dw_spi.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975
  1. /*
  2. * dw_spi.c - Designware SPI core controller driver (refer pxa2xx_spi.c)
  3. *
  4. * Copyright (c) 2009, Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. */
  19. #include <linux/dma-mapping.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/highmem.h>
  22. #include <linux/delay.h>
  23. #include <linux/spi/dw_spi.h>
  24. #include <linux/spi/spi.h>
  25. #ifdef CONFIG_DEBUG_FS
  26. #include <linux/debugfs.h>
  27. #endif
  28. #define START_STATE ((void *)0)
  29. #define RUNNING_STATE ((void *)1)
  30. #define DONE_STATE ((void *)2)
  31. #define ERROR_STATE ((void *)-1)
  32. #define QUEUE_RUNNING 0
  33. #define QUEUE_STOPPED 1
  34. #define MRST_SPI_DEASSERT 0
  35. #define MRST_SPI_ASSERT 1
  36. /* Slave spi_dev related */
  37. struct chip_data {
  38. u16 cr0;
  39. u8 cs; /* chip select pin */
  40. u8 n_bytes; /* current is a 1/2/4 byte op */
  41. u8 tmode; /* TR/TO/RO/EEPROM */
  42. u8 type; /* SPI/SSP/MicroWire */
  43. u8 poll_mode; /* 1 means use poll mode */
  44. u32 dma_width;
  45. u32 rx_threshold;
  46. u32 tx_threshold;
  47. u8 enable_dma;
  48. u8 bits_per_word;
  49. u16 clk_div; /* baud rate divider */
  50. u32 speed_hz; /* baud rate */
  51. int (*write)(struct dw_spi *dws);
  52. int (*read)(struct dw_spi *dws);
  53. void (*cs_control)(u32 command);
  54. };
  55. #ifdef CONFIG_DEBUG_FS
  56. static int spi_show_regs_open(struct inode *inode, struct file *file)
  57. {
  58. file->private_data = inode->i_private;
  59. return 0;
  60. }
  61. #define SPI_REGS_BUFSIZE 1024
  62. static ssize_t spi_show_regs(struct file *file, char __user *user_buf,
  63. size_t count, loff_t *ppos)
  64. {
  65. struct dw_spi *dws;
  66. char *buf;
  67. u32 len = 0;
  68. ssize_t ret;
  69. dws = file->private_data;
  70. buf = kzalloc(SPI_REGS_BUFSIZE, GFP_KERNEL);
  71. if (!buf)
  72. return 0;
  73. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  74. "MRST SPI0 registers:\n");
  75. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  76. "=================================\n");
  77. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  78. "CTRL0: \t\t0x%08x\n", dw_readl(dws, ctrl0));
  79. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  80. "CTRL1: \t\t0x%08x\n", dw_readl(dws, ctrl1));
  81. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  82. "SSIENR: \t0x%08x\n", dw_readl(dws, ssienr));
  83. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  84. "SER: \t\t0x%08x\n", dw_readl(dws, ser));
  85. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  86. "BAUDR: \t\t0x%08x\n", dw_readl(dws, baudr));
  87. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  88. "TXFTLR: \t0x%08x\n", dw_readl(dws, txfltr));
  89. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  90. "RXFTLR: \t0x%08x\n", dw_readl(dws, rxfltr));
  91. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  92. "TXFLR: \t\t0x%08x\n", dw_readl(dws, txflr));
  93. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  94. "RXFLR: \t\t0x%08x\n", dw_readl(dws, rxflr));
  95. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  96. "SR: \t\t0x%08x\n", dw_readl(dws, sr));
  97. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  98. "IMR: \t\t0x%08x\n", dw_readl(dws, imr));
  99. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  100. "ISR: \t\t0x%08x\n", dw_readl(dws, isr));
  101. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  102. "DMACR: \t\t0x%08x\n", dw_readl(dws, dmacr));
  103. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  104. "DMATDLR: \t0x%08x\n", dw_readl(dws, dmatdlr));
  105. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  106. "DMARDLR: \t0x%08x\n", dw_readl(dws, dmardlr));
  107. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  108. "=================================\n");
  109. ret = simple_read_from_buffer(user_buf, count, ppos, buf, len);
  110. kfree(buf);
  111. return ret;
  112. }
  113. static const struct file_operations mrst_spi_regs_ops = {
  114. .owner = THIS_MODULE,
  115. .open = spi_show_regs_open,
  116. .read = spi_show_regs,
  117. };
  118. static int mrst_spi_debugfs_init(struct dw_spi *dws)
  119. {
  120. dws->debugfs = debugfs_create_dir("mrst_spi", NULL);
  121. if (!dws->debugfs)
  122. return -ENOMEM;
  123. debugfs_create_file("registers", S_IFREG | S_IRUGO,
  124. dws->debugfs, (void *)dws, &mrst_spi_regs_ops);
  125. return 0;
  126. }
  127. static void mrst_spi_debugfs_remove(struct dw_spi *dws)
  128. {
  129. if (dws->debugfs)
  130. debugfs_remove_recursive(dws->debugfs);
  131. }
  132. #else
  133. static inline int mrst_spi_debugfs_init(struct dw_spi *dws)
  134. {
  135. return 0;
  136. }
  137. static inline void mrst_spi_debugfs_remove(struct dw_spi *dws)
  138. {
  139. }
  140. #endif /* CONFIG_DEBUG_FS */
  141. static void wait_till_not_busy(struct dw_spi *dws)
  142. {
  143. unsigned long end = jiffies + 1 + usecs_to_jiffies(1000);
  144. while (time_before(jiffies, end)) {
  145. if (!(dw_readw(dws, sr) & SR_BUSY))
  146. return;
  147. }
  148. dev_err(&dws->master->dev,
  149. "DW SPI: Status keeps busy for 1000us after a read/write!\n");
  150. }
  151. static void flush(struct dw_spi *dws)
  152. {
  153. while (dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  154. dw_readw(dws, dr);
  155. wait_till_not_busy(dws);
  156. }
  157. static void null_cs_control(u32 command)
  158. {
  159. }
  160. static int null_writer(struct dw_spi *dws)
  161. {
  162. u8 n_bytes = dws->n_bytes;
  163. if (!(dw_readw(dws, sr) & SR_TF_NOT_FULL)
  164. || (dws->tx == dws->tx_end))
  165. return 0;
  166. dw_writew(dws, dr, 0);
  167. dws->tx += n_bytes;
  168. wait_till_not_busy(dws);
  169. return 1;
  170. }
  171. static int null_reader(struct dw_spi *dws)
  172. {
  173. u8 n_bytes = dws->n_bytes;
  174. while ((dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  175. && (dws->rx < dws->rx_end)) {
  176. dw_readw(dws, dr);
  177. dws->rx += n_bytes;
  178. }
  179. wait_till_not_busy(dws);
  180. return dws->rx == dws->rx_end;
  181. }
  182. static int u8_writer(struct dw_spi *dws)
  183. {
  184. if (!(dw_readw(dws, sr) & SR_TF_NOT_FULL)
  185. || (dws->tx == dws->tx_end))
  186. return 0;
  187. dw_writew(dws, dr, *(u8 *)(dws->tx));
  188. ++dws->tx;
  189. wait_till_not_busy(dws);
  190. return 1;
  191. }
  192. static int u8_reader(struct dw_spi *dws)
  193. {
  194. while ((dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  195. && (dws->rx < dws->rx_end)) {
  196. *(u8 *)(dws->rx) = dw_readw(dws, dr);
  197. ++dws->rx;
  198. }
  199. wait_till_not_busy(dws);
  200. return dws->rx == dws->rx_end;
  201. }
  202. static int u16_writer(struct dw_spi *dws)
  203. {
  204. if (!(dw_readw(dws, sr) & SR_TF_NOT_FULL)
  205. || (dws->tx == dws->tx_end))
  206. return 0;
  207. dw_writew(dws, dr, *(u16 *)(dws->tx));
  208. dws->tx += 2;
  209. wait_till_not_busy(dws);
  210. return 1;
  211. }
  212. static int u16_reader(struct dw_spi *dws)
  213. {
  214. u16 temp;
  215. while ((dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  216. && (dws->rx < dws->rx_end)) {
  217. temp = dw_readw(dws, dr);
  218. *(u16 *)(dws->rx) = temp;
  219. dws->rx += 2;
  220. }
  221. wait_till_not_busy(dws);
  222. return dws->rx == dws->rx_end;
  223. }
  224. static void *next_transfer(struct dw_spi *dws)
  225. {
  226. struct spi_message *msg = dws->cur_msg;
  227. struct spi_transfer *trans = dws->cur_transfer;
  228. /* Move to next transfer */
  229. if (trans->transfer_list.next != &msg->transfers) {
  230. dws->cur_transfer =
  231. list_entry(trans->transfer_list.next,
  232. struct spi_transfer,
  233. transfer_list);
  234. return RUNNING_STATE;
  235. } else
  236. return DONE_STATE;
  237. }
  238. /*
  239. * Note: first step is the protocol driver prepares
  240. * a dma-capable memory, and this func just need translate
  241. * the virt addr to physical
  242. */
  243. static int map_dma_buffers(struct dw_spi *dws)
  244. {
  245. if (!dws->cur_msg->is_dma_mapped || !dws->dma_inited
  246. || !dws->cur_chip->enable_dma)
  247. return 0;
  248. if (dws->cur_transfer->tx_dma)
  249. dws->tx_dma = dws->cur_transfer->tx_dma;
  250. if (dws->cur_transfer->rx_dma)
  251. dws->rx_dma = dws->cur_transfer->rx_dma;
  252. return 1;
  253. }
  254. /* Caller already set message->status; dma and pio irqs are blocked */
  255. static void giveback(struct dw_spi *dws)
  256. {
  257. struct spi_transfer *last_transfer;
  258. unsigned long flags;
  259. struct spi_message *msg;
  260. spin_lock_irqsave(&dws->lock, flags);
  261. msg = dws->cur_msg;
  262. dws->cur_msg = NULL;
  263. dws->cur_transfer = NULL;
  264. dws->prev_chip = dws->cur_chip;
  265. dws->cur_chip = NULL;
  266. dws->dma_mapped = 0;
  267. queue_work(dws->workqueue, &dws->pump_messages);
  268. spin_unlock_irqrestore(&dws->lock, flags);
  269. last_transfer = list_entry(msg->transfers.prev,
  270. struct spi_transfer,
  271. transfer_list);
  272. if (!last_transfer->cs_change)
  273. dws->cs_control(MRST_SPI_DEASSERT);
  274. msg->state = NULL;
  275. if (msg->complete)
  276. msg->complete(msg->context);
  277. }
  278. static void int_error_stop(struct dw_spi *dws, const char *msg)
  279. {
  280. /* Stop and reset hw */
  281. flush(dws);
  282. spi_enable_chip(dws, 0);
  283. dev_err(&dws->master->dev, "%s\n", msg);
  284. dws->cur_msg->state = ERROR_STATE;
  285. tasklet_schedule(&dws->pump_transfers);
  286. }
  287. static void transfer_complete(struct dw_spi *dws)
  288. {
  289. /* Update total byte transfered return count actual bytes read */
  290. dws->cur_msg->actual_length += dws->len;
  291. /* Move to next transfer */
  292. dws->cur_msg->state = next_transfer(dws);
  293. /* Handle end of message */
  294. if (dws->cur_msg->state == DONE_STATE) {
  295. dws->cur_msg->status = 0;
  296. giveback(dws);
  297. } else
  298. tasklet_schedule(&dws->pump_transfers);
  299. }
  300. static irqreturn_t interrupt_transfer(struct dw_spi *dws)
  301. {
  302. u16 irq_status, irq_mask = 0x3f;
  303. u32 int_level = dws->fifo_len / 2;
  304. u32 left;
  305. irq_status = dw_readw(dws, isr) & irq_mask;
  306. /* Error handling */
  307. if (irq_status & (SPI_INT_TXOI | SPI_INT_RXOI | SPI_INT_RXUI)) {
  308. dw_readw(dws, txoicr);
  309. dw_readw(dws, rxoicr);
  310. dw_readw(dws, rxuicr);
  311. int_error_stop(dws, "interrupt_transfer: fifo overrun");
  312. return IRQ_HANDLED;
  313. }
  314. if (irq_status & SPI_INT_TXEI) {
  315. spi_mask_intr(dws, SPI_INT_TXEI);
  316. left = (dws->tx_end - dws->tx) / dws->n_bytes;
  317. left = (left > int_level) ? int_level : left;
  318. while (left--)
  319. dws->write(dws);
  320. dws->read(dws);
  321. /* Re-enable the IRQ if there is still data left to tx */
  322. if (dws->tx_end > dws->tx)
  323. spi_umask_intr(dws, SPI_INT_TXEI);
  324. else
  325. transfer_complete(dws);
  326. }
  327. return IRQ_HANDLED;
  328. }
  329. static irqreturn_t dw_spi_irq(int irq, void *dev_id)
  330. {
  331. struct dw_spi *dws = dev_id;
  332. if (!dws->cur_msg) {
  333. spi_mask_intr(dws, SPI_INT_TXEI);
  334. /* Never fail */
  335. return IRQ_HANDLED;
  336. }
  337. return dws->transfer_handler(dws);
  338. }
  339. /* Must be called inside pump_transfers() */
  340. static void poll_transfer(struct dw_spi *dws)
  341. {
  342. if (dws->tx) {
  343. while (dws->write(dws))
  344. dws->read(dws);
  345. }
  346. dws->read(dws);
  347. transfer_complete(dws);
  348. }
  349. static void dma_transfer(struct dw_spi *dws, int cs_change)
  350. {
  351. }
  352. static void pump_transfers(unsigned long data)
  353. {
  354. struct dw_spi *dws = (struct dw_spi *)data;
  355. struct spi_message *message = NULL;
  356. struct spi_transfer *transfer = NULL;
  357. struct spi_transfer *previous = NULL;
  358. struct spi_device *spi = NULL;
  359. struct chip_data *chip = NULL;
  360. u8 bits = 0;
  361. u8 imask = 0;
  362. u8 cs_change = 0;
  363. u16 txint_level = 0;
  364. u16 clk_div = 0;
  365. u32 speed = 0;
  366. u32 cr0 = 0;
  367. /* Get current state information */
  368. message = dws->cur_msg;
  369. transfer = dws->cur_transfer;
  370. chip = dws->cur_chip;
  371. spi = message->spi;
  372. if (unlikely(!chip->clk_div))
  373. chip->clk_div = dws->max_freq / chip->speed_hz;
  374. if (message->state == ERROR_STATE) {
  375. message->status = -EIO;
  376. goto early_exit;
  377. }
  378. /* Handle end of message */
  379. if (message->state == DONE_STATE) {
  380. message->status = 0;
  381. goto early_exit;
  382. }
  383. /* Delay if requested at end of transfer*/
  384. if (message->state == RUNNING_STATE) {
  385. previous = list_entry(transfer->transfer_list.prev,
  386. struct spi_transfer,
  387. transfer_list);
  388. if (previous->delay_usecs)
  389. udelay(previous->delay_usecs);
  390. }
  391. dws->n_bytes = chip->n_bytes;
  392. dws->dma_width = chip->dma_width;
  393. dws->cs_control = chip->cs_control;
  394. dws->rx_dma = transfer->rx_dma;
  395. dws->tx_dma = transfer->tx_dma;
  396. dws->tx = (void *)transfer->tx_buf;
  397. dws->tx_end = dws->tx + transfer->len;
  398. dws->rx = transfer->rx_buf;
  399. dws->rx_end = dws->rx + transfer->len;
  400. dws->write = dws->tx ? chip->write : null_writer;
  401. dws->read = dws->rx ? chip->read : null_reader;
  402. dws->cs_change = transfer->cs_change;
  403. dws->len = dws->cur_transfer->len;
  404. if (chip != dws->prev_chip)
  405. cs_change = 1;
  406. cr0 = chip->cr0;
  407. /* Handle per transfer options for bpw and speed */
  408. if (transfer->speed_hz) {
  409. speed = chip->speed_hz;
  410. if (transfer->speed_hz != speed) {
  411. speed = transfer->speed_hz;
  412. if (speed > dws->max_freq) {
  413. printk(KERN_ERR "MRST SPI0: unsupported"
  414. "freq: %dHz\n", speed);
  415. message->status = -EIO;
  416. goto early_exit;
  417. }
  418. /* clk_div doesn't support odd number */
  419. clk_div = dws->max_freq / speed;
  420. clk_div = (clk_div + 1) & 0xfffe;
  421. chip->speed_hz = speed;
  422. chip->clk_div = clk_div;
  423. }
  424. }
  425. if (transfer->bits_per_word) {
  426. bits = transfer->bits_per_word;
  427. switch (bits) {
  428. case 8:
  429. dws->n_bytes = 1;
  430. dws->dma_width = 1;
  431. dws->read = (dws->read != null_reader) ?
  432. u8_reader : null_reader;
  433. dws->write = (dws->write != null_writer) ?
  434. u8_writer : null_writer;
  435. break;
  436. case 16:
  437. dws->n_bytes = 2;
  438. dws->dma_width = 2;
  439. dws->read = (dws->read != null_reader) ?
  440. u16_reader : null_reader;
  441. dws->write = (dws->write != null_writer) ?
  442. u16_writer : null_writer;
  443. break;
  444. default:
  445. printk(KERN_ERR "MRST SPI0: unsupported bits:"
  446. "%db\n", bits);
  447. message->status = -EIO;
  448. goto early_exit;
  449. }
  450. cr0 = (bits - 1)
  451. | (chip->type << SPI_FRF_OFFSET)
  452. | (spi->mode << SPI_MODE_OFFSET)
  453. | (chip->tmode << SPI_TMOD_OFFSET);
  454. }
  455. message->state = RUNNING_STATE;
  456. /* Check if current transfer is a DMA transaction */
  457. dws->dma_mapped = map_dma_buffers(dws);
  458. /*
  459. * Interrupt mode
  460. * we only need set the TXEI IRQ, as TX/RX always happen syncronizely
  461. */
  462. if (!dws->dma_mapped && !chip->poll_mode) {
  463. int templen = dws->len / dws->n_bytes;
  464. txint_level = dws->fifo_len / 2;
  465. txint_level = (templen > txint_level) ? txint_level : templen;
  466. imask |= SPI_INT_TXEI;
  467. dws->transfer_handler = interrupt_transfer;
  468. }
  469. /*
  470. * Reprogram registers only if
  471. * 1. chip select changes
  472. * 2. clk_div is changed
  473. * 3. control value changes
  474. */
  475. if (dw_readw(dws, ctrl0) != cr0 || cs_change || clk_div || imask) {
  476. spi_enable_chip(dws, 0);
  477. if (dw_readw(dws, ctrl0) != cr0)
  478. dw_writew(dws, ctrl0, cr0);
  479. spi_set_clk(dws, clk_div ? clk_div : chip->clk_div);
  480. spi_chip_sel(dws, spi->chip_select);
  481. /* Set the interrupt mask, for poll mode just diable all int */
  482. spi_mask_intr(dws, 0xff);
  483. if (imask)
  484. spi_umask_intr(dws, imask);
  485. if (txint_level)
  486. dw_writew(dws, txfltr, txint_level);
  487. spi_enable_chip(dws, 1);
  488. if (cs_change)
  489. dws->prev_chip = chip;
  490. }
  491. if (dws->dma_mapped)
  492. dma_transfer(dws, cs_change);
  493. if (chip->poll_mode)
  494. poll_transfer(dws);
  495. return;
  496. early_exit:
  497. giveback(dws);
  498. return;
  499. }
  500. static void pump_messages(struct work_struct *work)
  501. {
  502. struct dw_spi *dws =
  503. container_of(work, struct dw_spi, pump_messages);
  504. unsigned long flags;
  505. /* Lock queue and check for queue work */
  506. spin_lock_irqsave(&dws->lock, flags);
  507. if (list_empty(&dws->queue) || dws->run == QUEUE_STOPPED) {
  508. dws->busy = 0;
  509. spin_unlock_irqrestore(&dws->lock, flags);
  510. return;
  511. }
  512. /* Make sure we are not already running a message */
  513. if (dws->cur_msg) {
  514. spin_unlock_irqrestore(&dws->lock, flags);
  515. return;
  516. }
  517. /* Extract head of queue */
  518. dws->cur_msg = list_entry(dws->queue.next, struct spi_message, queue);
  519. list_del_init(&dws->cur_msg->queue);
  520. /* Initial message state*/
  521. dws->cur_msg->state = START_STATE;
  522. dws->cur_transfer = list_entry(dws->cur_msg->transfers.next,
  523. struct spi_transfer,
  524. transfer_list);
  525. dws->cur_chip = spi_get_ctldata(dws->cur_msg->spi);
  526. /* Mark as busy and launch transfers */
  527. tasklet_schedule(&dws->pump_transfers);
  528. dws->busy = 1;
  529. spin_unlock_irqrestore(&dws->lock, flags);
  530. }
  531. /* spi_device use this to queue in their spi_msg */
  532. static int dw_spi_transfer(struct spi_device *spi, struct spi_message *msg)
  533. {
  534. struct dw_spi *dws = spi_master_get_devdata(spi->master);
  535. unsigned long flags;
  536. spin_lock_irqsave(&dws->lock, flags);
  537. if (dws->run == QUEUE_STOPPED) {
  538. spin_unlock_irqrestore(&dws->lock, flags);
  539. return -ESHUTDOWN;
  540. }
  541. msg->actual_length = 0;
  542. msg->status = -EINPROGRESS;
  543. msg->state = START_STATE;
  544. list_add_tail(&msg->queue, &dws->queue);
  545. if (dws->run == QUEUE_RUNNING && !dws->busy) {
  546. if (dws->cur_transfer || dws->cur_msg)
  547. queue_work(dws->workqueue,
  548. &dws->pump_messages);
  549. else {
  550. /* If no other data transaction in air, just go */
  551. spin_unlock_irqrestore(&dws->lock, flags);
  552. pump_messages(&dws->pump_messages);
  553. return 0;
  554. }
  555. }
  556. spin_unlock_irqrestore(&dws->lock, flags);
  557. return 0;
  558. }
  559. /* This may be called twice for each spi dev */
  560. static int dw_spi_setup(struct spi_device *spi)
  561. {
  562. struct dw_spi_chip *chip_info = NULL;
  563. struct chip_data *chip;
  564. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  565. return -EINVAL;
  566. /* Only alloc on first setup */
  567. chip = spi_get_ctldata(spi);
  568. if (!chip) {
  569. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  570. if (!chip)
  571. return -ENOMEM;
  572. chip->cs_control = null_cs_control;
  573. chip->enable_dma = 0;
  574. }
  575. /*
  576. * Protocol drivers may change the chip settings, so...
  577. * if chip_info exists, use it
  578. */
  579. chip_info = spi->controller_data;
  580. /* chip_info doesn't always exist */
  581. if (chip_info) {
  582. if (chip_info->cs_control)
  583. chip->cs_control = chip_info->cs_control;
  584. chip->poll_mode = chip_info->poll_mode;
  585. chip->type = chip_info->type;
  586. chip->rx_threshold = 0;
  587. chip->tx_threshold = 0;
  588. chip->enable_dma = chip_info->enable_dma;
  589. }
  590. if (spi->bits_per_word <= 8) {
  591. chip->n_bytes = 1;
  592. chip->dma_width = 1;
  593. chip->read = u8_reader;
  594. chip->write = u8_writer;
  595. } else if (spi->bits_per_word <= 16) {
  596. chip->n_bytes = 2;
  597. chip->dma_width = 2;
  598. chip->read = u16_reader;
  599. chip->write = u16_writer;
  600. } else {
  601. /* Never take >16b case for MRST SPIC */
  602. dev_err(&spi->dev, "invalid wordsize\n");
  603. return -EINVAL;
  604. }
  605. chip->bits_per_word = spi->bits_per_word;
  606. if (!spi->max_speed_hz) {
  607. dev_err(&spi->dev, "No max speed HZ parameter\n");
  608. return -EINVAL;
  609. }
  610. chip->speed_hz = spi->max_speed_hz;
  611. chip->tmode = 0; /* Tx & Rx */
  612. /* Default SPI mode is SCPOL = 0, SCPH = 0 */
  613. chip->cr0 = (chip->bits_per_word - 1)
  614. | (chip->type << SPI_FRF_OFFSET)
  615. | (spi->mode << SPI_MODE_OFFSET)
  616. | (chip->tmode << SPI_TMOD_OFFSET);
  617. spi_set_ctldata(spi, chip);
  618. return 0;
  619. }
  620. static void dw_spi_cleanup(struct spi_device *spi)
  621. {
  622. struct chip_data *chip = spi_get_ctldata(spi);
  623. kfree(chip);
  624. }
  625. static int __devinit init_queue(struct dw_spi *dws)
  626. {
  627. INIT_LIST_HEAD(&dws->queue);
  628. spin_lock_init(&dws->lock);
  629. dws->run = QUEUE_STOPPED;
  630. dws->busy = 0;
  631. tasklet_init(&dws->pump_transfers,
  632. pump_transfers, (unsigned long)dws);
  633. INIT_WORK(&dws->pump_messages, pump_messages);
  634. dws->workqueue = create_singlethread_workqueue(
  635. dev_name(dws->master->dev.parent));
  636. if (dws->workqueue == NULL)
  637. return -EBUSY;
  638. return 0;
  639. }
  640. static int start_queue(struct dw_spi *dws)
  641. {
  642. unsigned long flags;
  643. spin_lock_irqsave(&dws->lock, flags);
  644. if (dws->run == QUEUE_RUNNING || dws->busy) {
  645. spin_unlock_irqrestore(&dws->lock, flags);
  646. return -EBUSY;
  647. }
  648. dws->run = QUEUE_RUNNING;
  649. dws->cur_msg = NULL;
  650. dws->cur_transfer = NULL;
  651. dws->cur_chip = NULL;
  652. dws->prev_chip = NULL;
  653. spin_unlock_irqrestore(&dws->lock, flags);
  654. queue_work(dws->workqueue, &dws->pump_messages);
  655. return 0;
  656. }
  657. static int stop_queue(struct dw_spi *dws)
  658. {
  659. unsigned long flags;
  660. unsigned limit = 50;
  661. int status = 0;
  662. spin_lock_irqsave(&dws->lock, flags);
  663. dws->run = QUEUE_STOPPED;
  664. while (!list_empty(&dws->queue) && dws->busy && limit--) {
  665. spin_unlock_irqrestore(&dws->lock, flags);
  666. msleep(10);
  667. spin_lock_irqsave(&dws->lock, flags);
  668. }
  669. if (!list_empty(&dws->queue) || dws->busy)
  670. status = -EBUSY;
  671. spin_unlock_irqrestore(&dws->lock, flags);
  672. return status;
  673. }
  674. static int destroy_queue(struct dw_spi *dws)
  675. {
  676. int status;
  677. status = stop_queue(dws);
  678. if (status != 0)
  679. return status;
  680. destroy_workqueue(dws->workqueue);
  681. return 0;
  682. }
  683. /* Restart the controller, disable all interrupts, clean rx fifo */
  684. static void spi_hw_init(struct dw_spi *dws)
  685. {
  686. spi_enable_chip(dws, 0);
  687. spi_mask_intr(dws, 0xff);
  688. spi_enable_chip(dws, 1);
  689. flush(dws);
  690. /*
  691. * Try to detect the FIFO depth if not set by interface driver,
  692. * the depth could be from 2 to 256 from HW spec
  693. */
  694. if (!dws->fifo_len) {
  695. u32 fifo;
  696. for (fifo = 2; fifo <= 257; fifo++) {
  697. dw_writew(dws, txfltr, fifo);
  698. if (fifo != dw_readw(dws, txfltr))
  699. break;
  700. }
  701. dws->fifo_len = (fifo == 257) ? 0 : fifo;
  702. dw_writew(dws, txfltr, 0);
  703. }
  704. }
  705. int __devinit dw_spi_add_host(struct dw_spi *dws)
  706. {
  707. struct spi_master *master;
  708. int ret;
  709. BUG_ON(dws == NULL);
  710. master = spi_alloc_master(dws->parent_dev, 0);
  711. if (!master) {
  712. ret = -ENOMEM;
  713. goto exit;
  714. }
  715. dws->master = master;
  716. dws->type = SSI_MOTO_SPI;
  717. dws->prev_chip = NULL;
  718. dws->dma_inited = 0;
  719. dws->dma_addr = (dma_addr_t)(dws->paddr + 0x60);
  720. ret = request_irq(dws->irq, dw_spi_irq, 0,
  721. "dw_spi", dws);
  722. if (ret < 0) {
  723. dev_err(&master->dev, "can not get IRQ\n");
  724. goto err_free_master;
  725. }
  726. master->mode_bits = SPI_CPOL | SPI_CPHA;
  727. master->bus_num = dws->bus_num;
  728. master->num_chipselect = dws->num_cs;
  729. master->cleanup = dw_spi_cleanup;
  730. master->setup = dw_spi_setup;
  731. master->transfer = dw_spi_transfer;
  732. dws->dma_inited = 0;
  733. /* Basic HW init */
  734. spi_hw_init(dws);
  735. /* Initial and start queue */
  736. ret = init_queue(dws);
  737. if (ret) {
  738. dev_err(&master->dev, "problem initializing queue\n");
  739. goto err_diable_hw;
  740. }
  741. ret = start_queue(dws);
  742. if (ret) {
  743. dev_err(&master->dev, "problem starting queue\n");
  744. goto err_diable_hw;
  745. }
  746. spi_master_set_devdata(master, dws);
  747. ret = spi_register_master(master);
  748. if (ret) {
  749. dev_err(&master->dev, "problem registering spi master\n");
  750. goto err_queue_alloc;
  751. }
  752. mrst_spi_debugfs_init(dws);
  753. return 0;
  754. err_queue_alloc:
  755. destroy_queue(dws);
  756. err_diable_hw:
  757. spi_enable_chip(dws, 0);
  758. free_irq(dws->irq, dws);
  759. err_free_master:
  760. spi_master_put(master);
  761. exit:
  762. return ret;
  763. }
  764. EXPORT_SYMBOL(dw_spi_add_host);
  765. void __devexit dw_spi_remove_host(struct dw_spi *dws)
  766. {
  767. int status = 0;
  768. if (!dws)
  769. return;
  770. mrst_spi_debugfs_remove(dws);
  771. /* Remove the queue */
  772. status = destroy_queue(dws);
  773. if (status != 0)
  774. dev_err(&dws->master->dev, "dw_spi_remove: workqueue will not "
  775. "complete, message memory not freed\n");
  776. spi_enable_chip(dws, 0);
  777. /* Disable clk */
  778. spi_set_clk(dws, 0);
  779. free_irq(dws->irq, dws);
  780. /* Disconnect from the SPI framework */
  781. spi_unregister_master(dws->master);
  782. }
  783. int dw_spi_suspend_host(struct dw_spi *dws)
  784. {
  785. int ret = 0;
  786. ret = stop_queue(dws);
  787. if (ret)
  788. return ret;
  789. spi_enable_chip(dws, 0);
  790. spi_set_clk(dws, 0);
  791. return ret;
  792. }
  793. EXPORT_SYMBOL(dw_spi_suspend_host);
  794. int dw_spi_resume_host(struct dw_spi *dws)
  795. {
  796. int ret;
  797. spi_hw_init(dws);
  798. ret = start_queue(dws);
  799. if (ret)
  800. dev_err(&dws->master->dev, "fail to start queue (%d)\n", ret);
  801. return ret;
  802. }
  803. EXPORT_SYMBOL(dw_spi_resume_host);
  804. MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
  805. MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
  806. MODULE_LICENSE("GPL v2");