cpumask.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425
  1. #ifndef __LINUX_CPUMASK_H
  2. #define __LINUX_CPUMASK_H
  3. /*
  4. * Cpumasks provide a bitmap suitable for representing the
  5. * set of CPU's in a system, one bit position per CPU number.
  6. *
  7. * See detailed comments in the file linux/bitmap.h describing the
  8. * data type on which these cpumasks are based.
  9. *
  10. * For details of cpumask_scnprintf() and cpumask_parse(),
  11. * see bitmap_scnprintf() and bitmap_parse() in lib/bitmap.c.
  12. * For details of cpulist_scnprintf() and cpulist_parse(), see
  13. * bitmap_scnlistprintf() and bitmap_parselist(), also in bitmap.c.
  14. * For details of cpu_remap(), see bitmap_bitremap in lib/bitmap.c
  15. * For details of cpus_remap(), see bitmap_remap in lib/bitmap.c.
  16. *
  17. * The available cpumask operations are:
  18. *
  19. * void cpu_set(cpu, mask) turn on bit 'cpu' in mask
  20. * void cpu_clear(cpu, mask) turn off bit 'cpu' in mask
  21. * void cpus_setall(mask) set all bits
  22. * void cpus_clear(mask) clear all bits
  23. * int cpu_isset(cpu, mask) true iff bit 'cpu' set in mask
  24. * int cpu_test_and_set(cpu, mask) test and set bit 'cpu' in mask
  25. *
  26. * void cpus_and(dst, src1, src2) dst = src1 & src2 [intersection]
  27. * void cpus_or(dst, src1, src2) dst = src1 | src2 [union]
  28. * void cpus_xor(dst, src1, src2) dst = src1 ^ src2
  29. * void cpus_andnot(dst, src1, src2) dst = src1 & ~src2
  30. * void cpus_complement(dst, src) dst = ~src
  31. *
  32. * int cpus_equal(mask1, mask2) Does mask1 == mask2?
  33. * int cpus_intersects(mask1, mask2) Do mask1 and mask2 intersect?
  34. * int cpus_subset(mask1, mask2) Is mask1 a subset of mask2?
  35. * int cpus_empty(mask) Is mask empty (no bits sets)?
  36. * int cpus_full(mask) Is mask full (all bits sets)?
  37. * int cpus_weight(mask) Hamming weigh - number of set bits
  38. *
  39. * void cpus_shift_right(dst, src, n) Shift right
  40. * void cpus_shift_left(dst, src, n) Shift left
  41. *
  42. * int first_cpu(mask) Number lowest set bit, or NR_CPUS
  43. * int next_cpu(cpu, mask) Next cpu past 'cpu', or NR_CPUS
  44. *
  45. * cpumask_t cpumask_of_cpu(cpu) Return cpumask with bit 'cpu' set
  46. * CPU_MASK_ALL Initializer - all bits set
  47. * CPU_MASK_NONE Initializer - no bits set
  48. * unsigned long *cpus_addr(mask) Array of unsigned long's in mask
  49. *
  50. * int cpumask_scnprintf(buf, len, mask) Format cpumask for printing
  51. * int cpumask_parse(ubuf, ulen, mask) Parse ascii string as cpumask
  52. * int cpulist_scnprintf(buf, len, mask) Format cpumask as list for printing
  53. * int cpulist_parse(buf, map) Parse ascii string as cpulist
  54. * int cpu_remap(oldbit, old, new) newbit = map(old, new)(oldbit)
  55. * int cpus_remap(dst, src, old, new) *dst = map(old, new)(src)
  56. *
  57. * for_each_cpu_mask(cpu, mask) for-loop cpu over mask
  58. *
  59. * int num_online_cpus() Number of online CPUs
  60. * int num_possible_cpus() Number of all possible CPUs
  61. * int num_present_cpus() Number of present CPUs
  62. *
  63. * int cpu_online(cpu) Is some cpu online?
  64. * int cpu_possible(cpu) Is some cpu possible?
  65. * int cpu_present(cpu) Is some cpu present (can schedule)?
  66. *
  67. * int any_online_cpu(mask) First online cpu in mask
  68. *
  69. * for_each_cpu(cpu) for-loop cpu over cpu_possible_map
  70. * for_each_online_cpu(cpu) for-loop cpu over cpu_online_map
  71. * for_each_present_cpu(cpu) for-loop cpu over cpu_present_map
  72. *
  73. * Subtlety:
  74. * 1) The 'type-checked' form of cpu_isset() causes gcc (3.3.2, anyway)
  75. * to generate slightly worse code. Note for example the additional
  76. * 40 lines of assembly code compiling the "for each possible cpu"
  77. * loops buried in the disk_stat_read() macros calls when compiling
  78. * drivers/block/genhd.c (arch i386, CONFIG_SMP=y). So use a simple
  79. * one-line #define for cpu_isset(), instead of wrapping an inline
  80. * inside a macro, the way we do the other calls.
  81. */
  82. #include <linux/kernel.h>
  83. #include <linux/threads.h>
  84. #include <linux/bitmap.h>
  85. #include <asm/bug.h>
  86. typedef struct { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
  87. extern cpumask_t _unused_cpumask_arg_;
  88. #define cpu_set(cpu, dst) __cpu_set((cpu), &(dst))
  89. static inline void __cpu_set(int cpu, volatile cpumask_t *dstp)
  90. {
  91. set_bit(cpu, dstp->bits);
  92. }
  93. #define cpu_clear(cpu, dst) __cpu_clear((cpu), &(dst))
  94. static inline void __cpu_clear(int cpu, volatile cpumask_t *dstp)
  95. {
  96. clear_bit(cpu, dstp->bits);
  97. }
  98. #define cpus_setall(dst) __cpus_setall(&(dst), NR_CPUS)
  99. static inline void __cpus_setall(cpumask_t *dstp, int nbits)
  100. {
  101. bitmap_fill(dstp->bits, nbits);
  102. }
  103. #define cpus_clear(dst) __cpus_clear(&(dst), NR_CPUS)
  104. static inline void __cpus_clear(cpumask_t *dstp, int nbits)
  105. {
  106. bitmap_zero(dstp->bits, nbits);
  107. }
  108. /* No static inline type checking - see Subtlety (1) above. */
  109. #define cpu_isset(cpu, cpumask) test_bit((cpu), (cpumask).bits)
  110. #define cpu_test_and_set(cpu, cpumask) __cpu_test_and_set((cpu), &(cpumask))
  111. static inline int __cpu_test_and_set(int cpu, cpumask_t *addr)
  112. {
  113. return test_and_set_bit(cpu, addr->bits);
  114. }
  115. #define cpus_and(dst, src1, src2) __cpus_and(&(dst), &(src1), &(src2), NR_CPUS)
  116. static inline void __cpus_and(cpumask_t *dstp, const cpumask_t *src1p,
  117. const cpumask_t *src2p, int nbits)
  118. {
  119. bitmap_and(dstp->bits, src1p->bits, src2p->bits, nbits);
  120. }
  121. #define cpus_or(dst, src1, src2) __cpus_or(&(dst), &(src1), &(src2), NR_CPUS)
  122. static inline void __cpus_or(cpumask_t *dstp, const cpumask_t *src1p,
  123. const cpumask_t *src2p, int nbits)
  124. {
  125. bitmap_or(dstp->bits, src1p->bits, src2p->bits, nbits);
  126. }
  127. #define cpus_xor(dst, src1, src2) __cpus_xor(&(dst), &(src1), &(src2), NR_CPUS)
  128. static inline void __cpus_xor(cpumask_t *dstp, const cpumask_t *src1p,
  129. const cpumask_t *src2p, int nbits)
  130. {
  131. bitmap_xor(dstp->bits, src1p->bits, src2p->bits, nbits);
  132. }
  133. #define cpus_andnot(dst, src1, src2) \
  134. __cpus_andnot(&(dst), &(src1), &(src2), NR_CPUS)
  135. static inline void __cpus_andnot(cpumask_t *dstp, const cpumask_t *src1p,
  136. const cpumask_t *src2p, int nbits)
  137. {
  138. bitmap_andnot(dstp->bits, src1p->bits, src2p->bits, nbits);
  139. }
  140. #define cpus_complement(dst, src) __cpus_complement(&(dst), &(src), NR_CPUS)
  141. static inline void __cpus_complement(cpumask_t *dstp,
  142. const cpumask_t *srcp, int nbits)
  143. {
  144. bitmap_complement(dstp->bits, srcp->bits, nbits);
  145. }
  146. #define cpus_equal(src1, src2) __cpus_equal(&(src1), &(src2), NR_CPUS)
  147. static inline int __cpus_equal(const cpumask_t *src1p,
  148. const cpumask_t *src2p, int nbits)
  149. {
  150. return bitmap_equal(src1p->bits, src2p->bits, nbits);
  151. }
  152. #define cpus_intersects(src1, src2) __cpus_intersects(&(src1), &(src2), NR_CPUS)
  153. static inline int __cpus_intersects(const cpumask_t *src1p,
  154. const cpumask_t *src2p, int nbits)
  155. {
  156. return bitmap_intersects(src1p->bits, src2p->bits, nbits);
  157. }
  158. #define cpus_subset(src1, src2) __cpus_subset(&(src1), &(src2), NR_CPUS)
  159. static inline int __cpus_subset(const cpumask_t *src1p,
  160. const cpumask_t *src2p, int nbits)
  161. {
  162. return bitmap_subset(src1p->bits, src2p->bits, nbits);
  163. }
  164. #define cpus_empty(src) __cpus_empty(&(src), NR_CPUS)
  165. static inline int __cpus_empty(const cpumask_t *srcp, int nbits)
  166. {
  167. return bitmap_empty(srcp->bits, nbits);
  168. }
  169. #define cpus_full(cpumask) __cpus_full(&(cpumask), NR_CPUS)
  170. static inline int __cpus_full(const cpumask_t *srcp, int nbits)
  171. {
  172. return bitmap_full(srcp->bits, nbits);
  173. }
  174. #define cpus_weight(cpumask) __cpus_weight(&(cpumask), NR_CPUS)
  175. static inline int __cpus_weight(const cpumask_t *srcp, int nbits)
  176. {
  177. return bitmap_weight(srcp->bits, nbits);
  178. }
  179. #define cpus_shift_right(dst, src, n) \
  180. __cpus_shift_right(&(dst), &(src), (n), NR_CPUS)
  181. static inline void __cpus_shift_right(cpumask_t *dstp,
  182. const cpumask_t *srcp, int n, int nbits)
  183. {
  184. bitmap_shift_right(dstp->bits, srcp->bits, n, nbits);
  185. }
  186. #define cpus_shift_left(dst, src, n) \
  187. __cpus_shift_left(&(dst), &(src), (n), NR_CPUS)
  188. static inline void __cpus_shift_left(cpumask_t *dstp,
  189. const cpumask_t *srcp, int n, int nbits)
  190. {
  191. bitmap_shift_left(dstp->bits, srcp->bits, n, nbits);
  192. }
  193. #define first_cpu(src) __first_cpu(&(src), NR_CPUS)
  194. static inline int __first_cpu(const cpumask_t *srcp, int nbits)
  195. {
  196. return min_t(int, nbits, find_first_bit(srcp->bits, nbits));
  197. }
  198. #define next_cpu(n, src) __next_cpu((n), &(src), NR_CPUS)
  199. static inline int __next_cpu(int n, const cpumask_t *srcp, int nbits)
  200. {
  201. return min_t(int, nbits, find_next_bit(srcp->bits, nbits, n+1));
  202. }
  203. #define cpumask_of_cpu(cpu) \
  204. ({ \
  205. typeof(_unused_cpumask_arg_) m; \
  206. if (sizeof(m) == sizeof(unsigned long)) { \
  207. m.bits[0] = 1UL<<(cpu); \
  208. } else { \
  209. cpus_clear(m); \
  210. cpu_set((cpu), m); \
  211. } \
  212. m; \
  213. })
  214. #define CPU_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(NR_CPUS)
  215. #if NR_CPUS <= BITS_PER_LONG
  216. #define CPU_MASK_ALL \
  217. (cpumask_t) { { \
  218. [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \
  219. } }
  220. #else
  221. #define CPU_MASK_ALL \
  222. (cpumask_t) { { \
  223. [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
  224. [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \
  225. } }
  226. #endif
  227. #define CPU_MASK_NONE \
  228. (cpumask_t) { { \
  229. [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
  230. } }
  231. #define CPU_MASK_CPU0 \
  232. (cpumask_t) { { \
  233. [0] = 1UL \
  234. } }
  235. #define cpus_addr(src) ((src).bits)
  236. #define cpumask_scnprintf(buf, len, src) \
  237. __cpumask_scnprintf((buf), (len), &(src), NR_CPUS)
  238. static inline int __cpumask_scnprintf(char *buf, int len,
  239. const cpumask_t *srcp, int nbits)
  240. {
  241. return bitmap_scnprintf(buf, len, srcp->bits, nbits);
  242. }
  243. #define cpumask_parse(ubuf, ulen, dst) \
  244. __cpumask_parse((ubuf), (ulen), &(dst), NR_CPUS)
  245. static inline int __cpumask_parse(const char __user *buf, int len,
  246. cpumask_t *dstp, int nbits)
  247. {
  248. return bitmap_parse(buf, len, dstp->bits, nbits);
  249. }
  250. #define cpulist_scnprintf(buf, len, src) \
  251. __cpulist_scnprintf((buf), (len), &(src), NR_CPUS)
  252. static inline int __cpulist_scnprintf(char *buf, int len,
  253. const cpumask_t *srcp, int nbits)
  254. {
  255. return bitmap_scnlistprintf(buf, len, srcp->bits, nbits);
  256. }
  257. #define cpulist_parse(buf, dst) __cpulist_parse((buf), &(dst), NR_CPUS)
  258. static inline int __cpulist_parse(const char *buf, cpumask_t *dstp, int nbits)
  259. {
  260. return bitmap_parselist(buf, dstp->bits, nbits);
  261. }
  262. #define cpu_remap(oldbit, old, new) \
  263. __cpu_remap((oldbit), &(old), &(new), NR_CPUS)
  264. static inline int __cpu_remap(int oldbit,
  265. const cpumask_t *oldp, const cpumask_t *newp, int nbits)
  266. {
  267. return bitmap_bitremap(oldbit, oldp->bits, newp->bits, nbits);
  268. }
  269. #define cpus_remap(dst, src, old, new) \
  270. __cpus_remap(&(dst), &(src), &(old), &(new), NR_CPUS)
  271. static inline void __cpus_remap(cpumask_t *dstp, const cpumask_t *srcp,
  272. const cpumask_t *oldp, const cpumask_t *newp, int nbits)
  273. {
  274. bitmap_remap(dstp->bits, srcp->bits, oldp->bits, newp->bits, nbits);
  275. }
  276. #if NR_CPUS > 1
  277. #define for_each_cpu_mask(cpu, mask) \
  278. for ((cpu) = first_cpu(mask); \
  279. (cpu) < NR_CPUS; \
  280. (cpu) = next_cpu((cpu), (mask)))
  281. #else /* NR_CPUS == 1 */
  282. #define for_each_cpu_mask(cpu, mask) for ((cpu) = 0; (cpu) < 1; (cpu)++)
  283. #endif /* NR_CPUS */
  284. /*
  285. * The following particular system cpumasks and operations manage
  286. * possible, present and online cpus. Each of them is a fixed size
  287. * bitmap of size NR_CPUS.
  288. *
  289. * #ifdef CONFIG_HOTPLUG_CPU
  290. * cpu_possible_map - all NR_CPUS bits set
  291. * cpu_present_map - has bit 'cpu' set iff cpu is populated
  292. * cpu_online_map - has bit 'cpu' set iff cpu available to scheduler
  293. * #else
  294. * cpu_possible_map - has bit 'cpu' set iff cpu is populated
  295. * cpu_present_map - copy of cpu_possible_map
  296. * cpu_online_map - has bit 'cpu' set iff cpu available to scheduler
  297. * #endif
  298. *
  299. * In either case, NR_CPUS is fixed at compile time, as the static
  300. * size of these bitmaps. The cpu_possible_map is fixed at boot
  301. * time, as the set of CPU id's that it is possible might ever
  302. * be plugged in at anytime during the life of that system boot.
  303. * The cpu_present_map is dynamic(*), representing which CPUs
  304. * are currently plugged in. And cpu_online_map is the dynamic
  305. * subset of cpu_present_map, indicating those CPUs available
  306. * for scheduling.
  307. *
  308. * If HOTPLUG is enabled, then cpu_possible_map is forced to have
  309. * all NR_CPUS bits set, otherwise it is just the set of CPUs that
  310. * ACPI reports present at boot.
  311. *
  312. * If HOTPLUG is enabled, then cpu_present_map varies dynamically,
  313. * depending on what ACPI reports as currently plugged in, otherwise
  314. * cpu_present_map is just a copy of cpu_possible_map.
  315. *
  316. * (*) Well, cpu_present_map is dynamic in the hotplug case. If not
  317. * hotplug, it's a copy of cpu_possible_map, hence fixed at boot.
  318. *
  319. * Subtleties:
  320. * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
  321. * assumption that their single CPU is online. The UP
  322. * cpu_{online,possible,present}_maps are placebos. Changing them
  323. * will have no useful affect on the following num_*_cpus()
  324. * and cpu_*() macros in the UP case. This ugliness is a UP
  325. * optimization - don't waste any instructions or memory references
  326. * asking if you're online or how many CPUs there are if there is
  327. * only one CPU.
  328. * 2) Most SMP arch's #define some of these maps to be some
  329. * other map specific to that arch. Therefore, the following
  330. * must be #define macros, not inlines. To see why, examine
  331. * the assembly code produced by the following. Note that
  332. * set1() writes phys_x_map, but set2() writes x_map:
  333. * int x_map, phys_x_map;
  334. * #define set1(a) x_map = a
  335. * inline void set2(int a) { x_map = a; }
  336. * #define x_map phys_x_map
  337. * main(){ set1(3); set2(5); }
  338. */
  339. extern cpumask_t cpu_possible_map;
  340. extern cpumask_t cpu_online_map;
  341. extern cpumask_t cpu_present_map;
  342. #if NR_CPUS > 1
  343. #define num_online_cpus() cpus_weight(cpu_online_map)
  344. #define num_possible_cpus() cpus_weight(cpu_possible_map)
  345. #define num_present_cpus() cpus_weight(cpu_present_map)
  346. #define cpu_online(cpu) cpu_isset((cpu), cpu_online_map)
  347. #define cpu_possible(cpu) cpu_isset((cpu), cpu_possible_map)
  348. #define cpu_present(cpu) cpu_isset((cpu), cpu_present_map)
  349. #else
  350. #define num_online_cpus() 1
  351. #define num_possible_cpus() 1
  352. #define num_present_cpus() 1
  353. #define cpu_online(cpu) ((cpu) == 0)
  354. #define cpu_possible(cpu) ((cpu) == 0)
  355. #define cpu_present(cpu) ((cpu) == 0)
  356. #endif
  357. #define any_online_cpu(mask) \
  358. ({ \
  359. int cpu; \
  360. for_each_cpu_mask(cpu, (mask)) \
  361. if (cpu_online(cpu)) \
  362. break; \
  363. cpu; \
  364. })
  365. #define for_each_cpu(cpu) for_each_cpu_mask((cpu), cpu_possible_map)
  366. #define for_each_online_cpu(cpu) for_each_cpu_mask((cpu), cpu_online_map)
  367. #define for_each_present_cpu(cpu) for_each_cpu_mask((cpu), cpu_present_map)
  368. /* Find the highest possible smp_processor_id() */
  369. #define highest_possible_processor_id() \
  370. ({ \
  371. unsigned int cpu, highest = 0; \
  372. for_each_cpu_mask(cpu, cpu_possible_map) \
  373. highest = cpu; \
  374. highest; \
  375. })
  376. #endif /* __LINUX_CPUMASK_H */