ide-io.c 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791
  1. /*
  2. * IDE I/O functions
  3. *
  4. * Basic PIO and command management functionality.
  5. *
  6. * This code was split off from ide.c. See ide.c for history and original
  7. * copyrights.
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the
  11. * Free Software Foundation; either version 2, or (at your option) any
  12. * later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. *
  19. * For the avoidance of doubt the "preferred form" of this code is one which
  20. * is in an open non patent encumbered format. Where cryptographic key signing
  21. * forms part of the process of creating an executable the information
  22. * including keys needed to generate an equivalently functional executable
  23. * are deemed to be part of the source code.
  24. */
  25. #include <linux/module.h>
  26. #include <linux/types.h>
  27. #include <linux/string.h>
  28. #include <linux/kernel.h>
  29. #include <linux/timer.h>
  30. #include <linux/mm.h>
  31. #include <linux/interrupt.h>
  32. #include <linux/major.h>
  33. #include <linux/errno.h>
  34. #include <linux/genhd.h>
  35. #include <linux/blkpg.h>
  36. #include <linux/slab.h>
  37. #include <linux/init.h>
  38. #include <linux/pci.h>
  39. #include <linux/delay.h>
  40. #include <linux/ide.h>
  41. #include <linux/completion.h>
  42. #include <linux/reboot.h>
  43. #include <linux/cdrom.h>
  44. #include <linux/seq_file.h>
  45. #include <linux/device.h>
  46. #include <linux/kmod.h>
  47. #include <linux/scatterlist.h>
  48. #include <asm/byteorder.h>
  49. #include <asm/irq.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/io.h>
  52. #include <asm/bitops.h>
  53. static int __ide_end_request(ide_drive_t *drive, struct request *rq,
  54. int uptodate, unsigned int nr_bytes)
  55. {
  56. int ret = 1;
  57. /*
  58. * if failfast is set on a request, override number of sectors and
  59. * complete the whole request right now
  60. */
  61. if (blk_noretry_request(rq) && end_io_error(uptodate))
  62. nr_bytes = rq->hard_nr_sectors << 9;
  63. if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
  64. rq->errors = -EIO;
  65. /*
  66. * decide whether to reenable DMA -- 3 is a random magic for now,
  67. * if we DMA timeout more than 3 times, just stay in PIO
  68. */
  69. if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
  70. drive->state = 0;
  71. HWGROUP(drive)->hwif->ide_dma_on(drive);
  72. }
  73. if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
  74. add_disk_randomness(rq->rq_disk);
  75. if (!list_empty(&rq->queuelist))
  76. blkdev_dequeue_request(rq);
  77. HWGROUP(drive)->rq = NULL;
  78. end_that_request_last(rq, uptodate);
  79. ret = 0;
  80. }
  81. return ret;
  82. }
  83. /**
  84. * ide_end_request - complete an IDE I/O
  85. * @drive: IDE device for the I/O
  86. * @uptodate:
  87. * @nr_sectors: number of sectors completed
  88. *
  89. * This is our end_request wrapper function. We complete the I/O
  90. * update random number input and dequeue the request, which if
  91. * it was tagged may be out of order.
  92. */
  93. int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
  94. {
  95. unsigned int nr_bytes = nr_sectors << 9;
  96. struct request *rq;
  97. unsigned long flags;
  98. int ret = 1;
  99. /*
  100. * room for locking improvements here, the calls below don't
  101. * need the queue lock held at all
  102. */
  103. spin_lock_irqsave(&ide_lock, flags);
  104. rq = HWGROUP(drive)->rq;
  105. if (!nr_bytes) {
  106. if (blk_pc_request(rq))
  107. nr_bytes = rq->data_len;
  108. else
  109. nr_bytes = rq->hard_cur_sectors << 9;
  110. }
  111. ret = __ide_end_request(drive, rq, uptodate, nr_bytes);
  112. spin_unlock_irqrestore(&ide_lock, flags);
  113. return ret;
  114. }
  115. EXPORT_SYMBOL(ide_end_request);
  116. /*
  117. * Power Management state machine. This one is rather trivial for now,
  118. * we should probably add more, like switching back to PIO on suspend
  119. * to help some BIOSes, re-do the door locking on resume, etc...
  120. */
  121. enum {
  122. ide_pm_flush_cache = ide_pm_state_start_suspend,
  123. idedisk_pm_standby,
  124. idedisk_pm_restore_pio = ide_pm_state_start_resume,
  125. idedisk_pm_idle,
  126. ide_pm_restore_dma,
  127. };
  128. static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
  129. {
  130. struct request_pm_state *pm = rq->data;
  131. if (drive->media != ide_disk)
  132. return;
  133. switch (pm->pm_step) {
  134. case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
  135. if (pm->pm_state == PM_EVENT_FREEZE)
  136. pm->pm_step = ide_pm_state_completed;
  137. else
  138. pm->pm_step = idedisk_pm_standby;
  139. break;
  140. case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
  141. pm->pm_step = ide_pm_state_completed;
  142. break;
  143. case idedisk_pm_restore_pio: /* Resume step 1 complete */
  144. pm->pm_step = idedisk_pm_idle;
  145. break;
  146. case idedisk_pm_idle: /* Resume step 2 (idle) complete */
  147. pm->pm_step = ide_pm_restore_dma;
  148. break;
  149. }
  150. }
  151. static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
  152. {
  153. struct request_pm_state *pm = rq->data;
  154. ide_task_t *args = rq->special;
  155. memset(args, 0, sizeof(*args));
  156. switch (pm->pm_step) {
  157. case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
  158. if (drive->media != ide_disk)
  159. break;
  160. /* Not supported? Switch to next step now. */
  161. if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
  162. ide_complete_power_step(drive, rq, 0, 0);
  163. return ide_stopped;
  164. }
  165. if (ide_id_has_flush_cache_ext(drive->id))
  166. args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
  167. else
  168. args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
  169. args->command_type = IDE_DRIVE_TASK_NO_DATA;
  170. args->handler = &task_no_data_intr;
  171. return do_rw_taskfile(drive, args);
  172. case idedisk_pm_standby: /* Suspend step 2 (standby) */
  173. args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
  174. args->command_type = IDE_DRIVE_TASK_NO_DATA;
  175. args->handler = &task_no_data_intr;
  176. return do_rw_taskfile(drive, args);
  177. case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
  178. if (drive->hwif->tuneproc != NULL)
  179. drive->hwif->tuneproc(drive, 255);
  180. /*
  181. * skip idedisk_pm_idle for ATAPI devices
  182. */
  183. if (drive->media != ide_disk)
  184. pm->pm_step = ide_pm_restore_dma;
  185. else
  186. ide_complete_power_step(drive, rq, 0, 0);
  187. return ide_stopped;
  188. case idedisk_pm_idle: /* Resume step 2 (idle) */
  189. args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
  190. args->command_type = IDE_DRIVE_TASK_NO_DATA;
  191. args->handler = task_no_data_intr;
  192. return do_rw_taskfile(drive, args);
  193. case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
  194. /*
  195. * Right now, all we do is call hwif->ide_dma_check(drive),
  196. * we could be smarter and check for current xfer_speed
  197. * in struct drive etc...
  198. */
  199. if ((drive->id->capability & 1) == 0)
  200. break;
  201. if (drive->hwif->ide_dma_check == NULL)
  202. break;
  203. drive->hwif->dma_off_quietly(drive);
  204. ide_set_dma(drive);
  205. break;
  206. }
  207. pm->pm_step = ide_pm_state_completed;
  208. return ide_stopped;
  209. }
  210. /**
  211. * ide_end_dequeued_request - complete an IDE I/O
  212. * @drive: IDE device for the I/O
  213. * @uptodate:
  214. * @nr_sectors: number of sectors completed
  215. *
  216. * Complete an I/O that is no longer on the request queue. This
  217. * typically occurs when we pull the request and issue a REQUEST_SENSE.
  218. * We must still finish the old request but we must not tamper with the
  219. * queue in the meantime.
  220. *
  221. * NOTE: This path does not handle barrier, but barrier is not supported
  222. * on ide-cd anyway.
  223. */
  224. int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
  225. int uptodate, int nr_sectors)
  226. {
  227. unsigned long flags;
  228. int ret = 1;
  229. spin_lock_irqsave(&ide_lock, flags);
  230. BUG_ON(!blk_rq_started(rq));
  231. /*
  232. * if failfast is set on a request, override number of sectors and
  233. * complete the whole request right now
  234. */
  235. if (blk_noretry_request(rq) && end_io_error(uptodate))
  236. nr_sectors = rq->hard_nr_sectors;
  237. if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
  238. rq->errors = -EIO;
  239. /*
  240. * decide whether to reenable DMA -- 3 is a random magic for now,
  241. * if we DMA timeout more than 3 times, just stay in PIO
  242. */
  243. if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
  244. drive->state = 0;
  245. HWGROUP(drive)->hwif->ide_dma_on(drive);
  246. }
  247. if (!end_that_request_first(rq, uptodate, nr_sectors)) {
  248. add_disk_randomness(rq->rq_disk);
  249. if (blk_rq_tagged(rq))
  250. blk_queue_end_tag(drive->queue, rq);
  251. end_that_request_last(rq, uptodate);
  252. ret = 0;
  253. }
  254. spin_unlock_irqrestore(&ide_lock, flags);
  255. return ret;
  256. }
  257. EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
  258. /**
  259. * ide_complete_pm_request - end the current Power Management request
  260. * @drive: target drive
  261. * @rq: request
  262. *
  263. * This function cleans up the current PM request and stops the queue
  264. * if necessary.
  265. */
  266. static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
  267. {
  268. unsigned long flags;
  269. #ifdef DEBUG_PM
  270. printk("%s: completing PM request, %s\n", drive->name,
  271. blk_pm_suspend_request(rq) ? "suspend" : "resume");
  272. #endif
  273. spin_lock_irqsave(&ide_lock, flags);
  274. if (blk_pm_suspend_request(rq)) {
  275. blk_stop_queue(drive->queue);
  276. } else {
  277. drive->blocked = 0;
  278. blk_start_queue(drive->queue);
  279. }
  280. blkdev_dequeue_request(rq);
  281. HWGROUP(drive)->rq = NULL;
  282. end_that_request_last(rq, 1);
  283. spin_unlock_irqrestore(&ide_lock, flags);
  284. }
  285. /*
  286. * FIXME: probably move this somewhere else, name is bad too :)
  287. */
  288. u64 ide_get_error_location(ide_drive_t *drive, char *args)
  289. {
  290. u32 high, low;
  291. u8 hcyl, lcyl, sect;
  292. u64 sector;
  293. high = 0;
  294. hcyl = args[5];
  295. lcyl = args[4];
  296. sect = args[3];
  297. if (ide_id_has_flush_cache_ext(drive->id)) {
  298. low = (hcyl << 16) | (lcyl << 8) | sect;
  299. HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
  300. high = ide_read_24(drive);
  301. } else {
  302. u8 cur = HWIF(drive)->INB(IDE_SELECT_REG);
  303. if (cur & 0x40) {
  304. high = cur & 0xf;
  305. low = (hcyl << 16) | (lcyl << 8) | sect;
  306. } else {
  307. low = hcyl * drive->head * drive->sect;
  308. low += lcyl * drive->sect;
  309. low += sect - 1;
  310. }
  311. }
  312. sector = ((u64) high << 24) | low;
  313. return sector;
  314. }
  315. EXPORT_SYMBOL(ide_get_error_location);
  316. /**
  317. * ide_end_drive_cmd - end an explicit drive command
  318. * @drive: command
  319. * @stat: status bits
  320. * @err: error bits
  321. *
  322. * Clean up after success/failure of an explicit drive command.
  323. * These get thrown onto the queue so they are synchronized with
  324. * real I/O operations on the drive.
  325. *
  326. * In LBA48 mode we have to read the register set twice to get
  327. * all the extra information out.
  328. */
  329. void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
  330. {
  331. ide_hwif_t *hwif = HWIF(drive);
  332. unsigned long flags;
  333. struct request *rq;
  334. spin_lock_irqsave(&ide_lock, flags);
  335. rq = HWGROUP(drive)->rq;
  336. spin_unlock_irqrestore(&ide_lock, flags);
  337. if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
  338. u8 *args = (u8 *) rq->buffer;
  339. if (rq->errors == 0)
  340. rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
  341. if (args) {
  342. args[0] = stat;
  343. args[1] = err;
  344. args[2] = hwif->INB(IDE_NSECTOR_REG);
  345. }
  346. } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
  347. u8 *args = (u8 *) rq->buffer;
  348. if (rq->errors == 0)
  349. rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
  350. if (args) {
  351. args[0] = stat;
  352. args[1] = err;
  353. args[2] = hwif->INB(IDE_NSECTOR_REG);
  354. args[3] = hwif->INB(IDE_SECTOR_REG);
  355. args[4] = hwif->INB(IDE_LCYL_REG);
  356. args[5] = hwif->INB(IDE_HCYL_REG);
  357. args[6] = hwif->INB(IDE_SELECT_REG);
  358. }
  359. } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
  360. ide_task_t *args = (ide_task_t *) rq->special;
  361. if (rq->errors == 0)
  362. rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
  363. if (args) {
  364. if (args->tf_in_flags.b.data) {
  365. u16 data = hwif->INW(IDE_DATA_REG);
  366. args->tfRegister[IDE_DATA_OFFSET] = (data) & 0xFF;
  367. args->hobRegister[IDE_DATA_OFFSET] = (data >> 8) & 0xFF;
  368. }
  369. args->tfRegister[IDE_ERROR_OFFSET] = err;
  370. /* be sure we're looking at the low order bits */
  371. hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
  372. args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
  373. args->tfRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
  374. args->tfRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
  375. args->tfRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
  376. args->tfRegister[IDE_SELECT_OFFSET] = hwif->INB(IDE_SELECT_REG);
  377. args->tfRegister[IDE_STATUS_OFFSET] = stat;
  378. if (drive->addressing == 1) {
  379. hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
  380. args->hobRegister[IDE_FEATURE_OFFSET] = hwif->INB(IDE_FEATURE_REG);
  381. args->hobRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
  382. args->hobRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
  383. args->hobRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
  384. args->hobRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
  385. }
  386. }
  387. } else if (blk_pm_request(rq)) {
  388. struct request_pm_state *pm = rq->data;
  389. #ifdef DEBUG_PM
  390. printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
  391. drive->name, rq->pm->pm_step, stat, err);
  392. #endif
  393. ide_complete_power_step(drive, rq, stat, err);
  394. if (pm->pm_step == ide_pm_state_completed)
  395. ide_complete_pm_request(drive, rq);
  396. return;
  397. }
  398. spin_lock_irqsave(&ide_lock, flags);
  399. blkdev_dequeue_request(rq);
  400. HWGROUP(drive)->rq = NULL;
  401. rq->errors = err;
  402. end_that_request_last(rq, !rq->errors);
  403. spin_unlock_irqrestore(&ide_lock, flags);
  404. }
  405. EXPORT_SYMBOL(ide_end_drive_cmd);
  406. /**
  407. * try_to_flush_leftover_data - flush junk
  408. * @drive: drive to flush
  409. *
  410. * try_to_flush_leftover_data() is invoked in response to a drive
  411. * unexpectedly having its DRQ_STAT bit set. As an alternative to
  412. * resetting the drive, this routine tries to clear the condition
  413. * by read a sector's worth of data from the drive. Of course,
  414. * this may not help if the drive is *waiting* for data from *us*.
  415. */
  416. static void try_to_flush_leftover_data (ide_drive_t *drive)
  417. {
  418. int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
  419. if (drive->media != ide_disk)
  420. return;
  421. while (i > 0) {
  422. u32 buffer[16];
  423. u32 wcount = (i > 16) ? 16 : i;
  424. i -= wcount;
  425. HWIF(drive)->ata_input_data(drive, buffer, wcount);
  426. }
  427. }
  428. static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
  429. {
  430. if (rq->rq_disk) {
  431. ide_driver_t *drv;
  432. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  433. drv->end_request(drive, 0, 0);
  434. } else
  435. ide_end_request(drive, 0, 0);
  436. }
  437. static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
  438. {
  439. ide_hwif_t *hwif = drive->hwif;
  440. if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
  441. /* other bits are useless when BUSY */
  442. rq->errors |= ERROR_RESET;
  443. } else if (stat & ERR_STAT) {
  444. /* err has different meaning on cdrom and tape */
  445. if (err == ABRT_ERR) {
  446. if (drive->select.b.lba &&
  447. /* some newer drives don't support WIN_SPECIFY */
  448. hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
  449. return ide_stopped;
  450. } else if ((err & BAD_CRC) == BAD_CRC) {
  451. /* UDMA crc error, just retry the operation */
  452. drive->crc_count++;
  453. } else if (err & (BBD_ERR | ECC_ERR)) {
  454. /* retries won't help these */
  455. rq->errors = ERROR_MAX;
  456. } else if (err & TRK0_ERR) {
  457. /* help it find track zero */
  458. rq->errors |= ERROR_RECAL;
  459. }
  460. }
  461. if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && hwif->err_stops_fifo == 0)
  462. try_to_flush_leftover_data(drive);
  463. if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
  464. ide_kill_rq(drive, rq);
  465. return ide_stopped;
  466. }
  467. if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
  468. rq->errors |= ERROR_RESET;
  469. if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
  470. ++rq->errors;
  471. return ide_do_reset(drive);
  472. }
  473. if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
  474. drive->special.b.recalibrate = 1;
  475. ++rq->errors;
  476. return ide_stopped;
  477. }
  478. static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
  479. {
  480. ide_hwif_t *hwif = drive->hwif;
  481. if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
  482. /* other bits are useless when BUSY */
  483. rq->errors |= ERROR_RESET;
  484. } else {
  485. /* add decoding error stuff */
  486. }
  487. if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
  488. /* force an abort */
  489. hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
  490. if (rq->errors >= ERROR_MAX) {
  491. ide_kill_rq(drive, rq);
  492. } else {
  493. if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
  494. ++rq->errors;
  495. return ide_do_reset(drive);
  496. }
  497. ++rq->errors;
  498. }
  499. return ide_stopped;
  500. }
  501. ide_startstop_t
  502. __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
  503. {
  504. if (drive->media == ide_disk)
  505. return ide_ata_error(drive, rq, stat, err);
  506. return ide_atapi_error(drive, rq, stat, err);
  507. }
  508. EXPORT_SYMBOL_GPL(__ide_error);
  509. /**
  510. * ide_error - handle an error on the IDE
  511. * @drive: drive the error occurred on
  512. * @msg: message to report
  513. * @stat: status bits
  514. *
  515. * ide_error() takes action based on the error returned by the drive.
  516. * For normal I/O that may well include retries. We deal with
  517. * both new-style (taskfile) and old style command handling here.
  518. * In the case of taskfile command handling there is work left to
  519. * do
  520. */
  521. ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
  522. {
  523. struct request *rq;
  524. u8 err;
  525. err = ide_dump_status(drive, msg, stat);
  526. if ((rq = HWGROUP(drive)->rq) == NULL)
  527. return ide_stopped;
  528. /* retry only "normal" I/O: */
  529. if (!blk_fs_request(rq)) {
  530. rq->errors = 1;
  531. ide_end_drive_cmd(drive, stat, err);
  532. return ide_stopped;
  533. }
  534. if (rq->rq_disk) {
  535. ide_driver_t *drv;
  536. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  537. return drv->error(drive, rq, stat, err);
  538. } else
  539. return __ide_error(drive, rq, stat, err);
  540. }
  541. EXPORT_SYMBOL_GPL(ide_error);
  542. ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
  543. {
  544. if (drive->media != ide_disk)
  545. rq->errors |= ERROR_RESET;
  546. ide_kill_rq(drive, rq);
  547. return ide_stopped;
  548. }
  549. EXPORT_SYMBOL_GPL(__ide_abort);
  550. /**
  551. * ide_abort - abort pending IDE operations
  552. * @drive: drive the error occurred on
  553. * @msg: message to report
  554. *
  555. * ide_abort kills and cleans up when we are about to do a
  556. * host initiated reset on active commands. Longer term we
  557. * want handlers to have sensible abort handling themselves
  558. *
  559. * This differs fundamentally from ide_error because in
  560. * this case the command is doing just fine when we
  561. * blow it away.
  562. */
  563. ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
  564. {
  565. struct request *rq;
  566. if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
  567. return ide_stopped;
  568. /* retry only "normal" I/O: */
  569. if (!blk_fs_request(rq)) {
  570. rq->errors = 1;
  571. ide_end_drive_cmd(drive, BUSY_STAT, 0);
  572. return ide_stopped;
  573. }
  574. if (rq->rq_disk) {
  575. ide_driver_t *drv;
  576. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  577. return drv->abort(drive, rq);
  578. } else
  579. return __ide_abort(drive, rq);
  580. }
  581. /**
  582. * ide_cmd - issue a simple drive command
  583. * @drive: drive the command is for
  584. * @cmd: command byte
  585. * @nsect: sector byte
  586. * @handler: handler for the command completion
  587. *
  588. * Issue a simple drive command with interrupts.
  589. * The drive must be selected beforehand.
  590. */
  591. static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
  592. ide_handler_t *handler)
  593. {
  594. ide_hwif_t *hwif = HWIF(drive);
  595. if (IDE_CONTROL_REG)
  596. hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
  597. SELECT_MASK(drive,0);
  598. hwif->OUTB(nsect,IDE_NSECTOR_REG);
  599. ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
  600. }
  601. /**
  602. * drive_cmd_intr - drive command completion interrupt
  603. * @drive: drive the completion interrupt occurred on
  604. *
  605. * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
  606. * We do any necessary data reading and then wait for the drive to
  607. * go non busy. At that point we may read the error data and complete
  608. * the request
  609. */
  610. static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
  611. {
  612. struct request *rq = HWGROUP(drive)->rq;
  613. ide_hwif_t *hwif = HWIF(drive);
  614. u8 *args = (u8 *) rq->buffer;
  615. u8 stat = hwif->INB(IDE_STATUS_REG);
  616. int retries = 10;
  617. local_irq_enable_in_hardirq();
  618. if ((stat & DRQ_STAT) && args && args[3]) {
  619. u8 io_32bit = drive->io_32bit;
  620. drive->io_32bit = 0;
  621. hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
  622. drive->io_32bit = io_32bit;
  623. while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
  624. udelay(100);
  625. }
  626. if (!OK_STAT(stat, READY_STAT, BAD_STAT))
  627. return ide_error(drive, "drive_cmd", stat);
  628. /* calls ide_end_drive_cmd */
  629. ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
  630. return ide_stopped;
  631. }
  632. static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
  633. {
  634. task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
  635. task->tfRegister[IDE_SECTOR_OFFSET] = drive->sect;
  636. task->tfRegister[IDE_LCYL_OFFSET] = drive->cyl;
  637. task->tfRegister[IDE_HCYL_OFFSET] = drive->cyl>>8;
  638. task->tfRegister[IDE_SELECT_OFFSET] = ((drive->head-1)|drive->select.all)&0xBF;
  639. task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
  640. task->handler = &set_geometry_intr;
  641. }
  642. static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
  643. {
  644. task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
  645. task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
  646. task->handler = &recal_intr;
  647. }
  648. static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
  649. {
  650. task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
  651. task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
  652. task->handler = &set_multmode_intr;
  653. }
  654. static ide_startstop_t ide_disk_special(ide_drive_t *drive)
  655. {
  656. special_t *s = &drive->special;
  657. ide_task_t args;
  658. memset(&args, 0, sizeof(ide_task_t));
  659. args.command_type = IDE_DRIVE_TASK_NO_DATA;
  660. if (s->b.set_geometry) {
  661. s->b.set_geometry = 0;
  662. ide_init_specify_cmd(drive, &args);
  663. } else if (s->b.recalibrate) {
  664. s->b.recalibrate = 0;
  665. ide_init_restore_cmd(drive, &args);
  666. } else if (s->b.set_multmode) {
  667. s->b.set_multmode = 0;
  668. if (drive->mult_req > drive->id->max_multsect)
  669. drive->mult_req = drive->id->max_multsect;
  670. ide_init_setmult_cmd(drive, &args);
  671. } else if (s->all) {
  672. int special = s->all;
  673. s->all = 0;
  674. printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
  675. return ide_stopped;
  676. }
  677. do_rw_taskfile(drive, &args);
  678. return ide_started;
  679. }
  680. /**
  681. * do_special - issue some special commands
  682. * @drive: drive the command is for
  683. *
  684. * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
  685. * commands to a drive. It used to do much more, but has been scaled
  686. * back.
  687. */
  688. static ide_startstop_t do_special (ide_drive_t *drive)
  689. {
  690. special_t *s = &drive->special;
  691. #ifdef DEBUG
  692. printk("%s: do_special: 0x%02x\n", drive->name, s->all);
  693. #endif
  694. if (s->b.set_tune) {
  695. s->b.set_tune = 0;
  696. if (HWIF(drive)->tuneproc != NULL)
  697. HWIF(drive)->tuneproc(drive, drive->tune_req);
  698. return ide_stopped;
  699. } else {
  700. if (drive->media == ide_disk)
  701. return ide_disk_special(drive);
  702. s->all = 0;
  703. drive->mult_req = 0;
  704. return ide_stopped;
  705. }
  706. }
  707. void ide_map_sg(ide_drive_t *drive, struct request *rq)
  708. {
  709. ide_hwif_t *hwif = drive->hwif;
  710. struct scatterlist *sg = hwif->sg_table;
  711. if (hwif->sg_mapped) /* needed by ide-scsi */
  712. return;
  713. if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
  714. hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
  715. } else {
  716. sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
  717. hwif->sg_nents = 1;
  718. }
  719. }
  720. EXPORT_SYMBOL_GPL(ide_map_sg);
  721. void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
  722. {
  723. ide_hwif_t *hwif = drive->hwif;
  724. hwif->nsect = hwif->nleft = rq->nr_sectors;
  725. hwif->cursg = hwif->cursg_ofs = 0;
  726. }
  727. EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
  728. /**
  729. * execute_drive_command - issue special drive command
  730. * @drive: the drive to issue the command on
  731. * @rq: the request structure holding the command
  732. *
  733. * execute_drive_cmd() issues a special drive command, usually
  734. * initiated by ioctl() from the external hdparm program. The
  735. * command can be a drive command, drive task or taskfile
  736. * operation. Weirdly you can call it with NULL to wait for
  737. * all commands to finish. Don't do this as that is due to change
  738. */
  739. static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
  740. struct request *rq)
  741. {
  742. ide_hwif_t *hwif = HWIF(drive);
  743. if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
  744. ide_task_t *args = rq->special;
  745. if (!args)
  746. goto done;
  747. hwif->data_phase = args->data_phase;
  748. switch (hwif->data_phase) {
  749. case TASKFILE_MULTI_OUT:
  750. case TASKFILE_OUT:
  751. case TASKFILE_MULTI_IN:
  752. case TASKFILE_IN:
  753. ide_init_sg_cmd(drive, rq);
  754. ide_map_sg(drive, rq);
  755. default:
  756. break;
  757. }
  758. if (args->tf_out_flags.all != 0)
  759. return flagged_taskfile(drive, args);
  760. return do_rw_taskfile(drive, args);
  761. } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
  762. u8 *args = rq->buffer;
  763. u8 sel;
  764. if (!args)
  765. goto done;
  766. #ifdef DEBUG
  767. printk("%s: DRIVE_TASK_CMD ", drive->name);
  768. printk("cmd=0x%02x ", args[0]);
  769. printk("fr=0x%02x ", args[1]);
  770. printk("ns=0x%02x ", args[2]);
  771. printk("sc=0x%02x ", args[3]);
  772. printk("lcyl=0x%02x ", args[4]);
  773. printk("hcyl=0x%02x ", args[5]);
  774. printk("sel=0x%02x\n", args[6]);
  775. #endif
  776. hwif->OUTB(args[1], IDE_FEATURE_REG);
  777. hwif->OUTB(args[3], IDE_SECTOR_REG);
  778. hwif->OUTB(args[4], IDE_LCYL_REG);
  779. hwif->OUTB(args[5], IDE_HCYL_REG);
  780. sel = (args[6] & ~0x10);
  781. if (drive->select.b.unit)
  782. sel |= 0x10;
  783. hwif->OUTB(sel, IDE_SELECT_REG);
  784. ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
  785. return ide_started;
  786. } else if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
  787. u8 *args = rq->buffer;
  788. if (!args)
  789. goto done;
  790. #ifdef DEBUG
  791. printk("%s: DRIVE_CMD ", drive->name);
  792. printk("cmd=0x%02x ", args[0]);
  793. printk("sc=0x%02x ", args[1]);
  794. printk("fr=0x%02x ", args[2]);
  795. printk("xx=0x%02x\n", args[3]);
  796. #endif
  797. if (args[0] == WIN_SMART) {
  798. hwif->OUTB(0x4f, IDE_LCYL_REG);
  799. hwif->OUTB(0xc2, IDE_HCYL_REG);
  800. hwif->OUTB(args[2],IDE_FEATURE_REG);
  801. hwif->OUTB(args[1],IDE_SECTOR_REG);
  802. ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
  803. return ide_started;
  804. }
  805. hwif->OUTB(args[2],IDE_FEATURE_REG);
  806. ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
  807. return ide_started;
  808. }
  809. done:
  810. /*
  811. * NULL is actually a valid way of waiting for
  812. * all current requests to be flushed from the queue.
  813. */
  814. #ifdef DEBUG
  815. printk("%s: DRIVE_CMD (null)\n", drive->name);
  816. #endif
  817. ide_end_drive_cmd(drive,
  818. hwif->INB(IDE_STATUS_REG),
  819. hwif->INB(IDE_ERROR_REG));
  820. return ide_stopped;
  821. }
  822. static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
  823. {
  824. struct request_pm_state *pm = rq->data;
  825. if (blk_pm_suspend_request(rq) &&
  826. pm->pm_step == ide_pm_state_start_suspend)
  827. /* Mark drive blocked when starting the suspend sequence. */
  828. drive->blocked = 1;
  829. else if (blk_pm_resume_request(rq) &&
  830. pm->pm_step == ide_pm_state_start_resume) {
  831. /*
  832. * The first thing we do on wakeup is to wait for BSY bit to
  833. * go away (with a looong timeout) as a drive on this hwif may
  834. * just be POSTing itself.
  835. * We do that before even selecting as the "other" device on
  836. * the bus may be broken enough to walk on our toes at this
  837. * point.
  838. */
  839. int rc;
  840. #ifdef DEBUG_PM
  841. printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
  842. #endif
  843. rc = ide_wait_not_busy(HWIF(drive), 35000);
  844. if (rc)
  845. printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
  846. SELECT_DRIVE(drive);
  847. HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
  848. rc = ide_wait_not_busy(HWIF(drive), 100000);
  849. if (rc)
  850. printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
  851. }
  852. }
  853. /**
  854. * start_request - start of I/O and command issuing for IDE
  855. *
  856. * start_request() initiates handling of a new I/O request. It
  857. * accepts commands and I/O (read/write) requests. It also does
  858. * the final remapping for weird stuff like EZDrive. Once
  859. * device mapper can work sector level the EZDrive stuff can go away
  860. *
  861. * FIXME: this function needs a rename
  862. */
  863. static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
  864. {
  865. ide_startstop_t startstop;
  866. sector_t block;
  867. BUG_ON(!blk_rq_started(rq));
  868. #ifdef DEBUG
  869. printk("%s: start_request: current=0x%08lx\n",
  870. HWIF(drive)->name, (unsigned long) rq);
  871. #endif
  872. /* bail early if we've exceeded max_failures */
  873. if (drive->max_failures && (drive->failures > drive->max_failures)) {
  874. goto kill_rq;
  875. }
  876. block = rq->sector;
  877. if (blk_fs_request(rq) &&
  878. (drive->media == ide_disk || drive->media == ide_floppy)) {
  879. block += drive->sect0;
  880. }
  881. /* Yecch - this will shift the entire interval,
  882. possibly killing some innocent following sector */
  883. if (block == 0 && drive->remap_0_to_1 == 1)
  884. block = 1; /* redirect MBR access to EZ-Drive partn table */
  885. if (blk_pm_request(rq))
  886. ide_check_pm_state(drive, rq);
  887. SELECT_DRIVE(drive);
  888. if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
  889. printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
  890. return startstop;
  891. }
  892. if (!drive->special.all) {
  893. ide_driver_t *drv;
  894. /*
  895. * We reset the drive so we need to issue a SETFEATURES.
  896. * Do it _after_ do_special() restored device parameters.
  897. */
  898. if (drive->current_speed == 0xff)
  899. ide_config_drive_speed(drive, drive->desired_speed);
  900. if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
  901. rq->cmd_type == REQ_TYPE_ATA_TASK ||
  902. rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
  903. return execute_drive_cmd(drive, rq);
  904. else if (blk_pm_request(rq)) {
  905. struct request_pm_state *pm = rq->data;
  906. #ifdef DEBUG_PM
  907. printk("%s: start_power_step(step: %d)\n",
  908. drive->name, rq->pm->pm_step);
  909. #endif
  910. startstop = ide_start_power_step(drive, rq);
  911. if (startstop == ide_stopped &&
  912. pm->pm_step == ide_pm_state_completed)
  913. ide_complete_pm_request(drive, rq);
  914. return startstop;
  915. }
  916. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  917. return drv->do_request(drive, rq, block);
  918. }
  919. return do_special(drive);
  920. kill_rq:
  921. ide_kill_rq(drive, rq);
  922. return ide_stopped;
  923. }
  924. /**
  925. * ide_stall_queue - pause an IDE device
  926. * @drive: drive to stall
  927. * @timeout: time to stall for (jiffies)
  928. *
  929. * ide_stall_queue() can be used by a drive to give excess bandwidth back
  930. * to the hwgroup by sleeping for timeout jiffies.
  931. */
  932. void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
  933. {
  934. if (timeout > WAIT_WORSTCASE)
  935. timeout = WAIT_WORSTCASE;
  936. drive->sleep = timeout + jiffies;
  937. drive->sleeping = 1;
  938. }
  939. EXPORT_SYMBOL(ide_stall_queue);
  940. #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
  941. /**
  942. * choose_drive - select a drive to service
  943. * @hwgroup: hardware group to select on
  944. *
  945. * choose_drive() selects the next drive which will be serviced.
  946. * This is necessary because the IDE layer can't issue commands
  947. * to both drives on the same cable, unlike SCSI.
  948. */
  949. static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
  950. {
  951. ide_drive_t *drive, *best;
  952. repeat:
  953. best = NULL;
  954. drive = hwgroup->drive;
  955. /*
  956. * drive is doing pre-flush, ordered write, post-flush sequence. even
  957. * though that is 3 requests, it must be seen as a single transaction.
  958. * we must not preempt this drive until that is complete
  959. */
  960. if (blk_queue_flushing(drive->queue)) {
  961. /*
  962. * small race where queue could get replugged during
  963. * the 3-request flush cycle, just yank the plug since
  964. * we want it to finish asap
  965. */
  966. blk_remove_plug(drive->queue);
  967. return drive;
  968. }
  969. do {
  970. if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
  971. && !elv_queue_empty(drive->queue)) {
  972. if (!best
  973. || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
  974. || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
  975. {
  976. if (!blk_queue_plugged(drive->queue))
  977. best = drive;
  978. }
  979. }
  980. } while ((drive = drive->next) != hwgroup->drive);
  981. if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
  982. long t = (signed long)(WAKEUP(best) - jiffies);
  983. if (t >= WAIT_MIN_SLEEP) {
  984. /*
  985. * We *may* have some time to spare, but first let's see if
  986. * someone can potentially benefit from our nice mood today..
  987. */
  988. drive = best->next;
  989. do {
  990. if (!drive->sleeping
  991. && time_before(jiffies - best->service_time, WAKEUP(drive))
  992. && time_before(WAKEUP(drive), jiffies + t))
  993. {
  994. ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
  995. goto repeat;
  996. }
  997. } while ((drive = drive->next) != best);
  998. }
  999. }
  1000. return best;
  1001. }
  1002. /*
  1003. * Issue a new request to a drive from hwgroup
  1004. * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
  1005. *
  1006. * A hwgroup is a serialized group of IDE interfaces. Usually there is
  1007. * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
  1008. * may have both interfaces in a single hwgroup to "serialize" access.
  1009. * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
  1010. * together into one hwgroup for serialized access.
  1011. *
  1012. * Note also that several hwgroups can end up sharing a single IRQ,
  1013. * possibly along with many other devices. This is especially common in
  1014. * PCI-based systems with off-board IDE controller cards.
  1015. *
  1016. * The IDE driver uses the single global ide_lock spinlock to protect
  1017. * access to the request queues, and to protect the hwgroup->busy flag.
  1018. *
  1019. * The first thread into the driver for a particular hwgroup sets the
  1020. * hwgroup->busy flag to indicate that this hwgroup is now active,
  1021. * and then initiates processing of the top request from the request queue.
  1022. *
  1023. * Other threads attempting entry notice the busy setting, and will simply
  1024. * queue their new requests and exit immediately. Note that hwgroup->busy
  1025. * remains set even when the driver is merely awaiting the next interrupt.
  1026. * Thus, the meaning is "this hwgroup is busy processing a request".
  1027. *
  1028. * When processing of a request completes, the completing thread or IRQ-handler
  1029. * will start the next request from the queue. If no more work remains,
  1030. * the driver will clear the hwgroup->busy flag and exit.
  1031. *
  1032. * The ide_lock (spinlock) is used to protect all access to the
  1033. * hwgroup->busy flag, but is otherwise not needed for most processing in
  1034. * the driver. This makes the driver much more friendlier to shared IRQs
  1035. * than previous designs, while remaining 100% (?) SMP safe and capable.
  1036. */
  1037. static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
  1038. {
  1039. ide_drive_t *drive;
  1040. ide_hwif_t *hwif;
  1041. struct request *rq;
  1042. ide_startstop_t startstop;
  1043. int loops = 0;
  1044. /* for atari only: POSSIBLY BROKEN HERE(?) */
  1045. ide_get_lock(ide_intr, hwgroup);
  1046. /* caller must own ide_lock */
  1047. BUG_ON(!irqs_disabled());
  1048. while (!hwgroup->busy) {
  1049. hwgroup->busy = 1;
  1050. drive = choose_drive(hwgroup);
  1051. if (drive == NULL) {
  1052. int sleeping = 0;
  1053. unsigned long sleep = 0; /* shut up, gcc */
  1054. hwgroup->rq = NULL;
  1055. drive = hwgroup->drive;
  1056. do {
  1057. if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
  1058. sleeping = 1;
  1059. sleep = drive->sleep;
  1060. }
  1061. } while ((drive = drive->next) != hwgroup->drive);
  1062. if (sleeping) {
  1063. /*
  1064. * Take a short snooze, and then wake up this hwgroup again.
  1065. * This gives other hwgroups on the same a chance to
  1066. * play fairly with us, just in case there are big differences
  1067. * in relative throughputs.. don't want to hog the cpu too much.
  1068. */
  1069. if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
  1070. sleep = jiffies + WAIT_MIN_SLEEP;
  1071. #if 1
  1072. if (timer_pending(&hwgroup->timer))
  1073. printk(KERN_CRIT "ide_set_handler: timer already active\n");
  1074. #endif
  1075. /* so that ide_timer_expiry knows what to do */
  1076. hwgroup->sleeping = 1;
  1077. hwgroup->req_gen_timer = hwgroup->req_gen;
  1078. mod_timer(&hwgroup->timer, sleep);
  1079. /* we purposely leave hwgroup->busy==1
  1080. * while sleeping */
  1081. } else {
  1082. /* Ugly, but how can we sleep for the lock
  1083. * otherwise? perhaps from tq_disk?
  1084. */
  1085. /* for atari only */
  1086. ide_release_lock();
  1087. hwgroup->busy = 0;
  1088. }
  1089. /* no more work for this hwgroup (for now) */
  1090. return;
  1091. }
  1092. again:
  1093. hwif = HWIF(drive);
  1094. if (hwgroup->hwif->sharing_irq &&
  1095. hwif != hwgroup->hwif &&
  1096. hwif->io_ports[IDE_CONTROL_OFFSET]) {
  1097. /* set nIEN for previous hwif */
  1098. SELECT_INTERRUPT(drive);
  1099. }
  1100. hwgroup->hwif = hwif;
  1101. hwgroup->drive = drive;
  1102. drive->sleeping = 0;
  1103. drive->service_start = jiffies;
  1104. if (blk_queue_plugged(drive->queue)) {
  1105. printk(KERN_ERR "ide: huh? queue was plugged!\n");
  1106. break;
  1107. }
  1108. /*
  1109. * we know that the queue isn't empty, but this can happen
  1110. * if the q->prep_rq_fn() decides to kill a request
  1111. */
  1112. rq = elv_next_request(drive->queue);
  1113. if (!rq) {
  1114. hwgroup->busy = 0;
  1115. break;
  1116. }
  1117. /*
  1118. * Sanity: don't accept a request that isn't a PM request
  1119. * if we are currently power managed. This is very important as
  1120. * blk_stop_queue() doesn't prevent the elv_next_request()
  1121. * above to return us whatever is in the queue. Since we call
  1122. * ide_do_request() ourselves, we end up taking requests while
  1123. * the queue is blocked...
  1124. *
  1125. * We let requests forced at head of queue with ide-preempt
  1126. * though. I hope that doesn't happen too much, hopefully not
  1127. * unless the subdriver triggers such a thing in its own PM
  1128. * state machine.
  1129. *
  1130. * We count how many times we loop here to make sure we service
  1131. * all drives in the hwgroup without looping for ever
  1132. */
  1133. if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
  1134. drive = drive->next ? drive->next : hwgroup->drive;
  1135. if (loops++ < 4 && !blk_queue_plugged(drive->queue))
  1136. goto again;
  1137. /* We clear busy, there should be no pending ATA command at this point. */
  1138. hwgroup->busy = 0;
  1139. break;
  1140. }
  1141. hwgroup->rq = rq;
  1142. /*
  1143. * Some systems have trouble with IDE IRQs arriving while
  1144. * the driver is still setting things up. So, here we disable
  1145. * the IRQ used by this interface while the request is being started.
  1146. * This may look bad at first, but pretty much the same thing
  1147. * happens anyway when any interrupt comes in, IDE or otherwise
  1148. * -- the kernel masks the IRQ while it is being handled.
  1149. */
  1150. if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
  1151. disable_irq_nosync(hwif->irq);
  1152. spin_unlock(&ide_lock);
  1153. local_irq_enable_in_hardirq();
  1154. /* allow other IRQs while we start this request */
  1155. startstop = start_request(drive, rq);
  1156. spin_lock_irq(&ide_lock);
  1157. if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
  1158. enable_irq(hwif->irq);
  1159. if (startstop == ide_stopped)
  1160. hwgroup->busy = 0;
  1161. }
  1162. }
  1163. /*
  1164. * Passes the stuff to ide_do_request
  1165. */
  1166. void do_ide_request(request_queue_t *q)
  1167. {
  1168. ide_drive_t *drive = q->queuedata;
  1169. ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
  1170. }
  1171. /*
  1172. * un-busy the hwgroup etc, and clear any pending DMA status. we want to
  1173. * retry the current request in pio mode instead of risking tossing it
  1174. * all away
  1175. */
  1176. static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
  1177. {
  1178. ide_hwif_t *hwif = HWIF(drive);
  1179. struct request *rq;
  1180. ide_startstop_t ret = ide_stopped;
  1181. /*
  1182. * end current dma transaction
  1183. */
  1184. if (error < 0) {
  1185. printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
  1186. (void)HWIF(drive)->ide_dma_end(drive);
  1187. ret = ide_error(drive, "dma timeout error",
  1188. hwif->INB(IDE_STATUS_REG));
  1189. } else {
  1190. printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
  1191. hwif->dma_timeout(drive);
  1192. }
  1193. /*
  1194. * disable dma for now, but remember that we did so because of
  1195. * a timeout -- we'll reenable after we finish this next request
  1196. * (or rather the first chunk of it) in pio.
  1197. */
  1198. drive->retry_pio++;
  1199. drive->state = DMA_PIO_RETRY;
  1200. hwif->dma_off_quietly(drive);
  1201. /*
  1202. * un-busy drive etc (hwgroup->busy is cleared on return) and
  1203. * make sure request is sane
  1204. */
  1205. rq = HWGROUP(drive)->rq;
  1206. if (!rq)
  1207. goto out;
  1208. HWGROUP(drive)->rq = NULL;
  1209. rq->errors = 0;
  1210. if (!rq->bio)
  1211. goto out;
  1212. rq->sector = rq->bio->bi_sector;
  1213. rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
  1214. rq->hard_cur_sectors = rq->current_nr_sectors;
  1215. rq->buffer = bio_data(rq->bio);
  1216. out:
  1217. return ret;
  1218. }
  1219. /**
  1220. * ide_timer_expiry - handle lack of an IDE interrupt
  1221. * @data: timer callback magic (hwgroup)
  1222. *
  1223. * An IDE command has timed out before the expected drive return
  1224. * occurred. At this point we attempt to clean up the current
  1225. * mess. If the current handler includes an expiry handler then
  1226. * we invoke the expiry handler, and providing it is happy the
  1227. * work is done. If that fails we apply generic recovery rules
  1228. * invoking the handler and checking the drive DMA status. We
  1229. * have an excessively incestuous relationship with the DMA
  1230. * logic that wants cleaning up.
  1231. */
  1232. void ide_timer_expiry (unsigned long data)
  1233. {
  1234. ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
  1235. ide_handler_t *handler;
  1236. ide_expiry_t *expiry;
  1237. unsigned long flags;
  1238. unsigned long wait = -1;
  1239. spin_lock_irqsave(&ide_lock, flags);
  1240. if (((handler = hwgroup->handler) == NULL) ||
  1241. (hwgroup->req_gen != hwgroup->req_gen_timer)) {
  1242. /*
  1243. * Either a marginal timeout occurred
  1244. * (got the interrupt just as timer expired),
  1245. * or we were "sleeping" to give other devices a chance.
  1246. * Either way, we don't really want to complain about anything.
  1247. */
  1248. if (hwgroup->sleeping) {
  1249. hwgroup->sleeping = 0;
  1250. hwgroup->busy = 0;
  1251. }
  1252. } else {
  1253. ide_drive_t *drive = hwgroup->drive;
  1254. if (!drive) {
  1255. printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
  1256. hwgroup->handler = NULL;
  1257. } else {
  1258. ide_hwif_t *hwif;
  1259. ide_startstop_t startstop = ide_stopped;
  1260. if (!hwgroup->busy) {
  1261. hwgroup->busy = 1; /* paranoia */
  1262. printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
  1263. }
  1264. if ((expiry = hwgroup->expiry) != NULL) {
  1265. /* continue */
  1266. if ((wait = expiry(drive)) > 0) {
  1267. /* reset timer */
  1268. hwgroup->timer.expires = jiffies + wait;
  1269. hwgroup->req_gen_timer = hwgroup->req_gen;
  1270. add_timer(&hwgroup->timer);
  1271. spin_unlock_irqrestore(&ide_lock, flags);
  1272. return;
  1273. }
  1274. }
  1275. hwgroup->handler = NULL;
  1276. /*
  1277. * We need to simulate a real interrupt when invoking
  1278. * the handler() function, which means we need to
  1279. * globally mask the specific IRQ:
  1280. */
  1281. spin_unlock(&ide_lock);
  1282. hwif = HWIF(drive);
  1283. #if DISABLE_IRQ_NOSYNC
  1284. disable_irq_nosync(hwif->irq);
  1285. #else
  1286. /* disable_irq_nosync ?? */
  1287. disable_irq(hwif->irq);
  1288. #endif /* DISABLE_IRQ_NOSYNC */
  1289. /* local CPU only,
  1290. * as if we were handling an interrupt */
  1291. local_irq_disable();
  1292. if (hwgroup->polling) {
  1293. startstop = handler(drive);
  1294. } else if (drive_is_ready(drive)) {
  1295. if (drive->waiting_for_dma)
  1296. hwgroup->hwif->dma_lost_irq(drive);
  1297. (void)ide_ack_intr(hwif);
  1298. printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
  1299. startstop = handler(drive);
  1300. } else {
  1301. if (drive->waiting_for_dma) {
  1302. startstop = ide_dma_timeout_retry(drive, wait);
  1303. } else
  1304. startstop =
  1305. ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
  1306. }
  1307. drive->service_time = jiffies - drive->service_start;
  1308. spin_lock_irq(&ide_lock);
  1309. enable_irq(hwif->irq);
  1310. if (startstop == ide_stopped)
  1311. hwgroup->busy = 0;
  1312. }
  1313. }
  1314. ide_do_request(hwgroup, IDE_NO_IRQ);
  1315. spin_unlock_irqrestore(&ide_lock, flags);
  1316. }
  1317. /**
  1318. * unexpected_intr - handle an unexpected IDE interrupt
  1319. * @irq: interrupt line
  1320. * @hwgroup: hwgroup being processed
  1321. *
  1322. * There's nothing really useful we can do with an unexpected interrupt,
  1323. * other than reading the status register (to clear it), and logging it.
  1324. * There should be no way that an irq can happen before we're ready for it,
  1325. * so we needn't worry much about losing an "important" interrupt here.
  1326. *
  1327. * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
  1328. * the drive enters "idle", "standby", or "sleep" mode, so if the status
  1329. * looks "good", we just ignore the interrupt completely.
  1330. *
  1331. * This routine assumes __cli() is in effect when called.
  1332. *
  1333. * If an unexpected interrupt happens on irq15 while we are handling irq14
  1334. * and if the two interfaces are "serialized" (CMD640), then it looks like
  1335. * we could screw up by interfering with a new request being set up for
  1336. * irq15.
  1337. *
  1338. * In reality, this is a non-issue. The new command is not sent unless
  1339. * the drive is ready to accept one, in which case we know the drive is
  1340. * not trying to interrupt us. And ide_set_handler() is always invoked
  1341. * before completing the issuance of any new drive command, so we will not
  1342. * be accidentally invoked as a result of any valid command completion
  1343. * interrupt.
  1344. *
  1345. * Note that we must walk the entire hwgroup here. We know which hwif
  1346. * is doing the current command, but we don't know which hwif burped
  1347. * mysteriously.
  1348. */
  1349. static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
  1350. {
  1351. u8 stat;
  1352. ide_hwif_t *hwif = hwgroup->hwif;
  1353. /*
  1354. * handle the unexpected interrupt
  1355. */
  1356. do {
  1357. if (hwif->irq == irq) {
  1358. stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
  1359. if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
  1360. /* Try to not flood the console with msgs */
  1361. static unsigned long last_msgtime, count;
  1362. ++count;
  1363. if (time_after(jiffies, last_msgtime + HZ)) {
  1364. last_msgtime = jiffies;
  1365. printk(KERN_ERR "%s%s: unexpected interrupt, "
  1366. "status=0x%02x, count=%ld\n",
  1367. hwif->name,
  1368. (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
  1369. }
  1370. }
  1371. }
  1372. } while ((hwif = hwif->next) != hwgroup->hwif);
  1373. }
  1374. /**
  1375. * ide_intr - default IDE interrupt handler
  1376. * @irq: interrupt number
  1377. * @dev_id: hwif group
  1378. * @regs: unused weirdness from the kernel irq layer
  1379. *
  1380. * This is the default IRQ handler for the IDE layer. You should
  1381. * not need to override it. If you do be aware it is subtle in
  1382. * places
  1383. *
  1384. * hwgroup->hwif is the interface in the group currently performing
  1385. * a command. hwgroup->drive is the drive and hwgroup->handler is
  1386. * the IRQ handler to call. As we issue a command the handlers
  1387. * step through multiple states, reassigning the handler to the
  1388. * next step in the process. Unlike a smart SCSI controller IDE
  1389. * expects the main processor to sequence the various transfer
  1390. * stages. We also manage a poll timer to catch up with most
  1391. * timeout situations. There are still a few where the handlers
  1392. * don't ever decide to give up.
  1393. *
  1394. * The handler eventually returns ide_stopped to indicate the
  1395. * request completed. At this point we issue the next request
  1396. * on the hwgroup and the process begins again.
  1397. */
  1398. irqreturn_t ide_intr (int irq, void *dev_id)
  1399. {
  1400. unsigned long flags;
  1401. ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
  1402. ide_hwif_t *hwif;
  1403. ide_drive_t *drive;
  1404. ide_handler_t *handler;
  1405. ide_startstop_t startstop;
  1406. spin_lock_irqsave(&ide_lock, flags);
  1407. hwif = hwgroup->hwif;
  1408. if (!ide_ack_intr(hwif)) {
  1409. spin_unlock_irqrestore(&ide_lock, flags);
  1410. return IRQ_NONE;
  1411. }
  1412. if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
  1413. /*
  1414. * Not expecting an interrupt from this drive.
  1415. * That means this could be:
  1416. * (1) an interrupt from another PCI device
  1417. * sharing the same PCI INT# as us.
  1418. * or (2) a drive just entered sleep or standby mode,
  1419. * and is interrupting to let us know.
  1420. * or (3) a spurious interrupt of unknown origin.
  1421. *
  1422. * For PCI, we cannot tell the difference,
  1423. * so in that case we just ignore it and hope it goes away.
  1424. *
  1425. * FIXME: unexpected_intr should be hwif-> then we can
  1426. * remove all the ifdef PCI crap
  1427. */
  1428. #ifdef CONFIG_BLK_DEV_IDEPCI
  1429. if (hwif->pci_dev && !hwif->pci_dev->vendor)
  1430. #endif /* CONFIG_BLK_DEV_IDEPCI */
  1431. {
  1432. /*
  1433. * Probably not a shared PCI interrupt,
  1434. * so we can safely try to do something about it:
  1435. */
  1436. unexpected_intr(irq, hwgroup);
  1437. #ifdef CONFIG_BLK_DEV_IDEPCI
  1438. } else {
  1439. /*
  1440. * Whack the status register, just in case
  1441. * we have a leftover pending IRQ.
  1442. */
  1443. (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
  1444. #endif /* CONFIG_BLK_DEV_IDEPCI */
  1445. }
  1446. spin_unlock_irqrestore(&ide_lock, flags);
  1447. return IRQ_NONE;
  1448. }
  1449. drive = hwgroup->drive;
  1450. if (!drive) {
  1451. /*
  1452. * This should NEVER happen, and there isn't much
  1453. * we could do about it here.
  1454. *
  1455. * [Note - this can occur if the drive is hot unplugged]
  1456. */
  1457. spin_unlock_irqrestore(&ide_lock, flags);
  1458. return IRQ_HANDLED;
  1459. }
  1460. if (!drive_is_ready(drive)) {
  1461. /*
  1462. * This happens regularly when we share a PCI IRQ with
  1463. * another device. Unfortunately, it can also happen
  1464. * with some buggy drives that trigger the IRQ before
  1465. * their status register is up to date. Hopefully we have
  1466. * enough advance overhead that the latter isn't a problem.
  1467. */
  1468. spin_unlock_irqrestore(&ide_lock, flags);
  1469. return IRQ_NONE;
  1470. }
  1471. if (!hwgroup->busy) {
  1472. hwgroup->busy = 1; /* paranoia */
  1473. printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
  1474. }
  1475. hwgroup->handler = NULL;
  1476. hwgroup->req_gen++;
  1477. del_timer(&hwgroup->timer);
  1478. spin_unlock(&ide_lock);
  1479. /* Some controllers might set DMA INTR no matter DMA or PIO;
  1480. * bmdma status might need to be cleared even for
  1481. * PIO interrupts to prevent spurious/lost irq.
  1482. */
  1483. if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
  1484. /* ide_dma_end() needs bmdma status for error checking.
  1485. * So, skip clearing bmdma status here and leave it
  1486. * to ide_dma_end() if this is dma interrupt.
  1487. */
  1488. hwif->ide_dma_clear_irq(drive);
  1489. if (drive->unmask)
  1490. local_irq_enable_in_hardirq();
  1491. /* service this interrupt, may set handler for next interrupt */
  1492. startstop = handler(drive);
  1493. spin_lock_irq(&ide_lock);
  1494. /*
  1495. * Note that handler() may have set things up for another
  1496. * interrupt to occur soon, but it cannot happen until
  1497. * we exit from this routine, because it will be the
  1498. * same irq as is currently being serviced here, and Linux
  1499. * won't allow another of the same (on any CPU) until we return.
  1500. */
  1501. drive->service_time = jiffies - drive->service_start;
  1502. if (startstop == ide_stopped) {
  1503. if (hwgroup->handler == NULL) { /* paranoia */
  1504. hwgroup->busy = 0;
  1505. ide_do_request(hwgroup, hwif->irq);
  1506. } else {
  1507. printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
  1508. "on exit\n", drive->name);
  1509. }
  1510. }
  1511. spin_unlock_irqrestore(&ide_lock, flags);
  1512. return IRQ_HANDLED;
  1513. }
  1514. /**
  1515. * ide_init_drive_cmd - initialize a drive command request
  1516. * @rq: request object
  1517. *
  1518. * Initialize a request before we fill it in and send it down to
  1519. * ide_do_drive_cmd. Commands must be set up by this function. Right
  1520. * now it doesn't do a lot, but if that changes abusers will have a
  1521. * nasty surprise.
  1522. */
  1523. void ide_init_drive_cmd (struct request *rq)
  1524. {
  1525. memset(rq, 0, sizeof(*rq));
  1526. rq->cmd_type = REQ_TYPE_ATA_CMD;
  1527. rq->ref_count = 1;
  1528. }
  1529. EXPORT_SYMBOL(ide_init_drive_cmd);
  1530. /**
  1531. * ide_do_drive_cmd - issue IDE special command
  1532. * @drive: device to issue command
  1533. * @rq: request to issue
  1534. * @action: action for processing
  1535. *
  1536. * This function issues a special IDE device request
  1537. * onto the request queue.
  1538. *
  1539. * If action is ide_wait, then the rq is queued at the end of the
  1540. * request queue, and the function sleeps until it has been processed.
  1541. * This is for use when invoked from an ioctl handler.
  1542. *
  1543. * If action is ide_preempt, then the rq is queued at the head of
  1544. * the request queue, displacing the currently-being-processed
  1545. * request and this function returns immediately without waiting
  1546. * for the new rq to be completed. This is VERY DANGEROUS, and is
  1547. * intended for careful use by the ATAPI tape/cdrom driver code.
  1548. *
  1549. * If action is ide_end, then the rq is queued at the end of the
  1550. * request queue, and the function returns immediately without waiting
  1551. * for the new rq to be completed. This is again intended for careful
  1552. * use by the ATAPI tape/cdrom driver code.
  1553. */
  1554. int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
  1555. {
  1556. unsigned long flags;
  1557. ide_hwgroup_t *hwgroup = HWGROUP(drive);
  1558. DECLARE_COMPLETION_ONSTACK(wait);
  1559. int where = ELEVATOR_INSERT_BACK, err;
  1560. int must_wait = (action == ide_wait || action == ide_head_wait);
  1561. rq->errors = 0;
  1562. /*
  1563. * we need to hold an extra reference to request for safe inspection
  1564. * after completion
  1565. */
  1566. if (must_wait) {
  1567. rq->ref_count++;
  1568. rq->end_io_data = &wait;
  1569. rq->end_io = blk_end_sync_rq;
  1570. }
  1571. spin_lock_irqsave(&ide_lock, flags);
  1572. if (action == ide_preempt)
  1573. hwgroup->rq = NULL;
  1574. if (action == ide_preempt || action == ide_head_wait) {
  1575. where = ELEVATOR_INSERT_FRONT;
  1576. rq->cmd_flags |= REQ_PREEMPT;
  1577. }
  1578. __elv_add_request(drive->queue, rq, where, 0);
  1579. ide_do_request(hwgroup, IDE_NO_IRQ);
  1580. spin_unlock_irqrestore(&ide_lock, flags);
  1581. err = 0;
  1582. if (must_wait) {
  1583. wait_for_completion(&wait);
  1584. if (rq->errors)
  1585. err = -EIO;
  1586. blk_put_request(rq);
  1587. }
  1588. return err;
  1589. }
  1590. EXPORT_SYMBOL(ide_do_drive_cmd);