inode.c 174 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055
  1. /*
  2. * linux/fs/ext4/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/jbd2.h>
  28. #include <linux/highuid.h>
  29. #include <linux/pagemap.h>
  30. #include <linux/quotaops.h>
  31. #include <linux/string.h>
  32. #include <linux/buffer_head.h>
  33. #include <linux/writeback.h>
  34. #include <linux/pagevec.h>
  35. #include <linux/mpage.h>
  36. #include <linux/namei.h>
  37. #include <linux/uio.h>
  38. #include <linux/bio.h>
  39. #include <linux/workqueue.h>
  40. #include <linux/kernel.h>
  41. #include <linux/slab.h>
  42. #include "ext4_jbd2.h"
  43. #include "xattr.h"
  44. #include "acl.h"
  45. #include "ext4_extents.h"
  46. #include <trace/events/ext4.h>
  47. #define MPAGE_DA_EXTENT_TAIL 0x01
  48. static inline int ext4_begin_ordered_truncate(struct inode *inode,
  49. loff_t new_size)
  50. {
  51. return jbd2_journal_begin_ordered_truncate(
  52. EXT4_SB(inode->i_sb)->s_journal,
  53. &EXT4_I(inode)->jinode,
  54. new_size);
  55. }
  56. static void ext4_invalidatepage(struct page *page, unsigned long offset);
  57. /*
  58. * Test whether an inode is a fast symlink.
  59. */
  60. static int ext4_inode_is_fast_symlink(struct inode *inode)
  61. {
  62. int ea_blocks = EXT4_I(inode)->i_file_acl ?
  63. (inode->i_sb->s_blocksize >> 9) : 0;
  64. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  65. }
  66. /*
  67. * Work out how many blocks we need to proceed with the next chunk of a
  68. * truncate transaction.
  69. */
  70. static unsigned long blocks_for_truncate(struct inode *inode)
  71. {
  72. ext4_lblk_t needed;
  73. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  74. /* Give ourselves just enough room to cope with inodes in which
  75. * i_blocks is corrupt: we've seen disk corruptions in the past
  76. * which resulted in random data in an inode which looked enough
  77. * like a regular file for ext4 to try to delete it. Things
  78. * will go a bit crazy if that happens, but at least we should
  79. * try not to panic the whole kernel. */
  80. if (needed < 2)
  81. needed = 2;
  82. /* But we need to bound the transaction so we don't overflow the
  83. * journal. */
  84. if (needed > EXT4_MAX_TRANS_DATA)
  85. needed = EXT4_MAX_TRANS_DATA;
  86. return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  87. }
  88. /*
  89. * Truncate transactions can be complex and absolutely huge. So we need to
  90. * be able to restart the transaction at a conventient checkpoint to make
  91. * sure we don't overflow the journal.
  92. *
  93. * start_transaction gets us a new handle for a truncate transaction,
  94. * and extend_transaction tries to extend the existing one a bit. If
  95. * extend fails, we need to propagate the failure up and restart the
  96. * transaction in the top-level truncate loop. --sct
  97. */
  98. static handle_t *start_transaction(struct inode *inode)
  99. {
  100. handle_t *result;
  101. result = ext4_journal_start(inode, blocks_for_truncate(inode));
  102. if (!IS_ERR(result))
  103. return result;
  104. ext4_std_error(inode->i_sb, PTR_ERR(result));
  105. return result;
  106. }
  107. /*
  108. * Try to extend this transaction for the purposes of truncation.
  109. *
  110. * Returns 0 if we managed to create more room. If we can't create more
  111. * room, and the transaction must be restarted we return 1.
  112. */
  113. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  114. {
  115. if (!ext4_handle_valid(handle))
  116. return 0;
  117. if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
  118. return 0;
  119. if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
  120. return 0;
  121. return 1;
  122. }
  123. /*
  124. * Restart the transaction associated with *handle. This does a commit,
  125. * so before we call here everything must be consistently dirtied against
  126. * this transaction.
  127. */
  128. int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
  129. int nblocks)
  130. {
  131. int ret;
  132. /*
  133. * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
  134. * moment, get_block can be called only for blocks inside i_size since
  135. * page cache has been already dropped and writes are blocked by
  136. * i_mutex. So we can safely drop the i_data_sem here.
  137. */
  138. BUG_ON(EXT4_JOURNAL(inode) == NULL);
  139. jbd_debug(2, "restarting handle %p\n", handle);
  140. up_write(&EXT4_I(inode)->i_data_sem);
  141. ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
  142. down_write(&EXT4_I(inode)->i_data_sem);
  143. ext4_discard_preallocations(inode);
  144. return ret;
  145. }
  146. /*
  147. * Called at the last iput() if i_nlink is zero.
  148. */
  149. void ext4_evict_inode(struct inode *inode)
  150. {
  151. handle_t *handle;
  152. int err;
  153. if (inode->i_nlink) {
  154. truncate_inode_pages(&inode->i_data, 0);
  155. goto no_delete;
  156. }
  157. if (!is_bad_inode(inode))
  158. dquot_initialize(inode);
  159. if (ext4_should_order_data(inode))
  160. ext4_begin_ordered_truncate(inode, 0);
  161. truncate_inode_pages(&inode->i_data, 0);
  162. if (is_bad_inode(inode))
  163. goto no_delete;
  164. handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
  165. if (IS_ERR(handle)) {
  166. ext4_std_error(inode->i_sb, PTR_ERR(handle));
  167. /*
  168. * If we're going to skip the normal cleanup, we still need to
  169. * make sure that the in-core orphan linked list is properly
  170. * cleaned up.
  171. */
  172. ext4_orphan_del(NULL, inode);
  173. goto no_delete;
  174. }
  175. if (IS_SYNC(inode))
  176. ext4_handle_sync(handle);
  177. inode->i_size = 0;
  178. err = ext4_mark_inode_dirty(handle, inode);
  179. if (err) {
  180. ext4_warning(inode->i_sb,
  181. "couldn't mark inode dirty (err %d)", err);
  182. goto stop_handle;
  183. }
  184. if (inode->i_blocks)
  185. ext4_truncate(inode);
  186. /*
  187. * ext4_ext_truncate() doesn't reserve any slop when it
  188. * restarts journal transactions; therefore there may not be
  189. * enough credits left in the handle to remove the inode from
  190. * the orphan list and set the dtime field.
  191. */
  192. if (!ext4_handle_has_enough_credits(handle, 3)) {
  193. err = ext4_journal_extend(handle, 3);
  194. if (err > 0)
  195. err = ext4_journal_restart(handle, 3);
  196. if (err != 0) {
  197. ext4_warning(inode->i_sb,
  198. "couldn't extend journal (err %d)", err);
  199. stop_handle:
  200. ext4_journal_stop(handle);
  201. ext4_orphan_del(NULL, inode);
  202. goto no_delete;
  203. }
  204. }
  205. /*
  206. * Kill off the orphan record which ext4_truncate created.
  207. * AKPM: I think this can be inside the above `if'.
  208. * Note that ext4_orphan_del() has to be able to cope with the
  209. * deletion of a non-existent orphan - this is because we don't
  210. * know if ext4_truncate() actually created an orphan record.
  211. * (Well, we could do this if we need to, but heck - it works)
  212. */
  213. ext4_orphan_del(handle, inode);
  214. EXT4_I(inode)->i_dtime = get_seconds();
  215. /*
  216. * One subtle ordering requirement: if anything has gone wrong
  217. * (transaction abort, IO errors, whatever), then we can still
  218. * do these next steps (the fs will already have been marked as
  219. * having errors), but we can't free the inode if the mark_dirty
  220. * fails.
  221. */
  222. if (ext4_mark_inode_dirty(handle, inode))
  223. /* If that failed, just do the required in-core inode clear. */
  224. ext4_clear_inode(inode);
  225. else
  226. ext4_free_inode(handle, inode);
  227. ext4_journal_stop(handle);
  228. return;
  229. no_delete:
  230. ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
  231. }
  232. typedef struct {
  233. __le32 *p;
  234. __le32 key;
  235. struct buffer_head *bh;
  236. } Indirect;
  237. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  238. {
  239. p->key = *(p->p = v);
  240. p->bh = bh;
  241. }
  242. /**
  243. * ext4_block_to_path - parse the block number into array of offsets
  244. * @inode: inode in question (we are only interested in its superblock)
  245. * @i_block: block number to be parsed
  246. * @offsets: array to store the offsets in
  247. * @boundary: set this non-zero if the referred-to block is likely to be
  248. * followed (on disk) by an indirect block.
  249. *
  250. * To store the locations of file's data ext4 uses a data structure common
  251. * for UNIX filesystems - tree of pointers anchored in the inode, with
  252. * data blocks at leaves and indirect blocks in intermediate nodes.
  253. * This function translates the block number into path in that tree -
  254. * return value is the path length and @offsets[n] is the offset of
  255. * pointer to (n+1)th node in the nth one. If @block is out of range
  256. * (negative or too large) warning is printed and zero returned.
  257. *
  258. * Note: function doesn't find node addresses, so no IO is needed. All
  259. * we need to know is the capacity of indirect blocks (taken from the
  260. * inode->i_sb).
  261. */
  262. /*
  263. * Portability note: the last comparison (check that we fit into triple
  264. * indirect block) is spelled differently, because otherwise on an
  265. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  266. * if our filesystem had 8Kb blocks. We might use long long, but that would
  267. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  268. * i_block would have to be negative in the very beginning, so we would not
  269. * get there at all.
  270. */
  271. static int ext4_block_to_path(struct inode *inode,
  272. ext4_lblk_t i_block,
  273. ext4_lblk_t offsets[4], int *boundary)
  274. {
  275. int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  276. int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
  277. const long direct_blocks = EXT4_NDIR_BLOCKS,
  278. indirect_blocks = ptrs,
  279. double_blocks = (1 << (ptrs_bits * 2));
  280. int n = 0;
  281. int final = 0;
  282. if (i_block < direct_blocks) {
  283. offsets[n++] = i_block;
  284. final = direct_blocks;
  285. } else if ((i_block -= direct_blocks) < indirect_blocks) {
  286. offsets[n++] = EXT4_IND_BLOCK;
  287. offsets[n++] = i_block;
  288. final = ptrs;
  289. } else if ((i_block -= indirect_blocks) < double_blocks) {
  290. offsets[n++] = EXT4_DIND_BLOCK;
  291. offsets[n++] = i_block >> ptrs_bits;
  292. offsets[n++] = i_block & (ptrs - 1);
  293. final = ptrs;
  294. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  295. offsets[n++] = EXT4_TIND_BLOCK;
  296. offsets[n++] = i_block >> (ptrs_bits * 2);
  297. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  298. offsets[n++] = i_block & (ptrs - 1);
  299. final = ptrs;
  300. } else {
  301. ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
  302. i_block + direct_blocks +
  303. indirect_blocks + double_blocks, inode->i_ino);
  304. }
  305. if (boundary)
  306. *boundary = final - 1 - (i_block & (ptrs - 1));
  307. return n;
  308. }
  309. static int __ext4_check_blockref(const char *function, unsigned int line,
  310. struct inode *inode,
  311. __le32 *p, unsigned int max)
  312. {
  313. struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
  314. __le32 *bref = p;
  315. unsigned int blk;
  316. while (bref < p+max) {
  317. blk = le32_to_cpu(*bref++);
  318. if (blk &&
  319. unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
  320. blk, 1))) {
  321. es->s_last_error_block = cpu_to_le64(blk);
  322. ext4_error_inode(inode, function, line, blk,
  323. "invalid block");
  324. return -EIO;
  325. }
  326. }
  327. return 0;
  328. }
  329. #define ext4_check_indirect_blockref(inode, bh) \
  330. __ext4_check_blockref(__func__, __LINE__, inode, \
  331. (__le32 *)(bh)->b_data, \
  332. EXT4_ADDR_PER_BLOCK((inode)->i_sb))
  333. #define ext4_check_inode_blockref(inode) \
  334. __ext4_check_blockref(__func__, __LINE__, inode, \
  335. EXT4_I(inode)->i_data, \
  336. EXT4_NDIR_BLOCKS)
  337. /**
  338. * ext4_get_branch - read the chain of indirect blocks leading to data
  339. * @inode: inode in question
  340. * @depth: depth of the chain (1 - direct pointer, etc.)
  341. * @offsets: offsets of pointers in inode/indirect blocks
  342. * @chain: place to store the result
  343. * @err: here we store the error value
  344. *
  345. * Function fills the array of triples <key, p, bh> and returns %NULL
  346. * if everything went OK or the pointer to the last filled triple
  347. * (incomplete one) otherwise. Upon the return chain[i].key contains
  348. * the number of (i+1)-th block in the chain (as it is stored in memory,
  349. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  350. * number (it points into struct inode for i==0 and into the bh->b_data
  351. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  352. * block for i>0 and NULL for i==0. In other words, it holds the block
  353. * numbers of the chain, addresses they were taken from (and where we can
  354. * verify that chain did not change) and buffer_heads hosting these
  355. * numbers.
  356. *
  357. * Function stops when it stumbles upon zero pointer (absent block)
  358. * (pointer to last triple returned, *@err == 0)
  359. * or when it gets an IO error reading an indirect block
  360. * (ditto, *@err == -EIO)
  361. * or when it reads all @depth-1 indirect blocks successfully and finds
  362. * the whole chain, all way to the data (returns %NULL, *err == 0).
  363. *
  364. * Need to be called with
  365. * down_read(&EXT4_I(inode)->i_data_sem)
  366. */
  367. static Indirect *ext4_get_branch(struct inode *inode, int depth,
  368. ext4_lblk_t *offsets,
  369. Indirect chain[4], int *err)
  370. {
  371. struct super_block *sb = inode->i_sb;
  372. Indirect *p = chain;
  373. struct buffer_head *bh;
  374. *err = 0;
  375. /* i_data is not going away, no lock needed */
  376. add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
  377. if (!p->key)
  378. goto no_block;
  379. while (--depth) {
  380. bh = sb_getblk(sb, le32_to_cpu(p->key));
  381. if (unlikely(!bh))
  382. goto failure;
  383. if (!bh_uptodate_or_lock(bh)) {
  384. if (bh_submit_read(bh) < 0) {
  385. put_bh(bh);
  386. goto failure;
  387. }
  388. /* validate block references */
  389. if (ext4_check_indirect_blockref(inode, bh)) {
  390. put_bh(bh);
  391. goto failure;
  392. }
  393. }
  394. add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
  395. /* Reader: end */
  396. if (!p->key)
  397. goto no_block;
  398. }
  399. return NULL;
  400. failure:
  401. *err = -EIO;
  402. no_block:
  403. return p;
  404. }
  405. /**
  406. * ext4_find_near - find a place for allocation with sufficient locality
  407. * @inode: owner
  408. * @ind: descriptor of indirect block.
  409. *
  410. * This function returns the preferred place for block allocation.
  411. * It is used when heuristic for sequential allocation fails.
  412. * Rules are:
  413. * + if there is a block to the left of our position - allocate near it.
  414. * + if pointer will live in indirect block - allocate near that block.
  415. * + if pointer will live in inode - allocate in the same
  416. * cylinder group.
  417. *
  418. * In the latter case we colour the starting block by the callers PID to
  419. * prevent it from clashing with concurrent allocations for a different inode
  420. * in the same block group. The PID is used here so that functionally related
  421. * files will be close-by on-disk.
  422. *
  423. * Caller must make sure that @ind is valid and will stay that way.
  424. */
  425. static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
  426. {
  427. struct ext4_inode_info *ei = EXT4_I(inode);
  428. __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
  429. __le32 *p;
  430. ext4_fsblk_t bg_start;
  431. ext4_fsblk_t last_block;
  432. ext4_grpblk_t colour;
  433. ext4_group_t block_group;
  434. int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
  435. /* Try to find previous block */
  436. for (p = ind->p - 1; p >= start; p--) {
  437. if (*p)
  438. return le32_to_cpu(*p);
  439. }
  440. /* No such thing, so let's try location of indirect block */
  441. if (ind->bh)
  442. return ind->bh->b_blocknr;
  443. /*
  444. * It is going to be referred to from the inode itself? OK, just put it
  445. * into the same cylinder group then.
  446. */
  447. block_group = ei->i_block_group;
  448. if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
  449. block_group &= ~(flex_size-1);
  450. if (S_ISREG(inode->i_mode))
  451. block_group++;
  452. }
  453. bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
  454. last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
  455. /*
  456. * If we are doing delayed allocation, we don't need take
  457. * colour into account.
  458. */
  459. if (test_opt(inode->i_sb, DELALLOC))
  460. return bg_start;
  461. if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
  462. colour = (current->pid % 16) *
  463. (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  464. else
  465. colour = (current->pid % 16) * ((last_block - bg_start) / 16);
  466. return bg_start + colour;
  467. }
  468. /**
  469. * ext4_find_goal - find a preferred place for allocation.
  470. * @inode: owner
  471. * @block: block we want
  472. * @partial: pointer to the last triple within a chain
  473. *
  474. * Normally this function find the preferred place for block allocation,
  475. * returns it.
  476. * Because this is only used for non-extent files, we limit the block nr
  477. * to 32 bits.
  478. */
  479. static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
  480. Indirect *partial)
  481. {
  482. ext4_fsblk_t goal;
  483. /*
  484. * XXX need to get goal block from mballoc's data structures
  485. */
  486. goal = ext4_find_near(inode, partial);
  487. goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
  488. return goal;
  489. }
  490. /**
  491. * ext4_blks_to_allocate: Look up the block map and count the number
  492. * of direct blocks need to be allocated for the given branch.
  493. *
  494. * @branch: chain of indirect blocks
  495. * @k: number of blocks need for indirect blocks
  496. * @blks: number of data blocks to be mapped.
  497. * @blocks_to_boundary: the offset in the indirect block
  498. *
  499. * return the total number of blocks to be allocate, including the
  500. * direct and indirect blocks.
  501. */
  502. static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
  503. int blocks_to_boundary)
  504. {
  505. unsigned int count = 0;
  506. /*
  507. * Simple case, [t,d]Indirect block(s) has not allocated yet
  508. * then it's clear blocks on that path have not allocated
  509. */
  510. if (k > 0) {
  511. /* right now we don't handle cross boundary allocation */
  512. if (blks < blocks_to_boundary + 1)
  513. count += blks;
  514. else
  515. count += blocks_to_boundary + 1;
  516. return count;
  517. }
  518. count++;
  519. while (count < blks && count <= blocks_to_boundary &&
  520. le32_to_cpu(*(branch[0].p + count)) == 0) {
  521. count++;
  522. }
  523. return count;
  524. }
  525. /**
  526. * ext4_alloc_blocks: multiple allocate blocks needed for a branch
  527. * @indirect_blks: the number of blocks need to allocate for indirect
  528. * blocks
  529. *
  530. * @new_blocks: on return it will store the new block numbers for
  531. * the indirect blocks(if needed) and the first direct block,
  532. * @blks: on return it will store the total number of allocated
  533. * direct blocks
  534. */
  535. static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
  536. ext4_lblk_t iblock, ext4_fsblk_t goal,
  537. int indirect_blks, int blks,
  538. ext4_fsblk_t new_blocks[4], int *err)
  539. {
  540. struct ext4_allocation_request ar;
  541. int target, i;
  542. unsigned long count = 0, blk_allocated = 0;
  543. int index = 0;
  544. ext4_fsblk_t current_block = 0;
  545. int ret = 0;
  546. /*
  547. * Here we try to allocate the requested multiple blocks at once,
  548. * on a best-effort basis.
  549. * To build a branch, we should allocate blocks for
  550. * the indirect blocks(if not allocated yet), and at least
  551. * the first direct block of this branch. That's the
  552. * minimum number of blocks need to allocate(required)
  553. */
  554. /* first we try to allocate the indirect blocks */
  555. target = indirect_blks;
  556. while (target > 0) {
  557. count = target;
  558. /* allocating blocks for indirect blocks and direct blocks */
  559. current_block = ext4_new_meta_blocks(handle, inode,
  560. goal, &count, err);
  561. if (*err)
  562. goto failed_out;
  563. if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
  564. EXT4_ERROR_INODE(inode,
  565. "current_block %llu + count %lu > %d!",
  566. current_block, count,
  567. EXT4_MAX_BLOCK_FILE_PHYS);
  568. *err = -EIO;
  569. goto failed_out;
  570. }
  571. target -= count;
  572. /* allocate blocks for indirect blocks */
  573. while (index < indirect_blks && count) {
  574. new_blocks[index++] = current_block++;
  575. count--;
  576. }
  577. if (count > 0) {
  578. /*
  579. * save the new block number
  580. * for the first direct block
  581. */
  582. new_blocks[index] = current_block;
  583. printk(KERN_INFO "%s returned more blocks than "
  584. "requested\n", __func__);
  585. WARN_ON(1);
  586. break;
  587. }
  588. }
  589. target = blks - count ;
  590. blk_allocated = count;
  591. if (!target)
  592. goto allocated;
  593. /* Now allocate data blocks */
  594. memset(&ar, 0, sizeof(ar));
  595. ar.inode = inode;
  596. ar.goal = goal;
  597. ar.len = target;
  598. ar.logical = iblock;
  599. if (S_ISREG(inode->i_mode))
  600. /* enable in-core preallocation only for regular files */
  601. ar.flags = EXT4_MB_HINT_DATA;
  602. current_block = ext4_mb_new_blocks(handle, &ar, err);
  603. if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
  604. EXT4_ERROR_INODE(inode,
  605. "current_block %llu + ar.len %d > %d!",
  606. current_block, ar.len,
  607. EXT4_MAX_BLOCK_FILE_PHYS);
  608. *err = -EIO;
  609. goto failed_out;
  610. }
  611. if (*err && (target == blks)) {
  612. /*
  613. * if the allocation failed and we didn't allocate
  614. * any blocks before
  615. */
  616. goto failed_out;
  617. }
  618. if (!*err) {
  619. if (target == blks) {
  620. /*
  621. * save the new block number
  622. * for the first direct block
  623. */
  624. new_blocks[index] = current_block;
  625. }
  626. blk_allocated += ar.len;
  627. }
  628. allocated:
  629. /* total number of blocks allocated for direct blocks */
  630. ret = blk_allocated;
  631. *err = 0;
  632. return ret;
  633. failed_out:
  634. for (i = 0; i < index; i++)
  635. ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
  636. return ret;
  637. }
  638. /**
  639. * ext4_alloc_branch - allocate and set up a chain of blocks.
  640. * @inode: owner
  641. * @indirect_blks: number of allocated indirect blocks
  642. * @blks: number of allocated direct blocks
  643. * @offsets: offsets (in the blocks) to store the pointers to next.
  644. * @branch: place to store the chain in.
  645. *
  646. * This function allocates blocks, zeroes out all but the last one,
  647. * links them into chain and (if we are synchronous) writes them to disk.
  648. * In other words, it prepares a branch that can be spliced onto the
  649. * inode. It stores the information about that chain in the branch[], in
  650. * the same format as ext4_get_branch() would do. We are calling it after
  651. * we had read the existing part of chain and partial points to the last
  652. * triple of that (one with zero ->key). Upon the exit we have the same
  653. * picture as after the successful ext4_get_block(), except that in one
  654. * place chain is disconnected - *branch->p is still zero (we did not
  655. * set the last link), but branch->key contains the number that should
  656. * be placed into *branch->p to fill that gap.
  657. *
  658. * If allocation fails we free all blocks we've allocated (and forget
  659. * their buffer_heads) and return the error value the from failed
  660. * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  661. * as described above and return 0.
  662. */
  663. static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
  664. ext4_lblk_t iblock, int indirect_blks,
  665. int *blks, ext4_fsblk_t goal,
  666. ext4_lblk_t *offsets, Indirect *branch)
  667. {
  668. int blocksize = inode->i_sb->s_blocksize;
  669. int i, n = 0;
  670. int err = 0;
  671. struct buffer_head *bh;
  672. int num;
  673. ext4_fsblk_t new_blocks[4];
  674. ext4_fsblk_t current_block;
  675. num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
  676. *blks, new_blocks, &err);
  677. if (err)
  678. return err;
  679. branch[0].key = cpu_to_le32(new_blocks[0]);
  680. /*
  681. * metadata blocks and data blocks are allocated.
  682. */
  683. for (n = 1; n <= indirect_blks; n++) {
  684. /*
  685. * Get buffer_head for parent block, zero it out
  686. * and set the pointer to new one, then send
  687. * parent to disk.
  688. */
  689. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  690. branch[n].bh = bh;
  691. lock_buffer(bh);
  692. BUFFER_TRACE(bh, "call get_create_access");
  693. err = ext4_journal_get_create_access(handle, bh);
  694. if (err) {
  695. /* Don't brelse(bh) here; it's done in
  696. * ext4_journal_forget() below */
  697. unlock_buffer(bh);
  698. goto failed;
  699. }
  700. memset(bh->b_data, 0, blocksize);
  701. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  702. branch[n].key = cpu_to_le32(new_blocks[n]);
  703. *branch[n].p = branch[n].key;
  704. if (n == indirect_blks) {
  705. current_block = new_blocks[n];
  706. /*
  707. * End of chain, update the last new metablock of
  708. * the chain to point to the new allocated
  709. * data blocks numbers
  710. */
  711. for (i = 1; i < num; i++)
  712. *(branch[n].p + i) = cpu_to_le32(++current_block);
  713. }
  714. BUFFER_TRACE(bh, "marking uptodate");
  715. set_buffer_uptodate(bh);
  716. unlock_buffer(bh);
  717. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  718. err = ext4_handle_dirty_metadata(handle, inode, bh);
  719. if (err)
  720. goto failed;
  721. }
  722. *blks = num;
  723. return err;
  724. failed:
  725. /* Allocation failed, free what we already allocated */
  726. ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
  727. for (i = 1; i <= n ; i++) {
  728. /*
  729. * branch[i].bh is newly allocated, so there is no
  730. * need to revoke the block, which is why we don't
  731. * need to set EXT4_FREE_BLOCKS_METADATA.
  732. */
  733. ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
  734. EXT4_FREE_BLOCKS_FORGET);
  735. }
  736. for (i = n+1; i < indirect_blks; i++)
  737. ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
  738. ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
  739. return err;
  740. }
  741. /**
  742. * ext4_splice_branch - splice the allocated branch onto inode.
  743. * @inode: owner
  744. * @block: (logical) number of block we are adding
  745. * @chain: chain of indirect blocks (with a missing link - see
  746. * ext4_alloc_branch)
  747. * @where: location of missing link
  748. * @num: number of indirect blocks we are adding
  749. * @blks: number of direct blocks we are adding
  750. *
  751. * This function fills the missing link and does all housekeeping needed in
  752. * inode (->i_blocks, etc.). In case of success we end up with the full
  753. * chain to new block and return 0.
  754. */
  755. static int ext4_splice_branch(handle_t *handle, struct inode *inode,
  756. ext4_lblk_t block, Indirect *where, int num,
  757. int blks)
  758. {
  759. int i;
  760. int err = 0;
  761. ext4_fsblk_t current_block;
  762. /*
  763. * If we're splicing into a [td]indirect block (as opposed to the
  764. * inode) then we need to get write access to the [td]indirect block
  765. * before the splice.
  766. */
  767. if (where->bh) {
  768. BUFFER_TRACE(where->bh, "get_write_access");
  769. err = ext4_journal_get_write_access(handle, where->bh);
  770. if (err)
  771. goto err_out;
  772. }
  773. /* That's it */
  774. *where->p = where->key;
  775. /*
  776. * Update the host buffer_head or inode to point to more just allocated
  777. * direct blocks blocks
  778. */
  779. if (num == 0 && blks > 1) {
  780. current_block = le32_to_cpu(where->key) + 1;
  781. for (i = 1; i < blks; i++)
  782. *(where->p + i) = cpu_to_le32(current_block++);
  783. }
  784. /* We are done with atomic stuff, now do the rest of housekeeping */
  785. /* had we spliced it onto indirect block? */
  786. if (where->bh) {
  787. /*
  788. * If we spliced it onto an indirect block, we haven't
  789. * altered the inode. Note however that if it is being spliced
  790. * onto an indirect block at the very end of the file (the
  791. * file is growing) then we *will* alter the inode to reflect
  792. * the new i_size. But that is not done here - it is done in
  793. * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
  794. */
  795. jbd_debug(5, "splicing indirect only\n");
  796. BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
  797. err = ext4_handle_dirty_metadata(handle, inode, where->bh);
  798. if (err)
  799. goto err_out;
  800. } else {
  801. /*
  802. * OK, we spliced it into the inode itself on a direct block.
  803. */
  804. ext4_mark_inode_dirty(handle, inode);
  805. jbd_debug(5, "splicing direct\n");
  806. }
  807. return err;
  808. err_out:
  809. for (i = 1; i <= num; i++) {
  810. /*
  811. * branch[i].bh is newly allocated, so there is no
  812. * need to revoke the block, which is why we don't
  813. * need to set EXT4_FREE_BLOCKS_METADATA.
  814. */
  815. ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
  816. EXT4_FREE_BLOCKS_FORGET);
  817. }
  818. ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
  819. blks, 0);
  820. return err;
  821. }
  822. /*
  823. * The ext4_ind_map_blocks() function handles non-extents inodes
  824. * (i.e., using the traditional indirect/double-indirect i_blocks
  825. * scheme) for ext4_map_blocks().
  826. *
  827. * Allocation strategy is simple: if we have to allocate something, we will
  828. * have to go the whole way to leaf. So let's do it before attaching anything
  829. * to tree, set linkage between the newborn blocks, write them if sync is
  830. * required, recheck the path, free and repeat if check fails, otherwise
  831. * set the last missing link (that will protect us from any truncate-generated
  832. * removals - all blocks on the path are immune now) and possibly force the
  833. * write on the parent block.
  834. * That has a nice additional property: no special recovery from the failed
  835. * allocations is needed - we simply release blocks and do not touch anything
  836. * reachable from inode.
  837. *
  838. * `handle' can be NULL if create == 0.
  839. *
  840. * return > 0, # of blocks mapped or allocated.
  841. * return = 0, if plain lookup failed.
  842. * return < 0, error case.
  843. *
  844. * The ext4_ind_get_blocks() function should be called with
  845. * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
  846. * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
  847. * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
  848. * blocks.
  849. */
  850. static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
  851. struct ext4_map_blocks *map,
  852. int flags)
  853. {
  854. int err = -EIO;
  855. ext4_lblk_t offsets[4];
  856. Indirect chain[4];
  857. Indirect *partial;
  858. ext4_fsblk_t goal;
  859. int indirect_blks;
  860. int blocks_to_boundary = 0;
  861. int depth;
  862. int count = 0;
  863. ext4_fsblk_t first_block = 0;
  864. J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
  865. J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
  866. depth = ext4_block_to_path(inode, map->m_lblk, offsets,
  867. &blocks_to_boundary);
  868. if (depth == 0)
  869. goto out;
  870. partial = ext4_get_branch(inode, depth, offsets, chain, &err);
  871. /* Simplest case - block found, no allocation needed */
  872. if (!partial) {
  873. first_block = le32_to_cpu(chain[depth - 1].key);
  874. count++;
  875. /*map more blocks*/
  876. while (count < map->m_len && count <= blocks_to_boundary) {
  877. ext4_fsblk_t blk;
  878. blk = le32_to_cpu(*(chain[depth-1].p + count));
  879. if (blk == first_block + count)
  880. count++;
  881. else
  882. break;
  883. }
  884. goto got_it;
  885. }
  886. /* Next simple case - plain lookup or failed read of indirect block */
  887. if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
  888. goto cleanup;
  889. /*
  890. * Okay, we need to do block allocation.
  891. */
  892. goal = ext4_find_goal(inode, map->m_lblk, partial);
  893. /* the number of blocks need to allocate for [d,t]indirect blocks */
  894. indirect_blks = (chain + depth) - partial - 1;
  895. /*
  896. * Next look up the indirect map to count the totoal number of
  897. * direct blocks to allocate for this branch.
  898. */
  899. count = ext4_blks_to_allocate(partial, indirect_blks,
  900. map->m_len, blocks_to_boundary);
  901. /*
  902. * Block out ext4_truncate while we alter the tree
  903. */
  904. err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
  905. &count, goal,
  906. offsets + (partial - chain), partial);
  907. /*
  908. * The ext4_splice_branch call will free and forget any buffers
  909. * on the new chain if there is a failure, but that risks using
  910. * up transaction credits, especially for bitmaps where the
  911. * credits cannot be returned. Can we handle this somehow? We
  912. * may need to return -EAGAIN upwards in the worst case. --sct
  913. */
  914. if (!err)
  915. err = ext4_splice_branch(handle, inode, map->m_lblk,
  916. partial, indirect_blks, count);
  917. if (err)
  918. goto cleanup;
  919. map->m_flags |= EXT4_MAP_NEW;
  920. ext4_update_inode_fsync_trans(handle, inode, 1);
  921. got_it:
  922. map->m_flags |= EXT4_MAP_MAPPED;
  923. map->m_pblk = le32_to_cpu(chain[depth-1].key);
  924. map->m_len = count;
  925. if (count > blocks_to_boundary)
  926. map->m_flags |= EXT4_MAP_BOUNDARY;
  927. err = count;
  928. /* Clean up and exit */
  929. partial = chain + depth - 1; /* the whole chain */
  930. cleanup:
  931. while (partial > chain) {
  932. BUFFER_TRACE(partial->bh, "call brelse");
  933. brelse(partial->bh);
  934. partial--;
  935. }
  936. out:
  937. return err;
  938. }
  939. #ifdef CONFIG_QUOTA
  940. qsize_t *ext4_get_reserved_space(struct inode *inode)
  941. {
  942. return &EXT4_I(inode)->i_reserved_quota;
  943. }
  944. #endif
  945. /*
  946. * Calculate the number of metadata blocks need to reserve
  947. * to allocate a new block at @lblocks for non extent file based file
  948. */
  949. static int ext4_indirect_calc_metadata_amount(struct inode *inode,
  950. sector_t lblock)
  951. {
  952. struct ext4_inode_info *ei = EXT4_I(inode);
  953. sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
  954. int blk_bits;
  955. if (lblock < EXT4_NDIR_BLOCKS)
  956. return 0;
  957. lblock -= EXT4_NDIR_BLOCKS;
  958. if (ei->i_da_metadata_calc_len &&
  959. (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
  960. ei->i_da_metadata_calc_len++;
  961. return 0;
  962. }
  963. ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
  964. ei->i_da_metadata_calc_len = 1;
  965. blk_bits = order_base_2(lblock);
  966. return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
  967. }
  968. /*
  969. * Calculate the number of metadata blocks need to reserve
  970. * to allocate a block located at @lblock
  971. */
  972. static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
  973. {
  974. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  975. return ext4_ext_calc_metadata_amount(inode, lblock);
  976. return ext4_indirect_calc_metadata_amount(inode, lblock);
  977. }
  978. /*
  979. * Called with i_data_sem down, which is important since we can call
  980. * ext4_discard_preallocations() from here.
  981. */
  982. void ext4_da_update_reserve_space(struct inode *inode,
  983. int used, int quota_claim)
  984. {
  985. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  986. struct ext4_inode_info *ei = EXT4_I(inode);
  987. spin_lock(&ei->i_block_reservation_lock);
  988. trace_ext4_da_update_reserve_space(inode, used);
  989. if (unlikely(used > ei->i_reserved_data_blocks)) {
  990. ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
  991. "with only %d reserved data blocks\n",
  992. __func__, inode->i_ino, used,
  993. ei->i_reserved_data_blocks);
  994. WARN_ON(1);
  995. used = ei->i_reserved_data_blocks;
  996. }
  997. /* Update per-inode reservations */
  998. ei->i_reserved_data_blocks -= used;
  999. ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
  1000. percpu_counter_sub(&sbi->s_dirtyblocks_counter,
  1001. used + ei->i_allocated_meta_blocks);
  1002. ei->i_allocated_meta_blocks = 0;
  1003. if (ei->i_reserved_data_blocks == 0) {
  1004. /*
  1005. * We can release all of the reserved metadata blocks
  1006. * only when we have written all of the delayed
  1007. * allocation blocks.
  1008. */
  1009. percpu_counter_sub(&sbi->s_dirtyblocks_counter,
  1010. ei->i_reserved_meta_blocks);
  1011. ei->i_reserved_meta_blocks = 0;
  1012. ei->i_da_metadata_calc_len = 0;
  1013. }
  1014. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1015. /* Update quota subsystem for data blocks */
  1016. if (quota_claim)
  1017. dquot_claim_block(inode, used);
  1018. else {
  1019. /*
  1020. * We did fallocate with an offset that is already delayed
  1021. * allocated. So on delayed allocated writeback we should
  1022. * not re-claim the quota for fallocated blocks.
  1023. */
  1024. dquot_release_reservation_block(inode, used);
  1025. }
  1026. /*
  1027. * If we have done all the pending block allocations and if
  1028. * there aren't any writers on the inode, we can discard the
  1029. * inode's preallocations.
  1030. */
  1031. if ((ei->i_reserved_data_blocks == 0) &&
  1032. (atomic_read(&inode->i_writecount) == 0))
  1033. ext4_discard_preallocations(inode);
  1034. }
  1035. static int __check_block_validity(struct inode *inode, const char *func,
  1036. unsigned int line,
  1037. struct ext4_map_blocks *map)
  1038. {
  1039. if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
  1040. map->m_len)) {
  1041. ext4_error_inode(inode, func, line, map->m_pblk,
  1042. "lblock %lu mapped to illegal pblock "
  1043. "(length %d)", (unsigned long) map->m_lblk,
  1044. map->m_len);
  1045. return -EIO;
  1046. }
  1047. return 0;
  1048. }
  1049. #define check_block_validity(inode, map) \
  1050. __check_block_validity((inode), __func__, __LINE__, (map))
  1051. /*
  1052. * Return the number of contiguous dirty pages in a given inode
  1053. * starting at page frame idx.
  1054. */
  1055. static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
  1056. unsigned int max_pages)
  1057. {
  1058. struct address_space *mapping = inode->i_mapping;
  1059. pgoff_t index;
  1060. struct pagevec pvec;
  1061. pgoff_t num = 0;
  1062. int i, nr_pages, done = 0;
  1063. if (max_pages == 0)
  1064. return 0;
  1065. pagevec_init(&pvec, 0);
  1066. while (!done) {
  1067. index = idx;
  1068. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  1069. PAGECACHE_TAG_DIRTY,
  1070. (pgoff_t)PAGEVEC_SIZE);
  1071. if (nr_pages == 0)
  1072. break;
  1073. for (i = 0; i < nr_pages; i++) {
  1074. struct page *page = pvec.pages[i];
  1075. struct buffer_head *bh, *head;
  1076. lock_page(page);
  1077. if (unlikely(page->mapping != mapping) ||
  1078. !PageDirty(page) ||
  1079. PageWriteback(page) ||
  1080. page->index != idx) {
  1081. done = 1;
  1082. unlock_page(page);
  1083. break;
  1084. }
  1085. if (page_has_buffers(page)) {
  1086. bh = head = page_buffers(page);
  1087. do {
  1088. if (!buffer_delay(bh) &&
  1089. !buffer_unwritten(bh))
  1090. done = 1;
  1091. bh = bh->b_this_page;
  1092. } while (!done && (bh != head));
  1093. }
  1094. unlock_page(page);
  1095. if (done)
  1096. break;
  1097. idx++;
  1098. num++;
  1099. if (num >= max_pages)
  1100. break;
  1101. }
  1102. pagevec_release(&pvec);
  1103. }
  1104. return num;
  1105. }
  1106. /*
  1107. * The ext4_map_blocks() function tries to look up the requested blocks,
  1108. * and returns if the blocks are already mapped.
  1109. *
  1110. * Otherwise it takes the write lock of the i_data_sem and allocate blocks
  1111. * and store the allocated blocks in the result buffer head and mark it
  1112. * mapped.
  1113. *
  1114. * If file type is extents based, it will call ext4_ext_map_blocks(),
  1115. * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
  1116. * based files
  1117. *
  1118. * On success, it returns the number of blocks being mapped or allocate.
  1119. * if create==0 and the blocks are pre-allocated and uninitialized block,
  1120. * the result buffer head is unmapped. If the create ==1, it will make sure
  1121. * the buffer head is mapped.
  1122. *
  1123. * It returns 0 if plain look up failed (blocks have not been allocated), in
  1124. * that casem, buffer head is unmapped
  1125. *
  1126. * It returns the error in case of allocation failure.
  1127. */
  1128. int ext4_map_blocks(handle_t *handle, struct inode *inode,
  1129. struct ext4_map_blocks *map, int flags)
  1130. {
  1131. int retval;
  1132. map->m_flags = 0;
  1133. ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
  1134. "logical block %lu\n", inode->i_ino, flags, map->m_len,
  1135. (unsigned long) map->m_lblk);
  1136. /*
  1137. * Try to see if we can get the block without requesting a new
  1138. * file system block.
  1139. */
  1140. down_read((&EXT4_I(inode)->i_data_sem));
  1141. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
  1142. retval = ext4_ext_map_blocks(handle, inode, map, 0);
  1143. } else {
  1144. retval = ext4_ind_map_blocks(handle, inode, map, 0);
  1145. }
  1146. up_read((&EXT4_I(inode)->i_data_sem));
  1147. if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
  1148. int ret = check_block_validity(inode, map);
  1149. if (ret != 0)
  1150. return ret;
  1151. }
  1152. /* If it is only a block(s) look up */
  1153. if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
  1154. return retval;
  1155. /*
  1156. * Returns if the blocks have already allocated
  1157. *
  1158. * Note that if blocks have been preallocated
  1159. * ext4_ext_get_block() returns th create = 0
  1160. * with buffer head unmapped.
  1161. */
  1162. if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
  1163. return retval;
  1164. /*
  1165. * When we call get_blocks without the create flag, the
  1166. * BH_Unwritten flag could have gotten set if the blocks
  1167. * requested were part of a uninitialized extent. We need to
  1168. * clear this flag now that we are committed to convert all or
  1169. * part of the uninitialized extent to be an initialized
  1170. * extent. This is because we need to avoid the combination
  1171. * of BH_Unwritten and BH_Mapped flags being simultaneously
  1172. * set on the buffer_head.
  1173. */
  1174. map->m_flags &= ~EXT4_MAP_UNWRITTEN;
  1175. /*
  1176. * New blocks allocate and/or writing to uninitialized extent
  1177. * will possibly result in updating i_data, so we take
  1178. * the write lock of i_data_sem, and call get_blocks()
  1179. * with create == 1 flag.
  1180. */
  1181. down_write((&EXT4_I(inode)->i_data_sem));
  1182. /*
  1183. * if the caller is from delayed allocation writeout path
  1184. * we have already reserved fs blocks for allocation
  1185. * let the underlying get_block() function know to
  1186. * avoid double accounting
  1187. */
  1188. if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
  1189. EXT4_I(inode)->i_delalloc_reserved_flag = 1;
  1190. /*
  1191. * We need to check for EXT4 here because migrate
  1192. * could have changed the inode type in between
  1193. */
  1194. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
  1195. retval = ext4_ext_map_blocks(handle, inode, map, flags);
  1196. } else {
  1197. retval = ext4_ind_map_blocks(handle, inode, map, flags);
  1198. if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
  1199. /*
  1200. * We allocated new blocks which will result in
  1201. * i_data's format changing. Force the migrate
  1202. * to fail by clearing migrate flags
  1203. */
  1204. ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
  1205. }
  1206. /*
  1207. * Update reserved blocks/metadata blocks after successful
  1208. * block allocation which had been deferred till now. We don't
  1209. * support fallocate for non extent files. So we can update
  1210. * reserve space here.
  1211. */
  1212. if ((retval > 0) &&
  1213. (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
  1214. ext4_da_update_reserve_space(inode, retval, 1);
  1215. }
  1216. if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
  1217. EXT4_I(inode)->i_delalloc_reserved_flag = 0;
  1218. up_write((&EXT4_I(inode)->i_data_sem));
  1219. if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
  1220. int ret = check_block_validity(inode, map);
  1221. if (ret != 0)
  1222. return ret;
  1223. }
  1224. return retval;
  1225. }
  1226. /* Maximum number of blocks we map for direct IO at once. */
  1227. #define DIO_MAX_BLOCKS 4096
  1228. static int _ext4_get_block(struct inode *inode, sector_t iblock,
  1229. struct buffer_head *bh, int flags)
  1230. {
  1231. handle_t *handle = ext4_journal_current_handle();
  1232. struct ext4_map_blocks map;
  1233. int ret = 0, started = 0;
  1234. int dio_credits;
  1235. map.m_lblk = iblock;
  1236. map.m_len = bh->b_size >> inode->i_blkbits;
  1237. if (flags && !handle) {
  1238. /* Direct IO write... */
  1239. if (map.m_len > DIO_MAX_BLOCKS)
  1240. map.m_len = DIO_MAX_BLOCKS;
  1241. dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
  1242. handle = ext4_journal_start(inode, dio_credits);
  1243. if (IS_ERR(handle)) {
  1244. ret = PTR_ERR(handle);
  1245. return ret;
  1246. }
  1247. started = 1;
  1248. }
  1249. ret = ext4_map_blocks(handle, inode, &map, flags);
  1250. if (ret > 0) {
  1251. map_bh(bh, inode->i_sb, map.m_pblk);
  1252. bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
  1253. bh->b_size = inode->i_sb->s_blocksize * map.m_len;
  1254. ret = 0;
  1255. }
  1256. if (started)
  1257. ext4_journal_stop(handle);
  1258. return ret;
  1259. }
  1260. int ext4_get_block(struct inode *inode, sector_t iblock,
  1261. struct buffer_head *bh, int create)
  1262. {
  1263. return _ext4_get_block(inode, iblock, bh,
  1264. create ? EXT4_GET_BLOCKS_CREATE : 0);
  1265. }
  1266. /*
  1267. * `handle' can be NULL if create is zero
  1268. */
  1269. struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
  1270. ext4_lblk_t block, int create, int *errp)
  1271. {
  1272. struct ext4_map_blocks map;
  1273. struct buffer_head *bh;
  1274. int fatal = 0, err;
  1275. J_ASSERT(handle != NULL || create == 0);
  1276. map.m_lblk = block;
  1277. map.m_len = 1;
  1278. err = ext4_map_blocks(handle, inode, &map,
  1279. create ? EXT4_GET_BLOCKS_CREATE : 0);
  1280. if (err < 0)
  1281. *errp = err;
  1282. if (err <= 0)
  1283. return NULL;
  1284. *errp = 0;
  1285. bh = sb_getblk(inode->i_sb, map.m_pblk);
  1286. if (!bh) {
  1287. *errp = -EIO;
  1288. return NULL;
  1289. }
  1290. if (map.m_flags & EXT4_MAP_NEW) {
  1291. J_ASSERT(create != 0);
  1292. J_ASSERT(handle != NULL);
  1293. /*
  1294. * Now that we do not always journal data, we should
  1295. * keep in mind whether this should always journal the
  1296. * new buffer as metadata. For now, regular file
  1297. * writes use ext4_get_block instead, so it's not a
  1298. * problem.
  1299. */
  1300. lock_buffer(bh);
  1301. BUFFER_TRACE(bh, "call get_create_access");
  1302. fatal = ext4_journal_get_create_access(handle, bh);
  1303. if (!fatal && !buffer_uptodate(bh)) {
  1304. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  1305. set_buffer_uptodate(bh);
  1306. }
  1307. unlock_buffer(bh);
  1308. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  1309. err = ext4_handle_dirty_metadata(handle, inode, bh);
  1310. if (!fatal)
  1311. fatal = err;
  1312. } else {
  1313. BUFFER_TRACE(bh, "not a new buffer");
  1314. }
  1315. if (fatal) {
  1316. *errp = fatal;
  1317. brelse(bh);
  1318. bh = NULL;
  1319. }
  1320. return bh;
  1321. }
  1322. struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
  1323. ext4_lblk_t block, int create, int *err)
  1324. {
  1325. struct buffer_head *bh;
  1326. bh = ext4_getblk(handle, inode, block, create, err);
  1327. if (!bh)
  1328. return bh;
  1329. if (buffer_uptodate(bh))
  1330. return bh;
  1331. ll_rw_block(READ_META, 1, &bh);
  1332. wait_on_buffer(bh);
  1333. if (buffer_uptodate(bh))
  1334. return bh;
  1335. put_bh(bh);
  1336. *err = -EIO;
  1337. return NULL;
  1338. }
  1339. static int walk_page_buffers(handle_t *handle,
  1340. struct buffer_head *head,
  1341. unsigned from,
  1342. unsigned to,
  1343. int *partial,
  1344. int (*fn)(handle_t *handle,
  1345. struct buffer_head *bh))
  1346. {
  1347. struct buffer_head *bh;
  1348. unsigned block_start, block_end;
  1349. unsigned blocksize = head->b_size;
  1350. int err, ret = 0;
  1351. struct buffer_head *next;
  1352. for (bh = head, block_start = 0;
  1353. ret == 0 && (bh != head || !block_start);
  1354. block_start = block_end, bh = next) {
  1355. next = bh->b_this_page;
  1356. block_end = block_start + blocksize;
  1357. if (block_end <= from || block_start >= to) {
  1358. if (partial && !buffer_uptodate(bh))
  1359. *partial = 1;
  1360. continue;
  1361. }
  1362. err = (*fn)(handle, bh);
  1363. if (!ret)
  1364. ret = err;
  1365. }
  1366. return ret;
  1367. }
  1368. /*
  1369. * To preserve ordering, it is essential that the hole instantiation and
  1370. * the data write be encapsulated in a single transaction. We cannot
  1371. * close off a transaction and start a new one between the ext4_get_block()
  1372. * and the commit_write(). So doing the jbd2_journal_start at the start of
  1373. * prepare_write() is the right place.
  1374. *
  1375. * Also, this function can nest inside ext4_writepage() ->
  1376. * block_write_full_page(). In that case, we *know* that ext4_writepage()
  1377. * has generated enough buffer credits to do the whole page. So we won't
  1378. * block on the journal in that case, which is good, because the caller may
  1379. * be PF_MEMALLOC.
  1380. *
  1381. * By accident, ext4 can be reentered when a transaction is open via
  1382. * quota file writes. If we were to commit the transaction while thus
  1383. * reentered, there can be a deadlock - we would be holding a quota
  1384. * lock, and the commit would never complete if another thread had a
  1385. * transaction open and was blocking on the quota lock - a ranking
  1386. * violation.
  1387. *
  1388. * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
  1389. * will _not_ run commit under these circumstances because handle->h_ref
  1390. * is elevated. We'll still have enough credits for the tiny quotafile
  1391. * write.
  1392. */
  1393. static int do_journal_get_write_access(handle_t *handle,
  1394. struct buffer_head *bh)
  1395. {
  1396. int dirty = buffer_dirty(bh);
  1397. int ret;
  1398. if (!buffer_mapped(bh) || buffer_freed(bh))
  1399. return 0;
  1400. /*
  1401. * __block_write_begin() could have dirtied some buffers. Clean
  1402. * the dirty bit as jbd2_journal_get_write_access() could complain
  1403. * otherwise about fs integrity issues. Setting of the dirty bit
  1404. * by __block_write_begin() isn't a real problem here as we clear
  1405. * the bit before releasing a page lock and thus writeback cannot
  1406. * ever write the buffer.
  1407. */
  1408. if (dirty)
  1409. clear_buffer_dirty(bh);
  1410. ret = ext4_journal_get_write_access(handle, bh);
  1411. if (!ret && dirty)
  1412. ret = ext4_handle_dirty_metadata(handle, NULL, bh);
  1413. return ret;
  1414. }
  1415. /*
  1416. * Truncate blocks that were not used by write. We have to truncate the
  1417. * pagecache as well so that corresponding buffers get properly unmapped.
  1418. */
  1419. static void ext4_truncate_failed_write(struct inode *inode)
  1420. {
  1421. truncate_inode_pages(inode->i_mapping, inode->i_size);
  1422. ext4_truncate(inode);
  1423. }
  1424. static int ext4_get_block_write(struct inode *inode, sector_t iblock,
  1425. struct buffer_head *bh_result, int create);
  1426. static int ext4_write_begin(struct file *file, struct address_space *mapping,
  1427. loff_t pos, unsigned len, unsigned flags,
  1428. struct page **pagep, void **fsdata)
  1429. {
  1430. struct inode *inode = mapping->host;
  1431. int ret, needed_blocks;
  1432. handle_t *handle;
  1433. int retries = 0;
  1434. struct page *page;
  1435. pgoff_t index;
  1436. unsigned from, to;
  1437. trace_ext4_write_begin(inode, pos, len, flags);
  1438. /*
  1439. * Reserve one block more for addition to orphan list in case
  1440. * we allocate blocks but write fails for some reason
  1441. */
  1442. needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
  1443. index = pos >> PAGE_CACHE_SHIFT;
  1444. from = pos & (PAGE_CACHE_SIZE - 1);
  1445. to = from + len;
  1446. retry:
  1447. handle = ext4_journal_start(inode, needed_blocks);
  1448. if (IS_ERR(handle)) {
  1449. ret = PTR_ERR(handle);
  1450. goto out;
  1451. }
  1452. /* We cannot recurse into the filesystem as the transaction is already
  1453. * started */
  1454. flags |= AOP_FLAG_NOFS;
  1455. page = grab_cache_page_write_begin(mapping, index, flags);
  1456. if (!page) {
  1457. ext4_journal_stop(handle);
  1458. ret = -ENOMEM;
  1459. goto out;
  1460. }
  1461. *pagep = page;
  1462. if (ext4_should_dioread_nolock(inode))
  1463. ret = __block_write_begin(page, pos, len, ext4_get_block_write);
  1464. else
  1465. ret = __block_write_begin(page, pos, len, ext4_get_block);
  1466. if (!ret && ext4_should_journal_data(inode)) {
  1467. ret = walk_page_buffers(handle, page_buffers(page),
  1468. from, to, NULL, do_journal_get_write_access);
  1469. }
  1470. if (ret) {
  1471. unlock_page(page);
  1472. page_cache_release(page);
  1473. /*
  1474. * __block_write_begin may have instantiated a few blocks
  1475. * outside i_size. Trim these off again. Don't need
  1476. * i_size_read because we hold i_mutex.
  1477. *
  1478. * Add inode to orphan list in case we crash before
  1479. * truncate finishes
  1480. */
  1481. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  1482. ext4_orphan_add(handle, inode);
  1483. ext4_journal_stop(handle);
  1484. if (pos + len > inode->i_size) {
  1485. ext4_truncate_failed_write(inode);
  1486. /*
  1487. * If truncate failed early the inode might
  1488. * still be on the orphan list; we need to
  1489. * make sure the inode is removed from the
  1490. * orphan list in that case.
  1491. */
  1492. if (inode->i_nlink)
  1493. ext4_orphan_del(NULL, inode);
  1494. }
  1495. }
  1496. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  1497. goto retry;
  1498. out:
  1499. return ret;
  1500. }
  1501. /* For write_end() in data=journal mode */
  1502. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1503. {
  1504. if (!buffer_mapped(bh) || buffer_freed(bh))
  1505. return 0;
  1506. set_buffer_uptodate(bh);
  1507. return ext4_handle_dirty_metadata(handle, NULL, bh);
  1508. }
  1509. static int ext4_generic_write_end(struct file *file,
  1510. struct address_space *mapping,
  1511. loff_t pos, unsigned len, unsigned copied,
  1512. struct page *page, void *fsdata)
  1513. {
  1514. int i_size_changed = 0;
  1515. struct inode *inode = mapping->host;
  1516. handle_t *handle = ext4_journal_current_handle();
  1517. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1518. /*
  1519. * No need to use i_size_read() here, the i_size
  1520. * cannot change under us because we hold i_mutex.
  1521. *
  1522. * But it's important to update i_size while still holding page lock:
  1523. * page writeout could otherwise come in and zero beyond i_size.
  1524. */
  1525. if (pos + copied > inode->i_size) {
  1526. i_size_write(inode, pos + copied);
  1527. i_size_changed = 1;
  1528. }
  1529. if (pos + copied > EXT4_I(inode)->i_disksize) {
  1530. /* We need to mark inode dirty even if
  1531. * new_i_size is less that inode->i_size
  1532. * bu greater than i_disksize.(hint delalloc)
  1533. */
  1534. ext4_update_i_disksize(inode, (pos + copied));
  1535. i_size_changed = 1;
  1536. }
  1537. unlock_page(page);
  1538. page_cache_release(page);
  1539. /*
  1540. * Don't mark the inode dirty under page lock. First, it unnecessarily
  1541. * makes the holding time of page lock longer. Second, it forces lock
  1542. * ordering of page lock and transaction start for journaling
  1543. * filesystems.
  1544. */
  1545. if (i_size_changed)
  1546. ext4_mark_inode_dirty(handle, inode);
  1547. return copied;
  1548. }
  1549. /*
  1550. * We need to pick up the new inode size which generic_commit_write gave us
  1551. * `file' can be NULL - eg, when called from page_symlink().
  1552. *
  1553. * ext4 never places buffers on inode->i_mapping->private_list. metadata
  1554. * buffers are managed internally.
  1555. */
  1556. static int ext4_ordered_write_end(struct file *file,
  1557. struct address_space *mapping,
  1558. loff_t pos, unsigned len, unsigned copied,
  1559. struct page *page, void *fsdata)
  1560. {
  1561. handle_t *handle = ext4_journal_current_handle();
  1562. struct inode *inode = mapping->host;
  1563. int ret = 0, ret2;
  1564. trace_ext4_ordered_write_end(inode, pos, len, copied);
  1565. ret = ext4_jbd2_file_inode(handle, inode);
  1566. if (ret == 0) {
  1567. ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
  1568. page, fsdata);
  1569. copied = ret2;
  1570. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  1571. /* if we have allocated more blocks and copied
  1572. * less. We will have blocks allocated outside
  1573. * inode->i_size. So truncate them
  1574. */
  1575. ext4_orphan_add(handle, inode);
  1576. if (ret2 < 0)
  1577. ret = ret2;
  1578. }
  1579. ret2 = ext4_journal_stop(handle);
  1580. if (!ret)
  1581. ret = ret2;
  1582. if (pos + len > inode->i_size) {
  1583. ext4_truncate_failed_write(inode);
  1584. /*
  1585. * If truncate failed early the inode might still be
  1586. * on the orphan list; we need to make sure the inode
  1587. * is removed from the orphan list in that case.
  1588. */
  1589. if (inode->i_nlink)
  1590. ext4_orphan_del(NULL, inode);
  1591. }
  1592. return ret ? ret : copied;
  1593. }
  1594. static int ext4_writeback_write_end(struct file *file,
  1595. struct address_space *mapping,
  1596. loff_t pos, unsigned len, unsigned copied,
  1597. struct page *page, void *fsdata)
  1598. {
  1599. handle_t *handle = ext4_journal_current_handle();
  1600. struct inode *inode = mapping->host;
  1601. int ret = 0, ret2;
  1602. trace_ext4_writeback_write_end(inode, pos, len, copied);
  1603. ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
  1604. page, fsdata);
  1605. copied = ret2;
  1606. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  1607. /* if we have allocated more blocks and copied
  1608. * less. We will have blocks allocated outside
  1609. * inode->i_size. So truncate them
  1610. */
  1611. ext4_orphan_add(handle, inode);
  1612. if (ret2 < 0)
  1613. ret = ret2;
  1614. ret2 = ext4_journal_stop(handle);
  1615. if (!ret)
  1616. ret = ret2;
  1617. if (pos + len > inode->i_size) {
  1618. ext4_truncate_failed_write(inode);
  1619. /*
  1620. * If truncate failed early the inode might still be
  1621. * on the orphan list; we need to make sure the inode
  1622. * is removed from the orphan list in that case.
  1623. */
  1624. if (inode->i_nlink)
  1625. ext4_orphan_del(NULL, inode);
  1626. }
  1627. return ret ? ret : copied;
  1628. }
  1629. static int ext4_journalled_write_end(struct file *file,
  1630. struct address_space *mapping,
  1631. loff_t pos, unsigned len, unsigned copied,
  1632. struct page *page, void *fsdata)
  1633. {
  1634. handle_t *handle = ext4_journal_current_handle();
  1635. struct inode *inode = mapping->host;
  1636. int ret = 0, ret2;
  1637. int partial = 0;
  1638. unsigned from, to;
  1639. loff_t new_i_size;
  1640. trace_ext4_journalled_write_end(inode, pos, len, copied);
  1641. from = pos & (PAGE_CACHE_SIZE - 1);
  1642. to = from + len;
  1643. if (copied < len) {
  1644. if (!PageUptodate(page))
  1645. copied = 0;
  1646. page_zero_new_buffers(page, from+copied, to);
  1647. }
  1648. ret = walk_page_buffers(handle, page_buffers(page), from,
  1649. to, &partial, write_end_fn);
  1650. if (!partial)
  1651. SetPageUptodate(page);
  1652. new_i_size = pos + copied;
  1653. if (new_i_size > inode->i_size)
  1654. i_size_write(inode, pos+copied);
  1655. ext4_set_inode_state(inode, EXT4_STATE_JDATA);
  1656. if (new_i_size > EXT4_I(inode)->i_disksize) {
  1657. ext4_update_i_disksize(inode, new_i_size);
  1658. ret2 = ext4_mark_inode_dirty(handle, inode);
  1659. if (!ret)
  1660. ret = ret2;
  1661. }
  1662. unlock_page(page);
  1663. page_cache_release(page);
  1664. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  1665. /* if we have allocated more blocks and copied
  1666. * less. We will have blocks allocated outside
  1667. * inode->i_size. So truncate them
  1668. */
  1669. ext4_orphan_add(handle, inode);
  1670. ret2 = ext4_journal_stop(handle);
  1671. if (!ret)
  1672. ret = ret2;
  1673. if (pos + len > inode->i_size) {
  1674. ext4_truncate_failed_write(inode);
  1675. /*
  1676. * If truncate failed early the inode might still be
  1677. * on the orphan list; we need to make sure the inode
  1678. * is removed from the orphan list in that case.
  1679. */
  1680. if (inode->i_nlink)
  1681. ext4_orphan_del(NULL, inode);
  1682. }
  1683. return ret ? ret : copied;
  1684. }
  1685. /*
  1686. * Reserve a single block located at lblock
  1687. */
  1688. static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
  1689. {
  1690. int retries = 0;
  1691. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1692. struct ext4_inode_info *ei = EXT4_I(inode);
  1693. unsigned long md_needed;
  1694. int ret;
  1695. /*
  1696. * recalculate the amount of metadata blocks to reserve
  1697. * in order to allocate nrblocks
  1698. * worse case is one extent per block
  1699. */
  1700. repeat:
  1701. spin_lock(&ei->i_block_reservation_lock);
  1702. md_needed = ext4_calc_metadata_amount(inode, lblock);
  1703. trace_ext4_da_reserve_space(inode, md_needed);
  1704. spin_unlock(&ei->i_block_reservation_lock);
  1705. /*
  1706. * We will charge metadata quota at writeout time; this saves
  1707. * us from metadata over-estimation, though we may go over by
  1708. * a small amount in the end. Here we just reserve for data.
  1709. */
  1710. ret = dquot_reserve_block(inode, 1);
  1711. if (ret)
  1712. return ret;
  1713. /*
  1714. * We do still charge estimated metadata to the sb though;
  1715. * we cannot afford to run out of free blocks.
  1716. */
  1717. if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
  1718. dquot_release_reservation_block(inode, 1);
  1719. if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
  1720. yield();
  1721. goto repeat;
  1722. }
  1723. return -ENOSPC;
  1724. }
  1725. spin_lock(&ei->i_block_reservation_lock);
  1726. ei->i_reserved_data_blocks++;
  1727. ei->i_reserved_meta_blocks += md_needed;
  1728. spin_unlock(&ei->i_block_reservation_lock);
  1729. return 0; /* success */
  1730. }
  1731. static void ext4_da_release_space(struct inode *inode, int to_free)
  1732. {
  1733. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1734. struct ext4_inode_info *ei = EXT4_I(inode);
  1735. if (!to_free)
  1736. return; /* Nothing to release, exit */
  1737. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  1738. trace_ext4_da_release_space(inode, to_free);
  1739. if (unlikely(to_free > ei->i_reserved_data_blocks)) {
  1740. /*
  1741. * if there aren't enough reserved blocks, then the
  1742. * counter is messed up somewhere. Since this
  1743. * function is called from invalidate page, it's
  1744. * harmless to return without any action.
  1745. */
  1746. ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
  1747. "ino %lu, to_free %d with only %d reserved "
  1748. "data blocks\n", inode->i_ino, to_free,
  1749. ei->i_reserved_data_blocks);
  1750. WARN_ON(1);
  1751. to_free = ei->i_reserved_data_blocks;
  1752. }
  1753. ei->i_reserved_data_blocks -= to_free;
  1754. if (ei->i_reserved_data_blocks == 0) {
  1755. /*
  1756. * We can release all of the reserved metadata blocks
  1757. * only when we have written all of the delayed
  1758. * allocation blocks.
  1759. */
  1760. percpu_counter_sub(&sbi->s_dirtyblocks_counter,
  1761. ei->i_reserved_meta_blocks);
  1762. ei->i_reserved_meta_blocks = 0;
  1763. ei->i_da_metadata_calc_len = 0;
  1764. }
  1765. /* update fs dirty data blocks counter */
  1766. percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
  1767. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1768. dquot_release_reservation_block(inode, to_free);
  1769. }
  1770. static void ext4_da_page_release_reservation(struct page *page,
  1771. unsigned long offset)
  1772. {
  1773. int to_release = 0;
  1774. struct buffer_head *head, *bh;
  1775. unsigned int curr_off = 0;
  1776. head = page_buffers(page);
  1777. bh = head;
  1778. do {
  1779. unsigned int next_off = curr_off + bh->b_size;
  1780. if ((offset <= curr_off) && (buffer_delay(bh))) {
  1781. to_release++;
  1782. clear_buffer_delay(bh);
  1783. }
  1784. curr_off = next_off;
  1785. } while ((bh = bh->b_this_page) != head);
  1786. ext4_da_release_space(page->mapping->host, to_release);
  1787. }
  1788. /*
  1789. * Delayed allocation stuff
  1790. */
  1791. /*
  1792. * mpage_da_submit_io - walks through extent of pages and try to write
  1793. * them with writepage() call back
  1794. *
  1795. * @mpd->inode: inode
  1796. * @mpd->first_page: first page of the extent
  1797. * @mpd->next_page: page after the last page of the extent
  1798. *
  1799. * By the time mpage_da_submit_io() is called we expect all blocks
  1800. * to be allocated. this may be wrong if allocation failed.
  1801. *
  1802. * As pages are already locked by write_cache_pages(), we can't use it
  1803. */
  1804. static int mpage_da_submit_io(struct mpage_da_data *mpd)
  1805. {
  1806. long pages_skipped;
  1807. struct pagevec pvec;
  1808. unsigned long index, end;
  1809. int ret = 0, err, nr_pages, i;
  1810. struct inode *inode = mpd->inode;
  1811. struct address_space *mapping = inode->i_mapping;
  1812. BUG_ON(mpd->next_page <= mpd->first_page);
  1813. /*
  1814. * We need to start from the first_page to the next_page - 1
  1815. * to make sure we also write the mapped dirty buffer_heads.
  1816. * If we look at mpd->b_blocknr we would only be looking
  1817. * at the currently mapped buffer_heads.
  1818. */
  1819. index = mpd->first_page;
  1820. end = mpd->next_page - 1;
  1821. pagevec_init(&pvec, 0);
  1822. while (index <= end) {
  1823. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1824. if (nr_pages == 0)
  1825. break;
  1826. for (i = 0; i < nr_pages; i++) {
  1827. struct page *page = pvec.pages[i];
  1828. index = page->index;
  1829. if (index > end)
  1830. break;
  1831. index++;
  1832. BUG_ON(!PageLocked(page));
  1833. BUG_ON(PageWriteback(page));
  1834. pages_skipped = mpd->wbc->pages_skipped;
  1835. err = mapping->a_ops->writepage(page, mpd->wbc);
  1836. if (!err && (pages_skipped == mpd->wbc->pages_skipped))
  1837. /*
  1838. * have successfully written the page
  1839. * without skipping the same
  1840. */
  1841. mpd->pages_written++;
  1842. /*
  1843. * In error case, we have to continue because
  1844. * remaining pages are still locked
  1845. * XXX: unlock and re-dirty them?
  1846. */
  1847. if (ret == 0)
  1848. ret = err;
  1849. }
  1850. pagevec_release(&pvec);
  1851. }
  1852. return ret;
  1853. }
  1854. /*
  1855. * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
  1856. *
  1857. * the function goes through all passed space and put actual disk
  1858. * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
  1859. */
  1860. static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
  1861. struct ext4_map_blocks *map)
  1862. {
  1863. struct inode *inode = mpd->inode;
  1864. struct address_space *mapping = inode->i_mapping;
  1865. int blocks = map->m_len;
  1866. sector_t pblock = map->m_pblk, cur_logical;
  1867. struct buffer_head *head, *bh;
  1868. pgoff_t index, end;
  1869. struct pagevec pvec;
  1870. int nr_pages, i;
  1871. index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1872. end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1873. cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1874. pagevec_init(&pvec, 0);
  1875. while (index <= end) {
  1876. /* XXX: optimize tail */
  1877. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1878. if (nr_pages == 0)
  1879. break;
  1880. for (i = 0; i < nr_pages; i++) {
  1881. struct page *page = pvec.pages[i];
  1882. index = page->index;
  1883. if (index > end)
  1884. break;
  1885. index++;
  1886. BUG_ON(!PageLocked(page));
  1887. BUG_ON(PageWriteback(page));
  1888. BUG_ON(!page_has_buffers(page));
  1889. bh = page_buffers(page);
  1890. head = bh;
  1891. /* skip blocks out of the range */
  1892. do {
  1893. if (cur_logical >= map->m_lblk)
  1894. break;
  1895. cur_logical++;
  1896. } while ((bh = bh->b_this_page) != head);
  1897. do {
  1898. if (cur_logical >= map->m_lblk + blocks)
  1899. break;
  1900. if (buffer_delay(bh) || buffer_unwritten(bh)) {
  1901. BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
  1902. if (buffer_delay(bh)) {
  1903. clear_buffer_delay(bh);
  1904. bh->b_blocknr = pblock;
  1905. } else {
  1906. /*
  1907. * unwritten already should have
  1908. * blocknr assigned. Verify that
  1909. */
  1910. clear_buffer_unwritten(bh);
  1911. BUG_ON(bh->b_blocknr != pblock);
  1912. }
  1913. } else if (buffer_mapped(bh))
  1914. BUG_ON(bh->b_blocknr != pblock);
  1915. if (map->m_flags & EXT4_MAP_UNINIT)
  1916. set_buffer_uninit(bh);
  1917. cur_logical++;
  1918. pblock++;
  1919. } while ((bh = bh->b_this_page) != head);
  1920. }
  1921. pagevec_release(&pvec);
  1922. }
  1923. }
  1924. static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
  1925. sector_t logical, long blk_cnt)
  1926. {
  1927. int nr_pages, i;
  1928. pgoff_t index, end;
  1929. struct pagevec pvec;
  1930. struct inode *inode = mpd->inode;
  1931. struct address_space *mapping = inode->i_mapping;
  1932. index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1933. end = (logical + blk_cnt - 1) >>
  1934. (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1935. while (index <= end) {
  1936. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1937. if (nr_pages == 0)
  1938. break;
  1939. for (i = 0; i < nr_pages; i++) {
  1940. struct page *page = pvec.pages[i];
  1941. if (page->index > end)
  1942. break;
  1943. BUG_ON(!PageLocked(page));
  1944. BUG_ON(PageWriteback(page));
  1945. block_invalidatepage(page, 0);
  1946. ClearPageUptodate(page);
  1947. unlock_page(page);
  1948. }
  1949. index = pvec.pages[nr_pages - 1]->index + 1;
  1950. pagevec_release(&pvec);
  1951. }
  1952. return;
  1953. }
  1954. static void ext4_print_free_blocks(struct inode *inode)
  1955. {
  1956. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1957. printk(KERN_CRIT "Total free blocks count %lld\n",
  1958. ext4_count_free_blocks(inode->i_sb));
  1959. printk(KERN_CRIT "Free/Dirty block details\n");
  1960. printk(KERN_CRIT "free_blocks=%lld\n",
  1961. (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
  1962. printk(KERN_CRIT "dirty_blocks=%lld\n",
  1963. (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
  1964. printk(KERN_CRIT "Block reservation details\n");
  1965. printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
  1966. EXT4_I(inode)->i_reserved_data_blocks);
  1967. printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
  1968. EXT4_I(inode)->i_reserved_meta_blocks);
  1969. return;
  1970. }
  1971. /*
  1972. * mpage_da_map_blocks - go through given space
  1973. *
  1974. * @mpd - bh describing space
  1975. *
  1976. * The function skips space we know is already mapped to disk blocks.
  1977. *
  1978. */
  1979. static int mpage_da_map_blocks(struct mpage_da_data *mpd)
  1980. {
  1981. int err, blks, get_blocks_flags;
  1982. struct ext4_map_blocks map;
  1983. sector_t next = mpd->b_blocknr;
  1984. unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
  1985. loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
  1986. handle_t *handle = NULL;
  1987. /*
  1988. * We consider only non-mapped and non-allocated blocks
  1989. */
  1990. if ((mpd->b_state & (1 << BH_Mapped)) &&
  1991. !(mpd->b_state & (1 << BH_Delay)) &&
  1992. !(mpd->b_state & (1 << BH_Unwritten)))
  1993. return 0;
  1994. /*
  1995. * If we didn't accumulate anything to write simply return
  1996. */
  1997. if (!mpd->b_size)
  1998. return 0;
  1999. handle = ext4_journal_current_handle();
  2000. BUG_ON(!handle);
  2001. /*
  2002. * Call ext4_map_blocks() to allocate any delayed allocation
  2003. * blocks, or to convert an uninitialized extent to be
  2004. * initialized (in the case where we have written into
  2005. * one or more preallocated blocks).
  2006. *
  2007. * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
  2008. * indicate that we are on the delayed allocation path. This
  2009. * affects functions in many different parts of the allocation
  2010. * call path. This flag exists primarily because we don't
  2011. * want to change *many* call functions, so ext4_map_blocks()
  2012. * will set the magic i_delalloc_reserved_flag once the
  2013. * inode's allocation semaphore is taken.
  2014. *
  2015. * If the blocks in questions were delalloc blocks, set
  2016. * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
  2017. * variables are updated after the blocks have been allocated.
  2018. */
  2019. map.m_lblk = next;
  2020. map.m_len = max_blocks;
  2021. get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
  2022. if (ext4_should_dioread_nolock(mpd->inode))
  2023. get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
  2024. if (mpd->b_state & (1 << BH_Delay))
  2025. get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
  2026. blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
  2027. if (blks < 0) {
  2028. struct super_block *sb = mpd->inode->i_sb;
  2029. err = blks;
  2030. /*
  2031. * If get block returns with error we simply
  2032. * return. Later writepage will redirty the page and
  2033. * writepages will find the dirty page again
  2034. */
  2035. if (err == -EAGAIN)
  2036. return 0;
  2037. if (err == -ENOSPC &&
  2038. ext4_count_free_blocks(sb)) {
  2039. mpd->retval = err;
  2040. return 0;
  2041. }
  2042. /*
  2043. * get block failure will cause us to loop in
  2044. * writepages, because a_ops->writepage won't be able
  2045. * to make progress. The page will be redirtied by
  2046. * writepage and writepages will again try to write
  2047. * the same.
  2048. */
  2049. if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
  2050. ext4_msg(sb, KERN_CRIT,
  2051. "delayed block allocation failed for inode %lu "
  2052. "at logical offset %llu with max blocks %zd "
  2053. "with error %d", mpd->inode->i_ino,
  2054. (unsigned long long) next,
  2055. mpd->b_size >> mpd->inode->i_blkbits, err);
  2056. ext4_msg(sb, KERN_CRIT,
  2057. "This should not happen!! Data will be lost\n");
  2058. if (err == -ENOSPC)
  2059. ext4_print_free_blocks(mpd->inode);
  2060. }
  2061. /* invalidate all the pages */
  2062. ext4_da_block_invalidatepages(mpd, next,
  2063. mpd->b_size >> mpd->inode->i_blkbits);
  2064. return err;
  2065. }
  2066. BUG_ON(blks == 0);
  2067. if (map.m_flags & EXT4_MAP_NEW) {
  2068. struct block_device *bdev = mpd->inode->i_sb->s_bdev;
  2069. int i;
  2070. for (i = 0; i < map.m_len; i++)
  2071. unmap_underlying_metadata(bdev, map.m_pblk + i);
  2072. }
  2073. /*
  2074. * If blocks are delayed marked, we need to
  2075. * put actual blocknr and drop delayed bit
  2076. */
  2077. if ((mpd->b_state & (1 << BH_Delay)) ||
  2078. (mpd->b_state & (1 << BH_Unwritten)))
  2079. mpage_put_bnr_to_bhs(mpd, &map);
  2080. if (ext4_should_order_data(mpd->inode)) {
  2081. err = ext4_jbd2_file_inode(handle, mpd->inode);
  2082. if (err)
  2083. return err;
  2084. }
  2085. /*
  2086. * Update on-disk size along with block allocation.
  2087. */
  2088. disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
  2089. if (disksize > i_size_read(mpd->inode))
  2090. disksize = i_size_read(mpd->inode);
  2091. if (disksize > EXT4_I(mpd->inode)->i_disksize) {
  2092. ext4_update_i_disksize(mpd->inode, disksize);
  2093. return ext4_mark_inode_dirty(handle, mpd->inode);
  2094. }
  2095. return 0;
  2096. }
  2097. #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
  2098. (1 << BH_Delay) | (1 << BH_Unwritten))
  2099. /*
  2100. * mpage_add_bh_to_extent - try to add one more block to extent of blocks
  2101. *
  2102. * @mpd->lbh - extent of blocks
  2103. * @logical - logical number of the block in the file
  2104. * @bh - bh of the block (used to access block's state)
  2105. *
  2106. * the function is used to collect contig. blocks in same state
  2107. */
  2108. static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
  2109. sector_t logical, size_t b_size,
  2110. unsigned long b_state)
  2111. {
  2112. sector_t next;
  2113. int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
  2114. /*
  2115. * XXX Don't go larger than mballoc is willing to allocate
  2116. * This is a stopgap solution. We eventually need to fold
  2117. * mpage_da_submit_io() into this function and then call
  2118. * ext4_map_blocks() multiple times in a loop
  2119. */
  2120. if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
  2121. goto flush_it;
  2122. /* check if thereserved journal credits might overflow */
  2123. if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
  2124. if (nrblocks >= EXT4_MAX_TRANS_DATA) {
  2125. /*
  2126. * With non-extent format we are limited by the journal
  2127. * credit available. Total credit needed to insert
  2128. * nrblocks contiguous blocks is dependent on the
  2129. * nrblocks. So limit nrblocks.
  2130. */
  2131. goto flush_it;
  2132. } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
  2133. EXT4_MAX_TRANS_DATA) {
  2134. /*
  2135. * Adding the new buffer_head would make it cross the
  2136. * allowed limit for which we have journal credit
  2137. * reserved. So limit the new bh->b_size
  2138. */
  2139. b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
  2140. mpd->inode->i_blkbits;
  2141. /* we will do mpage_da_submit_io in the next loop */
  2142. }
  2143. }
  2144. /*
  2145. * First block in the extent
  2146. */
  2147. if (mpd->b_size == 0) {
  2148. mpd->b_blocknr = logical;
  2149. mpd->b_size = b_size;
  2150. mpd->b_state = b_state & BH_FLAGS;
  2151. return;
  2152. }
  2153. next = mpd->b_blocknr + nrblocks;
  2154. /*
  2155. * Can we merge the block to our big extent?
  2156. */
  2157. if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
  2158. mpd->b_size += b_size;
  2159. return;
  2160. }
  2161. flush_it:
  2162. /*
  2163. * We couldn't merge the block to our extent, so we
  2164. * need to flush current extent and start new one
  2165. */
  2166. if (mpage_da_map_blocks(mpd) == 0)
  2167. mpage_da_submit_io(mpd);
  2168. mpd->io_done = 1;
  2169. return;
  2170. }
  2171. static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
  2172. {
  2173. return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
  2174. }
  2175. /*
  2176. * __mpage_da_writepage - finds extent of pages and blocks
  2177. *
  2178. * @page: page to consider
  2179. * @wbc: not used, we just follow rules
  2180. * @data: context
  2181. *
  2182. * The function finds extents of pages and scan them for all blocks.
  2183. */
  2184. static int __mpage_da_writepage(struct page *page,
  2185. struct writeback_control *wbc, void *data)
  2186. {
  2187. struct mpage_da_data *mpd = data;
  2188. struct inode *inode = mpd->inode;
  2189. struct buffer_head *bh, *head;
  2190. sector_t logical;
  2191. /*
  2192. * Can we merge this page to current extent?
  2193. */
  2194. if (mpd->next_page != page->index) {
  2195. /*
  2196. * Nope, we can't. So, we map non-allocated blocks
  2197. * and start IO on them using writepage()
  2198. */
  2199. if (mpd->next_page != mpd->first_page) {
  2200. if (mpage_da_map_blocks(mpd) == 0)
  2201. mpage_da_submit_io(mpd);
  2202. /*
  2203. * skip rest of the page in the page_vec
  2204. */
  2205. mpd->io_done = 1;
  2206. redirty_page_for_writepage(wbc, page);
  2207. unlock_page(page);
  2208. return MPAGE_DA_EXTENT_TAIL;
  2209. }
  2210. /*
  2211. * Start next extent of pages ...
  2212. */
  2213. mpd->first_page = page->index;
  2214. /*
  2215. * ... and blocks
  2216. */
  2217. mpd->b_size = 0;
  2218. mpd->b_state = 0;
  2219. mpd->b_blocknr = 0;
  2220. }
  2221. mpd->next_page = page->index + 1;
  2222. logical = (sector_t) page->index <<
  2223. (PAGE_CACHE_SHIFT - inode->i_blkbits);
  2224. if (!page_has_buffers(page)) {
  2225. mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
  2226. (1 << BH_Dirty) | (1 << BH_Uptodate));
  2227. if (mpd->io_done)
  2228. return MPAGE_DA_EXTENT_TAIL;
  2229. } else {
  2230. /*
  2231. * Page with regular buffer heads, just add all dirty ones
  2232. */
  2233. head = page_buffers(page);
  2234. bh = head;
  2235. do {
  2236. BUG_ON(buffer_locked(bh));
  2237. /*
  2238. * We need to try to allocate
  2239. * unmapped blocks in the same page.
  2240. * Otherwise we won't make progress
  2241. * with the page in ext4_writepage
  2242. */
  2243. if (ext4_bh_delay_or_unwritten(NULL, bh)) {
  2244. mpage_add_bh_to_extent(mpd, logical,
  2245. bh->b_size,
  2246. bh->b_state);
  2247. if (mpd->io_done)
  2248. return MPAGE_DA_EXTENT_TAIL;
  2249. } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
  2250. /*
  2251. * mapped dirty buffer. We need to update
  2252. * the b_state because we look at
  2253. * b_state in mpage_da_map_blocks. We don't
  2254. * update b_size because if we find an
  2255. * unmapped buffer_head later we need to
  2256. * use the b_state flag of that buffer_head.
  2257. */
  2258. if (mpd->b_size == 0)
  2259. mpd->b_state = bh->b_state & BH_FLAGS;
  2260. }
  2261. logical++;
  2262. } while ((bh = bh->b_this_page) != head);
  2263. }
  2264. return 0;
  2265. }
  2266. /*
  2267. * This is a special get_blocks_t callback which is used by
  2268. * ext4_da_write_begin(). It will either return mapped block or
  2269. * reserve space for a single block.
  2270. *
  2271. * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
  2272. * We also have b_blocknr = -1 and b_bdev initialized properly
  2273. *
  2274. * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
  2275. * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
  2276. * initialized properly.
  2277. */
  2278. static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
  2279. struct buffer_head *bh, int create)
  2280. {
  2281. struct ext4_map_blocks map;
  2282. int ret = 0;
  2283. sector_t invalid_block = ~((sector_t) 0xffff);
  2284. if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
  2285. invalid_block = ~0;
  2286. BUG_ON(create == 0);
  2287. BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
  2288. map.m_lblk = iblock;
  2289. map.m_len = 1;
  2290. /*
  2291. * first, we need to know whether the block is allocated already
  2292. * preallocated blocks are unmapped but should treated
  2293. * the same as allocated blocks.
  2294. */
  2295. ret = ext4_map_blocks(NULL, inode, &map, 0);
  2296. if (ret < 0)
  2297. return ret;
  2298. if (ret == 0) {
  2299. if (buffer_delay(bh))
  2300. return 0; /* Not sure this could or should happen */
  2301. /*
  2302. * XXX: __block_write_begin() unmaps passed block, is it OK?
  2303. */
  2304. ret = ext4_da_reserve_space(inode, iblock);
  2305. if (ret)
  2306. /* not enough space to reserve */
  2307. return ret;
  2308. map_bh(bh, inode->i_sb, invalid_block);
  2309. set_buffer_new(bh);
  2310. set_buffer_delay(bh);
  2311. return 0;
  2312. }
  2313. map_bh(bh, inode->i_sb, map.m_pblk);
  2314. bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
  2315. if (buffer_unwritten(bh)) {
  2316. /* A delayed write to unwritten bh should be marked
  2317. * new and mapped. Mapped ensures that we don't do
  2318. * get_block multiple times when we write to the same
  2319. * offset and new ensures that we do proper zero out
  2320. * for partial write.
  2321. */
  2322. set_buffer_new(bh);
  2323. set_buffer_mapped(bh);
  2324. }
  2325. return 0;
  2326. }
  2327. /*
  2328. * This function is used as a standard get_block_t calback function
  2329. * when there is no desire to allocate any blocks. It is used as a
  2330. * callback function for block_write_begin() and block_write_full_page().
  2331. * These functions should only try to map a single block at a time.
  2332. *
  2333. * Since this function doesn't do block allocations even if the caller
  2334. * requests it by passing in create=1, it is critically important that
  2335. * any caller checks to make sure that any buffer heads are returned
  2336. * by this function are either all already mapped or marked for
  2337. * delayed allocation before calling block_write_full_page(). Otherwise,
  2338. * b_blocknr could be left unitialized, and the page write functions will
  2339. * be taken by surprise.
  2340. */
  2341. static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
  2342. struct buffer_head *bh_result, int create)
  2343. {
  2344. BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
  2345. return _ext4_get_block(inode, iblock, bh_result, 0);
  2346. }
  2347. static int bget_one(handle_t *handle, struct buffer_head *bh)
  2348. {
  2349. get_bh(bh);
  2350. return 0;
  2351. }
  2352. static int bput_one(handle_t *handle, struct buffer_head *bh)
  2353. {
  2354. put_bh(bh);
  2355. return 0;
  2356. }
  2357. static int __ext4_journalled_writepage(struct page *page,
  2358. unsigned int len)
  2359. {
  2360. struct address_space *mapping = page->mapping;
  2361. struct inode *inode = mapping->host;
  2362. struct buffer_head *page_bufs;
  2363. handle_t *handle = NULL;
  2364. int ret = 0;
  2365. int err;
  2366. page_bufs = page_buffers(page);
  2367. BUG_ON(!page_bufs);
  2368. walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
  2369. /* As soon as we unlock the page, it can go away, but we have
  2370. * references to buffers so we are safe */
  2371. unlock_page(page);
  2372. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  2373. if (IS_ERR(handle)) {
  2374. ret = PTR_ERR(handle);
  2375. goto out;
  2376. }
  2377. ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
  2378. do_journal_get_write_access);
  2379. err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
  2380. write_end_fn);
  2381. if (ret == 0)
  2382. ret = err;
  2383. err = ext4_journal_stop(handle);
  2384. if (!ret)
  2385. ret = err;
  2386. walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
  2387. ext4_set_inode_state(inode, EXT4_STATE_JDATA);
  2388. out:
  2389. return ret;
  2390. }
  2391. static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
  2392. static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
  2393. /*
  2394. * Note that we don't need to start a transaction unless we're journaling data
  2395. * because we should have holes filled from ext4_page_mkwrite(). We even don't
  2396. * need to file the inode to the transaction's list in ordered mode because if
  2397. * we are writing back data added by write(), the inode is already there and if
  2398. * we are writing back data modified via mmap(), noone guarantees in which
  2399. * transaction the data will hit the disk. In case we are journaling data, we
  2400. * cannot start transaction directly because transaction start ranks above page
  2401. * lock so we have to do some magic.
  2402. *
  2403. * This function can get called via...
  2404. * - ext4_da_writepages after taking page lock (have journal handle)
  2405. * - journal_submit_inode_data_buffers (no journal handle)
  2406. * - shrink_page_list via pdflush (no journal handle)
  2407. * - grab_page_cache when doing write_begin (have journal handle)
  2408. *
  2409. * We don't do any block allocation in this function. If we have page with
  2410. * multiple blocks we need to write those buffer_heads that are mapped. This
  2411. * is important for mmaped based write. So if we do with blocksize 1K
  2412. * truncate(f, 1024);
  2413. * a = mmap(f, 0, 4096);
  2414. * a[0] = 'a';
  2415. * truncate(f, 4096);
  2416. * we have in the page first buffer_head mapped via page_mkwrite call back
  2417. * but other bufer_heads would be unmapped but dirty(dirty done via the
  2418. * do_wp_page). So writepage should write the first block. If we modify
  2419. * the mmap area beyond 1024 we will again get a page_fault and the
  2420. * page_mkwrite callback will do the block allocation and mark the
  2421. * buffer_heads mapped.
  2422. *
  2423. * We redirty the page if we have any buffer_heads that is either delay or
  2424. * unwritten in the page.
  2425. *
  2426. * We can get recursively called as show below.
  2427. *
  2428. * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  2429. * ext4_writepage()
  2430. *
  2431. * But since we don't do any block allocation we should not deadlock.
  2432. * Page also have the dirty flag cleared so we don't get recurive page_lock.
  2433. */
  2434. static int ext4_writepage(struct page *page,
  2435. struct writeback_control *wbc)
  2436. {
  2437. int ret = 0;
  2438. loff_t size;
  2439. unsigned int len;
  2440. struct buffer_head *page_bufs = NULL;
  2441. struct inode *inode = page->mapping->host;
  2442. trace_ext4_writepage(inode, page);
  2443. size = i_size_read(inode);
  2444. if (page->index == size >> PAGE_CACHE_SHIFT)
  2445. len = size & ~PAGE_CACHE_MASK;
  2446. else
  2447. len = PAGE_CACHE_SIZE;
  2448. if (page_has_buffers(page)) {
  2449. page_bufs = page_buffers(page);
  2450. if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
  2451. ext4_bh_delay_or_unwritten)) {
  2452. /*
  2453. * We don't want to do block allocation
  2454. * So redirty the page and return
  2455. * We may reach here when we do a journal commit
  2456. * via journal_submit_inode_data_buffers.
  2457. * If we don't have mapping block we just ignore
  2458. * them. We can also reach here via shrink_page_list
  2459. */
  2460. redirty_page_for_writepage(wbc, page);
  2461. unlock_page(page);
  2462. return 0;
  2463. }
  2464. } else {
  2465. /*
  2466. * The test for page_has_buffers() is subtle:
  2467. * We know the page is dirty but it lost buffers. That means
  2468. * that at some moment in time after write_begin()/write_end()
  2469. * has been called all buffers have been clean and thus they
  2470. * must have been written at least once. So they are all
  2471. * mapped and we can happily proceed with mapping them
  2472. * and writing the page.
  2473. *
  2474. * Try to initialize the buffer_heads and check whether
  2475. * all are mapped and non delay. We don't want to
  2476. * do block allocation here.
  2477. */
  2478. ret = __block_write_begin(page, 0, len,
  2479. noalloc_get_block_write);
  2480. if (!ret) {
  2481. page_bufs = page_buffers(page);
  2482. /* check whether all are mapped and non delay */
  2483. if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
  2484. ext4_bh_delay_or_unwritten)) {
  2485. redirty_page_for_writepage(wbc, page);
  2486. unlock_page(page);
  2487. return 0;
  2488. }
  2489. } else {
  2490. /*
  2491. * We can't do block allocation here
  2492. * so just redity the page and unlock
  2493. * and return
  2494. */
  2495. redirty_page_for_writepage(wbc, page);
  2496. unlock_page(page);
  2497. return 0;
  2498. }
  2499. /* now mark the buffer_heads as dirty and uptodate */
  2500. block_commit_write(page, 0, len);
  2501. }
  2502. if (PageChecked(page) && ext4_should_journal_data(inode)) {
  2503. /*
  2504. * It's mmapped pagecache. Add buffers and journal it. There
  2505. * doesn't seem much point in redirtying the page here.
  2506. */
  2507. ClearPageChecked(page);
  2508. return __ext4_journalled_writepage(page, len);
  2509. }
  2510. if (page_bufs && buffer_uninit(page_bufs)) {
  2511. ext4_set_bh_endio(page_bufs, inode);
  2512. ret = block_write_full_page_endio(page, noalloc_get_block_write,
  2513. wbc, ext4_end_io_buffer_write);
  2514. } else
  2515. ret = block_write_full_page(page, noalloc_get_block_write,
  2516. wbc);
  2517. return ret;
  2518. }
  2519. /*
  2520. * This is called via ext4_da_writepages() to
  2521. * calulate the total number of credits to reserve to fit
  2522. * a single extent allocation into a single transaction,
  2523. * ext4_da_writpeages() will loop calling this before
  2524. * the block allocation.
  2525. */
  2526. static int ext4_da_writepages_trans_blocks(struct inode *inode)
  2527. {
  2528. int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
  2529. /*
  2530. * With non-extent format the journal credit needed to
  2531. * insert nrblocks contiguous block is dependent on
  2532. * number of contiguous block. So we will limit
  2533. * number of contiguous block to a sane value
  2534. */
  2535. if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
  2536. (max_blocks > EXT4_MAX_TRANS_DATA))
  2537. max_blocks = EXT4_MAX_TRANS_DATA;
  2538. return ext4_chunk_trans_blocks(inode, max_blocks);
  2539. }
  2540. /*
  2541. * write_cache_pages_da - walk the list of dirty pages of the given
  2542. * address space and call the callback function (which usually writes
  2543. * the pages).
  2544. *
  2545. * This is a forked version of write_cache_pages(). Differences:
  2546. * Range cyclic is ignored.
  2547. * no_nrwrite_index_update is always presumed true
  2548. */
  2549. static int write_cache_pages_da(struct address_space *mapping,
  2550. struct writeback_control *wbc,
  2551. struct mpage_da_data *mpd)
  2552. {
  2553. int ret = 0;
  2554. int done = 0;
  2555. struct pagevec pvec;
  2556. int nr_pages;
  2557. pgoff_t index;
  2558. pgoff_t end; /* Inclusive */
  2559. long nr_to_write = wbc->nr_to_write;
  2560. pagevec_init(&pvec, 0);
  2561. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  2562. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  2563. while (!done && (index <= end)) {
  2564. int i;
  2565. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  2566. PAGECACHE_TAG_DIRTY,
  2567. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  2568. if (nr_pages == 0)
  2569. break;
  2570. for (i = 0; i < nr_pages; i++) {
  2571. struct page *page = pvec.pages[i];
  2572. /*
  2573. * At this point, the page may be truncated or
  2574. * invalidated (changing page->mapping to NULL), or
  2575. * even swizzled back from swapper_space to tmpfs file
  2576. * mapping. However, page->index will not change
  2577. * because we have a reference on the page.
  2578. */
  2579. if (page->index > end) {
  2580. done = 1;
  2581. break;
  2582. }
  2583. lock_page(page);
  2584. /*
  2585. * Page truncated or invalidated. We can freely skip it
  2586. * then, even for data integrity operations: the page
  2587. * has disappeared concurrently, so there could be no
  2588. * real expectation of this data interity operation
  2589. * even if there is now a new, dirty page at the same
  2590. * pagecache address.
  2591. */
  2592. if (unlikely(page->mapping != mapping)) {
  2593. continue_unlock:
  2594. unlock_page(page);
  2595. continue;
  2596. }
  2597. if (!PageDirty(page)) {
  2598. /* someone wrote it for us */
  2599. goto continue_unlock;
  2600. }
  2601. if (PageWriteback(page)) {
  2602. if (wbc->sync_mode != WB_SYNC_NONE)
  2603. wait_on_page_writeback(page);
  2604. else
  2605. goto continue_unlock;
  2606. }
  2607. BUG_ON(PageWriteback(page));
  2608. if (!clear_page_dirty_for_io(page))
  2609. goto continue_unlock;
  2610. ret = __mpage_da_writepage(page, wbc, mpd);
  2611. if (unlikely(ret)) {
  2612. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  2613. unlock_page(page);
  2614. ret = 0;
  2615. } else {
  2616. done = 1;
  2617. break;
  2618. }
  2619. }
  2620. if (nr_to_write > 0) {
  2621. nr_to_write--;
  2622. if (nr_to_write == 0 &&
  2623. wbc->sync_mode == WB_SYNC_NONE) {
  2624. /*
  2625. * We stop writing back only if we are
  2626. * not doing integrity sync. In case of
  2627. * integrity sync we have to keep going
  2628. * because someone may be concurrently
  2629. * dirtying pages, and we might have
  2630. * synced a lot of newly appeared dirty
  2631. * pages, but have not synced all of the
  2632. * old dirty pages.
  2633. */
  2634. done = 1;
  2635. break;
  2636. }
  2637. }
  2638. }
  2639. pagevec_release(&pvec);
  2640. cond_resched();
  2641. }
  2642. return ret;
  2643. }
  2644. static int ext4_da_writepages(struct address_space *mapping,
  2645. struct writeback_control *wbc)
  2646. {
  2647. pgoff_t index;
  2648. int range_whole = 0;
  2649. handle_t *handle = NULL;
  2650. struct mpage_da_data mpd;
  2651. struct inode *inode = mapping->host;
  2652. int pages_written = 0;
  2653. long pages_skipped;
  2654. unsigned int max_pages;
  2655. int range_cyclic, cycled = 1, io_done = 0;
  2656. int needed_blocks, ret = 0;
  2657. long desired_nr_to_write, nr_to_writebump = 0;
  2658. loff_t range_start = wbc->range_start;
  2659. struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
  2660. trace_ext4_da_writepages(inode, wbc);
  2661. /*
  2662. * No pages to write? This is mainly a kludge to avoid starting
  2663. * a transaction for special inodes like journal inode on last iput()
  2664. * because that could violate lock ordering on umount
  2665. */
  2666. if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
  2667. return 0;
  2668. /*
  2669. * If the filesystem has aborted, it is read-only, so return
  2670. * right away instead of dumping stack traces later on that
  2671. * will obscure the real source of the problem. We test
  2672. * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
  2673. * the latter could be true if the filesystem is mounted
  2674. * read-only, and in that case, ext4_da_writepages should
  2675. * *never* be called, so if that ever happens, we would want
  2676. * the stack trace.
  2677. */
  2678. if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
  2679. return -EROFS;
  2680. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  2681. range_whole = 1;
  2682. range_cyclic = wbc->range_cyclic;
  2683. if (wbc->range_cyclic) {
  2684. index = mapping->writeback_index;
  2685. if (index)
  2686. cycled = 0;
  2687. wbc->range_start = index << PAGE_CACHE_SHIFT;
  2688. wbc->range_end = LLONG_MAX;
  2689. wbc->range_cyclic = 0;
  2690. } else
  2691. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  2692. /*
  2693. * This works around two forms of stupidity. The first is in
  2694. * the writeback code, which caps the maximum number of pages
  2695. * written to be 1024 pages. This is wrong on multiple
  2696. * levels; different architectues have a different page size,
  2697. * which changes the maximum amount of data which gets
  2698. * written. Secondly, 4 megabytes is way too small. XFS
  2699. * forces this value to be 16 megabytes by multiplying
  2700. * nr_to_write parameter by four, and then relies on its
  2701. * allocator to allocate larger extents to make them
  2702. * contiguous. Unfortunately this brings us to the second
  2703. * stupidity, which is that ext4's mballoc code only allocates
  2704. * at most 2048 blocks. So we force contiguous writes up to
  2705. * the number of dirty blocks in the inode, or
  2706. * sbi->max_writeback_mb_bump whichever is smaller.
  2707. */
  2708. max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
  2709. if (!range_cyclic && range_whole)
  2710. desired_nr_to_write = wbc->nr_to_write * 8;
  2711. else
  2712. desired_nr_to_write = ext4_num_dirty_pages(inode, index,
  2713. max_pages);
  2714. if (desired_nr_to_write > max_pages)
  2715. desired_nr_to_write = max_pages;
  2716. if (wbc->nr_to_write < desired_nr_to_write) {
  2717. nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
  2718. wbc->nr_to_write = desired_nr_to_write;
  2719. }
  2720. mpd.wbc = wbc;
  2721. mpd.inode = mapping->host;
  2722. pages_skipped = wbc->pages_skipped;
  2723. retry:
  2724. while (!ret && wbc->nr_to_write > 0) {
  2725. /*
  2726. * we insert one extent at a time. So we need
  2727. * credit needed for single extent allocation.
  2728. * journalled mode is currently not supported
  2729. * by delalloc
  2730. */
  2731. BUG_ON(ext4_should_journal_data(inode));
  2732. needed_blocks = ext4_da_writepages_trans_blocks(inode);
  2733. /* start a new transaction*/
  2734. handle = ext4_journal_start(inode, needed_blocks);
  2735. if (IS_ERR(handle)) {
  2736. ret = PTR_ERR(handle);
  2737. ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
  2738. "%ld pages, ino %lu; err %d", __func__,
  2739. wbc->nr_to_write, inode->i_ino, ret);
  2740. goto out_writepages;
  2741. }
  2742. /*
  2743. * Now call __mpage_da_writepage to find the next
  2744. * contiguous region of logical blocks that need
  2745. * blocks to be allocated by ext4. We don't actually
  2746. * submit the blocks for I/O here, even though
  2747. * write_cache_pages thinks it will, and will set the
  2748. * pages as clean for write before calling
  2749. * __mpage_da_writepage().
  2750. */
  2751. mpd.b_size = 0;
  2752. mpd.b_state = 0;
  2753. mpd.b_blocknr = 0;
  2754. mpd.first_page = 0;
  2755. mpd.next_page = 0;
  2756. mpd.io_done = 0;
  2757. mpd.pages_written = 0;
  2758. mpd.retval = 0;
  2759. ret = write_cache_pages_da(mapping, wbc, &mpd);
  2760. /*
  2761. * If we have a contiguous extent of pages and we
  2762. * haven't done the I/O yet, map the blocks and submit
  2763. * them for I/O.
  2764. */
  2765. if (!mpd.io_done && mpd.next_page != mpd.first_page) {
  2766. if (mpage_da_map_blocks(&mpd) == 0)
  2767. mpage_da_submit_io(&mpd);
  2768. mpd.io_done = 1;
  2769. ret = MPAGE_DA_EXTENT_TAIL;
  2770. }
  2771. trace_ext4_da_write_pages(inode, &mpd);
  2772. wbc->nr_to_write -= mpd.pages_written;
  2773. ext4_journal_stop(handle);
  2774. if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
  2775. /* commit the transaction which would
  2776. * free blocks released in the transaction
  2777. * and try again
  2778. */
  2779. jbd2_journal_force_commit_nested(sbi->s_journal);
  2780. wbc->pages_skipped = pages_skipped;
  2781. ret = 0;
  2782. } else if (ret == MPAGE_DA_EXTENT_TAIL) {
  2783. /*
  2784. * got one extent now try with
  2785. * rest of the pages
  2786. */
  2787. pages_written += mpd.pages_written;
  2788. wbc->pages_skipped = pages_skipped;
  2789. ret = 0;
  2790. io_done = 1;
  2791. } else if (wbc->nr_to_write)
  2792. /*
  2793. * There is no more writeout needed
  2794. * or we requested for a noblocking writeout
  2795. * and we found the device congested
  2796. */
  2797. break;
  2798. }
  2799. if (!io_done && !cycled) {
  2800. cycled = 1;
  2801. index = 0;
  2802. wbc->range_start = index << PAGE_CACHE_SHIFT;
  2803. wbc->range_end = mapping->writeback_index - 1;
  2804. goto retry;
  2805. }
  2806. if (pages_skipped != wbc->pages_skipped)
  2807. ext4_msg(inode->i_sb, KERN_CRIT,
  2808. "This should not happen leaving %s "
  2809. "with nr_to_write = %ld ret = %d",
  2810. __func__, wbc->nr_to_write, ret);
  2811. /* Update index */
  2812. index += pages_written;
  2813. wbc->range_cyclic = range_cyclic;
  2814. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  2815. /*
  2816. * set the writeback_index so that range_cyclic
  2817. * mode will write it back later
  2818. */
  2819. mapping->writeback_index = index;
  2820. out_writepages:
  2821. wbc->nr_to_write -= nr_to_writebump;
  2822. wbc->range_start = range_start;
  2823. trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
  2824. return ret;
  2825. }
  2826. #define FALL_BACK_TO_NONDELALLOC 1
  2827. static int ext4_nonda_switch(struct super_block *sb)
  2828. {
  2829. s64 free_blocks, dirty_blocks;
  2830. struct ext4_sb_info *sbi = EXT4_SB(sb);
  2831. /*
  2832. * switch to non delalloc mode if we are running low
  2833. * on free block. The free block accounting via percpu
  2834. * counters can get slightly wrong with percpu_counter_batch getting
  2835. * accumulated on each CPU without updating global counters
  2836. * Delalloc need an accurate free block accounting. So switch
  2837. * to non delalloc when we are near to error range.
  2838. */
  2839. free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
  2840. dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
  2841. if (2 * free_blocks < 3 * dirty_blocks ||
  2842. free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
  2843. /*
  2844. * free block count is less than 150% of dirty blocks
  2845. * or free blocks is less than watermark
  2846. */
  2847. return 1;
  2848. }
  2849. /*
  2850. * Even if we don't switch but are nearing capacity,
  2851. * start pushing delalloc when 1/2 of free blocks are dirty.
  2852. */
  2853. if (free_blocks < 2 * dirty_blocks)
  2854. writeback_inodes_sb_if_idle(sb);
  2855. return 0;
  2856. }
  2857. static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
  2858. loff_t pos, unsigned len, unsigned flags,
  2859. struct page **pagep, void **fsdata)
  2860. {
  2861. int ret, retries = 0;
  2862. struct page *page;
  2863. pgoff_t index;
  2864. struct inode *inode = mapping->host;
  2865. handle_t *handle;
  2866. index = pos >> PAGE_CACHE_SHIFT;
  2867. if (ext4_nonda_switch(inode->i_sb)) {
  2868. *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
  2869. return ext4_write_begin(file, mapping, pos,
  2870. len, flags, pagep, fsdata);
  2871. }
  2872. *fsdata = (void *)0;
  2873. trace_ext4_da_write_begin(inode, pos, len, flags);
  2874. retry:
  2875. /*
  2876. * With delayed allocation, we don't log the i_disksize update
  2877. * if there is delayed block allocation. But we still need
  2878. * to journalling the i_disksize update if writes to the end
  2879. * of file which has an already mapped buffer.
  2880. */
  2881. handle = ext4_journal_start(inode, 1);
  2882. if (IS_ERR(handle)) {
  2883. ret = PTR_ERR(handle);
  2884. goto out;
  2885. }
  2886. /* We cannot recurse into the filesystem as the transaction is already
  2887. * started */
  2888. flags |= AOP_FLAG_NOFS;
  2889. page = grab_cache_page_write_begin(mapping, index, flags);
  2890. if (!page) {
  2891. ext4_journal_stop(handle);
  2892. ret = -ENOMEM;
  2893. goto out;
  2894. }
  2895. *pagep = page;
  2896. ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
  2897. if (ret < 0) {
  2898. unlock_page(page);
  2899. ext4_journal_stop(handle);
  2900. page_cache_release(page);
  2901. /*
  2902. * block_write_begin may have instantiated a few blocks
  2903. * outside i_size. Trim these off again. Don't need
  2904. * i_size_read because we hold i_mutex.
  2905. */
  2906. if (pos + len > inode->i_size)
  2907. ext4_truncate_failed_write(inode);
  2908. }
  2909. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  2910. goto retry;
  2911. out:
  2912. return ret;
  2913. }
  2914. /*
  2915. * Check if we should update i_disksize
  2916. * when write to the end of file but not require block allocation
  2917. */
  2918. static int ext4_da_should_update_i_disksize(struct page *page,
  2919. unsigned long offset)
  2920. {
  2921. struct buffer_head *bh;
  2922. struct inode *inode = page->mapping->host;
  2923. unsigned int idx;
  2924. int i;
  2925. bh = page_buffers(page);
  2926. idx = offset >> inode->i_blkbits;
  2927. for (i = 0; i < idx; i++)
  2928. bh = bh->b_this_page;
  2929. if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
  2930. return 0;
  2931. return 1;
  2932. }
  2933. static int ext4_da_write_end(struct file *file,
  2934. struct address_space *mapping,
  2935. loff_t pos, unsigned len, unsigned copied,
  2936. struct page *page, void *fsdata)
  2937. {
  2938. struct inode *inode = mapping->host;
  2939. int ret = 0, ret2;
  2940. handle_t *handle = ext4_journal_current_handle();
  2941. loff_t new_i_size;
  2942. unsigned long start, end;
  2943. int write_mode = (int)(unsigned long)fsdata;
  2944. if (write_mode == FALL_BACK_TO_NONDELALLOC) {
  2945. if (ext4_should_order_data(inode)) {
  2946. return ext4_ordered_write_end(file, mapping, pos,
  2947. len, copied, page, fsdata);
  2948. } else if (ext4_should_writeback_data(inode)) {
  2949. return ext4_writeback_write_end(file, mapping, pos,
  2950. len, copied, page, fsdata);
  2951. } else {
  2952. BUG();
  2953. }
  2954. }
  2955. trace_ext4_da_write_end(inode, pos, len, copied);
  2956. start = pos & (PAGE_CACHE_SIZE - 1);
  2957. end = start + copied - 1;
  2958. /*
  2959. * generic_write_end() will run mark_inode_dirty() if i_size
  2960. * changes. So let's piggyback the i_disksize mark_inode_dirty
  2961. * into that.
  2962. */
  2963. new_i_size = pos + copied;
  2964. if (new_i_size > EXT4_I(inode)->i_disksize) {
  2965. if (ext4_da_should_update_i_disksize(page, end)) {
  2966. down_write(&EXT4_I(inode)->i_data_sem);
  2967. if (new_i_size > EXT4_I(inode)->i_disksize) {
  2968. /*
  2969. * Updating i_disksize when extending file
  2970. * without needing block allocation
  2971. */
  2972. if (ext4_should_order_data(inode))
  2973. ret = ext4_jbd2_file_inode(handle,
  2974. inode);
  2975. EXT4_I(inode)->i_disksize = new_i_size;
  2976. }
  2977. up_write(&EXT4_I(inode)->i_data_sem);
  2978. /* We need to mark inode dirty even if
  2979. * new_i_size is less that inode->i_size
  2980. * bu greater than i_disksize.(hint delalloc)
  2981. */
  2982. ext4_mark_inode_dirty(handle, inode);
  2983. }
  2984. }
  2985. ret2 = generic_write_end(file, mapping, pos, len, copied,
  2986. page, fsdata);
  2987. copied = ret2;
  2988. if (ret2 < 0)
  2989. ret = ret2;
  2990. ret2 = ext4_journal_stop(handle);
  2991. if (!ret)
  2992. ret = ret2;
  2993. return ret ? ret : copied;
  2994. }
  2995. static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
  2996. {
  2997. /*
  2998. * Drop reserved blocks
  2999. */
  3000. BUG_ON(!PageLocked(page));
  3001. if (!page_has_buffers(page))
  3002. goto out;
  3003. ext4_da_page_release_reservation(page, offset);
  3004. out:
  3005. ext4_invalidatepage(page, offset);
  3006. return;
  3007. }
  3008. /*
  3009. * Force all delayed allocation blocks to be allocated for a given inode.
  3010. */
  3011. int ext4_alloc_da_blocks(struct inode *inode)
  3012. {
  3013. trace_ext4_alloc_da_blocks(inode);
  3014. if (!EXT4_I(inode)->i_reserved_data_blocks &&
  3015. !EXT4_I(inode)->i_reserved_meta_blocks)
  3016. return 0;
  3017. /*
  3018. * We do something simple for now. The filemap_flush() will
  3019. * also start triggering a write of the data blocks, which is
  3020. * not strictly speaking necessary (and for users of
  3021. * laptop_mode, not even desirable). However, to do otherwise
  3022. * would require replicating code paths in:
  3023. *
  3024. * ext4_da_writepages() ->
  3025. * write_cache_pages() ---> (via passed in callback function)
  3026. * __mpage_da_writepage() -->
  3027. * mpage_add_bh_to_extent()
  3028. * mpage_da_map_blocks()
  3029. *
  3030. * The problem is that write_cache_pages(), located in
  3031. * mm/page-writeback.c, marks pages clean in preparation for
  3032. * doing I/O, which is not desirable if we're not planning on
  3033. * doing I/O at all.
  3034. *
  3035. * We could call write_cache_pages(), and then redirty all of
  3036. * the pages by calling redirty_page_for_writeback() but that
  3037. * would be ugly in the extreme. So instead we would need to
  3038. * replicate parts of the code in the above functions,
  3039. * simplifying them becuase we wouldn't actually intend to
  3040. * write out the pages, but rather only collect contiguous
  3041. * logical block extents, call the multi-block allocator, and
  3042. * then update the buffer heads with the block allocations.
  3043. *
  3044. * For now, though, we'll cheat by calling filemap_flush(),
  3045. * which will map the blocks, and start the I/O, but not
  3046. * actually wait for the I/O to complete.
  3047. */
  3048. return filemap_flush(inode->i_mapping);
  3049. }
  3050. /*
  3051. * bmap() is special. It gets used by applications such as lilo and by
  3052. * the swapper to find the on-disk block of a specific piece of data.
  3053. *
  3054. * Naturally, this is dangerous if the block concerned is still in the
  3055. * journal. If somebody makes a swapfile on an ext4 data-journaling
  3056. * filesystem and enables swap, then they may get a nasty shock when the
  3057. * data getting swapped to that swapfile suddenly gets overwritten by
  3058. * the original zero's written out previously to the journal and
  3059. * awaiting writeback in the kernel's buffer cache.
  3060. *
  3061. * So, if we see any bmap calls here on a modified, data-journaled file,
  3062. * take extra steps to flush any blocks which might be in the cache.
  3063. */
  3064. static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
  3065. {
  3066. struct inode *inode = mapping->host;
  3067. journal_t *journal;
  3068. int err;
  3069. if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
  3070. test_opt(inode->i_sb, DELALLOC)) {
  3071. /*
  3072. * With delalloc we want to sync the file
  3073. * so that we can make sure we allocate
  3074. * blocks for file
  3075. */
  3076. filemap_write_and_wait(mapping);
  3077. }
  3078. if (EXT4_JOURNAL(inode) &&
  3079. ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
  3080. /*
  3081. * This is a REALLY heavyweight approach, but the use of
  3082. * bmap on dirty files is expected to be extremely rare:
  3083. * only if we run lilo or swapon on a freshly made file
  3084. * do we expect this to happen.
  3085. *
  3086. * (bmap requires CAP_SYS_RAWIO so this does not
  3087. * represent an unprivileged user DOS attack --- we'd be
  3088. * in trouble if mortal users could trigger this path at
  3089. * will.)
  3090. *
  3091. * NB. EXT4_STATE_JDATA is not set on files other than
  3092. * regular files. If somebody wants to bmap a directory
  3093. * or symlink and gets confused because the buffer
  3094. * hasn't yet been flushed to disk, they deserve
  3095. * everything they get.
  3096. */
  3097. ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
  3098. journal = EXT4_JOURNAL(inode);
  3099. jbd2_journal_lock_updates(journal);
  3100. err = jbd2_journal_flush(journal);
  3101. jbd2_journal_unlock_updates(journal);
  3102. if (err)
  3103. return 0;
  3104. }
  3105. return generic_block_bmap(mapping, block, ext4_get_block);
  3106. }
  3107. static int ext4_readpage(struct file *file, struct page *page)
  3108. {
  3109. return mpage_readpage(page, ext4_get_block);
  3110. }
  3111. static int
  3112. ext4_readpages(struct file *file, struct address_space *mapping,
  3113. struct list_head *pages, unsigned nr_pages)
  3114. {
  3115. return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
  3116. }
  3117. static void ext4_free_io_end(ext4_io_end_t *io)
  3118. {
  3119. BUG_ON(!io);
  3120. if (io->page)
  3121. put_page(io->page);
  3122. iput(io->inode);
  3123. kfree(io);
  3124. }
  3125. static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
  3126. {
  3127. struct buffer_head *head, *bh;
  3128. unsigned int curr_off = 0;
  3129. if (!page_has_buffers(page))
  3130. return;
  3131. head = bh = page_buffers(page);
  3132. do {
  3133. if (offset <= curr_off && test_clear_buffer_uninit(bh)
  3134. && bh->b_private) {
  3135. ext4_free_io_end(bh->b_private);
  3136. bh->b_private = NULL;
  3137. bh->b_end_io = NULL;
  3138. }
  3139. curr_off = curr_off + bh->b_size;
  3140. bh = bh->b_this_page;
  3141. } while (bh != head);
  3142. }
  3143. static void ext4_invalidatepage(struct page *page, unsigned long offset)
  3144. {
  3145. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  3146. /*
  3147. * free any io_end structure allocated for buffers to be discarded
  3148. */
  3149. if (ext4_should_dioread_nolock(page->mapping->host))
  3150. ext4_invalidatepage_free_endio(page, offset);
  3151. /*
  3152. * If it's a full truncate we just forget about the pending dirtying
  3153. */
  3154. if (offset == 0)
  3155. ClearPageChecked(page);
  3156. if (journal)
  3157. jbd2_journal_invalidatepage(journal, page, offset);
  3158. else
  3159. block_invalidatepage(page, offset);
  3160. }
  3161. static int ext4_releasepage(struct page *page, gfp_t wait)
  3162. {
  3163. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  3164. WARN_ON(PageChecked(page));
  3165. if (!page_has_buffers(page))
  3166. return 0;
  3167. if (journal)
  3168. return jbd2_journal_try_to_free_buffers(journal, page, wait);
  3169. else
  3170. return try_to_free_buffers(page);
  3171. }
  3172. /*
  3173. * O_DIRECT for ext3 (or indirect map) based files
  3174. *
  3175. * If the O_DIRECT write will extend the file then add this inode to the
  3176. * orphan list. So recovery will truncate it back to the original size
  3177. * if the machine crashes during the write.
  3178. *
  3179. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  3180. * crashes then stale disk data _may_ be exposed inside the file. But current
  3181. * VFS code falls back into buffered path in that case so we are safe.
  3182. */
  3183. static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
  3184. const struct iovec *iov, loff_t offset,
  3185. unsigned long nr_segs)
  3186. {
  3187. struct file *file = iocb->ki_filp;
  3188. struct inode *inode = file->f_mapping->host;
  3189. struct ext4_inode_info *ei = EXT4_I(inode);
  3190. handle_t *handle;
  3191. ssize_t ret;
  3192. int orphan = 0;
  3193. size_t count = iov_length(iov, nr_segs);
  3194. int retries = 0;
  3195. if (rw == WRITE) {
  3196. loff_t final_size = offset + count;
  3197. if (final_size > inode->i_size) {
  3198. /* Credits for sb + inode write */
  3199. handle = ext4_journal_start(inode, 2);
  3200. if (IS_ERR(handle)) {
  3201. ret = PTR_ERR(handle);
  3202. goto out;
  3203. }
  3204. ret = ext4_orphan_add(handle, inode);
  3205. if (ret) {
  3206. ext4_journal_stop(handle);
  3207. goto out;
  3208. }
  3209. orphan = 1;
  3210. ei->i_disksize = inode->i_size;
  3211. ext4_journal_stop(handle);
  3212. }
  3213. }
  3214. retry:
  3215. if (rw == READ && ext4_should_dioread_nolock(inode))
  3216. ret = __blockdev_direct_IO(rw, iocb, inode,
  3217. inode->i_sb->s_bdev, iov,
  3218. offset, nr_segs,
  3219. ext4_get_block, NULL, NULL, 0);
  3220. else {
  3221. ret = blockdev_direct_IO(rw, iocb, inode,
  3222. inode->i_sb->s_bdev, iov,
  3223. offset, nr_segs,
  3224. ext4_get_block, NULL);
  3225. if (unlikely((rw & WRITE) && ret < 0)) {
  3226. loff_t isize = i_size_read(inode);
  3227. loff_t end = offset + iov_length(iov, nr_segs);
  3228. if (end > isize)
  3229. vmtruncate(inode, isize);
  3230. }
  3231. }
  3232. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  3233. goto retry;
  3234. if (orphan) {
  3235. int err;
  3236. /* Credits for sb + inode write */
  3237. handle = ext4_journal_start(inode, 2);
  3238. if (IS_ERR(handle)) {
  3239. /* This is really bad luck. We've written the data
  3240. * but cannot extend i_size. Bail out and pretend
  3241. * the write failed... */
  3242. ret = PTR_ERR(handle);
  3243. if (inode->i_nlink)
  3244. ext4_orphan_del(NULL, inode);
  3245. goto out;
  3246. }
  3247. if (inode->i_nlink)
  3248. ext4_orphan_del(handle, inode);
  3249. if (ret > 0) {
  3250. loff_t end = offset + ret;
  3251. if (end > inode->i_size) {
  3252. ei->i_disksize = end;
  3253. i_size_write(inode, end);
  3254. /*
  3255. * We're going to return a positive `ret'
  3256. * here due to non-zero-length I/O, so there's
  3257. * no way of reporting error returns from
  3258. * ext4_mark_inode_dirty() to userspace. So
  3259. * ignore it.
  3260. */
  3261. ext4_mark_inode_dirty(handle, inode);
  3262. }
  3263. }
  3264. err = ext4_journal_stop(handle);
  3265. if (ret == 0)
  3266. ret = err;
  3267. }
  3268. out:
  3269. return ret;
  3270. }
  3271. /*
  3272. * ext4_get_block used when preparing for a DIO write or buffer write.
  3273. * We allocate an uinitialized extent if blocks haven't been allocated.
  3274. * The extent will be converted to initialized after the IO is complete.
  3275. */
  3276. static int ext4_get_block_write(struct inode *inode, sector_t iblock,
  3277. struct buffer_head *bh_result, int create)
  3278. {
  3279. ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
  3280. inode->i_ino, create);
  3281. return _ext4_get_block(inode, iblock, bh_result,
  3282. EXT4_GET_BLOCKS_IO_CREATE_EXT);
  3283. }
  3284. static void dump_completed_IO(struct inode * inode)
  3285. {
  3286. #ifdef EXT4_DEBUG
  3287. struct list_head *cur, *before, *after;
  3288. ext4_io_end_t *io, *io0, *io1;
  3289. unsigned long flags;
  3290. if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
  3291. ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
  3292. return;
  3293. }
  3294. ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
  3295. spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
  3296. list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
  3297. cur = &io->list;
  3298. before = cur->prev;
  3299. io0 = container_of(before, ext4_io_end_t, list);
  3300. after = cur->next;
  3301. io1 = container_of(after, ext4_io_end_t, list);
  3302. ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
  3303. io, inode->i_ino, io0, io1);
  3304. }
  3305. spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
  3306. #endif
  3307. }
  3308. /*
  3309. * check a range of space and convert unwritten extents to written.
  3310. */
  3311. static int ext4_end_io_nolock(ext4_io_end_t *io)
  3312. {
  3313. struct inode *inode = io->inode;
  3314. loff_t offset = io->offset;
  3315. ssize_t size = io->size;
  3316. int ret = 0;
  3317. ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
  3318. "list->prev 0x%p\n",
  3319. io, inode->i_ino, io->list.next, io->list.prev);
  3320. if (list_empty(&io->list))
  3321. return ret;
  3322. if (io->flag != EXT4_IO_UNWRITTEN)
  3323. return ret;
  3324. ret = ext4_convert_unwritten_extents(inode, offset, size);
  3325. if (ret < 0) {
  3326. printk(KERN_EMERG "%s: failed to convert unwritten"
  3327. "extents to written extents, error is %d"
  3328. " io is still on inode %lu aio dio list\n",
  3329. __func__, ret, inode->i_ino);
  3330. return ret;
  3331. }
  3332. if (io->iocb)
  3333. aio_complete(io->iocb, io->result, 0);
  3334. /* clear the DIO AIO unwritten flag */
  3335. io->flag = 0;
  3336. return ret;
  3337. }
  3338. /*
  3339. * work on completed aio dio IO, to convert unwritten extents to extents
  3340. */
  3341. static void ext4_end_io_work(struct work_struct *work)
  3342. {
  3343. ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
  3344. struct inode *inode = io->inode;
  3345. struct ext4_inode_info *ei = EXT4_I(inode);
  3346. unsigned long flags;
  3347. int ret;
  3348. mutex_lock(&inode->i_mutex);
  3349. ret = ext4_end_io_nolock(io);
  3350. if (ret < 0) {
  3351. mutex_unlock(&inode->i_mutex);
  3352. return;
  3353. }
  3354. spin_lock_irqsave(&ei->i_completed_io_lock, flags);
  3355. if (!list_empty(&io->list))
  3356. list_del_init(&io->list);
  3357. spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
  3358. mutex_unlock(&inode->i_mutex);
  3359. ext4_free_io_end(io);
  3360. }
  3361. /*
  3362. * This function is called from ext4_sync_file().
  3363. *
  3364. * When IO is completed, the work to convert unwritten extents to
  3365. * written is queued on workqueue but may not get immediately
  3366. * scheduled. When fsync is called, we need to ensure the
  3367. * conversion is complete before fsync returns.
  3368. * The inode keeps track of a list of pending/completed IO that
  3369. * might needs to do the conversion. This function walks through
  3370. * the list and convert the related unwritten extents for completed IO
  3371. * to written.
  3372. * The function return the number of pending IOs on success.
  3373. */
  3374. int flush_completed_IO(struct inode *inode)
  3375. {
  3376. ext4_io_end_t *io;
  3377. struct ext4_inode_info *ei = EXT4_I(inode);
  3378. unsigned long flags;
  3379. int ret = 0;
  3380. int ret2 = 0;
  3381. if (list_empty(&ei->i_completed_io_list))
  3382. return ret;
  3383. dump_completed_IO(inode);
  3384. spin_lock_irqsave(&ei->i_completed_io_lock, flags);
  3385. while (!list_empty(&ei->i_completed_io_list)){
  3386. io = list_entry(ei->i_completed_io_list.next,
  3387. ext4_io_end_t, list);
  3388. /*
  3389. * Calling ext4_end_io_nolock() to convert completed
  3390. * IO to written.
  3391. *
  3392. * When ext4_sync_file() is called, run_queue() may already
  3393. * about to flush the work corresponding to this io structure.
  3394. * It will be upset if it founds the io structure related
  3395. * to the work-to-be schedule is freed.
  3396. *
  3397. * Thus we need to keep the io structure still valid here after
  3398. * convertion finished. The io structure has a flag to
  3399. * avoid double converting from both fsync and background work
  3400. * queue work.
  3401. */
  3402. spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
  3403. ret = ext4_end_io_nolock(io);
  3404. spin_lock_irqsave(&ei->i_completed_io_lock, flags);
  3405. if (ret < 0)
  3406. ret2 = ret;
  3407. else
  3408. list_del_init(&io->list);
  3409. }
  3410. spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
  3411. return (ret2 < 0) ? ret2 : 0;
  3412. }
  3413. static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
  3414. {
  3415. ext4_io_end_t *io = NULL;
  3416. io = kmalloc(sizeof(*io), flags);
  3417. if (io) {
  3418. igrab(inode);
  3419. io->inode = inode;
  3420. io->flag = 0;
  3421. io->offset = 0;
  3422. io->size = 0;
  3423. io->page = NULL;
  3424. io->iocb = NULL;
  3425. io->result = 0;
  3426. INIT_WORK(&io->work, ext4_end_io_work);
  3427. INIT_LIST_HEAD(&io->list);
  3428. }
  3429. return io;
  3430. }
  3431. static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
  3432. ssize_t size, void *private, int ret,
  3433. bool is_async)
  3434. {
  3435. ext4_io_end_t *io_end = iocb->private;
  3436. struct workqueue_struct *wq;
  3437. unsigned long flags;
  3438. struct ext4_inode_info *ei;
  3439. /* if not async direct IO or dio with 0 bytes write, just return */
  3440. if (!io_end || !size)
  3441. goto out;
  3442. ext_debug("ext4_end_io_dio(): io_end 0x%p"
  3443. "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
  3444. iocb->private, io_end->inode->i_ino, iocb, offset,
  3445. size);
  3446. /* if not aio dio with unwritten extents, just free io and return */
  3447. if (io_end->flag != EXT4_IO_UNWRITTEN){
  3448. ext4_free_io_end(io_end);
  3449. iocb->private = NULL;
  3450. out:
  3451. if (is_async)
  3452. aio_complete(iocb, ret, 0);
  3453. return;
  3454. }
  3455. io_end->offset = offset;
  3456. io_end->size = size;
  3457. if (is_async) {
  3458. io_end->iocb = iocb;
  3459. io_end->result = ret;
  3460. }
  3461. wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
  3462. /* queue the work to convert unwritten extents to written */
  3463. queue_work(wq, &io_end->work);
  3464. /* Add the io_end to per-inode completed aio dio list*/
  3465. ei = EXT4_I(io_end->inode);
  3466. spin_lock_irqsave(&ei->i_completed_io_lock, flags);
  3467. list_add_tail(&io_end->list, &ei->i_completed_io_list);
  3468. spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
  3469. iocb->private = NULL;
  3470. }
  3471. static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
  3472. {
  3473. ext4_io_end_t *io_end = bh->b_private;
  3474. struct workqueue_struct *wq;
  3475. struct inode *inode;
  3476. unsigned long flags;
  3477. if (!test_clear_buffer_uninit(bh) || !io_end)
  3478. goto out;
  3479. if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
  3480. printk("sb umounted, discard end_io request for inode %lu\n",
  3481. io_end->inode->i_ino);
  3482. ext4_free_io_end(io_end);
  3483. goto out;
  3484. }
  3485. io_end->flag = EXT4_IO_UNWRITTEN;
  3486. inode = io_end->inode;
  3487. /* Add the io_end to per-inode completed io list*/
  3488. spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
  3489. list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
  3490. spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
  3491. wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
  3492. /* queue the work to convert unwritten extents to written */
  3493. queue_work(wq, &io_end->work);
  3494. out:
  3495. bh->b_private = NULL;
  3496. bh->b_end_io = NULL;
  3497. clear_buffer_uninit(bh);
  3498. end_buffer_async_write(bh, uptodate);
  3499. }
  3500. static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
  3501. {
  3502. ext4_io_end_t *io_end;
  3503. struct page *page = bh->b_page;
  3504. loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
  3505. size_t size = bh->b_size;
  3506. retry:
  3507. io_end = ext4_init_io_end(inode, GFP_ATOMIC);
  3508. if (!io_end) {
  3509. if (printk_ratelimit())
  3510. printk(KERN_WARNING "%s: allocation fail\n", __func__);
  3511. schedule();
  3512. goto retry;
  3513. }
  3514. io_end->offset = offset;
  3515. io_end->size = size;
  3516. /*
  3517. * We need to hold a reference to the page to make sure it
  3518. * doesn't get evicted before ext4_end_io_work() has a chance
  3519. * to convert the extent from written to unwritten.
  3520. */
  3521. io_end->page = page;
  3522. get_page(io_end->page);
  3523. bh->b_private = io_end;
  3524. bh->b_end_io = ext4_end_io_buffer_write;
  3525. return 0;
  3526. }
  3527. /*
  3528. * For ext4 extent files, ext4 will do direct-io write to holes,
  3529. * preallocated extents, and those write extend the file, no need to
  3530. * fall back to buffered IO.
  3531. *
  3532. * For holes, we fallocate those blocks, mark them as unintialized
  3533. * If those blocks were preallocated, we mark sure they are splited, but
  3534. * still keep the range to write as unintialized.
  3535. *
  3536. * The unwrritten extents will be converted to written when DIO is completed.
  3537. * For async direct IO, since the IO may still pending when return, we
  3538. * set up an end_io call back function, which will do the convertion
  3539. * when async direct IO completed.
  3540. *
  3541. * If the O_DIRECT write will extend the file then add this inode to the
  3542. * orphan list. So recovery will truncate it back to the original size
  3543. * if the machine crashes during the write.
  3544. *
  3545. */
  3546. static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
  3547. const struct iovec *iov, loff_t offset,
  3548. unsigned long nr_segs)
  3549. {
  3550. struct file *file = iocb->ki_filp;
  3551. struct inode *inode = file->f_mapping->host;
  3552. ssize_t ret;
  3553. size_t count = iov_length(iov, nr_segs);
  3554. loff_t final_size = offset + count;
  3555. if (rw == WRITE && final_size <= inode->i_size) {
  3556. /*
  3557. * We could direct write to holes and fallocate.
  3558. *
  3559. * Allocated blocks to fill the hole are marked as uninitialized
  3560. * to prevent paralel buffered read to expose the stale data
  3561. * before DIO complete the data IO.
  3562. *
  3563. * As to previously fallocated extents, ext4 get_block
  3564. * will just simply mark the buffer mapped but still
  3565. * keep the extents uninitialized.
  3566. *
  3567. * for non AIO case, we will convert those unwritten extents
  3568. * to written after return back from blockdev_direct_IO.
  3569. *
  3570. * for async DIO, the conversion needs to be defered when
  3571. * the IO is completed. The ext4 end_io callback function
  3572. * will be called to take care of the conversion work.
  3573. * Here for async case, we allocate an io_end structure to
  3574. * hook to the iocb.
  3575. */
  3576. iocb->private = NULL;
  3577. EXT4_I(inode)->cur_aio_dio = NULL;
  3578. if (!is_sync_kiocb(iocb)) {
  3579. iocb->private = ext4_init_io_end(inode, GFP_NOFS);
  3580. if (!iocb->private)
  3581. return -ENOMEM;
  3582. /*
  3583. * we save the io structure for current async
  3584. * direct IO, so that later ext4_map_blocks()
  3585. * could flag the io structure whether there
  3586. * is a unwritten extents needs to be converted
  3587. * when IO is completed.
  3588. */
  3589. EXT4_I(inode)->cur_aio_dio = iocb->private;
  3590. }
  3591. ret = blockdev_direct_IO(rw, iocb, inode,
  3592. inode->i_sb->s_bdev, iov,
  3593. offset, nr_segs,
  3594. ext4_get_block_write,
  3595. ext4_end_io_dio);
  3596. if (iocb->private)
  3597. EXT4_I(inode)->cur_aio_dio = NULL;
  3598. /*
  3599. * The io_end structure takes a reference to the inode,
  3600. * that structure needs to be destroyed and the
  3601. * reference to the inode need to be dropped, when IO is
  3602. * complete, even with 0 byte write, or failed.
  3603. *
  3604. * In the successful AIO DIO case, the io_end structure will be
  3605. * desctroyed and the reference to the inode will be dropped
  3606. * after the end_io call back function is called.
  3607. *
  3608. * In the case there is 0 byte write, or error case, since
  3609. * VFS direct IO won't invoke the end_io call back function,
  3610. * we need to free the end_io structure here.
  3611. */
  3612. if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
  3613. ext4_free_io_end(iocb->private);
  3614. iocb->private = NULL;
  3615. } else if (ret > 0 && ext4_test_inode_state(inode,
  3616. EXT4_STATE_DIO_UNWRITTEN)) {
  3617. int err;
  3618. /*
  3619. * for non AIO case, since the IO is already
  3620. * completed, we could do the convertion right here
  3621. */
  3622. err = ext4_convert_unwritten_extents(inode,
  3623. offset, ret);
  3624. if (err < 0)
  3625. ret = err;
  3626. ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
  3627. }
  3628. return ret;
  3629. }
  3630. /* for write the the end of file case, we fall back to old way */
  3631. return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
  3632. }
  3633. static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
  3634. const struct iovec *iov, loff_t offset,
  3635. unsigned long nr_segs)
  3636. {
  3637. struct file *file = iocb->ki_filp;
  3638. struct inode *inode = file->f_mapping->host;
  3639. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  3640. return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
  3641. return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
  3642. }
  3643. /*
  3644. * Pages can be marked dirty completely asynchronously from ext4's journalling
  3645. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  3646. * much here because ->set_page_dirty is called under VFS locks. The page is
  3647. * not necessarily locked.
  3648. *
  3649. * We cannot just dirty the page and leave attached buffers clean, because the
  3650. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  3651. * or jbddirty because all the journalling code will explode.
  3652. *
  3653. * So what we do is to mark the page "pending dirty" and next time writepage
  3654. * is called, propagate that into the buffers appropriately.
  3655. */
  3656. static int ext4_journalled_set_page_dirty(struct page *page)
  3657. {
  3658. SetPageChecked(page);
  3659. return __set_page_dirty_nobuffers(page);
  3660. }
  3661. static const struct address_space_operations ext4_ordered_aops = {
  3662. .readpage = ext4_readpage,
  3663. .readpages = ext4_readpages,
  3664. .writepage = ext4_writepage,
  3665. .sync_page = block_sync_page,
  3666. .write_begin = ext4_write_begin,
  3667. .write_end = ext4_ordered_write_end,
  3668. .bmap = ext4_bmap,
  3669. .invalidatepage = ext4_invalidatepage,
  3670. .releasepage = ext4_releasepage,
  3671. .direct_IO = ext4_direct_IO,
  3672. .migratepage = buffer_migrate_page,
  3673. .is_partially_uptodate = block_is_partially_uptodate,
  3674. .error_remove_page = generic_error_remove_page,
  3675. };
  3676. static const struct address_space_operations ext4_writeback_aops = {
  3677. .readpage = ext4_readpage,
  3678. .readpages = ext4_readpages,
  3679. .writepage = ext4_writepage,
  3680. .sync_page = block_sync_page,
  3681. .write_begin = ext4_write_begin,
  3682. .write_end = ext4_writeback_write_end,
  3683. .bmap = ext4_bmap,
  3684. .invalidatepage = ext4_invalidatepage,
  3685. .releasepage = ext4_releasepage,
  3686. .direct_IO = ext4_direct_IO,
  3687. .migratepage = buffer_migrate_page,
  3688. .is_partially_uptodate = block_is_partially_uptodate,
  3689. .error_remove_page = generic_error_remove_page,
  3690. };
  3691. static const struct address_space_operations ext4_journalled_aops = {
  3692. .readpage = ext4_readpage,
  3693. .readpages = ext4_readpages,
  3694. .writepage = ext4_writepage,
  3695. .sync_page = block_sync_page,
  3696. .write_begin = ext4_write_begin,
  3697. .write_end = ext4_journalled_write_end,
  3698. .set_page_dirty = ext4_journalled_set_page_dirty,
  3699. .bmap = ext4_bmap,
  3700. .invalidatepage = ext4_invalidatepage,
  3701. .releasepage = ext4_releasepage,
  3702. .is_partially_uptodate = block_is_partially_uptodate,
  3703. .error_remove_page = generic_error_remove_page,
  3704. };
  3705. static const struct address_space_operations ext4_da_aops = {
  3706. .readpage = ext4_readpage,
  3707. .readpages = ext4_readpages,
  3708. .writepage = ext4_writepage,
  3709. .writepages = ext4_da_writepages,
  3710. .sync_page = block_sync_page,
  3711. .write_begin = ext4_da_write_begin,
  3712. .write_end = ext4_da_write_end,
  3713. .bmap = ext4_bmap,
  3714. .invalidatepage = ext4_da_invalidatepage,
  3715. .releasepage = ext4_releasepage,
  3716. .direct_IO = ext4_direct_IO,
  3717. .migratepage = buffer_migrate_page,
  3718. .is_partially_uptodate = block_is_partially_uptodate,
  3719. .error_remove_page = generic_error_remove_page,
  3720. };
  3721. void ext4_set_aops(struct inode *inode)
  3722. {
  3723. if (ext4_should_order_data(inode) &&
  3724. test_opt(inode->i_sb, DELALLOC))
  3725. inode->i_mapping->a_ops = &ext4_da_aops;
  3726. else if (ext4_should_order_data(inode))
  3727. inode->i_mapping->a_ops = &ext4_ordered_aops;
  3728. else if (ext4_should_writeback_data(inode) &&
  3729. test_opt(inode->i_sb, DELALLOC))
  3730. inode->i_mapping->a_ops = &ext4_da_aops;
  3731. else if (ext4_should_writeback_data(inode))
  3732. inode->i_mapping->a_ops = &ext4_writeback_aops;
  3733. else
  3734. inode->i_mapping->a_ops = &ext4_journalled_aops;
  3735. }
  3736. /*
  3737. * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
  3738. * up to the end of the block which corresponds to `from'.
  3739. * This required during truncate. We need to physically zero the tail end
  3740. * of that block so it doesn't yield old data if the file is later grown.
  3741. */
  3742. int ext4_block_truncate_page(handle_t *handle,
  3743. struct address_space *mapping, loff_t from)
  3744. {
  3745. ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  3746. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  3747. unsigned blocksize, length, pos;
  3748. ext4_lblk_t iblock;
  3749. struct inode *inode = mapping->host;
  3750. struct buffer_head *bh;
  3751. struct page *page;
  3752. int err = 0;
  3753. page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
  3754. mapping_gfp_mask(mapping) & ~__GFP_FS);
  3755. if (!page)
  3756. return -EINVAL;
  3757. blocksize = inode->i_sb->s_blocksize;
  3758. length = blocksize - (offset & (blocksize - 1));
  3759. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  3760. if (!page_has_buffers(page))
  3761. create_empty_buffers(page, blocksize, 0);
  3762. /* Find the buffer that contains "offset" */
  3763. bh = page_buffers(page);
  3764. pos = blocksize;
  3765. while (offset >= pos) {
  3766. bh = bh->b_this_page;
  3767. iblock++;
  3768. pos += blocksize;
  3769. }
  3770. err = 0;
  3771. if (buffer_freed(bh)) {
  3772. BUFFER_TRACE(bh, "freed: skip");
  3773. goto unlock;
  3774. }
  3775. if (!buffer_mapped(bh)) {
  3776. BUFFER_TRACE(bh, "unmapped");
  3777. ext4_get_block(inode, iblock, bh, 0);
  3778. /* unmapped? It's a hole - nothing to do */
  3779. if (!buffer_mapped(bh)) {
  3780. BUFFER_TRACE(bh, "still unmapped");
  3781. goto unlock;
  3782. }
  3783. }
  3784. /* Ok, it's mapped. Make sure it's up-to-date */
  3785. if (PageUptodate(page))
  3786. set_buffer_uptodate(bh);
  3787. if (!buffer_uptodate(bh)) {
  3788. err = -EIO;
  3789. ll_rw_block(READ, 1, &bh);
  3790. wait_on_buffer(bh);
  3791. /* Uhhuh. Read error. Complain and punt. */
  3792. if (!buffer_uptodate(bh))
  3793. goto unlock;
  3794. }
  3795. if (ext4_should_journal_data(inode)) {
  3796. BUFFER_TRACE(bh, "get write access");
  3797. err = ext4_journal_get_write_access(handle, bh);
  3798. if (err)
  3799. goto unlock;
  3800. }
  3801. zero_user(page, offset, length);
  3802. BUFFER_TRACE(bh, "zeroed end of block");
  3803. err = 0;
  3804. if (ext4_should_journal_data(inode)) {
  3805. err = ext4_handle_dirty_metadata(handle, inode, bh);
  3806. } else {
  3807. if (ext4_should_order_data(inode))
  3808. err = ext4_jbd2_file_inode(handle, inode);
  3809. mark_buffer_dirty(bh);
  3810. }
  3811. unlock:
  3812. unlock_page(page);
  3813. page_cache_release(page);
  3814. return err;
  3815. }
  3816. /*
  3817. * Probably it should be a library function... search for first non-zero word
  3818. * or memcmp with zero_page, whatever is better for particular architecture.
  3819. * Linus?
  3820. */
  3821. static inline int all_zeroes(__le32 *p, __le32 *q)
  3822. {
  3823. while (p < q)
  3824. if (*p++)
  3825. return 0;
  3826. return 1;
  3827. }
  3828. /**
  3829. * ext4_find_shared - find the indirect blocks for partial truncation.
  3830. * @inode: inode in question
  3831. * @depth: depth of the affected branch
  3832. * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
  3833. * @chain: place to store the pointers to partial indirect blocks
  3834. * @top: place to the (detached) top of branch
  3835. *
  3836. * This is a helper function used by ext4_truncate().
  3837. *
  3838. * When we do truncate() we may have to clean the ends of several
  3839. * indirect blocks but leave the blocks themselves alive. Block is
  3840. * partially truncated if some data below the new i_size is refered
  3841. * from it (and it is on the path to the first completely truncated
  3842. * data block, indeed). We have to free the top of that path along
  3843. * with everything to the right of the path. Since no allocation
  3844. * past the truncation point is possible until ext4_truncate()
  3845. * finishes, we may safely do the latter, but top of branch may
  3846. * require special attention - pageout below the truncation point
  3847. * might try to populate it.
  3848. *
  3849. * We atomically detach the top of branch from the tree, store the
  3850. * block number of its root in *@top, pointers to buffer_heads of
  3851. * partially truncated blocks - in @chain[].bh and pointers to
  3852. * their last elements that should not be removed - in
  3853. * @chain[].p. Return value is the pointer to last filled element
  3854. * of @chain.
  3855. *
  3856. * The work left to caller to do the actual freeing of subtrees:
  3857. * a) free the subtree starting from *@top
  3858. * b) free the subtrees whose roots are stored in
  3859. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  3860. * c) free the subtrees growing from the inode past the @chain[0].
  3861. * (no partially truncated stuff there). */
  3862. static Indirect *ext4_find_shared(struct inode *inode, int depth,
  3863. ext4_lblk_t offsets[4], Indirect chain[4],
  3864. __le32 *top)
  3865. {
  3866. Indirect *partial, *p;
  3867. int k, err;
  3868. *top = 0;
  3869. /* Make k index the deepest non-null offset + 1 */
  3870. for (k = depth; k > 1 && !offsets[k-1]; k--)
  3871. ;
  3872. partial = ext4_get_branch(inode, k, offsets, chain, &err);
  3873. /* Writer: pointers */
  3874. if (!partial)
  3875. partial = chain + k-1;
  3876. /*
  3877. * If the branch acquired continuation since we've looked at it -
  3878. * fine, it should all survive and (new) top doesn't belong to us.
  3879. */
  3880. if (!partial->key && *partial->p)
  3881. /* Writer: end */
  3882. goto no_top;
  3883. for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
  3884. ;
  3885. /*
  3886. * OK, we've found the last block that must survive. The rest of our
  3887. * branch should be detached before unlocking. However, if that rest
  3888. * of branch is all ours and does not grow immediately from the inode
  3889. * it's easier to cheat and just decrement partial->p.
  3890. */
  3891. if (p == chain + k - 1 && p > chain) {
  3892. p->p--;
  3893. } else {
  3894. *top = *p->p;
  3895. /* Nope, don't do this in ext4. Must leave the tree intact */
  3896. #if 0
  3897. *p->p = 0;
  3898. #endif
  3899. }
  3900. /* Writer: end */
  3901. while (partial > p) {
  3902. brelse(partial->bh);
  3903. partial--;
  3904. }
  3905. no_top:
  3906. return partial;
  3907. }
  3908. /*
  3909. * Zero a number of block pointers in either an inode or an indirect block.
  3910. * If we restart the transaction we must again get write access to the
  3911. * indirect block for further modification.
  3912. *
  3913. * We release `count' blocks on disk, but (last - first) may be greater
  3914. * than `count' because there can be holes in there.
  3915. */
  3916. static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
  3917. struct buffer_head *bh,
  3918. ext4_fsblk_t block_to_free,
  3919. unsigned long count, __le32 *first,
  3920. __le32 *last)
  3921. {
  3922. __le32 *p;
  3923. int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
  3924. if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
  3925. flags |= EXT4_FREE_BLOCKS_METADATA;
  3926. if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
  3927. count)) {
  3928. EXT4_ERROR_INODE(inode, "attempt to clear invalid "
  3929. "blocks %llu len %lu",
  3930. (unsigned long long) block_to_free, count);
  3931. return 1;
  3932. }
  3933. if (try_to_extend_transaction(handle, inode)) {
  3934. if (bh) {
  3935. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  3936. ext4_handle_dirty_metadata(handle, inode, bh);
  3937. }
  3938. ext4_mark_inode_dirty(handle, inode);
  3939. ext4_truncate_restart_trans(handle, inode,
  3940. blocks_for_truncate(inode));
  3941. if (bh) {
  3942. BUFFER_TRACE(bh, "retaking write access");
  3943. ext4_journal_get_write_access(handle, bh);
  3944. }
  3945. }
  3946. for (p = first; p < last; p++)
  3947. *p = 0;
  3948. ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
  3949. return 0;
  3950. }
  3951. /**
  3952. * ext4_free_data - free a list of data blocks
  3953. * @handle: handle for this transaction
  3954. * @inode: inode we are dealing with
  3955. * @this_bh: indirect buffer_head which contains *@first and *@last
  3956. * @first: array of block numbers
  3957. * @last: points immediately past the end of array
  3958. *
  3959. * We are freeing all blocks refered from that array (numbers are stored as
  3960. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  3961. *
  3962. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  3963. * blocks are contiguous then releasing them at one time will only affect one
  3964. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  3965. * actually use a lot of journal space.
  3966. *
  3967. * @this_bh will be %NULL if @first and @last point into the inode's direct
  3968. * block pointers.
  3969. */
  3970. static void ext4_free_data(handle_t *handle, struct inode *inode,
  3971. struct buffer_head *this_bh,
  3972. __le32 *first, __le32 *last)
  3973. {
  3974. ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
  3975. unsigned long count = 0; /* Number of blocks in the run */
  3976. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  3977. corresponding to
  3978. block_to_free */
  3979. ext4_fsblk_t nr; /* Current block # */
  3980. __le32 *p; /* Pointer into inode/ind
  3981. for current block */
  3982. int err;
  3983. if (this_bh) { /* For indirect block */
  3984. BUFFER_TRACE(this_bh, "get_write_access");
  3985. err = ext4_journal_get_write_access(handle, this_bh);
  3986. /* Important: if we can't update the indirect pointers
  3987. * to the blocks, we can't free them. */
  3988. if (err)
  3989. return;
  3990. }
  3991. for (p = first; p < last; p++) {
  3992. nr = le32_to_cpu(*p);
  3993. if (nr) {
  3994. /* accumulate blocks to free if they're contiguous */
  3995. if (count == 0) {
  3996. block_to_free = nr;
  3997. block_to_free_p = p;
  3998. count = 1;
  3999. } else if (nr == block_to_free + count) {
  4000. count++;
  4001. } else {
  4002. if (ext4_clear_blocks(handle, inode, this_bh,
  4003. block_to_free, count,
  4004. block_to_free_p, p))
  4005. break;
  4006. block_to_free = nr;
  4007. block_to_free_p = p;
  4008. count = 1;
  4009. }
  4010. }
  4011. }
  4012. if (count > 0)
  4013. ext4_clear_blocks(handle, inode, this_bh, block_to_free,
  4014. count, block_to_free_p, p);
  4015. if (this_bh) {
  4016. BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
  4017. /*
  4018. * The buffer head should have an attached journal head at this
  4019. * point. However, if the data is corrupted and an indirect
  4020. * block pointed to itself, it would have been detached when
  4021. * the block was cleared. Check for this instead of OOPSing.
  4022. */
  4023. if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
  4024. ext4_handle_dirty_metadata(handle, inode, this_bh);
  4025. else
  4026. EXT4_ERROR_INODE(inode,
  4027. "circular indirect block detected at "
  4028. "block %llu",
  4029. (unsigned long long) this_bh->b_blocknr);
  4030. }
  4031. }
  4032. /**
  4033. * ext4_free_branches - free an array of branches
  4034. * @handle: JBD handle for this transaction
  4035. * @inode: inode we are dealing with
  4036. * @parent_bh: the buffer_head which contains *@first and *@last
  4037. * @first: array of block numbers
  4038. * @last: pointer immediately past the end of array
  4039. * @depth: depth of the branches to free
  4040. *
  4041. * We are freeing all blocks refered from these branches (numbers are
  4042. * stored as little-endian 32-bit) and updating @inode->i_blocks
  4043. * appropriately.
  4044. */
  4045. static void ext4_free_branches(handle_t *handle, struct inode *inode,
  4046. struct buffer_head *parent_bh,
  4047. __le32 *first, __le32 *last, int depth)
  4048. {
  4049. ext4_fsblk_t nr;
  4050. __le32 *p;
  4051. if (ext4_handle_is_aborted(handle))
  4052. return;
  4053. if (depth--) {
  4054. struct buffer_head *bh;
  4055. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  4056. p = last;
  4057. while (--p >= first) {
  4058. nr = le32_to_cpu(*p);
  4059. if (!nr)
  4060. continue; /* A hole */
  4061. if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
  4062. nr, 1)) {
  4063. EXT4_ERROR_INODE(inode,
  4064. "invalid indirect mapped "
  4065. "block %lu (level %d)",
  4066. (unsigned long) nr, depth);
  4067. break;
  4068. }
  4069. /* Go read the buffer for the next level down */
  4070. bh = sb_bread(inode->i_sb, nr);
  4071. /*
  4072. * A read failure? Report error and clear slot
  4073. * (should be rare).
  4074. */
  4075. if (!bh) {
  4076. EXT4_ERROR_INODE_BLOCK(inode, nr,
  4077. "Read failure");
  4078. continue;
  4079. }
  4080. /* This zaps the entire block. Bottom up. */
  4081. BUFFER_TRACE(bh, "free child branches");
  4082. ext4_free_branches(handle, inode, bh,
  4083. (__le32 *) bh->b_data,
  4084. (__le32 *) bh->b_data + addr_per_block,
  4085. depth);
  4086. /*
  4087. * Everything below this this pointer has been
  4088. * released. Now let this top-of-subtree go.
  4089. *
  4090. * We want the freeing of this indirect block to be
  4091. * atomic in the journal with the updating of the
  4092. * bitmap block which owns it. So make some room in
  4093. * the journal.
  4094. *
  4095. * We zero the parent pointer *after* freeing its
  4096. * pointee in the bitmaps, so if extend_transaction()
  4097. * for some reason fails to put the bitmap changes and
  4098. * the release into the same transaction, recovery
  4099. * will merely complain about releasing a free block,
  4100. * rather than leaking blocks.
  4101. */
  4102. if (ext4_handle_is_aborted(handle))
  4103. return;
  4104. if (try_to_extend_transaction(handle, inode)) {
  4105. ext4_mark_inode_dirty(handle, inode);
  4106. ext4_truncate_restart_trans(handle, inode,
  4107. blocks_for_truncate(inode));
  4108. }
  4109. /*
  4110. * The forget flag here is critical because if
  4111. * we are journaling (and not doing data
  4112. * journaling), we have to make sure a revoke
  4113. * record is written to prevent the journal
  4114. * replay from overwriting the (former)
  4115. * indirect block if it gets reallocated as a
  4116. * data block. This must happen in the same
  4117. * transaction where the data blocks are
  4118. * actually freed.
  4119. */
  4120. ext4_free_blocks(handle, inode, 0, nr, 1,
  4121. EXT4_FREE_BLOCKS_METADATA|
  4122. EXT4_FREE_BLOCKS_FORGET);
  4123. if (parent_bh) {
  4124. /*
  4125. * The block which we have just freed is
  4126. * pointed to by an indirect block: journal it
  4127. */
  4128. BUFFER_TRACE(parent_bh, "get_write_access");
  4129. if (!ext4_journal_get_write_access(handle,
  4130. parent_bh)){
  4131. *p = 0;
  4132. BUFFER_TRACE(parent_bh,
  4133. "call ext4_handle_dirty_metadata");
  4134. ext4_handle_dirty_metadata(handle,
  4135. inode,
  4136. parent_bh);
  4137. }
  4138. }
  4139. }
  4140. } else {
  4141. /* We have reached the bottom of the tree. */
  4142. BUFFER_TRACE(parent_bh, "free data blocks");
  4143. ext4_free_data(handle, inode, parent_bh, first, last);
  4144. }
  4145. }
  4146. int ext4_can_truncate(struct inode *inode)
  4147. {
  4148. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  4149. return 0;
  4150. if (S_ISREG(inode->i_mode))
  4151. return 1;
  4152. if (S_ISDIR(inode->i_mode))
  4153. return 1;
  4154. if (S_ISLNK(inode->i_mode))
  4155. return !ext4_inode_is_fast_symlink(inode);
  4156. return 0;
  4157. }
  4158. /*
  4159. * ext4_truncate()
  4160. *
  4161. * We block out ext4_get_block() block instantiations across the entire
  4162. * transaction, and VFS/VM ensures that ext4_truncate() cannot run
  4163. * simultaneously on behalf of the same inode.
  4164. *
  4165. * As we work through the truncate and commmit bits of it to the journal there
  4166. * is one core, guiding principle: the file's tree must always be consistent on
  4167. * disk. We must be able to restart the truncate after a crash.
  4168. *
  4169. * The file's tree may be transiently inconsistent in memory (although it
  4170. * probably isn't), but whenever we close off and commit a journal transaction,
  4171. * the contents of (the filesystem + the journal) must be consistent and
  4172. * restartable. It's pretty simple, really: bottom up, right to left (although
  4173. * left-to-right works OK too).
  4174. *
  4175. * Note that at recovery time, journal replay occurs *before* the restart of
  4176. * truncate against the orphan inode list.
  4177. *
  4178. * The committed inode has the new, desired i_size (which is the same as
  4179. * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
  4180. * that this inode's truncate did not complete and it will again call
  4181. * ext4_truncate() to have another go. So there will be instantiated blocks
  4182. * to the right of the truncation point in a crashed ext4 filesystem. But
  4183. * that's fine - as long as they are linked from the inode, the post-crash
  4184. * ext4_truncate() run will find them and release them.
  4185. */
  4186. void ext4_truncate(struct inode *inode)
  4187. {
  4188. handle_t *handle;
  4189. struct ext4_inode_info *ei = EXT4_I(inode);
  4190. __le32 *i_data = ei->i_data;
  4191. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  4192. struct address_space *mapping = inode->i_mapping;
  4193. ext4_lblk_t offsets[4];
  4194. Indirect chain[4];
  4195. Indirect *partial;
  4196. __le32 nr = 0;
  4197. int n;
  4198. ext4_lblk_t last_block;
  4199. unsigned blocksize = inode->i_sb->s_blocksize;
  4200. if (!ext4_can_truncate(inode))
  4201. return;
  4202. ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
  4203. if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
  4204. ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
  4205. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
  4206. ext4_ext_truncate(inode);
  4207. return;
  4208. }
  4209. handle = start_transaction(inode);
  4210. if (IS_ERR(handle))
  4211. return; /* AKPM: return what? */
  4212. last_block = (inode->i_size + blocksize-1)
  4213. >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
  4214. if (inode->i_size & (blocksize - 1))
  4215. if (ext4_block_truncate_page(handle, mapping, inode->i_size))
  4216. goto out_stop;
  4217. n = ext4_block_to_path(inode, last_block, offsets, NULL);
  4218. if (n == 0)
  4219. goto out_stop; /* error */
  4220. /*
  4221. * OK. This truncate is going to happen. We add the inode to the
  4222. * orphan list, so that if this truncate spans multiple transactions,
  4223. * and we crash, we will resume the truncate when the filesystem
  4224. * recovers. It also marks the inode dirty, to catch the new size.
  4225. *
  4226. * Implication: the file must always be in a sane, consistent
  4227. * truncatable state while each transaction commits.
  4228. */
  4229. if (ext4_orphan_add(handle, inode))
  4230. goto out_stop;
  4231. /*
  4232. * From here we block out all ext4_get_block() callers who want to
  4233. * modify the block allocation tree.
  4234. */
  4235. down_write(&ei->i_data_sem);
  4236. ext4_discard_preallocations(inode);
  4237. /*
  4238. * The orphan list entry will now protect us from any crash which
  4239. * occurs before the truncate completes, so it is now safe to propagate
  4240. * the new, shorter inode size (held for now in i_size) into the
  4241. * on-disk inode. We do this via i_disksize, which is the value which
  4242. * ext4 *really* writes onto the disk inode.
  4243. */
  4244. ei->i_disksize = inode->i_size;
  4245. if (n == 1) { /* direct blocks */
  4246. ext4_free_data(handle, inode, NULL, i_data+offsets[0],
  4247. i_data + EXT4_NDIR_BLOCKS);
  4248. goto do_indirects;
  4249. }
  4250. partial = ext4_find_shared(inode, n, offsets, chain, &nr);
  4251. /* Kill the top of shared branch (not detached) */
  4252. if (nr) {
  4253. if (partial == chain) {
  4254. /* Shared branch grows from the inode */
  4255. ext4_free_branches(handle, inode, NULL,
  4256. &nr, &nr+1, (chain+n-1) - partial);
  4257. *partial->p = 0;
  4258. /*
  4259. * We mark the inode dirty prior to restart,
  4260. * and prior to stop. No need for it here.
  4261. */
  4262. } else {
  4263. /* Shared branch grows from an indirect block */
  4264. BUFFER_TRACE(partial->bh, "get_write_access");
  4265. ext4_free_branches(handle, inode, partial->bh,
  4266. partial->p,
  4267. partial->p+1, (chain+n-1) - partial);
  4268. }
  4269. }
  4270. /* Clear the ends of indirect blocks on the shared branch */
  4271. while (partial > chain) {
  4272. ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
  4273. (__le32*)partial->bh->b_data+addr_per_block,
  4274. (chain+n-1) - partial);
  4275. BUFFER_TRACE(partial->bh, "call brelse");
  4276. brelse(partial->bh);
  4277. partial--;
  4278. }
  4279. do_indirects:
  4280. /* Kill the remaining (whole) subtrees */
  4281. switch (offsets[0]) {
  4282. default:
  4283. nr = i_data[EXT4_IND_BLOCK];
  4284. if (nr) {
  4285. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  4286. i_data[EXT4_IND_BLOCK] = 0;
  4287. }
  4288. case EXT4_IND_BLOCK:
  4289. nr = i_data[EXT4_DIND_BLOCK];
  4290. if (nr) {
  4291. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  4292. i_data[EXT4_DIND_BLOCK] = 0;
  4293. }
  4294. case EXT4_DIND_BLOCK:
  4295. nr = i_data[EXT4_TIND_BLOCK];
  4296. if (nr) {
  4297. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  4298. i_data[EXT4_TIND_BLOCK] = 0;
  4299. }
  4300. case EXT4_TIND_BLOCK:
  4301. ;
  4302. }
  4303. up_write(&ei->i_data_sem);
  4304. inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
  4305. ext4_mark_inode_dirty(handle, inode);
  4306. /*
  4307. * In a multi-transaction truncate, we only make the final transaction
  4308. * synchronous
  4309. */
  4310. if (IS_SYNC(inode))
  4311. ext4_handle_sync(handle);
  4312. out_stop:
  4313. /*
  4314. * If this was a simple ftruncate(), and the file will remain alive
  4315. * then we need to clear up the orphan record which we created above.
  4316. * However, if this was a real unlink then we were called by
  4317. * ext4_delete_inode(), and we allow that function to clean up the
  4318. * orphan info for us.
  4319. */
  4320. if (inode->i_nlink)
  4321. ext4_orphan_del(handle, inode);
  4322. ext4_journal_stop(handle);
  4323. }
  4324. /*
  4325. * ext4_get_inode_loc returns with an extra refcount against the inode's
  4326. * underlying buffer_head on success. If 'in_mem' is true, we have all
  4327. * data in memory that is needed to recreate the on-disk version of this
  4328. * inode.
  4329. */
  4330. static int __ext4_get_inode_loc(struct inode *inode,
  4331. struct ext4_iloc *iloc, int in_mem)
  4332. {
  4333. struct ext4_group_desc *gdp;
  4334. struct buffer_head *bh;
  4335. struct super_block *sb = inode->i_sb;
  4336. ext4_fsblk_t block;
  4337. int inodes_per_block, inode_offset;
  4338. iloc->bh = NULL;
  4339. if (!ext4_valid_inum(sb, inode->i_ino))
  4340. return -EIO;
  4341. iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
  4342. gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
  4343. if (!gdp)
  4344. return -EIO;
  4345. /*
  4346. * Figure out the offset within the block group inode table
  4347. */
  4348. inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
  4349. inode_offset = ((inode->i_ino - 1) %
  4350. EXT4_INODES_PER_GROUP(sb));
  4351. block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
  4352. iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
  4353. bh = sb_getblk(sb, block);
  4354. if (!bh) {
  4355. EXT4_ERROR_INODE_BLOCK(inode, block,
  4356. "unable to read itable block");
  4357. return -EIO;
  4358. }
  4359. if (!buffer_uptodate(bh)) {
  4360. lock_buffer(bh);
  4361. /*
  4362. * If the buffer has the write error flag, we have failed
  4363. * to write out another inode in the same block. In this
  4364. * case, we don't have to read the block because we may
  4365. * read the old inode data successfully.
  4366. */
  4367. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  4368. set_buffer_uptodate(bh);
  4369. if (buffer_uptodate(bh)) {
  4370. /* someone brought it uptodate while we waited */
  4371. unlock_buffer(bh);
  4372. goto has_buffer;
  4373. }
  4374. /*
  4375. * If we have all information of the inode in memory and this
  4376. * is the only valid inode in the block, we need not read the
  4377. * block.
  4378. */
  4379. if (in_mem) {
  4380. struct buffer_head *bitmap_bh;
  4381. int i, start;
  4382. start = inode_offset & ~(inodes_per_block - 1);
  4383. /* Is the inode bitmap in cache? */
  4384. bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
  4385. if (!bitmap_bh)
  4386. goto make_io;
  4387. /*
  4388. * If the inode bitmap isn't in cache then the
  4389. * optimisation may end up performing two reads instead
  4390. * of one, so skip it.
  4391. */
  4392. if (!buffer_uptodate(bitmap_bh)) {
  4393. brelse(bitmap_bh);
  4394. goto make_io;
  4395. }
  4396. for (i = start; i < start + inodes_per_block; i++) {
  4397. if (i == inode_offset)
  4398. continue;
  4399. if (ext4_test_bit(i, bitmap_bh->b_data))
  4400. break;
  4401. }
  4402. brelse(bitmap_bh);
  4403. if (i == start + inodes_per_block) {
  4404. /* all other inodes are free, so skip I/O */
  4405. memset(bh->b_data, 0, bh->b_size);
  4406. set_buffer_uptodate(bh);
  4407. unlock_buffer(bh);
  4408. goto has_buffer;
  4409. }
  4410. }
  4411. make_io:
  4412. /*
  4413. * If we need to do any I/O, try to pre-readahead extra
  4414. * blocks from the inode table.
  4415. */
  4416. if (EXT4_SB(sb)->s_inode_readahead_blks) {
  4417. ext4_fsblk_t b, end, table;
  4418. unsigned num;
  4419. table = ext4_inode_table(sb, gdp);
  4420. /* s_inode_readahead_blks is always a power of 2 */
  4421. b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
  4422. if (table > b)
  4423. b = table;
  4424. end = b + EXT4_SB(sb)->s_inode_readahead_blks;
  4425. num = EXT4_INODES_PER_GROUP(sb);
  4426. if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
  4427. EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
  4428. num -= ext4_itable_unused_count(sb, gdp);
  4429. table += num / inodes_per_block;
  4430. if (end > table)
  4431. end = table;
  4432. while (b <= end)
  4433. sb_breadahead(sb, b++);
  4434. }
  4435. /*
  4436. * There are other valid inodes in the buffer, this inode
  4437. * has in-inode xattrs, or we don't have this inode in memory.
  4438. * Read the block from disk.
  4439. */
  4440. get_bh(bh);
  4441. bh->b_end_io = end_buffer_read_sync;
  4442. submit_bh(READ_META, bh);
  4443. wait_on_buffer(bh);
  4444. if (!buffer_uptodate(bh)) {
  4445. EXT4_ERROR_INODE_BLOCK(inode, block,
  4446. "unable to read itable block");
  4447. brelse(bh);
  4448. return -EIO;
  4449. }
  4450. }
  4451. has_buffer:
  4452. iloc->bh = bh;
  4453. return 0;
  4454. }
  4455. int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
  4456. {
  4457. /* We have all inode data except xattrs in memory here. */
  4458. return __ext4_get_inode_loc(inode, iloc,
  4459. !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
  4460. }
  4461. void ext4_set_inode_flags(struct inode *inode)
  4462. {
  4463. unsigned int flags = EXT4_I(inode)->i_flags;
  4464. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  4465. if (flags & EXT4_SYNC_FL)
  4466. inode->i_flags |= S_SYNC;
  4467. if (flags & EXT4_APPEND_FL)
  4468. inode->i_flags |= S_APPEND;
  4469. if (flags & EXT4_IMMUTABLE_FL)
  4470. inode->i_flags |= S_IMMUTABLE;
  4471. if (flags & EXT4_NOATIME_FL)
  4472. inode->i_flags |= S_NOATIME;
  4473. if (flags & EXT4_DIRSYNC_FL)
  4474. inode->i_flags |= S_DIRSYNC;
  4475. }
  4476. /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
  4477. void ext4_get_inode_flags(struct ext4_inode_info *ei)
  4478. {
  4479. unsigned int vfs_fl;
  4480. unsigned long old_fl, new_fl;
  4481. do {
  4482. vfs_fl = ei->vfs_inode.i_flags;
  4483. old_fl = ei->i_flags;
  4484. new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
  4485. EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
  4486. EXT4_DIRSYNC_FL);
  4487. if (vfs_fl & S_SYNC)
  4488. new_fl |= EXT4_SYNC_FL;
  4489. if (vfs_fl & S_APPEND)
  4490. new_fl |= EXT4_APPEND_FL;
  4491. if (vfs_fl & S_IMMUTABLE)
  4492. new_fl |= EXT4_IMMUTABLE_FL;
  4493. if (vfs_fl & S_NOATIME)
  4494. new_fl |= EXT4_NOATIME_FL;
  4495. if (vfs_fl & S_DIRSYNC)
  4496. new_fl |= EXT4_DIRSYNC_FL;
  4497. } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
  4498. }
  4499. static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
  4500. struct ext4_inode_info *ei)
  4501. {
  4502. blkcnt_t i_blocks ;
  4503. struct inode *inode = &(ei->vfs_inode);
  4504. struct super_block *sb = inode->i_sb;
  4505. if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
  4506. EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
  4507. /* we are using combined 48 bit field */
  4508. i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
  4509. le32_to_cpu(raw_inode->i_blocks_lo);
  4510. if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
  4511. /* i_blocks represent file system block size */
  4512. return i_blocks << (inode->i_blkbits - 9);
  4513. } else {
  4514. return i_blocks;
  4515. }
  4516. } else {
  4517. return le32_to_cpu(raw_inode->i_blocks_lo);
  4518. }
  4519. }
  4520. struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
  4521. {
  4522. struct ext4_iloc iloc;
  4523. struct ext4_inode *raw_inode;
  4524. struct ext4_inode_info *ei;
  4525. struct inode *inode;
  4526. journal_t *journal = EXT4_SB(sb)->s_journal;
  4527. long ret;
  4528. int block;
  4529. inode = iget_locked(sb, ino);
  4530. if (!inode)
  4531. return ERR_PTR(-ENOMEM);
  4532. if (!(inode->i_state & I_NEW))
  4533. return inode;
  4534. ei = EXT4_I(inode);
  4535. iloc.bh = 0;
  4536. ret = __ext4_get_inode_loc(inode, &iloc, 0);
  4537. if (ret < 0)
  4538. goto bad_inode;
  4539. raw_inode = ext4_raw_inode(&iloc);
  4540. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  4541. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  4542. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  4543. if (!(test_opt(inode->i_sb, NO_UID32))) {
  4544. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  4545. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  4546. }
  4547. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  4548. ei->i_state_flags = 0;
  4549. ei->i_dir_start_lookup = 0;
  4550. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  4551. /* We now have enough fields to check if the inode was active or not.
  4552. * This is needed because nfsd might try to access dead inodes
  4553. * the test is that same one that e2fsck uses
  4554. * NeilBrown 1999oct15
  4555. */
  4556. if (inode->i_nlink == 0) {
  4557. if (inode->i_mode == 0 ||
  4558. !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
  4559. /* this inode is deleted */
  4560. ret = -ESTALE;
  4561. goto bad_inode;
  4562. }
  4563. /* The only unlinked inodes we let through here have
  4564. * valid i_mode and are being read by the orphan
  4565. * recovery code: that's fine, we're about to complete
  4566. * the process of deleting those. */
  4567. }
  4568. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  4569. inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
  4570. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
  4571. if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
  4572. ei->i_file_acl |=
  4573. ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
  4574. inode->i_size = ext4_isize(raw_inode);
  4575. ei->i_disksize = inode->i_size;
  4576. #ifdef CONFIG_QUOTA
  4577. ei->i_reserved_quota = 0;
  4578. #endif
  4579. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  4580. ei->i_block_group = iloc.block_group;
  4581. ei->i_last_alloc_group = ~0;
  4582. /*
  4583. * NOTE! The in-memory inode i_data array is in little-endian order
  4584. * even on big-endian machines: we do NOT byteswap the block numbers!
  4585. */
  4586. for (block = 0; block < EXT4_N_BLOCKS; block++)
  4587. ei->i_data[block] = raw_inode->i_block[block];
  4588. INIT_LIST_HEAD(&ei->i_orphan);
  4589. /*
  4590. * Set transaction id's of transactions that have to be committed
  4591. * to finish f[data]sync. We set them to currently running transaction
  4592. * as we cannot be sure that the inode or some of its metadata isn't
  4593. * part of the transaction - the inode could have been reclaimed and
  4594. * now it is reread from disk.
  4595. */
  4596. if (journal) {
  4597. transaction_t *transaction;
  4598. tid_t tid;
  4599. read_lock(&journal->j_state_lock);
  4600. if (journal->j_running_transaction)
  4601. transaction = journal->j_running_transaction;
  4602. else
  4603. transaction = journal->j_committing_transaction;
  4604. if (transaction)
  4605. tid = transaction->t_tid;
  4606. else
  4607. tid = journal->j_commit_sequence;
  4608. read_unlock(&journal->j_state_lock);
  4609. ei->i_sync_tid = tid;
  4610. ei->i_datasync_tid = tid;
  4611. }
  4612. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  4613. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  4614. if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  4615. EXT4_INODE_SIZE(inode->i_sb)) {
  4616. ret = -EIO;
  4617. goto bad_inode;
  4618. }
  4619. if (ei->i_extra_isize == 0) {
  4620. /* The extra space is currently unused. Use it. */
  4621. ei->i_extra_isize = sizeof(struct ext4_inode) -
  4622. EXT4_GOOD_OLD_INODE_SIZE;
  4623. } else {
  4624. __le32 *magic = (void *)raw_inode +
  4625. EXT4_GOOD_OLD_INODE_SIZE +
  4626. ei->i_extra_isize;
  4627. if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
  4628. ext4_set_inode_state(inode, EXT4_STATE_XATTR);
  4629. }
  4630. } else
  4631. ei->i_extra_isize = 0;
  4632. EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
  4633. EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
  4634. EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
  4635. EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
  4636. inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
  4637. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  4638. if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
  4639. inode->i_version |=
  4640. (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
  4641. }
  4642. ret = 0;
  4643. if (ei->i_file_acl &&
  4644. !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
  4645. EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
  4646. ei->i_file_acl);
  4647. ret = -EIO;
  4648. goto bad_inode;
  4649. } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
  4650. if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  4651. (S_ISLNK(inode->i_mode) &&
  4652. !ext4_inode_is_fast_symlink(inode)))
  4653. /* Validate extent which is part of inode */
  4654. ret = ext4_ext_check_inode(inode);
  4655. } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  4656. (S_ISLNK(inode->i_mode) &&
  4657. !ext4_inode_is_fast_symlink(inode))) {
  4658. /* Validate block references which are part of inode */
  4659. ret = ext4_check_inode_blockref(inode);
  4660. }
  4661. if (ret)
  4662. goto bad_inode;
  4663. if (S_ISREG(inode->i_mode)) {
  4664. inode->i_op = &ext4_file_inode_operations;
  4665. inode->i_fop = &ext4_file_operations;
  4666. ext4_set_aops(inode);
  4667. } else if (S_ISDIR(inode->i_mode)) {
  4668. inode->i_op = &ext4_dir_inode_operations;
  4669. inode->i_fop = &ext4_dir_operations;
  4670. } else if (S_ISLNK(inode->i_mode)) {
  4671. if (ext4_inode_is_fast_symlink(inode)) {
  4672. inode->i_op = &ext4_fast_symlink_inode_operations;
  4673. nd_terminate_link(ei->i_data, inode->i_size,
  4674. sizeof(ei->i_data) - 1);
  4675. } else {
  4676. inode->i_op = &ext4_symlink_inode_operations;
  4677. ext4_set_aops(inode);
  4678. }
  4679. } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  4680. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  4681. inode->i_op = &ext4_special_inode_operations;
  4682. if (raw_inode->i_block[0])
  4683. init_special_inode(inode, inode->i_mode,
  4684. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  4685. else
  4686. init_special_inode(inode, inode->i_mode,
  4687. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  4688. } else {
  4689. ret = -EIO;
  4690. EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
  4691. goto bad_inode;
  4692. }
  4693. brelse(iloc.bh);
  4694. ext4_set_inode_flags(inode);
  4695. unlock_new_inode(inode);
  4696. return inode;
  4697. bad_inode:
  4698. brelse(iloc.bh);
  4699. iget_failed(inode);
  4700. return ERR_PTR(ret);
  4701. }
  4702. static int ext4_inode_blocks_set(handle_t *handle,
  4703. struct ext4_inode *raw_inode,
  4704. struct ext4_inode_info *ei)
  4705. {
  4706. struct inode *inode = &(ei->vfs_inode);
  4707. u64 i_blocks = inode->i_blocks;
  4708. struct super_block *sb = inode->i_sb;
  4709. if (i_blocks <= ~0U) {
  4710. /*
  4711. * i_blocks can be represnted in a 32 bit variable
  4712. * as multiple of 512 bytes
  4713. */
  4714. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  4715. raw_inode->i_blocks_high = 0;
  4716. ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
  4717. return 0;
  4718. }
  4719. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
  4720. return -EFBIG;
  4721. if (i_blocks <= 0xffffffffffffULL) {
  4722. /*
  4723. * i_blocks can be represented in a 48 bit variable
  4724. * as multiple of 512 bytes
  4725. */
  4726. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  4727. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  4728. ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
  4729. } else {
  4730. ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
  4731. /* i_block is stored in file system block size */
  4732. i_blocks = i_blocks >> (inode->i_blkbits - 9);
  4733. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  4734. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  4735. }
  4736. return 0;
  4737. }
  4738. /*
  4739. * Post the struct inode info into an on-disk inode location in the
  4740. * buffer-cache. This gobbles the caller's reference to the
  4741. * buffer_head in the inode location struct.
  4742. *
  4743. * The caller must have write access to iloc->bh.
  4744. */
  4745. static int ext4_do_update_inode(handle_t *handle,
  4746. struct inode *inode,
  4747. struct ext4_iloc *iloc)
  4748. {
  4749. struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
  4750. struct ext4_inode_info *ei = EXT4_I(inode);
  4751. struct buffer_head *bh = iloc->bh;
  4752. int err = 0, rc, block;
  4753. /* For fields not not tracking in the in-memory inode,
  4754. * initialise them to zero for new inodes. */
  4755. if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
  4756. memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
  4757. ext4_get_inode_flags(ei);
  4758. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  4759. if (!(test_opt(inode->i_sb, NO_UID32))) {
  4760. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  4761. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  4762. /*
  4763. * Fix up interoperability with old kernels. Otherwise, old inodes get
  4764. * re-used with the upper 16 bits of the uid/gid intact
  4765. */
  4766. if (!ei->i_dtime) {
  4767. raw_inode->i_uid_high =
  4768. cpu_to_le16(high_16_bits(inode->i_uid));
  4769. raw_inode->i_gid_high =
  4770. cpu_to_le16(high_16_bits(inode->i_gid));
  4771. } else {
  4772. raw_inode->i_uid_high = 0;
  4773. raw_inode->i_gid_high = 0;
  4774. }
  4775. } else {
  4776. raw_inode->i_uid_low =
  4777. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  4778. raw_inode->i_gid_low =
  4779. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  4780. raw_inode->i_uid_high = 0;
  4781. raw_inode->i_gid_high = 0;
  4782. }
  4783. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  4784. EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
  4785. EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
  4786. EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
  4787. EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
  4788. if (ext4_inode_blocks_set(handle, raw_inode, ei))
  4789. goto out_brelse;
  4790. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  4791. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  4792. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  4793. cpu_to_le32(EXT4_OS_HURD))
  4794. raw_inode->i_file_acl_high =
  4795. cpu_to_le16(ei->i_file_acl >> 32);
  4796. raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
  4797. ext4_isize_set(raw_inode, ei->i_disksize);
  4798. if (ei->i_disksize > 0x7fffffffULL) {
  4799. struct super_block *sb = inode->i_sb;
  4800. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
  4801. EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
  4802. EXT4_SB(sb)->s_es->s_rev_level ==
  4803. cpu_to_le32(EXT4_GOOD_OLD_REV)) {
  4804. /* If this is the first large file
  4805. * created, add a flag to the superblock.
  4806. */
  4807. err = ext4_journal_get_write_access(handle,
  4808. EXT4_SB(sb)->s_sbh);
  4809. if (err)
  4810. goto out_brelse;
  4811. ext4_update_dynamic_rev(sb);
  4812. EXT4_SET_RO_COMPAT_FEATURE(sb,
  4813. EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
  4814. sb->s_dirt = 1;
  4815. ext4_handle_sync(handle);
  4816. err = ext4_handle_dirty_metadata(handle, NULL,
  4817. EXT4_SB(sb)->s_sbh);
  4818. }
  4819. }
  4820. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  4821. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  4822. if (old_valid_dev(inode->i_rdev)) {
  4823. raw_inode->i_block[0] =
  4824. cpu_to_le32(old_encode_dev(inode->i_rdev));
  4825. raw_inode->i_block[1] = 0;
  4826. } else {
  4827. raw_inode->i_block[0] = 0;
  4828. raw_inode->i_block[1] =
  4829. cpu_to_le32(new_encode_dev(inode->i_rdev));
  4830. raw_inode->i_block[2] = 0;
  4831. }
  4832. } else
  4833. for (block = 0; block < EXT4_N_BLOCKS; block++)
  4834. raw_inode->i_block[block] = ei->i_data[block];
  4835. raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
  4836. if (ei->i_extra_isize) {
  4837. if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
  4838. raw_inode->i_version_hi =
  4839. cpu_to_le32(inode->i_version >> 32);
  4840. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  4841. }
  4842. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  4843. rc = ext4_handle_dirty_metadata(handle, NULL, bh);
  4844. if (!err)
  4845. err = rc;
  4846. ext4_clear_inode_state(inode, EXT4_STATE_NEW);
  4847. ext4_update_inode_fsync_trans(handle, inode, 0);
  4848. out_brelse:
  4849. brelse(bh);
  4850. ext4_std_error(inode->i_sb, err);
  4851. return err;
  4852. }
  4853. /*
  4854. * ext4_write_inode()
  4855. *
  4856. * We are called from a few places:
  4857. *
  4858. * - Within generic_file_write() for O_SYNC files.
  4859. * Here, there will be no transaction running. We wait for any running
  4860. * trasnaction to commit.
  4861. *
  4862. * - Within sys_sync(), kupdate and such.
  4863. * We wait on commit, if tol to.
  4864. *
  4865. * - Within prune_icache() (PF_MEMALLOC == true)
  4866. * Here we simply return. We can't afford to block kswapd on the
  4867. * journal commit.
  4868. *
  4869. * In all cases it is actually safe for us to return without doing anything,
  4870. * because the inode has been copied into a raw inode buffer in
  4871. * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  4872. * knfsd.
  4873. *
  4874. * Note that we are absolutely dependent upon all inode dirtiers doing the
  4875. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  4876. * which we are interested.
  4877. *
  4878. * It would be a bug for them to not do this. The code:
  4879. *
  4880. * mark_inode_dirty(inode)
  4881. * stuff();
  4882. * inode->i_size = expr;
  4883. *
  4884. * is in error because a kswapd-driven write_inode() could occur while
  4885. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  4886. * will no longer be on the superblock's dirty inode list.
  4887. */
  4888. int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
  4889. {
  4890. int err;
  4891. if (current->flags & PF_MEMALLOC)
  4892. return 0;
  4893. if (EXT4_SB(inode->i_sb)->s_journal) {
  4894. if (ext4_journal_current_handle()) {
  4895. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  4896. dump_stack();
  4897. return -EIO;
  4898. }
  4899. if (wbc->sync_mode != WB_SYNC_ALL)
  4900. return 0;
  4901. err = ext4_force_commit(inode->i_sb);
  4902. } else {
  4903. struct ext4_iloc iloc;
  4904. err = __ext4_get_inode_loc(inode, &iloc, 0);
  4905. if (err)
  4906. return err;
  4907. if (wbc->sync_mode == WB_SYNC_ALL)
  4908. sync_dirty_buffer(iloc.bh);
  4909. if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
  4910. EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
  4911. "IO error syncing inode");
  4912. err = -EIO;
  4913. }
  4914. brelse(iloc.bh);
  4915. }
  4916. return err;
  4917. }
  4918. /*
  4919. * ext4_setattr()
  4920. *
  4921. * Called from notify_change.
  4922. *
  4923. * We want to trap VFS attempts to truncate the file as soon as
  4924. * possible. In particular, we want to make sure that when the VFS
  4925. * shrinks i_size, we put the inode on the orphan list and modify
  4926. * i_disksize immediately, so that during the subsequent flushing of
  4927. * dirty pages and freeing of disk blocks, we can guarantee that any
  4928. * commit will leave the blocks being flushed in an unused state on
  4929. * disk. (On recovery, the inode will get truncated and the blocks will
  4930. * be freed, so we have a strong guarantee that no future commit will
  4931. * leave these blocks visible to the user.)
  4932. *
  4933. * Another thing we have to assure is that if we are in ordered mode
  4934. * and inode is still attached to the committing transaction, we must
  4935. * we start writeout of all the dirty pages which are being truncated.
  4936. * This way we are sure that all the data written in the previous
  4937. * transaction are already on disk (truncate waits for pages under
  4938. * writeback).
  4939. *
  4940. * Called with inode->i_mutex down.
  4941. */
  4942. int ext4_setattr(struct dentry *dentry, struct iattr *attr)
  4943. {
  4944. struct inode *inode = dentry->d_inode;
  4945. int error, rc = 0;
  4946. const unsigned int ia_valid = attr->ia_valid;
  4947. error = inode_change_ok(inode, attr);
  4948. if (error)
  4949. return error;
  4950. if (is_quota_modification(inode, attr))
  4951. dquot_initialize(inode);
  4952. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  4953. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  4954. handle_t *handle;
  4955. /* (user+group)*(old+new) structure, inode write (sb,
  4956. * inode block, ? - but truncate inode update has it) */
  4957. handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
  4958. EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
  4959. if (IS_ERR(handle)) {
  4960. error = PTR_ERR(handle);
  4961. goto err_out;
  4962. }
  4963. error = dquot_transfer(inode, attr);
  4964. if (error) {
  4965. ext4_journal_stop(handle);
  4966. return error;
  4967. }
  4968. /* Update corresponding info in inode so that everything is in
  4969. * one transaction */
  4970. if (attr->ia_valid & ATTR_UID)
  4971. inode->i_uid = attr->ia_uid;
  4972. if (attr->ia_valid & ATTR_GID)
  4973. inode->i_gid = attr->ia_gid;
  4974. error = ext4_mark_inode_dirty(handle, inode);
  4975. ext4_journal_stop(handle);
  4976. }
  4977. if (attr->ia_valid & ATTR_SIZE) {
  4978. if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
  4979. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  4980. if (attr->ia_size > sbi->s_bitmap_maxbytes)
  4981. return -EFBIG;
  4982. }
  4983. }
  4984. if (S_ISREG(inode->i_mode) &&
  4985. attr->ia_valid & ATTR_SIZE &&
  4986. (attr->ia_size < inode->i_size ||
  4987. (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
  4988. handle_t *handle;
  4989. handle = ext4_journal_start(inode, 3);
  4990. if (IS_ERR(handle)) {
  4991. error = PTR_ERR(handle);
  4992. goto err_out;
  4993. }
  4994. error = ext4_orphan_add(handle, inode);
  4995. EXT4_I(inode)->i_disksize = attr->ia_size;
  4996. rc = ext4_mark_inode_dirty(handle, inode);
  4997. if (!error)
  4998. error = rc;
  4999. ext4_journal_stop(handle);
  5000. if (ext4_should_order_data(inode)) {
  5001. error = ext4_begin_ordered_truncate(inode,
  5002. attr->ia_size);
  5003. if (error) {
  5004. /* Do as much error cleanup as possible */
  5005. handle = ext4_journal_start(inode, 3);
  5006. if (IS_ERR(handle)) {
  5007. ext4_orphan_del(NULL, inode);
  5008. goto err_out;
  5009. }
  5010. ext4_orphan_del(handle, inode);
  5011. ext4_journal_stop(handle);
  5012. goto err_out;
  5013. }
  5014. }
  5015. /* ext4_truncate will clear the flag */
  5016. if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
  5017. ext4_truncate(inode);
  5018. }
  5019. if ((attr->ia_valid & ATTR_SIZE) &&
  5020. attr->ia_size != i_size_read(inode))
  5021. rc = vmtruncate(inode, attr->ia_size);
  5022. if (!rc) {
  5023. setattr_copy(inode, attr);
  5024. mark_inode_dirty(inode);
  5025. }
  5026. /*
  5027. * If the call to ext4_truncate failed to get a transaction handle at
  5028. * all, we need to clean up the in-core orphan list manually.
  5029. */
  5030. if (inode->i_nlink)
  5031. ext4_orphan_del(NULL, inode);
  5032. if (!rc && (ia_valid & ATTR_MODE))
  5033. rc = ext4_acl_chmod(inode);
  5034. err_out:
  5035. ext4_std_error(inode->i_sb, error);
  5036. if (!error)
  5037. error = rc;
  5038. return error;
  5039. }
  5040. int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
  5041. struct kstat *stat)
  5042. {
  5043. struct inode *inode;
  5044. unsigned long delalloc_blocks;
  5045. inode = dentry->d_inode;
  5046. generic_fillattr(inode, stat);
  5047. /*
  5048. * We can't update i_blocks if the block allocation is delayed
  5049. * otherwise in the case of system crash before the real block
  5050. * allocation is done, we will have i_blocks inconsistent with
  5051. * on-disk file blocks.
  5052. * We always keep i_blocks updated together with real
  5053. * allocation. But to not confuse with user, stat
  5054. * will return the blocks that include the delayed allocation
  5055. * blocks for this file.
  5056. */
  5057. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  5058. delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
  5059. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  5060. stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
  5061. return 0;
  5062. }
  5063. static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
  5064. int chunk)
  5065. {
  5066. int indirects;
  5067. /* if nrblocks are contiguous */
  5068. if (chunk) {
  5069. /*
  5070. * With N contiguous data blocks, it need at most
  5071. * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
  5072. * 2 dindirect blocks
  5073. * 1 tindirect block
  5074. */
  5075. indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
  5076. return indirects + 3;
  5077. }
  5078. /*
  5079. * if nrblocks are not contiguous, worse case, each block touch
  5080. * a indirect block, and each indirect block touch a double indirect
  5081. * block, plus a triple indirect block
  5082. */
  5083. indirects = nrblocks * 2 + 1;
  5084. return indirects;
  5085. }
  5086. static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
  5087. {
  5088. if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
  5089. return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
  5090. return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
  5091. }
  5092. /*
  5093. * Account for index blocks, block groups bitmaps and block group
  5094. * descriptor blocks if modify datablocks and index blocks
  5095. * worse case, the indexs blocks spread over different block groups
  5096. *
  5097. * If datablocks are discontiguous, they are possible to spread over
  5098. * different block groups too. If they are contiuguous, with flexbg,
  5099. * they could still across block group boundary.
  5100. *
  5101. * Also account for superblock, inode, quota and xattr blocks
  5102. */
  5103. int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
  5104. {
  5105. ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
  5106. int gdpblocks;
  5107. int idxblocks;
  5108. int ret = 0;
  5109. /*
  5110. * How many index blocks need to touch to modify nrblocks?
  5111. * The "Chunk" flag indicating whether the nrblocks is
  5112. * physically contiguous on disk
  5113. *
  5114. * For Direct IO and fallocate, they calls get_block to allocate
  5115. * one single extent at a time, so they could set the "Chunk" flag
  5116. */
  5117. idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
  5118. ret = idxblocks;
  5119. /*
  5120. * Now let's see how many group bitmaps and group descriptors need
  5121. * to account
  5122. */
  5123. groups = idxblocks;
  5124. if (chunk)
  5125. groups += 1;
  5126. else
  5127. groups += nrblocks;
  5128. gdpblocks = groups;
  5129. if (groups > ngroups)
  5130. groups = ngroups;
  5131. if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
  5132. gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
  5133. /* bitmaps and block group descriptor blocks */
  5134. ret += groups + gdpblocks;
  5135. /* Blocks for super block, inode, quota and xattr blocks */
  5136. ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
  5137. return ret;
  5138. }
  5139. /*
  5140. * Calulate the total number of credits to reserve to fit
  5141. * the modification of a single pages into a single transaction,
  5142. * which may include multiple chunks of block allocations.
  5143. *
  5144. * This could be called via ext4_write_begin()
  5145. *
  5146. * We need to consider the worse case, when
  5147. * one new block per extent.
  5148. */
  5149. int ext4_writepage_trans_blocks(struct inode *inode)
  5150. {
  5151. int bpp = ext4_journal_blocks_per_page(inode);
  5152. int ret;
  5153. ret = ext4_meta_trans_blocks(inode, bpp, 0);
  5154. /* Account for data blocks for journalled mode */
  5155. if (ext4_should_journal_data(inode))
  5156. ret += bpp;
  5157. return ret;
  5158. }
  5159. /*
  5160. * Calculate the journal credits for a chunk of data modification.
  5161. *
  5162. * This is called from DIO, fallocate or whoever calling
  5163. * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
  5164. *
  5165. * journal buffers for data blocks are not included here, as DIO
  5166. * and fallocate do no need to journal data buffers.
  5167. */
  5168. int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
  5169. {
  5170. return ext4_meta_trans_blocks(inode, nrblocks, 1);
  5171. }
  5172. /*
  5173. * The caller must have previously called ext4_reserve_inode_write().
  5174. * Give this, we know that the caller already has write access to iloc->bh.
  5175. */
  5176. int ext4_mark_iloc_dirty(handle_t *handle,
  5177. struct inode *inode, struct ext4_iloc *iloc)
  5178. {
  5179. int err = 0;
  5180. if (test_opt(inode->i_sb, I_VERSION))
  5181. inode_inc_iversion(inode);
  5182. /* the do_update_inode consumes one bh->b_count */
  5183. get_bh(iloc->bh);
  5184. /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
  5185. err = ext4_do_update_inode(handle, inode, iloc);
  5186. put_bh(iloc->bh);
  5187. return err;
  5188. }
  5189. /*
  5190. * On success, We end up with an outstanding reference count against
  5191. * iloc->bh. This _must_ be cleaned up later.
  5192. */
  5193. int
  5194. ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
  5195. struct ext4_iloc *iloc)
  5196. {
  5197. int err;
  5198. err = ext4_get_inode_loc(inode, iloc);
  5199. if (!err) {
  5200. BUFFER_TRACE(iloc->bh, "get_write_access");
  5201. err = ext4_journal_get_write_access(handle, iloc->bh);
  5202. if (err) {
  5203. brelse(iloc->bh);
  5204. iloc->bh = NULL;
  5205. }
  5206. }
  5207. ext4_std_error(inode->i_sb, err);
  5208. return err;
  5209. }
  5210. /*
  5211. * Expand an inode by new_extra_isize bytes.
  5212. * Returns 0 on success or negative error number on failure.
  5213. */
  5214. static int ext4_expand_extra_isize(struct inode *inode,
  5215. unsigned int new_extra_isize,
  5216. struct ext4_iloc iloc,
  5217. handle_t *handle)
  5218. {
  5219. struct ext4_inode *raw_inode;
  5220. struct ext4_xattr_ibody_header *header;
  5221. if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
  5222. return 0;
  5223. raw_inode = ext4_raw_inode(&iloc);
  5224. header = IHDR(inode, raw_inode);
  5225. /* No extended attributes present */
  5226. if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
  5227. header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
  5228. memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
  5229. new_extra_isize);
  5230. EXT4_I(inode)->i_extra_isize = new_extra_isize;
  5231. return 0;
  5232. }
  5233. /* try to expand with EAs present */
  5234. return ext4_expand_extra_isize_ea(inode, new_extra_isize,
  5235. raw_inode, handle);
  5236. }
  5237. /*
  5238. * What we do here is to mark the in-core inode as clean with respect to inode
  5239. * dirtiness (it may still be data-dirty).
  5240. * This means that the in-core inode may be reaped by prune_icache
  5241. * without having to perform any I/O. This is a very good thing,
  5242. * because *any* task may call prune_icache - even ones which
  5243. * have a transaction open against a different journal.
  5244. *
  5245. * Is this cheating? Not really. Sure, we haven't written the
  5246. * inode out, but prune_icache isn't a user-visible syncing function.
  5247. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  5248. * we start and wait on commits.
  5249. *
  5250. * Is this efficient/effective? Well, we're being nice to the system
  5251. * by cleaning up our inodes proactively so they can be reaped
  5252. * without I/O. But we are potentially leaving up to five seconds'
  5253. * worth of inodes floating about which prune_icache wants us to
  5254. * write out. One way to fix that would be to get prune_icache()
  5255. * to do a write_super() to free up some memory. It has the desired
  5256. * effect.
  5257. */
  5258. int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
  5259. {
  5260. struct ext4_iloc iloc;
  5261. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  5262. static unsigned int mnt_count;
  5263. int err, ret;
  5264. might_sleep();
  5265. err = ext4_reserve_inode_write(handle, inode, &iloc);
  5266. if (ext4_handle_valid(handle) &&
  5267. EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
  5268. !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
  5269. /*
  5270. * We need extra buffer credits since we may write into EA block
  5271. * with this same handle. If journal_extend fails, then it will
  5272. * only result in a minor loss of functionality for that inode.
  5273. * If this is felt to be critical, then e2fsck should be run to
  5274. * force a large enough s_min_extra_isize.
  5275. */
  5276. if ((jbd2_journal_extend(handle,
  5277. EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
  5278. ret = ext4_expand_extra_isize(inode,
  5279. sbi->s_want_extra_isize,
  5280. iloc, handle);
  5281. if (ret) {
  5282. ext4_set_inode_state(inode,
  5283. EXT4_STATE_NO_EXPAND);
  5284. if (mnt_count !=
  5285. le16_to_cpu(sbi->s_es->s_mnt_count)) {
  5286. ext4_warning(inode->i_sb,
  5287. "Unable to expand inode %lu. Delete"
  5288. " some EAs or run e2fsck.",
  5289. inode->i_ino);
  5290. mnt_count =
  5291. le16_to_cpu(sbi->s_es->s_mnt_count);
  5292. }
  5293. }
  5294. }
  5295. }
  5296. if (!err)
  5297. err = ext4_mark_iloc_dirty(handle, inode, &iloc);
  5298. return err;
  5299. }
  5300. /*
  5301. * ext4_dirty_inode() is called from __mark_inode_dirty()
  5302. *
  5303. * We're really interested in the case where a file is being extended.
  5304. * i_size has been changed by generic_commit_write() and we thus need
  5305. * to include the updated inode in the current transaction.
  5306. *
  5307. * Also, dquot_alloc_block() will always dirty the inode when blocks
  5308. * are allocated to the file.
  5309. *
  5310. * If the inode is marked synchronous, we don't honour that here - doing
  5311. * so would cause a commit on atime updates, which we don't bother doing.
  5312. * We handle synchronous inodes at the highest possible level.
  5313. */
  5314. void ext4_dirty_inode(struct inode *inode)
  5315. {
  5316. handle_t *handle;
  5317. handle = ext4_journal_start(inode, 2);
  5318. if (IS_ERR(handle))
  5319. goto out;
  5320. ext4_mark_inode_dirty(handle, inode);
  5321. ext4_journal_stop(handle);
  5322. out:
  5323. return;
  5324. }
  5325. #if 0
  5326. /*
  5327. * Bind an inode's backing buffer_head into this transaction, to prevent
  5328. * it from being flushed to disk early. Unlike
  5329. * ext4_reserve_inode_write, this leaves behind no bh reference and
  5330. * returns no iloc structure, so the caller needs to repeat the iloc
  5331. * lookup to mark the inode dirty later.
  5332. */
  5333. static int ext4_pin_inode(handle_t *handle, struct inode *inode)
  5334. {
  5335. struct ext4_iloc iloc;
  5336. int err = 0;
  5337. if (handle) {
  5338. err = ext4_get_inode_loc(inode, &iloc);
  5339. if (!err) {
  5340. BUFFER_TRACE(iloc.bh, "get_write_access");
  5341. err = jbd2_journal_get_write_access(handle, iloc.bh);
  5342. if (!err)
  5343. err = ext4_handle_dirty_metadata(handle,
  5344. NULL,
  5345. iloc.bh);
  5346. brelse(iloc.bh);
  5347. }
  5348. }
  5349. ext4_std_error(inode->i_sb, err);
  5350. return err;
  5351. }
  5352. #endif
  5353. int ext4_change_inode_journal_flag(struct inode *inode, int val)
  5354. {
  5355. journal_t *journal;
  5356. handle_t *handle;
  5357. int err;
  5358. /*
  5359. * We have to be very careful here: changing a data block's
  5360. * journaling status dynamically is dangerous. If we write a
  5361. * data block to the journal, change the status and then delete
  5362. * that block, we risk forgetting to revoke the old log record
  5363. * from the journal and so a subsequent replay can corrupt data.
  5364. * So, first we make sure that the journal is empty and that
  5365. * nobody is changing anything.
  5366. */
  5367. journal = EXT4_JOURNAL(inode);
  5368. if (!journal)
  5369. return 0;
  5370. if (is_journal_aborted(journal))
  5371. return -EROFS;
  5372. jbd2_journal_lock_updates(journal);
  5373. jbd2_journal_flush(journal);
  5374. /*
  5375. * OK, there are no updates running now, and all cached data is
  5376. * synced to disk. We are now in a completely consistent state
  5377. * which doesn't have anything in the journal, and we know that
  5378. * no filesystem updates are running, so it is safe to modify
  5379. * the inode's in-core data-journaling state flag now.
  5380. */
  5381. if (val)
  5382. ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
  5383. else
  5384. ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
  5385. ext4_set_aops(inode);
  5386. jbd2_journal_unlock_updates(journal);
  5387. /* Finally we can mark the inode as dirty. */
  5388. handle = ext4_journal_start(inode, 1);
  5389. if (IS_ERR(handle))
  5390. return PTR_ERR(handle);
  5391. err = ext4_mark_inode_dirty(handle, inode);
  5392. ext4_handle_sync(handle);
  5393. ext4_journal_stop(handle);
  5394. ext4_std_error(inode->i_sb, err);
  5395. return err;
  5396. }
  5397. static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
  5398. {
  5399. return !buffer_mapped(bh);
  5400. }
  5401. int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
  5402. {
  5403. struct page *page = vmf->page;
  5404. loff_t size;
  5405. unsigned long len;
  5406. int ret = -EINVAL;
  5407. void *fsdata;
  5408. struct file *file = vma->vm_file;
  5409. struct inode *inode = file->f_path.dentry->d_inode;
  5410. struct address_space *mapping = inode->i_mapping;
  5411. /*
  5412. * Get i_alloc_sem to stop truncates messing with the inode. We cannot
  5413. * get i_mutex because we are already holding mmap_sem.
  5414. */
  5415. down_read(&inode->i_alloc_sem);
  5416. size = i_size_read(inode);
  5417. if (page->mapping != mapping || size <= page_offset(page)
  5418. || !PageUptodate(page)) {
  5419. /* page got truncated from under us? */
  5420. goto out_unlock;
  5421. }
  5422. ret = 0;
  5423. if (PageMappedToDisk(page))
  5424. goto out_unlock;
  5425. if (page->index == size >> PAGE_CACHE_SHIFT)
  5426. len = size & ~PAGE_CACHE_MASK;
  5427. else
  5428. len = PAGE_CACHE_SIZE;
  5429. lock_page(page);
  5430. /*
  5431. * return if we have all the buffers mapped. This avoid
  5432. * the need to call write_begin/write_end which does a
  5433. * journal_start/journal_stop which can block and take
  5434. * long time
  5435. */
  5436. if (page_has_buffers(page)) {
  5437. if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
  5438. ext4_bh_unmapped)) {
  5439. unlock_page(page);
  5440. goto out_unlock;
  5441. }
  5442. }
  5443. unlock_page(page);
  5444. /*
  5445. * OK, we need to fill the hole... Do write_begin write_end
  5446. * to do block allocation/reservation.We are not holding
  5447. * inode.i__mutex here. That allow * parallel write_begin,
  5448. * write_end call. lock_page prevent this from happening
  5449. * on the same page though
  5450. */
  5451. ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
  5452. len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
  5453. if (ret < 0)
  5454. goto out_unlock;
  5455. ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
  5456. len, len, page, fsdata);
  5457. if (ret < 0)
  5458. goto out_unlock;
  5459. ret = 0;
  5460. out_unlock:
  5461. if (ret)
  5462. ret = VM_FAULT_SIGBUS;
  5463. up_read(&inode->i_alloc_sem);
  5464. return ret;
  5465. }