exec.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890
  1. /*
  2. * linux/fs/exec.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * #!-checking implemented by tytso.
  8. */
  9. /*
  10. * Demand-loading implemented 01.12.91 - no need to read anything but
  11. * the header into memory. The inode of the executable is put into
  12. * "current->executable", and page faults do the actual loading. Clean.
  13. *
  14. * Once more I can proudly say that linux stood up to being changed: it
  15. * was less than 2 hours work to get demand-loading completely implemented.
  16. *
  17. * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
  18. * current->executable is only used by the procfs. This allows a dispatch
  19. * table to check for several different types of binary formats. We keep
  20. * trying until we recognize the file or we run out of supported binary
  21. * formats.
  22. */
  23. #include <linux/slab.h>
  24. #include <linux/file.h>
  25. #include <linux/fdtable.h>
  26. #include <linux/mm.h>
  27. #include <linux/stat.h>
  28. #include <linux/fcntl.h>
  29. #include <linux/smp_lock.h>
  30. #include <linux/swap.h>
  31. #include <linux/string.h>
  32. #include <linux/init.h>
  33. #include <linux/pagemap.h>
  34. #include <linux/highmem.h>
  35. #include <linux/spinlock.h>
  36. #include <linux/key.h>
  37. #include <linux/personality.h>
  38. #include <linux/binfmts.h>
  39. #include <linux/utsname.h>
  40. #include <linux/pid_namespace.h>
  41. #include <linux/module.h>
  42. #include <linux/namei.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/mount.h>
  45. #include <linux/security.h>
  46. #include <linux/ima.h>
  47. #include <linux/syscalls.h>
  48. #include <linux/tsacct_kern.h>
  49. #include <linux/cn_proc.h>
  50. #include <linux/audit.h>
  51. #include <linux/tracehook.h>
  52. #include <linux/kmod.h>
  53. #include <linux/fsnotify.h>
  54. #include <linux/fs_struct.h>
  55. #include <asm/uaccess.h>
  56. #include <asm/mmu_context.h>
  57. #include <asm/tlb.h>
  58. #include "internal.h"
  59. int core_uses_pid;
  60. char core_pattern[CORENAME_MAX_SIZE] = "core";
  61. int suid_dumpable = 0;
  62. /* The maximal length of core_pattern is also specified in sysctl.c */
  63. static LIST_HEAD(formats);
  64. static DEFINE_RWLOCK(binfmt_lock);
  65. int __register_binfmt(struct linux_binfmt * fmt, int insert)
  66. {
  67. if (!fmt)
  68. return -EINVAL;
  69. write_lock(&binfmt_lock);
  70. insert ? list_add(&fmt->lh, &formats) :
  71. list_add_tail(&fmt->lh, &formats);
  72. write_unlock(&binfmt_lock);
  73. return 0;
  74. }
  75. EXPORT_SYMBOL(__register_binfmt);
  76. void unregister_binfmt(struct linux_binfmt * fmt)
  77. {
  78. write_lock(&binfmt_lock);
  79. list_del(&fmt->lh);
  80. write_unlock(&binfmt_lock);
  81. }
  82. EXPORT_SYMBOL(unregister_binfmt);
  83. static inline void put_binfmt(struct linux_binfmt * fmt)
  84. {
  85. module_put(fmt->module);
  86. }
  87. /*
  88. * Note that a shared library must be both readable and executable due to
  89. * security reasons.
  90. *
  91. * Also note that we take the address to load from from the file itself.
  92. */
  93. SYSCALL_DEFINE1(uselib, const char __user *, library)
  94. {
  95. struct file *file;
  96. struct nameidata nd;
  97. char *tmp = getname(library);
  98. int error = PTR_ERR(tmp);
  99. if (!IS_ERR(tmp)) {
  100. error = path_lookup_open(AT_FDCWD, tmp,
  101. LOOKUP_FOLLOW, &nd,
  102. FMODE_READ|FMODE_EXEC);
  103. putname(tmp);
  104. }
  105. if (error)
  106. goto out;
  107. error = -EINVAL;
  108. if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
  109. goto exit;
  110. error = -EACCES;
  111. if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
  112. goto exit;
  113. error = inode_permission(nd.path.dentry->d_inode,
  114. MAY_READ | MAY_EXEC | MAY_OPEN);
  115. if (error)
  116. goto exit;
  117. error = ima_path_check(&nd.path, MAY_READ | MAY_EXEC | MAY_OPEN);
  118. if (error)
  119. goto exit;
  120. file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
  121. error = PTR_ERR(file);
  122. if (IS_ERR(file))
  123. goto out;
  124. fsnotify_open(file->f_path.dentry);
  125. error = -ENOEXEC;
  126. if(file->f_op) {
  127. struct linux_binfmt * fmt;
  128. read_lock(&binfmt_lock);
  129. list_for_each_entry(fmt, &formats, lh) {
  130. if (!fmt->load_shlib)
  131. continue;
  132. if (!try_module_get(fmt->module))
  133. continue;
  134. read_unlock(&binfmt_lock);
  135. error = fmt->load_shlib(file);
  136. read_lock(&binfmt_lock);
  137. put_binfmt(fmt);
  138. if (error != -ENOEXEC)
  139. break;
  140. }
  141. read_unlock(&binfmt_lock);
  142. }
  143. fput(file);
  144. out:
  145. return error;
  146. exit:
  147. release_open_intent(&nd);
  148. path_put(&nd.path);
  149. goto out;
  150. }
  151. #ifdef CONFIG_MMU
  152. static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
  153. int write)
  154. {
  155. struct page *page;
  156. int ret;
  157. #ifdef CONFIG_STACK_GROWSUP
  158. if (write) {
  159. ret = expand_stack_downwards(bprm->vma, pos);
  160. if (ret < 0)
  161. return NULL;
  162. }
  163. #endif
  164. ret = get_user_pages(current, bprm->mm, pos,
  165. 1, write, 1, &page, NULL);
  166. if (ret <= 0)
  167. return NULL;
  168. if (write) {
  169. unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
  170. struct rlimit *rlim;
  171. /*
  172. * We've historically supported up to 32 pages (ARG_MAX)
  173. * of argument strings even with small stacks
  174. */
  175. if (size <= ARG_MAX)
  176. return page;
  177. /*
  178. * Limit to 1/4-th the stack size for the argv+env strings.
  179. * This ensures that:
  180. * - the remaining binfmt code will not run out of stack space,
  181. * - the program will have a reasonable amount of stack left
  182. * to work from.
  183. */
  184. rlim = current->signal->rlim;
  185. if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
  186. put_page(page);
  187. return NULL;
  188. }
  189. }
  190. return page;
  191. }
  192. static void put_arg_page(struct page *page)
  193. {
  194. put_page(page);
  195. }
  196. static void free_arg_page(struct linux_binprm *bprm, int i)
  197. {
  198. }
  199. static void free_arg_pages(struct linux_binprm *bprm)
  200. {
  201. }
  202. static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
  203. struct page *page)
  204. {
  205. flush_cache_page(bprm->vma, pos, page_to_pfn(page));
  206. }
  207. static int __bprm_mm_init(struct linux_binprm *bprm)
  208. {
  209. int err;
  210. struct vm_area_struct *vma = NULL;
  211. struct mm_struct *mm = bprm->mm;
  212. bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
  213. if (!vma)
  214. return -ENOMEM;
  215. down_write(&mm->mmap_sem);
  216. vma->vm_mm = mm;
  217. /*
  218. * Place the stack at the largest stack address the architecture
  219. * supports. Later, we'll move this to an appropriate place. We don't
  220. * use STACK_TOP because that can depend on attributes which aren't
  221. * configured yet.
  222. */
  223. vma->vm_end = STACK_TOP_MAX;
  224. vma->vm_start = vma->vm_end - PAGE_SIZE;
  225. vma->vm_flags = VM_STACK_FLAGS;
  226. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  227. err = insert_vm_struct(mm, vma);
  228. if (err)
  229. goto err;
  230. mm->stack_vm = mm->total_vm = 1;
  231. up_write(&mm->mmap_sem);
  232. bprm->p = vma->vm_end - sizeof(void *);
  233. return 0;
  234. err:
  235. up_write(&mm->mmap_sem);
  236. bprm->vma = NULL;
  237. kmem_cache_free(vm_area_cachep, vma);
  238. return err;
  239. }
  240. static bool valid_arg_len(struct linux_binprm *bprm, long len)
  241. {
  242. return len <= MAX_ARG_STRLEN;
  243. }
  244. #else
  245. static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
  246. int write)
  247. {
  248. struct page *page;
  249. page = bprm->page[pos / PAGE_SIZE];
  250. if (!page && write) {
  251. page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
  252. if (!page)
  253. return NULL;
  254. bprm->page[pos / PAGE_SIZE] = page;
  255. }
  256. return page;
  257. }
  258. static void put_arg_page(struct page *page)
  259. {
  260. }
  261. static void free_arg_page(struct linux_binprm *bprm, int i)
  262. {
  263. if (bprm->page[i]) {
  264. __free_page(bprm->page[i]);
  265. bprm->page[i] = NULL;
  266. }
  267. }
  268. static void free_arg_pages(struct linux_binprm *bprm)
  269. {
  270. int i;
  271. for (i = 0; i < MAX_ARG_PAGES; i++)
  272. free_arg_page(bprm, i);
  273. }
  274. static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
  275. struct page *page)
  276. {
  277. }
  278. static int __bprm_mm_init(struct linux_binprm *bprm)
  279. {
  280. bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
  281. return 0;
  282. }
  283. static bool valid_arg_len(struct linux_binprm *bprm, long len)
  284. {
  285. return len <= bprm->p;
  286. }
  287. #endif /* CONFIG_MMU */
  288. /*
  289. * Create a new mm_struct and populate it with a temporary stack
  290. * vm_area_struct. We don't have enough context at this point to set the stack
  291. * flags, permissions, and offset, so we use temporary values. We'll update
  292. * them later in setup_arg_pages().
  293. */
  294. int bprm_mm_init(struct linux_binprm *bprm)
  295. {
  296. int err;
  297. struct mm_struct *mm = NULL;
  298. bprm->mm = mm = mm_alloc();
  299. err = -ENOMEM;
  300. if (!mm)
  301. goto err;
  302. err = init_new_context(current, mm);
  303. if (err)
  304. goto err;
  305. err = __bprm_mm_init(bprm);
  306. if (err)
  307. goto err;
  308. return 0;
  309. err:
  310. if (mm) {
  311. bprm->mm = NULL;
  312. mmdrop(mm);
  313. }
  314. return err;
  315. }
  316. /*
  317. * count() counts the number of strings in array ARGV.
  318. */
  319. static int count(char __user * __user * argv, int max)
  320. {
  321. int i = 0;
  322. if (argv != NULL) {
  323. for (;;) {
  324. char __user * p;
  325. if (get_user(p, argv))
  326. return -EFAULT;
  327. if (!p)
  328. break;
  329. argv++;
  330. if (i++ >= max)
  331. return -E2BIG;
  332. cond_resched();
  333. }
  334. }
  335. return i;
  336. }
  337. /*
  338. * 'copy_strings()' copies argument/environment strings from the old
  339. * processes's memory to the new process's stack. The call to get_user_pages()
  340. * ensures the destination page is created and not swapped out.
  341. */
  342. static int copy_strings(int argc, char __user * __user * argv,
  343. struct linux_binprm *bprm)
  344. {
  345. struct page *kmapped_page = NULL;
  346. char *kaddr = NULL;
  347. unsigned long kpos = 0;
  348. int ret;
  349. while (argc-- > 0) {
  350. char __user *str;
  351. int len;
  352. unsigned long pos;
  353. if (get_user(str, argv+argc) ||
  354. !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
  355. ret = -EFAULT;
  356. goto out;
  357. }
  358. if (!valid_arg_len(bprm, len)) {
  359. ret = -E2BIG;
  360. goto out;
  361. }
  362. /* We're going to work our way backwords. */
  363. pos = bprm->p;
  364. str += len;
  365. bprm->p -= len;
  366. while (len > 0) {
  367. int offset, bytes_to_copy;
  368. offset = pos % PAGE_SIZE;
  369. if (offset == 0)
  370. offset = PAGE_SIZE;
  371. bytes_to_copy = offset;
  372. if (bytes_to_copy > len)
  373. bytes_to_copy = len;
  374. offset -= bytes_to_copy;
  375. pos -= bytes_to_copy;
  376. str -= bytes_to_copy;
  377. len -= bytes_to_copy;
  378. if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
  379. struct page *page;
  380. page = get_arg_page(bprm, pos, 1);
  381. if (!page) {
  382. ret = -E2BIG;
  383. goto out;
  384. }
  385. if (kmapped_page) {
  386. flush_kernel_dcache_page(kmapped_page);
  387. kunmap(kmapped_page);
  388. put_arg_page(kmapped_page);
  389. }
  390. kmapped_page = page;
  391. kaddr = kmap(kmapped_page);
  392. kpos = pos & PAGE_MASK;
  393. flush_arg_page(bprm, kpos, kmapped_page);
  394. }
  395. if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
  396. ret = -EFAULT;
  397. goto out;
  398. }
  399. }
  400. }
  401. ret = 0;
  402. out:
  403. if (kmapped_page) {
  404. flush_kernel_dcache_page(kmapped_page);
  405. kunmap(kmapped_page);
  406. put_arg_page(kmapped_page);
  407. }
  408. return ret;
  409. }
  410. /*
  411. * Like copy_strings, but get argv and its values from kernel memory.
  412. */
  413. int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
  414. {
  415. int r;
  416. mm_segment_t oldfs = get_fs();
  417. set_fs(KERNEL_DS);
  418. r = copy_strings(argc, (char __user * __user *)argv, bprm);
  419. set_fs(oldfs);
  420. return r;
  421. }
  422. EXPORT_SYMBOL(copy_strings_kernel);
  423. #ifdef CONFIG_MMU
  424. /*
  425. * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
  426. * the binfmt code determines where the new stack should reside, we shift it to
  427. * its final location. The process proceeds as follows:
  428. *
  429. * 1) Use shift to calculate the new vma endpoints.
  430. * 2) Extend vma to cover both the old and new ranges. This ensures the
  431. * arguments passed to subsequent functions are consistent.
  432. * 3) Move vma's page tables to the new range.
  433. * 4) Free up any cleared pgd range.
  434. * 5) Shrink the vma to cover only the new range.
  435. */
  436. static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
  437. {
  438. struct mm_struct *mm = vma->vm_mm;
  439. unsigned long old_start = vma->vm_start;
  440. unsigned long old_end = vma->vm_end;
  441. unsigned long length = old_end - old_start;
  442. unsigned long new_start = old_start - shift;
  443. unsigned long new_end = old_end - shift;
  444. struct mmu_gather *tlb;
  445. BUG_ON(new_start > new_end);
  446. /*
  447. * ensure there are no vmas between where we want to go
  448. * and where we are
  449. */
  450. if (vma != find_vma(mm, new_start))
  451. return -EFAULT;
  452. /*
  453. * cover the whole range: [new_start, old_end)
  454. */
  455. vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
  456. /*
  457. * move the page tables downwards, on failure we rely on
  458. * process cleanup to remove whatever mess we made.
  459. */
  460. if (length != move_page_tables(vma, old_start,
  461. vma, new_start, length))
  462. return -ENOMEM;
  463. lru_add_drain();
  464. tlb = tlb_gather_mmu(mm, 0);
  465. if (new_end > old_start) {
  466. /*
  467. * when the old and new regions overlap clear from new_end.
  468. */
  469. free_pgd_range(tlb, new_end, old_end, new_end,
  470. vma->vm_next ? vma->vm_next->vm_start : 0);
  471. } else {
  472. /*
  473. * otherwise, clean from old_start; this is done to not touch
  474. * the address space in [new_end, old_start) some architectures
  475. * have constraints on va-space that make this illegal (IA64) -
  476. * for the others its just a little faster.
  477. */
  478. free_pgd_range(tlb, old_start, old_end, new_end,
  479. vma->vm_next ? vma->vm_next->vm_start : 0);
  480. }
  481. tlb_finish_mmu(tlb, new_end, old_end);
  482. /*
  483. * shrink the vma to just the new range.
  484. */
  485. vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
  486. return 0;
  487. }
  488. #define EXTRA_STACK_VM_PAGES 20 /* random */
  489. /*
  490. * Finalizes the stack vm_area_struct. The flags and permissions are updated,
  491. * the stack is optionally relocated, and some extra space is added.
  492. */
  493. int setup_arg_pages(struct linux_binprm *bprm,
  494. unsigned long stack_top,
  495. int executable_stack)
  496. {
  497. unsigned long ret;
  498. unsigned long stack_shift;
  499. struct mm_struct *mm = current->mm;
  500. struct vm_area_struct *vma = bprm->vma;
  501. struct vm_area_struct *prev = NULL;
  502. unsigned long vm_flags;
  503. unsigned long stack_base;
  504. #ifdef CONFIG_STACK_GROWSUP
  505. /* Limit stack size to 1GB */
  506. stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
  507. if (stack_base > (1 << 30))
  508. stack_base = 1 << 30;
  509. /* Make sure we didn't let the argument array grow too large. */
  510. if (vma->vm_end - vma->vm_start > stack_base)
  511. return -ENOMEM;
  512. stack_base = PAGE_ALIGN(stack_top - stack_base);
  513. stack_shift = vma->vm_start - stack_base;
  514. mm->arg_start = bprm->p - stack_shift;
  515. bprm->p = vma->vm_end - stack_shift;
  516. #else
  517. stack_top = arch_align_stack(stack_top);
  518. stack_top = PAGE_ALIGN(stack_top);
  519. stack_shift = vma->vm_end - stack_top;
  520. bprm->p -= stack_shift;
  521. mm->arg_start = bprm->p;
  522. #endif
  523. if (bprm->loader)
  524. bprm->loader -= stack_shift;
  525. bprm->exec -= stack_shift;
  526. down_write(&mm->mmap_sem);
  527. vm_flags = VM_STACK_FLAGS;
  528. /*
  529. * Adjust stack execute permissions; explicitly enable for
  530. * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
  531. * (arch default) otherwise.
  532. */
  533. if (unlikely(executable_stack == EXSTACK_ENABLE_X))
  534. vm_flags |= VM_EXEC;
  535. else if (executable_stack == EXSTACK_DISABLE_X)
  536. vm_flags &= ~VM_EXEC;
  537. vm_flags |= mm->def_flags;
  538. ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
  539. vm_flags);
  540. if (ret)
  541. goto out_unlock;
  542. BUG_ON(prev != vma);
  543. /* Move stack pages down in memory. */
  544. if (stack_shift) {
  545. ret = shift_arg_pages(vma, stack_shift);
  546. if (ret) {
  547. up_write(&mm->mmap_sem);
  548. return ret;
  549. }
  550. }
  551. #ifdef CONFIG_STACK_GROWSUP
  552. stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
  553. #else
  554. stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
  555. #endif
  556. ret = expand_stack(vma, stack_base);
  557. if (ret)
  558. ret = -EFAULT;
  559. out_unlock:
  560. up_write(&mm->mmap_sem);
  561. return 0;
  562. }
  563. EXPORT_SYMBOL(setup_arg_pages);
  564. #endif /* CONFIG_MMU */
  565. struct file *open_exec(const char *name)
  566. {
  567. struct nameidata nd;
  568. struct file *file;
  569. int err;
  570. err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
  571. FMODE_READ|FMODE_EXEC);
  572. if (err)
  573. goto out;
  574. err = -EACCES;
  575. if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
  576. goto out_path_put;
  577. if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
  578. goto out_path_put;
  579. err = inode_permission(nd.path.dentry->d_inode, MAY_EXEC | MAY_OPEN);
  580. if (err)
  581. goto out_path_put;
  582. err = ima_path_check(&nd.path, MAY_EXEC | MAY_OPEN);
  583. if (err)
  584. goto out_path_put;
  585. file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
  586. if (IS_ERR(file))
  587. return file;
  588. fsnotify_open(file->f_path.dentry);
  589. err = deny_write_access(file);
  590. if (err) {
  591. fput(file);
  592. goto out;
  593. }
  594. return file;
  595. out_path_put:
  596. release_open_intent(&nd);
  597. path_put(&nd.path);
  598. out:
  599. return ERR_PTR(err);
  600. }
  601. EXPORT_SYMBOL(open_exec);
  602. int kernel_read(struct file *file, unsigned long offset,
  603. char *addr, unsigned long count)
  604. {
  605. mm_segment_t old_fs;
  606. loff_t pos = offset;
  607. int result;
  608. old_fs = get_fs();
  609. set_fs(get_ds());
  610. /* The cast to a user pointer is valid due to the set_fs() */
  611. result = vfs_read(file, (void __user *)addr, count, &pos);
  612. set_fs(old_fs);
  613. return result;
  614. }
  615. EXPORT_SYMBOL(kernel_read);
  616. static int exec_mmap(struct mm_struct *mm)
  617. {
  618. struct task_struct *tsk;
  619. struct mm_struct * old_mm, *active_mm;
  620. /* Notify parent that we're no longer interested in the old VM */
  621. tsk = current;
  622. old_mm = current->mm;
  623. mm_release(tsk, old_mm);
  624. if (old_mm) {
  625. /*
  626. * Make sure that if there is a core dump in progress
  627. * for the old mm, we get out and die instead of going
  628. * through with the exec. We must hold mmap_sem around
  629. * checking core_state and changing tsk->mm.
  630. */
  631. down_read(&old_mm->mmap_sem);
  632. if (unlikely(old_mm->core_state)) {
  633. up_read(&old_mm->mmap_sem);
  634. return -EINTR;
  635. }
  636. }
  637. task_lock(tsk);
  638. active_mm = tsk->active_mm;
  639. tsk->mm = mm;
  640. tsk->active_mm = mm;
  641. activate_mm(active_mm, mm);
  642. task_unlock(tsk);
  643. arch_pick_mmap_layout(mm);
  644. if (old_mm) {
  645. up_read(&old_mm->mmap_sem);
  646. BUG_ON(active_mm != old_mm);
  647. mm_update_next_owner(old_mm);
  648. mmput(old_mm);
  649. return 0;
  650. }
  651. mmdrop(active_mm);
  652. return 0;
  653. }
  654. /*
  655. * This function makes sure the current process has its own signal table,
  656. * so that flush_signal_handlers can later reset the handlers without
  657. * disturbing other processes. (Other processes might share the signal
  658. * table via the CLONE_SIGHAND option to clone().)
  659. */
  660. static int de_thread(struct task_struct *tsk)
  661. {
  662. struct signal_struct *sig = tsk->signal;
  663. struct sighand_struct *oldsighand = tsk->sighand;
  664. spinlock_t *lock = &oldsighand->siglock;
  665. int count;
  666. if (thread_group_empty(tsk))
  667. goto no_thread_group;
  668. /*
  669. * Kill all other threads in the thread group.
  670. */
  671. spin_lock_irq(lock);
  672. if (signal_group_exit(sig)) {
  673. /*
  674. * Another group action in progress, just
  675. * return so that the signal is processed.
  676. */
  677. spin_unlock_irq(lock);
  678. return -EAGAIN;
  679. }
  680. sig->group_exit_task = tsk;
  681. zap_other_threads(tsk);
  682. /* Account for the thread group leader hanging around: */
  683. count = thread_group_leader(tsk) ? 1 : 2;
  684. sig->notify_count = count;
  685. while (atomic_read(&sig->count) > count) {
  686. __set_current_state(TASK_UNINTERRUPTIBLE);
  687. spin_unlock_irq(lock);
  688. schedule();
  689. spin_lock_irq(lock);
  690. }
  691. spin_unlock_irq(lock);
  692. /*
  693. * At this point all other threads have exited, all we have to
  694. * do is to wait for the thread group leader to become inactive,
  695. * and to assume its PID:
  696. */
  697. if (!thread_group_leader(tsk)) {
  698. struct task_struct *leader = tsk->group_leader;
  699. sig->notify_count = -1; /* for exit_notify() */
  700. for (;;) {
  701. write_lock_irq(&tasklist_lock);
  702. if (likely(leader->exit_state))
  703. break;
  704. __set_current_state(TASK_UNINTERRUPTIBLE);
  705. write_unlock_irq(&tasklist_lock);
  706. schedule();
  707. }
  708. /*
  709. * The only record we have of the real-time age of a
  710. * process, regardless of execs it's done, is start_time.
  711. * All the past CPU time is accumulated in signal_struct
  712. * from sister threads now dead. But in this non-leader
  713. * exec, nothing survives from the original leader thread,
  714. * whose birth marks the true age of this process now.
  715. * When we take on its identity by switching to its PID, we
  716. * also take its birthdate (always earlier than our own).
  717. */
  718. tsk->start_time = leader->start_time;
  719. BUG_ON(!same_thread_group(leader, tsk));
  720. BUG_ON(has_group_leader_pid(tsk));
  721. /*
  722. * An exec() starts a new thread group with the
  723. * TGID of the previous thread group. Rehash the
  724. * two threads with a switched PID, and release
  725. * the former thread group leader:
  726. */
  727. /* Become a process group leader with the old leader's pid.
  728. * The old leader becomes a thread of the this thread group.
  729. * Note: The old leader also uses this pid until release_task
  730. * is called. Odd but simple and correct.
  731. */
  732. detach_pid(tsk, PIDTYPE_PID);
  733. tsk->pid = leader->pid;
  734. attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
  735. transfer_pid(leader, tsk, PIDTYPE_PGID);
  736. transfer_pid(leader, tsk, PIDTYPE_SID);
  737. list_replace_rcu(&leader->tasks, &tsk->tasks);
  738. tsk->group_leader = tsk;
  739. leader->group_leader = tsk;
  740. tsk->exit_signal = SIGCHLD;
  741. BUG_ON(leader->exit_state != EXIT_ZOMBIE);
  742. leader->exit_state = EXIT_DEAD;
  743. write_unlock_irq(&tasklist_lock);
  744. release_task(leader);
  745. }
  746. sig->group_exit_task = NULL;
  747. sig->notify_count = 0;
  748. no_thread_group:
  749. exit_itimers(sig);
  750. flush_itimer_signals();
  751. if (atomic_read(&oldsighand->count) != 1) {
  752. struct sighand_struct *newsighand;
  753. /*
  754. * This ->sighand is shared with the CLONE_SIGHAND
  755. * but not CLONE_THREAD task, switch to the new one.
  756. */
  757. newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  758. if (!newsighand)
  759. return -ENOMEM;
  760. atomic_set(&newsighand->count, 1);
  761. memcpy(newsighand->action, oldsighand->action,
  762. sizeof(newsighand->action));
  763. write_lock_irq(&tasklist_lock);
  764. spin_lock(&oldsighand->siglock);
  765. rcu_assign_pointer(tsk->sighand, newsighand);
  766. spin_unlock(&oldsighand->siglock);
  767. write_unlock_irq(&tasklist_lock);
  768. __cleanup_sighand(oldsighand);
  769. }
  770. BUG_ON(!thread_group_leader(tsk));
  771. return 0;
  772. }
  773. /*
  774. * These functions flushes out all traces of the currently running executable
  775. * so that a new one can be started
  776. */
  777. static void flush_old_files(struct files_struct * files)
  778. {
  779. long j = -1;
  780. struct fdtable *fdt;
  781. spin_lock(&files->file_lock);
  782. for (;;) {
  783. unsigned long set, i;
  784. j++;
  785. i = j * __NFDBITS;
  786. fdt = files_fdtable(files);
  787. if (i >= fdt->max_fds)
  788. break;
  789. set = fdt->close_on_exec->fds_bits[j];
  790. if (!set)
  791. continue;
  792. fdt->close_on_exec->fds_bits[j] = 0;
  793. spin_unlock(&files->file_lock);
  794. for ( ; set ; i++,set >>= 1) {
  795. if (set & 1) {
  796. sys_close(i);
  797. }
  798. }
  799. spin_lock(&files->file_lock);
  800. }
  801. spin_unlock(&files->file_lock);
  802. }
  803. char *get_task_comm(char *buf, struct task_struct *tsk)
  804. {
  805. /* buf must be at least sizeof(tsk->comm) in size */
  806. task_lock(tsk);
  807. strncpy(buf, tsk->comm, sizeof(tsk->comm));
  808. task_unlock(tsk);
  809. return buf;
  810. }
  811. void set_task_comm(struct task_struct *tsk, char *buf)
  812. {
  813. task_lock(tsk);
  814. strlcpy(tsk->comm, buf, sizeof(tsk->comm));
  815. task_unlock(tsk);
  816. }
  817. int flush_old_exec(struct linux_binprm * bprm)
  818. {
  819. char * name;
  820. int i, ch, retval;
  821. char tcomm[sizeof(current->comm)];
  822. /*
  823. * Make sure we have a private signal table and that
  824. * we are unassociated from the previous thread group.
  825. */
  826. retval = de_thread(current);
  827. if (retval)
  828. goto out;
  829. set_mm_exe_file(bprm->mm, bprm->file);
  830. /*
  831. * Release all of the old mmap stuff
  832. */
  833. retval = exec_mmap(bprm->mm);
  834. if (retval)
  835. goto out;
  836. bprm->mm = NULL; /* We're using it now */
  837. /* This is the point of no return */
  838. current->sas_ss_sp = current->sas_ss_size = 0;
  839. if (current_euid() == current_uid() && current_egid() == current_gid())
  840. set_dumpable(current->mm, 1);
  841. else
  842. set_dumpable(current->mm, suid_dumpable);
  843. name = bprm->filename;
  844. /* Copies the binary name from after last slash */
  845. for (i=0; (ch = *(name++)) != '\0';) {
  846. if (ch == '/')
  847. i = 0; /* overwrite what we wrote */
  848. else
  849. if (i < (sizeof(tcomm) - 1))
  850. tcomm[i++] = ch;
  851. }
  852. tcomm[i] = '\0';
  853. set_task_comm(current, tcomm);
  854. current->flags &= ~PF_RANDOMIZE;
  855. flush_thread();
  856. /* Set the new mm task size. We have to do that late because it may
  857. * depend on TIF_32BIT which is only updated in flush_thread() on
  858. * some architectures like powerpc
  859. */
  860. current->mm->task_size = TASK_SIZE;
  861. /* install the new credentials */
  862. if (bprm->cred->uid != current_euid() ||
  863. bprm->cred->gid != current_egid()) {
  864. current->pdeath_signal = 0;
  865. } else if (file_permission(bprm->file, MAY_READ) ||
  866. bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
  867. set_dumpable(current->mm, suid_dumpable);
  868. }
  869. current->personality &= ~bprm->per_clear;
  870. /* An exec changes our domain. We are no longer part of the thread
  871. group */
  872. current->self_exec_id++;
  873. flush_signal_handlers(current, 0);
  874. flush_old_files(current->files);
  875. return 0;
  876. out:
  877. return retval;
  878. }
  879. EXPORT_SYMBOL(flush_old_exec);
  880. /*
  881. * install the new credentials for this executable
  882. */
  883. void install_exec_creds(struct linux_binprm *bprm)
  884. {
  885. security_bprm_committing_creds(bprm);
  886. commit_creds(bprm->cred);
  887. bprm->cred = NULL;
  888. /* cred_exec_mutex must be held at least to this point to prevent
  889. * ptrace_attach() from altering our determination of the task's
  890. * credentials; any time after this it may be unlocked */
  891. security_bprm_committed_creds(bprm);
  892. }
  893. EXPORT_SYMBOL(install_exec_creds);
  894. /*
  895. * determine how safe it is to execute the proposed program
  896. * - the caller must hold current->cred_exec_mutex to protect against
  897. * PTRACE_ATTACH
  898. */
  899. int check_unsafe_exec(struct linux_binprm *bprm)
  900. {
  901. struct task_struct *p = current, *t;
  902. unsigned n_fs;
  903. int res = 0;
  904. bprm->unsafe = tracehook_unsafe_exec(p);
  905. n_fs = 1;
  906. write_lock(&p->fs->lock);
  907. rcu_read_lock();
  908. for (t = next_thread(p); t != p; t = next_thread(t)) {
  909. if (t->fs == p->fs)
  910. n_fs++;
  911. }
  912. rcu_read_unlock();
  913. if (p->fs->users > n_fs) {
  914. bprm->unsafe |= LSM_UNSAFE_SHARE;
  915. } else {
  916. res = -EAGAIN;
  917. if (!p->fs->in_exec) {
  918. p->fs->in_exec = 1;
  919. res = 1;
  920. }
  921. }
  922. write_unlock(&p->fs->lock);
  923. return res;
  924. }
  925. /*
  926. * Fill the binprm structure from the inode.
  927. * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
  928. *
  929. * This may be called multiple times for binary chains (scripts for example).
  930. */
  931. int prepare_binprm(struct linux_binprm *bprm)
  932. {
  933. umode_t mode;
  934. struct inode * inode = bprm->file->f_path.dentry->d_inode;
  935. int retval;
  936. mode = inode->i_mode;
  937. if (bprm->file->f_op == NULL)
  938. return -EACCES;
  939. /* clear any previous set[ug]id data from a previous binary */
  940. bprm->cred->euid = current_euid();
  941. bprm->cred->egid = current_egid();
  942. if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
  943. /* Set-uid? */
  944. if (mode & S_ISUID) {
  945. bprm->per_clear |= PER_CLEAR_ON_SETID;
  946. bprm->cred->euid = inode->i_uid;
  947. }
  948. /* Set-gid? */
  949. /*
  950. * If setgid is set but no group execute bit then this
  951. * is a candidate for mandatory locking, not a setgid
  952. * executable.
  953. */
  954. if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
  955. bprm->per_clear |= PER_CLEAR_ON_SETID;
  956. bprm->cred->egid = inode->i_gid;
  957. }
  958. }
  959. /* fill in binprm security blob */
  960. retval = security_bprm_set_creds(bprm);
  961. if (retval)
  962. return retval;
  963. bprm->cred_prepared = 1;
  964. memset(bprm->buf, 0, BINPRM_BUF_SIZE);
  965. return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
  966. }
  967. EXPORT_SYMBOL(prepare_binprm);
  968. /*
  969. * Arguments are '\0' separated strings found at the location bprm->p
  970. * points to; chop off the first by relocating brpm->p to right after
  971. * the first '\0' encountered.
  972. */
  973. int remove_arg_zero(struct linux_binprm *bprm)
  974. {
  975. int ret = 0;
  976. unsigned long offset;
  977. char *kaddr;
  978. struct page *page;
  979. if (!bprm->argc)
  980. return 0;
  981. do {
  982. offset = bprm->p & ~PAGE_MASK;
  983. page = get_arg_page(bprm, bprm->p, 0);
  984. if (!page) {
  985. ret = -EFAULT;
  986. goto out;
  987. }
  988. kaddr = kmap_atomic(page, KM_USER0);
  989. for (; offset < PAGE_SIZE && kaddr[offset];
  990. offset++, bprm->p++)
  991. ;
  992. kunmap_atomic(kaddr, KM_USER0);
  993. put_arg_page(page);
  994. if (offset == PAGE_SIZE)
  995. free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
  996. } while (offset == PAGE_SIZE);
  997. bprm->p++;
  998. bprm->argc--;
  999. ret = 0;
  1000. out:
  1001. return ret;
  1002. }
  1003. EXPORT_SYMBOL(remove_arg_zero);
  1004. /*
  1005. * cycle the list of binary formats handler, until one recognizes the image
  1006. */
  1007. int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
  1008. {
  1009. unsigned int depth = bprm->recursion_depth;
  1010. int try,retval;
  1011. struct linux_binfmt *fmt;
  1012. retval = security_bprm_check(bprm);
  1013. if (retval)
  1014. return retval;
  1015. retval = ima_bprm_check(bprm);
  1016. if (retval)
  1017. return retval;
  1018. /* kernel module loader fixup */
  1019. /* so we don't try to load run modprobe in kernel space. */
  1020. set_fs(USER_DS);
  1021. retval = audit_bprm(bprm);
  1022. if (retval)
  1023. return retval;
  1024. retval = -ENOENT;
  1025. for (try=0; try<2; try++) {
  1026. read_lock(&binfmt_lock);
  1027. list_for_each_entry(fmt, &formats, lh) {
  1028. int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
  1029. if (!fn)
  1030. continue;
  1031. if (!try_module_get(fmt->module))
  1032. continue;
  1033. read_unlock(&binfmt_lock);
  1034. retval = fn(bprm, regs);
  1035. /*
  1036. * Restore the depth counter to its starting value
  1037. * in this call, so we don't have to rely on every
  1038. * load_binary function to restore it on return.
  1039. */
  1040. bprm->recursion_depth = depth;
  1041. if (retval >= 0) {
  1042. if (depth == 0)
  1043. tracehook_report_exec(fmt, bprm, regs);
  1044. put_binfmt(fmt);
  1045. allow_write_access(bprm->file);
  1046. if (bprm->file)
  1047. fput(bprm->file);
  1048. bprm->file = NULL;
  1049. current->did_exec = 1;
  1050. proc_exec_connector(current);
  1051. return retval;
  1052. }
  1053. read_lock(&binfmt_lock);
  1054. put_binfmt(fmt);
  1055. if (retval != -ENOEXEC || bprm->mm == NULL)
  1056. break;
  1057. if (!bprm->file) {
  1058. read_unlock(&binfmt_lock);
  1059. return retval;
  1060. }
  1061. }
  1062. read_unlock(&binfmt_lock);
  1063. if (retval != -ENOEXEC || bprm->mm == NULL) {
  1064. break;
  1065. #ifdef CONFIG_MODULES
  1066. } else {
  1067. #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
  1068. if (printable(bprm->buf[0]) &&
  1069. printable(bprm->buf[1]) &&
  1070. printable(bprm->buf[2]) &&
  1071. printable(bprm->buf[3]))
  1072. break; /* -ENOEXEC */
  1073. request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
  1074. #endif
  1075. }
  1076. }
  1077. return retval;
  1078. }
  1079. EXPORT_SYMBOL(search_binary_handler);
  1080. void free_bprm(struct linux_binprm *bprm)
  1081. {
  1082. free_arg_pages(bprm);
  1083. if (bprm->cred)
  1084. abort_creds(bprm->cred);
  1085. kfree(bprm);
  1086. }
  1087. /*
  1088. * sys_execve() executes a new program.
  1089. */
  1090. int do_execve(char * filename,
  1091. char __user *__user *argv,
  1092. char __user *__user *envp,
  1093. struct pt_regs * regs)
  1094. {
  1095. struct linux_binprm *bprm;
  1096. struct file *file;
  1097. struct files_struct *displaced;
  1098. bool clear_in_exec;
  1099. int retval;
  1100. retval = unshare_files(&displaced);
  1101. if (retval)
  1102. goto out_ret;
  1103. retval = -ENOMEM;
  1104. bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
  1105. if (!bprm)
  1106. goto out_files;
  1107. retval = mutex_lock_interruptible(&current->cred_exec_mutex);
  1108. if (retval < 0)
  1109. goto out_free;
  1110. current->in_execve = 1;
  1111. retval = -ENOMEM;
  1112. bprm->cred = prepare_exec_creds();
  1113. if (!bprm->cred)
  1114. goto out_unlock;
  1115. retval = check_unsafe_exec(bprm);
  1116. if (retval < 0)
  1117. goto out_unlock;
  1118. clear_in_exec = retval;
  1119. file = open_exec(filename);
  1120. retval = PTR_ERR(file);
  1121. if (IS_ERR(file))
  1122. goto out_unmark;
  1123. sched_exec();
  1124. bprm->file = file;
  1125. bprm->filename = filename;
  1126. bprm->interp = filename;
  1127. retval = bprm_mm_init(bprm);
  1128. if (retval)
  1129. goto out_file;
  1130. bprm->argc = count(argv, MAX_ARG_STRINGS);
  1131. if ((retval = bprm->argc) < 0)
  1132. goto out;
  1133. bprm->envc = count(envp, MAX_ARG_STRINGS);
  1134. if ((retval = bprm->envc) < 0)
  1135. goto out;
  1136. retval = prepare_binprm(bprm);
  1137. if (retval < 0)
  1138. goto out;
  1139. retval = copy_strings_kernel(1, &bprm->filename, bprm);
  1140. if (retval < 0)
  1141. goto out;
  1142. bprm->exec = bprm->p;
  1143. retval = copy_strings(bprm->envc, envp, bprm);
  1144. if (retval < 0)
  1145. goto out;
  1146. retval = copy_strings(bprm->argc, argv, bprm);
  1147. if (retval < 0)
  1148. goto out;
  1149. current->flags &= ~PF_KTHREAD;
  1150. retval = search_binary_handler(bprm,regs);
  1151. if (retval < 0)
  1152. goto out;
  1153. /* execve succeeded */
  1154. current->fs->in_exec = 0;
  1155. current->in_execve = 0;
  1156. mutex_unlock(&current->cred_exec_mutex);
  1157. acct_update_integrals(current);
  1158. free_bprm(bprm);
  1159. if (displaced)
  1160. put_files_struct(displaced);
  1161. return retval;
  1162. out:
  1163. if (bprm->mm)
  1164. mmput (bprm->mm);
  1165. out_file:
  1166. if (bprm->file) {
  1167. allow_write_access(bprm->file);
  1168. fput(bprm->file);
  1169. }
  1170. out_unmark:
  1171. if (clear_in_exec)
  1172. current->fs->in_exec = 0;
  1173. out_unlock:
  1174. current->in_execve = 0;
  1175. mutex_unlock(&current->cred_exec_mutex);
  1176. out_free:
  1177. free_bprm(bprm);
  1178. out_files:
  1179. if (displaced)
  1180. reset_files_struct(displaced);
  1181. out_ret:
  1182. return retval;
  1183. }
  1184. int set_binfmt(struct linux_binfmt *new)
  1185. {
  1186. struct linux_binfmt *old = current->binfmt;
  1187. if (new) {
  1188. if (!try_module_get(new->module))
  1189. return -1;
  1190. }
  1191. current->binfmt = new;
  1192. if (old)
  1193. module_put(old->module);
  1194. return 0;
  1195. }
  1196. EXPORT_SYMBOL(set_binfmt);
  1197. /* format_corename will inspect the pattern parameter, and output a
  1198. * name into corename, which must have space for at least
  1199. * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
  1200. */
  1201. static int format_corename(char *corename, long signr)
  1202. {
  1203. const struct cred *cred = current_cred();
  1204. const char *pat_ptr = core_pattern;
  1205. int ispipe = (*pat_ptr == '|');
  1206. char *out_ptr = corename;
  1207. char *const out_end = corename + CORENAME_MAX_SIZE;
  1208. int rc;
  1209. int pid_in_pattern = 0;
  1210. /* Repeat as long as we have more pattern to process and more output
  1211. space */
  1212. while (*pat_ptr) {
  1213. if (*pat_ptr != '%') {
  1214. if (out_ptr == out_end)
  1215. goto out;
  1216. *out_ptr++ = *pat_ptr++;
  1217. } else {
  1218. switch (*++pat_ptr) {
  1219. case 0:
  1220. goto out;
  1221. /* Double percent, output one percent */
  1222. case '%':
  1223. if (out_ptr == out_end)
  1224. goto out;
  1225. *out_ptr++ = '%';
  1226. break;
  1227. /* pid */
  1228. case 'p':
  1229. pid_in_pattern = 1;
  1230. rc = snprintf(out_ptr, out_end - out_ptr,
  1231. "%d", task_tgid_vnr(current));
  1232. if (rc > out_end - out_ptr)
  1233. goto out;
  1234. out_ptr += rc;
  1235. break;
  1236. /* uid */
  1237. case 'u':
  1238. rc = snprintf(out_ptr, out_end - out_ptr,
  1239. "%d", cred->uid);
  1240. if (rc > out_end - out_ptr)
  1241. goto out;
  1242. out_ptr += rc;
  1243. break;
  1244. /* gid */
  1245. case 'g':
  1246. rc = snprintf(out_ptr, out_end - out_ptr,
  1247. "%d", cred->gid);
  1248. if (rc > out_end - out_ptr)
  1249. goto out;
  1250. out_ptr += rc;
  1251. break;
  1252. /* signal that caused the coredump */
  1253. case 's':
  1254. rc = snprintf(out_ptr, out_end - out_ptr,
  1255. "%ld", signr);
  1256. if (rc > out_end - out_ptr)
  1257. goto out;
  1258. out_ptr += rc;
  1259. break;
  1260. /* UNIX time of coredump */
  1261. case 't': {
  1262. struct timeval tv;
  1263. do_gettimeofday(&tv);
  1264. rc = snprintf(out_ptr, out_end - out_ptr,
  1265. "%lu", tv.tv_sec);
  1266. if (rc > out_end - out_ptr)
  1267. goto out;
  1268. out_ptr += rc;
  1269. break;
  1270. }
  1271. /* hostname */
  1272. case 'h':
  1273. down_read(&uts_sem);
  1274. rc = snprintf(out_ptr, out_end - out_ptr,
  1275. "%s", utsname()->nodename);
  1276. up_read(&uts_sem);
  1277. if (rc > out_end - out_ptr)
  1278. goto out;
  1279. out_ptr += rc;
  1280. break;
  1281. /* executable */
  1282. case 'e':
  1283. rc = snprintf(out_ptr, out_end - out_ptr,
  1284. "%s", current->comm);
  1285. if (rc > out_end - out_ptr)
  1286. goto out;
  1287. out_ptr += rc;
  1288. break;
  1289. /* core limit size */
  1290. case 'c':
  1291. rc = snprintf(out_ptr, out_end - out_ptr,
  1292. "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
  1293. if (rc > out_end - out_ptr)
  1294. goto out;
  1295. out_ptr += rc;
  1296. break;
  1297. default:
  1298. break;
  1299. }
  1300. ++pat_ptr;
  1301. }
  1302. }
  1303. /* Backward compatibility with core_uses_pid:
  1304. *
  1305. * If core_pattern does not include a %p (as is the default)
  1306. * and core_uses_pid is set, then .%pid will be appended to
  1307. * the filename. Do not do this for piped commands. */
  1308. if (!ispipe && !pid_in_pattern && core_uses_pid) {
  1309. rc = snprintf(out_ptr, out_end - out_ptr,
  1310. ".%d", task_tgid_vnr(current));
  1311. if (rc > out_end - out_ptr)
  1312. goto out;
  1313. out_ptr += rc;
  1314. }
  1315. out:
  1316. *out_ptr = 0;
  1317. return ispipe;
  1318. }
  1319. static int zap_process(struct task_struct *start)
  1320. {
  1321. struct task_struct *t;
  1322. int nr = 0;
  1323. start->signal->flags = SIGNAL_GROUP_EXIT;
  1324. start->signal->group_stop_count = 0;
  1325. t = start;
  1326. do {
  1327. if (t != current && t->mm) {
  1328. sigaddset(&t->pending.signal, SIGKILL);
  1329. signal_wake_up(t, 1);
  1330. nr++;
  1331. }
  1332. } while_each_thread(start, t);
  1333. return nr;
  1334. }
  1335. static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
  1336. struct core_state *core_state, int exit_code)
  1337. {
  1338. struct task_struct *g, *p;
  1339. unsigned long flags;
  1340. int nr = -EAGAIN;
  1341. spin_lock_irq(&tsk->sighand->siglock);
  1342. if (!signal_group_exit(tsk->signal)) {
  1343. mm->core_state = core_state;
  1344. tsk->signal->group_exit_code = exit_code;
  1345. nr = zap_process(tsk);
  1346. }
  1347. spin_unlock_irq(&tsk->sighand->siglock);
  1348. if (unlikely(nr < 0))
  1349. return nr;
  1350. if (atomic_read(&mm->mm_users) == nr + 1)
  1351. goto done;
  1352. /*
  1353. * We should find and kill all tasks which use this mm, and we should
  1354. * count them correctly into ->nr_threads. We don't take tasklist
  1355. * lock, but this is safe wrt:
  1356. *
  1357. * fork:
  1358. * None of sub-threads can fork after zap_process(leader). All
  1359. * processes which were created before this point should be
  1360. * visible to zap_threads() because copy_process() adds the new
  1361. * process to the tail of init_task.tasks list, and lock/unlock
  1362. * of ->siglock provides a memory barrier.
  1363. *
  1364. * do_exit:
  1365. * The caller holds mm->mmap_sem. This means that the task which
  1366. * uses this mm can't pass exit_mm(), so it can't exit or clear
  1367. * its ->mm.
  1368. *
  1369. * de_thread:
  1370. * It does list_replace_rcu(&leader->tasks, &current->tasks),
  1371. * we must see either old or new leader, this does not matter.
  1372. * However, it can change p->sighand, so lock_task_sighand(p)
  1373. * must be used. Since p->mm != NULL and we hold ->mmap_sem
  1374. * it can't fail.
  1375. *
  1376. * Note also that "g" can be the old leader with ->mm == NULL
  1377. * and already unhashed and thus removed from ->thread_group.
  1378. * This is OK, __unhash_process()->list_del_rcu() does not
  1379. * clear the ->next pointer, we will find the new leader via
  1380. * next_thread().
  1381. */
  1382. rcu_read_lock();
  1383. for_each_process(g) {
  1384. if (g == tsk->group_leader)
  1385. continue;
  1386. if (g->flags & PF_KTHREAD)
  1387. continue;
  1388. p = g;
  1389. do {
  1390. if (p->mm) {
  1391. if (unlikely(p->mm == mm)) {
  1392. lock_task_sighand(p, &flags);
  1393. nr += zap_process(p);
  1394. unlock_task_sighand(p, &flags);
  1395. }
  1396. break;
  1397. }
  1398. } while_each_thread(g, p);
  1399. }
  1400. rcu_read_unlock();
  1401. done:
  1402. atomic_set(&core_state->nr_threads, nr);
  1403. return nr;
  1404. }
  1405. static int coredump_wait(int exit_code, struct core_state *core_state)
  1406. {
  1407. struct task_struct *tsk = current;
  1408. struct mm_struct *mm = tsk->mm;
  1409. struct completion *vfork_done;
  1410. int core_waiters;
  1411. init_completion(&core_state->startup);
  1412. core_state->dumper.task = tsk;
  1413. core_state->dumper.next = NULL;
  1414. core_waiters = zap_threads(tsk, mm, core_state, exit_code);
  1415. up_write(&mm->mmap_sem);
  1416. if (unlikely(core_waiters < 0))
  1417. goto fail;
  1418. /*
  1419. * Make sure nobody is waiting for us to release the VM,
  1420. * otherwise we can deadlock when we wait on each other
  1421. */
  1422. vfork_done = tsk->vfork_done;
  1423. if (vfork_done) {
  1424. tsk->vfork_done = NULL;
  1425. complete(vfork_done);
  1426. }
  1427. if (core_waiters)
  1428. wait_for_completion(&core_state->startup);
  1429. fail:
  1430. return core_waiters;
  1431. }
  1432. static void coredump_finish(struct mm_struct *mm)
  1433. {
  1434. struct core_thread *curr, *next;
  1435. struct task_struct *task;
  1436. next = mm->core_state->dumper.next;
  1437. while ((curr = next) != NULL) {
  1438. next = curr->next;
  1439. task = curr->task;
  1440. /*
  1441. * see exit_mm(), curr->task must not see
  1442. * ->task == NULL before we read ->next.
  1443. */
  1444. smp_mb();
  1445. curr->task = NULL;
  1446. wake_up_process(task);
  1447. }
  1448. mm->core_state = NULL;
  1449. }
  1450. /*
  1451. * set_dumpable converts traditional three-value dumpable to two flags and
  1452. * stores them into mm->flags. It modifies lower two bits of mm->flags, but
  1453. * these bits are not changed atomically. So get_dumpable can observe the
  1454. * intermediate state. To avoid doing unexpected behavior, get get_dumpable
  1455. * return either old dumpable or new one by paying attention to the order of
  1456. * modifying the bits.
  1457. *
  1458. * dumpable | mm->flags (binary)
  1459. * old new | initial interim final
  1460. * ---------+-----------------------
  1461. * 0 1 | 00 01 01
  1462. * 0 2 | 00 10(*) 11
  1463. * 1 0 | 01 00 00
  1464. * 1 2 | 01 11 11
  1465. * 2 0 | 11 10(*) 00
  1466. * 2 1 | 11 11 01
  1467. *
  1468. * (*) get_dumpable regards interim value of 10 as 11.
  1469. */
  1470. void set_dumpable(struct mm_struct *mm, int value)
  1471. {
  1472. switch (value) {
  1473. case 0:
  1474. clear_bit(MMF_DUMPABLE, &mm->flags);
  1475. smp_wmb();
  1476. clear_bit(MMF_DUMP_SECURELY, &mm->flags);
  1477. break;
  1478. case 1:
  1479. set_bit(MMF_DUMPABLE, &mm->flags);
  1480. smp_wmb();
  1481. clear_bit(MMF_DUMP_SECURELY, &mm->flags);
  1482. break;
  1483. case 2:
  1484. set_bit(MMF_DUMP_SECURELY, &mm->flags);
  1485. smp_wmb();
  1486. set_bit(MMF_DUMPABLE, &mm->flags);
  1487. break;
  1488. }
  1489. }
  1490. int get_dumpable(struct mm_struct *mm)
  1491. {
  1492. int ret;
  1493. ret = mm->flags & 0x3;
  1494. return (ret >= 2) ? 2 : ret;
  1495. }
  1496. void do_coredump(long signr, int exit_code, struct pt_regs *regs)
  1497. {
  1498. struct core_state core_state;
  1499. char corename[CORENAME_MAX_SIZE + 1];
  1500. struct mm_struct *mm = current->mm;
  1501. struct linux_binfmt * binfmt;
  1502. struct inode * inode;
  1503. struct file * file;
  1504. const struct cred *old_cred;
  1505. struct cred *cred;
  1506. int retval = 0;
  1507. int flag = 0;
  1508. int ispipe = 0;
  1509. unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
  1510. char **helper_argv = NULL;
  1511. int helper_argc = 0;
  1512. char *delimit;
  1513. audit_core_dumps(signr);
  1514. binfmt = current->binfmt;
  1515. if (!binfmt || !binfmt->core_dump)
  1516. goto fail;
  1517. cred = prepare_creds();
  1518. if (!cred) {
  1519. retval = -ENOMEM;
  1520. goto fail;
  1521. }
  1522. down_write(&mm->mmap_sem);
  1523. /*
  1524. * If another thread got here first, or we are not dumpable, bail out.
  1525. */
  1526. if (mm->core_state || !get_dumpable(mm)) {
  1527. up_write(&mm->mmap_sem);
  1528. put_cred(cred);
  1529. goto fail;
  1530. }
  1531. /*
  1532. * We cannot trust fsuid as being the "true" uid of the
  1533. * process nor do we know its entire history. We only know it
  1534. * was tainted so we dump it as root in mode 2.
  1535. */
  1536. if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
  1537. flag = O_EXCL; /* Stop rewrite attacks */
  1538. cred->fsuid = 0; /* Dump root private */
  1539. }
  1540. retval = coredump_wait(exit_code, &core_state);
  1541. if (retval < 0) {
  1542. put_cred(cred);
  1543. goto fail;
  1544. }
  1545. old_cred = override_creds(cred);
  1546. /*
  1547. * Clear any false indication of pending signals that might
  1548. * be seen by the filesystem code called to write the core file.
  1549. */
  1550. clear_thread_flag(TIF_SIGPENDING);
  1551. /*
  1552. * lock_kernel() because format_corename() is controlled by sysctl, which
  1553. * uses lock_kernel()
  1554. */
  1555. lock_kernel();
  1556. ispipe = format_corename(corename, signr);
  1557. unlock_kernel();
  1558. /*
  1559. * Don't bother to check the RLIMIT_CORE value if core_pattern points
  1560. * to a pipe. Since we're not writing directly to the filesystem
  1561. * RLIMIT_CORE doesn't really apply, as no actual core file will be
  1562. * created unless the pipe reader choses to write out the core file
  1563. * at which point file size limits and permissions will be imposed
  1564. * as it does with any other process
  1565. */
  1566. if ((!ispipe) && (core_limit < binfmt->min_coredump))
  1567. goto fail_unlock;
  1568. if (ispipe) {
  1569. helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
  1570. if (!helper_argv) {
  1571. printk(KERN_WARNING "%s failed to allocate memory\n",
  1572. __func__);
  1573. goto fail_unlock;
  1574. }
  1575. /* Terminate the string before the first option */
  1576. delimit = strchr(corename, ' ');
  1577. if (delimit)
  1578. *delimit = '\0';
  1579. delimit = strrchr(helper_argv[0], '/');
  1580. if (delimit)
  1581. delimit++;
  1582. else
  1583. delimit = helper_argv[0];
  1584. if (!strcmp(delimit, current->comm)) {
  1585. printk(KERN_NOTICE "Recursive core dump detected, "
  1586. "aborting\n");
  1587. goto fail_unlock;
  1588. }
  1589. core_limit = RLIM_INFINITY;
  1590. /* SIGPIPE can happen, but it's just never processed */
  1591. if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
  1592. &file)) {
  1593. printk(KERN_INFO "Core dump to %s pipe failed\n",
  1594. corename);
  1595. goto fail_unlock;
  1596. }
  1597. } else
  1598. file = filp_open(corename,
  1599. O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
  1600. 0600);
  1601. if (IS_ERR(file))
  1602. goto fail_unlock;
  1603. inode = file->f_path.dentry->d_inode;
  1604. if (inode->i_nlink > 1)
  1605. goto close_fail; /* multiple links - don't dump */
  1606. if (!ispipe && d_unhashed(file->f_path.dentry))
  1607. goto close_fail;
  1608. /* AK: actually i see no reason to not allow this for named pipes etc.,
  1609. but keep the previous behaviour for now. */
  1610. if (!ispipe && !S_ISREG(inode->i_mode))
  1611. goto close_fail;
  1612. /*
  1613. * Dont allow local users get cute and trick others to coredump
  1614. * into their pre-created files:
  1615. */
  1616. if (inode->i_uid != current_fsuid())
  1617. goto close_fail;
  1618. if (!file->f_op)
  1619. goto close_fail;
  1620. if (!file->f_op->write)
  1621. goto close_fail;
  1622. if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
  1623. goto close_fail;
  1624. retval = binfmt->core_dump(signr, regs, file, core_limit);
  1625. if (retval)
  1626. current->signal->group_exit_code |= 0x80;
  1627. close_fail:
  1628. filp_close(file, NULL);
  1629. fail_unlock:
  1630. if (helper_argv)
  1631. argv_free(helper_argv);
  1632. revert_creds(old_cred);
  1633. put_cred(cred);
  1634. coredump_finish(mm);
  1635. fail:
  1636. return;
  1637. }