tehuti.c 67 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471
  1. /*
  2. * Tehuti Networks(R) Network Driver
  3. * ethtool interface implementation
  4. * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. /*
  12. * RX HW/SW interaction overview
  13. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  14. * There are 2 types of RX communication channels between driver and NIC.
  15. * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
  16. * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
  17. * info about buffer's location, size and ID. An ID field is used to identify a
  18. * buffer when it's returned with data via RXD Fifo (see below)
  19. * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
  20. * filled by HW and is readen by SW. Each descriptor holds status and ID.
  21. * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
  22. * via dma moves it into host memory, builds new RXD descriptor with same ID,
  23. * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
  24. *
  25. * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
  26. * One holds 1.5K packets and another - 26K packets. Depending on incoming
  27. * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
  28. * filled with data, HW builds new RXD descriptor for it and push it into single
  29. * RXD Fifo.
  30. *
  31. * RX SW Data Structures
  32. * ~~~~~~~~~~~~~~~~~~~~~
  33. * skb db - used to keep track of all skbs owned by SW and their dma addresses.
  34. * For RX case, ownership lasts from allocating new empty skb for RXF until
  35. * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
  36. * skb db. Implemented as array with bitmask.
  37. * fifo - keeps info about fifo's size and location, relevant HW registers,
  38. * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  39. * Implemented as simple struct.
  40. *
  41. * RX SW Execution Flow
  42. * ~~~~~~~~~~~~~~~~~~~~
  43. * Upon initialization (ifconfig up) driver creates RX fifos and initializes
  44. * relevant registers. At the end of init phase, driver enables interrupts.
  45. * NIC sees that there is no RXF buffers and raises
  46. * RD_INTR interrupt, isr fills skbs and Rx begins.
  47. * Driver has two receive operation modes:
  48. * NAPI - interrupt-driven mixed with polling
  49. * interrupt-driven only
  50. *
  51. * Interrupt-driven only flow is following. When buffer is ready, HW raises
  52. * interrupt and isr is called. isr collects all available packets
  53. * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
  54. * Rx buffer allocation note
  55. * ~~~~~~~~~~~~~~~~~~~~~~~~~
  56. * Driver cares to feed such amount of RxF descriptors that respective amount of
  57. * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
  58. * overflow check in Bordeaux for RxD fifo free/used size.
  59. * FIXME: this is NOT fully implemented, more work should be done
  60. *
  61. */
  62. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  63. #include "tehuti.h"
  64. static DEFINE_PCI_DEVICE_TABLE(bdx_pci_tbl) = {
  65. { PCI_VDEVICE(TEHUTI, 0x3009), },
  66. { PCI_VDEVICE(TEHUTI, 0x3010), },
  67. { PCI_VDEVICE(TEHUTI, 0x3014), },
  68. { 0 }
  69. };
  70. MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
  71. /* Definitions needed by ISR or NAPI functions */
  72. static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
  73. static void bdx_tx_cleanup(struct bdx_priv *priv);
  74. static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
  75. /* Definitions needed by FW loading */
  76. static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
  77. /* Definitions needed by hw_start */
  78. static int bdx_tx_init(struct bdx_priv *priv);
  79. static int bdx_rx_init(struct bdx_priv *priv);
  80. /* Definitions needed by bdx_close */
  81. static void bdx_rx_free(struct bdx_priv *priv);
  82. static void bdx_tx_free(struct bdx_priv *priv);
  83. /* Definitions needed by bdx_probe */
  84. static void bdx_set_ethtool_ops(struct net_device *netdev);
  85. /*************************************************************************
  86. * Print Info *
  87. *************************************************************************/
  88. static void print_hw_id(struct pci_dev *pdev)
  89. {
  90. struct pci_nic *nic = pci_get_drvdata(pdev);
  91. u16 pci_link_status = 0;
  92. u16 pci_ctrl = 0;
  93. pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
  94. pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
  95. pr_info("%s%s\n", BDX_NIC_NAME,
  96. nic->port_num == 1 ? "" : ", 2-Port");
  97. pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
  98. readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
  99. readl(nic->regs + FPGA_SEED),
  100. GET_LINK_STATUS_LANES(pci_link_status),
  101. GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
  102. }
  103. static void print_fw_id(struct pci_nic *nic)
  104. {
  105. pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
  106. }
  107. static void print_eth_id(struct net_device *ndev)
  108. {
  109. netdev_info(ndev, "%s, Port %c\n",
  110. BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
  111. }
  112. /*************************************************************************
  113. * Code *
  114. *************************************************************************/
  115. #define bdx_enable_interrupts(priv) \
  116. do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
  117. #define bdx_disable_interrupts(priv) \
  118. do { WRITE_REG(priv, regIMR, 0); } while (0)
  119. /* bdx_fifo_init
  120. * create TX/RX descriptor fifo for host-NIC communication.
  121. * 1K extra space is allocated at the end of the fifo to simplify
  122. * processing of descriptors that wraps around fifo's end
  123. * @priv - NIC private structure
  124. * @f - fifo to initialize
  125. * @fsz_type - fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
  126. * @reg_XXX - offsets of registers relative to base address
  127. *
  128. * Returns 0 on success, negative value on failure
  129. *
  130. */
  131. static int
  132. bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
  133. u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
  134. {
  135. u16 memsz = FIFO_SIZE * (1 << fsz_type);
  136. memset(f, 0, sizeof(struct fifo));
  137. /* pci_alloc_consistent gives us 4k-aligned memory */
  138. f->va = pci_alloc_consistent(priv->pdev,
  139. memsz + FIFO_EXTRA_SPACE, &f->da);
  140. if (!f->va) {
  141. pr_err("pci_alloc_consistent failed\n");
  142. RET(-ENOMEM);
  143. }
  144. f->reg_CFG0 = reg_CFG0;
  145. f->reg_CFG1 = reg_CFG1;
  146. f->reg_RPTR = reg_RPTR;
  147. f->reg_WPTR = reg_WPTR;
  148. f->rptr = 0;
  149. f->wptr = 0;
  150. f->memsz = memsz;
  151. f->size_mask = memsz - 1;
  152. WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
  153. WRITE_REG(priv, reg_CFG1, H32_64(f->da));
  154. RET(0);
  155. }
  156. /* bdx_fifo_free - free all resources used by fifo
  157. * @priv - NIC private structure
  158. * @f - fifo to release
  159. */
  160. static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
  161. {
  162. ENTER;
  163. if (f->va) {
  164. pci_free_consistent(priv->pdev,
  165. f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
  166. f->va = NULL;
  167. }
  168. RET();
  169. }
  170. /*
  171. * bdx_link_changed - notifies OS about hw link state.
  172. * @bdx_priv - hw adapter structure
  173. */
  174. static void bdx_link_changed(struct bdx_priv *priv)
  175. {
  176. u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
  177. if (!link) {
  178. if (netif_carrier_ok(priv->ndev)) {
  179. netif_stop_queue(priv->ndev);
  180. netif_carrier_off(priv->ndev);
  181. netdev_err(priv->ndev, "Link Down\n");
  182. }
  183. } else {
  184. if (!netif_carrier_ok(priv->ndev)) {
  185. netif_wake_queue(priv->ndev);
  186. netif_carrier_on(priv->ndev);
  187. netdev_err(priv->ndev, "Link Up\n");
  188. }
  189. }
  190. }
  191. static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
  192. {
  193. if (isr & IR_RX_FREE_0) {
  194. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  195. DBG("RX_FREE_0\n");
  196. }
  197. if (isr & IR_LNKCHG0)
  198. bdx_link_changed(priv);
  199. if (isr & IR_PCIE_LINK)
  200. netdev_err(priv->ndev, "PCI-E Link Fault\n");
  201. if (isr & IR_PCIE_TOUT)
  202. netdev_err(priv->ndev, "PCI-E Time Out\n");
  203. }
  204. /* bdx_isr - Interrupt Service Routine for Bordeaux NIC
  205. * @irq - interrupt number
  206. * @ndev - network device
  207. * @regs - CPU registers
  208. *
  209. * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
  210. *
  211. * It reads ISR register to know interrupt reasons, and proceed them one by one.
  212. * Reasons of interest are:
  213. * RX_DESC - new packet has arrived and RXD fifo holds its descriptor
  214. * RX_FREE - number of free Rx buffers in RXF fifo gets low
  215. * TX_FREE - packet was transmited and RXF fifo holds its descriptor
  216. */
  217. static irqreturn_t bdx_isr_napi(int irq, void *dev)
  218. {
  219. struct net_device *ndev = dev;
  220. struct bdx_priv *priv = netdev_priv(ndev);
  221. u32 isr;
  222. ENTER;
  223. isr = (READ_REG(priv, regISR) & IR_RUN);
  224. if (unlikely(!isr)) {
  225. bdx_enable_interrupts(priv);
  226. return IRQ_NONE; /* Not our interrupt */
  227. }
  228. if (isr & IR_EXTRA)
  229. bdx_isr_extra(priv, isr);
  230. if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
  231. if (likely(napi_schedule_prep(&priv->napi))) {
  232. __napi_schedule(&priv->napi);
  233. RET(IRQ_HANDLED);
  234. } else {
  235. /* NOTE: we get here if intr has slipped into window
  236. * between these lines in bdx_poll:
  237. * bdx_enable_interrupts(priv);
  238. * return 0;
  239. * currently intrs are disabled (since we read ISR),
  240. * and we have failed to register next poll.
  241. * so we read the regs to trigger chip
  242. * and allow further interupts. */
  243. READ_REG(priv, regTXF_WPTR_0);
  244. READ_REG(priv, regRXD_WPTR_0);
  245. }
  246. }
  247. bdx_enable_interrupts(priv);
  248. RET(IRQ_HANDLED);
  249. }
  250. static int bdx_poll(struct napi_struct *napi, int budget)
  251. {
  252. struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
  253. int work_done;
  254. ENTER;
  255. bdx_tx_cleanup(priv);
  256. work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
  257. if ((work_done < budget) ||
  258. (priv->napi_stop++ >= 30)) {
  259. DBG("rx poll is done. backing to isr-driven\n");
  260. /* from time to time we exit to let NAPI layer release
  261. * device lock and allow waiting tasks (eg rmmod) to advance) */
  262. priv->napi_stop = 0;
  263. napi_complete(napi);
  264. bdx_enable_interrupts(priv);
  265. }
  266. return work_done;
  267. }
  268. /* bdx_fw_load - loads firmware to NIC
  269. * @priv - NIC private structure
  270. * Firmware is loaded via TXD fifo, so it must be initialized first.
  271. * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
  272. * can have few of them). So all drivers use semaphore register to choose one
  273. * that will actually load FW to NIC.
  274. */
  275. static int bdx_fw_load(struct bdx_priv *priv)
  276. {
  277. const struct firmware *fw = NULL;
  278. int master, i;
  279. int rc;
  280. ENTER;
  281. master = READ_REG(priv, regINIT_SEMAPHORE);
  282. if (!READ_REG(priv, regINIT_STATUS) && master) {
  283. rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
  284. if (rc)
  285. goto out;
  286. bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
  287. mdelay(100);
  288. }
  289. for (i = 0; i < 200; i++) {
  290. if (READ_REG(priv, regINIT_STATUS)) {
  291. rc = 0;
  292. goto out;
  293. }
  294. mdelay(2);
  295. }
  296. rc = -EIO;
  297. out:
  298. if (master)
  299. WRITE_REG(priv, regINIT_SEMAPHORE, 1);
  300. if (fw)
  301. release_firmware(fw);
  302. if (rc) {
  303. netdev_err(priv->ndev, "firmware loading failed\n");
  304. if (rc == -EIO)
  305. DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
  306. READ_REG(priv, regVPC),
  307. READ_REG(priv, regVIC),
  308. READ_REG(priv, regINIT_STATUS), i);
  309. RET(rc);
  310. } else {
  311. DBG("%s: firmware loading success\n", priv->ndev->name);
  312. RET(0);
  313. }
  314. }
  315. static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
  316. {
  317. u32 val;
  318. ENTER;
  319. DBG("mac0=%x mac1=%x mac2=%x\n",
  320. READ_REG(priv, regUNC_MAC0_A),
  321. READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
  322. val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
  323. WRITE_REG(priv, regUNC_MAC2_A, val);
  324. val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
  325. WRITE_REG(priv, regUNC_MAC1_A, val);
  326. val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
  327. WRITE_REG(priv, regUNC_MAC0_A, val);
  328. DBG("mac0=%x mac1=%x mac2=%x\n",
  329. READ_REG(priv, regUNC_MAC0_A),
  330. READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
  331. RET();
  332. }
  333. /* bdx_hw_start - inits registers and starts HW's Rx and Tx engines
  334. * @priv - NIC private structure
  335. */
  336. static int bdx_hw_start(struct bdx_priv *priv)
  337. {
  338. int rc = -EIO;
  339. struct net_device *ndev = priv->ndev;
  340. ENTER;
  341. bdx_link_changed(priv);
  342. /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
  343. WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
  344. WRITE_REG(priv, regPAUSE_QUANT, 0x96);
  345. WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
  346. WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
  347. WRITE_REG(priv, regRX_FULLNESS, 0);
  348. WRITE_REG(priv, regTX_FULLNESS, 0);
  349. WRITE_REG(priv, regCTRLST,
  350. regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
  351. WRITE_REG(priv, regVGLB, 0);
  352. WRITE_REG(priv, regMAX_FRAME_A,
  353. priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
  354. DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */
  355. WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
  356. WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */
  357. DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */
  358. WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */
  359. /* Enable timer interrupt once in 2 secs. */
  360. /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
  361. bdx_restore_mac(priv->ndev, priv);
  362. WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
  363. GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
  364. #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
  365. rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
  366. ndev->name, ndev);
  367. if (rc)
  368. goto err_irq;
  369. bdx_enable_interrupts(priv);
  370. RET(0);
  371. err_irq:
  372. RET(rc);
  373. }
  374. static void bdx_hw_stop(struct bdx_priv *priv)
  375. {
  376. ENTER;
  377. bdx_disable_interrupts(priv);
  378. free_irq(priv->pdev->irq, priv->ndev);
  379. netif_carrier_off(priv->ndev);
  380. netif_stop_queue(priv->ndev);
  381. RET();
  382. }
  383. static int bdx_hw_reset_direct(void __iomem *regs)
  384. {
  385. u32 val, i;
  386. ENTER;
  387. /* reset sequences: read, write 1, read, write 0 */
  388. val = readl(regs + regCLKPLL);
  389. writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
  390. udelay(50);
  391. val = readl(regs + regCLKPLL);
  392. writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
  393. /* check that the PLLs are locked and reset ended */
  394. for (i = 0; i < 70; i++, mdelay(10))
  395. if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
  396. /* do any PCI-E read transaction */
  397. readl(regs + regRXD_CFG0_0);
  398. return 0;
  399. }
  400. pr_err("HW reset failed\n");
  401. return 1; /* failure */
  402. }
  403. static int bdx_hw_reset(struct bdx_priv *priv)
  404. {
  405. u32 val, i;
  406. ENTER;
  407. if (priv->port == 0) {
  408. /* reset sequences: read, write 1, read, write 0 */
  409. val = READ_REG(priv, regCLKPLL);
  410. WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
  411. udelay(50);
  412. val = READ_REG(priv, regCLKPLL);
  413. WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
  414. }
  415. /* check that the PLLs are locked and reset ended */
  416. for (i = 0; i < 70; i++, mdelay(10))
  417. if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
  418. /* do any PCI-E read transaction */
  419. READ_REG(priv, regRXD_CFG0_0);
  420. return 0;
  421. }
  422. pr_err("HW reset failed\n");
  423. return 1; /* failure */
  424. }
  425. static int bdx_sw_reset(struct bdx_priv *priv)
  426. {
  427. int i;
  428. ENTER;
  429. /* 1. load MAC (obsolete) */
  430. /* 2. disable Rx (and Tx) */
  431. WRITE_REG(priv, regGMAC_RXF_A, 0);
  432. mdelay(100);
  433. /* 3. disable port */
  434. WRITE_REG(priv, regDIS_PORT, 1);
  435. /* 4. disable queue */
  436. WRITE_REG(priv, regDIS_QU, 1);
  437. /* 5. wait until hw is disabled */
  438. for (i = 0; i < 50; i++) {
  439. if (READ_REG(priv, regRST_PORT) & 1)
  440. break;
  441. mdelay(10);
  442. }
  443. if (i == 50)
  444. netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
  445. /* 6. disable intrs */
  446. WRITE_REG(priv, regRDINTCM0, 0);
  447. WRITE_REG(priv, regTDINTCM0, 0);
  448. WRITE_REG(priv, regIMR, 0);
  449. READ_REG(priv, regISR);
  450. /* 7. reset queue */
  451. WRITE_REG(priv, regRST_QU, 1);
  452. /* 8. reset port */
  453. WRITE_REG(priv, regRST_PORT, 1);
  454. /* 9. zero all read and write pointers */
  455. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  456. DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
  457. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  458. WRITE_REG(priv, i, 0);
  459. /* 10. unseet port disable */
  460. WRITE_REG(priv, regDIS_PORT, 0);
  461. /* 11. unset queue disable */
  462. WRITE_REG(priv, regDIS_QU, 0);
  463. /* 12. unset queue reset */
  464. WRITE_REG(priv, regRST_QU, 0);
  465. /* 13. unset port reset */
  466. WRITE_REG(priv, regRST_PORT, 0);
  467. /* 14. enable Rx */
  468. /* skiped. will be done later */
  469. /* 15. save MAC (obsolete) */
  470. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  471. DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
  472. RET(0);
  473. }
  474. /* bdx_reset - performs right type of reset depending on hw type */
  475. static int bdx_reset(struct bdx_priv *priv)
  476. {
  477. ENTER;
  478. RET((priv->pdev->device == 0x3009)
  479. ? bdx_hw_reset(priv)
  480. : bdx_sw_reset(priv));
  481. }
  482. /**
  483. * bdx_close - Disables a network interface
  484. * @netdev: network interface device structure
  485. *
  486. * Returns 0, this is not allowed to fail
  487. *
  488. * The close entry point is called when an interface is de-activated
  489. * by the OS. The hardware is still under the drivers control, but
  490. * needs to be disabled. A global MAC reset is issued to stop the
  491. * hardware, and all transmit and receive resources are freed.
  492. **/
  493. static int bdx_close(struct net_device *ndev)
  494. {
  495. struct bdx_priv *priv = NULL;
  496. ENTER;
  497. priv = netdev_priv(ndev);
  498. napi_disable(&priv->napi);
  499. bdx_reset(priv);
  500. bdx_hw_stop(priv);
  501. bdx_rx_free(priv);
  502. bdx_tx_free(priv);
  503. RET(0);
  504. }
  505. /**
  506. * bdx_open - Called when a network interface is made active
  507. * @netdev: network interface device structure
  508. *
  509. * Returns 0 on success, negative value on failure
  510. *
  511. * The open entry point is called when a network interface is made
  512. * active by the system (IFF_UP). At this point all resources needed
  513. * for transmit and receive operations are allocated, the interrupt
  514. * handler is registered with the OS, the watchdog timer is started,
  515. * and the stack is notified that the interface is ready.
  516. **/
  517. static int bdx_open(struct net_device *ndev)
  518. {
  519. struct bdx_priv *priv;
  520. int rc;
  521. ENTER;
  522. priv = netdev_priv(ndev);
  523. bdx_reset(priv);
  524. if (netif_running(ndev))
  525. netif_stop_queue(priv->ndev);
  526. if ((rc = bdx_tx_init(priv)) ||
  527. (rc = bdx_rx_init(priv)) ||
  528. (rc = bdx_fw_load(priv)))
  529. goto err;
  530. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  531. rc = bdx_hw_start(priv);
  532. if (rc)
  533. goto err;
  534. napi_enable(&priv->napi);
  535. print_fw_id(priv->nic);
  536. RET(0);
  537. err:
  538. bdx_close(ndev);
  539. RET(rc);
  540. }
  541. static int bdx_range_check(struct bdx_priv *priv, u32 offset)
  542. {
  543. return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
  544. -EINVAL : 0;
  545. }
  546. static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
  547. {
  548. struct bdx_priv *priv = netdev_priv(ndev);
  549. u32 data[3];
  550. int error;
  551. ENTER;
  552. DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
  553. if (cmd != SIOCDEVPRIVATE) {
  554. error = copy_from_user(data, ifr->ifr_data, sizeof(data));
  555. if (error) {
  556. pr_err("can't copy from user\n");
  557. RET(-EFAULT);
  558. }
  559. DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
  560. }
  561. if (!capable(CAP_SYS_RAWIO))
  562. return -EPERM;
  563. switch (data[0]) {
  564. case BDX_OP_READ:
  565. error = bdx_range_check(priv, data[1]);
  566. if (error < 0)
  567. return error;
  568. data[2] = READ_REG(priv, data[1]);
  569. DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
  570. data[2]);
  571. error = copy_to_user(ifr->ifr_data, data, sizeof(data));
  572. if (error)
  573. RET(-EFAULT);
  574. break;
  575. case BDX_OP_WRITE:
  576. error = bdx_range_check(priv, data[1]);
  577. if (error < 0)
  578. return error;
  579. WRITE_REG(priv, data[1], data[2]);
  580. DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
  581. break;
  582. default:
  583. RET(-EOPNOTSUPP);
  584. }
  585. return 0;
  586. }
  587. static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
  588. {
  589. ENTER;
  590. if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
  591. RET(bdx_ioctl_priv(ndev, ifr, cmd));
  592. else
  593. RET(-EOPNOTSUPP);
  594. }
  595. /*
  596. * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
  597. * by passing VLAN filter table to hardware
  598. * @ndev network device
  599. * @vid VLAN vid
  600. * @op add or kill operation
  601. */
  602. static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
  603. {
  604. struct bdx_priv *priv = netdev_priv(ndev);
  605. u32 reg, bit, val;
  606. ENTER;
  607. DBG2("vid=%d value=%d\n", (int)vid, enable);
  608. if (unlikely(vid >= 4096)) {
  609. pr_err("invalid VID: %u (> 4096)\n", vid);
  610. RET();
  611. }
  612. reg = regVLAN_0 + (vid / 32) * 4;
  613. bit = 1 << vid % 32;
  614. val = READ_REG(priv, reg);
  615. DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
  616. if (enable)
  617. val |= bit;
  618. else
  619. val &= ~bit;
  620. DBG2("new val %x\n", val);
  621. WRITE_REG(priv, reg, val);
  622. RET();
  623. }
  624. /*
  625. * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
  626. * @ndev network device
  627. * @vid VLAN vid to add
  628. */
  629. static int bdx_vlan_rx_add_vid(struct net_device *ndev, uint16_t vid)
  630. {
  631. __bdx_vlan_rx_vid(ndev, vid, 1);
  632. return 0;
  633. }
  634. /*
  635. * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
  636. * @ndev network device
  637. * @vid VLAN vid to kill
  638. */
  639. static int bdx_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
  640. {
  641. __bdx_vlan_rx_vid(ndev, vid, 0);
  642. return 0;
  643. }
  644. /**
  645. * bdx_change_mtu - Change the Maximum Transfer Unit
  646. * @netdev: network interface device structure
  647. * @new_mtu: new value for maximum frame size
  648. *
  649. * Returns 0 on success, negative on failure
  650. */
  651. static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
  652. {
  653. ENTER;
  654. if (new_mtu == ndev->mtu)
  655. RET(0);
  656. /* enforce minimum frame size */
  657. if (new_mtu < ETH_ZLEN) {
  658. netdev_err(ndev, "mtu %d is less then minimal %d\n",
  659. new_mtu, ETH_ZLEN);
  660. RET(-EINVAL);
  661. }
  662. ndev->mtu = new_mtu;
  663. if (netif_running(ndev)) {
  664. bdx_close(ndev);
  665. bdx_open(ndev);
  666. }
  667. RET(0);
  668. }
  669. static void bdx_setmulti(struct net_device *ndev)
  670. {
  671. struct bdx_priv *priv = netdev_priv(ndev);
  672. u32 rxf_val =
  673. GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
  674. int i;
  675. ENTER;
  676. /* IMF - imperfect (hash) rx multicat filter */
  677. /* PMF - perfect rx multicat filter */
  678. /* FIXME: RXE(OFF) */
  679. if (ndev->flags & IFF_PROMISC) {
  680. rxf_val |= GMAC_RX_FILTER_PRM;
  681. } else if (ndev->flags & IFF_ALLMULTI) {
  682. /* set IMF to accept all multicast frmaes */
  683. for (i = 0; i < MAC_MCST_HASH_NUM; i++)
  684. WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
  685. } else if (!netdev_mc_empty(ndev)) {
  686. u8 hash;
  687. struct netdev_hw_addr *ha;
  688. u32 reg, val;
  689. /* set IMF to deny all multicast frames */
  690. for (i = 0; i < MAC_MCST_HASH_NUM; i++)
  691. WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
  692. /* set PMF to deny all multicast frames */
  693. for (i = 0; i < MAC_MCST_NUM; i++) {
  694. WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
  695. WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
  696. }
  697. /* use PMF to accept first MAC_MCST_NUM (15) addresses */
  698. /* TBD: sort addresses and write them in ascending order
  699. * into RX_MAC_MCST regs. we skip this phase now and accept ALL
  700. * multicast frames throu IMF */
  701. /* accept the rest of addresses throu IMF */
  702. netdev_for_each_mc_addr(ha, ndev) {
  703. hash = 0;
  704. for (i = 0; i < ETH_ALEN; i++)
  705. hash ^= ha->addr[i];
  706. reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
  707. val = READ_REG(priv, reg);
  708. val |= (1 << (hash % 32));
  709. WRITE_REG(priv, reg, val);
  710. }
  711. } else {
  712. DBG("only own mac %d\n", netdev_mc_count(ndev));
  713. rxf_val |= GMAC_RX_FILTER_AB;
  714. }
  715. WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
  716. /* enable RX */
  717. /* FIXME: RXE(ON) */
  718. RET();
  719. }
  720. static int bdx_set_mac(struct net_device *ndev, void *p)
  721. {
  722. struct bdx_priv *priv = netdev_priv(ndev);
  723. struct sockaddr *addr = p;
  724. ENTER;
  725. /*
  726. if (netif_running(dev))
  727. return -EBUSY
  728. */
  729. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  730. bdx_restore_mac(ndev, priv);
  731. RET(0);
  732. }
  733. static int bdx_read_mac(struct bdx_priv *priv)
  734. {
  735. u16 macAddress[3], i;
  736. ENTER;
  737. macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
  738. macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
  739. macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
  740. macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
  741. macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
  742. macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
  743. for (i = 0; i < 3; i++) {
  744. priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
  745. priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
  746. }
  747. RET(0);
  748. }
  749. static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
  750. {
  751. u64 val;
  752. val = READ_REG(priv, reg);
  753. val |= ((u64) READ_REG(priv, reg + 8)) << 32;
  754. return val;
  755. }
  756. /*Do the statistics-update work*/
  757. static void bdx_update_stats(struct bdx_priv *priv)
  758. {
  759. struct bdx_stats *stats = &priv->hw_stats;
  760. u64 *stats_vector = (u64 *) stats;
  761. int i;
  762. int addr;
  763. /*Fill HW structure */
  764. addr = 0x7200;
  765. /*First 12 statistics - 0x7200 - 0x72B0 */
  766. for (i = 0; i < 12; i++) {
  767. stats_vector[i] = bdx_read_l2stat(priv, addr);
  768. addr += 0x10;
  769. }
  770. BDX_ASSERT(addr != 0x72C0);
  771. /* 0x72C0-0x72E0 RSRV */
  772. addr = 0x72F0;
  773. for (; i < 16; i++) {
  774. stats_vector[i] = bdx_read_l2stat(priv, addr);
  775. addr += 0x10;
  776. }
  777. BDX_ASSERT(addr != 0x7330);
  778. /* 0x7330-0x7360 RSRV */
  779. addr = 0x7370;
  780. for (; i < 19; i++) {
  781. stats_vector[i] = bdx_read_l2stat(priv, addr);
  782. addr += 0x10;
  783. }
  784. BDX_ASSERT(addr != 0x73A0);
  785. /* 0x73A0-0x73B0 RSRV */
  786. addr = 0x73C0;
  787. for (; i < 23; i++) {
  788. stats_vector[i] = bdx_read_l2stat(priv, addr);
  789. addr += 0x10;
  790. }
  791. BDX_ASSERT(addr != 0x7400);
  792. BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
  793. }
  794. static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
  795. u16 rxd_vlan);
  796. static void print_rxfd(struct rxf_desc *rxfd);
  797. /*************************************************************************
  798. * Rx DB *
  799. *************************************************************************/
  800. static void bdx_rxdb_destroy(struct rxdb *db)
  801. {
  802. vfree(db);
  803. }
  804. static struct rxdb *bdx_rxdb_create(int nelem)
  805. {
  806. struct rxdb *db;
  807. int i;
  808. db = vmalloc(sizeof(struct rxdb)
  809. + (nelem * sizeof(int))
  810. + (nelem * sizeof(struct rx_map)));
  811. if (likely(db != NULL)) {
  812. db->stack = (int *)(db + 1);
  813. db->elems = (void *)(db->stack + nelem);
  814. db->nelem = nelem;
  815. db->top = nelem;
  816. for (i = 0; i < nelem; i++)
  817. db->stack[i] = nelem - i - 1; /* to make first allocs
  818. close to db struct*/
  819. }
  820. return db;
  821. }
  822. static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
  823. {
  824. BDX_ASSERT(db->top <= 0);
  825. return db->stack[--(db->top)];
  826. }
  827. static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
  828. {
  829. BDX_ASSERT((n < 0) || (n >= db->nelem));
  830. return db->elems + n;
  831. }
  832. static inline int bdx_rxdb_available(struct rxdb *db)
  833. {
  834. return db->top;
  835. }
  836. static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
  837. {
  838. BDX_ASSERT((n >= db->nelem) || (n < 0));
  839. db->stack[(db->top)++] = n;
  840. }
  841. /*************************************************************************
  842. * Rx Init *
  843. *************************************************************************/
  844. /* bdx_rx_init - initialize RX all related HW and SW resources
  845. * @priv - NIC private structure
  846. *
  847. * Returns 0 on success, negative value on failure
  848. *
  849. * It creates rxf and rxd fifos, update relevant HW registers, preallocate
  850. * skb for rx. It assumes that Rx is desabled in HW
  851. * funcs are grouped for better cache usage
  852. *
  853. * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
  854. * filled and packets will be dropped by nic without getting into host or
  855. * cousing interrupt. Anyway, in that condition, host has no chance to process
  856. * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
  857. */
  858. /* TBD: ensure proper packet size */
  859. static int bdx_rx_init(struct bdx_priv *priv)
  860. {
  861. ENTER;
  862. if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
  863. regRXD_CFG0_0, regRXD_CFG1_0,
  864. regRXD_RPTR_0, regRXD_WPTR_0))
  865. goto err_mem;
  866. if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
  867. regRXF_CFG0_0, regRXF_CFG1_0,
  868. regRXF_RPTR_0, regRXF_WPTR_0))
  869. goto err_mem;
  870. priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
  871. sizeof(struct rxf_desc));
  872. if (!priv->rxdb)
  873. goto err_mem;
  874. priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
  875. return 0;
  876. err_mem:
  877. netdev_err(priv->ndev, "Rx init failed\n");
  878. return -ENOMEM;
  879. }
  880. /* bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
  881. * @priv - NIC private structure
  882. * @f - RXF fifo
  883. */
  884. static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
  885. {
  886. struct rx_map *dm;
  887. struct rxdb *db = priv->rxdb;
  888. u16 i;
  889. ENTER;
  890. DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
  891. db->nelem - bdx_rxdb_available(db));
  892. while (bdx_rxdb_available(db) > 0) {
  893. i = bdx_rxdb_alloc_elem(db);
  894. dm = bdx_rxdb_addr_elem(db, i);
  895. dm->dma = 0;
  896. }
  897. for (i = 0; i < db->nelem; i++) {
  898. dm = bdx_rxdb_addr_elem(db, i);
  899. if (dm->dma) {
  900. pci_unmap_single(priv->pdev,
  901. dm->dma, f->m.pktsz,
  902. PCI_DMA_FROMDEVICE);
  903. dev_kfree_skb(dm->skb);
  904. }
  905. }
  906. }
  907. /* bdx_rx_free - release all Rx resources
  908. * @priv - NIC private structure
  909. * It assumes that Rx is desabled in HW
  910. */
  911. static void bdx_rx_free(struct bdx_priv *priv)
  912. {
  913. ENTER;
  914. if (priv->rxdb) {
  915. bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
  916. bdx_rxdb_destroy(priv->rxdb);
  917. priv->rxdb = NULL;
  918. }
  919. bdx_fifo_free(priv, &priv->rxf_fifo0.m);
  920. bdx_fifo_free(priv, &priv->rxd_fifo0.m);
  921. RET();
  922. }
  923. /*************************************************************************
  924. * Rx Engine *
  925. *************************************************************************/
  926. /* bdx_rx_alloc_skbs - fill rxf fifo with new skbs
  927. * @priv - nic's private structure
  928. * @f - RXF fifo that needs skbs
  929. * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
  930. * skb's virtual and physical addresses are stored in skb db.
  931. * To calculate free space, func uses cached values of RPTR and WPTR
  932. * When needed, it also updates RPTR and WPTR.
  933. */
  934. /* TBD: do not update WPTR if no desc were written */
  935. static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
  936. {
  937. struct sk_buff *skb;
  938. struct rxf_desc *rxfd;
  939. struct rx_map *dm;
  940. int dno, delta, idx;
  941. struct rxdb *db = priv->rxdb;
  942. ENTER;
  943. dno = bdx_rxdb_available(db) - 1;
  944. while (dno > 0) {
  945. skb = dev_alloc_skb(f->m.pktsz + NET_IP_ALIGN);
  946. if (!skb) {
  947. pr_err("NO MEM: dev_alloc_skb failed\n");
  948. break;
  949. }
  950. skb->dev = priv->ndev;
  951. skb_reserve(skb, NET_IP_ALIGN);
  952. idx = bdx_rxdb_alloc_elem(db);
  953. dm = bdx_rxdb_addr_elem(db, idx);
  954. dm->dma = pci_map_single(priv->pdev,
  955. skb->data, f->m.pktsz,
  956. PCI_DMA_FROMDEVICE);
  957. dm->skb = skb;
  958. rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
  959. rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
  960. rxfd->va_lo = idx;
  961. rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
  962. rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
  963. rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
  964. print_rxfd(rxfd);
  965. f->m.wptr += sizeof(struct rxf_desc);
  966. delta = f->m.wptr - f->m.memsz;
  967. if (unlikely(delta >= 0)) {
  968. f->m.wptr = delta;
  969. if (delta > 0) {
  970. memcpy(f->m.va, f->m.va + f->m.memsz, delta);
  971. DBG("wrapped descriptor\n");
  972. }
  973. }
  974. dno--;
  975. }
  976. /*TBD: to do - delayed rxf wptr like in txd */
  977. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  978. RET();
  979. }
  980. static inline void
  981. NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
  982. struct sk_buff *skb)
  983. {
  984. ENTER;
  985. DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
  986. if (GET_RXD_VTAG(rxd_val1)) {
  987. DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
  988. priv->ndev->name,
  989. GET_RXD_VLAN_ID(rxd_vlan),
  990. GET_RXD_VTAG(rxd_val1));
  991. __vlan_hwaccel_put_tag(skb, GET_RXD_VLAN_TCI(rxd_vlan));
  992. }
  993. netif_receive_skb(skb);
  994. }
  995. static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
  996. {
  997. struct rxf_desc *rxfd;
  998. struct rx_map *dm;
  999. struct rxf_fifo *f;
  1000. struct rxdb *db;
  1001. struct sk_buff *skb;
  1002. int delta;
  1003. ENTER;
  1004. DBG("priv=%p rxdd=%p\n", priv, rxdd);
  1005. f = &priv->rxf_fifo0;
  1006. db = priv->rxdb;
  1007. DBG("db=%p f=%p\n", db, f);
  1008. dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
  1009. DBG("dm=%p\n", dm);
  1010. skb = dm->skb;
  1011. rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
  1012. rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
  1013. rxfd->va_lo = rxdd->va_lo;
  1014. rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
  1015. rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
  1016. rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
  1017. print_rxfd(rxfd);
  1018. f->m.wptr += sizeof(struct rxf_desc);
  1019. delta = f->m.wptr - f->m.memsz;
  1020. if (unlikely(delta >= 0)) {
  1021. f->m.wptr = delta;
  1022. if (delta > 0) {
  1023. memcpy(f->m.va, f->m.va + f->m.memsz, delta);
  1024. DBG("wrapped descriptor\n");
  1025. }
  1026. }
  1027. RET();
  1028. }
  1029. /* bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
  1030. * NOTE: a special treatment is given to non-continuous descriptors
  1031. * that start near the end, wraps around and continue at the beginning. a second
  1032. * part is copied right after the first, and then descriptor is interpreted as
  1033. * normal. fifo has an extra space to allow such operations
  1034. * @priv - nic's private structure
  1035. * @f - RXF fifo that needs skbs
  1036. */
  1037. /* TBD: replace memcpy func call by explicite inline asm */
  1038. static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
  1039. {
  1040. struct net_device *ndev = priv->ndev;
  1041. struct sk_buff *skb, *skb2;
  1042. struct rxd_desc *rxdd;
  1043. struct rx_map *dm;
  1044. struct rxf_fifo *rxf_fifo;
  1045. int tmp_len, size;
  1046. int done = 0;
  1047. int max_done = BDX_MAX_RX_DONE;
  1048. struct rxdb *db = NULL;
  1049. /* Unmarshalled descriptor - copy of descriptor in host order */
  1050. u32 rxd_val1;
  1051. u16 len;
  1052. u16 rxd_vlan;
  1053. ENTER;
  1054. max_done = budget;
  1055. f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
  1056. size = f->m.wptr - f->m.rptr;
  1057. if (size < 0)
  1058. size = f->m.memsz + size; /* size is negative :-) */
  1059. while (size > 0) {
  1060. rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
  1061. rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
  1062. len = CPU_CHIP_SWAP16(rxdd->len);
  1063. rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
  1064. print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
  1065. tmp_len = GET_RXD_BC(rxd_val1) << 3;
  1066. BDX_ASSERT(tmp_len <= 0);
  1067. size -= tmp_len;
  1068. if (size < 0) /* test for partially arrived descriptor */
  1069. break;
  1070. f->m.rptr += tmp_len;
  1071. tmp_len = f->m.rptr - f->m.memsz;
  1072. if (unlikely(tmp_len >= 0)) {
  1073. f->m.rptr = tmp_len;
  1074. if (tmp_len > 0) {
  1075. DBG("wrapped desc rptr=%d tmp_len=%d\n",
  1076. f->m.rptr, tmp_len);
  1077. memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
  1078. }
  1079. }
  1080. if (unlikely(GET_RXD_ERR(rxd_val1))) {
  1081. DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
  1082. ndev->stats.rx_errors++;
  1083. bdx_recycle_skb(priv, rxdd);
  1084. continue;
  1085. }
  1086. rxf_fifo = &priv->rxf_fifo0;
  1087. db = priv->rxdb;
  1088. dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
  1089. skb = dm->skb;
  1090. if (len < BDX_COPYBREAK &&
  1091. (skb2 = dev_alloc_skb(len + NET_IP_ALIGN))) {
  1092. skb_reserve(skb2, NET_IP_ALIGN);
  1093. /*skb_put(skb2, len); */
  1094. pci_dma_sync_single_for_cpu(priv->pdev,
  1095. dm->dma, rxf_fifo->m.pktsz,
  1096. PCI_DMA_FROMDEVICE);
  1097. memcpy(skb2->data, skb->data, len);
  1098. bdx_recycle_skb(priv, rxdd);
  1099. skb = skb2;
  1100. } else {
  1101. pci_unmap_single(priv->pdev,
  1102. dm->dma, rxf_fifo->m.pktsz,
  1103. PCI_DMA_FROMDEVICE);
  1104. bdx_rxdb_free_elem(db, rxdd->va_lo);
  1105. }
  1106. ndev->stats.rx_bytes += len;
  1107. skb_put(skb, len);
  1108. skb->protocol = eth_type_trans(skb, ndev);
  1109. /* Non-IP packets aren't checksum-offloaded */
  1110. if (GET_RXD_PKT_ID(rxd_val1) == 0)
  1111. skb_checksum_none_assert(skb);
  1112. else
  1113. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1114. NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
  1115. if (++done >= max_done)
  1116. break;
  1117. }
  1118. ndev->stats.rx_packets += done;
  1119. /* FIXME: do smth to minimize pci accesses */
  1120. WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
  1121. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  1122. RET(done);
  1123. }
  1124. /*************************************************************************
  1125. * Debug / Temprorary Code *
  1126. *************************************************************************/
  1127. static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
  1128. u16 rxd_vlan)
  1129. {
  1130. DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
  1131. GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
  1132. GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
  1133. GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
  1134. GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
  1135. GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
  1136. rxdd->va_hi);
  1137. }
  1138. static void print_rxfd(struct rxf_desc *rxfd)
  1139. {
  1140. DBG("=== RxF desc CHIP ORDER/ENDIANESS =============\n"
  1141. "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
  1142. rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
  1143. }
  1144. /*
  1145. * TX HW/SW interaction overview
  1146. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1147. * There are 2 types of TX communication channels between driver and NIC.
  1148. * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
  1149. * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
  1150. *
  1151. * Currently NIC supports TSO, checksuming and gather DMA
  1152. * UFO and IP fragmentation is on the way
  1153. *
  1154. * RX SW Data Structures
  1155. * ~~~~~~~~~~~~~~~~~~~~~
  1156. * txdb - used to keep track of all skbs owned by SW and their dma addresses.
  1157. * For TX case, ownership lasts from geting packet via hard_xmit and until HW
  1158. * acknowledges sent by TXF descriptors.
  1159. * Implemented as cyclic buffer.
  1160. * fifo - keeps info about fifo's size and location, relevant HW registers,
  1161. * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  1162. * Implemented as simple struct.
  1163. *
  1164. * TX SW Execution Flow
  1165. * ~~~~~~~~~~~~~~~~~~~~
  1166. * OS calls driver's hard_xmit method with packet to sent.
  1167. * Driver creates DMA mappings, builds TXD descriptors and kicks HW
  1168. * by updating TXD WPTR.
  1169. * When packet is sent, HW write us TXF descriptor and SW frees original skb.
  1170. * To prevent TXD fifo overflow without reading HW registers every time,
  1171. * SW deploys "tx level" technique.
  1172. * Upon strart up, tx level is initialized to TXD fifo length.
  1173. * For every sent packet, SW gets its TXD descriptor sizei
  1174. * (from precalculated array) and substructs it from tx level.
  1175. * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
  1176. * original TXD descriptor from txdb and adds it to tx level.
  1177. * When Tx level drops under some predefined treshhold, the driver
  1178. * stops the TX queue. When TX level rises above that level,
  1179. * the tx queue is enabled again.
  1180. *
  1181. * This technique avoids eccessive reading of RPTR and WPTR registers.
  1182. * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
  1183. */
  1184. /*************************************************************************
  1185. * Tx DB *
  1186. *************************************************************************/
  1187. static inline int bdx_tx_db_size(struct txdb *db)
  1188. {
  1189. int taken = db->wptr - db->rptr;
  1190. if (taken < 0)
  1191. taken = db->size + 1 + taken; /* (size + 1) equals memsz */
  1192. return db->size - taken;
  1193. }
  1194. /* __bdx_tx_ptr_next - helper function, increment read/write pointer + wrap
  1195. * @d - tx data base
  1196. * @ptr - read or write pointer
  1197. */
  1198. static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
  1199. {
  1200. BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
  1201. BDX_ASSERT(*pptr != db->rptr && /* expect either read */
  1202. *pptr != db->wptr); /* or write pointer */
  1203. BDX_ASSERT(*pptr < db->start || /* pointer has to be */
  1204. *pptr >= db->end); /* in range */
  1205. ++*pptr;
  1206. if (unlikely(*pptr == db->end))
  1207. *pptr = db->start;
  1208. }
  1209. /* bdx_tx_db_inc_rptr - increment read pointer
  1210. * @d - tx data base
  1211. */
  1212. static inline void bdx_tx_db_inc_rptr(struct txdb *db)
  1213. {
  1214. BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */
  1215. __bdx_tx_db_ptr_next(db, &db->rptr);
  1216. }
  1217. /* bdx_tx_db_inc_rptr - increment write pointer
  1218. * @d - tx data base
  1219. */
  1220. static inline void bdx_tx_db_inc_wptr(struct txdb *db)
  1221. {
  1222. __bdx_tx_db_ptr_next(db, &db->wptr);
  1223. BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as
  1224. a result of write */
  1225. }
  1226. /* bdx_tx_db_init - creates and initializes tx db
  1227. * @d - tx data base
  1228. * @sz_type - size of tx fifo
  1229. * Returns 0 on success, error code otherwise
  1230. */
  1231. static int bdx_tx_db_init(struct txdb *d, int sz_type)
  1232. {
  1233. int memsz = FIFO_SIZE * (1 << (sz_type + 1));
  1234. d->start = vmalloc(memsz);
  1235. if (!d->start)
  1236. return -ENOMEM;
  1237. /*
  1238. * In order to differentiate between db is empty and db is full
  1239. * states at least one element should always be empty in order to
  1240. * avoid rptr == wptr which means db is empty
  1241. */
  1242. d->size = memsz / sizeof(struct tx_map) - 1;
  1243. d->end = d->start + d->size + 1; /* just after last element */
  1244. /* all dbs are created equally empty */
  1245. d->rptr = d->start;
  1246. d->wptr = d->start;
  1247. return 0;
  1248. }
  1249. /* bdx_tx_db_close - closes tx db and frees all memory
  1250. * @d - tx data base
  1251. */
  1252. static void bdx_tx_db_close(struct txdb *d)
  1253. {
  1254. BDX_ASSERT(d == NULL);
  1255. vfree(d->start);
  1256. d->start = NULL;
  1257. }
  1258. /*************************************************************************
  1259. * Tx Engine *
  1260. *************************************************************************/
  1261. /* sizes of tx desc (including padding if needed) as function
  1262. * of skb's frag number */
  1263. static struct {
  1264. u16 bytes;
  1265. u16 qwords; /* qword = 64 bit */
  1266. } txd_sizes[MAX_SKB_FRAGS + 1];
  1267. /* txdb_map_skb - creates and stores dma mappings for skb's data blocks
  1268. * @priv - NIC private structure
  1269. * @skb - socket buffer to map
  1270. *
  1271. * It makes dma mappings for skb's data blocks and writes them to PBL of
  1272. * new tx descriptor. It also stores them in the tx db, so they could be
  1273. * unmaped after data was sent. It is reponsibility of a caller to make
  1274. * sure that there is enough space in the tx db. Last element holds pointer
  1275. * to skb itself and marked with zero length
  1276. */
  1277. static inline void
  1278. bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
  1279. struct txd_desc *txdd)
  1280. {
  1281. struct txdb *db = &priv->txdb;
  1282. struct pbl *pbl = &txdd->pbl[0];
  1283. int nr_frags = skb_shinfo(skb)->nr_frags;
  1284. int i;
  1285. db->wptr->len = skb_headlen(skb);
  1286. db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
  1287. db->wptr->len, PCI_DMA_TODEVICE);
  1288. pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
  1289. pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
  1290. pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
  1291. DBG("=== pbl len: 0x%x ================\n", pbl->len);
  1292. DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
  1293. DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
  1294. bdx_tx_db_inc_wptr(db);
  1295. for (i = 0; i < nr_frags; i++) {
  1296. const struct skb_frag_struct *frag;
  1297. frag = &skb_shinfo(skb)->frags[i];
  1298. db->wptr->len = skb_frag_size(frag);
  1299. db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag,
  1300. 0, skb_frag_size(frag),
  1301. DMA_TO_DEVICE);
  1302. pbl++;
  1303. pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
  1304. pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
  1305. pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
  1306. bdx_tx_db_inc_wptr(db);
  1307. }
  1308. /* add skb clean up info. */
  1309. db->wptr->len = -txd_sizes[nr_frags].bytes;
  1310. db->wptr->addr.skb = skb;
  1311. bdx_tx_db_inc_wptr(db);
  1312. }
  1313. /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
  1314. * number of frags is used as index to fetch correct descriptors size,
  1315. * instead of calculating it each time */
  1316. static void __init init_txd_sizes(void)
  1317. {
  1318. int i, lwords;
  1319. /* 7 - is number of lwords in txd with one phys buffer
  1320. * 3 - is number of lwords used for every additional phys buffer */
  1321. for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
  1322. lwords = 7 + (i * 3);
  1323. if (lwords & 1)
  1324. lwords++; /* pad it with 1 lword */
  1325. txd_sizes[i].qwords = lwords >> 1;
  1326. txd_sizes[i].bytes = lwords << 2;
  1327. }
  1328. }
  1329. /* bdx_tx_init - initialize all Tx related stuff.
  1330. * Namely, TXD and TXF fifos, database etc */
  1331. static int bdx_tx_init(struct bdx_priv *priv)
  1332. {
  1333. if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
  1334. regTXD_CFG0_0,
  1335. regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
  1336. goto err_mem;
  1337. if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
  1338. regTXF_CFG0_0,
  1339. regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
  1340. goto err_mem;
  1341. /* The TX db has to keep mappings for all packets sent (on TxD)
  1342. * and not yet reclaimed (on TxF) */
  1343. if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
  1344. goto err_mem;
  1345. priv->tx_level = BDX_MAX_TX_LEVEL;
  1346. #ifdef BDX_DELAY_WPTR
  1347. priv->tx_update_mark = priv->tx_level - 1024;
  1348. #endif
  1349. return 0;
  1350. err_mem:
  1351. netdev_err(priv->ndev, "Tx init failed\n");
  1352. return -ENOMEM;
  1353. }
  1354. /*
  1355. * bdx_tx_space - calculates available space in TX fifo
  1356. * @priv - NIC private structure
  1357. * Returns available space in TX fifo in bytes
  1358. */
  1359. static inline int bdx_tx_space(struct bdx_priv *priv)
  1360. {
  1361. struct txd_fifo *f = &priv->txd_fifo0;
  1362. int fsize;
  1363. f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
  1364. fsize = f->m.rptr - f->m.wptr;
  1365. if (fsize <= 0)
  1366. fsize = f->m.memsz + fsize;
  1367. return fsize;
  1368. }
  1369. /* bdx_tx_transmit - send packet to NIC
  1370. * @skb - packet to send
  1371. * ndev - network device assigned to NIC
  1372. * Return codes:
  1373. * o NETDEV_TX_OK everything ok.
  1374. * o NETDEV_TX_BUSY Cannot transmit packet, try later
  1375. * Usually a bug, means queue start/stop flow control is broken in
  1376. * the driver. Note: the driver must NOT put the skb in its DMA ring.
  1377. * o NETDEV_TX_LOCKED Locking failed, please retry quickly.
  1378. */
  1379. static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
  1380. struct net_device *ndev)
  1381. {
  1382. struct bdx_priv *priv = netdev_priv(ndev);
  1383. struct txd_fifo *f = &priv->txd_fifo0;
  1384. int txd_checksum = 7; /* full checksum */
  1385. int txd_lgsnd = 0;
  1386. int txd_vlan_id = 0;
  1387. int txd_vtag = 0;
  1388. int txd_mss = 0;
  1389. int nr_frags = skb_shinfo(skb)->nr_frags;
  1390. struct txd_desc *txdd;
  1391. int len;
  1392. unsigned long flags;
  1393. ENTER;
  1394. local_irq_save(flags);
  1395. if (!spin_trylock(&priv->tx_lock)) {
  1396. local_irq_restore(flags);
  1397. DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
  1398. BDX_DRV_NAME, ndev->name);
  1399. return NETDEV_TX_LOCKED;
  1400. }
  1401. /* build tx descriptor */
  1402. BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */
  1403. txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
  1404. if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
  1405. txd_checksum = 0;
  1406. if (skb_shinfo(skb)->gso_size) {
  1407. txd_mss = skb_shinfo(skb)->gso_size;
  1408. txd_lgsnd = 1;
  1409. DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
  1410. txd_mss);
  1411. }
  1412. if (vlan_tx_tag_present(skb)) {
  1413. /*Cut VLAN ID to 12 bits */
  1414. txd_vlan_id = vlan_tx_tag_get(skb) & BITS_MASK(12);
  1415. txd_vtag = 1;
  1416. }
  1417. txdd->length = CPU_CHIP_SWAP16(skb->len);
  1418. txdd->mss = CPU_CHIP_SWAP16(txd_mss);
  1419. txdd->txd_val1 =
  1420. CPU_CHIP_SWAP32(TXD_W1_VAL
  1421. (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
  1422. txd_lgsnd, txd_vlan_id));
  1423. DBG("=== TxD desc =====================\n");
  1424. DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
  1425. DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
  1426. bdx_tx_map_skb(priv, skb, txdd);
  1427. /* increment TXD write pointer. In case of
  1428. fifo wrapping copy reminder of the descriptor
  1429. to the beginning */
  1430. f->m.wptr += txd_sizes[nr_frags].bytes;
  1431. len = f->m.wptr - f->m.memsz;
  1432. if (unlikely(len >= 0)) {
  1433. f->m.wptr = len;
  1434. if (len > 0) {
  1435. BDX_ASSERT(len > f->m.memsz);
  1436. memcpy(f->m.va, f->m.va + f->m.memsz, len);
  1437. }
  1438. }
  1439. BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */
  1440. priv->tx_level -= txd_sizes[nr_frags].bytes;
  1441. BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
  1442. #ifdef BDX_DELAY_WPTR
  1443. if (priv->tx_level > priv->tx_update_mark) {
  1444. /* Force memory writes to complete before letting h/w
  1445. know there are new descriptors to fetch.
  1446. (might be needed on platforms like IA64)
  1447. wmb(); */
  1448. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1449. } else {
  1450. if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
  1451. priv->tx_noupd = 0;
  1452. WRITE_REG(priv, f->m.reg_WPTR,
  1453. f->m.wptr & TXF_WPTR_WR_PTR);
  1454. }
  1455. }
  1456. #else
  1457. /* Force memory writes to complete before letting h/w
  1458. know there are new descriptors to fetch.
  1459. (might be needed on platforms like IA64)
  1460. wmb(); */
  1461. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1462. #endif
  1463. #ifdef BDX_LLTX
  1464. ndev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
  1465. #endif
  1466. ndev->stats.tx_packets++;
  1467. ndev->stats.tx_bytes += skb->len;
  1468. if (priv->tx_level < BDX_MIN_TX_LEVEL) {
  1469. DBG("%s: %s: TX Q STOP level %d\n",
  1470. BDX_DRV_NAME, ndev->name, priv->tx_level);
  1471. netif_stop_queue(ndev);
  1472. }
  1473. spin_unlock_irqrestore(&priv->tx_lock, flags);
  1474. return NETDEV_TX_OK;
  1475. }
  1476. /* bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
  1477. * @priv - bdx adapter
  1478. * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
  1479. * that those packets were sent
  1480. */
  1481. static void bdx_tx_cleanup(struct bdx_priv *priv)
  1482. {
  1483. struct txf_fifo *f = &priv->txf_fifo0;
  1484. struct txdb *db = &priv->txdb;
  1485. int tx_level = 0;
  1486. ENTER;
  1487. f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
  1488. BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */
  1489. while (f->m.wptr != f->m.rptr) {
  1490. f->m.rptr += BDX_TXF_DESC_SZ;
  1491. f->m.rptr &= f->m.size_mask;
  1492. /* unmap all the fragments */
  1493. /* first has to come tx_maps containing dma */
  1494. BDX_ASSERT(db->rptr->len == 0);
  1495. do {
  1496. BDX_ASSERT(db->rptr->addr.dma == 0);
  1497. pci_unmap_page(priv->pdev, db->rptr->addr.dma,
  1498. db->rptr->len, PCI_DMA_TODEVICE);
  1499. bdx_tx_db_inc_rptr(db);
  1500. } while (db->rptr->len > 0);
  1501. tx_level -= db->rptr->len; /* '-' koz len is negative */
  1502. /* now should come skb pointer - free it */
  1503. dev_kfree_skb_irq(db->rptr->addr.skb);
  1504. bdx_tx_db_inc_rptr(db);
  1505. }
  1506. /* let h/w know which TXF descriptors were cleaned */
  1507. BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
  1508. WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
  1509. /* We reclaimed resources, so in case the Q is stopped by xmit callback,
  1510. * we resume the transmition and use tx_lock to synchronize with xmit.*/
  1511. spin_lock(&priv->tx_lock);
  1512. priv->tx_level += tx_level;
  1513. BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
  1514. #ifdef BDX_DELAY_WPTR
  1515. if (priv->tx_noupd) {
  1516. priv->tx_noupd = 0;
  1517. WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
  1518. priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
  1519. }
  1520. #endif
  1521. if (unlikely(netif_queue_stopped(priv->ndev) &&
  1522. netif_carrier_ok(priv->ndev) &&
  1523. (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
  1524. DBG("%s: %s: TX Q WAKE level %d\n",
  1525. BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
  1526. netif_wake_queue(priv->ndev);
  1527. }
  1528. spin_unlock(&priv->tx_lock);
  1529. }
  1530. /* bdx_tx_free_skbs - frees all skbs from TXD fifo.
  1531. * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
  1532. */
  1533. static void bdx_tx_free_skbs(struct bdx_priv *priv)
  1534. {
  1535. struct txdb *db = &priv->txdb;
  1536. ENTER;
  1537. while (db->rptr != db->wptr) {
  1538. if (likely(db->rptr->len))
  1539. pci_unmap_page(priv->pdev, db->rptr->addr.dma,
  1540. db->rptr->len, PCI_DMA_TODEVICE);
  1541. else
  1542. dev_kfree_skb(db->rptr->addr.skb);
  1543. bdx_tx_db_inc_rptr(db);
  1544. }
  1545. RET();
  1546. }
  1547. /* bdx_tx_free - frees all Tx resources */
  1548. static void bdx_tx_free(struct bdx_priv *priv)
  1549. {
  1550. ENTER;
  1551. bdx_tx_free_skbs(priv);
  1552. bdx_fifo_free(priv, &priv->txd_fifo0.m);
  1553. bdx_fifo_free(priv, &priv->txf_fifo0.m);
  1554. bdx_tx_db_close(&priv->txdb);
  1555. }
  1556. /* bdx_tx_push_desc - push descriptor to TxD fifo
  1557. * @priv - NIC private structure
  1558. * @data - desc's data
  1559. * @size - desc's size
  1560. *
  1561. * Pushes desc to TxD fifo and overlaps it if needed.
  1562. * NOTE: this func does not check for available space. this is responsibility
  1563. * of the caller. Neither does it check that data size is smaller than
  1564. * fifo size.
  1565. */
  1566. static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
  1567. {
  1568. struct txd_fifo *f = &priv->txd_fifo0;
  1569. int i = f->m.memsz - f->m.wptr;
  1570. if (size == 0)
  1571. return;
  1572. if (i > size) {
  1573. memcpy(f->m.va + f->m.wptr, data, size);
  1574. f->m.wptr += size;
  1575. } else {
  1576. memcpy(f->m.va + f->m.wptr, data, i);
  1577. f->m.wptr = size - i;
  1578. memcpy(f->m.va, data + i, f->m.wptr);
  1579. }
  1580. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1581. }
  1582. /* bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
  1583. * @priv - NIC private structure
  1584. * @data - desc's data
  1585. * @size - desc's size
  1586. *
  1587. * NOTE: this func does check for available space and, if necessary, waits for
  1588. * NIC to read existing data before writing new one.
  1589. */
  1590. static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
  1591. {
  1592. int timer = 0;
  1593. ENTER;
  1594. while (size > 0) {
  1595. /* we substruct 8 because when fifo is full rptr == wptr
  1596. which also means that fifo is empty, we can understand
  1597. the difference, but could hw do the same ??? :) */
  1598. int avail = bdx_tx_space(priv) - 8;
  1599. if (avail <= 0) {
  1600. if (timer++ > 300) { /* prevent endless loop */
  1601. DBG("timeout while writing desc to TxD fifo\n");
  1602. break;
  1603. }
  1604. udelay(50); /* give hw a chance to clean fifo */
  1605. continue;
  1606. }
  1607. avail = min(avail, size);
  1608. DBG("about to push %d bytes starting %p size %d\n", avail,
  1609. data, size);
  1610. bdx_tx_push_desc(priv, data, avail);
  1611. size -= avail;
  1612. data += avail;
  1613. }
  1614. RET();
  1615. }
  1616. static const struct net_device_ops bdx_netdev_ops = {
  1617. .ndo_open = bdx_open,
  1618. .ndo_stop = bdx_close,
  1619. .ndo_start_xmit = bdx_tx_transmit,
  1620. .ndo_validate_addr = eth_validate_addr,
  1621. .ndo_do_ioctl = bdx_ioctl,
  1622. .ndo_set_rx_mode = bdx_setmulti,
  1623. .ndo_change_mtu = bdx_change_mtu,
  1624. .ndo_set_mac_address = bdx_set_mac,
  1625. .ndo_vlan_rx_add_vid = bdx_vlan_rx_add_vid,
  1626. .ndo_vlan_rx_kill_vid = bdx_vlan_rx_kill_vid,
  1627. };
  1628. /**
  1629. * bdx_probe - Device Initialization Routine
  1630. * @pdev: PCI device information struct
  1631. * @ent: entry in bdx_pci_tbl
  1632. *
  1633. * Returns 0 on success, negative on failure
  1634. *
  1635. * bdx_probe initializes an adapter identified by a pci_dev structure.
  1636. * The OS initialization, configuring of the adapter private structure,
  1637. * and a hardware reset occur.
  1638. *
  1639. * functions and their order used as explained in
  1640. * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
  1641. *
  1642. */
  1643. /* TBD: netif_msg should be checked and implemented. I disable it for now */
  1644. static int __devinit
  1645. bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  1646. {
  1647. struct net_device *ndev;
  1648. struct bdx_priv *priv;
  1649. int err, pci_using_dac, port;
  1650. unsigned long pciaddr;
  1651. u32 regionSize;
  1652. struct pci_nic *nic;
  1653. ENTER;
  1654. nic = vmalloc(sizeof(*nic));
  1655. if (!nic)
  1656. RET(-ENOMEM);
  1657. /************** pci *****************/
  1658. err = pci_enable_device(pdev);
  1659. if (err) /* it triggers interrupt, dunno why. */
  1660. goto err_pci; /* it's not a problem though */
  1661. if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) &&
  1662. !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) {
  1663. pci_using_dac = 1;
  1664. } else {
  1665. if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) ||
  1666. (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) {
  1667. pr_err("No usable DMA configuration, aborting\n");
  1668. goto err_dma;
  1669. }
  1670. pci_using_dac = 0;
  1671. }
  1672. err = pci_request_regions(pdev, BDX_DRV_NAME);
  1673. if (err)
  1674. goto err_dma;
  1675. pci_set_master(pdev);
  1676. pciaddr = pci_resource_start(pdev, 0);
  1677. if (!pciaddr) {
  1678. err = -EIO;
  1679. pr_err("no MMIO resource\n");
  1680. goto err_out_res;
  1681. }
  1682. regionSize = pci_resource_len(pdev, 0);
  1683. if (regionSize < BDX_REGS_SIZE) {
  1684. err = -EIO;
  1685. pr_err("MMIO resource (%x) too small\n", regionSize);
  1686. goto err_out_res;
  1687. }
  1688. nic->regs = ioremap(pciaddr, regionSize);
  1689. if (!nic->regs) {
  1690. err = -EIO;
  1691. pr_err("ioremap failed\n");
  1692. goto err_out_res;
  1693. }
  1694. if (pdev->irq < 2) {
  1695. err = -EIO;
  1696. pr_err("invalid irq (%d)\n", pdev->irq);
  1697. goto err_out_iomap;
  1698. }
  1699. pci_set_drvdata(pdev, nic);
  1700. if (pdev->device == 0x3014)
  1701. nic->port_num = 2;
  1702. else
  1703. nic->port_num = 1;
  1704. print_hw_id(pdev);
  1705. bdx_hw_reset_direct(nic->regs);
  1706. nic->irq_type = IRQ_INTX;
  1707. #ifdef BDX_MSI
  1708. if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
  1709. err = pci_enable_msi(pdev);
  1710. if (err)
  1711. pr_err("Can't eneble msi. error is %d\n", err);
  1712. else
  1713. nic->irq_type = IRQ_MSI;
  1714. } else
  1715. DBG("HW does not support MSI\n");
  1716. #endif
  1717. /************** netdev **************/
  1718. for (port = 0; port < nic->port_num; port++) {
  1719. ndev = alloc_etherdev(sizeof(struct bdx_priv));
  1720. if (!ndev) {
  1721. err = -ENOMEM;
  1722. goto err_out_iomap;
  1723. }
  1724. ndev->netdev_ops = &bdx_netdev_ops;
  1725. ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
  1726. bdx_set_ethtool_ops(ndev); /* ethtool interface */
  1727. /* these fields are used for info purposes only
  1728. * so we can have them same for all ports of the board */
  1729. ndev->if_port = port;
  1730. ndev->base_addr = pciaddr;
  1731. ndev->mem_start = pciaddr;
  1732. ndev->mem_end = pciaddr + regionSize;
  1733. ndev->irq = pdev->irq;
  1734. ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
  1735. | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
  1736. NETIF_F_HW_VLAN_FILTER | NETIF_F_RXCSUM
  1737. /*| NETIF_F_FRAGLIST */
  1738. ;
  1739. ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
  1740. NETIF_F_TSO | NETIF_F_HW_VLAN_TX;
  1741. if (pci_using_dac)
  1742. ndev->features |= NETIF_F_HIGHDMA;
  1743. /************** priv ****************/
  1744. priv = nic->priv[port] = netdev_priv(ndev);
  1745. priv->pBdxRegs = nic->regs + port * 0x8000;
  1746. priv->port = port;
  1747. priv->pdev = pdev;
  1748. priv->ndev = ndev;
  1749. priv->nic = nic;
  1750. priv->msg_enable = BDX_DEF_MSG_ENABLE;
  1751. netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
  1752. if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
  1753. DBG("HW statistics not supported\n");
  1754. priv->stats_flag = 0;
  1755. } else {
  1756. priv->stats_flag = 1;
  1757. }
  1758. /* Initialize fifo sizes. */
  1759. priv->txd_size = 2;
  1760. priv->txf_size = 2;
  1761. priv->rxd_size = 2;
  1762. priv->rxf_size = 3;
  1763. /* Initialize the initial coalescing registers. */
  1764. priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
  1765. priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
  1766. /* ndev->xmit_lock spinlock is not used.
  1767. * Private priv->tx_lock is used for synchronization
  1768. * between transmit and TX irq cleanup. In addition
  1769. * set multicast list callback has to use priv->tx_lock.
  1770. */
  1771. #ifdef BDX_LLTX
  1772. ndev->features |= NETIF_F_LLTX;
  1773. #endif
  1774. spin_lock_init(&priv->tx_lock);
  1775. /*bdx_hw_reset(priv); */
  1776. if (bdx_read_mac(priv)) {
  1777. pr_err("load MAC address failed\n");
  1778. goto err_out_iomap;
  1779. }
  1780. SET_NETDEV_DEV(ndev, &pdev->dev);
  1781. err = register_netdev(ndev);
  1782. if (err) {
  1783. pr_err("register_netdev failed\n");
  1784. goto err_out_free;
  1785. }
  1786. netif_carrier_off(ndev);
  1787. netif_stop_queue(ndev);
  1788. print_eth_id(ndev);
  1789. }
  1790. RET(0);
  1791. err_out_free:
  1792. free_netdev(ndev);
  1793. err_out_iomap:
  1794. iounmap(nic->regs);
  1795. err_out_res:
  1796. pci_release_regions(pdev);
  1797. err_dma:
  1798. pci_disable_device(pdev);
  1799. err_pci:
  1800. vfree(nic);
  1801. RET(err);
  1802. }
  1803. /****************** Ethtool interface *********************/
  1804. /* get strings for statistics counters */
  1805. static const char
  1806. bdx_stat_names[][ETH_GSTRING_LEN] = {
  1807. "InUCast", /* 0x7200 */
  1808. "InMCast", /* 0x7210 */
  1809. "InBCast", /* 0x7220 */
  1810. "InPkts", /* 0x7230 */
  1811. "InErrors", /* 0x7240 */
  1812. "InDropped", /* 0x7250 */
  1813. "FrameTooLong", /* 0x7260 */
  1814. "FrameSequenceErrors", /* 0x7270 */
  1815. "InVLAN", /* 0x7280 */
  1816. "InDroppedDFE", /* 0x7290 */
  1817. "InDroppedIntFull", /* 0x72A0 */
  1818. "InFrameAlignErrors", /* 0x72B0 */
  1819. /* 0x72C0-0x72E0 RSRV */
  1820. "OutUCast", /* 0x72F0 */
  1821. "OutMCast", /* 0x7300 */
  1822. "OutBCast", /* 0x7310 */
  1823. "OutPkts", /* 0x7320 */
  1824. /* 0x7330-0x7360 RSRV */
  1825. "OutVLAN", /* 0x7370 */
  1826. "InUCastOctects", /* 0x7380 */
  1827. "OutUCastOctects", /* 0x7390 */
  1828. /* 0x73A0-0x73B0 RSRV */
  1829. "InBCastOctects", /* 0x73C0 */
  1830. "OutBCastOctects", /* 0x73D0 */
  1831. "InOctects", /* 0x73E0 */
  1832. "OutOctects", /* 0x73F0 */
  1833. };
  1834. /*
  1835. * bdx_get_settings - get device-specific settings
  1836. * @netdev
  1837. * @ecmd
  1838. */
  1839. static int bdx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  1840. {
  1841. u32 rdintcm;
  1842. u32 tdintcm;
  1843. struct bdx_priv *priv = netdev_priv(netdev);
  1844. rdintcm = priv->rdintcm;
  1845. tdintcm = priv->tdintcm;
  1846. ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  1847. ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
  1848. ethtool_cmd_speed_set(ecmd, SPEED_10000);
  1849. ecmd->duplex = DUPLEX_FULL;
  1850. ecmd->port = PORT_FIBRE;
  1851. ecmd->transceiver = XCVR_EXTERNAL; /* what does it mean? */
  1852. ecmd->autoneg = AUTONEG_DISABLE;
  1853. /* PCK_TH measures in multiples of FIFO bytes
  1854. We translate to packets */
  1855. ecmd->maxtxpkt =
  1856. ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
  1857. ecmd->maxrxpkt =
  1858. ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
  1859. return 0;
  1860. }
  1861. /*
  1862. * bdx_get_drvinfo - report driver information
  1863. * @netdev
  1864. * @drvinfo
  1865. */
  1866. static void
  1867. bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
  1868. {
  1869. struct bdx_priv *priv = netdev_priv(netdev);
  1870. strlcat(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
  1871. strlcat(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
  1872. strlcat(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
  1873. strlcat(drvinfo->bus_info, pci_name(priv->pdev),
  1874. sizeof(drvinfo->bus_info));
  1875. drvinfo->n_stats = ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
  1876. drvinfo->testinfo_len = 0;
  1877. drvinfo->regdump_len = 0;
  1878. drvinfo->eedump_len = 0;
  1879. }
  1880. /*
  1881. * bdx_get_coalesce - get interrupt coalescing parameters
  1882. * @netdev
  1883. * @ecoal
  1884. */
  1885. static int
  1886. bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
  1887. {
  1888. u32 rdintcm;
  1889. u32 tdintcm;
  1890. struct bdx_priv *priv = netdev_priv(netdev);
  1891. rdintcm = priv->rdintcm;
  1892. tdintcm = priv->tdintcm;
  1893. /* PCK_TH measures in multiples of FIFO bytes
  1894. We translate to packets */
  1895. ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
  1896. ecoal->rx_max_coalesced_frames =
  1897. ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
  1898. ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
  1899. ecoal->tx_max_coalesced_frames =
  1900. ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
  1901. /* adaptive parameters ignored */
  1902. return 0;
  1903. }
  1904. /*
  1905. * bdx_set_coalesce - set interrupt coalescing parameters
  1906. * @netdev
  1907. * @ecoal
  1908. */
  1909. static int
  1910. bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
  1911. {
  1912. u32 rdintcm;
  1913. u32 tdintcm;
  1914. struct bdx_priv *priv = netdev_priv(netdev);
  1915. int rx_coal;
  1916. int tx_coal;
  1917. int rx_max_coal;
  1918. int tx_max_coal;
  1919. /* Check for valid input */
  1920. rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
  1921. tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
  1922. rx_max_coal = ecoal->rx_max_coalesced_frames;
  1923. tx_max_coal = ecoal->tx_max_coalesced_frames;
  1924. /* Translate from packets to multiples of FIFO bytes */
  1925. rx_max_coal =
  1926. (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
  1927. / PCK_TH_MULT);
  1928. tx_max_coal =
  1929. (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
  1930. / PCK_TH_MULT);
  1931. if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
  1932. (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
  1933. return -EINVAL;
  1934. rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
  1935. GET_RXF_TH(priv->rdintcm), rx_max_coal);
  1936. tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
  1937. tx_max_coal);
  1938. priv->rdintcm = rdintcm;
  1939. priv->tdintcm = tdintcm;
  1940. WRITE_REG(priv, regRDINTCM0, rdintcm);
  1941. WRITE_REG(priv, regTDINTCM0, tdintcm);
  1942. return 0;
  1943. }
  1944. /* Convert RX fifo size to number of pending packets */
  1945. static inline int bdx_rx_fifo_size_to_packets(int rx_size)
  1946. {
  1947. return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
  1948. }
  1949. /* Convert TX fifo size to number of pending packets */
  1950. static inline int bdx_tx_fifo_size_to_packets(int tx_size)
  1951. {
  1952. return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
  1953. }
  1954. /*
  1955. * bdx_get_ringparam - report ring sizes
  1956. * @netdev
  1957. * @ring
  1958. */
  1959. static void
  1960. bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
  1961. {
  1962. struct bdx_priv *priv = netdev_priv(netdev);
  1963. /*max_pending - the maximum-sized FIFO we allow */
  1964. ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
  1965. ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
  1966. ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
  1967. ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
  1968. }
  1969. /*
  1970. * bdx_set_ringparam - set ring sizes
  1971. * @netdev
  1972. * @ring
  1973. */
  1974. static int
  1975. bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
  1976. {
  1977. struct bdx_priv *priv = netdev_priv(netdev);
  1978. int rx_size = 0;
  1979. int tx_size = 0;
  1980. for (; rx_size < 4; rx_size++) {
  1981. if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
  1982. break;
  1983. }
  1984. if (rx_size == 4)
  1985. rx_size = 3;
  1986. for (; tx_size < 4; tx_size++) {
  1987. if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
  1988. break;
  1989. }
  1990. if (tx_size == 4)
  1991. tx_size = 3;
  1992. /*Is there anything to do? */
  1993. if ((rx_size == priv->rxf_size) &&
  1994. (tx_size == priv->txd_size))
  1995. return 0;
  1996. priv->rxf_size = rx_size;
  1997. if (rx_size > 1)
  1998. priv->rxd_size = rx_size - 1;
  1999. else
  2000. priv->rxd_size = rx_size;
  2001. priv->txf_size = priv->txd_size = tx_size;
  2002. if (netif_running(netdev)) {
  2003. bdx_close(netdev);
  2004. bdx_open(netdev);
  2005. }
  2006. return 0;
  2007. }
  2008. /*
  2009. * bdx_get_strings - return a set of strings that describe the requested objects
  2010. * @netdev
  2011. * @data
  2012. */
  2013. static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
  2014. {
  2015. switch (stringset) {
  2016. case ETH_SS_STATS:
  2017. memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
  2018. break;
  2019. }
  2020. }
  2021. /*
  2022. * bdx_get_sset_count - return number of statistics or tests
  2023. * @netdev
  2024. */
  2025. static int bdx_get_sset_count(struct net_device *netdev, int stringset)
  2026. {
  2027. struct bdx_priv *priv = netdev_priv(netdev);
  2028. switch (stringset) {
  2029. case ETH_SS_STATS:
  2030. BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
  2031. != sizeof(struct bdx_stats) / sizeof(u64));
  2032. return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0;
  2033. }
  2034. return -EINVAL;
  2035. }
  2036. /*
  2037. * bdx_get_ethtool_stats - return device's hardware L2 statistics
  2038. * @netdev
  2039. * @stats
  2040. * @data
  2041. */
  2042. static void bdx_get_ethtool_stats(struct net_device *netdev,
  2043. struct ethtool_stats *stats, u64 *data)
  2044. {
  2045. struct bdx_priv *priv = netdev_priv(netdev);
  2046. if (priv->stats_flag) {
  2047. /* Update stats from HW */
  2048. bdx_update_stats(priv);
  2049. /* Copy data to user buffer */
  2050. memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
  2051. }
  2052. }
  2053. /*
  2054. * bdx_set_ethtool_ops - ethtool interface implementation
  2055. * @netdev
  2056. */
  2057. static void bdx_set_ethtool_ops(struct net_device *netdev)
  2058. {
  2059. static const struct ethtool_ops bdx_ethtool_ops = {
  2060. .get_settings = bdx_get_settings,
  2061. .get_drvinfo = bdx_get_drvinfo,
  2062. .get_link = ethtool_op_get_link,
  2063. .get_coalesce = bdx_get_coalesce,
  2064. .set_coalesce = bdx_set_coalesce,
  2065. .get_ringparam = bdx_get_ringparam,
  2066. .set_ringparam = bdx_set_ringparam,
  2067. .get_strings = bdx_get_strings,
  2068. .get_sset_count = bdx_get_sset_count,
  2069. .get_ethtool_stats = bdx_get_ethtool_stats,
  2070. };
  2071. SET_ETHTOOL_OPS(netdev, &bdx_ethtool_ops);
  2072. }
  2073. /**
  2074. * bdx_remove - Device Removal Routine
  2075. * @pdev: PCI device information struct
  2076. *
  2077. * bdx_remove is called by the PCI subsystem to alert the driver
  2078. * that it should release a PCI device. The could be caused by a
  2079. * Hot-Plug event, or because the driver is going to be removed from
  2080. * memory.
  2081. **/
  2082. static void __devexit bdx_remove(struct pci_dev *pdev)
  2083. {
  2084. struct pci_nic *nic = pci_get_drvdata(pdev);
  2085. struct net_device *ndev;
  2086. int port;
  2087. for (port = 0; port < nic->port_num; port++) {
  2088. ndev = nic->priv[port]->ndev;
  2089. unregister_netdev(ndev);
  2090. free_netdev(ndev);
  2091. }
  2092. /*bdx_hw_reset_direct(nic->regs); */
  2093. #ifdef BDX_MSI
  2094. if (nic->irq_type == IRQ_MSI)
  2095. pci_disable_msi(pdev);
  2096. #endif
  2097. iounmap(nic->regs);
  2098. pci_release_regions(pdev);
  2099. pci_disable_device(pdev);
  2100. pci_set_drvdata(pdev, NULL);
  2101. vfree(nic);
  2102. RET();
  2103. }
  2104. static struct pci_driver bdx_pci_driver = {
  2105. .name = BDX_DRV_NAME,
  2106. .id_table = bdx_pci_tbl,
  2107. .probe = bdx_probe,
  2108. .remove = __devexit_p(bdx_remove),
  2109. };
  2110. /*
  2111. * print_driver_id - print parameters of the driver build
  2112. */
  2113. static void __init print_driver_id(void)
  2114. {
  2115. pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
  2116. pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
  2117. }
  2118. static int __init bdx_module_init(void)
  2119. {
  2120. ENTER;
  2121. init_txd_sizes();
  2122. print_driver_id();
  2123. RET(pci_register_driver(&bdx_pci_driver));
  2124. }
  2125. module_init(bdx_module_init);
  2126. static void __exit bdx_module_exit(void)
  2127. {
  2128. ENTER;
  2129. pci_unregister_driver(&bdx_pci_driver);
  2130. RET();
  2131. }
  2132. module_exit(bdx_module_exit);
  2133. MODULE_LICENSE("GPL");
  2134. MODULE_AUTHOR(DRIVER_AUTHOR);
  2135. MODULE_DESCRIPTION(BDX_DRV_DESC);
  2136. MODULE_FIRMWARE("tehuti/bdx.bin");