process.c 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451
  1. /*
  2. * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  3. * Copyright 2003 PathScale, Inc.
  4. * Licensed under the GPL
  5. */
  6. #include <linux/stddef.h>
  7. #include <linux/err.h>
  8. #include <linux/hardirq.h>
  9. #include <linux/mm.h>
  10. #include <linux/module.h>
  11. #include <linux/personality.h>
  12. #include <linux/proc_fs.h>
  13. #include <linux/ptrace.h>
  14. #include <linux/random.h>
  15. #include <linux/slab.h>
  16. #include <linux/sched.h>
  17. #include <linux/seq_file.h>
  18. #include <linux/tick.h>
  19. #include <linux/threads.h>
  20. #include <linux/tracehook.h>
  21. #include <asm/current.h>
  22. #include <asm/pgtable.h>
  23. #include <asm/mmu_context.h>
  24. #include <asm/uaccess.h>
  25. #include <as-layout.h>
  26. #include <kern_util.h>
  27. #include <os.h>
  28. #include <skas.h>
  29. /*
  30. * This is a per-cpu array. A processor only modifies its entry and it only
  31. * cares about its entry, so it's OK if another processor is modifying its
  32. * entry.
  33. */
  34. struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
  35. static inline int external_pid(void)
  36. {
  37. /* FIXME: Need to look up userspace_pid by cpu */
  38. return userspace_pid[0];
  39. }
  40. int pid_to_processor_id(int pid)
  41. {
  42. int i;
  43. for (i = 0; i < ncpus; i++) {
  44. if (cpu_tasks[i].pid == pid)
  45. return i;
  46. }
  47. return -1;
  48. }
  49. void free_stack(unsigned long stack, int order)
  50. {
  51. free_pages(stack, order);
  52. }
  53. unsigned long alloc_stack(int order, int atomic)
  54. {
  55. unsigned long page;
  56. gfp_t flags = GFP_KERNEL;
  57. if (atomic)
  58. flags = GFP_ATOMIC;
  59. page = __get_free_pages(flags, order);
  60. return page;
  61. }
  62. static inline void set_current(struct task_struct *task)
  63. {
  64. cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
  65. { external_pid(), task });
  66. }
  67. extern void arch_switch_to(struct task_struct *to);
  68. void *__switch_to(struct task_struct *from, struct task_struct *to)
  69. {
  70. to->thread.prev_sched = from;
  71. set_current(to);
  72. do {
  73. current->thread.saved_task = NULL;
  74. switch_threads(&from->thread.switch_buf,
  75. &to->thread.switch_buf);
  76. arch_switch_to(current);
  77. if (current->thread.saved_task)
  78. show_regs(&(current->thread.regs));
  79. to = current->thread.saved_task;
  80. from = current;
  81. } while (current->thread.saved_task);
  82. return current->thread.prev_sched;
  83. }
  84. void interrupt_end(void)
  85. {
  86. if (need_resched())
  87. schedule();
  88. if (test_thread_flag(TIF_SIGPENDING))
  89. do_signal();
  90. if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
  91. tracehook_notify_resume(&current->thread.regs);
  92. }
  93. void exit_thread(void)
  94. {
  95. }
  96. int get_current_pid(void)
  97. {
  98. return task_pid_nr(current);
  99. }
  100. /*
  101. * This is called magically, by its address being stuffed in a jmp_buf
  102. * and being longjmp-d to.
  103. */
  104. void new_thread_handler(void)
  105. {
  106. int (*fn)(void *), n;
  107. void *arg;
  108. if (current->thread.prev_sched != NULL)
  109. schedule_tail(current->thread.prev_sched);
  110. current->thread.prev_sched = NULL;
  111. fn = current->thread.request.u.thread.proc;
  112. arg = current->thread.request.u.thread.arg;
  113. /*
  114. * The return value is 1 if the kernel thread execs a process,
  115. * 0 if it just exits
  116. */
  117. n = run_kernel_thread(fn, arg, &current->thread.exec_buf);
  118. if (n == 1)
  119. userspace(&current->thread.regs.regs);
  120. else
  121. do_exit(0);
  122. }
  123. /* Called magically, see new_thread_handler above */
  124. void fork_handler(void)
  125. {
  126. force_flush_all();
  127. schedule_tail(current->thread.prev_sched);
  128. /*
  129. * XXX: if interrupt_end() calls schedule, this call to
  130. * arch_switch_to isn't needed. We could want to apply this to
  131. * improve performance. -bb
  132. */
  133. arch_switch_to(current);
  134. current->thread.prev_sched = NULL;
  135. userspace(&current->thread.regs.regs);
  136. }
  137. int copy_thread(unsigned long clone_flags, unsigned long sp,
  138. unsigned long arg, struct task_struct * p,
  139. struct pt_regs *regs)
  140. {
  141. void (*handler)(void);
  142. int kthread = current->flags & PF_KTHREAD;
  143. int ret = 0;
  144. p->thread = (struct thread_struct) INIT_THREAD;
  145. if (!kthread) {
  146. memcpy(&p->thread.regs.regs, &regs->regs,
  147. sizeof(p->thread.regs.regs));
  148. PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
  149. if (sp != 0)
  150. REGS_SP(p->thread.regs.regs.gp) = sp;
  151. handler = fork_handler;
  152. arch_copy_thread(&current->thread.arch, &p->thread.arch);
  153. } else {
  154. get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
  155. p->thread.request.u.thread.proc = (int (*)(void *))sp;
  156. p->thread.request.u.thread.arg = (void *)arg;
  157. handler = new_thread_handler;
  158. }
  159. new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
  160. if (!kthread) {
  161. clear_flushed_tls(p);
  162. /*
  163. * Set a new TLS for the child thread?
  164. */
  165. if (clone_flags & CLONE_SETTLS)
  166. ret = arch_copy_tls(p);
  167. }
  168. return ret;
  169. }
  170. void initial_thread_cb(void (*proc)(void *), void *arg)
  171. {
  172. int save_kmalloc_ok = kmalloc_ok;
  173. kmalloc_ok = 0;
  174. initial_thread_cb_skas(proc, arg);
  175. kmalloc_ok = save_kmalloc_ok;
  176. }
  177. void default_idle(void)
  178. {
  179. unsigned long long nsecs;
  180. while (1) {
  181. /* endless idle loop with no priority at all */
  182. /*
  183. * although we are an idle CPU, we do not want to
  184. * get into the scheduler unnecessarily.
  185. */
  186. if (need_resched())
  187. schedule();
  188. tick_nohz_idle_enter();
  189. rcu_idle_enter();
  190. nsecs = disable_timer();
  191. idle_sleep(nsecs);
  192. rcu_idle_exit();
  193. tick_nohz_idle_exit();
  194. }
  195. }
  196. void cpu_idle(void)
  197. {
  198. cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
  199. default_idle();
  200. }
  201. int __cant_sleep(void) {
  202. return in_atomic() || irqs_disabled() || in_interrupt();
  203. /* Is in_interrupt() really needed? */
  204. }
  205. int user_context(unsigned long sp)
  206. {
  207. unsigned long stack;
  208. stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
  209. return stack != (unsigned long) current_thread_info();
  210. }
  211. extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
  212. void do_uml_exitcalls(void)
  213. {
  214. exitcall_t *call;
  215. call = &__uml_exitcall_end;
  216. while (--call >= &__uml_exitcall_begin)
  217. (*call)();
  218. }
  219. char *uml_strdup(const char *string)
  220. {
  221. return kstrdup(string, GFP_KERNEL);
  222. }
  223. EXPORT_SYMBOL(uml_strdup);
  224. int copy_to_user_proc(void __user *to, void *from, int size)
  225. {
  226. return copy_to_user(to, from, size);
  227. }
  228. int copy_from_user_proc(void *to, void __user *from, int size)
  229. {
  230. return copy_from_user(to, from, size);
  231. }
  232. int clear_user_proc(void __user *buf, int size)
  233. {
  234. return clear_user(buf, size);
  235. }
  236. int strlen_user_proc(char __user *str)
  237. {
  238. return strlen_user(str);
  239. }
  240. int smp_sigio_handler(void)
  241. {
  242. #ifdef CONFIG_SMP
  243. int cpu = current_thread_info()->cpu;
  244. IPI_handler(cpu);
  245. if (cpu != 0)
  246. return 1;
  247. #endif
  248. return 0;
  249. }
  250. int cpu(void)
  251. {
  252. return current_thread_info()->cpu;
  253. }
  254. static atomic_t using_sysemu = ATOMIC_INIT(0);
  255. int sysemu_supported;
  256. void set_using_sysemu(int value)
  257. {
  258. if (value > sysemu_supported)
  259. return;
  260. atomic_set(&using_sysemu, value);
  261. }
  262. int get_using_sysemu(void)
  263. {
  264. return atomic_read(&using_sysemu);
  265. }
  266. static int sysemu_proc_show(struct seq_file *m, void *v)
  267. {
  268. seq_printf(m, "%d\n", get_using_sysemu());
  269. return 0;
  270. }
  271. static int sysemu_proc_open(struct inode *inode, struct file *file)
  272. {
  273. return single_open(file, sysemu_proc_show, NULL);
  274. }
  275. static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
  276. size_t count, loff_t *pos)
  277. {
  278. char tmp[2];
  279. if (copy_from_user(tmp, buf, 1))
  280. return -EFAULT;
  281. if (tmp[0] >= '0' && tmp[0] <= '2')
  282. set_using_sysemu(tmp[0] - '0');
  283. /* We use the first char, but pretend to write everything */
  284. return count;
  285. }
  286. static const struct file_operations sysemu_proc_fops = {
  287. .owner = THIS_MODULE,
  288. .open = sysemu_proc_open,
  289. .read = seq_read,
  290. .llseek = seq_lseek,
  291. .release = single_release,
  292. .write = sysemu_proc_write,
  293. };
  294. int __init make_proc_sysemu(void)
  295. {
  296. struct proc_dir_entry *ent;
  297. if (!sysemu_supported)
  298. return 0;
  299. ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
  300. if (ent == NULL)
  301. {
  302. printk(KERN_WARNING "Failed to register /proc/sysemu\n");
  303. return 0;
  304. }
  305. return 0;
  306. }
  307. late_initcall(make_proc_sysemu);
  308. int singlestepping(void * t)
  309. {
  310. struct task_struct *task = t ? t : current;
  311. if (!(task->ptrace & PT_DTRACE))
  312. return 0;
  313. if (task->thread.singlestep_syscall)
  314. return 1;
  315. return 2;
  316. }
  317. /*
  318. * Only x86 and x86_64 have an arch_align_stack().
  319. * All other arches have "#define arch_align_stack(x) (x)"
  320. * in their asm/system.h
  321. * As this is included in UML from asm-um/system-generic.h,
  322. * we can use it to behave as the subarch does.
  323. */
  324. #ifndef arch_align_stack
  325. unsigned long arch_align_stack(unsigned long sp)
  326. {
  327. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  328. sp -= get_random_int() % 8192;
  329. return sp & ~0xf;
  330. }
  331. #endif
  332. unsigned long get_wchan(struct task_struct *p)
  333. {
  334. unsigned long stack_page, sp, ip;
  335. bool seen_sched = 0;
  336. if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
  337. return 0;
  338. stack_page = (unsigned long) task_stack_page(p);
  339. /* Bail if the process has no kernel stack for some reason */
  340. if (stack_page == 0)
  341. return 0;
  342. sp = p->thread.switch_buf->JB_SP;
  343. /*
  344. * Bail if the stack pointer is below the bottom of the kernel
  345. * stack for some reason
  346. */
  347. if (sp < stack_page)
  348. return 0;
  349. while (sp < stack_page + THREAD_SIZE) {
  350. ip = *((unsigned long *) sp);
  351. if (in_sched_functions(ip))
  352. /* Ignore everything until we're above the scheduler */
  353. seen_sched = 1;
  354. else if (kernel_text_address(ip) && seen_sched)
  355. return ip;
  356. sp += sizeof(unsigned long);
  357. }
  358. return 0;
  359. }
  360. int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
  361. {
  362. int cpu = current_thread_info()->cpu;
  363. return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);
  364. }