xfs_log_recover.c 110 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_dir2.h"
  28. #include "xfs_dmapi.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_error.h"
  31. #include "xfs_bmap_btree.h"
  32. #include "xfs_alloc_btree.h"
  33. #include "xfs_ialloc_btree.h"
  34. #include "xfs_dir2_sf.h"
  35. #include "xfs_attr_sf.h"
  36. #include "xfs_dinode.h"
  37. #include "xfs_inode.h"
  38. #include "xfs_inode_item.h"
  39. #include "xfs_imap.h"
  40. #include "xfs_alloc.h"
  41. #include "xfs_ialloc.h"
  42. #include "xfs_log_priv.h"
  43. #include "xfs_buf_item.h"
  44. #include "xfs_log_recover.h"
  45. #include "xfs_extfree_item.h"
  46. #include "xfs_trans_priv.h"
  47. #include "xfs_quota.h"
  48. #include "xfs_rw.h"
  49. #include "xfs_utils.h"
  50. STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  51. STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  52. STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
  53. xlog_recover_item_t *item);
  54. #if defined(DEBUG)
  55. STATIC void xlog_recover_check_summary(xlog_t *);
  56. STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
  57. #else
  58. #define xlog_recover_check_summary(log)
  59. #define xlog_recover_check_ail(mp, lip, gen)
  60. #endif
  61. /*
  62. * Sector aligned buffer routines for buffer create/read/write/access
  63. */
  64. #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
  65. ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
  66. ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
  67. #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
  68. xfs_buf_t *
  69. xlog_get_bp(
  70. xlog_t *log,
  71. int num_bblks)
  72. {
  73. ASSERT(num_bblks > 0);
  74. if (log->l_sectbb_log) {
  75. if (num_bblks > 1)
  76. num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
  77. num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
  78. }
  79. return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
  80. }
  81. void
  82. xlog_put_bp(
  83. xfs_buf_t *bp)
  84. {
  85. xfs_buf_free(bp);
  86. }
  87. /*
  88. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  89. */
  90. int
  91. xlog_bread(
  92. xlog_t *log,
  93. xfs_daddr_t blk_no,
  94. int nbblks,
  95. xfs_buf_t *bp)
  96. {
  97. int error;
  98. if (log->l_sectbb_log) {
  99. blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
  100. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  101. }
  102. ASSERT(nbblks > 0);
  103. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  104. ASSERT(bp);
  105. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  106. XFS_BUF_READ(bp);
  107. XFS_BUF_BUSY(bp);
  108. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  109. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  110. xfsbdstrat(log->l_mp, bp);
  111. error = xfs_iowait(bp);
  112. if (error)
  113. xfs_ioerror_alert("xlog_bread", log->l_mp,
  114. bp, XFS_BUF_ADDR(bp));
  115. return error;
  116. }
  117. /*
  118. * Write out the buffer at the given block for the given number of blocks.
  119. * The buffer is kept locked across the write and is returned locked.
  120. * This can only be used for synchronous log writes.
  121. */
  122. STATIC int
  123. xlog_bwrite(
  124. xlog_t *log,
  125. xfs_daddr_t blk_no,
  126. int nbblks,
  127. xfs_buf_t *bp)
  128. {
  129. int error;
  130. if (log->l_sectbb_log) {
  131. blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
  132. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  133. }
  134. ASSERT(nbblks > 0);
  135. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  136. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  137. XFS_BUF_ZEROFLAGS(bp);
  138. XFS_BUF_BUSY(bp);
  139. XFS_BUF_HOLD(bp);
  140. XFS_BUF_PSEMA(bp, PRIBIO);
  141. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  142. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  143. if ((error = xfs_bwrite(log->l_mp, bp)))
  144. xfs_ioerror_alert("xlog_bwrite", log->l_mp,
  145. bp, XFS_BUF_ADDR(bp));
  146. return error;
  147. }
  148. STATIC xfs_caddr_t
  149. xlog_align(
  150. xlog_t *log,
  151. xfs_daddr_t blk_no,
  152. int nbblks,
  153. xfs_buf_t *bp)
  154. {
  155. xfs_caddr_t ptr;
  156. if (!log->l_sectbb_log)
  157. return XFS_BUF_PTR(bp);
  158. ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
  159. ASSERT(XFS_BUF_SIZE(bp) >=
  160. BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
  161. return ptr;
  162. }
  163. #ifdef DEBUG
  164. /*
  165. * dump debug superblock and log record information
  166. */
  167. STATIC void
  168. xlog_header_check_dump(
  169. xfs_mount_t *mp,
  170. xlog_rec_header_t *head)
  171. {
  172. int b;
  173. cmn_err(CE_DEBUG, "%s: SB : uuid = ", __func__);
  174. for (b = 0; b < 16; b++)
  175. cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
  176. cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
  177. cmn_err(CE_DEBUG, " log : uuid = ");
  178. for (b = 0; b < 16; b++)
  179. cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
  180. cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
  181. }
  182. #else
  183. #define xlog_header_check_dump(mp, head)
  184. #endif
  185. /*
  186. * check log record header for recovery
  187. */
  188. STATIC int
  189. xlog_header_check_recover(
  190. xfs_mount_t *mp,
  191. xlog_rec_header_t *head)
  192. {
  193. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  194. /*
  195. * IRIX doesn't write the h_fmt field and leaves it zeroed
  196. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  197. * a dirty log created in IRIX.
  198. */
  199. if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
  200. xlog_warn(
  201. "XFS: dirty log written in incompatible format - can't recover");
  202. xlog_header_check_dump(mp, head);
  203. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  204. XFS_ERRLEVEL_HIGH, mp);
  205. return XFS_ERROR(EFSCORRUPTED);
  206. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  207. xlog_warn(
  208. "XFS: dirty log entry has mismatched uuid - can't recover");
  209. xlog_header_check_dump(mp, head);
  210. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  211. XFS_ERRLEVEL_HIGH, mp);
  212. return XFS_ERROR(EFSCORRUPTED);
  213. }
  214. return 0;
  215. }
  216. /*
  217. * read the head block of the log and check the header
  218. */
  219. STATIC int
  220. xlog_header_check_mount(
  221. xfs_mount_t *mp,
  222. xlog_rec_header_t *head)
  223. {
  224. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  225. if (uuid_is_nil(&head->h_fs_uuid)) {
  226. /*
  227. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  228. * h_fs_uuid is nil, we assume this log was last mounted
  229. * by IRIX and continue.
  230. */
  231. xlog_warn("XFS: nil uuid in log - IRIX style log");
  232. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  233. xlog_warn("XFS: log has mismatched uuid - can't recover");
  234. xlog_header_check_dump(mp, head);
  235. XFS_ERROR_REPORT("xlog_header_check_mount",
  236. XFS_ERRLEVEL_HIGH, mp);
  237. return XFS_ERROR(EFSCORRUPTED);
  238. }
  239. return 0;
  240. }
  241. STATIC void
  242. xlog_recover_iodone(
  243. struct xfs_buf *bp)
  244. {
  245. xfs_mount_t *mp;
  246. ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
  247. if (XFS_BUF_GETERROR(bp)) {
  248. /*
  249. * We're not going to bother about retrying
  250. * this during recovery. One strike!
  251. */
  252. mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
  253. xfs_ioerror_alert("xlog_recover_iodone",
  254. mp, bp, XFS_BUF_ADDR(bp));
  255. xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
  256. }
  257. XFS_BUF_SET_FSPRIVATE(bp, NULL);
  258. XFS_BUF_CLR_IODONE_FUNC(bp);
  259. xfs_biodone(bp);
  260. }
  261. /*
  262. * This routine finds (to an approximation) the first block in the physical
  263. * log which contains the given cycle. It uses a binary search algorithm.
  264. * Note that the algorithm can not be perfect because the disk will not
  265. * necessarily be perfect.
  266. */
  267. STATIC int
  268. xlog_find_cycle_start(
  269. xlog_t *log,
  270. xfs_buf_t *bp,
  271. xfs_daddr_t first_blk,
  272. xfs_daddr_t *last_blk,
  273. uint cycle)
  274. {
  275. xfs_caddr_t offset;
  276. xfs_daddr_t mid_blk;
  277. uint mid_cycle;
  278. int error;
  279. mid_blk = BLK_AVG(first_blk, *last_blk);
  280. while (mid_blk != first_blk && mid_blk != *last_blk) {
  281. if ((error = xlog_bread(log, mid_blk, 1, bp)))
  282. return error;
  283. offset = xlog_align(log, mid_blk, 1, bp);
  284. mid_cycle = xlog_get_cycle(offset);
  285. if (mid_cycle == cycle) {
  286. *last_blk = mid_blk;
  287. /* last_half_cycle == mid_cycle */
  288. } else {
  289. first_blk = mid_blk;
  290. /* first_half_cycle == mid_cycle */
  291. }
  292. mid_blk = BLK_AVG(first_blk, *last_blk);
  293. }
  294. ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
  295. (mid_blk == *last_blk && mid_blk-1 == first_blk));
  296. return 0;
  297. }
  298. /*
  299. * Check that the range of blocks does not contain the cycle number
  300. * given. The scan needs to occur from front to back and the ptr into the
  301. * region must be updated since a later routine will need to perform another
  302. * test. If the region is completely good, we end up returning the same
  303. * last block number.
  304. *
  305. * Set blkno to -1 if we encounter no errors. This is an invalid block number
  306. * since we don't ever expect logs to get this large.
  307. */
  308. STATIC int
  309. xlog_find_verify_cycle(
  310. xlog_t *log,
  311. xfs_daddr_t start_blk,
  312. int nbblks,
  313. uint stop_on_cycle_no,
  314. xfs_daddr_t *new_blk)
  315. {
  316. xfs_daddr_t i, j;
  317. uint cycle;
  318. xfs_buf_t *bp;
  319. xfs_daddr_t bufblks;
  320. xfs_caddr_t buf = NULL;
  321. int error = 0;
  322. bufblks = 1 << ffs(nbblks);
  323. while (!(bp = xlog_get_bp(log, bufblks))) {
  324. /* can't get enough memory to do everything in one big buffer */
  325. bufblks >>= 1;
  326. if (bufblks <= log->l_sectbb_log)
  327. return ENOMEM;
  328. }
  329. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  330. int bcount;
  331. bcount = min(bufblks, (start_blk + nbblks - i));
  332. if ((error = xlog_bread(log, i, bcount, bp)))
  333. goto out;
  334. buf = xlog_align(log, i, bcount, bp);
  335. for (j = 0; j < bcount; j++) {
  336. cycle = xlog_get_cycle(buf);
  337. if (cycle == stop_on_cycle_no) {
  338. *new_blk = i+j;
  339. goto out;
  340. }
  341. buf += BBSIZE;
  342. }
  343. }
  344. *new_blk = -1;
  345. out:
  346. xlog_put_bp(bp);
  347. return error;
  348. }
  349. /*
  350. * Potentially backup over partial log record write.
  351. *
  352. * In the typical case, last_blk is the number of the block directly after
  353. * a good log record. Therefore, we subtract one to get the block number
  354. * of the last block in the given buffer. extra_bblks contains the number
  355. * of blocks we would have read on a previous read. This happens when the
  356. * last log record is split over the end of the physical log.
  357. *
  358. * extra_bblks is the number of blocks potentially verified on a previous
  359. * call to this routine.
  360. */
  361. STATIC int
  362. xlog_find_verify_log_record(
  363. xlog_t *log,
  364. xfs_daddr_t start_blk,
  365. xfs_daddr_t *last_blk,
  366. int extra_bblks)
  367. {
  368. xfs_daddr_t i;
  369. xfs_buf_t *bp;
  370. xfs_caddr_t offset = NULL;
  371. xlog_rec_header_t *head = NULL;
  372. int error = 0;
  373. int smallmem = 0;
  374. int num_blks = *last_blk - start_blk;
  375. int xhdrs;
  376. ASSERT(start_blk != 0 || *last_blk != start_blk);
  377. if (!(bp = xlog_get_bp(log, num_blks))) {
  378. if (!(bp = xlog_get_bp(log, 1)))
  379. return ENOMEM;
  380. smallmem = 1;
  381. } else {
  382. if ((error = xlog_bread(log, start_blk, num_blks, bp)))
  383. goto out;
  384. offset = xlog_align(log, start_blk, num_blks, bp);
  385. offset += ((num_blks - 1) << BBSHIFT);
  386. }
  387. for (i = (*last_blk) - 1; i >= 0; i--) {
  388. if (i < start_blk) {
  389. /* valid log record not found */
  390. xlog_warn(
  391. "XFS: Log inconsistent (didn't find previous header)");
  392. ASSERT(0);
  393. error = XFS_ERROR(EIO);
  394. goto out;
  395. }
  396. if (smallmem) {
  397. if ((error = xlog_bread(log, i, 1, bp)))
  398. goto out;
  399. offset = xlog_align(log, i, 1, bp);
  400. }
  401. head = (xlog_rec_header_t *)offset;
  402. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
  403. break;
  404. if (!smallmem)
  405. offset -= BBSIZE;
  406. }
  407. /*
  408. * We hit the beginning of the physical log & still no header. Return
  409. * to caller. If caller can handle a return of -1, then this routine
  410. * will be called again for the end of the physical log.
  411. */
  412. if (i == -1) {
  413. error = -1;
  414. goto out;
  415. }
  416. /*
  417. * We have the final block of the good log (the first block
  418. * of the log record _before_ the head. So we check the uuid.
  419. */
  420. if ((error = xlog_header_check_mount(log->l_mp, head)))
  421. goto out;
  422. /*
  423. * We may have found a log record header before we expected one.
  424. * last_blk will be the 1st block # with a given cycle #. We may end
  425. * up reading an entire log record. In this case, we don't want to
  426. * reset last_blk. Only when last_blk points in the middle of a log
  427. * record do we update last_blk.
  428. */
  429. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  430. uint h_size = be32_to_cpu(head->h_size);
  431. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  432. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  433. xhdrs++;
  434. } else {
  435. xhdrs = 1;
  436. }
  437. if (*last_blk - i + extra_bblks !=
  438. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  439. *last_blk = i;
  440. out:
  441. xlog_put_bp(bp);
  442. return error;
  443. }
  444. /*
  445. * Head is defined to be the point of the log where the next log write
  446. * write could go. This means that incomplete LR writes at the end are
  447. * eliminated when calculating the head. We aren't guaranteed that previous
  448. * LR have complete transactions. We only know that a cycle number of
  449. * current cycle number -1 won't be present in the log if we start writing
  450. * from our current block number.
  451. *
  452. * last_blk contains the block number of the first block with a given
  453. * cycle number.
  454. *
  455. * Return: zero if normal, non-zero if error.
  456. */
  457. STATIC int
  458. xlog_find_head(
  459. xlog_t *log,
  460. xfs_daddr_t *return_head_blk)
  461. {
  462. xfs_buf_t *bp;
  463. xfs_caddr_t offset;
  464. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  465. int num_scan_bblks;
  466. uint first_half_cycle, last_half_cycle;
  467. uint stop_on_cycle;
  468. int error, log_bbnum = log->l_logBBsize;
  469. /* Is the end of the log device zeroed? */
  470. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  471. *return_head_blk = first_blk;
  472. /* Is the whole lot zeroed? */
  473. if (!first_blk) {
  474. /* Linux XFS shouldn't generate totally zeroed logs -
  475. * mkfs etc write a dummy unmount record to a fresh
  476. * log so we can store the uuid in there
  477. */
  478. xlog_warn("XFS: totally zeroed log");
  479. }
  480. return 0;
  481. } else if (error) {
  482. xlog_warn("XFS: empty log check failed");
  483. return error;
  484. }
  485. first_blk = 0; /* get cycle # of 1st block */
  486. bp = xlog_get_bp(log, 1);
  487. if (!bp)
  488. return ENOMEM;
  489. if ((error = xlog_bread(log, 0, 1, bp)))
  490. goto bp_err;
  491. offset = xlog_align(log, 0, 1, bp);
  492. first_half_cycle = xlog_get_cycle(offset);
  493. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  494. if ((error = xlog_bread(log, last_blk, 1, bp)))
  495. goto bp_err;
  496. offset = xlog_align(log, last_blk, 1, bp);
  497. last_half_cycle = xlog_get_cycle(offset);
  498. ASSERT(last_half_cycle != 0);
  499. /*
  500. * If the 1st half cycle number is equal to the last half cycle number,
  501. * then the entire log is stamped with the same cycle number. In this
  502. * case, head_blk can't be set to zero (which makes sense). The below
  503. * math doesn't work out properly with head_blk equal to zero. Instead,
  504. * we set it to log_bbnum which is an invalid block number, but this
  505. * value makes the math correct. If head_blk doesn't changed through
  506. * all the tests below, *head_blk is set to zero at the very end rather
  507. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  508. * in a circular file.
  509. */
  510. if (first_half_cycle == last_half_cycle) {
  511. /*
  512. * In this case we believe that the entire log should have
  513. * cycle number last_half_cycle. We need to scan backwards
  514. * from the end verifying that there are no holes still
  515. * containing last_half_cycle - 1. If we find such a hole,
  516. * then the start of that hole will be the new head. The
  517. * simple case looks like
  518. * x | x ... | x - 1 | x
  519. * Another case that fits this picture would be
  520. * x | x + 1 | x ... | x
  521. * In this case the head really is somewhere at the end of the
  522. * log, as one of the latest writes at the beginning was
  523. * incomplete.
  524. * One more case is
  525. * x | x + 1 | x ... | x - 1 | x
  526. * This is really the combination of the above two cases, and
  527. * the head has to end up at the start of the x-1 hole at the
  528. * end of the log.
  529. *
  530. * In the 256k log case, we will read from the beginning to the
  531. * end of the log and search for cycle numbers equal to x-1.
  532. * We don't worry about the x+1 blocks that we encounter,
  533. * because we know that they cannot be the head since the log
  534. * started with x.
  535. */
  536. head_blk = log_bbnum;
  537. stop_on_cycle = last_half_cycle - 1;
  538. } else {
  539. /*
  540. * In this case we want to find the first block with cycle
  541. * number matching last_half_cycle. We expect the log to be
  542. * some variation on
  543. * x + 1 ... | x ...
  544. * The first block with cycle number x (last_half_cycle) will
  545. * be where the new head belongs. First we do a binary search
  546. * for the first occurrence of last_half_cycle. The binary
  547. * search may not be totally accurate, so then we scan back
  548. * from there looking for occurrences of last_half_cycle before
  549. * us. If that backwards scan wraps around the beginning of
  550. * the log, then we look for occurrences of last_half_cycle - 1
  551. * at the end of the log. The cases we're looking for look
  552. * like
  553. * x + 1 ... | x | x + 1 | x ...
  554. * ^ binary search stopped here
  555. * or
  556. * x + 1 ... | x ... | x - 1 | x
  557. * <---------> less than scan distance
  558. */
  559. stop_on_cycle = last_half_cycle;
  560. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  561. &head_blk, last_half_cycle)))
  562. goto bp_err;
  563. }
  564. /*
  565. * Now validate the answer. Scan back some number of maximum possible
  566. * blocks and make sure each one has the expected cycle number. The
  567. * maximum is determined by the total possible amount of buffering
  568. * in the in-core log. The following number can be made tighter if
  569. * we actually look at the block size of the filesystem.
  570. */
  571. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  572. if (head_blk >= num_scan_bblks) {
  573. /*
  574. * We are guaranteed that the entire check can be performed
  575. * in one buffer.
  576. */
  577. start_blk = head_blk - num_scan_bblks;
  578. if ((error = xlog_find_verify_cycle(log,
  579. start_blk, num_scan_bblks,
  580. stop_on_cycle, &new_blk)))
  581. goto bp_err;
  582. if (new_blk != -1)
  583. head_blk = new_blk;
  584. } else { /* need to read 2 parts of log */
  585. /*
  586. * We are going to scan backwards in the log in two parts.
  587. * First we scan the physical end of the log. In this part
  588. * of the log, we are looking for blocks with cycle number
  589. * last_half_cycle - 1.
  590. * If we find one, then we know that the log starts there, as
  591. * we've found a hole that didn't get written in going around
  592. * the end of the physical log. The simple case for this is
  593. * x + 1 ... | x ... | x - 1 | x
  594. * <---------> less than scan distance
  595. * If all of the blocks at the end of the log have cycle number
  596. * last_half_cycle, then we check the blocks at the start of
  597. * the log looking for occurrences of last_half_cycle. If we
  598. * find one, then our current estimate for the location of the
  599. * first occurrence of last_half_cycle is wrong and we move
  600. * back to the hole we've found. This case looks like
  601. * x + 1 ... | x | x + 1 | x ...
  602. * ^ binary search stopped here
  603. * Another case we need to handle that only occurs in 256k
  604. * logs is
  605. * x + 1 ... | x ... | x+1 | x ...
  606. * ^ binary search stops here
  607. * In a 256k log, the scan at the end of the log will see the
  608. * x + 1 blocks. We need to skip past those since that is
  609. * certainly not the head of the log. By searching for
  610. * last_half_cycle-1 we accomplish that.
  611. */
  612. start_blk = log_bbnum - num_scan_bblks + head_blk;
  613. ASSERT(head_blk <= INT_MAX &&
  614. (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
  615. if ((error = xlog_find_verify_cycle(log, start_blk,
  616. num_scan_bblks - (int)head_blk,
  617. (stop_on_cycle - 1), &new_blk)))
  618. goto bp_err;
  619. if (new_blk != -1) {
  620. head_blk = new_blk;
  621. goto bad_blk;
  622. }
  623. /*
  624. * Scan beginning of log now. The last part of the physical
  625. * log is good. This scan needs to verify that it doesn't find
  626. * the last_half_cycle.
  627. */
  628. start_blk = 0;
  629. ASSERT(head_blk <= INT_MAX);
  630. if ((error = xlog_find_verify_cycle(log,
  631. start_blk, (int)head_blk,
  632. stop_on_cycle, &new_blk)))
  633. goto bp_err;
  634. if (new_blk != -1)
  635. head_blk = new_blk;
  636. }
  637. bad_blk:
  638. /*
  639. * Now we need to make sure head_blk is not pointing to a block in
  640. * the middle of a log record.
  641. */
  642. num_scan_bblks = XLOG_REC_SHIFT(log);
  643. if (head_blk >= num_scan_bblks) {
  644. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  645. /* start ptr at last block ptr before head_blk */
  646. if ((error = xlog_find_verify_log_record(log, start_blk,
  647. &head_blk, 0)) == -1) {
  648. error = XFS_ERROR(EIO);
  649. goto bp_err;
  650. } else if (error)
  651. goto bp_err;
  652. } else {
  653. start_blk = 0;
  654. ASSERT(head_blk <= INT_MAX);
  655. if ((error = xlog_find_verify_log_record(log, start_blk,
  656. &head_blk, 0)) == -1) {
  657. /* We hit the beginning of the log during our search */
  658. start_blk = log_bbnum - num_scan_bblks + head_blk;
  659. new_blk = log_bbnum;
  660. ASSERT(start_blk <= INT_MAX &&
  661. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  662. ASSERT(head_blk <= INT_MAX);
  663. if ((error = xlog_find_verify_log_record(log,
  664. start_blk, &new_blk,
  665. (int)head_blk)) == -1) {
  666. error = XFS_ERROR(EIO);
  667. goto bp_err;
  668. } else if (error)
  669. goto bp_err;
  670. if (new_blk != log_bbnum)
  671. head_blk = new_blk;
  672. } else if (error)
  673. goto bp_err;
  674. }
  675. xlog_put_bp(bp);
  676. if (head_blk == log_bbnum)
  677. *return_head_blk = 0;
  678. else
  679. *return_head_blk = head_blk;
  680. /*
  681. * When returning here, we have a good block number. Bad block
  682. * means that during a previous crash, we didn't have a clean break
  683. * from cycle number N to cycle number N-1. In this case, we need
  684. * to find the first block with cycle number N-1.
  685. */
  686. return 0;
  687. bp_err:
  688. xlog_put_bp(bp);
  689. if (error)
  690. xlog_warn("XFS: failed to find log head");
  691. return error;
  692. }
  693. /*
  694. * Find the sync block number or the tail of the log.
  695. *
  696. * This will be the block number of the last record to have its
  697. * associated buffers synced to disk. Every log record header has
  698. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  699. * to get a sync block number. The only concern is to figure out which
  700. * log record header to believe.
  701. *
  702. * The following algorithm uses the log record header with the largest
  703. * lsn. The entire log record does not need to be valid. We only care
  704. * that the header is valid.
  705. *
  706. * We could speed up search by using current head_blk buffer, but it is not
  707. * available.
  708. */
  709. int
  710. xlog_find_tail(
  711. xlog_t *log,
  712. xfs_daddr_t *head_blk,
  713. xfs_daddr_t *tail_blk)
  714. {
  715. xlog_rec_header_t *rhead;
  716. xlog_op_header_t *op_head;
  717. xfs_caddr_t offset = NULL;
  718. xfs_buf_t *bp;
  719. int error, i, found;
  720. xfs_daddr_t umount_data_blk;
  721. xfs_daddr_t after_umount_blk;
  722. xfs_lsn_t tail_lsn;
  723. int hblks;
  724. found = 0;
  725. /*
  726. * Find previous log record
  727. */
  728. if ((error = xlog_find_head(log, head_blk)))
  729. return error;
  730. bp = xlog_get_bp(log, 1);
  731. if (!bp)
  732. return ENOMEM;
  733. if (*head_blk == 0) { /* special case */
  734. if ((error = xlog_bread(log, 0, 1, bp)))
  735. goto bread_err;
  736. offset = xlog_align(log, 0, 1, bp);
  737. if (xlog_get_cycle(offset) == 0) {
  738. *tail_blk = 0;
  739. /* leave all other log inited values alone */
  740. goto exit;
  741. }
  742. }
  743. /*
  744. * Search backwards looking for log record header block
  745. */
  746. ASSERT(*head_blk < INT_MAX);
  747. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  748. if ((error = xlog_bread(log, i, 1, bp)))
  749. goto bread_err;
  750. offset = xlog_align(log, i, 1, bp);
  751. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
  752. found = 1;
  753. break;
  754. }
  755. }
  756. /*
  757. * If we haven't found the log record header block, start looking
  758. * again from the end of the physical log. XXXmiken: There should be
  759. * a check here to make sure we didn't search more than N blocks in
  760. * the previous code.
  761. */
  762. if (!found) {
  763. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  764. if ((error = xlog_bread(log, i, 1, bp)))
  765. goto bread_err;
  766. offset = xlog_align(log, i, 1, bp);
  767. if (XLOG_HEADER_MAGIC_NUM ==
  768. be32_to_cpu(*(__be32 *)offset)) {
  769. found = 2;
  770. break;
  771. }
  772. }
  773. }
  774. if (!found) {
  775. xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
  776. ASSERT(0);
  777. return XFS_ERROR(EIO);
  778. }
  779. /* find blk_no of tail of log */
  780. rhead = (xlog_rec_header_t *)offset;
  781. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  782. /*
  783. * Reset log values according to the state of the log when we
  784. * crashed. In the case where head_blk == 0, we bump curr_cycle
  785. * one because the next write starts a new cycle rather than
  786. * continuing the cycle of the last good log record. At this
  787. * point we have guaranteed that all partial log records have been
  788. * accounted for. Therefore, we know that the last good log record
  789. * written was complete and ended exactly on the end boundary
  790. * of the physical log.
  791. */
  792. log->l_prev_block = i;
  793. log->l_curr_block = (int)*head_blk;
  794. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  795. if (found == 2)
  796. log->l_curr_cycle++;
  797. log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
  798. log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
  799. log->l_grant_reserve_cycle = log->l_curr_cycle;
  800. log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
  801. log->l_grant_write_cycle = log->l_curr_cycle;
  802. log->l_grant_write_bytes = BBTOB(log->l_curr_block);
  803. /*
  804. * Look for unmount record. If we find it, then we know there
  805. * was a clean unmount. Since 'i' could be the last block in
  806. * the physical log, we convert to a log block before comparing
  807. * to the head_blk.
  808. *
  809. * Save the current tail lsn to use to pass to
  810. * xlog_clear_stale_blocks() below. We won't want to clear the
  811. * unmount record if there is one, so we pass the lsn of the
  812. * unmount record rather than the block after it.
  813. */
  814. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  815. int h_size = be32_to_cpu(rhead->h_size);
  816. int h_version = be32_to_cpu(rhead->h_version);
  817. if ((h_version & XLOG_VERSION_2) &&
  818. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  819. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  820. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  821. hblks++;
  822. } else {
  823. hblks = 1;
  824. }
  825. } else {
  826. hblks = 1;
  827. }
  828. after_umount_blk = (i + hblks + (int)
  829. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  830. tail_lsn = log->l_tail_lsn;
  831. if (*head_blk == after_umount_blk &&
  832. be32_to_cpu(rhead->h_num_logops) == 1) {
  833. umount_data_blk = (i + hblks) % log->l_logBBsize;
  834. if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
  835. goto bread_err;
  836. }
  837. offset = xlog_align(log, umount_data_blk, 1, bp);
  838. op_head = (xlog_op_header_t *)offset;
  839. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  840. /*
  841. * Set tail and last sync so that newly written
  842. * log records will point recovery to after the
  843. * current unmount record.
  844. */
  845. log->l_tail_lsn =
  846. xlog_assign_lsn(log->l_curr_cycle,
  847. after_umount_blk);
  848. log->l_last_sync_lsn =
  849. xlog_assign_lsn(log->l_curr_cycle,
  850. after_umount_blk);
  851. *tail_blk = after_umount_blk;
  852. /*
  853. * Note that the unmount was clean. If the unmount
  854. * was not clean, we need to know this to rebuild the
  855. * superblock counters from the perag headers if we
  856. * have a filesystem using non-persistent counters.
  857. */
  858. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  859. }
  860. }
  861. /*
  862. * Make sure that there are no blocks in front of the head
  863. * with the same cycle number as the head. This can happen
  864. * because we allow multiple outstanding log writes concurrently,
  865. * and the later writes might make it out before earlier ones.
  866. *
  867. * We use the lsn from before modifying it so that we'll never
  868. * overwrite the unmount record after a clean unmount.
  869. *
  870. * Do this only if we are going to recover the filesystem
  871. *
  872. * NOTE: This used to say "if (!readonly)"
  873. * However on Linux, we can & do recover a read-only filesystem.
  874. * We only skip recovery if NORECOVERY is specified on mount,
  875. * in which case we would not be here.
  876. *
  877. * But... if the -device- itself is readonly, just skip this.
  878. * We can't recover this device anyway, so it won't matter.
  879. */
  880. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
  881. error = xlog_clear_stale_blocks(log, tail_lsn);
  882. }
  883. bread_err:
  884. exit:
  885. xlog_put_bp(bp);
  886. if (error)
  887. xlog_warn("XFS: failed to locate log tail");
  888. return error;
  889. }
  890. /*
  891. * Is the log zeroed at all?
  892. *
  893. * The last binary search should be changed to perform an X block read
  894. * once X becomes small enough. You can then search linearly through
  895. * the X blocks. This will cut down on the number of reads we need to do.
  896. *
  897. * If the log is partially zeroed, this routine will pass back the blkno
  898. * of the first block with cycle number 0. It won't have a complete LR
  899. * preceding it.
  900. *
  901. * Return:
  902. * 0 => the log is completely written to
  903. * -1 => use *blk_no as the first block of the log
  904. * >0 => error has occurred
  905. */
  906. STATIC int
  907. xlog_find_zeroed(
  908. xlog_t *log,
  909. xfs_daddr_t *blk_no)
  910. {
  911. xfs_buf_t *bp;
  912. xfs_caddr_t offset;
  913. uint first_cycle, last_cycle;
  914. xfs_daddr_t new_blk, last_blk, start_blk;
  915. xfs_daddr_t num_scan_bblks;
  916. int error, log_bbnum = log->l_logBBsize;
  917. *blk_no = 0;
  918. /* check totally zeroed log */
  919. bp = xlog_get_bp(log, 1);
  920. if (!bp)
  921. return ENOMEM;
  922. if ((error = xlog_bread(log, 0, 1, bp)))
  923. goto bp_err;
  924. offset = xlog_align(log, 0, 1, bp);
  925. first_cycle = xlog_get_cycle(offset);
  926. if (first_cycle == 0) { /* completely zeroed log */
  927. *blk_no = 0;
  928. xlog_put_bp(bp);
  929. return -1;
  930. }
  931. /* check partially zeroed log */
  932. if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
  933. goto bp_err;
  934. offset = xlog_align(log, log_bbnum-1, 1, bp);
  935. last_cycle = xlog_get_cycle(offset);
  936. if (last_cycle != 0) { /* log completely written to */
  937. xlog_put_bp(bp);
  938. return 0;
  939. } else if (first_cycle != 1) {
  940. /*
  941. * If the cycle of the last block is zero, the cycle of
  942. * the first block must be 1. If it's not, maybe we're
  943. * not looking at a log... Bail out.
  944. */
  945. xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
  946. return XFS_ERROR(EINVAL);
  947. }
  948. /* we have a partially zeroed log */
  949. last_blk = log_bbnum-1;
  950. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  951. goto bp_err;
  952. /*
  953. * Validate the answer. Because there is no way to guarantee that
  954. * the entire log is made up of log records which are the same size,
  955. * we scan over the defined maximum blocks. At this point, the maximum
  956. * is not chosen to mean anything special. XXXmiken
  957. */
  958. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  959. ASSERT(num_scan_bblks <= INT_MAX);
  960. if (last_blk < num_scan_bblks)
  961. num_scan_bblks = last_blk;
  962. start_blk = last_blk - num_scan_bblks;
  963. /*
  964. * We search for any instances of cycle number 0 that occur before
  965. * our current estimate of the head. What we're trying to detect is
  966. * 1 ... | 0 | 1 | 0...
  967. * ^ binary search ends here
  968. */
  969. if ((error = xlog_find_verify_cycle(log, start_blk,
  970. (int)num_scan_bblks, 0, &new_blk)))
  971. goto bp_err;
  972. if (new_blk != -1)
  973. last_blk = new_blk;
  974. /*
  975. * Potentially backup over partial log record write. We don't need
  976. * to search the end of the log because we know it is zero.
  977. */
  978. if ((error = xlog_find_verify_log_record(log, start_blk,
  979. &last_blk, 0)) == -1) {
  980. error = XFS_ERROR(EIO);
  981. goto bp_err;
  982. } else if (error)
  983. goto bp_err;
  984. *blk_no = last_blk;
  985. bp_err:
  986. xlog_put_bp(bp);
  987. if (error)
  988. return error;
  989. return -1;
  990. }
  991. /*
  992. * These are simple subroutines used by xlog_clear_stale_blocks() below
  993. * to initialize a buffer full of empty log record headers and write
  994. * them into the log.
  995. */
  996. STATIC void
  997. xlog_add_record(
  998. xlog_t *log,
  999. xfs_caddr_t buf,
  1000. int cycle,
  1001. int block,
  1002. int tail_cycle,
  1003. int tail_block)
  1004. {
  1005. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1006. memset(buf, 0, BBSIZE);
  1007. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1008. recp->h_cycle = cpu_to_be32(cycle);
  1009. recp->h_version = cpu_to_be32(
  1010. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1011. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1012. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1013. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1014. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1015. }
  1016. STATIC int
  1017. xlog_write_log_records(
  1018. xlog_t *log,
  1019. int cycle,
  1020. int start_block,
  1021. int blocks,
  1022. int tail_cycle,
  1023. int tail_block)
  1024. {
  1025. xfs_caddr_t offset;
  1026. xfs_buf_t *bp;
  1027. int balign, ealign;
  1028. int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
  1029. int end_block = start_block + blocks;
  1030. int bufblks;
  1031. int error = 0;
  1032. int i, j = 0;
  1033. bufblks = 1 << ffs(blocks);
  1034. while (!(bp = xlog_get_bp(log, bufblks))) {
  1035. bufblks >>= 1;
  1036. if (bufblks <= log->l_sectbb_log)
  1037. return ENOMEM;
  1038. }
  1039. /* We may need to do a read at the start to fill in part of
  1040. * the buffer in the starting sector not covered by the first
  1041. * write below.
  1042. */
  1043. balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
  1044. if (balign != start_block) {
  1045. if ((error = xlog_bread(log, start_block, 1, bp))) {
  1046. xlog_put_bp(bp);
  1047. return error;
  1048. }
  1049. j = start_block - balign;
  1050. }
  1051. for (i = start_block; i < end_block; i += bufblks) {
  1052. int bcount, endcount;
  1053. bcount = min(bufblks, end_block - start_block);
  1054. endcount = bcount - j;
  1055. /* We may need to do a read at the end to fill in part of
  1056. * the buffer in the final sector not covered by the write.
  1057. * If this is the same sector as the above read, skip it.
  1058. */
  1059. ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
  1060. if (j == 0 && (start_block + endcount > ealign)) {
  1061. offset = XFS_BUF_PTR(bp);
  1062. balign = BBTOB(ealign - start_block);
  1063. error = XFS_BUF_SET_PTR(bp, offset + balign,
  1064. BBTOB(sectbb));
  1065. if (!error)
  1066. error = xlog_bread(log, ealign, sectbb, bp);
  1067. if (!error)
  1068. error = XFS_BUF_SET_PTR(bp, offset, bufblks);
  1069. if (error)
  1070. break;
  1071. }
  1072. offset = xlog_align(log, start_block, endcount, bp);
  1073. for (; j < endcount; j++) {
  1074. xlog_add_record(log, offset, cycle, i+j,
  1075. tail_cycle, tail_block);
  1076. offset += BBSIZE;
  1077. }
  1078. error = xlog_bwrite(log, start_block, endcount, bp);
  1079. if (error)
  1080. break;
  1081. start_block += endcount;
  1082. j = 0;
  1083. }
  1084. xlog_put_bp(bp);
  1085. return error;
  1086. }
  1087. /*
  1088. * This routine is called to blow away any incomplete log writes out
  1089. * in front of the log head. We do this so that we won't become confused
  1090. * if we come up, write only a little bit more, and then crash again.
  1091. * If we leave the partial log records out there, this situation could
  1092. * cause us to think those partial writes are valid blocks since they
  1093. * have the current cycle number. We get rid of them by overwriting them
  1094. * with empty log records with the old cycle number rather than the
  1095. * current one.
  1096. *
  1097. * The tail lsn is passed in rather than taken from
  1098. * the log so that we will not write over the unmount record after a
  1099. * clean unmount in a 512 block log. Doing so would leave the log without
  1100. * any valid log records in it until a new one was written. If we crashed
  1101. * during that time we would not be able to recover.
  1102. */
  1103. STATIC int
  1104. xlog_clear_stale_blocks(
  1105. xlog_t *log,
  1106. xfs_lsn_t tail_lsn)
  1107. {
  1108. int tail_cycle, head_cycle;
  1109. int tail_block, head_block;
  1110. int tail_distance, max_distance;
  1111. int distance;
  1112. int error;
  1113. tail_cycle = CYCLE_LSN(tail_lsn);
  1114. tail_block = BLOCK_LSN(tail_lsn);
  1115. head_cycle = log->l_curr_cycle;
  1116. head_block = log->l_curr_block;
  1117. /*
  1118. * Figure out the distance between the new head of the log
  1119. * and the tail. We want to write over any blocks beyond the
  1120. * head that we may have written just before the crash, but
  1121. * we don't want to overwrite the tail of the log.
  1122. */
  1123. if (head_cycle == tail_cycle) {
  1124. /*
  1125. * The tail is behind the head in the physical log,
  1126. * so the distance from the head to the tail is the
  1127. * distance from the head to the end of the log plus
  1128. * the distance from the beginning of the log to the
  1129. * tail.
  1130. */
  1131. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1132. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1133. XFS_ERRLEVEL_LOW, log->l_mp);
  1134. return XFS_ERROR(EFSCORRUPTED);
  1135. }
  1136. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1137. } else {
  1138. /*
  1139. * The head is behind the tail in the physical log,
  1140. * so the distance from the head to the tail is just
  1141. * the tail block minus the head block.
  1142. */
  1143. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1144. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1145. XFS_ERRLEVEL_LOW, log->l_mp);
  1146. return XFS_ERROR(EFSCORRUPTED);
  1147. }
  1148. tail_distance = tail_block - head_block;
  1149. }
  1150. /*
  1151. * If the head is right up against the tail, we can't clear
  1152. * anything.
  1153. */
  1154. if (tail_distance <= 0) {
  1155. ASSERT(tail_distance == 0);
  1156. return 0;
  1157. }
  1158. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1159. /*
  1160. * Take the smaller of the maximum amount of outstanding I/O
  1161. * we could have and the distance to the tail to clear out.
  1162. * We take the smaller so that we don't overwrite the tail and
  1163. * we don't waste all day writing from the head to the tail
  1164. * for no reason.
  1165. */
  1166. max_distance = MIN(max_distance, tail_distance);
  1167. if ((head_block + max_distance) <= log->l_logBBsize) {
  1168. /*
  1169. * We can stomp all the blocks we need to without
  1170. * wrapping around the end of the log. Just do it
  1171. * in a single write. Use the cycle number of the
  1172. * current cycle minus one so that the log will look like:
  1173. * n ... | n - 1 ...
  1174. */
  1175. error = xlog_write_log_records(log, (head_cycle - 1),
  1176. head_block, max_distance, tail_cycle,
  1177. tail_block);
  1178. if (error)
  1179. return error;
  1180. } else {
  1181. /*
  1182. * We need to wrap around the end of the physical log in
  1183. * order to clear all the blocks. Do it in two separate
  1184. * I/Os. The first write should be from the head to the
  1185. * end of the physical log, and it should use the current
  1186. * cycle number minus one just like above.
  1187. */
  1188. distance = log->l_logBBsize - head_block;
  1189. error = xlog_write_log_records(log, (head_cycle - 1),
  1190. head_block, distance, tail_cycle,
  1191. tail_block);
  1192. if (error)
  1193. return error;
  1194. /*
  1195. * Now write the blocks at the start of the physical log.
  1196. * This writes the remainder of the blocks we want to clear.
  1197. * It uses the current cycle number since we're now on the
  1198. * same cycle as the head so that we get:
  1199. * n ... n ... | n - 1 ...
  1200. * ^^^^^ blocks we're writing
  1201. */
  1202. distance = max_distance - (log->l_logBBsize - head_block);
  1203. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1204. tail_cycle, tail_block);
  1205. if (error)
  1206. return error;
  1207. }
  1208. return 0;
  1209. }
  1210. /******************************************************************************
  1211. *
  1212. * Log recover routines
  1213. *
  1214. ******************************************************************************
  1215. */
  1216. STATIC xlog_recover_t *
  1217. xlog_recover_find_tid(
  1218. xlog_recover_t *q,
  1219. xlog_tid_t tid)
  1220. {
  1221. xlog_recover_t *p = q;
  1222. while (p != NULL) {
  1223. if (p->r_log_tid == tid)
  1224. break;
  1225. p = p->r_next;
  1226. }
  1227. return p;
  1228. }
  1229. STATIC void
  1230. xlog_recover_put_hashq(
  1231. xlog_recover_t **q,
  1232. xlog_recover_t *trans)
  1233. {
  1234. trans->r_next = *q;
  1235. *q = trans;
  1236. }
  1237. STATIC void
  1238. xlog_recover_add_item(
  1239. xlog_recover_item_t **itemq)
  1240. {
  1241. xlog_recover_item_t *item;
  1242. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1243. xlog_recover_insert_item_backq(itemq, item);
  1244. }
  1245. STATIC int
  1246. xlog_recover_add_to_cont_trans(
  1247. xlog_recover_t *trans,
  1248. xfs_caddr_t dp,
  1249. int len)
  1250. {
  1251. xlog_recover_item_t *item;
  1252. xfs_caddr_t ptr, old_ptr;
  1253. int old_len;
  1254. item = trans->r_itemq;
  1255. if (item == NULL) {
  1256. /* finish copying rest of trans header */
  1257. xlog_recover_add_item(&trans->r_itemq);
  1258. ptr = (xfs_caddr_t) &trans->r_theader +
  1259. sizeof(xfs_trans_header_t) - len;
  1260. memcpy(ptr, dp, len); /* d, s, l */
  1261. return 0;
  1262. }
  1263. item = item->ri_prev;
  1264. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1265. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1266. ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
  1267. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1268. item->ri_buf[item->ri_cnt-1].i_len += len;
  1269. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1270. return 0;
  1271. }
  1272. /*
  1273. * The next region to add is the start of a new region. It could be
  1274. * a whole region or it could be the first part of a new region. Because
  1275. * of this, the assumption here is that the type and size fields of all
  1276. * format structures fit into the first 32 bits of the structure.
  1277. *
  1278. * This works because all regions must be 32 bit aligned. Therefore, we
  1279. * either have both fields or we have neither field. In the case we have
  1280. * neither field, the data part of the region is zero length. We only have
  1281. * a log_op_header and can throw away the header since a new one will appear
  1282. * later. If we have at least 4 bytes, then we can determine how many regions
  1283. * will appear in the current log item.
  1284. */
  1285. STATIC int
  1286. xlog_recover_add_to_trans(
  1287. xlog_recover_t *trans,
  1288. xfs_caddr_t dp,
  1289. int len)
  1290. {
  1291. xfs_inode_log_format_t *in_f; /* any will do */
  1292. xlog_recover_item_t *item;
  1293. xfs_caddr_t ptr;
  1294. if (!len)
  1295. return 0;
  1296. item = trans->r_itemq;
  1297. if (item == NULL) {
  1298. ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
  1299. if (len == sizeof(xfs_trans_header_t))
  1300. xlog_recover_add_item(&trans->r_itemq);
  1301. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1302. return 0;
  1303. }
  1304. ptr = kmem_alloc(len, KM_SLEEP);
  1305. memcpy(ptr, dp, len);
  1306. in_f = (xfs_inode_log_format_t *)ptr;
  1307. if (item->ri_prev->ri_total != 0 &&
  1308. item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
  1309. xlog_recover_add_item(&trans->r_itemq);
  1310. }
  1311. item = trans->r_itemq;
  1312. item = item->ri_prev;
  1313. if (item->ri_total == 0) { /* first region to be added */
  1314. item->ri_total = in_f->ilf_size;
  1315. ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
  1316. item->ri_buf = kmem_zalloc((item->ri_total *
  1317. sizeof(xfs_log_iovec_t)), KM_SLEEP);
  1318. }
  1319. ASSERT(item->ri_total > item->ri_cnt);
  1320. /* Description region is ri_buf[0] */
  1321. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1322. item->ri_buf[item->ri_cnt].i_len = len;
  1323. item->ri_cnt++;
  1324. return 0;
  1325. }
  1326. STATIC void
  1327. xlog_recover_new_tid(
  1328. xlog_recover_t **q,
  1329. xlog_tid_t tid,
  1330. xfs_lsn_t lsn)
  1331. {
  1332. xlog_recover_t *trans;
  1333. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1334. trans->r_log_tid = tid;
  1335. trans->r_lsn = lsn;
  1336. xlog_recover_put_hashq(q, trans);
  1337. }
  1338. STATIC int
  1339. xlog_recover_unlink_tid(
  1340. xlog_recover_t **q,
  1341. xlog_recover_t *trans)
  1342. {
  1343. xlog_recover_t *tp;
  1344. int found = 0;
  1345. ASSERT(trans != NULL);
  1346. if (trans == *q) {
  1347. *q = (*q)->r_next;
  1348. } else {
  1349. tp = *q;
  1350. while (tp) {
  1351. if (tp->r_next == trans) {
  1352. found = 1;
  1353. break;
  1354. }
  1355. tp = tp->r_next;
  1356. }
  1357. if (!found) {
  1358. xlog_warn(
  1359. "XFS: xlog_recover_unlink_tid: trans not found");
  1360. ASSERT(0);
  1361. return XFS_ERROR(EIO);
  1362. }
  1363. tp->r_next = tp->r_next->r_next;
  1364. }
  1365. return 0;
  1366. }
  1367. STATIC void
  1368. xlog_recover_insert_item_backq(
  1369. xlog_recover_item_t **q,
  1370. xlog_recover_item_t *item)
  1371. {
  1372. if (*q == NULL) {
  1373. item->ri_prev = item->ri_next = item;
  1374. *q = item;
  1375. } else {
  1376. item->ri_next = *q;
  1377. item->ri_prev = (*q)->ri_prev;
  1378. (*q)->ri_prev = item;
  1379. item->ri_prev->ri_next = item;
  1380. }
  1381. }
  1382. STATIC void
  1383. xlog_recover_insert_item_frontq(
  1384. xlog_recover_item_t **q,
  1385. xlog_recover_item_t *item)
  1386. {
  1387. xlog_recover_insert_item_backq(q, item);
  1388. *q = item;
  1389. }
  1390. STATIC int
  1391. xlog_recover_reorder_trans(
  1392. xlog_recover_t *trans)
  1393. {
  1394. xlog_recover_item_t *first_item, *itemq, *itemq_next;
  1395. xfs_buf_log_format_t *buf_f;
  1396. ushort flags = 0;
  1397. first_item = itemq = trans->r_itemq;
  1398. trans->r_itemq = NULL;
  1399. do {
  1400. itemq_next = itemq->ri_next;
  1401. buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
  1402. switch (ITEM_TYPE(itemq)) {
  1403. case XFS_LI_BUF:
  1404. flags = buf_f->blf_flags;
  1405. if (!(flags & XFS_BLI_CANCEL)) {
  1406. xlog_recover_insert_item_frontq(&trans->r_itemq,
  1407. itemq);
  1408. break;
  1409. }
  1410. case XFS_LI_INODE:
  1411. case XFS_LI_DQUOT:
  1412. case XFS_LI_QUOTAOFF:
  1413. case XFS_LI_EFD:
  1414. case XFS_LI_EFI:
  1415. xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
  1416. break;
  1417. default:
  1418. xlog_warn(
  1419. "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
  1420. ASSERT(0);
  1421. return XFS_ERROR(EIO);
  1422. }
  1423. itemq = itemq_next;
  1424. } while (first_item != itemq);
  1425. return 0;
  1426. }
  1427. /*
  1428. * Build up the table of buf cancel records so that we don't replay
  1429. * cancelled data in the second pass. For buffer records that are
  1430. * not cancel records, there is nothing to do here so we just return.
  1431. *
  1432. * If we get a cancel record which is already in the table, this indicates
  1433. * that the buffer was cancelled multiple times. In order to ensure
  1434. * that during pass 2 we keep the record in the table until we reach its
  1435. * last occurrence in the log, we keep a reference count in the cancel
  1436. * record in the table to tell us how many times we expect to see this
  1437. * record during the second pass.
  1438. */
  1439. STATIC void
  1440. xlog_recover_do_buffer_pass1(
  1441. xlog_t *log,
  1442. xfs_buf_log_format_t *buf_f)
  1443. {
  1444. xfs_buf_cancel_t *bcp;
  1445. xfs_buf_cancel_t *nextp;
  1446. xfs_buf_cancel_t *prevp;
  1447. xfs_buf_cancel_t **bucket;
  1448. xfs_daddr_t blkno = 0;
  1449. uint len = 0;
  1450. ushort flags = 0;
  1451. switch (buf_f->blf_type) {
  1452. case XFS_LI_BUF:
  1453. blkno = buf_f->blf_blkno;
  1454. len = buf_f->blf_len;
  1455. flags = buf_f->blf_flags;
  1456. break;
  1457. }
  1458. /*
  1459. * If this isn't a cancel buffer item, then just return.
  1460. */
  1461. if (!(flags & XFS_BLI_CANCEL))
  1462. return;
  1463. /*
  1464. * Insert an xfs_buf_cancel record into the hash table of
  1465. * them. If there is already an identical record, bump
  1466. * its reference count.
  1467. */
  1468. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1469. XLOG_BC_TABLE_SIZE];
  1470. /*
  1471. * If the hash bucket is empty then just insert a new record into
  1472. * the bucket.
  1473. */
  1474. if (*bucket == NULL) {
  1475. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1476. KM_SLEEP);
  1477. bcp->bc_blkno = blkno;
  1478. bcp->bc_len = len;
  1479. bcp->bc_refcount = 1;
  1480. bcp->bc_next = NULL;
  1481. *bucket = bcp;
  1482. return;
  1483. }
  1484. /*
  1485. * The hash bucket is not empty, so search for duplicates of our
  1486. * record. If we find one them just bump its refcount. If not
  1487. * then add us at the end of the list.
  1488. */
  1489. prevp = NULL;
  1490. nextp = *bucket;
  1491. while (nextp != NULL) {
  1492. if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
  1493. nextp->bc_refcount++;
  1494. return;
  1495. }
  1496. prevp = nextp;
  1497. nextp = nextp->bc_next;
  1498. }
  1499. ASSERT(prevp != NULL);
  1500. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1501. KM_SLEEP);
  1502. bcp->bc_blkno = blkno;
  1503. bcp->bc_len = len;
  1504. bcp->bc_refcount = 1;
  1505. bcp->bc_next = NULL;
  1506. prevp->bc_next = bcp;
  1507. }
  1508. /*
  1509. * Check to see whether the buffer being recovered has a corresponding
  1510. * entry in the buffer cancel record table. If it does then return 1
  1511. * so that it will be cancelled, otherwise return 0. If the buffer is
  1512. * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
  1513. * the refcount on the entry in the table and remove it from the table
  1514. * if this is the last reference.
  1515. *
  1516. * We remove the cancel record from the table when we encounter its
  1517. * last occurrence in the log so that if the same buffer is re-used
  1518. * again after its last cancellation we actually replay the changes
  1519. * made at that point.
  1520. */
  1521. STATIC int
  1522. xlog_check_buffer_cancelled(
  1523. xlog_t *log,
  1524. xfs_daddr_t blkno,
  1525. uint len,
  1526. ushort flags)
  1527. {
  1528. xfs_buf_cancel_t *bcp;
  1529. xfs_buf_cancel_t *prevp;
  1530. xfs_buf_cancel_t **bucket;
  1531. if (log->l_buf_cancel_table == NULL) {
  1532. /*
  1533. * There is nothing in the table built in pass one,
  1534. * so this buffer must not be cancelled.
  1535. */
  1536. ASSERT(!(flags & XFS_BLI_CANCEL));
  1537. return 0;
  1538. }
  1539. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1540. XLOG_BC_TABLE_SIZE];
  1541. bcp = *bucket;
  1542. if (bcp == NULL) {
  1543. /*
  1544. * There is no corresponding entry in the table built
  1545. * in pass one, so this buffer has not been cancelled.
  1546. */
  1547. ASSERT(!(flags & XFS_BLI_CANCEL));
  1548. return 0;
  1549. }
  1550. /*
  1551. * Search for an entry in the buffer cancel table that
  1552. * matches our buffer.
  1553. */
  1554. prevp = NULL;
  1555. while (bcp != NULL) {
  1556. if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
  1557. /*
  1558. * We've go a match, so return 1 so that the
  1559. * recovery of this buffer is cancelled.
  1560. * If this buffer is actually a buffer cancel
  1561. * log item, then decrement the refcount on the
  1562. * one in the table and remove it if this is the
  1563. * last reference.
  1564. */
  1565. if (flags & XFS_BLI_CANCEL) {
  1566. bcp->bc_refcount--;
  1567. if (bcp->bc_refcount == 0) {
  1568. if (prevp == NULL) {
  1569. *bucket = bcp->bc_next;
  1570. } else {
  1571. prevp->bc_next = bcp->bc_next;
  1572. }
  1573. kmem_free(bcp);
  1574. }
  1575. }
  1576. return 1;
  1577. }
  1578. prevp = bcp;
  1579. bcp = bcp->bc_next;
  1580. }
  1581. /*
  1582. * We didn't find a corresponding entry in the table, so
  1583. * return 0 so that the buffer is NOT cancelled.
  1584. */
  1585. ASSERT(!(flags & XFS_BLI_CANCEL));
  1586. return 0;
  1587. }
  1588. STATIC int
  1589. xlog_recover_do_buffer_pass2(
  1590. xlog_t *log,
  1591. xfs_buf_log_format_t *buf_f)
  1592. {
  1593. xfs_daddr_t blkno = 0;
  1594. ushort flags = 0;
  1595. uint len = 0;
  1596. switch (buf_f->blf_type) {
  1597. case XFS_LI_BUF:
  1598. blkno = buf_f->blf_blkno;
  1599. flags = buf_f->blf_flags;
  1600. len = buf_f->blf_len;
  1601. break;
  1602. }
  1603. return xlog_check_buffer_cancelled(log, blkno, len, flags);
  1604. }
  1605. /*
  1606. * Perform recovery for a buffer full of inodes. In these buffers,
  1607. * the only data which should be recovered is that which corresponds
  1608. * to the di_next_unlinked pointers in the on disk inode structures.
  1609. * The rest of the data for the inodes is always logged through the
  1610. * inodes themselves rather than the inode buffer and is recovered
  1611. * in xlog_recover_do_inode_trans().
  1612. *
  1613. * The only time when buffers full of inodes are fully recovered is
  1614. * when the buffer is full of newly allocated inodes. In this case
  1615. * the buffer will not be marked as an inode buffer and so will be
  1616. * sent to xlog_recover_do_reg_buffer() below during recovery.
  1617. */
  1618. STATIC int
  1619. xlog_recover_do_inode_buffer(
  1620. xfs_mount_t *mp,
  1621. xlog_recover_item_t *item,
  1622. xfs_buf_t *bp,
  1623. xfs_buf_log_format_t *buf_f)
  1624. {
  1625. int i;
  1626. int item_index;
  1627. int bit;
  1628. int nbits;
  1629. int reg_buf_offset;
  1630. int reg_buf_bytes;
  1631. int next_unlinked_offset;
  1632. int inodes_per_buf;
  1633. xfs_agino_t *logged_nextp;
  1634. xfs_agino_t *buffer_nextp;
  1635. unsigned int *data_map = NULL;
  1636. unsigned int map_size = 0;
  1637. switch (buf_f->blf_type) {
  1638. case XFS_LI_BUF:
  1639. data_map = buf_f->blf_data_map;
  1640. map_size = buf_f->blf_map_size;
  1641. break;
  1642. }
  1643. /*
  1644. * Set the variables corresponding to the current region to
  1645. * 0 so that we'll initialize them on the first pass through
  1646. * the loop.
  1647. */
  1648. reg_buf_offset = 0;
  1649. reg_buf_bytes = 0;
  1650. bit = 0;
  1651. nbits = 0;
  1652. item_index = 0;
  1653. inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
  1654. for (i = 0; i < inodes_per_buf; i++) {
  1655. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1656. offsetof(xfs_dinode_t, di_next_unlinked);
  1657. while (next_unlinked_offset >=
  1658. (reg_buf_offset + reg_buf_bytes)) {
  1659. /*
  1660. * The next di_next_unlinked field is beyond
  1661. * the current logged region. Find the next
  1662. * logged region that contains or is beyond
  1663. * the current di_next_unlinked field.
  1664. */
  1665. bit += nbits;
  1666. bit = xfs_next_bit(data_map, map_size, bit);
  1667. /*
  1668. * If there are no more logged regions in the
  1669. * buffer, then we're done.
  1670. */
  1671. if (bit == -1) {
  1672. return 0;
  1673. }
  1674. nbits = xfs_contig_bits(data_map, map_size,
  1675. bit);
  1676. ASSERT(nbits > 0);
  1677. reg_buf_offset = bit << XFS_BLI_SHIFT;
  1678. reg_buf_bytes = nbits << XFS_BLI_SHIFT;
  1679. item_index++;
  1680. }
  1681. /*
  1682. * If the current logged region starts after the current
  1683. * di_next_unlinked field, then move on to the next
  1684. * di_next_unlinked field.
  1685. */
  1686. if (next_unlinked_offset < reg_buf_offset) {
  1687. continue;
  1688. }
  1689. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1690. ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
  1691. ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
  1692. /*
  1693. * The current logged region contains a copy of the
  1694. * current di_next_unlinked field. Extract its value
  1695. * and copy it to the buffer copy.
  1696. */
  1697. logged_nextp = (xfs_agino_t *)
  1698. ((char *)(item->ri_buf[item_index].i_addr) +
  1699. (next_unlinked_offset - reg_buf_offset));
  1700. if (unlikely(*logged_nextp == 0)) {
  1701. xfs_fs_cmn_err(CE_ALERT, mp,
  1702. "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
  1703. item, bp);
  1704. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1705. XFS_ERRLEVEL_LOW, mp);
  1706. return XFS_ERROR(EFSCORRUPTED);
  1707. }
  1708. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1709. next_unlinked_offset);
  1710. *buffer_nextp = *logged_nextp;
  1711. }
  1712. return 0;
  1713. }
  1714. /*
  1715. * Perform a 'normal' buffer recovery. Each logged region of the
  1716. * buffer should be copied over the corresponding region in the
  1717. * given buffer. The bitmap in the buf log format structure indicates
  1718. * where to place the logged data.
  1719. */
  1720. /*ARGSUSED*/
  1721. STATIC void
  1722. xlog_recover_do_reg_buffer(
  1723. xlog_recover_item_t *item,
  1724. xfs_buf_t *bp,
  1725. xfs_buf_log_format_t *buf_f)
  1726. {
  1727. int i;
  1728. int bit;
  1729. int nbits;
  1730. unsigned int *data_map = NULL;
  1731. unsigned int map_size = 0;
  1732. int error;
  1733. switch (buf_f->blf_type) {
  1734. case XFS_LI_BUF:
  1735. data_map = buf_f->blf_data_map;
  1736. map_size = buf_f->blf_map_size;
  1737. break;
  1738. }
  1739. bit = 0;
  1740. i = 1; /* 0 is the buf format structure */
  1741. while (1) {
  1742. bit = xfs_next_bit(data_map, map_size, bit);
  1743. if (bit == -1)
  1744. break;
  1745. nbits = xfs_contig_bits(data_map, map_size, bit);
  1746. ASSERT(nbits > 0);
  1747. ASSERT(item->ri_buf[i].i_addr != NULL);
  1748. ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
  1749. ASSERT(XFS_BUF_COUNT(bp) >=
  1750. ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
  1751. /*
  1752. * Do a sanity check if this is a dquot buffer. Just checking
  1753. * the first dquot in the buffer should do. XXXThis is
  1754. * probably a good thing to do for other buf types also.
  1755. */
  1756. error = 0;
  1757. if (buf_f->blf_flags &
  1758. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  1759. error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
  1760. item->ri_buf[i].i_addr,
  1761. -1, 0, XFS_QMOPT_DOWARN,
  1762. "dquot_buf_recover");
  1763. }
  1764. if (!error)
  1765. memcpy(xfs_buf_offset(bp,
  1766. (uint)bit << XFS_BLI_SHIFT), /* dest */
  1767. item->ri_buf[i].i_addr, /* source */
  1768. nbits<<XFS_BLI_SHIFT); /* length */
  1769. i++;
  1770. bit += nbits;
  1771. }
  1772. /* Shouldn't be any more regions */
  1773. ASSERT(i == item->ri_total);
  1774. }
  1775. /*
  1776. * Do some primitive error checking on ondisk dquot data structures.
  1777. */
  1778. int
  1779. xfs_qm_dqcheck(
  1780. xfs_disk_dquot_t *ddq,
  1781. xfs_dqid_t id,
  1782. uint type, /* used only when IO_dorepair is true */
  1783. uint flags,
  1784. char *str)
  1785. {
  1786. xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
  1787. int errs = 0;
  1788. /*
  1789. * We can encounter an uninitialized dquot buffer for 2 reasons:
  1790. * 1. If we crash while deleting the quotainode(s), and those blks got
  1791. * used for user data. This is because we take the path of regular
  1792. * file deletion; however, the size field of quotainodes is never
  1793. * updated, so all the tricks that we play in itruncate_finish
  1794. * don't quite matter.
  1795. *
  1796. * 2. We don't play the quota buffers when there's a quotaoff logitem.
  1797. * But the allocation will be replayed so we'll end up with an
  1798. * uninitialized quota block.
  1799. *
  1800. * This is all fine; things are still consistent, and we haven't lost
  1801. * any quota information. Just don't complain about bad dquot blks.
  1802. */
  1803. if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
  1804. if (flags & XFS_QMOPT_DOWARN)
  1805. cmn_err(CE_ALERT,
  1806. "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
  1807. str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
  1808. errs++;
  1809. }
  1810. if (ddq->d_version != XFS_DQUOT_VERSION) {
  1811. if (flags & XFS_QMOPT_DOWARN)
  1812. cmn_err(CE_ALERT,
  1813. "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
  1814. str, id, ddq->d_version, XFS_DQUOT_VERSION);
  1815. errs++;
  1816. }
  1817. if (ddq->d_flags != XFS_DQ_USER &&
  1818. ddq->d_flags != XFS_DQ_PROJ &&
  1819. ddq->d_flags != XFS_DQ_GROUP) {
  1820. if (flags & XFS_QMOPT_DOWARN)
  1821. cmn_err(CE_ALERT,
  1822. "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
  1823. str, id, ddq->d_flags);
  1824. errs++;
  1825. }
  1826. if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
  1827. if (flags & XFS_QMOPT_DOWARN)
  1828. cmn_err(CE_ALERT,
  1829. "%s : ondisk-dquot 0x%p, ID mismatch: "
  1830. "0x%x expected, found id 0x%x",
  1831. str, ddq, id, be32_to_cpu(ddq->d_id));
  1832. errs++;
  1833. }
  1834. if (!errs && ddq->d_id) {
  1835. if (ddq->d_blk_softlimit &&
  1836. be64_to_cpu(ddq->d_bcount) >=
  1837. be64_to_cpu(ddq->d_blk_softlimit)) {
  1838. if (!ddq->d_btimer) {
  1839. if (flags & XFS_QMOPT_DOWARN)
  1840. cmn_err(CE_ALERT,
  1841. "%s : Dquot ID 0x%x (0x%p) "
  1842. "BLK TIMER NOT STARTED",
  1843. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1844. errs++;
  1845. }
  1846. }
  1847. if (ddq->d_ino_softlimit &&
  1848. be64_to_cpu(ddq->d_icount) >=
  1849. be64_to_cpu(ddq->d_ino_softlimit)) {
  1850. if (!ddq->d_itimer) {
  1851. if (flags & XFS_QMOPT_DOWARN)
  1852. cmn_err(CE_ALERT,
  1853. "%s : Dquot ID 0x%x (0x%p) "
  1854. "INODE TIMER NOT STARTED",
  1855. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1856. errs++;
  1857. }
  1858. }
  1859. if (ddq->d_rtb_softlimit &&
  1860. be64_to_cpu(ddq->d_rtbcount) >=
  1861. be64_to_cpu(ddq->d_rtb_softlimit)) {
  1862. if (!ddq->d_rtbtimer) {
  1863. if (flags & XFS_QMOPT_DOWARN)
  1864. cmn_err(CE_ALERT,
  1865. "%s : Dquot ID 0x%x (0x%p) "
  1866. "RTBLK TIMER NOT STARTED",
  1867. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1868. errs++;
  1869. }
  1870. }
  1871. }
  1872. if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
  1873. return errs;
  1874. if (flags & XFS_QMOPT_DOWARN)
  1875. cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
  1876. /*
  1877. * Typically, a repair is only requested by quotacheck.
  1878. */
  1879. ASSERT(id != -1);
  1880. ASSERT(flags & XFS_QMOPT_DQREPAIR);
  1881. memset(d, 0, sizeof(xfs_dqblk_t));
  1882. d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
  1883. d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
  1884. d->dd_diskdq.d_flags = type;
  1885. d->dd_diskdq.d_id = cpu_to_be32(id);
  1886. return errs;
  1887. }
  1888. /*
  1889. * Perform a dquot buffer recovery.
  1890. * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
  1891. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  1892. * Else, treat it as a regular buffer and do recovery.
  1893. */
  1894. STATIC void
  1895. xlog_recover_do_dquot_buffer(
  1896. xfs_mount_t *mp,
  1897. xlog_t *log,
  1898. xlog_recover_item_t *item,
  1899. xfs_buf_t *bp,
  1900. xfs_buf_log_format_t *buf_f)
  1901. {
  1902. uint type;
  1903. /*
  1904. * Filesystems are required to send in quota flags at mount time.
  1905. */
  1906. if (mp->m_qflags == 0) {
  1907. return;
  1908. }
  1909. type = 0;
  1910. if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
  1911. type |= XFS_DQ_USER;
  1912. if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
  1913. type |= XFS_DQ_PROJ;
  1914. if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
  1915. type |= XFS_DQ_GROUP;
  1916. /*
  1917. * This type of quotas was turned off, so ignore this buffer
  1918. */
  1919. if (log->l_quotaoffs_flag & type)
  1920. return;
  1921. xlog_recover_do_reg_buffer(item, bp, buf_f);
  1922. }
  1923. /*
  1924. * This routine replays a modification made to a buffer at runtime.
  1925. * There are actually two types of buffer, regular and inode, which
  1926. * are handled differently. Inode buffers are handled differently
  1927. * in that we only recover a specific set of data from them, namely
  1928. * the inode di_next_unlinked fields. This is because all other inode
  1929. * data is actually logged via inode records and any data we replay
  1930. * here which overlaps that may be stale.
  1931. *
  1932. * When meta-data buffers are freed at run time we log a buffer item
  1933. * with the XFS_BLI_CANCEL bit set to indicate that previous copies
  1934. * of the buffer in the log should not be replayed at recovery time.
  1935. * This is so that if the blocks covered by the buffer are reused for
  1936. * file data before we crash we don't end up replaying old, freed
  1937. * meta-data into a user's file.
  1938. *
  1939. * To handle the cancellation of buffer log items, we make two passes
  1940. * over the log during recovery. During the first we build a table of
  1941. * those buffers which have been cancelled, and during the second we
  1942. * only replay those buffers which do not have corresponding cancel
  1943. * records in the table. See xlog_recover_do_buffer_pass[1,2] above
  1944. * for more details on the implementation of the table of cancel records.
  1945. */
  1946. STATIC int
  1947. xlog_recover_do_buffer_trans(
  1948. xlog_t *log,
  1949. xlog_recover_item_t *item,
  1950. int pass)
  1951. {
  1952. xfs_buf_log_format_t *buf_f;
  1953. xfs_mount_t *mp;
  1954. xfs_buf_t *bp;
  1955. int error;
  1956. int cancel;
  1957. xfs_daddr_t blkno;
  1958. int len;
  1959. ushort flags;
  1960. buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
  1961. if (pass == XLOG_RECOVER_PASS1) {
  1962. /*
  1963. * In this pass we're only looking for buf items
  1964. * with the XFS_BLI_CANCEL bit set.
  1965. */
  1966. xlog_recover_do_buffer_pass1(log, buf_f);
  1967. return 0;
  1968. } else {
  1969. /*
  1970. * In this pass we want to recover all the buffers
  1971. * which have not been cancelled and are not
  1972. * cancellation buffers themselves. The routine
  1973. * we call here will tell us whether or not to
  1974. * continue with the replay of this buffer.
  1975. */
  1976. cancel = xlog_recover_do_buffer_pass2(log, buf_f);
  1977. if (cancel) {
  1978. return 0;
  1979. }
  1980. }
  1981. switch (buf_f->blf_type) {
  1982. case XFS_LI_BUF:
  1983. blkno = buf_f->blf_blkno;
  1984. len = buf_f->blf_len;
  1985. flags = buf_f->blf_flags;
  1986. break;
  1987. default:
  1988. xfs_fs_cmn_err(CE_ALERT, log->l_mp,
  1989. "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
  1990. buf_f->blf_type, log->l_mp->m_logname ?
  1991. log->l_mp->m_logname : "internal");
  1992. XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
  1993. XFS_ERRLEVEL_LOW, log->l_mp);
  1994. return XFS_ERROR(EFSCORRUPTED);
  1995. }
  1996. mp = log->l_mp;
  1997. if (flags & XFS_BLI_INODE_BUF) {
  1998. bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
  1999. XFS_BUF_LOCK);
  2000. } else {
  2001. bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
  2002. }
  2003. if (XFS_BUF_ISERROR(bp)) {
  2004. xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
  2005. bp, blkno);
  2006. error = XFS_BUF_GETERROR(bp);
  2007. xfs_buf_relse(bp);
  2008. return error;
  2009. }
  2010. error = 0;
  2011. if (flags & XFS_BLI_INODE_BUF) {
  2012. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  2013. } else if (flags &
  2014. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  2015. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  2016. } else {
  2017. xlog_recover_do_reg_buffer(item, bp, buf_f);
  2018. }
  2019. if (error)
  2020. return XFS_ERROR(error);
  2021. /*
  2022. * Perform delayed write on the buffer. Asynchronous writes will be
  2023. * slower when taking into account all the buffers to be flushed.
  2024. *
  2025. * Also make sure that only inode buffers with good sizes stay in
  2026. * the buffer cache. The kernel moves inodes in buffers of 1 block
  2027. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  2028. * buffers in the log can be a different size if the log was generated
  2029. * by an older kernel using unclustered inode buffers or a newer kernel
  2030. * running with a different inode cluster size. Regardless, if the
  2031. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  2032. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  2033. * the buffer out of the buffer cache so that the buffer won't
  2034. * overlap with future reads of those inodes.
  2035. */
  2036. if (XFS_DINODE_MAGIC ==
  2037. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  2038. (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
  2039. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  2040. XFS_BUF_STALE(bp);
  2041. error = xfs_bwrite(mp, bp);
  2042. } else {
  2043. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
  2044. XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
  2045. XFS_BUF_SET_FSPRIVATE(bp, mp);
  2046. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2047. xfs_bdwrite(mp, bp);
  2048. }
  2049. return (error);
  2050. }
  2051. STATIC int
  2052. xlog_recover_do_inode_trans(
  2053. xlog_t *log,
  2054. xlog_recover_item_t *item,
  2055. int pass)
  2056. {
  2057. xfs_inode_log_format_t *in_f;
  2058. xfs_mount_t *mp;
  2059. xfs_buf_t *bp;
  2060. xfs_imap_t imap;
  2061. xfs_dinode_t *dip;
  2062. xfs_ino_t ino;
  2063. int len;
  2064. xfs_caddr_t src;
  2065. xfs_caddr_t dest;
  2066. int error;
  2067. int attr_index;
  2068. uint fields;
  2069. xfs_icdinode_t *dicp;
  2070. int need_free = 0;
  2071. if (pass == XLOG_RECOVER_PASS1) {
  2072. return 0;
  2073. }
  2074. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2075. in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
  2076. } else {
  2077. in_f = (xfs_inode_log_format_t *)kmem_alloc(
  2078. sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2079. need_free = 1;
  2080. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2081. if (error)
  2082. goto error;
  2083. }
  2084. ino = in_f->ilf_ino;
  2085. mp = log->l_mp;
  2086. if (ITEM_TYPE(item) == XFS_LI_INODE) {
  2087. imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
  2088. imap.im_len = in_f->ilf_len;
  2089. imap.im_boffset = in_f->ilf_boffset;
  2090. } else {
  2091. /*
  2092. * It's an old inode format record. We don't know where
  2093. * its cluster is located on disk, and we can't allow
  2094. * xfs_imap() to figure it out because the inode btrees
  2095. * are not ready to be used. Therefore do not pass the
  2096. * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
  2097. * us only the single block in which the inode lives
  2098. * rather than its cluster, so we must make sure to
  2099. * invalidate the buffer when we write it out below.
  2100. */
  2101. imap.im_blkno = 0;
  2102. error = xfs_imap(log->l_mp, NULL, ino, &imap, 0);
  2103. if (error)
  2104. goto error;
  2105. }
  2106. /*
  2107. * Inode buffers can be freed, look out for it,
  2108. * and do not replay the inode.
  2109. */
  2110. if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
  2111. error = 0;
  2112. goto error;
  2113. }
  2114. bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
  2115. XFS_BUF_LOCK);
  2116. if (XFS_BUF_ISERROR(bp)) {
  2117. xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
  2118. bp, imap.im_blkno);
  2119. error = XFS_BUF_GETERROR(bp);
  2120. xfs_buf_relse(bp);
  2121. goto error;
  2122. }
  2123. error = 0;
  2124. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2125. dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  2126. /*
  2127. * Make sure the place we're flushing out to really looks
  2128. * like an inode!
  2129. */
  2130. if (unlikely(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC)) {
  2131. xfs_buf_relse(bp);
  2132. xfs_fs_cmn_err(CE_ALERT, mp,
  2133. "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
  2134. dip, bp, ino);
  2135. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
  2136. XFS_ERRLEVEL_LOW, mp);
  2137. error = EFSCORRUPTED;
  2138. goto error;
  2139. }
  2140. dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
  2141. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2142. xfs_buf_relse(bp);
  2143. xfs_fs_cmn_err(CE_ALERT, mp,
  2144. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2145. item, ino);
  2146. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
  2147. XFS_ERRLEVEL_LOW, mp);
  2148. error = EFSCORRUPTED;
  2149. goto error;
  2150. }
  2151. /* Skip replay when the on disk inode is newer than the log one */
  2152. if (dicp->di_flushiter < be16_to_cpu(dip->di_core.di_flushiter)) {
  2153. /*
  2154. * Deal with the wrap case, DI_MAX_FLUSH is less
  2155. * than smaller numbers
  2156. */
  2157. if (be16_to_cpu(dip->di_core.di_flushiter) == DI_MAX_FLUSH &&
  2158. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2159. /* do nothing */
  2160. } else {
  2161. xfs_buf_relse(bp);
  2162. error = 0;
  2163. goto error;
  2164. }
  2165. }
  2166. /* Take the opportunity to reset the flush iteration count */
  2167. dicp->di_flushiter = 0;
  2168. if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
  2169. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2170. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2171. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
  2172. XFS_ERRLEVEL_LOW, mp, dicp);
  2173. xfs_buf_relse(bp);
  2174. xfs_fs_cmn_err(CE_ALERT, mp,
  2175. "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2176. item, dip, bp, ino);
  2177. error = EFSCORRUPTED;
  2178. goto error;
  2179. }
  2180. } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
  2181. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2182. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2183. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2184. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
  2185. XFS_ERRLEVEL_LOW, mp, dicp);
  2186. xfs_buf_relse(bp);
  2187. xfs_fs_cmn_err(CE_ALERT, mp,
  2188. "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2189. item, dip, bp, ino);
  2190. error = EFSCORRUPTED;
  2191. goto error;
  2192. }
  2193. }
  2194. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2195. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
  2196. XFS_ERRLEVEL_LOW, mp, dicp);
  2197. xfs_buf_relse(bp);
  2198. xfs_fs_cmn_err(CE_ALERT, mp,
  2199. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2200. item, dip, bp, ino,
  2201. dicp->di_nextents + dicp->di_anextents,
  2202. dicp->di_nblocks);
  2203. error = EFSCORRUPTED;
  2204. goto error;
  2205. }
  2206. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2207. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
  2208. XFS_ERRLEVEL_LOW, mp, dicp);
  2209. xfs_buf_relse(bp);
  2210. xfs_fs_cmn_err(CE_ALERT, mp,
  2211. "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
  2212. item, dip, bp, ino, dicp->di_forkoff);
  2213. error = EFSCORRUPTED;
  2214. goto error;
  2215. }
  2216. if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
  2217. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
  2218. XFS_ERRLEVEL_LOW, mp, dicp);
  2219. xfs_buf_relse(bp);
  2220. xfs_fs_cmn_err(CE_ALERT, mp,
  2221. "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
  2222. item->ri_buf[1].i_len, item);
  2223. error = EFSCORRUPTED;
  2224. goto error;
  2225. }
  2226. /* The core is in in-core format */
  2227. xfs_dinode_to_disk(&dip->di_core,
  2228. (xfs_icdinode_t *)item->ri_buf[1].i_addr);
  2229. /* the rest is in on-disk format */
  2230. if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
  2231. memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
  2232. item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
  2233. item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t));
  2234. }
  2235. fields = in_f->ilf_fields;
  2236. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2237. case XFS_ILOG_DEV:
  2238. dip->di_u.di_dev = cpu_to_be32(in_f->ilf_u.ilfu_rdev);
  2239. break;
  2240. case XFS_ILOG_UUID:
  2241. dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
  2242. break;
  2243. }
  2244. if (in_f->ilf_size == 2)
  2245. goto write_inode_buffer;
  2246. len = item->ri_buf[2].i_len;
  2247. src = item->ri_buf[2].i_addr;
  2248. ASSERT(in_f->ilf_size <= 4);
  2249. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2250. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2251. (len == in_f->ilf_dsize));
  2252. switch (fields & XFS_ILOG_DFORK) {
  2253. case XFS_ILOG_DDATA:
  2254. case XFS_ILOG_DEXT:
  2255. memcpy(&dip->di_u, src, len);
  2256. break;
  2257. case XFS_ILOG_DBROOT:
  2258. xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
  2259. &(dip->di_u.di_bmbt),
  2260. XFS_DFORK_DSIZE(dip, mp));
  2261. break;
  2262. default:
  2263. /*
  2264. * There are no data fork flags set.
  2265. */
  2266. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2267. break;
  2268. }
  2269. /*
  2270. * If we logged any attribute data, recover it. There may or
  2271. * may not have been any other non-core data logged in this
  2272. * transaction.
  2273. */
  2274. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2275. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2276. attr_index = 3;
  2277. } else {
  2278. attr_index = 2;
  2279. }
  2280. len = item->ri_buf[attr_index].i_len;
  2281. src = item->ri_buf[attr_index].i_addr;
  2282. ASSERT(len == in_f->ilf_asize);
  2283. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2284. case XFS_ILOG_ADATA:
  2285. case XFS_ILOG_AEXT:
  2286. dest = XFS_DFORK_APTR(dip);
  2287. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2288. memcpy(dest, src, len);
  2289. break;
  2290. case XFS_ILOG_ABROOT:
  2291. dest = XFS_DFORK_APTR(dip);
  2292. xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
  2293. (xfs_bmdr_block_t*)dest,
  2294. XFS_DFORK_ASIZE(dip, mp));
  2295. break;
  2296. default:
  2297. xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
  2298. ASSERT(0);
  2299. xfs_buf_relse(bp);
  2300. error = EIO;
  2301. goto error;
  2302. }
  2303. }
  2304. write_inode_buffer:
  2305. if (ITEM_TYPE(item) == XFS_LI_INODE) {
  2306. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
  2307. XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
  2308. XFS_BUF_SET_FSPRIVATE(bp, mp);
  2309. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2310. xfs_bdwrite(mp, bp);
  2311. } else {
  2312. XFS_BUF_STALE(bp);
  2313. error = xfs_bwrite(mp, bp);
  2314. }
  2315. error:
  2316. if (need_free)
  2317. kmem_free(in_f);
  2318. return XFS_ERROR(error);
  2319. }
  2320. /*
  2321. * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
  2322. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2323. * of that type.
  2324. */
  2325. STATIC int
  2326. xlog_recover_do_quotaoff_trans(
  2327. xlog_t *log,
  2328. xlog_recover_item_t *item,
  2329. int pass)
  2330. {
  2331. xfs_qoff_logformat_t *qoff_f;
  2332. if (pass == XLOG_RECOVER_PASS2) {
  2333. return (0);
  2334. }
  2335. qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
  2336. ASSERT(qoff_f);
  2337. /*
  2338. * The logitem format's flag tells us if this was user quotaoff,
  2339. * group/project quotaoff or both.
  2340. */
  2341. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2342. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2343. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2344. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2345. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2346. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2347. return (0);
  2348. }
  2349. /*
  2350. * Recover a dquot record
  2351. */
  2352. STATIC int
  2353. xlog_recover_do_dquot_trans(
  2354. xlog_t *log,
  2355. xlog_recover_item_t *item,
  2356. int pass)
  2357. {
  2358. xfs_mount_t *mp;
  2359. xfs_buf_t *bp;
  2360. struct xfs_disk_dquot *ddq, *recddq;
  2361. int error;
  2362. xfs_dq_logformat_t *dq_f;
  2363. uint type;
  2364. if (pass == XLOG_RECOVER_PASS1) {
  2365. return 0;
  2366. }
  2367. mp = log->l_mp;
  2368. /*
  2369. * Filesystems are required to send in quota flags at mount time.
  2370. */
  2371. if (mp->m_qflags == 0)
  2372. return (0);
  2373. recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
  2374. ASSERT(recddq);
  2375. /*
  2376. * This type of quotas was turned off, so ignore this record.
  2377. */
  2378. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2379. ASSERT(type);
  2380. if (log->l_quotaoffs_flag & type)
  2381. return (0);
  2382. /*
  2383. * At this point we know that quota was _not_ turned off.
  2384. * Since the mount flags are not indicating to us otherwise, this
  2385. * must mean that quota is on, and the dquot needs to be replayed.
  2386. * Remember that we may not have fully recovered the superblock yet,
  2387. * so we can't do the usual trick of looking at the SB quota bits.
  2388. *
  2389. * The other possibility, of course, is that the quota subsystem was
  2390. * removed since the last mount - ENOSYS.
  2391. */
  2392. dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
  2393. ASSERT(dq_f);
  2394. if ((error = xfs_qm_dqcheck(recddq,
  2395. dq_f->qlf_id,
  2396. 0, XFS_QMOPT_DOWARN,
  2397. "xlog_recover_do_dquot_trans (log copy)"))) {
  2398. return XFS_ERROR(EIO);
  2399. }
  2400. ASSERT(dq_f->qlf_len == 1);
  2401. error = xfs_read_buf(mp, mp->m_ddev_targp,
  2402. dq_f->qlf_blkno,
  2403. XFS_FSB_TO_BB(mp, dq_f->qlf_len),
  2404. 0, &bp);
  2405. if (error) {
  2406. xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
  2407. bp, dq_f->qlf_blkno);
  2408. return error;
  2409. }
  2410. ASSERT(bp);
  2411. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2412. /*
  2413. * At least the magic num portion should be on disk because this
  2414. * was among a chunk of dquots created earlier, and we did some
  2415. * minimal initialization then.
  2416. */
  2417. if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2418. "xlog_recover_do_dquot_trans")) {
  2419. xfs_buf_relse(bp);
  2420. return XFS_ERROR(EIO);
  2421. }
  2422. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2423. ASSERT(dq_f->qlf_size == 2);
  2424. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
  2425. XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
  2426. XFS_BUF_SET_FSPRIVATE(bp, mp);
  2427. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2428. xfs_bdwrite(mp, bp);
  2429. return (0);
  2430. }
  2431. /*
  2432. * This routine is called to create an in-core extent free intent
  2433. * item from the efi format structure which was logged on disk.
  2434. * It allocates an in-core efi, copies the extents from the format
  2435. * structure into it, and adds the efi to the AIL with the given
  2436. * LSN.
  2437. */
  2438. STATIC int
  2439. xlog_recover_do_efi_trans(
  2440. xlog_t *log,
  2441. xlog_recover_item_t *item,
  2442. xfs_lsn_t lsn,
  2443. int pass)
  2444. {
  2445. int error;
  2446. xfs_mount_t *mp;
  2447. xfs_efi_log_item_t *efip;
  2448. xfs_efi_log_format_t *efi_formatp;
  2449. if (pass == XLOG_RECOVER_PASS1) {
  2450. return 0;
  2451. }
  2452. efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
  2453. mp = log->l_mp;
  2454. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2455. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2456. &(efip->efi_format)))) {
  2457. xfs_efi_item_free(efip);
  2458. return error;
  2459. }
  2460. efip->efi_next_extent = efi_formatp->efi_nextents;
  2461. efip->efi_flags |= XFS_EFI_COMMITTED;
  2462. spin_lock(&mp->m_ail_lock);
  2463. /*
  2464. * xfs_trans_update_ail() drops the AIL lock.
  2465. */
  2466. xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn);
  2467. return 0;
  2468. }
  2469. /*
  2470. * This routine is called when an efd format structure is found in
  2471. * a committed transaction in the log. It's purpose is to cancel
  2472. * the corresponding efi if it was still in the log. To do this
  2473. * it searches the AIL for the efi with an id equal to that in the
  2474. * efd format structure. If we find it, we remove the efi from the
  2475. * AIL and free it.
  2476. */
  2477. STATIC void
  2478. xlog_recover_do_efd_trans(
  2479. xlog_t *log,
  2480. xlog_recover_item_t *item,
  2481. int pass)
  2482. {
  2483. xfs_mount_t *mp;
  2484. xfs_efd_log_format_t *efd_formatp;
  2485. xfs_efi_log_item_t *efip = NULL;
  2486. xfs_log_item_t *lip;
  2487. int gen;
  2488. __uint64_t efi_id;
  2489. if (pass == XLOG_RECOVER_PASS1) {
  2490. return;
  2491. }
  2492. efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
  2493. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2494. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2495. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2496. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2497. efi_id = efd_formatp->efd_efi_id;
  2498. /*
  2499. * Search for the efi with the id in the efd format structure
  2500. * in the AIL.
  2501. */
  2502. mp = log->l_mp;
  2503. spin_lock(&mp->m_ail_lock);
  2504. lip = xfs_trans_first_ail(mp, &gen);
  2505. while (lip != NULL) {
  2506. if (lip->li_type == XFS_LI_EFI) {
  2507. efip = (xfs_efi_log_item_t *)lip;
  2508. if (efip->efi_format.efi_id == efi_id) {
  2509. /*
  2510. * xfs_trans_delete_ail() drops the
  2511. * AIL lock.
  2512. */
  2513. xfs_trans_delete_ail(mp, lip);
  2514. xfs_efi_item_free(efip);
  2515. return;
  2516. }
  2517. }
  2518. lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
  2519. }
  2520. spin_unlock(&mp->m_ail_lock);
  2521. }
  2522. /*
  2523. * Perform the transaction
  2524. *
  2525. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2526. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  2527. */
  2528. STATIC int
  2529. xlog_recover_do_trans(
  2530. xlog_t *log,
  2531. xlog_recover_t *trans,
  2532. int pass)
  2533. {
  2534. int error = 0;
  2535. xlog_recover_item_t *item, *first_item;
  2536. if ((error = xlog_recover_reorder_trans(trans)))
  2537. return error;
  2538. first_item = item = trans->r_itemq;
  2539. do {
  2540. /*
  2541. * we don't need to worry about the block number being
  2542. * truncated in > 1 TB buffers because in user-land,
  2543. * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
  2544. * the blknos will get through the user-mode buffer
  2545. * cache properly. The only bad case is o32 kernels
  2546. * where xfs_daddr_t is 32-bits but mount will warn us
  2547. * off a > 1 TB filesystem before we get here.
  2548. */
  2549. if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
  2550. if ((error = xlog_recover_do_buffer_trans(log, item,
  2551. pass)))
  2552. break;
  2553. } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
  2554. if ((error = xlog_recover_do_inode_trans(log, item,
  2555. pass)))
  2556. break;
  2557. } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
  2558. if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
  2559. pass)))
  2560. break;
  2561. } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
  2562. xlog_recover_do_efd_trans(log, item, pass);
  2563. } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
  2564. if ((error = xlog_recover_do_dquot_trans(log, item,
  2565. pass)))
  2566. break;
  2567. } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
  2568. if ((error = xlog_recover_do_quotaoff_trans(log, item,
  2569. pass)))
  2570. break;
  2571. } else {
  2572. xlog_warn("XFS: xlog_recover_do_trans");
  2573. ASSERT(0);
  2574. error = XFS_ERROR(EIO);
  2575. break;
  2576. }
  2577. item = item->ri_next;
  2578. } while (first_item != item);
  2579. return error;
  2580. }
  2581. /*
  2582. * Free up any resources allocated by the transaction
  2583. *
  2584. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2585. */
  2586. STATIC void
  2587. xlog_recover_free_trans(
  2588. xlog_recover_t *trans)
  2589. {
  2590. xlog_recover_item_t *first_item, *item, *free_item;
  2591. int i;
  2592. item = first_item = trans->r_itemq;
  2593. do {
  2594. free_item = item;
  2595. item = item->ri_next;
  2596. /* Free the regions in the item. */
  2597. for (i = 0; i < free_item->ri_cnt; i++) {
  2598. kmem_free(free_item->ri_buf[i].i_addr);
  2599. }
  2600. /* Free the item itself */
  2601. kmem_free(free_item->ri_buf);
  2602. kmem_free(free_item);
  2603. } while (first_item != item);
  2604. /* Free the transaction recover structure */
  2605. kmem_free(trans);
  2606. }
  2607. STATIC int
  2608. xlog_recover_commit_trans(
  2609. xlog_t *log,
  2610. xlog_recover_t **q,
  2611. xlog_recover_t *trans,
  2612. int pass)
  2613. {
  2614. int error;
  2615. if ((error = xlog_recover_unlink_tid(q, trans)))
  2616. return error;
  2617. if ((error = xlog_recover_do_trans(log, trans, pass)))
  2618. return error;
  2619. xlog_recover_free_trans(trans); /* no error */
  2620. return 0;
  2621. }
  2622. STATIC int
  2623. xlog_recover_unmount_trans(
  2624. xlog_recover_t *trans)
  2625. {
  2626. /* Do nothing now */
  2627. xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
  2628. return 0;
  2629. }
  2630. /*
  2631. * There are two valid states of the r_state field. 0 indicates that the
  2632. * transaction structure is in a normal state. We have either seen the
  2633. * start of the transaction or the last operation we added was not a partial
  2634. * operation. If the last operation we added to the transaction was a
  2635. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  2636. *
  2637. * NOTE: skip LRs with 0 data length.
  2638. */
  2639. STATIC int
  2640. xlog_recover_process_data(
  2641. xlog_t *log,
  2642. xlog_recover_t *rhash[],
  2643. xlog_rec_header_t *rhead,
  2644. xfs_caddr_t dp,
  2645. int pass)
  2646. {
  2647. xfs_caddr_t lp;
  2648. int num_logops;
  2649. xlog_op_header_t *ohead;
  2650. xlog_recover_t *trans;
  2651. xlog_tid_t tid;
  2652. int error;
  2653. unsigned long hash;
  2654. uint flags;
  2655. lp = dp + be32_to_cpu(rhead->h_len);
  2656. num_logops = be32_to_cpu(rhead->h_num_logops);
  2657. /* check the log format matches our own - else we can't recover */
  2658. if (xlog_header_check_recover(log->l_mp, rhead))
  2659. return (XFS_ERROR(EIO));
  2660. while ((dp < lp) && num_logops) {
  2661. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  2662. ohead = (xlog_op_header_t *)dp;
  2663. dp += sizeof(xlog_op_header_t);
  2664. if (ohead->oh_clientid != XFS_TRANSACTION &&
  2665. ohead->oh_clientid != XFS_LOG) {
  2666. xlog_warn(
  2667. "XFS: xlog_recover_process_data: bad clientid");
  2668. ASSERT(0);
  2669. return (XFS_ERROR(EIO));
  2670. }
  2671. tid = be32_to_cpu(ohead->oh_tid);
  2672. hash = XLOG_RHASH(tid);
  2673. trans = xlog_recover_find_tid(rhash[hash], tid);
  2674. if (trans == NULL) { /* not found; add new tid */
  2675. if (ohead->oh_flags & XLOG_START_TRANS)
  2676. xlog_recover_new_tid(&rhash[hash], tid,
  2677. be64_to_cpu(rhead->h_lsn));
  2678. } else {
  2679. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  2680. xlog_warn(
  2681. "XFS: xlog_recover_process_data: bad length");
  2682. WARN_ON(1);
  2683. return (XFS_ERROR(EIO));
  2684. }
  2685. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  2686. if (flags & XLOG_WAS_CONT_TRANS)
  2687. flags &= ~XLOG_CONTINUE_TRANS;
  2688. switch (flags) {
  2689. case XLOG_COMMIT_TRANS:
  2690. error = xlog_recover_commit_trans(log,
  2691. &rhash[hash], trans, pass);
  2692. break;
  2693. case XLOG_UNMOUNT_TRANS:
  2694. error = xlog_recover_unmount_trans(trans);
  2695. break;
  2696. case XLOG_WAS_CONT_TRANS:
  2697. error = xlog_recover_add_to_cont_trans(trans,
  2698. dp, be32_to_cpu(ohead->oh_len));
  2699. break;
  2700. case XLOG_START_TRANS:
  2701. xlog_warn(
  2702. "XFS: xlog_recover_process_data: bad transaction");
  2703. ASSERT(0);
  2704. error = XFS_ERROR(EIO);
  2705. break;
  2706. case 0:
  2707. case XLOG_CONTINUE_TRANS:
  2708. error = xlog_recover_add_to_trans(trans,
  2709. dp, be32_to_cpu(ohead->oh_len));
  2710. break;
  2711. default:
  2712. xlog_warn(
  2713. "XFS: xlog_recover_process_data: bad flag");
  2714. ASSERT(0);
  2715. error = XFS_ERROR(EIO);
  2716. break;
  2717. }
  2718. if (error)
  2719. return error;
  2720. }
  2721. dp += be32_to_cpu(ohead->oh_len);
  2722. num_logops--;
  2723. }
  2724. return 0;
  2725. }
  2726. /*
  2727. * Process an extent free intent item that was recovered from
  2728. * the log. We need to free the extents that it describes.
  2729. */
  2730. STATIC int
  2731. xlog_recover_process_efi(
  2732. xfs_mount_t *mp,
  2733. xfs_efi_log_item_t *efip)
  2734. {
  2735. xfs_efd_log_item_t *efdp;
  2736. xfs_trans_t *tp;
  2737. int i;
  2738. int error = 0;
  2739. xfs_extent_t *extp;
  2740. xfs_fsblock_t startblock_fsb;
  2741. ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
  2742. /*
  2743. * First check the validity of the extents described by the
  2744. * EFI. If any are bad, then assume that all are bad and
  2745. * just toss the EFI.
  2746. */
  2747. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2748. extp = &(efip->efi_format.efi_extents[i]);
  2749. startblock_fsb = XFS_BB_TO_FSB(mp,
  2750. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  2751. if ((startblock_fsb == 0) ||
  2752. (extp->ext_len == 0) ||
  2753. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  2754. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  2755. /*
  2756. * This will pull the EFI from the AIL and
  2757. * free the memory associated with it.
  2758. */
  2759. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  2760. return XFS_ERROR(EIO);
  2761. }
  2762. }
  2763. tp = xfs_trans_alloc(mp, 0);
  2764. error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
  2765. if (error)
  2766. goto abort_error;
  2767. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  2768. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2769. extp = &(efip->efi_format.efi_extents[i]);
  2770. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  2771. if (error)
  2772. goto abort_error;
  2773. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  2774. extp->ext_len);
  2775. }
  2776. efip->efi_flags |= XFS_EFI_RECOVERED;
  2777. error = xfs_trans_commit(tp, 0);
  2778. return error;
  2779. abort_error:
  2780. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2781. return error;
  2782. }
  2783. /*
  2784. * Verify that once we've encountered something other than an EFI
  2785. * in the AIL that there are no more EFIs in the AIL.
  2786. */
  2787. #if defined(DEBUG)
  2788. STATIC void
  2789. xlog_recover_check_ail(
  2790. xfs_mount_t *mp,
  2791. xfs_log_item_t *lip,
  2792. int gen)
  2793. {
  2794. int orig_gen = gen;
  2795. do {
  2796. ASSERT(lip->li_type != XFS_LI_EFI);
  2797. lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
  2798. /*
  2799. * The check will be bogus if we restart from the
  2800. * beginning of the AIL, so ASSERT that we don't.
  2801. * We never should since we're holding the AIL lock
  2802. * the entire time.
  2803. */
  2804. ASSERT(gen == orig_gen);
  2805. } while (lip != NULL);
  2806. }
  2807. #endif /* DEBUG */
  2808. /*
  2809. * When this is called, all of the EFIs which did not have
  2810. * corresponding EFDs should be in the AIL. What we do now
  2811. * is free the extents associated with each one.
  2812. *
  2813. * Since we process the EFIs in normal transactions, they
  2814. * will be removed at some point after the commit. This prevents
  2815. * us from just walking down the list processing each one.
  2816. * We'll use a flag in the EFI to skip those that we've already
  2817. * processed and use the AIL iteration mechanism's generation
  2818. * count to try to speed this up at least a bit.
  2819. *
  2820. * When we start, we know that the EFIs are the only things in
  2821. * the AIL. As we process them, however, other items are added
  2822. * to the AIL. Since everything added to the AIL must come after
  2823. * everything already in the AIL, we stop processing as soon as
  2824. * we see something other than an EFI in the AIL.
  2825. */
  2826. STATIC int
  2827. xlog_recover_process_efis(
  2828. xlog_t *log)
  2829. {
  2830. xfs_log_item_t *lip;
  2831. xfs_efi_log_item_t *efip;
  2832. int gen;
  2833. xfs_mount_t *mp;
  2834. int error = 0;
  2835. mp = log->l_mp;
  2836. spin_lock(&mp->m_ail_lock);
  2837. lip = xfs_trans_first_ail(mp, &gen);
  2838. while (lip != NULL) {
  2839. /*
  2840. * We're done when we see something other than an EFI.
  2841. */
  2842. if (lip->li_type != XFS_LI_EFI) {
  2843. xlog_recover_check_ail(mp, lip, gen);
  2844. break;
  2845. }
  2846. /*
  2847. * Skip EFIs that we've already processed.
  2848. */
  2849. efip = (xfs_efi_log_item_t *)lip;
  2850. if (efip->efi_flags & XFS_EFI_RECOVERED) {
  2851. lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
  2852. continue;
  2853. }
  2854. spin_unlock(&mp->m_ail_lock);
  2855. error = xlog_recover_process_efi(mp, efip);
  2856. if (error)
  2857. return error;
  2858. spin_lock(&mp->m_ail_lock);
  2859. lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
  2860. }
  2861. spin_unlock(&mp->m_ail_lock);
  2862. return error;
  2863. }
  2864. /*
  2865. * This routine performs a transaction to null out a bad inode pointer
  2866. * in an agi unlinked inode hash bucket.
  2867. */
  2868. STATIC void
  2869. xlog_recover_clear_agi_bucket(
  2870. xfs_mount_t *mp,
  2871. xfs_agnumber_t agno,
  2872. int bucket)
  2873. {
  2874. xfs_trans_t *tp;
  2875. xfs_agi_t *agi;
  2876. xfs_buf_t *agibp;
  2877. int offset;
  2878. int error;
  2879. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  2880. error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
  2881. if (!error)
  2882. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
  2883. XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
  2884. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  2885. if (error)
  2886. goto out_abort;
  2887. error = EINVAL;
  2888. agi = XFS_BUF_TO_AGI(agibp);
  2889. if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC)
  2890. goto out_abort;
  2891. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  2892. offset = offsetof(xfs_agi_t, agi_unlinked) +
  2893. (sizeof(xfs_agino_t) * bucket);
  2894. xfs_trans_log_buf(tp, agibp, offset,
  2895. (offset + sizeof(xfs_agino_t) - 1));
  2896. error = xfs_trans_commit(tp, 0);
  2897. if (error)
  2898. goto out_error;
  2899. return;
  2900. out_abort:
  2901. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2902. out_error:
  2903. xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
  2904. "failed to clear agi %d. Continuing.", agno);
  2905. return;
  2906. }
  2907. /*
  2908. * xlog_iunlink_recover
  2909. *
  2910. * This is called during recovery to process any inodes which
  2911. * we unlinked but not freed when the system crashed. These
  2912. * inodes will be on the lists in the AGI blocks. What we do
  2913. * here is scan all the AGIs and fully truncate and free any
  2914. * inodes found on the lists. Each inode is removed from the
  2915. * lists when it has been fully truncated and is freed. The
  2916. * freeing of the inode and its removal from the list must be
  2917. * atomic.
  2918. */
  2919. void
  2920. xlog_recover_process_iunlinks(
  2921. xlog_t *log)
  2922. {
  2923. xfs_mount_t *mp;
  2924. xfs_agnumber_t agno;
  2925. xfs_agi_t *agi;
  2926. xfs_buf_t *agibp;
  2927. xfs_buf_t *ibp;
  2928. xfs_dinode_t *dip;
  2929. xfs_inode_t *ip;
  2930. xfs_agino_t agino;
  2931. xfs_ino_t ino;
  2932. int bucket;
  2933. int error;
  2934. uint mp_dmevmask;
  2935. mp = log->l_mp;
  2936. /*
  2937. * Prevent any DMAPI event from being sent while in this function.
  2938. */
  2939. mp_dmevmask = mp->m_dmevmask;
  2940. mp->m_dmevmask = 0;
  2941. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  2942. /*
  2943. * Find the agi for this ag.
  2944. */
  2945. agibp = xfs_buf_read(mp->m_ddev_targp,
  2946. XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
  2947. XFS_FSS_TO_BB(mp, 1), 0);
  2948. if (XFS_BUF_ISERROR(agibp)) {
  2949. xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
  2950. log->l_mp, agibp,
  2951. XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
  2952. }
  2953. agi = XFS_BUF_TO_AGI(agibp);
  2954. ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
  2955. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  2956. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  2957. while (agino != NULLAGINO) {
  2958. /*
  2959. * Release the agi buffer so that it can
  2960. * be acquired in the normal course of the
  2961. * transaction to truncate and free the inode.
  2962. */
  2963. xfs_buf_relse(agibp);
  2964. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  2965. error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
  2966. ASSERT(error || (ip != NULL));
  2967. if (!error) {
  2968. /*
  2969. * Get the on disk inode to find the
  2970. * next inode in the bucket.
  2971. */
  2972. error = xfs_itobp(mp, NULL, ip, &dip,
  2973. &ibp, 0, 0,
  2974. XFS_BUF_LOCK);
  2975. ASSERT(error || (dip != NULL));
  2976. }
  2977. if (!error) {
  2978. ASSERT(ip->i_d.di_nlink == 0);
  2979. /* setup for the next pass */
  2980. agino = be32_to_cpu(
  2981. dip->di_next_unlinked);
  2982. xfs_buf_relse(ibp);
  2983. /*
  2984. * Prevent any DMAPI event from
  2985. * being sent when the
  2986. * reference on the inode is
  2987. * dropped.
  2988. */
  2989. ip->i_d.di_dmevmask = 0;
  2990. /*
  2991. * If this is a new inode, handle
  2992. * it specially. Otherwise,
  2993. * just drop our reference to the
  2994. * inode. If there are no
  2995. * other references, this will
  2996. * send the inode to
  2997. * xfs_inactive() which will
  2998. * truncate the file and free
  2999. * the inode.
  3000. */
  3001. if (ip->i_d.di_mode == 0)
  3002. xfs_iput_new(ip, 0);
  3003. else
  3004. IRELE(ip);
  3005. } else {
  3006. /*
  3007. * We can't read in the inode
  3008. * this bucket points to, or
  3009. * this inode is messed up. Just
  3010. * ditch this bucket of inodes. We
  3011. * will lose some inodes and space,
  3012. * but at least we won't hang. Call
  3013. * xlog_recover_clear_agi_bucket()
  3014. * to perform a transaction to clear
  3015. * the inode pointer in the bucket.
  3016. */
  3017. xlog_recover_clear_agi_bucket(mp, agno,
  3018. bucket);
  3019. agino = NULLAGINO;
  3020. }
  3021. /*
  3022. * Reacquire the agibuffer and continue around
  3023. * the loop.
  3024. */
  3025. agibp = xfs_buf_read(mp->m_ddev_targp,
  3026. XFS_AG_DADDR(mp, agno,
  3027. XFS_AGI_DADDR(mp)),
  3028. XFS_FSS_TO_BB(mp, 1), 0);
  3029. if (XFS_BUF_ISERROR(agibp)) {
  3030. xfs_ioerror_alert(
  3031. "xlog_recover_process_iunlinks(#2)",
  3032. log->l_mp, agibp,
  3033. XFS_AG_DADDR(mp, agno,
  3034. XFS_AGI_DADDR(mp)));
  3035. }
  3036. agi = XFS_BUF_TO_AGI(agibp);
  3037. ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
  3038. agi->agi_magicnum));
  3039. }
  3040. }
  3041. /*
  3042. * Release the buffer for the current agi so we can
  3043. * go on to the next one.
  3044. */
  3045. xfs_buf_relse(agibp);
  3046. }
  3047. mp->m_dmevmask = mp_dmevmask;
  3048. }
  3049. #ifdef DEBUG
  3050. STATIC void
  3051. xlog_pack_data_checksum(
  3052. xlog_t *log,
  3053. xlog_in_core_t *iclog,
  3054. int size)
  3055. {
  3056. int i;
  3057. __be32 *up;
  3058. uint chksum = 0;
  3059. up = (__be32 *)iclog->ic_datap;
  3060. /* divide length by 4 to get # words */
  3061. for (i = 0; i < (size >> 2); i++) {
  3062. chksum ^= be32_to_cpu(*up);
  3063. up++;
  3064. }
  3065. iclog->ic_header.h_chksum = cpu_to_be32(chksum);
  3066. }
  3067. #else
  3068. #define xlog_pack_data_checksum(log, iclog, size)
  3069. #endif
  3070. /*
  3071. * Stamp cycle number in every block
  3072. */
  3073. void
  3074. xlog_pack_data(
  3075. xlog_t *log,
  3076. xlog_in_core_t *iclog,
  3077. int roundoff)
  3078. {
  3079. int i, j, k;
  3080. int size = iclog->ic_offset + roundoff;
  3081. __be32 cycle_lsn;
  3082. xfs_caddr_t dp;
  3083. xlog_in_core_2_t *xhdr;
  3084. xlog_pack_data_checksum(log, iclog, size);
  3085. cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
  3086. dp = iclog->ic_datap;
  3087. for (i = 0; i < BTOBB(size) &&
  3088. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3089. iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
  3090. *(__be32 *)dp = cycle_lsn;
  3091. dp += BBSIZE;
  3092. }
  3093. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3094. xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
  3095. for ( ; i < BTOBB(size); i++) {
  3096. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3097. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3098. xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
  3099. *(__be32 *)dp = cycle_lsn;
  3100. dp += BBSIZE;
  3101. }
  3102. for (i = 1; i < log->l_iclog_heads; i++) {
  3103. xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
  3104. }
  3105. }
  3106. }
  3107. #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
  3108. STATIC void
  3109. xlog_unpack_data_checksum(
  3110. xlog_rec_header_t *rhead,
  3111. xfs_caddr_t dp,
  3112. xlog_t *log)
  3113. {
  3114. __be32 *up = (__be32 *)dp;
  3115. uint chksum = 0;
  3116. int i;
  3117. /* divide length by 4 to get # words */
  3118. for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
  3119. chksum ^= be32_to_cpu(*up);
  3120. up++;
  3121. }
  3122. if (chksum != be32_to_cpu(rhead->h_chksum)) {
  3123. if (rhead->h_chksum ||
  3124. ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
  3125. cmn_err(CE_DEBUG,
  3126. "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
  3127. be32_to_cpu(rhead->h_chksum), chksum);
  3128. cmn_err(CE_DEBUG,
  3129. "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
  3130. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3131. cmn_err(CE_DEBUG,
  3132. "XFS: LogR this is a LogV2 filesystem\n");
  3133. }
  3134. log->l_flags |= XLOG_CHKSUM_MISMATCH;
  3135. }
  3136. }
  3137. }
  3138. #else
  3139. #define xlog_unpack_data_checksum(rhead, dp, log)
  3140. #endif
  3141. STATIC void
  3142. xlog_unpack_data(
  3143. xlog_rec_header_t *rhead,
  3144. xfs_caddr_t dp,
  3145. xlog_t *log)
  3146. {
  3147. int i, j, k;
  3148. xlog_in_core_2_t *xhdr;
  3149. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  3150. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3151. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  3152. dp += BBSIZE;
  3153. }
  3154. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3155. xhdr = (xlog_in_core_2_t *)rhead;
  3156. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  3157. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3158. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3159. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  3160. dp += BBSIZE;
  3161. }
  3162. }
  3163. xlog_unpack_data_checksum(rhead, dp, log);
  3164. }
  3165. STATIC int
  3166. xlog_valid_rec_header(
  3167. xlog_t *log,
  3168. xlog_rec_header_t *rhead,
  3169. xfs_daddr_t blkno)
  3170. {
  3171. int hlen;
  3172. if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
  3173. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  3174. XFS_ERRLEVEL_LOW, log->l_mp);
  3175. return XFS_ERROR(EFSCORRUPTED);
  3176. }
  3177. if (unlikely(
  3178. (!rhead->h_version ||
  3179. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  3180. xlog_warn("XFS: %s: unrecognised log version (%d).",
  3181. __func__, be32_to_cpu(rhead->h_version));
  3182. return XFS_ERROR(EIO);
  3183. }
  3184. /* LR body must have data or it wouldn't have been written */
  3185. hlen = be32_to_cpu(rhead->h_len);
  3186. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3187. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3188. XFS_ERRLEVEL_LOW, log->l_mp);
  3189. return XFS_ERROR(EFSCORRUPTED);
  3190. }
  3191. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3192. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3193. XFS_ERRLEVEL_LOW, log->l_mp);
  3194. return XFS_ERROR(EFSCORRUPTED);
  3195. }
  3196. return 0;
  3197. }
  3198. /*
  3199. * Read the log from tail to head and process the log records found.
  3200. * Handle the two cases where the tail and head are in the same cycle
  3201. * and where the active portion of the log wraps around the end of
  3202. * the physical log separately. The pass parameter is passed through
  3203. * to the routines called to process the data and is not looked at
  3204. * here.
  3205. */
  3206. STATIC int
  3207. xlog_do_recovery_pass(
  3208. xlog_t *log,
  3209. xfs_daddr_t head_blk,
  3210. xfs_daddr_t tail_blk,
  3211. int pass)
  3212. {
  3213. xlog_rec_header_t *rhead;
  3214. xfs_daddr_t blk_no;
  3215. xfs_caddr_t bufaddr, offset;
  3216. xfs_buf_t *hbp, *dbp;
  3217. int error = 0, h_size;
  3218. int bblks, split_bblks;
  3219. int hblks, split_hblks, wrapped_hblks;
  3220. xlog_recover_t *rhash[XLOG_RHASH_SIZE];
  3221. ASSERT(head_blk != tail_blk);
  3222. /*
  3223. * Read the header of the tail block and get the iclog buffer size from
  3224. * h_size. Use this to tell how many sectors make up the log header.
  3225. */
  3226. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3227. /*
  3228. * When using variable length iclogs, read first sector of
  3229. * iclog header and extract the header size from it. Get a
  3230. * new hbp that is the correct size.
  3231. */
  3232. hbp = xlog_get_bp(log, 1);
  3233. if (!hbp)
  3234. return ENOMEM;
  3235. if ((error = xlog_bread(log, tail_blk, 1, hbp)))
  3236. goto bread_err1;
  3237. offset = xlog_align(log, tail_blk, 1, hbp);
  3238. rhead = (xlog_rec_header_t *)offset;
  3239. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3240. if (error)
  3241. goto bread_err1;
  3242. h_size = be32_to_cpu(rhead->h_size);
  3243. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3244. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3245. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3246. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3247. hblks++;
  3248. xlog_put_bp(hbp);
  3249. hbp = xlog_get_bp(log, hblks);
  3250. } else {
  3251. hblks = 1;
  3252. }
  3253. } else {
  3254. ASSERT(log->l_sectbb_log == 0);
  3255. hblks = 1;
  3256. hbp = xlog_get_bp(log, 1);
  3257. h_size = XLOG_BIG_RECORD_BSIZE;
  3258. }
  3259. if (!hbp)
  3260. return ENOMEM;
  3261. dbp = xlog_get_bp(log, BTOBB(h_size));
  3262. if (!dbp) {
  3263. xlog_put_bp(hbp);
  3264. return ENOMEM;
  3265. }
  3266. memset(rhash, 0, sizeof(rhash));
  3267. if (tail_blk <= head_blk) {
  3268. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3269. if ((error = xlog_bread(log, blk_no, hblks, hbp)))
  3270. goto bread_err2;
  3271. offset = xlog_align(log, blk_no, hblks, hbp);
  3272. rhead = (xlog_rec_header_t *)offset;
  3273. error = xlog_valid_rec_header(log, rhead, blk_no);
  3274. if (error)
  3275. goto bread_err2;
  3276. /* blocks in data section */
  3277. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3278. error = xlog_bread(log, blk_no + hblks, bblks, dbp);
  3279. if (error)
  3280. goto bread_err2;
  3281. offset = xlog_align(log, blk_no + hblks, bblks, dbp);
  3282. xlog_unpack_data(rhead, offset, log);
  3283. if ((error = xlog_recover_process_data(log,
  3284. rhash, rhead, offset, pass)))
  3285. goto bread_err2;
  3286. blk_no += bblks + hblks;
  3287. }
  3288. } else {
  3289. /*
  3290. * Perform recovery around the end of the physical log.
  3291. * When the head is not on the same cycle number as the tail,
  3292. * we can't do a sequential recovery as above.
  3293. */
  3294. blk_no = tail_blk;
  3295. while (blk_no < log->l_logBBsize) {
  3296. /*
  3297. * Check for header wrapping around physical end-of-log
  3298. */
  3299. offset = NULL;
  3300. split_hblks = 0;
  3301. wrapped_hblks = 0;
  3302. if (blk_no + hblks <= log->l_logBBsize) {
  3303. /* Read header in one read */
  3304. error = xlog_bread(log, blk_no, hblks, hbp);
  3305. if (error)
  3306. goto bread_err2;
  3307. offset = xlog_align(log, blk_no, hblks, hbp);
  3308. } else {
  3309. /* This LR is split across physical log end */
  3310. if (blk_no != log->l_logBBsize) {
  3311. /* some data before physical log end */
  3312. ASSERT(blk_no <= INT_MAX);
  3313. split_hblks = log->l_logBBsize - (int)blk_no;
  3314. ASSERT(split_hblks > 0);
  3315. if ((error = xlog_bread(log, blk_no,
  3316. split_hblks, hbp)))
  3317. goto bread_err2;
  3318. offset = xlog_align(log, blk_no,
  3319. split_hblks, hbp);
  3320. }
  3321. /*
  3322. * Note: this black magic still works with
  3323. * large sector sizes (non-512) only because:
  3324. * - we increased the buffer size originally
  3325. * by 1 sector giving us enough extra space
  3326. * for the second read;
  3327. * - the log start is guaranteed to be sector
  3328. * aligned;
  3329. * - we read the log end (LR header start)
  3330. * _first_, then the log start (LR header end)
  3331. * - order is important.
  3332. */
  3333. wrapped_hblks = hblks - split_hblks;
  3334. bufaddr = XFS_BUF_PTR(hbp);
  3335. error = XFS_BUF_SET_PTR(hbp,
  3336. bufaddr + BBTOB(split_hblks),
  3337. BBTOB(hblks - split_hblks));
  3338. if (!error)
  3339. error = xlog_bread(log, 0,
  3340. wrapped_hblks, hbp);
  3341. if (!error)
  3342. error = XFS_BUF_SET_PTR(hbp, bufaddr,
  3343. BBTOB(hblks));
  3344. if (error)
  3345. goto bread_err2;
  3346. if (!offset)
  3347. offset = xlog_align(log, 0,
  3348. wrapped_hblks, hbp);
  3349. }
  3350. rhead = (xlog_rec_header_t *)offset;
  3351. error = xlog_valid_rec_header(log, rhead,
  3352. split_hblks ? blk_no : 0);
  3353. if (error)
  3354. goto bread_err2;
  3355. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3356. blk_no += hblks;
  3357. /* Read in data for log record */
  3358. if (blk_no + bblks <= log->l_logBBsize) {
  3359. error = xlog_bread(log, blk_no, bblks, dbp);
  3360. if (error)
  3361. goto bread_err2;
  3362. offset = xlog_align(log, blk_no, bblks, dbp);
  3363. } else {
  3364. /* This log record is split across the
  3365. * physical end of log */
  3366. offset = NULL;
  3367. split_bblks = 0;
  3368. if (blk_no != log->l_logBBsize) {
  3369. /* some data is before the physical
  3370. * end of log */
  3371. ASSERT(!wrapped_hblks);
  3372. ASSERT(blk_no <= INT_MAX);
  3373. split_bblks =
  3374. log->l_logBBsize - (int)blk_no;
  3375. ASSERT(split_bblks > 0);
  3376. if ((error = xlog_bread(log, blk_no,
  3377. split_bblks, dbp)))
  3378. goto bread_err2;
  3379. offset = xlog_align(log, blk_no,
  3380. split_bblks, dbp);
  3381. }
  3382. /*
  3383. * Note: this black magic still works with
  3384. * large sector sizes (non-512) only because:
  3385. * - we increased the buffer size originally
  3386. * by 1 sector giving us enough extra space
  3387. * for the second read;
  3388. * - the log start is guaranteed to be sector
  3389. * aligned;
  3390. * - we read the log end (LR header start)
  3391. * _first_, then the log start (LR header end)
  3392. * - order is important.
  3393. */
  3394. bufaddr = XFS_BUF_PTR(dbp);
  3395. error = XFS_BUF_SET_PTR(dbp,
  3396. bufaddr + BBTOB(split_bblks),
  3397. BBTOB(bblks - split_bblks));
  3398. if (!error)
  3399. error = xlog_bread(log, wrapped_hblks,
  3400. bblks - split_bblks,
  3401. dbp);
  3402. if (!error)
  3403. error = XFS_BUF_SET_PTR(dbp, bufaddr,
  3404. h_size);
  3405. if (error)
  3406. goto bread_err2;
  3407. if (!offset)
  3408. offset = xlog_align(log, wrapped_hblks,
  3409. bblks - split_bblks, dbp);
  3410. }
  3411. xlog_unpack_data(rhead, offset, log);
  3412. if ((error = xlog_recover_process_data(log, rhash,
  3413. rhead, offset, pass)))
  3414. goto bread_err2;
  3415. blk_no += bblks;
  3416. }
  3417. ASSERT(blk_no >= log->l_logBBsize);
  3418. blk_no -= log->l_logBBsize;
  3419. /* read first part of physical log */
  3420. while (blk_no < head_blk) {
  3421. if ((error = xlog_bread(log, blk_no, hblks, hbp)))
  3422. goto bread_err2;
  3423. offset = xlog_align(log, blk_no, hblks, hbp);
  3424. rhead = (xlog_rec_header_t *)offset;
  3425. error = xlog_valid_rec_header(log, rhead, blk_no);
  3426. if (error)
  3427. goto bread_err2;
  3428. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3429. if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
  3430. goto bread_err2;
  3431. offset = xlog_align(log, blk_no+hblks, bblks, dbp);
  3432. xlog_unpack_data(rhead, offset, log);
  3433. if ((error = xlog_recover_process_data(log, rhash,
  3434. rhead, offset, pass)))
  3435. goto bread_err2;
  3436. blk_no += bblks + hblks;
  3437. }
  3438. }
  3439. bread_err2:
  3440. xlog_put_bp(dbp);
  3441. bread_err1:
  3442. xlog_put_bp(hbp);
  3443. return error;
  3444. }
  3445. /*
  3446. * Do the recovery of the log. We actually do this in two phases.
  3447. * The two passes are necessary in order to implement the function
  3448. * of cancelling a record written into the log. The first pass
  3449. * determines those things which have been cancelled, and the
  3450. * second pass replays log items normally except for those which
  3451. * have been cancelled. The handling of the replay and cancellations
  3452. * takes place in the log item type specific routines.
  3453. *
  3454. * The table of items which have cancel records in the log is allocated
  3455. * and freed at this level, since only here do we know when all of
  3456. * the log recovery has been completed.
  3457. */
  3458. STATIC int
  3459. xlog_do_log_recovery(
  3460. xlog_t *log,
  3461. xfs_daddr_t head_blk,
  3462. xfs_daddr_t tail_blk)
  3463. {
  3464. int error;
  3465. ASSERT(head_blk != tail_blk);
  3466. /*
  3467. * First do a pass to find all of the cancelled buf log items.
  3468. * Store them in the buf_cancel_table for use in the second pass.
  3469. */
  3470. log->l_buf_cancel_table =
  3471. (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3472. sizeof(xfs_buf_cancel_t*),
  3473. KM_SLEEP);
  3474. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3475. XLOG_RECOVER_PASS1);
  3476. if (error != 0) {
  3477. kmem_free(log->l_buf_cancel_table);
  3478. log->l_buf_cancel_table = NULL;
  3479. return error;
  3480. }
  3481. /*
  3482. * Then do a second pass to actually recover the items in the log.
  3483. * When it is complete free the table of buf cancel items.
  3484. */
  3485. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3486. XLOG_RECOVER_PASS2);
  3487. #ifdef DEBUG
  3488. if (!error) {
  3489. int i;
  3490. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3491. ASSERT(log->l_buf_cancel_table[i] == NULL);
  3492. }
  3493. #endif /* DEBUG */
  3494. kmem_free(log->l_buf_cancel_table);
  3495. log->l_buf_cancel_table = NULL;
  3496. return error;
  3497. }
  3498. /*
  3499. * Do the actual recovery
  3500. */
  3501. STATIC int
  3502. xlog_do_recover(
  3503. xlog_t *log,
  3504. xfs_daddr_t head_blk,
  3505. xfs_daddr_t tail_blk)
  3506. {
  3507. int error;
  3508. xfs_buf_t *bp;
  3509. xfs_sb_t *sbp;
  3510. /*
  3511. * First replay the images in the log.
  3512. */
  3513. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3514. if (error) {
  3515. return error;
  3516. }
  3517. XFS_bflush(log->l_mp->m_ddev_targp);
  3518. /*
  3519. * If IO errors happened during recovery, bail out.
  3520. */
  3521. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3522. return (EIO);
  3523. }
  3524. /*
  3525. * We now update the tail_lsn since much of the recovery has completed
  3526. * and there may be space available to use. If there were no extent
  3527. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3528. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3529. * lsn of the last known good LR on disk. If there are extent frees
  3530. * or iunlinks they will have some entries in the AIL; so we look at
  3531. * the AIL to determine how to set the tail_lsn.
  3532. */
  3533. xlog_assign_tail_lsn(log->l_mp);
  3534. /*
  3535. * Now that we've finished replaying all buffer and inode
  3536. * updates, re-read in the superblock.
  3537. */
  3538. bp = xfs_getsb(log->l_mp, 0);
  3539. XFS_BUF_UNDONE(bp);
  3540. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  3541. ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
  3542. XFS_BUF_READ(bp);
  3543. XFS_BUF_UNASYNC(bp);
  3544. xfsbdstrat(log->l_mp, bp);
  3545. error = xfs_iowait(bp);
  3546. if (error) {
  3547. xfs_ioerror_alert("xlog_do_recover",
  3548. log->l_mp, bp, XFS_BUF_ADDR(bp));
  3549. ASSERT(0);
  3550. xfs_buf_relse(bp);
  3551. return error;
  3552. }
  3553. /* Convert superblock from on-disk format */
  3554. sbp = &log->l_mp->m_sb;
  3555. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
  3556. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  3557. ASSERT(xfs_sb_good_version(sbp));
  3558. xfs_buf_relse(bp);
  3559. /* We've re-read the superblock so re-initialize per-cpu counters */
  3560. xfs_icsb_reinit_counters(log->l_mp);
  3561. xlog_recover_check_summary(log);
  3562. /* Normal transactions can now occur */
  3563. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  3564. return 0;
  3565. }
  3566. /*
  3567. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  3568. *
  3569. * Return error or zero.
  3570. */
  3571. int
  3572. xlog_recover(
  3573. xlog_t *log)
  3574. {
  3575. xfs_daddr_t head_blk, tail_blk;
  3576. int error;
  3577. /* find the tail of the log */
  3578. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  3579. return error;
  3580. if (tail_blk != head_blk) {
  3581. /* There used to be a comment here:
  3582. *
  3583. * disallow recovery on read-only mounts. note -- mount
  3584. * checks for ENOSPC and turns it into an intelligent
  3585. * error message.
  3586. * ...but this is no longer true. Now, unless you specify
  3587. * NORECOVERY (in which case this function would never be
  3588. * called), we just go ahead and recover. We do this all
  3589. * under the vfs layer, so we can get away with it unless
  3590. * the device itself is read-only, in which case we fail.
  3591. */
  3592. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  3593. return error;
  3594. }
  3595. cmn_err(CE_NOTE,
  3596. "Starting XFS recovery on filesystem: %s (logdev: %s)",
  3597. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3598. log->l_mp->m_logname : "internal");
  3599. error = xlog_do_recover(log, head_blk, tail_blk);
  3600. log->l_flags |= XLOG_RECOVERY_NEEDED;
  3601. }
  3602. return error;
  3603. }
  3604. /*
  3605. * In the first part of recovery we replay inodes and buffers and build
  3606. * up the list of extent free items which need to be processed. Here
  3607. * we process the extent free items and clean up the on disk unlinked
  3608. * inode lists. This is separated from the first part of recovery so
  3609. * that the root and real-time bitmap inodes can be read in from disk in
  3610. * between the two stages. This is necessary so that we can free space
  3611. * in the real-time portion of the file system.
  3612. */
  3613. int
  3614. xlog_recover_finish(
  3615. xlog_t *log)
  3616. {
  3617. /*
  3618. * Now we're ready to do the transactions needed for the
  3619. * rest of recovery. Start with completing all the extent
  3620. * free intent records and then process the unlinked inode
  3621. * lists. At this point, we essentially run in normal mode
  3622. * except that we're still performing recovery actions
  3623. * rather than accepting new requests.
  3624. */
  3625. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  3626. int error;
  3627. error = xlog_recover_process_efis(log);
  3628. if (error) {
  3629. cmn_err(CE_ALERT,
  3630. "Failed to recover EFIs on filesystem: %s",
  3631. log->l_mp->m_fsname);
  3632. return error;
  3633. }
  3634. /*
  3635. * Sync the log to get all the EFIs out of the AIL.
  3636. * This isn't absolutely necessary, but it helps in
  3637. * case the unlink transactions would have problems
  3638. * pushing the EFIs out of the way.
  3639. */
  3640. xfs_log_force(log->l_mp, (xfs_lsn_t)0,
  3641. (XFS_LOG_FORCE | XFS_LOG_SYNC));
  3642. xlog_recover_process_iunlinks(log);
  3643. xlog_recover_check_summary(log);
  3644. cmn_err(CE_NOTE,
  3645. "Ending XFS recovery on filesystem: %s (logdev: %s)",
  3646. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3647. log->l_mp->m_logname : "internal");
  3648. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  3649. } else {
  3650. cmn_err(CE_DEBUG,
  3651. "!Ending clean XFS mount for filesystem: %s\n",
  3652. log->l_mp->m_fsname);
  3653. }
  3654. return 0;
  3655. }
  3656. #if defined(DEBUG)
  3657. /*
  3658. * Read all of the agf and agi counters and check that they
  3659. * are consistent with the superblock counters.
  3660. */
  3661. void
  3662. xlog_recover_check_summary(
  3663. xlog_t *log)
  3664. {
  3665. xfs_mount_t *mp;
  3666. xfs_agf_t *agfp;
  3667. xfs_agi_t *agip;
  3668. xfs_buf_t *agfbp;
  3669. xfs_buf_t *agibp;
  3670. xfs_daddr_t agfdaddr;
  3671. xfs_daddr_t agidaddr;
  3672. xfs_buf_t *sbbp;
  3673. #ifdef XFS_LOUD_RECOVERY
  3674. xfs_sb_t *sbp;
  3675. #endif
  3676. xfs_agnumber_t agno;
  3677. __uint64_t freeblks;
  3678. __uint64_t itotal;
  3679. __uint64_t ifree;
  3680. mp = log->l_mp;
  3681. freeblks = 0LL;
  3682. itotal = 0LL;
  3683. ifree = 0LL;
  3684. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3685. agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
  3686. agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
  3687. XFS_FSS_TO_BB(mp, 1), 0);
  3688. if (XFS_BUF_ISERROR(agfbp)) {
  3689. xfs_ioerror_alert("xlog_recover_check_summary(agf)",
  3690. mp, agfbp, agfdaddr);
  3691. }
  3692. agfp = XFS_BUF_TO_AGF(agfbp);
  3693. ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
  3694. ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
  3695. ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
  3696. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  3697. be32_to_cpu(agfp->agf_flcount);
  3698. xfs_buf_relse(agfbp);
  3699. agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  3700. agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
  3701. XFS_FSS_TO_BB(mp, 1), 0);
  3702. if (XFS_BUF_ISERROR(agibp)) {
  3703. xfs_ioerror_alert("xlog_recover_check_summary(agi)",
  3704. mp, agibp, agidaddr);
  3705. }
  3706. agip = XFS_BUF_TO_AGI(agibp);
  3707. ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
  3708. ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
  3709. ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
  3710. itotal += be32_to_cpu(agip->agi_count);
  3711. ifree += be32_to_cpu(agip->agi_freecount);
  3712. xfs_buf_relse(agibp);
  3713. }
  3714. sbbp = xfs_getsb(mp, 0);
  3715. #ifdef XFS_LOUD_RECOVERY
  3716. sbp = &mp->m_sb;
  3717. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
  3718. cmn_err(CE_NOTE,
  3719. "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
  3720. sbp->sb_icount, itotal);
  3721. cmn_err(CE_NOTE,
  3722. "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
  3723. sbp->sb_ifree, ifree);
  3724. cmn_err(CE_NOTE,
  3725. "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
  3726. sbp->sb_fdblocks, freeblks);
  3727. #if 0
  3728. /*
  3729. * This is turned off until I account for the allocation
  3730. * btree blocks which live in free space.
  3731. */
  3732. ASSERT(sbp->sb_icount == itotal);
  3733. ASSERT(sbp->sb_ifree == ifree);
  3734. ASSERT(sbp->sb_fdblocks == freeblks);
  3735. #endif
  3736. #endif
  3737. xfs_buf_relse(sbbp);
  3738. }
  3739. #endif /* DEBUG */