411. if (global_rt_period() < period)
  7412. return 0;
  7413. return to_ratio(period, runtime) <
  7414. to_ratio(global_rt_period(), global_rt_runtime());
  7415. }
  7416. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7417. return 0;
  7418. rcu_read_lock();
  7419. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7420. if (tgi == tg)
  7421. continue;
  7422. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7423. tgi->rt_bandwidth.rt_runtime);
  7424. }
  7425. rcu_read_unlock();
  7426. return total + to_ratio(period, runtime) <
  7427. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7428. parent->rt_bandwidth.rt_runtime);
  7429. }
  7430. #elif defined CONFIG_USER_SCHED
  7431. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7432. {
  7433. struct task_group *tgi;
  7434. unsigned long total = 0;
  7435. unsigned long global_ratio =
  7436. to_ratio(global_rt_period(), global_rt_runtime());
  7437. rcu_read_lock();
  7438. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7439. if (tgi == tg)
  7440. continue;
  7441. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7442. tgi->rt_bandwidth.rt_runtime);
  7443. }
  7444. rcu_read_unlock();
  7445. return total + to_ratio(period, runtime) < global_ratio;
  7446. }
  7447. #endif
  7448. /* Must be called with tasklist_lock held */
  7449. static inline int tg_has_rt_tasks(struct task_group *tg)
  7450. {
  7451. struct task_struct *g, *p;
  7452. do_each_thread(g, p) {
  7453. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7454. return 1;
  7455. } while_each_thread(g, p);
  7456. return 0;
  7457. }
  7458. static int tg_set_bandwidth(struct task_group *tg,
  7459. u64 rt_period, u64 rt_runtime)
  7460. {
  7461. int i, err = 0;
  7462. mutex_lock(&rt_constraints_mutex);
  7463. read_lock(&tasklist_lock);
  7464. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7465. err = -EBUSY;
  7466. goto unlock;
  7467. }
  7468. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7469. err = -EINVAL;
  7470. goto unlock;
  7471. }
  7472. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7473. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7474. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7475. for_each_possible_cpu(i) {
  7476. struct rt_rq *rt_rq = tg->rt_rq[i];
  7477. spin_lock(&rt_rq->rt_runtime_lock);
  7478. rt_rq->rt_runtime = rt_runtime;
  7479. spin_unlock(&rt_rq->rt_runtime_lock);
  7480. }
  7481. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7482. unlock:
  7483. read_unlock(&tasklist_lock);
  7484. mutex_unlock(&rt_constraints_mutex);
  7485. return err;
  7486. }
  7487. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7488. {
  7489. u64 rt_runtime, rt_period;
  7490. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7491. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7492. if (rt_runtime_us < 0)
  7493. rt_runtime = RUNTIME_INF;
  7494. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7495. }
  7496. long sched_group_rt_runtime(struct task_group *tg)
  7497. {
  7498. u64 rt_runtime_us;
  7499. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7500. return -1;
  7501. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7502. do_div(rt_runtime_us, NSEC_PER_USEC);
  7503. return rt_runtime_us;
  7504. }
  7505. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7506. {
  7507. u64 rt_runtime, rt_period;
  7508. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7509. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7510. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7511. }
  7512. long sched_group_rt_period(struct task_group *tg)
  7513. {
  7514. u64 rt_period_us;
  7515. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7516. do_div(rt_period_us, NSEC_PER_USEC);
  7517. return rt_period_us;
  7518. }
  7519. static int sched_rt_global_constraints(void)
  7520. {
  7521. int ret = 0;
  7522. mutex_lock(&rt_constraints_mutex);
  7523. if (!__rt_schedulable(NULL, 1, 0))
  7524. ret = -EINVAL;
  7525. mutex_unlock(&rt_constraints_mutex);
  7526. return ret;
  7527. }
  7528. #else
  7529. static int sched_rt_global_constraints(void)
  7530. {
  7531. unsigned long flags;
  7532. int i;
  7533. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7534. for_each_possible_cpu(i) {
  7535. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7536. spin_lock(&rt_rq->rt_runtime_lock);
  7537. rt_rq->rt_runtime = global_rt_runtime();
  7538. spin_unlock(&rt_rq->rt_runtime_lock);
  7539. }
  7540. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7541. return 0;
  7542. }
  7543. #endif
  7544. int sched_rt_handler(struct ctl_table *table, int write,
  7545. struct file *filp, void __user *buffer, size_t *lenp,
  7546. loff_t *ppos)
  7547. {
  7548. int ret;
  7549. int old_period, old_runtime;
  7550. static DEFINE_MUTEX(mutex);
  7551. mutex_lock(&mutex);
  7552. old_period = sysctl_sched_rt_period;
  7553. old_runtime = sysctl_sched_rt_runtime;
  7554. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7555. if (!ret && write) {
  7556. ret = sched_rt_global_constraints();
  7557. if (ret) {
  7558. sysctl_sched_rt_period = old_period;
  7559. sysctl_sched_rt_runtime = old_runtime;
  7560. } else {
  7561. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7562. def_rt_bandwidth.rt_period =
  7563. ns_to_ktime(global_rt_period());
  7564. }
  7565. }
  7566. mutex_unlock(&mutex);
  7567. return ret;
  7568. }
  7569. #ifdef CONFIG_CGROUP_SCHED
  7570. /* return corresponding task_group object of a cgroup */
  7571. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7572. {
  7573. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7574. struct task_group, css);
  7575. }
  7576. static struct cgroup_subsys_state *
  7577. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7578. {
  7579. struct task_group *tg, *parent;
  7580. if (!cgrp->parent) {
  7581. /* This is early initialization for the top cgroup */
  7582. init_task_group.css.cgroup = cgrp;
  7583. return &init_task_group.css;
  7584. }
  7585. parent = cgroup_tg(cgrp->parent);
  7586. tg = sched_create_group(parent);
  7587. if (IS_ERR(tg))
  7588. return ERR_PTR(-ENOMEM);
  7589. /* Bind the cgroup to task_group object we just created */
  7590. tg->css.cgroup = cgrp;
  7591. return &tg->css;
  7592. }
  7593. static void
  7594. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7595. {
  7596. struct task_group *tg = cgroup_tg(cgrp);
  7597. sched_destroy_group(tg);
  7598. }
  7599. static int
  7600. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7601. struct task_struct *tsk)
  7602. {
  7603. #ifdef CONFIG_RT_GROUP_SCHED
  7604. /* Don't accept realtime tasks when there is no way for them to run */
  7605. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7606. return -EINVAL;
  7607. #else
  7608. /* We don't support RT-tasks being in separate groups */
  7609. if (tsk->sched_class != &fair_sched_class)
  7610. return -EINVAL;
  7611. #endif
  7612. return 0;
  7613. }
  7614. static void
  7615. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7616. struct cgroup *old_cont, struct task_struct *tsk)
  7617. {
  7618. sched_move_task(tsk);
  7619. }
  7620. #ifdef CONFIG_FAIR_GROUP_SCHED
  7621. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7622. u64 shareval)
  7623. {
  7624. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7625. }
  7626. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7627. {
  7628. struct task_group *tg = cgroup_tg(cgrp);
  7629. return (u64) tg->shares;
  7630. }
  7631. #endif
  7632. #ifdef CONFIG_RT_GROUP_SCHED
  7633. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7634. s64 val)
  7635. {
  7636. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7637. }
  7638. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7639. {
  7640. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7641. }
  7642. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7643. u64 rt_period_us)
  7644. {
  7645. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7646. }
  7647. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7648. {
  7649. return sched_group_rt_period(cgroup_tg(cgrp));
  7650. }
  7651. #endif
  7652. static struct cftype cpu_files[] = {
  7653. #ifdef CONFIG_FAIR_GROUP_SCHED
  7654. {
  7655. .name = "shares",
  7656. .read_u64 = cpu_shares_read_u64,
  7657. .write_u64 = cpu_shares_write_u64,
  7658. },
  7659. #endif
  7660. #ifdef CONFIG_RT_GROUP_SCHED
  7661. {
  7662. .name = "rt_runtime_us",
  7663. .read_s64 = cpu_rt_runtime_read,
  7664. .write_s64 = cpu_rt_runtime_write,
  7665. },
  7666. {
  7667. .name = "rt_period_us",
  7668. .read_u64 = cpu_rt_period_read_uint,
  7669. .write_u64 = cpu_rt_period_write_uint,
  7670. },
  7671. #endif
  7672. };
  7673. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7674. {
  7675. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7676. }
  7677. struct cgroup_subsys cpu_cgroup_subsys = {
  7678. .name = "cpu",
  7679. .create = cpu_cgroup_create,
  7680. .destroy = cpu_cgroup_destroy,
  7681. .can_attach = cpu_cgroup_can_attach,
  7682. .attach = cpu_cgroup_attach,
  7683. .populate = cpu_cgroup_populate,
  7684. .subsys_id = cpu_cgroup_subsys_id,
  7685. .early_init = 1,
  7686. };
  7687. #endif /* CONFIG_CGROUP_SCHED */
  7688. #ifdef CONFIG_CGROUP_CPUACCT
  7689. /*
  7690. * CPU accounting code for task groups.
  7691. *
  7692. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7693. * (balbir@in.ibm.com).
  7694. */
  7695. /* track cpu usage of a group of tasks */
  7696. struct cpuacct {
  7697. struct cgroup_subsys_state css;
  7698. /* cpuusage holds pointer to a u64-type object on every cpu */
  7699. u64 *cpuusage;
  7700. };
  7701. struct cgroup_subsys cpuacct_subsys;
  7702. /* return cpu accounting group corresponding to this container */
  7703. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7704. {
  7705. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7706. struct cpuacct, css);
  7707. }
  7708. /* return cpu accounting group to which this task belongs */
  7709. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7710. {
  7711. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7712. struct cpuacct, css);
  7713. }
  7714. /* create a new cpu accounting group */
  7715. static struct cgroup_subsys_state *cpuacct_create(
  7716. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7717. {
  7718. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7719. if (!ca)
  7720. return ERR_PTR(-ENOMEM);
  7721. ca->cpuusage = alloc_percpu(u64);
  7722. if (!ca->cpuusage) {
  7723. kfree(ca);
  7724. return ERR_PTR(-ENOMEM);
  7725. }
  7726. return &ca->css;
  7727. }
  7728. /* destroy an existing cpu accounting group */
  7729. static void
  7730. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7731. {
  7732. struct cpuacct *ca = cgroup_ca(cgrp);
  7733. free_percpu(ca->cpuusage);
  7734. kfree(ca);
  7735. }
  7736. /* return total cpu usage (in nanoseconds) of a group */
  7737. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7738. {
  7739. struct cpuacct *ca = cgroup_ca(cgrp);
  7740. u64 totalcpuusage = 0;
  7741. int i;
  7742. for_each_possible_cpu(i) {
  7743. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7744. /*
  7745. * Take rq->lock to make 64-bit addition safe on 32-bit
  7746. * platforms.
  7747. */
  7748. spin_lock_irq(&cpu_rq(i)->lock);
  7749. totalcpuusage += *cpuusage;
  7750. spin_unlock_irq(&cpu_rq(i)->lock);
  7751. }
  7752. return totalcpuusage;
  7753. }
  7754. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7755. u64 reset)
  7756. {
  7757. struct cpuacct *ca = cgroup_ca(cgrp);
  7758. int err = 0;
  7759. int i;
  7760. if (reset) {
  7761. err = -EINVAL;
  7762. goto out;
  7763. }
  7764. for_each_possible_cpu(i) {
  7765. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7766. spin_lock_irq(&cpu_rq(i)->lock);
  7767. *cpuusage = 0;
  7768. spin_unlock_irq(&cpu_rq(i)->lock);
  7769. }
  7770. out:
  7771. return err;
  7772. }
  7773. static struct cftype files[] = {
  7774. {
  7775. .name = "usage",
  7776. .read_u64 = cpuusage_read,
  7777. .write_u64 = cpuusage_write,
  7778. },
  7779. };
  7780. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7781. {
  7782. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7783. }
  7784. /*
  7785. * charge this task's execution time to its accounting group.
  7786. *
  7787. * called with rq->lock held.
  7788. */
  7789. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7790. {
  7791. struct cpuacct *ca;
  7792. if (!cpuacct_subsys.active)
  7793. return;
  7794. ca = task_ca(tsk);
  7795. if (ca) {
  7796. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7797. *cpuusage += cputime;
  7798. }
  7799. }
  7800. struct cgroup_subsys cpuacct_subsys = {
  7801. .name = "cpuacct",
  7802. .create = cpuacct_create,
  7803. .destroy = cpuacct_destroy,
  7804. .populate = cpuacct_populate,
  7805. .subsys_id = cpuacct_subsys_id,
  7806. };
  7807. #endif /* CONFIG_CGROUP_CPUACCT */