skge.c 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26. #include <linux/in.h>
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/moduleparam.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/ip.h>
  36. #include <linux/delay.h>
  37. #include <linux/crc32.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/debugfs.h>
  40. #include <linux/sched.h>
  41. #include <linux/seq_file.h>
  42. #include <linux/mii.h>
  43. #include <linux/slab.h>
  44. #include <linux/dmi.h>
  45. #include <linux/prefetch.h>
  46. #include <asm/irq.h>
  47. #include "skge.h"
  48. #define DRV_NAME "skge"
  49. #define DRV_VERSION "1.14"
  50. #define DEFAULT_TX_RING_SIZE 128
  51. #define DEFAULT_RX_RING_SIZE 512
  52. #define MAX_TX_RING_SIZE 1024
  53. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  54. #define MAX_RX_RING_SIZE 4096
  55. #define RX_COPY_THRESHOLD 128
  56. #define RX_BUF_SIZE 1536
  57. #define PHY_RETRIES 1000
  58. #define ETH_JUMBO_MTU 9000
  59. #define TX_WATCHDOG (5 * HZ)
  60. #define NAPI_WEIGHT 64
  61. #define BLINK_MS 250
  62. #define LINK_HZ HZ
  63. #define SKGE_EEPROM_MAGIC 0x9933aabb
  64. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  65. MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  66. MODULE_LICENSE("GPL");
  67. MODULE_VERSION(DRV_VERSION);
  68. static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  69. NETIF_MSG_LINK | NETIF_MSG_IFUP |
  70. NETIF_MSG_IFDOWN);
  71. static int debug = -1; /* defaults above */
  72. module_param(debug, int, 0);
  73. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  74. static DEFINE_PCI_DEVICE_TABLE(skge_id_table) = {
  75. { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) }, /* 3Com 3C940 */
  76. { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) }, /* 3Com 3C940B */
  77. #ifdef CONFIG_SKGE_GENESIS
  78. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
  79. #endif
  80. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
  81. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* D-Link DGE-530T (rev.B) */
  82. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) }, /* D-Link DGE-530T */
  83. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) }, /* D-Link DGE-530T Rev C1 */
  84. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */
  85. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  86. { PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, /* CNet PowerG-2000 */
  87. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) }, /* Linksys EG1064 v2 */
  88. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
  89. { 0 }
  90. };
  91. MODULE_DEVICE_TABLE(pci, skge_id_table);
  92. static int skge_up(struct net_device *dev);
  93. static int skge_down(struct net_device *dev);
  94. static void skge_phy_reset(struct skge_port *skge);
  95. static void skge_tx_clean(struct net_device *dev);
  96. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  97. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  98. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  99. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  100. static void yukon_init(struct skge_hw *hw, int port);
  101. static void genesis_mac_init(struct skge_hw *hw, int port);
  102. static void genesis_link_up(struct skge_port *skge);
  103. static void skge_set_multicast(struct net_device *dev);
  104. static irqreturn_t skge_intr(int irq, void *dev_id);
  105. /* Avoid conditionals by using array */
  106. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  107. static const int rxqaddr[] = { Q_R1, Q_R2 };
  108. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  109. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  110. static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  111. static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
  112. static inline bool is_genesis(const struct skge_hw *hw)
  113. {
  114. #ifdef CONFIG_SKGE_GENESIS
  115. return hw->chip_id == CHIP_ID_GENESIS;
  116. #else
  117. return false;
  118. #endif
  119. }
  120. static int skge_get_regs_len(struct net_device *dev)
  121. {
  122. return 0x4000;
  123. }
  124. /*
  125. * Returns copy of whole control register region
  126. * Note: skip RAM address register because accessing it will
  127. * cause bus hangs!
  128. */
  129. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  130. void *p)
  131. {
  132. const struct skge_port *skge = netdev_priv(dev);
  133. const void __iomem *io = skge->hw->regs;
  134. regs->version = 1;
  135. memset(p, 0, regs->len);
  136. memcpy_fromio(p, io, B3_RAM_ADDR);
  137. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  138. regs->len - B3_RI_WTO_R1);
  139. }
  140. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  141. static u32 wol_supported(const struct skge_hw *hw)
  142. {
  143. if (is_genesis(hw))
  144. return 0;
  145. if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  146. return 0;
  147. return WAKE_MAGIC | WAKE_PHY;
  148. }
  149. static void skge_wol_init(struct skge_port *skge)
  150. {
  151. struct skge_hw *hw = skge->hw;
  152. int port = skge->port;
  153. u16 ctrl;
  154. skge_write16(hw, B0_CTST, CS_RST_CLR);
  155. skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
  156. /* Turn on Vaux */
  157. skge_write8(hw, B0_POWER_CTRL,
  158. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
  159. /* WA code for COMA mode -- clear PHY reset */
  160. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  161. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  162. u32 reg = skge_read32(hw, B2_GP_IO);
  163. reg |= GP_DIR_9;
  164. reg &= ~GP_IO_9;
  165. skge_write32(hw, B2_GP_IO, reg);
  166. }
  167. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  168. GPC_DIS_SLEEP |
  169. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  170. GPC_ANEG_1 | GPC_RST_SET);
  171. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  172. GPC_DIS_SLEEP |
  173. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  174. GPC_ANEG_1 | GPC_RST_CLR);
  175. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  176. /* Force to 10/100 skge_reset will re-enable on resume */
  177. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  178. (PHY_AN_100FULL | PHY_AN_100HALF |
  179. PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
  180. /* no 1000 HD/FD */
  181. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
  182. gm_phy_write(hw, port, PHY_MARV_CTRL,
  183. PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
  184. PHY_CT_RE_CFG | PHY_CT_DUP_MD);
  185. /* Set GMAC to no flow control and auto update for speed/duplex */
  186. gma_write16(hw, port, GM_GP_CTRL,
  187. GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
  188. GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
  189. /* Set WOL address */
  190. memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
  191. skge->netdev->dev_addr, ETH_ALEN);
  192. /* Turn on appropriate WOL control bits */
  193. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
  194. ctrl = 0;
  195. if (skge->wol & WAKE_PHY)
  196. ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
  197. else
  198. ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
  199. if (skge->wol & WAKE_MAGIC)
  200. ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
  201. else
  202. ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
  203. ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
  204. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
  205. /* block receiver */
  206. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  207. }
  208. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  209. {
  210. struct skge_port *skge = netdev_priv(dev);
  211. wol->supported = wol_supported(skge->hw);
  212. wol->wolopts = skge->wol;
  213. }
  214. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  215. {
  216. struct skge_port *skge = netdev_priv(dev);
  217. struct skge_hw *hw = skge->hw;
  218. if ((wol->wolopts & ~wol_supported(hw)) ||
  219. !device_can_wakeup(&hw->pdev->dev))
  220. return -EOPNOTSUPP;
  221. skge->wol = wol->wolopts;
  222. device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
  223. return 0;
  224. }
  225. /* Determine supported/advertised modes based on hardware.
  226. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  227. */
  228. static u32 skge_supported_modes(const struct skge_hw *hw)
  229. {
  230. u32 supported;
  231. if (hw->copper) {
  232. supported = (SUPPORTED_10baseT_Half |
  233. SUPPORTED_10baseT_Full |
  234. SUPPORTED_100baseT_Half |
  235. SUPPORTED_100baseT_Full |
  236. SUPPORTED_1000baseT_Half |
  237. SUPPORTED_1000baseT_Full |
  238. SUPPORTED_Autoneg |
  239. SUPPORTED_TP);
  240. if (is_genesis(hw))
  241. supported &= ~(SUPPORTED_10baseT_Half |
  242. SUPPORTED_10baseT_Full |
  243. SUPPORTED_100baseT_Half |
  244. SUPPORTED_100baseT_Full);
  245. else if (hw->chip_id == CHIP_ID_YUKON)
  246. supported &= ~SUPPORTED_1000baseT_Half;
  247. } else
  248. supported = (SUPPORTED_1000baseT_Full |
  249. SUPPORTED_1000baseT_Half |
  250. SUPPORTED_FIBRE |
  251. SUPPORTED_Autoneg);
  252. return supported;
  253. }
  254. static int skge_get_settings(struct net_device *dev,
  255. struct ethtool_cmd *ecmd)
  256. {
  257. struct skge_port *skge = netdev_priv(dev);
  258. struct skge_hw *hw = skge->hw;
  259. ecmd->transceiver = XCVR_INTERNAL;
  260. ecmd->supported = skge_supported_modes(hw);
  261. if (hw->copper) {
  262. ecmd->port = PORT_TP;
  263. ecmd->phy_address = hw->phy_addr;
  264. } else
  265. ecmd->port = PORT_FIBRE;
  266. ecmd->advertising = skge->advertising;
  267. ecmd->autoneg = skge->autoneg;
  268. ethtool_cmd_speed_set(ecmd, skge->speed);
  269. ecmd->duplex = skge->duplex;
  270. return 0;
  271. }
  272. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  273. {
  274. struct skge_port *skge = netdev_priv(dev);
  275. const struct skge_hw *hw = skge->hw;
  276. u32 supported = skge_supported_modes(hw);
  277. int err = 0;
  278. if (ecmd->autoneg == AUTONEG_ENABLE) {
  279. ecmd->advertising = supported;
  280. skge->duplex = -1;
  281. skge->speed = -1;
  282. } else {
  283. u32 setting;
  284. u32 speed = ethtool_cmd_speed(ecmd);
  285. switch (speed) {
  286. case SPEED_1000:
  287. if (ecmd->duplex == DUPLEX_FULL)
  288. setting = SUPPORTED_1000baseT_Full;
  289. else if (ecmd->duplex == DUPLEX_HALF)
  290. setting = SUPPORTED_1000baseT_Half;
  291. else
  292. return -EINVAL;
  293. break;
  294. case SPEED_100:
  295. if (ecmd->duplex == DUPLEX_FULL)
  296. setting = SUPPORTED_100baseT_Full;
  297. else if (ecmd->duplex == DUPLEX_HALF)
  298. setting = SUPPORTED_100baseT_Half;
  299. else
  300. return -EINVAL;
  301. break;
  302. case SPEED_10:
  303. if (ecmd->duplex == DUPLEX_FULL)
  304. setting = SUPPORTED_10baseT_Full;
  305. else if (ecmd->duplex == DUPLEX_HALF)
  306. setting = SUPPORTED_10baseT_Half;
  307. else
  308. return -EINVAL;
  309. break;
  310. default:
  311. return -EINVAL;
  312. }
  313. if ((setting & supported) == 0)
  314. return -EINVAL;
  315. skge->speed = speed;
  316. skge->duplex = ecmd->duplex;
  317. }
  318. skge->autoneg = ecmd->autoneg;
  319. skge->advertising = ecmd->advertising;
  320. if (netif_running(dev)) {
  321. skge_down(dev);
  322. err = skge_up(dev);
  323. if (err) {
  324. dev_close(dev);
  325. return err;
  326. }
  327. }
  328. return 0;
  329. }
  330. static void skge_get_drvinfo(struct net_device *dev,
  331. struct ethtool_drvinfo *info)
  332. {
  333. struct skge_port *skge = netdev_priv(dev);
  334. strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
  335. strlcpy(info->version, DRV_VERSION, sizeof(info->version));
  336. strlcpy(info->bus_info, pci_name(skge->hw->pdev),
  337. sizeof(info->bus_info));
  338. }
  339. static const struct skge_stat {
  340. char name[ETH_GSTRING_LEN];
  341. u16 xmac_offset;
  342. u16 gma_offset;
  343. } skge_stats[] = {
  344. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  345. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  346. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  347. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  348. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  349. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  350. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  351. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  352. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  353. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  354. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  355. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  356. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  357. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  358. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  359. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  360. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  361. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  362. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  363. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  364. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  365. };
  366. static int skge_get_sset_count(struct net_device *dev, int sset)
  367. {
  368. switch (sset) {
  369. case ETH_SS_STATS:
  370. return ARRAY_SIZE(skge_stats);
  371. default:
  372. return -EOPNOTSUPP;
  373. }
  374. }
  375. static void skge_get_ethtool_stats(struct net_device *dev,
  376. struct ethtool_stats *stats, u64 *data)
  377. {
  378. struct skge_port *skge = netdev_priv(dev);
  379. if (is_genesis(skge->hw))
  380. genesis_get_stats(skge, data);
  381. else
  382. yukon_get_stats(skge, data);
  383. }
  384. /* Use hardware MIB variables for critical path statistics and
  385. * transmit feedback not reported at interrupt.
  386. * Other errors are accounted for in interrupt handler.
  387. */
  388. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  389. {
  390. struct skge_port *skge = netdev_priv(dev);
  391. u64 data[ARRAY_SIZE(skge_stats)];
  392. if (is_genesis(skge->hw))
  393. genesis_get_stats(skge, data);
  394. else
  395. yukon_get_stats(skge, data);
  396. dev->stats.tx_bytes = data[0];
  397. dev->stats.rx_bytes = data[1];
  398. dev->stats.tx_packets = data[2] + data[4] + data[6];
  399. dev->stats.rx_packets = data[3] + data[5] + data[7];
  400. dev->stats.multicast = data[3] + data[5];
  401. dev->stats.collisions = data[10];
  402. dev->stats.tx_aborted_errors = data[12];
  403. return &dev->stats;
  404. }
  405. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  406. {
  407. int i;
  408. switch (stringset) {
  409. case ETH_SS_STATS:
  410. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  411. memcpy(data + i * ETH_GSTRING_LEN,
  412. skge_stats[i].name, ETH_GSTRING_LEN);
  413. break;
  414. }
  415. }
  416. static void skge_get_ring_param(struct net_device *dev,
  417. struct ethtool_ringparam *p)
  418. {
  419. struct skge_port *skge = netdev_priv(dev);
  420. p->rx_max_pending = MAX_RX_RING_SIZE;
  421. p->tx_max_pending = MAX_TX_RING_SIZE;
  422. p->rx_pending = skge->rx_ring.count;
  423. p->tx_pending = skge->tx_ring.count;
  424. }
  425. static int skge_set_ring_param(struct net_device *dev,
  426. struct ethtool_ringparam *p)
  427. {
  428. struct skge_port *skge = netdev_priv(dev);
  429. int err = 0;
  430. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  431. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  432. return -EINVAL;
  433. skge->rx_ring.count = p->rx_pending;
  434. skge->tx_ring.count = p->tx_pending;
  435. if (netif_running(dev)) {
  436. skge_down(dev);
  437. err = skge_up(dev);
  438. if (err)
  439. dev_close(dev);
  440. }
  441. return err;
  442. }
  443. static u32 skge_get_msglevel(struct net_device *netdev)
  444. {
  445. struct skge_port *skge = netdev_priv(netdev);
  446. return skge->msg_enable;
  447. }
  448. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  449. {
  450. struct skge_port *skge = netdev_priv(netdev);
  451. skge->msg_enable = value;
  452. }
  453. static int skge_nway_reset(struct net_device *dev)
  454. {
  455. struct skge_port *skge = netdev_priv(dev);
  456. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  457. return -EINVAL;
  458. skge_phy_reset(skge);
  459. return 0;
  460. }
  461. static void skge_get_pauseparam(struct net_device *dev,
  462. struct ethtool_pauseparam *ecmd)
  463. {
  464. struct skge_port *skge = netdev_priv(dev);
  465. ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
  466. (skge->flow_control == FLOW_MODE_SYM_OR_REM));
  467. ecmd->tx_pause = (ecmd->rx_pause ||
  468. (skge->flow_control == FLOW_MODE_LOC_SEND));
  469. ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
  470. }
  471. static int skge_set_pauseparam(struct net_device *dev,
  472. struct ethtool_pauseparam *ecmd)
  473. {
  474. struct skge_port *skge = netdev_priv(dev);
  475. struct ethtool_pauseparam old;
  476. int err = 0;
  477. skge_get_pauseparam(dev, &old);
  478. if (ecmd->autoneg != old.autoneg)
  479. skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
  480. else {
  481. if (ecmd->rx_pause && ecmd->tx_pause)
  482. skge->flow_control = FLOW_MODE_SYMMETRIC;
  483. else if (ecmd->rx_pause && !ecmd->tx_pause)
  484. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  485. else if (!ecmd->rx_pause && ecmd->tx_pause)
  486. skge->flow_control = FLOW_MODE_LOC_SEND;
  487. else
  488. skge->flow_control = FLOW_MODE_NONE;
  489. }
  490. if (netif_running(dev)) {
  491. skge_down(dev);
  492. err = skge_up(dev);
  493. if (err) {
  494. dev_close(dev);
  495. return err;
  496. }
  497. }
  498. return 0;
  499. }
  500. /* Chip internal frequency for clock calculations */
  501. static inline u32 hwkhz(const struct skge_hw *hw)
  502. {
  503. return is_genesis(hw) ? 53125 : 78125;
  504. }
  505. /* Chip HZ to microseconds */
  506. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  507. {
  508. return (ticks * 1000) / hwkhz(hw);
  509. }
  510. /* Microseconds to chip HZ */
  511. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  512. {
  513. return hwkhz(hw) * usec / 1000;
  514. }
  515. static int skge_get_coalesce(struct net_device *dev,
  516. struct ethtool_coalesce *ecmd)
  517. {
  518. struct skge_port *skge = netdev_priv(dev);
  519. struct skge_hw *hw = skge->hw;
  520. int port = skge->port;
  521. ecmd->rx_coalesce_usecs = 0;
  522. ecmd->tx_coalesce_usecs = 0;
  523. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  524. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  525. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  526. if (msk & rxirqmask[port])
  527. ecmd->rx_coalesce_usecs = delay;
  528. if (msk & txirqmask[port])
  529. ecmd->tx_coalesce_usecs = delay;
  530. }
  531. return 0;
  532. }
  533. /* Note: interrupt timer is per board, but can turn on/off per port */
  534. static int skge_set_coalesce(struct net_device *dev,
  535. struct ethtool_coalesce *ecmd)
  536. {
  537. struct skge_port *skge = netdev_priv(dev);
  538. struct skge_hw *hw = skge->hw;
  539. int port = skge->port;
  540. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  541. u32 delay = 25;
  542. if (ecmd->rx_coalesce_usecs == 0)
  543. msk &= ~rxirqmask[port];
  544. else if (ecmd->rx_coalesce_usecs < 25 ||
  545. ecmd->rx_coalesce_usecs > 33333)
  546. return -EINVAL;
  547. else {
  548. msk |= rxirqmask[port];
  549. delay = ecmd->rx_coalesce_usecs;
  550. }
  551. if (ecmd->tx_coalesce_usecs == 0)
  552. msk &= ~txirqmask[port];
  553. else if (ecmd->tx_coalesce_usecs < 25 ||
  554. ecmd->tx_coalesce_usecs > 33333)
  555. return -EINVAL;
  556. else {
  557. msk |= txirqmask[port];
  558. delay = min(delay, ecmd->rx_coalesce_usecs);
  559. }
  560. skge_write32(hw, B2_IRQM_MSK, msk);
  561. if (msk == 0)
  562. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  563. else {
  564. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  565. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  566. }
  567. return 0;
  568. }
  569. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  570. static void skge_led(struct skge_port *skge, enum led_mode mode)
  571. {
  572. struct skge_hw *hw = skge->hw;
  573. int port = skge->port;
  574. spin_lock_bh(&hw->phy_lock);
  575. if (is_genesis(hw)) {
  576. switch (mode) {
  577. case LED_MODE_OFF:
  578. if (hw->phy_type == SK_PHY_BCOM)
  579. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  580. else {
  581. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  582. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  583. }
  584. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  585. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  586. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  587. break;
  588. case LED_MODE_ON:
  589. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  590. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  591. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  592. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  593. break;
  594. case LED_MODE_TST:
  595. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  596. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  597. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  598. if (hw->phy_type == SK_PHY_BCOM)
  599. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  600. else {
  601. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  602. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  603. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  604. }
  605. }
  606. } else {
  607. switch (mode) {
  608. case LED_MODE_OFF:
  609. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  610. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  611. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  612. PHY_M_LED_MO_10(MO_LED_OFF) |
  613. PHY_M_LED_MO_100(MO_LED_OFF) |
  614. PHY_M_LED_MO_1000(MO_LED_OFF) |
  615. PHY_M_LED_MO_RX(MO_LED_OFF));
  616. break;
  617. case LED_MODE_ON:
  618. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  619. PHY_M_LED_PULS_DUR(PULS_170MS) |
  620. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  621. PHY_M_LEDC_TX_CTRL |
  622. PHY_M_LEDC_DP_CTRL);
  623. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  624. PHY_M_LED_MO_RX(MO_LED_OFF) |
  625. (skge->speed == SPEED_100 ?
  626. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  627. break;
  628. case LED_MODE_TST:
  629. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  630. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  631. PHY_M_LED_MO_DUP(MO_LED_ON) |
  632. PHY_M_LED_MO_10(MO_LED_ON) |
  633. PHY_M_LED_MO_100(MO_LED_ON) |
  634. PHY_M_LED_MO_1000(MO_LED_ON) |
  635. PHY_M_LED_MO_RX(MO_LED_ON));
  636. }
  637. }
  638. spin_unlock_bh(&hw->phy_lock);
  639. }
  640. /* blink LED's for finding board */
  641. static int skge_set_phys_id(struct net_device *dev,
  642. enum ethtool_phys_id_state state)
  643. {
  644. struct skge_port *skge = netdev_priv(dev);
  645. switch (state) {
  646. case ETHTOOL_ID_ACTIVE:
  647. return 2; /* cycle on/off twice per second */
  648. case ETHTOOL_ID_ON:
  649. skge_led(skge, LED_MODE_TST);
  650. break;
  651. case ETHTOOL_ID_OFF:
  652. skge_led(skge, LED_MODE_OFF);
  653. break;
  654. case ETHTOOL_ID_INACTIVE:
  655. /* back to regular LED state */
  656. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  657. }
  658. return 0;
  659. }
  660. static int skge_get_eeprom_len(struct net_device *dev)
  661. {
  662. struct skge_port *skge = netdev_priv(dev);
  663. u32 reg2;
  664. pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
  665. return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
  666. }
  667. static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
  668. {
  669. u32 val;
  670. pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
  671. do {
  672. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  673. } while (!(offset & PCI_VPD_ADDR_F));
  674. pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
  675. return val;
  676. }
  677. static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
  678. {
  679. pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
  680. pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
  681. offset | PCI_VPD_ADDR_F);
  682. do {
  683. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  684. } while (offset & PCI_VPD_ADDR_F);
  685. }
  686. static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  687. u8 *data)
  688. {
  689. struct skge_port *skge = netdev_priv(dev);
  690. struct pci_dev *pdev = skge->hw->pdev;
  691. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  692. int length = eeprom->len;
  693. u16 offset = eeprom->offset;
  694. if (!cap)
  695. return -EINVAL;
  696. eeprom->magic = SKGE_EEPROM_MAGIC;
  697. while (length > 0) {
  698. u32 val = skge_vpd_read(pdev, cap, offset);
  699. int n = min_t(int, length, sizeof(val));
  700. memcpy(data, &val, n);
  701. length -= n;
  702. data += n;
  703. offset += n;
  704. }
  705. return 0;
  706. }
  707. static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  708. u8 *data)
  709. {
  710. struct skge_port *skge = netdev_priv(dev);
  711. struct pci_dev *pdev = skge->hw->pdev;
  712. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  713. int length = eeprom->len;
  714. u16 offset = eeprom->offset;
  715. if (!cap)
  716. return -EINVAL;
  717. if (eeprom->magic != SKGE_EEPROM_MAGIC)
  718. return -EINVAL;
  719. while (length > 0) {
  720. u32 val;
  721. int n = min_t(int, length, sizeof(val));
  722. if (n < sizeof(val))
  723. val = skge_vpd_read(pdev, cap, offset);
  724. memcpy(&val, data, n);
  725. skge_vpd_write(pdev, cap, offset, val);
  726. length -= n;
  727. data += n;
  728. offset += n;
  729. }
  730. return 0;
  731. }
  732. static const struct ethtool_ops skge_ethtool_ops = {
  733. .get_settings = skge_get_settings,
  734. .set_settings = skge_set_settings,
  735. .get_drvinfo = skge_get_drvinfo,
  736. .get_regs_len = skge_get_regs_len,
  737. .get_regs = skge_get_regs,
  738. .get_wol = skge_get_wol,
  739. .set_wol = skge_set_wol,
  740. .get_msglevel = skge_get_msglevel,
  741. .set_msglevel = skge_set_msglevel,
  742. .nway_reset = skge_nway_reset,
  743. .get_link = ethtool_op_get_link,
  744. .get_eeprom_len = skge_get_eeprom_len,
  745. .get_eeprom = skge_get_eeprom,
  746. .set_eeprom = skge_set_eeprom,
  747. .get_ringparam = skge_get_ring_param,
  748. .set_ringparam = skge_set_ring_param,
  749. .get_pauseparam = skge_get_pauseparam,
  750. .set_pauseparam = skge_set_pauseparam,
  751. .get_coalesce = skge_get_coalesce,
  752. .set_coalesce = skge_set_coalesce,
  753. .get_strings = skge_get_strings,
  754. .set_phys_id = skge_set_phys_id,
  755. .get_sset_count = skge_get_sset_count,
  756. .get_ethtool_stats = skge_get_ethtool_stats,
  757. };
  758. /*
  759. * Allocate ring elements and chain them together
  760. * One-to-one association of board descriptors with ring elements
  761. */
  762. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  763. {
  764. struct skge_tx_desc *d;
  765. struct skge_element *e;
  766. int i;
  767. ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
  768. if (!ring->start)
  769. return -ENOMEM;
  770. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  771. e->desc = d;
  772. if (i == ring->count - 1) {
  773. e->next = ring->start;
  774. d->next_offset = base;
  775. } else {
  776. e->next = e + 1;
  777. d->next_offset = base + (i+1) * sizeof(*d);
  778. }
  779. }
  780. ring->to_use = ring->to_clean = ring->start;
  781. return 0;
  782. }
  783. /* Allocate and setup a new buffer for receiving */
  784. static int skge_rx_setup(struct pci_dev *pdev,
  785. struct skge_element *e,
  786. struct sk_buff *skb, unsigned int bufsize)
  787. {
  788. struct skge_rx_desc *rd = e->desc;
  789. dma_addr_t map;
  790. map = pci_map_single(pdev, skb->data, bufsize,
  791. PCI_DMA_FROMDEVICE);
  792. if (pci_dma_mapping_error(pdev, map))
  793. goto mapping_error;
  794. rd->dma_lo = lower_32_bits(map);
  795. rd->dma_hi = upper_32_bits(map);
  796. e->skb = skb;
  797. rd->csum1_start = ETH_HLEN;
  798. rd->csum2_start = ETH_HLEN;
  799. rd->csum1 = 0;
  800. rd->csum2 = 0;
  801. wmb();
  802. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  803. dma_unmap_addr_set(e, mapaddr, map);
  804. dma_unmap_len_set(e, maplen, bufsize);
  805. return 0;
  806. mapping_error:
  807. if (net_ratelimit())
  808. dev_warn(&pdev->dev, "%s: rx mapping error\n",
  809. skb->dev->name);
  810. return -EIO;
  811. }
  812. /* Resume receiving using existing skb,
  813. * Note: DMA address is not changed by chip.
  814. * MTU not changed while receiver active.
  815. */
  816. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  817. {
  818. struct skge_rx_desc *rd = e->desc;
  819. rd->csum2 = 0;
  820. rd->csum2_start = ETH_HLEN;
  821. wmb();
  822. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  823. }
  824. /* Free all buffers in receive ring, assumes receiver stopped */
  825. static void skge_rx_clean(struct skge_port *skge)
  826. {
  827. struct skge_hw *hw = skge->hw;
  828. struct skge_ring *ring = &skge->rx_ring;
  829. struct skge_element *e;
  830. e = ring->start;
  831. do {
  832. struct skge_rx_desc *rd = e->desc;
  833. rd->control = 0;
  834. if (e->skb) {
  835. pci_unmap_single(hw->pdev,
  836. dma_unmap_addr(e, mapaddr),
  837. dma_unmap_len(e, maplen),
  838. PCI_DMA_FROMDEVICE);
  839. dev_kfree_skb(e->skb);
  840. e->skb = NULL;
  841. }
  842. } while ((e = e->next) != ring->start);
  843. }
  844. /* Allocate buffers for receive ring
  845. * For receive: to_clean is next received frame.
  846. */
  847. static int skge_rx_fill(struct net_device *dev)
  848. {
  849. struct skge_port *skge = netdev_priv(dev);
  850. struct skge_ring *ring = &skge->rx_ring;
  851. struct skge_element *e;
  852. e = ring->start;
  853. do {
  854. struct sk_buff *skb;
  855. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  856. GFP_KERNEL);
  857. if (!skb)
  858. return -ENOMEM;
  859. skb_reserve(skb, NET_IP_ALIGN);
  860. if (skge_rx_setup(skge->hw->pdev, e, skb, skge->rx_buf_size)) {
  861. kfree_skb(skb);
  862. return -ENOMEM;
  863. }
  864. } while ((e = e->next) != ring->start);
  865. ring->to_clean = ring->start;
  866. return 0;
  867. }
  868. static const char *skge_pause(enum pause_status status)
  869. {
  870. switch (status) {
  871. case FLOW_STAT_NONE:
  872. return "none";
  873. case FLOW_STAT_REM_SEND:
  874. return "rx only";
  875. case FLOW_STAT_LOC_SEND:
  876. return "tx_only";
  877. case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
  878. return "both";
  879. default:
  880. return "indeterminated";
  881. }
  882. }
  883. static void skge_link_up(struct skge_port *skge)
  884. {
  885. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  886. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  887. netif_carrier_on(skge->netdev);
  888. netif_wake_queue(skge->netdev);
  889. netif_info(skge, link, skge->netdev,
  890. "Link is up at %d Mbps, %s duplex, flow control %s\n",
  891. skge->speed,
  892. skge->duplex == DUPLEX_FULL ? "full" : "half",
  893. skge_pause(skge->flow_status));
  894. }
  895. static void skge_link_down(struct skge_port *skge)
  896. {
  897. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  898. netif_carrier_off(skge->netdev);
  899. netif_stop_queue(skge->netdev);
  900. netif_info(skge, link, skge->netdev, "Link is down\n");
  901. }
  902. static void xm_link_down(struct skge_hw *hw, int port)
  903. {
  904. struct net_device *dev = hw->dev[port];
  905. struct skge_port *skge = netdev_priv(dev);
  906. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  907. if (netif_carrier_ok(dev))
  908. skge_link_down(skge);
  909. }
  910. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  911. {
  912. int i;
  913. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  914. *val = xm_read16(hw, port, XM_PHY_DATA);
  915. if (hw->phy_type == SK_PHY_XMAC)
  916. goto ready;
  917. for (i = 0; i < PHY_RETRIES; i++) {
  918. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  919. goto ready;
  920. udelay(1);
  921. }
  922. return -ETIMEDOUT;
  923. ready:
  924. *val = xm_read16(hw, port, XM_PHY_DATA);
  925. return 0;
  926. }
  927. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  928. {
  929. u16 v = 0;
  930. if (__xm_phy_read(hw, port, reg, &v))
  931. pr_warning("%s: phy read timed out\n", hw->dev[port]->name);
  932. return v;
  933. }
  934. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  935. {
  936. int i;
  937. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  938. for (i = 0; i < PHY_RETRIES; i++) {
  939. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  940. goto ready;
  941. udelay(1);
  942. }
  943. return -EIO;
  944. ready:
  945. xm_write16(hw, port, XM_PHY_DATA, val);
  946. for (i = 0; i < PHY_RETRIES; i++) {
  947. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  948. return 0;
  949. udelay(1);
  950. }
  951. return -ETIMEDOUT;
  952. }
  953. static void genesis_init(struct skge_hw *hw)
  954. {
  955. /* set blink source counter */
  956. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  957. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  958. /* configure mac arbiter */
  959. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  960. /* configure mac arbiter timeout values */
  961. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  962. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  963. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  964. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  965. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  966. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  967. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  968. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  969. /* configure packet arbiter timeout */
  970. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  971. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  972. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  973. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  974. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  975. }
  976. static void genesis_reset(struct skge_hw *hw, int port)
  977. {
  978. static const u8 zero[8] = { 0 };
  979. u32 reg;
  980. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  981. /* reset the statistics module */
  982. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  983. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  984. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  985. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  986. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  987. /* disable Broadcom PHY IRQ */
  988. if (hw->phy_type == SK_PHY_BCOM)
  989. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  990. xm_outhash(hw, port, XM_HSM, zero);
  991. /* Flush TX and RX fifo */
  992. reg = xm_read32(hw, port, XM_MODE);
  993. xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
  994. xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
  995. }
  996. /* Convert mode to MII values */
  997. static const u16 phy_pause_map[] = {
  998. [FLOW_MODE_NONE] = 0,
  999. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  1000. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  1001. [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  1002. };
  1003. /* special defines for FIBER (88E1011S only) */
  1004. static const u16 fiber_pause_map[] = {
  1005. [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
  1006. [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
  1007. [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
  1008. [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
  1009. };
  1010. /* Check status of Broadcom phy link */
  1011. static void bcom_check_link(struct skge_hw *hw, int port)
  1012. {
  1013. struct net_device *dev = hw->dev[port];
  1014. struct skge_port *skge = netdev_priv(dev);
  1015. u16 status;
  1016. /* read twice because of latch */
  1017. xm_phy_read(hw, port, PHY_BCOM_STAT);
  1018. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  1019. if ((status & PHY_ST_LSYNC) == 0) {
  1020. xm_link_down(hw, port);
  1021. return;
  1022. }
  1023. if (skge->autoneg == AUTONEG_ENABLE) {
  1024. u16 lpa, aux;
  1025. if (!(status & PHY_ST_AN_OVER))
  1026. return;
  1027. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1028. if (lpa & PHY_B_AN_RF) {
  1029. netdev_notice(dev, "remote fault\n");
  1030. return;
  1031. }
  1032. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  1033. /* Check Duplex mismatch */
  1034. switch (aux & PHY_B_AS_AN_RES_MSK) {
  1035. case PHY_B_RES_1000FD:
  1036. skge->duplex = DUPLEX_FULL;
  1037. break;
  1038. case PHY_B_RES_1000HD:
  1039. skge->duplex = DUPLEX_HALF;
  1040. break;
  1041. default:
  1042. netdev_notice(dev, "duplex mismatch\n");
  1043. return;
  1044. }
  1045. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1046. switch (aux & PHY_B_AS_PAUSE_MSK) {
  1047. case PHY_B_AS_PAUSE_MSK:
  1048. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1049. break;
  1050. case PHY_B_AS_PRR:
  1051. skge->flow_status = FLOW_STAT_REM_SEND;
  1052. break;
  1053. case PHY_B_AS_PRT:
  1054. skge->flow_status = FLOW_STAT_LOC_SEND;
  1055. break;
  1056. default:
  1057. skge->flow_status = FLOW_STAT_NONE;
  1058. }
  1059. skge->speed = SPEED_1000;
  1060. }
  1061. if (!netif_carrier_ok(dev))
  1062. genesis_link_up(skge);
  1063. }
  1064. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  1065. * Phy on for 100 or 10Mbit operation
  1066. */
  1067. static void bcom_phy_init(struct skge_port *skge)
  1068. {
  1069. struct skge_hw *hw = skge->hw;
  1070. int port = skge->port;
  1071. int i;
  1072. u16 id1, r, ext, ctl;
  1073. /* magic workaround patterns for Broadcom */
  1074. static const struct {
  1075. u16 reg;
  1076. u16 val;
  1077. } A1hack[] = {
  1078. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  1079. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  1080. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  1081. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  1082. }, C0hack[] = {
  1083. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  1084. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  1085. };
  1086. /* read Id from external PHY (all have the same address) */
  1087. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  1088. /* Optimize MDIO transfer by suppressing preamble. */
  1089. r = xm_read16(hw, port, XM_MMU_CMD);
  1090. r |= XM_MMU_NO_PRE;
  1091. xm_write16(hw, port, XM_MMU_CMD, r);
  1092. switch (id1) {
  1093. case PHY_BCOM_ID1_C0:
  1094. /*
  1095. * Workaround BCOM Errata for the C0 type.
  1096. * Write magic patterns to reserved registers.
  1097. */
  1098. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  1099. xm_phy_write(hw, port,
  1100. C0hack[i].reg, C0hack[i].val);
  1101. break;
  1102. case PHY_BCOM_ID1_A1:
  1103. /*
  1104. * Workaround BCOM Errata for the A1 type.
  1105. * Write magic patterns to reserved registers.
  1106. */
  1107. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  1108. xm_phy_write(hw, port,
  1109. A1hack[i].reg, A1hack[i].val);
  1110. break;
  1111. }
  1112. /*
  1113. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  1114. * Disable Power Management after reset.
  1115. */
  1116. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  1117. r |= PHY_B_AC_DIS_PM;
  1118. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  1119. /* Dummy read */
  1120. xm_read16(hw, port, XM_ISRC);
  1121. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  1122. ctl = PHY_CT_SP1000; /* always 1000mbit */
  1123. if (skge->autoneg == AUTONEG_ENABLE) {
  1124. /*
  1125. * Workaround BCOM Errata #1 for the C5 type.
  1126. * 1000Base-T Link Acquisition Failure in Slave Mode
  1127. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1128. */
  1129. u16 adv = PHY_B_1000C_RD;
  1130. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1131. adv |= PHY_B_1000C_AHD;
  1132. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1133. adv |= PHY_B_1000C_AFD;
  1134. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  1135. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1136. } else {
  1137. if (skge->duplex == DUPLEX_FULL)
  1138. ctl |= PHY_CT_DUP_MD;
  1139. /* Force to slave */
  1140. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  1141. }
  1142. /* Set autonegotiation pause parameters */
  1143. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  1144. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  1145. /* Handle Jumbo frames */
  1146. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  1147. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1148. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  1149. ext |= PHY_B_PEC_HIGH_LA;
  1150. }
  1151. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  1152. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  1153. /* Use link status change interrupt */
  1154. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1155. }
  1156. static void xm_phy_init(struct skge_port *skge)
  1157. {
  1158. struct skge_hw *hw = skge->hw;
  1159. int port = skge->port;
  1160. u16 ctrl = 0;
  1161. if (skge->autoneg == AUTONEG_ENABLE) {
  1162. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1163. ctrl |= PHY_X_AN_HD;
  1164. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1165. ctrl |= PHY_X_AN_FD;
  1166. ctrl |= fiber_pause_map[skge->flow_control];
  1167. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  1168. /* Restart Auto-negotiation */
  1169. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  1170. } else {
  1171. /* Set DuplexMode in Config register */
  1172. if (skge->duplex == DUPLEX_FULL)
  1173. ctrl |= PHY_CT_DUP_MD;
  1174. /*
  1175. * Do NOT enable Auto-negotiation here. This would hold
  1176. * the link down because no IDLEs are transmitted
  1177. */
  1178. }
  1179. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  1180. /* Poll PHY for status changes */
  1181. mod_timer(&skge->link_timer, jiffies + LINK_HZ);
  1182. }
  1183. static int xm_check_link(struct net_device *dev)
  1184. {
  1185. struct skge_port *skge = netdev_priv(dev);
  1186. struct skge_hw *hw = skge->hw;
  1187. int port = skge->port;
  1188. u16 status;
  1189. /* read twice because of latch */
  1190. xm_phy_read(hw, port, PHY_XMAC_STAT);
  1191. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  1192. if ((status & PHY_ST_LSYNC) == 0) {
  1193. xm_link_down(hw, port);
  1194. return 0;
  1195. }
  1196. if (skge->autoneg == AUTONEG_ENABLE) {
  1197. u16 lpa, res;
  1198. if (!(status & PHY_ST_AN_OVER))
  1199. return 0;
  1200. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1201. if (lpa & PHY_B_AN_RF) {
  1202. netdev_notice(dev, "remote fault\n");
  1203. return 0;
  1204. }
  1205. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  1206. /* Check Duplex mismatch */
  1207. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  1208. case PHY_X_RS_FD:
  1209. skge->duplex = DUPLEX_FULL;
  1210. break;
  1211. case PHY_X_RS_HD:
  1212. skge->duplex = DUPLEX_HALF;
  1213. break;
  1214. default:
  1215. netdev_notice(dev, "duplex mismatch\n");
  1216. return 0;
  1217. }
  1218. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1219. if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1220. skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
  1221. (lpa & PHY_X_P_SYM_MD))
  1222. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1223. else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
  1224. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  1225. /* Enable PAUSE receive, disable PAUSE transmit */
  1226. skge->flow_status = FLOW_STAT_REM_SEND;
  1227. else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
  1228. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  1229. /* Disable PAUSE receive, enable PAUSE transmit */
  1230. skge->flow_status = FLOW_STAT_LOC_SEND;
  1231. else
  1232. skge->flow_status = FLOW_STAT_NONE;
  1233. skge->speed = SPEED_1000;
  1234. }
  1235. if (!netif_carrier_ok(dev))
  1236. genesis_link_up(skge);
  1237. return 1;
  1238. }
  1239. /* Poll to check for link coming up.
  1240. *
  1241. * Since internal PHY is wired to a level triggered pin, can't
  1242. * get an interrupt when carrier is detected, need to poll for
  1243. * link coming up.
  1244. */
  1245. static void xm_link_timer(unsigned long arg)
  1246. {
  1247. struct skge_port *skge = (struct skge_port *) arg;
  1248. struct net_device *dev = skge->netdev;
  1249. struct skge_hw *hw = skge->hw;
  1250. int port = skge->port;
  1251. int i;
  1252. unsigned long flags;
  1253. if (!netif_running(dev))
  1254. return;
  1255. spin_lock_irqsave(&hw->phy_lock, flags);
  1256. /*
  1257. * Verify that the link by checking GPIO register three times.
  1258. * This pin has the signal from the link_sync pin connected to it.
  1259. */
  1260. for (i = 0; i < 3; i++) {
  1261. if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  1262. goto link_down;
  1263. }
  1264. /* Re-enable interrupt to detect link down */
  1265. if (xm_check_link(dev)) {
  1266. u16 msk = xm_read16(hw, port, XM_IMSK);
  1267. msk &= ~XM_IS_INP_ASS;
  1268. xm_write16(hw, port, XM_IMSK, msk);
  1269. xm_read16(hw, port, XM_ISRC);
  1270. } else {
  1271. link_down:
  1272. mod_timer(&skge->link_timer,
  1273. round_jiffies(jiffies + LINK_HZ));
  1274. }
  1275. spin_unlock_irqrestore(&hw->phy_lock, flags);
  1276. }
  1277. static void genesis_mac_init(struct skge_hw *hw, int port)
  1278. {
  1279. struct net_device *dev = hw->dev[port];
  1280. struct skge_port *skge = netdev_priv(dev);
  1281. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  1282. int i;
  1283. u32 r;
  1284. static const u8 zero[6] = { 0 };
  1285. for (i = 0; i < 10; i++) {
  1286. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  1287. MFF_SET_MAC_RST);
  1288. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  1289. goto reset_ok;
  1290. udelay(1);
  1291. }
  1292. netdev_warn(dev, "genesis reset failed\n");
  1293. reset_ok:
  1294. /* Unreset the XMAC. */
  1295. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1296. /*
  1297. * Perform additional initialization for external PHYs,
  1298. * namely for the 1000baseTX cards that use the XMAC's
  1299. * GMII mode.
  1300. */
  1301. if (hw->phy_type != SK_PHY_XMAC) {
  1302. /* Take external Phy out of reset */
  1303. r = skge_read32(hw, B2_GP_IO);
  1304. if (port == 0)
  1305. r |= GP_DIR_0|GP_IO_0;
  1306. else
  1307. r |= GP_DIR_2|GP_IO_2;
  1308. skge_write32(hw, B2_GP_IO, r);
  1309. /* Enable GMII interface */
  1310. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1311. }
  1312. switch (hw->phy_type) {
  1313. case SK_PHY_XMAC:
  1314. xm_phy_init(skge);
  1315. break;
  1316. case SK_PHY_BCOM:
  1317. bcom_phy_init(skge);
  1318. bcom_check_link(hw, port);
  1319. }
  1320. /* Set Station Address */
  1321. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1322. /* We don't use match addresses so clear */
  1323. for (i = 1; i < 16; i++)
  1324. xm_outaddr(hw, port, XM_EXM(i), zero);
  1325. /* Clear MIB counters */
  1326. xm_write16(hw, port, XM_STAT_CMD,
  1327. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1328. /* Clear two times according to Errata #3 */
  1329. xm_write16(hw, port, XM_STAT_CMD,
  1330. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1331. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1332. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1333. /* We don't need the FCS appended to the packet. */
  1334. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1335. if (jumbo)
  1336. r |= XM_RX_BIG_PK_OK;
  1337. if (skge->duplex == DUPLEX_HALF) {
  1338. /*
  1339. * If in manual half duplex mode the other side might be in
  1340. * full duplex mode, so ignore if a carrier extension is not seen
  1341. * on frames received
  1342. */
  1343. r |= XM_RX_DIS_CEXT;
  1344. }
  1345. xm_write16(hw, port, XM_RX_CMD, r);
  1346. /* We want short frames padded to 60 bytes. */
  1347. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1348. /* Increase threshold for jumbo frames on dual port */
  1349. if (hw->ports > 1 && jumbo)
  1350. xm_write16(hw, port, XM_TX_THR, 1020);
  1351. else
  1352. xm_write16(hw, port, XM_TX_THR, 512);
  1353. /*
  1354. * Enable the reception of all error frames. This is is
  1355. * a necessary evil due to the design of the XMAC. The
  1356. * XMAC's receive FIFO is only 8K in size, however jumbo
  1357. * frames can be up to 9000 bytes in length. When bad
  1358. * frame filtering is enabled, the XMAC's RX FIFO operates
  1359. * in 'store and forward' mode. For this to work, the
  1360. * entire frame has to fit into the FIFO, but that means
  1361. * that jumbo frames larger than 8192 bytes will be
  1362. * truncated. Disabling all bad frame filtering causes
  1363. * the RX FIFO to operate in streaming mode, in which
  1364. * case the XMAC will start transferring frames out of the
  1365. * RX FIFO as soon as the FIFO threshold is reached.
  1366. */
  1367. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1368. /*
  1369. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1370. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1371. * and 'Octets Rx OK Hi Cnt Ov'.
  1372. */
  1373. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1374. /*
  1375. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1376. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1377. * and 'Octets Tx OK Hi Cnt Ov'.
  1378. */
  1379. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1380. /* Configure MAC arbiter */
  1381. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1382. /* configure timeout values */
  1383. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1384. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1385. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1386. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1387. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1388. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1389. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1390. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1391. /* Configure Rx MAC FIFO */
  1392. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1393. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1394. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1395. /* Configure Tx MAC FIFO */
  1396. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1397. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1398. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1399. if (jumbo) {
  1400. /* Enable frame flushing if jumbo frames used */
  1401. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1402. } else {
  1403. /* enable timeout timers if normal frames */
  1404. skge_write16(hw, B3_PA_CTRL,
  1405. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1406. }
  1407. }
  1408. static void genesis_stop(struct skge_port *skge)
  1409. {
  1410. struct skge_hw *hw = skge->hw;
  1411. int port = skge->port;
  1412. unsigned retries = 1000;
  1413. u16 cmd;
  1414. /* Disable Tx and Rx */
  1415. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1416. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1417. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1418. genesis_reset(hw, port);
  1419. /* Clear Tx packet arbiter timeout IRQ */
  1420. skge_write16(hw, B3_PA_CTRL,
  1421. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1422. /* Reset the MAC */
  1423. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1424. do {
  1425. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1426. if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
  1427. break;
  1428. } while (--retries > 0);
  1429. /* For external PHYs there must be special handling */
  1430. if (hw->phy_type != SK_PHY_XMAC) {
  1431. u32 reg = skge_read32(hw, B2_GP_IO);
  1432. if (port == 0) {
  1433. reg |= GP_DIR_0;
  1434. reg &= ~GP_IO_0;
  1435. } else {
  1436. reg |= GP_DIR_2;
  1437. reg &= ~GP_IO_2;
  1438. }
  1439. skge_write32(hw, B2_GP_IO, reg);
  1440. skge_read32(hw, B2_GP_IO);
  1441. }
  1442. xm_write16(hw, port, XM_MMU_CMD,
  1443. xm_read16(hw, port, XM_MMU_CMD)
  1444. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1445. xm_read16(hw, port, XM_MMU_CMD);
  1446. }
  1447. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1448. {
  1449. struct skge_hw *hw = skge->hw;
  1450. int port = skge->port;
  1451. int i;
  1452. unsigned long timeout = jiffies + HZ;
  1453. xm_write16(hw, port,
  1454. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1455. /* wait for update to complete */
  1456. while (xm_read16(hw, port, XM_STAT_CMD)
  1457. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1458. if (time_after(jiffies, timeout))
  1459. break;
  1460. udelay(10);
  1461. }
  1462. /* special case for 64 bit octet counter */
  1463. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1464. | xm_read32(hw, port, XM_TXO_OK_LO);
  1465. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1466. | xm_read32(hw, port, XM_RXO_OK_LO);
  1467. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1468. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1469. }
  1470. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1471. {
  1472. struct net_device *dev = hw->dev[port];
  1473. struct skge_port *skge = netdev_priv(dev);
  1474. u16 status = xm_read16(hw, port, XM_ISRC);
  1475. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1476. "mac interrupt status 0x%x\n", status);
  1477. if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
  1478. xm_link_down(hw, port);
  1479. mod_timer(&skge->link_timer, jiffies + 1);
  1480. }
  1481. if (status & XM_IS_TXF_UR) {
  1482. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1483. ++dev->stats.tx_fifo_errors;
  1484. }
  1485. }
  1486. static void genesis_link_up(struct skge_port *skge)
  1487. {
  1488. struct skge_hw *hw = skge->hw;
  1489. int port = skge->port;
  1490. u16 cmd, msk;
  1491. u32 mode;
  1492. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1493. /*
  1494. * enabling pause frame reception is required for 1000BT
  1495. * because the XMAC is not reset if the link is going down
  1496. */
  1497. if (skge->flow_status == FLOW_STAT_NONE ||
  1498. skge->flow_status == FLOW_STAT_LOC_SEND)
  1499. /* Disable Pause Frame Reception */
  1500. cmd |= XM_MMU_IGN_PF;
  1501. else
  1502. /* Enable Pause Frame Reception */
  1503. cmd &= ~XM_MMU_IGN_PF;
  1504. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1505. mode = xm_read32(hw, port, XM_MODE);
  1506. if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
  1507. skge->flow_status == FLOW_STAT_LOC_SEND) {
  1508. /*
  1509. * Configure Pause Frame Generation
  1510. * Use internal and external Pause Frame Generation.
  1511. * Sending pause frames is edge triggered.
  1512. * Send a Pause frame with the maximum pause time if
  1513. * internal oder external FIFO full condition occurs.
  1514. * Send a zero pause time frame to re-start transmission.
  1515. */
  1516. /* XM_PAUSE_DA = '010000C28001' (default) */
  1517. /* XM_MAC_PTIME = 0xffff (maximum) */
  1518. /* remember this value is defined in big endian (!) */
  1519. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1520. mode |= XM_PAUSE_MODE;
  1521. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1522. } else {
  1523. /*
  1524. * disable pause frame generation is required for 1000BT
  1525. * because the XMAC is not reset if the link is going down
  1526. */
  1527. /* Disable Pause Mode in Mode Register */
  1528. mode &= ~XM_PAUSE_MODE;
  1529. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1530. }
  1531. xm_write32(hw, port, XM_MODE, mode);
  1532. /* Turn on detection of Tx underrun */
  1533. msk = xm_read16(hw, port, XM_IMSK);
  1534. msk &= ~XM_IS_TXF_UR;
  1535. xm_write16(hw, port, XM_IMSK, msk);
  1536. xm_read16(hw, port, XM_ISRC);
  1537. /* get MMU Command Reg. */
  1538. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1539. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1540. cmd |= XM_MMU_GMII_FD;
  1541. /*
  1542. * Workaround BCOM Errata (#10523) for all BCom Phys
  1543. * Enable Power Management after link up
  1544. */
  1545. if (hw->phy_type == SK_PHY_BCOM) {
  1546. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1547. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1548. & ~PHY_B_AC_DIS_PM);
  1549. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1550. }
  1551. /* enable Rx/Tx */
  1552. xm_write16(hw, port, XM_MMU_CMD,
  1553. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1554. skge_link_up(skge);
  1555. }
  1556. static inline void bcom_phy_intr(struct skge_port *skge)
  1557. {
  1558. struct skge_hw *hw = skge->hw;
  1559. int port = skge->port;
  1560. u16 isrc;
  1561. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1562. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1563. "phy interrupt status 0x%x\n", isrc);
  1564. if (isrc & PHY_B_IS_PSE)
  1565. pr_err("%s: uncorrectable pair swap error\n",
  1566. hw->dev[port]->name);
  1567. /* Workaround BCom Errata:
  1568. * enable and disable loopback mode if "NO HCD" occurs.
  1569. */
  1570. if (isrc & PHY_B_IS_NO_HDCL) {
  1571. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1572. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1573. ctrl | PHY_CT_LOOP);
  1574. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1575. ctrl & ~PHY_CT_LOOP);
  1576. }
  1577. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1578. bcom_check_link(hw, port);
  1579. }
  1580. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1581. {
  1582. int i;
  1583. gma_write16(hw, port, GM_SMI_DATA, val);
  1584. gma_write16(hw, port, GM_SMI_CTRL,
  1585. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1586. for (i = 0; i < PHY_RETRIES; i++) {
  1587. udelay(1);
  1588. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1589. return 0;
  1590. }
  1591. pr_warning("%s: phy write timeout\n", hw->dev[port]->name);
  1592. return -EIO;
  1593. }
  1594. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1595. {
  1596. int i;
  1597. gma_write16(hw, port, GM_SMI_CTRL,
  1598. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1599. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1600. for (i = 0; i < PHY_RETRIES; i++) {
  1601. udelay(1);
  1602. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1603. goto ready;
  1604. }
  1605. return -ETIMEDOUT;
  1606. ready:
  1607. *val = gma_read16(hw, port, GM_SMI_DATA);
  1608. return 0;
  1609. }
  1610. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1611. {
  1612. u16 v = 0;
  1613. if (__gm_phy_read(hw, port, reg, &v))
  1614. pr_warning("%s: phy read timeout\n", hw->dev[port]->name);
  1615. return v;
  1616. }
  1617. /* Marvell Phy Initialization */
  1618. static void yukon_init(struct skge_hw *hw, int port)
  1619. {
  1620. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1621. u16 ctrl, ct1000, adv;
  1622. if (skge->autoneg == AUTONEG_ENABLE) {
  1623. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1624. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1625. PHY_M_EC_MAC_S_MSK);
  1626. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1627. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1628. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1629. }
  1630. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1631. if (skge->autoneg == AUTONEG_DISABLE)
  1632. ctrl &= ~PHY_CT_ANE;
  1633. ctrl |= PHY_CT_RESET;
  1634. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1635. ctrl = 0;
  1636. ct1000 = 0;
  1637. adv = PHY_AN_CSMA;
  1638. if (skge->autoneg == AUTONEG_ENABLE) {
  1639. if (hw->copper) {
  1640. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1641. ct1000 |= PHY_M_1000C_AFD;
  1642. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1643. ct1000 |= PHY_M_1000C_AHD;
  1644. if (skge->advertising & ADVERTISED_100baseT_Full)
  1645. adv |= PHY_M_AN_100_FD;
  1646. if (skge->advertising & ADVERTISED_100baseT_Half)
  1647. adv |= PHY_M_AN_100_HD;
  1648. if (skge->advertising & ADVERTISED_10baseT_Full)
  1649. adv |= PHY_M_AN_10_FD;
  1650. if (skge->advertising & ADVERTISED_10baseT_Half)
  1651. adv |= PHY_M_AN_10_HD;
  1652. /* Set Flow-control capabilities */
  1653. adv |= phy_pause_map[skge->flow_control];
  1654. } else {
  1655. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1656. adv |= PHY_M_AN_1000X_AFD;
  1657. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1658. adv |= PHY_M_AN_1000X_AHD;
  1659. adv |= fiber_pause_map[skge->flow_control];
  1660. }
  1661. /* Restart Auto-negotiation */
  1662. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1663. } else {
  1664. /* forced speed/duplex settings */
  1665. ct1000 = PHY_M_1000C_MSE;
  1666. if (skge->duplex == DUPLEX_FULL)
  1667. ctrl |= PHY_CT_DUP_MD;
  1668. switch (skge->speed) {
  1669. case SPEED_1000:
  1670. ctrl |= PHY_CT_SP1000;
  1671. break;
  1672. case SPEED_100:
  1673. ctrl |= PHY_CT_SP100;
  1674. break;
  1675. }
  1676. ctrl |= PHY_CT_RESET;
  1677. }
  1678. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1679. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1680. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1681. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1682. if (skge->autoneg == AUTONEG_ENABLE)
  1683. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1684. else
  1685. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1686. }
  1687. static void yukon_reset(struct skge_hw *hw, int port)
  1688. {
  1689. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1690. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1691. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1692. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1693. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1694. gma_write16(hw, port, GM_RX_CTRL,
  1695. gma_read16(hw, port, GM_RX_CTRL)
  1696. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1697. }
  1698. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1699. static int is_yukon_lite_a0(struct skge_hw *hw)
  1700. {
  1701. u32 reg;
  1702. int ret;
  1703. if (hw->chip_id != CHIP_ID_YUKON)
  1704. return 0;
  1705. reg = skge_read32(hw, B2_FAR);
  1706. skge_write8(hw, B2_FAR + 3, 0xff);
  1707. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1708. skge_write32(hw, B2_FAR, reg);
  1709. return ret;
  1710. }
  1711. static void yukon_mac_init(struct skge_hw *hw, int port)
  1712. {
  1713. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1714. int i;
  1715. u32 reg;
  1716. const u8 *addr = hw->dev[port]->dev_addr;
  1717. /* WA code for COMA mode -- set PHY reset */
  1718. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1719. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1720. reg = skge_read32(hw, B2_GP_IO);
  1721. reg |= GP_DIR_9 | GP_IO_9;
  1722. skge_write32(hw, B2_GP_IO, reg);
  1723. }
  1724. /* hard reset */
  1725. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1726. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1727. /* WA code for COMA mode -- clear PHY reset */
  1728. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1729. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1730. reg = skge_read32(hw, B2_GP_IO);
  1731. reg |= GP_DIR_9;
  1732. reg &= ~GP_IO_9;
  1733. skge_write32(hw, B2_GP_IO, reg);
  1734. }
  1735. /* Set hardware config mode */
  1736. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1737. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1738. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1739. /* Clear GMC reset */
  1740. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1741. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1742. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1743. if (skge->autoneg == AUTONEG_DISABLE) {
  1744. reg = GM_GPCR_AU_ALL_DIS;
  1745. gma_write16(hw, port, GM_GP_CTRL,
  1746. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1747. switch (skge->speed) {
  1748. case SPEED_1000:
  1749. reg &= ~GM_GPCR_SPEED_100;
  1750. reg |= GM_GPCR_SPEED_1000;
  1751. break;
  1752. case SPEED_100:
  1753. reg &= ~GM_GPCR_SPEED_1000;
  1754. reg |= GM_GPCR_SPEED_100;
  1755. break;
  1756. case SPEED_10:
  1757. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1758. break;
  1759. }
  1760. if (skge->duplex == DUPLEX_FULL)
  1761. reg |= GM_GPCR_DUP_FULL;
  1762. } else
  1763. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1764. switch (skge->flow_control) {
  1765. case FLOW_MODE_NONE:
  1766. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1767. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1768. break;
  1769. case FLOW_MODE_LOC_SEND:
  1770. /* disable Rx flow-control */
  1771. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1772. break;
  1773. case FLOW_MODE_SYMMETRIC:
  1774. case FLOW_MODE_SYM_OR_REM:
  1775. /* enable Tx & Rx flow-control */
  1776. break;
  1777. }
  1778. gma_write16(hw, port, GM_GP_CTRL, reg);
  1779. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1780. yukon_init(hw, port);
  1781. /* MIB clear */
  1782. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1783. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1784. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1785. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1786. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1787. /* transmit control */
  1788. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1789. /* receive control reg: unicast + multicast + no FCS */
  1790. gma_write16(hw, port, GM_RX_CTRL,
  1791. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1792. /* transmit flow control */
  1793. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1794. /* transmit parameter */
  1795. gma_write16(hw, port, GM_TX_PARAM,
  1796. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1797. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1798. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1799. /* configure the Serial Mode Register */
  1800. reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
  1801. | GM_SMOD_VLAN_ENA
  1802. | IPG_DATA_VAL(IPG_DATA_DEF);
  1803. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  1804. reg |= GM_SMOD_JUMBO_ENA;
  1805. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1806. /* physical address: used for pause frames */
  1807. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1808. /* virtual address for data */
  1809. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1810. /* enable interrupt mask for counter overflows */
  1811. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1812. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1813. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1814. /* Initialize Mac Fifo */
  1815. /* Configure Rx MAC FIFO */
  1816. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1817. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1818. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1819. if (is_yukon_lite_a0(hw))
  1820. reg &= ~GMF_RX_F_FL_ON;
  1821. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1822. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1823. /*
  1824. * because Pause Packet Truncation in GMAC is not working
  1825. * we have to increase the Flush Threshold to 64 bytes
  1826. * in order to flush pause packets in Rx FIFO on Yukon-1
  1827. */
  1828. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1829. /* Configure Tx MAC FIFO */
  1830. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1831. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1832. }
  1833. /* Go into power down mode */
  1834. static void yukon_suspend(struct skge_hw *hw, int port)
  1835. {
  1836. u16 ctrl;
  1837. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1838. ctrl |= PHY_M_PC_POL_R_DIS;
  1839. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1840. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1841. ctrl |= PHY_CT_RESET;
  1842. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1843. /* switch IEEE compatible power down mode on */
  1844. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1845. ctrl |= PHY_CT_PDOWN;
  1846. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1847. }
  1848. static void yukon_stop(struct skge_port *skge)
  1849. {
  1850. struct skge_hw *hw = skge->hw;
  1851. int port = skge->port;
  1852. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1853. yukon_reset(hw, port);
  1854. gma_write16(hw, port, GM_GP_CTRL,
  1855. gma_read16(hw, port, GM_GP_CTRL)
  1856. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1857. gma_read16(hw, port, GM_GP_CTRL);
  1858. yukon_suspend(hw, port);
  1859. /* set GPHY Control reset */
  1860. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1861. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1862. }
  1863. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1864. {
  1865. struct skge_hw *hw = skge->hw;
  1866. int port = skge->port;
  1867. int i;
  1868. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1869. | gma_read32(hw, port, GM_TXO_OK_LO);
  1870. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1871. | gma_read32(hw, port, GM_RXO_OK_LO);
  1872. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1873. data[i] = gma_read32(hw, port,
  1874. skge_stats[i].gma_offset);
  1875. }
  1876. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1877. {
  1878. struct net_device *dev = hw->dev[port];
  1879. struct skge_port *skge = netdev_priv(dev);
  1880. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1881. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1882. "mac interrupt status 0x%x\n", status);
  1883. if (status & GM_IS_RX_FF_OR) {
  1884. ++dev->stats.rx_fifo_errors;
  1885. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1886. }
  1887. if (status & GM_IS_TX_FF_UR) {
  1888. ++dev->stats.tx_fifo_errors;
  1889. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1890. }
  1891. }
  1892. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1893. {
  1894. switch (aux & PHY_M_PS_SPEED_MSK) {
  1895. case PHY_M_PS_SPEED_1000:
  1896. return SPEED_1000;
  1897. case PHY_M_PS_SPEED_100:
  1898. return SPEED_100;
  1899. default:
  1900. return SPEED_10;
  1901. }
  1902. }
  1903. static void yukon_link_up(struct skge_port *skge)
  1904. {
  1905. struct skge_hw *hw = skge->hw;
  1906. int port = skge->port;
  1907. u16 reg;
  1908. /* Enable Transmit FIFO Underrun */
  1909. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1910. reg = gma_read16(hw, port, GM_GP_CTRL);
  1911. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1912. reg |= GM_GPCR_DUP_FULL;
  1913. /* enable Rx/Tx */
  1914. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1915. gma_write16(hw, port, GM_GP_CTRL, reg);
  1916. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1917. skge_link_up(skge);
  1918. }
  1919. static void yukon_link_down(struct skge_port *skge)
  1920. {
  1921. struct skge_hw *hw = skge->hw;
  1922. int port = skge->port;
  1923. u16 ctrl;
  1924. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1925. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1926. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1927. if (skge->flow_status == FLOW_STAT_REM_SEND) {
  1928. ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
  1929. ctrl |= PHY_M_AN_ASP;
  1930. /* restore Asymmetric Pause bit */
  1931. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
  1932. }
  1933. skge_link_down(skge);
  1934. yukon_init(hw, port);
  1935. }
  1936. static void yukon_phy_intr(struct skge_port *skge)
  1937. {
  1938. struct skge_hw *hw = skge->hw;
  1939. int port = skge->port;
  1940. const char *reason = NULL;
  1941. u16 istatus, phystat;
  1942. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1943. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1944. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1945. "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
  1946. if (istatus & PHY_M_IS_AN_COMPL) {
  1947. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1948. & PHY_M_AN_RF) {
  1949. reason = "remote fault";
  1950. goto failed;
  1951. }
  1952. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1953. reason = "master/slave fault";
  1954. goto failed;
  1955. }
  1956. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1957. reason = "speed/duplex";
  1958. goto failed;
  1959. }
  1960. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1961. ? DUPLEX_FULL : DUPLEX_HALF;
  1962. skge->speed = yukon_speed(hw, phystat);
  1963. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1964. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1965. case PHY_M_PS_PAUSE_MSK:
  1966. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1967. break;
  1968. case PHY_M_PS_RX_P_EN:
  1969. skge->flow_status = FLOW_STAT_REM_SEND;
  1970. break;
  1971. case PHY_M_PS_TX_P_EN:
  1972. skge->flow_status = FLOW_STAT_LOC_SEND;
  1973. break;
  1974. default:
  1975. skge->flow_status = FLOW_STAT_NONE;
  1976. }
  1977. if (skge->flow_status == FLOW_STAT_NONE ||
  1978. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1979. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1980. else
  1981. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1982. yukon_link_up(skge);
  1983. return;
  1984. }
  1985. if (istatus & PHY_M_IS_LSP_CHANGE)
  1986. skge->speed = yukon_speed(hw, phystat);
  1987. if (istatus & PHY_M_IS_DUP_CHANGE)
  1988. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1989. if (istatus & PHY_M_IS_LST_CHANGE) {
  1990. if (phystat & PHY_M_PS_LINK_UP)
  1991. yukon_link_up(skge);
  1992. else
  1993. yukon_link_down(skge);
  1994. }
  1995. return;
  1996. failed:
  1997. pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
  1998. /* XXX restart autonegotiation? */
  1999. }
  2000. static void skge_phy_reset(struct skge_port *skge)
  2001. {
  2002. struct skge_hw *hw = skge->hw;
  2003. int port = skge->port;
  2004. struct net_device *dev = hw->dev[port];
  2005. netif_stop_queue(skge->netdev);
  2006. netif_carrier_off(skge->netdev);
  2007. spin_lock_bh(&hw->phy_lock);
  2008. if (is_genesis(hw)) {
  2009. genesis_reset(hw, port);
  2010. genesis_mac_init(hw, port);
  2011. } else {
  2012. yukon_reset(hw, port);
  2013. yukon_init(hw, port);
  2014. }
  2015. spin_unlock_bh(&hw->phy_lock);
  2016. skge_set_multicast(dev);
  2017. }
  2018. /* Basic MII support */
  2019. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2020. {
  2021. struct mii_ioctl_data *data = if_mii(ifr);
  2022. struct skge_port *skge = netdev_priv(dev);
  2023. struct skge_hw *hw = skge->hw;
  2024. int err = -EOPNOTSUPP;
  2025. if (!netif_running(dev))
  2026. return -ENODEV; /* Phy still in reset */
  2027. switch (cmd) {
  2028. case SIOCGMIIPHY:
  2029. data->phy_id = hw->phy_addr;
  2030. /* fallthru */
  2031. case SIOCGMIIREG: {
  2032. u16 val = 0;
  2033. spin_lock_bh(&hw->phy_lock);
  2034. if (is_genesis(hw))
  2035. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2036. else
  2037. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2038. spin_unlock_bh(&hw->phy_lock);
  2039. data->val_out = val;
  2040. break;
  2041. }
  2042. case SIOCSMIIREG:
  2043. spin_lock_bh(&hw->phy_lock);
  2044. if (is_genesis(hw))
  2045. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2046. data->val_in);
  2047. else
  2048. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2049. data->val_in);
  2050. spin_unlock_bh(&hw->phy_lock);
  2051. break;
  2052. }
  2053. return err;
  2054. }
  2055. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  2056. {
  2057. u32 end;
  2058. start /= 8;
  2059. len /= 8;
  2060. end = start + len - 1;
  2061. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  2062. skge_write32(hw, RB_ADDR(q, RB_START), start);
  2063. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  2064. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  2065. skge_write32(hw, RB_ADDR(q, RB_END), end);
  2066. if (q == Q_R1 || q == Q_R2) {
  2067. /* Set thresholds on receive queue's */
  2068. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  2069. start + (2*len)/3);
  2070. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  2071. start + (len/3));
  2072. } else {
  2073. /* Enable store & forward on Tx queue's because
  2074. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  2075. */
  2076. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  2077. }
  2078. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  2079. }
  2080. /* Setup Bus Memory Interface */
  2081. static void skge_qset(struct skge_port *skge, u16 q,
  2082. const struct skge_element *e)
  2083. {
  2084. struct skge_hw *hw = skge->hw;
  2085. u32 watermark = 0x600;
  2086. u64 base = skge->dma + (e->desc - skge->mem);
  2087. /* optimization to reduce window on 32bit/33mhz */
  2088. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  2089. watermark /= 2;
  2090. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  2091. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  2092. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  2093. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  2094. }
  2095. static int skge_up(struct net_device *dev)
  2096. {
  2097. struct skge_port *skge = netdev_priv(dev);
  2098. struct skge_hw *hw = skge->hw;
  2099. int port = skge->port;
  2100. u32 chunk, ram_addr;
  2101. size_t rx_size, tx_size;
  2102. int err;
  2103. if (!is_valid_ether_addr(dev->dev_addr))
  2104. return -EINVAL;
  2105. netif_info(skge, ifup, skge->netdev, "enabling interface\n");
  2106. if (dev->mtu > RX_BUF_SIZE)
  2107. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  2108. else
  2109. skge->rx_buf_size = RX_BUF_SIZE;
  2110. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  2111. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  2112. skge->mem_size = tx_size + rx_size;
  2113. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  2114. if (!skge->mem)
  2115. return -ENOMEM;
  2116. BUG_ON(skge->dma & 7);
  2117. if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
  2118. dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
  2119. err = -EINVAL;
  2120. goto free_pci_mem;
  2121. }
  2122. memset(skge->mem, 0, skge->mem_size);
  2123. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  2124. if (err)
  2125. goto free_pci_mem;
  2126. err = skge_rx_fill(dev);
  2127. if (err)
  2128. goto free_rx_ring;
  2129. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  2130. skge->dma + rx_size);
  2131. if (err)
  2132. goto free_rx_ring;
  2133. if (hw->ports == 1) {
  2134. err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
  2135. dev->name, hw);
  2136. if (err) {
  2137. netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
  2138. hw->pdev->irq, err);
  2139. goto free_tx_ring;
  2140. }
  2141. }
  2142. /* Initialize MAC */
  2143. netif_carrier_off(dev);
  2144. spin_lock_bh(&hw->phy_lock);
  2145. if (is_genesis(hw))
  2146. genesis_mac_init(hw, port);
  2147. else
  2148. yukon_mac_init(hw, port);
  2149. spin_unlock_bh(&hw->phy_lock);
  2150. /* Configure RAMbuffers - equally between ports and tx/rx */
  2151. chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
  2152. ram_addr = hw->ram_offset + 2 * chunk * port;
  2153. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  2154. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  2155. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  2156. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  2157. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  2158. /* Start receiver BMU */
  2159. wmb();
  2160. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  2161. skge_led(skge, LED_MODE_ON);
  2162. spin_lock_irq(&hw->hw_lock);
  2163. hw->intr_mask |= portmask[port];
  2164. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2165. skge_read32(hw, B0_IMSK);
  2166. spin_unlock_irq(&hw->hw_lock);
  2167. napi_enable(&skge->napi);
  2168. skge_set_multicast(dev);
  2169. return 0;
  2170. free_tx_ring:
  2171. kfree(skge->tx_ring.start);
  2172. free_rx_ring:
  2173. skge_rx_clean(skge);
  2174. kfree(skge->rx_ring.start);
  2175. free_pci_mem:
  2176. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2177. skge->mem = NULL;
  2178. return err;
  2179. }
  2180. /* stop receiver */
  2181. static void skge_rx_stop(struct skge_hw *hw, int port)
  2182. {
  2183. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  2184. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  2185. RB_RST_SET|RB_DIS_OP_MD);
  2186. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  2187. }
  2188. static int skge_down(struct net_device *dev)
  2189. {
  2190. struct skge_port *skge = netdev_priv(dev);
  2191. struct skge_hw *hw = skge->hw;
  2192. int port = skge->port;
  2193. if (skge->mem == NULL)
  2194. return 0;
  2195. netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
  2196. netif_tx_disable(dev);
  2197. if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
  2198. del_timer_sync(&skge->link_timer);
  2199. napi_disable(&skge->napi);
  2200. netif_carrier_off(dev);
  2201. spin_lock_irq(&hw->hw_lock);
  2202. hw->intr_mask &= ~portmask[port];
  2203. skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
  2204. skge_read32(hw, B0_IMSK);
  2205. spin_unlock_irq(&hw->hw_lock);
  2206. if (hw->ports == 1)
  2207. free_irq(hw->pdev->irq, hw);
  2208. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  2209. if (is_genesis(hw))
  2210. genesis_stop(skge);
  2211. else
  2212. yukon_stop(skge);
  2213. /* Stop transmitter */
  2214. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  2215. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  2216. RB_RST_SET|RB_DIS_OP_MD);
  2217. /* Disable Force Sync bit and Enable Alloc bit */
  2218. skge_write8(hw, SK_REG(port, TXA_CTRL),
  2219. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  2220. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  2221. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  2222. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  2223. /* Reset PCI FIFO */
  2224. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  2225. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  2226. /* Reset the RAM Buffer async Tx queue */
  2227. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  2228. skge_rx_stop(hw, port);
  2229. if (is_genesis(hw)) {
  2230. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  2231. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  2232. } else {
  2233. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  2234. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  2235. }
  2236. skge_led(skge, LED_MODE_OFF);
  2237. netif_tx_lock_bh(dev);
  2238. skge_tx_clean(dev);
  2239. netif_tx_unlock_bh(dev);
  2240. skge_rx_clean(skge);
  2241. kfree(skge->rx_ring.start);
  2242. kfree(skge->tx_ring.start);
  2243. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2244. skge->mem = NULL;
  2245. return 0;
  2246. }
  2247. static inline int skge_avail(const struct skge_ring *ring)
  2248. {
  2249. smp_mb();
  2250. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  2251. + (ring->to_clean - ring->to_use) - 1;
  2252. }
  2253. static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
  2254. struct net_device *dev)
  2255. {
  2256. struct skge_port *skge = netdev_priv(dev);
  2257. struct skge_hw *hw = skge->hw;
  2258. struct skge_element *e;
  2259. struct skge_tx_desc *td;
  2260. int i;
  2261. u32 control, len;
  2262. dma_addr_t map;
  2263. if (skb_padto(skb, ETH_ZLEN))
  2264. return NETDEV_TX_OK;
  2265. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
  2266. return NETDEV_TX_BUSY;
  2267. e = skge->tx_ring.to_use;
  2268. td = e->desc;
  2269. BUG_ON(td->control & BMU_OWN);
  2270. e->skb = skb;
  2271. len = skb_headlen(skb);
  2272. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2273. if (pci_dma_mapping_error(hw->pdev, map))
  2274. goto mapping_error;
  2275. dma_unmap_addr_set(e, mapaddr, map);
  2276. dma_unmap_len_set(e, maplen, len);
  2277. td->dma_lo = lower_32_bits(map);
  2278. td->dma_hi = upper_32_bits(map);
  2279. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2280. const int offset = skb_checksum_start_offset(skb);
  2281. /* This seems backwards, but it is what the sk98lin
  2282. * does. Looks like hardware is wrong?
  2283. */
  2284. if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
  2285. hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  2286. control = BMU_TCP_CHECK;
  2287. else
  2288. control = BMU_UDP_CHECK;
  2289. td->csum_offs = 0;
  2290. td->csum_start = offset;
  2291. td->csum_write = offset + skb->csum_offset;
  2292. } else
  2293. control = BMU_CHECK;
  2294. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  2295. control |= BMU_EOF | BMU_IRQ_EOF;
  2296. else {
  2297. struct skge_tx_desc *tf = td;
  2298. control |= BMU_STFWD;
  2299. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2300. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2301. map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
  2302. skb_frag_size(frag), DMA_TO_DEVICE);
  2303. if (dma_mapping_error(&hw->pdev->dev, map))
  2304. goto mapping_unwind;
  2305. e = e->next;
  2306. e->skb = skb;
  2307. tf = e->desc;
  2308. BUG_ON(tf->control & BMU_OWN);
  2309. tf->dma_lo = lower_32_bits(map);
  2310. tf->dma_hi = upper_32_bits(map);
  2311. dma_unmap_addr_set(e, mapaddr, map);
  2312. dma_unmap_len_set(e, maplen, skb_frag_size(frag));
  2313. tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
  2314. }
  2315. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  2316. }
  2317. /* Make sure all the descriptors written */
  2318. wmb();
  2319. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  2320. wmb();
  2321. netdev_sent_queue(dev, skb->len);
  2322. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  2323. netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
  2324. "tx queued, slot %td, len %d\n",
  2325. e - skge->tx_ring.start, skb->len);
  2326. skge->tx_ring.to_use = e->next;
  2327. smp_wmb();
  2328. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  2329. netdev_dbg(dev, "transmit queue full\n");
  2330. netif_stop_queue(dev);
  2331. }
  2332. return NETDEV_TX_OK;
  2333. mapping_unwind:
  2334. /* unroll any pages that were already mapped. */
  2335. if (e != skge->tx_ring.to_use) {
  2336. struct skge_element *u;
  2337. for (u = skge->tx_ring.to_use->next; u != e; u = u->next)
  2338. pci_unmap_page(hw->pdev, dma_unmap_addr(u, mapaddr),
  2339. dma_unmap_len(u, maplen),
  2340. PCI_DMA_TODEVICE);
  2341. e = skge->tx_ring.to_use;
  2342. }
  2343. /* undo the mapping for the skb header */
  2344. pci_unmap_single(hw->pdev, dma_unmap_addr(e, mapaddr),
  2345. dma_unmap_len(e, maplen),
  2346. PCI_DMA_TODEVICE);
  2347. mapping_error:
  2348. /* mapping error causes error message and packet to be discarded. */
  2349. if (net_ratelimit())
  2350. dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
  2351. dev_kfree_skb(skb);
  2352. return NETDEV_TX_OK;
  2353. }
  2354. /* Free resources associated with this reing element */
  2355. static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
  2356. u32 control)
  2357. {
  2358. /* skb header vs. fragment */
  2359. if (control & BMU_STF)
  2360. pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
  2361. dma_unmap_len(e, maplen),
  2362. PCI_DMA_TODEVICE);
  2363. else
  2364. pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
  2365. dma_unmap_len(e, maplen),
  2366. PCI_DMA_TODEVICE);
  2367. }
  2368. /* Free all buffers in transmit ring */
  2369. static void skge_tx_clean(struct net_device *dev)
  2370. {
  2371. struct skge_port *skge = netdev_priv(dev);
  2372. struct skge_element *e;
  2373. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2374. struct skge_tx_desc *td = e->desc;
  2375. skge_tx_unmap(skge->hw->pdev, e, td->control);
  2376. if (td->control & BMU_EOF)
  2377. dev_kfree_skb(e->skb);
  2378. td->control = 0;
  2379. }
  2380. netdev_reset_queue(dev);
  2381. skge->tx_ring.to_clean = e;
  2382. }
  2383. static void skge_tx_timeout(struct net_device *dev)
  2384. {
  2385. struct skge_port *skge = netdev_priv(dev);
  2386. netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
  2387. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2388. skge_tx_clean(dev);
  2389. netif_wake_queue(dev);
  2390. }
  2391. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2392. {
  2393. int err;
  2394. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2395. return -EINVAL;
  2396. if (!netif_running(dev)) {
  2397. dev->mtu = new_mtu;
  2398. return 0;
  2399. }
  2400. skge_down(dev);
  2401. dev->mtu = new_mtu;
  2402. err = skge_up(dev);
  2403. if (err)
  2404. dev_close(dev);
  2405. return err;
  2406. }
  2407. static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
  2408. static void genesis_add_filter(u8 filter[8], const u8 *addr)
  2409. {
  2410. u32 crc, bit;
  2411. crc = ether_crc_le(ETH_ALEN, addr);
  2412. bit = ~crc & 0x3f;
  2413. filter[bit/8] |= 1 << (bit%8);
  2414. }
  2415. static void genesis_set_multicast(struct net_device *dev)
  2416. {
  2417. struct skge_port *skge = netdev_priv(dev);
  2418. struct skge_hw *hw = skge->hw;
  2419. int port = skge->port;
  2420. struct netdev_hw_addr *ha;
  2421. u32 mode;
  2422. u8 filter[8];
  2423. mode = xm_read32(hw, port, XM_MODE);
  2424. mode |= XM_MD_ENA_HASH;
  2425. if (dev->flags & IFF_PROMISC)
  2426. mode |= XM_MD_ENA_PROM;
  2427. else
  2428. mode &= ~XM_MD_ENA_PROM;
  2429. if (dev->flags & IFF_ALLMULTI)
  2430. memset(filter, 0xff, sizeof(filter));
  2431. else {
  2432. memset(filter, 0, sizeof(filter));
  2433. if (skge->flow_status == FLOW_STAT_REM_SEND ||
  2434. skge->flow_status == FLOW_STAT_SYMMETRIC)
  2435. genesis_add_filter(filter, pause_mc_addr);
  2436. netdev_for_each_mc_addr(ha, dev)
  2437. genesis_add_filter(filter, ha->addr);
  2438. }
  2439. xm_write32(hw, port, XM_MODE, mode);
  2440. xm_outhash(hw, port, XM_HSM, filter);
  2441. }
  2442. static void yukon_add_filter(u8 filter[8], const u8 *addr)
  2443. {
  2444. u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
  2445. filter[bit/8] |= 1 << (bit%8);
  2446. }
  2447. static void yukon_set_multicast(struct net_device *dev)
  2448. {
  2449. struct skge_port *skge = netdev_priv(dev);
  2450. struct skge_hw *hw = skge->hw;
  2451. int port = skge->port;
  2452. struct netdev_hw_addr *ha;
  2453. int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
  2454. skge->flow_status == FLOW_STAT_SYMMETRIC);
  2455. u16 reg;
  2456. u8 filter[8];
  2457. memset(filter, 0, sizeof(filter));
  2458. reg = gma_read16(hw, port, GM_RX_CTRL);
  2459. reg |= GM_RXCR_UCF_ENA;
  2460. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2461. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2462. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2463. memset(filter, 0xff, sizeof(filter));
  2464. else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
  2465. reg &= ~GM_RXCR_MCF_ENA;
  2466. else {
  2467. reg |= GM_RXCR_MCF_ENA;
  2468. if (rx_pause)
  2469. yukon_add_filter(filter, pause_mc_addr);
  2470. netdev_for_each_mc_addr(ha, dev)
  2471. yukon_add_filter(filter, ha->addr);
  2472. }
  2473. gma_write16(hw, port, GM_MC_ADDR_H1,
  2474. (u16)filter[0] | ((u16)filter[1] << 8));
  2475. gma_write16(hw, port, GM_MC_ADDR_H2,
  2476. (u16)filter[2] | ((u16)filter[3] << 8));
  2477. gma_write16(hw, port, GM_MC_ADDR_H3,
  2478. (u16)filter[4] | ((u16)filter[5] << 8));
  2479. gma_write16(hw, port, GM_MC_ADDR_H4,
  2480. (u16)filter[6] | ((u16)filter[7] << 8));
  2481. gma_write16(hw, port, GM_RX_CTRL, reg);
  2482. }
  2483. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2484. {
  2485. if (is_genesis(hw))
  2486. return status >> XMR_FS_LEN_SHIFT;
  2487. else
  2488. return status >> GMR_FS_LEN_SHIFT;
  2489. }
  2490. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2491. {
  2492. if (is_genesis(hw))
  2493. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2494. else
  2495. return (status & GMR_FS_ANY_ERR) ||
  2496. (status & GMR_FS_RX_OK) == 0;
  2497. }
  2498. static void skge_set_multicast(struct net_device *dev)
  2499. {
  2500. struct skge_port *skge = netdev_priv(dev);
  2501. if (is_genesis(skge->hw))
  2502. genesis_set_multicast(dev);
  2503. else
  2504. yukon_set_multicast(dev);
  2505. }
  2506. /* Get receive buffer from descriptor.
  2507. * Handles copy of small buffers and reallocation failures
  2508. */
  2509. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2510. struct skge_element *e,
  2511. u32 control, u32 status, u16 csum)
  2512. {
  2513. struct skge_port *skge = netdev_priv(dev);
  2514. struct sk_buff *skb;
  2515. u16 len = control & BMU_BBC;
  2516. netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
  2517. "rx slot %td status 0x%x len %d\n",
  2518. e - skge->rx_ring.start, status, len);
  2519. if (len > skge->rx_buf_size)
  2520. goto error;
  2521. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2522. goto error;
  2523. if (bad_phy_status(skge->hw, status))
  2524. goto error;
  2525. if (phy_length(skge->hw, status) != len)
  2526. goto error;
  2527. if (len < RX_COPY_THRESHOLD) {
  2528. skb = netdev_alloc_skb_ip_align(dev, len);
  2529. if (!skb)
  2530. goto resubmit;
  2531. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2532. dma_unmap_addr(e, mapaddr),
  2533. len, PCI_DMA_FROMDEVICE);
  2534. skb_copy_from_linear_data(e->skb, skb->data, len);
  2535. pci_dma_sync_single_for_device(skge->hw->pdev,
  2536. dma_unmap_addr(e, mapaddr),
  2537. len, PCI_DMA_FROMDEVICE);
  2538. skge_rx_reuse(e, skge->rx_buf_size);
  2539. } else {
  2540. struct sk_buff *nskb;
  2541. nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
  2542. if (!nskb)
  2543. goto resubmit;
  2544. if (unlikely(skge_rx_setup(skge->hw->pdev, e, nskb, skge->rx_buf_size))) {
  2545. dev_kfree_skb(nskb);
  2546. goto resubmit;
  2547. }
  2548. pci_unmap_single(skge->hw->pdev,
  2549. dma_unmap_addr(e, mapaddr),
  2550. dma_unmap_len(e, maplen),
  2551. PCI_DMA_FROMDEVICE);
  2552. skb = e->skb;
  2553. prefetch(skb->data);
  2554. }
  2555. skb_put(skb, len);
  2556. if (dev->features & NETIF_F_RXCSUM) {
  2557. skb->csum = csum;
  2558. skb->ip_summed = CHECKSUM_COMPLETE;
  2559. }
  2560. skb->protocol = eth_type_trans(skb, dev);
  2561. return skb;
  2562. error:
  2563. netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
  2564. "rx err, slot %td control 0x%x status 0x%x\n",
  2565. e - skge->rx_ring.start, control, status);
  2566. if (is_genesis(skge->hw)) {
  2567. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2568. dev->stats.rx_length_errors++;
  2569. if (status & XMR_FS_FRA_ERR)
  2570. dev->stats.rx_frame_errors++;
  2571. if (status & XMR_FS_FCS_ERR)
  2572. dev->stats.rx_crc_errors++;
  2573. } else {
  2574. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2575. dev->stats.rx_length_errors++;
  2576. if (status & GMR_FS_FRAGMENT)
  2577. dev->stats.rx_frame_errors++;
  2578. if (status & GMR_FS_CRC_ERR)
  2579. dev->stats.rx_crc_errors++;
  2580. }
  2581. resubmit:
  2582. skge_rx_reuse(e, skge->rx_buf_size);
  2583. return NULL;
  2584. }
  2585. /* Free all buffers in Tx ring which are no longer owned by device */
  2586. static void skge_tx_done(struct net_device *dev)
  2587. {
  2588. struct skge_port *skge = netdev_priv(dev);
  2589. struct skge_ring *ring = &skge->tx_ring;
  2590. struct skge_element *e;
  2591. unsigned int bytes_compl = 0, pkts_compl = 0;
  2592. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2593. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2594. u32 control = ((const struct skge_tx_desc *) e->desc)->control;
  2595. if (control & BMU_OWN)
  2596. break;
  2597. skge_tx_unmap(skge->hw->pdev, e, control);
  2598. if (control & BMU_EOF) {
  2599. netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
  2600. "tx done slot %td\n",
  2601. e - skge->tx_ring.start);
  2602. pkts_compl++;
  2603. bytes_compl += e->skb->len;
  2604. dev_kfree_skb(e->skb);
  2605. }
  2606. }
  2607. netdev_completed_queue(dev, pkts_compl, bytes_compl);
  2608. skge->tx_ring.to_clean = e;
  2609. /* Can run lockless until we need to synchronize to restart queue. */
  2610. smp_mb();
  2611. if (unlikely(netif_queue_stopped(dev) &&
  2612. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2613. netif_tx_lock(dev);
  2614. if (unlikely(netif_queue_stopped(dev) &&
  2615. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2616. netif_wake_queue(dev);
  2617. }
  2618. netif_tx_unlock(dev);
  2619. }
  2620. }
  2621. static int skge_poll(struct napi_struct *napi, int to_do)
  2622. {
  2623. struct skge_port *skge = container_of(napi, struct skge_port, napi);
  2624. struct net_device *dev = skge->netdev;
  2625. struct skge_hw *hw = skge->hw;
  2626. struct skge_ring *ring = &skge->rx_ring;
  2627. struct skge_element *e;
  2628. int work_done = 0;
  2629. skge_tx_done(dev);
  2630. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2631. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2632. struct skge_rx_desc *rd = e->desc;
  2633. struct sk_buff *skb;
  2634. u32 control;
  2635. rmb();
  2636. control = rd->control;
  2637. if (control & BMU_OWN)
  2638. break;
  2639. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2640. if (likely(skb)) {
  2641. napi_gro_receive(napi, skb);
  2642. ++work_done;
  2643. }
  2644. }
  2645. ring->to_clean = e;
  2646. /* restart receiver */
  2647. wmb();
  2648. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2649. if (work_done < to_do) {
  2650. unsigned long flags;
  2651. napi_gro_flush(napi);
  2652. spin_lock_irqsave(&hw->hw_lock, flags);
  2653. __napi_complete(napi);
  2654. hw->intr_mask |= napimask[skge->port];
  2655. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2656. skge_read32(hw, B0_IMSK);
  2657. spin_unlock_irqrestore(&hw->hw_lock, flags);
  2658. }
  2659. return work_done;
  2660. }
  2661. /* Parity errors seem to happen when Genesis is connected to a switch
  2662. * with no other ports present. Heartbeat error??
  2663. */
  2664. static void skge_mac_parity(struct skge_hw *hw, int port)
  2665. {
  2666. struct net_device *dev = hw->dev[port];
  2667. ++dev->stats.tx_heartbeat_errors;
  2668. if (is_genesis(hw))
  2669. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2670. MFF_CLR_PERR);
  2671. else
  2672. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2673. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2674. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2675. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2676. }
  2677. static void skge_mac_intr(struct skge_hw *hw, int port)
  2678. {
  2679. if (is_genesis(hw))
  2680. genesis_mac_intr(hw, port);
  2681. else
  2682. yukon_mac_intr(hw, port);
  2683. }
  2684. /* Handle device specific framing and timeout interrupts */
  2685. static void skge_error_irq(struct skge_hw *hw)
  2686. {
  2687. struct pci_dev *pdev = hw->pdev;
  2688. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2689. if (is_genesis(hw)) {
  2690. /* clear xmac errors */
  2691. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2692. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2693. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2694. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2695. } else {
  2696. /* Timestamp (unused) overflow */
  2697. if (hwstatus & IS_IRQ_TIST_OV)
  2698. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2699. }
  2700. if (hwstatus & IS_RAM_RD_PAR) {
  2701. dev_err(&pdev->dev, "Ram read data parity error\n");
  2702. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2703. }
  2704. if (hwstatus & IS_RAM_WR_PAR) {
  2705. dev_err(&pdev->dev, "Ram write data parity error\n");
  2706. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2707. }
  2708. if (hwstatus & IS_M1_PAR_ERR)
  2709. skge_mac_parity(hw, 0);
  2710. if (hwstatus & IS_M2_PAR_ERR)
  2711. skge_mac_parity(hw, 1);
  2712. if (hwstatus & IS_R1_PAR_ERR) {
  2713. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2714. hw->dev[0]->name);
  2715. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2716. }
  2717. if (hwstatus & IS_R2_PAR_ERR) {
  2718. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2719. hw->dev[1]->name);
  2720. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2721. }
  2722. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2723. u16 pci_status, pci_cmd;
  2724. pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
  2725. pci_read_config_word(pdev, PCI_STATUS, &pci_status);
  2726. dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
  2727. pci_cmd, pci_status);
  2728. /* Write the error bits back to clear them. */
  2729. pci_status &= PCI_STATUS_ERROR_BITS;
  2730. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2731. pci_write_config_word(pdev, PCI_COMMAND,
  2732. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2733. pci_write_config_word(pdev, PCI_STATUS, pci_status);
  2734. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2735. /* if error still set then just ignore it */
  2736. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2737. if (hwstatus & IS_IRQ_STAT) {
  2738. dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
  2739. hw->intr_mask &= ~IS_HW_ERR;
  2740. }
  2741. }
  2742. }
  2743. /*
  2744. * Interrupt from PHY are handled in tasklet (softirq)
  2745. * because accessing phy registers requires spin wait which might
  2746. * cause excess interrupt latency.
  2747. */
  2748. static void skge_extirq(unsigned long arg)
  2749. {
  2750. struct skge_hw *hw = (struct skge_hw *) arg;
  2751. int port;
  2752. for (port = 0; port < hw->ports; port++) {
  2753. struct net_device *dev = hw->dev[port];
  2754. if (netif_running(dev)) {
  2755. struct skge_port *skge = netdev_priv(dev);
  2756. spin_lock(&hw->phy_lock);
  2757. if (!is_genesis(hw))
  2758. yukon_phy_intr(skge);
  2759. else if (hw->phy_type == SK_PHY_BCOM)
  2760. bcom_phy_intr(skge);
  2761. spin_unlock(&hw->phy_lock);
  2762. }
  2763. }
  2764. spin_lock_irq(&hw->hw_lock);
  2765. hw->intr_mask |= IS_EXT_REG;
  2766. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2767. skge_read32(hw, B0_IMSK);
  2768. spin_unlock_irq(&hw->hw_lock);
  2769. }
  2770. static irqreturn_t skge_intr(int irq, void *dev_id)
  2771. {
  2772. struct skge_hw *hw = dev_id;
  2773. u32 status;
  2774. int handled = 0;
  2775. spin_lock(&hw->hw_lock);
  2776. /* Reading this register masks IRQ */
  2777. status = skge_read32(hw, B0_SP_ISRC);
  2778. if (status == 0 || status == ~0)
  2779. goto out;
  2780. handled = 1;
  2781. status &= hw->intr_mask;
  2782. if (status & IS_EXT_REG) {
  2783. hw->intr_mask &= ~IS_EXT_REG;
  2784. tasklet_schedule(&hw->phy_task);
  2785. }
  2786. if (status & (IS_XA1_F|IS_R1_F)) {
  2787. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2788. hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
  2789. napi_schedule(&skge->napi);
  2790. }
  2791. if (status & IS_PA_TO_TX1)
  2792. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2793. if (status & IS_PA_TO_RX1) {
  2794. ++hw->dev[0]->stats.rx_over_errors;
  2795. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2796. }
  2797. if (status & IS_MAC1)
  2798. skge_mac_intr(hw, 0);
  2799. if (hw->dev[1]) {
  2800. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2801. if (status & (IS_XA2_F|IS_R2_F)) {
  2802. hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
  2803. napi_schedule(&skge->napi);
  2804. }
  2805. if (status & IS_PA_TO_RX2) {
  2806. ++hw->dev[1]->stats.rx_over_errors;
  2807. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2808. }
  2809. if (status & IS_PA_TO_TX2)
  2810. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2811. if (status & IS_MAC2)
  2812. skge_mac_intr(hw, 1);
  2813. }
  2814. if (status & IS_HW_ERR)
  2815. skge_error_irq(hw);
  2816. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2817. skge_read32(hw, B0_IMSK);
  2818. out:
  2819. spin_unlock(&hw->hw_lock);
  2820. return IRQ_RETVAL(handled);
  2821. }
  2822. #ifdef CONFIG_NET_POLL_CONTROLLER
  2823. static void skge_netpoll(struct net_device *dev)
  2824. {
  2825. struct skge_port *skge = netdev_priv(dev);
  2826. disable_irq(dev->irq);
  2827. skge_intr(dev->irq, skge->hw);
  2828. enable_irq(dev->irq);
  2829. }
  2830. #endif
  2831. static int skge_set_mac_address(struct net_device *dev, void *p)
  2832. {
  2833. struct skge_port *skge = netdev_priv(dev);
  2834. struct skge_hw *hw = skge->hw;
  2835. unsigned port = skge->port;
  2836. const struct sockaddr *addr = p;
  2837. u16 ctrl;
  2838. if (!is_valid_ether_addr(addr->sa_data))
  2839. return -EADDRNOTAVAIL;
  2840. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2841. if (!netif_running(dev)) {
  2842. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2843. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2844. } else {
  2845. /* disable Rx */
  2846. spin_lock_bh(&hw->phy_lock);
  2847. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  2848. gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
  2849. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2850. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2851. if (is_genesis(hw))
  2852. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2853. else {
  2854. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2855. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2856. }
  2857. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  2858. spin_unlock_bh(&hw->phy_lock);
  2859. }
  2860. return 0;
  2861. }
  2862. static const struct {
  2863. u8 id;
  2864. const char *name;
  2865. } skge_chips[] = {
  2866. { CHIP_ID_GENESIS, "Genesis" },
  2867. { CHIP_ID_YUKON, "Yukon" },
  2868. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2869. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2870. };
  2871. static const char *skge_board_name(const struct skge_hw *hw)
  2872. {
  2873. int i;
  2874. static char buf[16];
  2875. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2876. if (skge_chips[i].id == hw->chip_id)
  2877. return skge_chips[i].name;
  2878. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2879. return buf;
  2880. }
  2881. /*
  2882. * Setup the board data structure, but don't bring up
  2883. * the port(s)
  2884. */
  2885. static int skge_reset(struct skge_hw *hw)
  2886. {
  2887. u32 reg;
  2888. u16 ctst, pci_status;
  2889. u8 t8, mac_cfg, pmd_type;
  2890. int i;
  2891. ctst = skge_read16(hw, B0_CTST);
  2892. /* do a SW reset */
  2893. skge_write8(hw, B0_CTST, CS_RST_SET);
  2894. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2895. /* clear PCI errors, if any */
  2896. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2897. skge_write8(hw, B2_TST_CTRL2, 0);
  2898. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2899. pci_write_config_word(hw->pdev, PCI_STATUS,
  2900. pci_status | PCI_STATUS_ERROR_BITS);
  2901. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2902. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2903. /* restore CLK_RUN bits (for Yukon-Lite) */
  2904. skge_write16(hw, B0_CTST,
  2905. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2906. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2907. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2908. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2909. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2910. switch (hw->chip_id) {
  2911. case CHIP_ID_GENESIS:
  2912. #ifdef CONFIG_SKGE_GENESIS
  2913. switch (hw->phy_type) {
  2914. case SK_PHY_XMAC:
  2915. hw->phy_addr = PHY_ADDR_XMAC;
  2916. break;
  2917. case SK_PHY_BCOM:
  2918. hw->phy_addr = PHY_ADDR_BCOM;
  2919. break;
  2920. default:
  2921. dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
  2922. hw->phy_type);
  2923. return -EOPNOTSUPP;
  2924. }
  2925. break;
  2926. #else
  2927. dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
  2928. return -EOPNOTSUPP;
  2929. #endif
  2930. case CHIP_ID_YUKON:
  2931. case CHIP_ID_YUKON_LITE:
  2932. case CHIP_ID_YUKON_LP:
  2933. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2934. hw->copper = 1;
  2935. hw->phy_addr = PHY_ADDR_MARV;
  2936. break;
  2937. default:
  2938. dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
  2939. hw->chip_id);
  2940. return -EOPNOTSUPP;
  2941. }
  2942. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2943. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2944. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2945. /* read the adapters RAM size */
  2946. t8 = skge_read8(hw, B2_E_0);
  2947. if (is_genesis(hw)) {
  2948. if (t8 == 3) {
  2949. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2950. hw->ram_size = 0x100000;
  2951. hw->ram_offset = 0x80000;
  2952. } else
  2953. hw->ram_size = t8 * 512;
  2954. } else if (t8 == 0)
  2955. hw->ram_size = 0x20000;
  2956. else
  2957. hw->ram_size = t8 * 4096;
  2958. hw->intr_mask = IS_HW_ERR;
  2959. /* Use PHY IRQ for all but fiber based Genesis board */
  2960. if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
  2961. hw->intr_mask |= IS_EXT_REG;
  2962. if (is_genesis(hw))
  2963. genesis_init(hw);
  2964. else {
  2965. /* switch power to VCC (WA for VAUX problem) */
  2966. skge_write8(hw, B0_POWER_CTRL,
  2967. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2968. /* avoid boards with stuck Hardware error bits */
  2969. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2970. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2971. dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
  2972. hw->intr_mask &= ~IS_HW_ERR;
  2973. }
  2974. /* Clear PHY COMA */
  2975. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2976. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2977. reg &= ~PCI_PHY_COMA;
  2978. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2979. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2980. for (i = 0; i < hw->ports; i++) {
  2981. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2982. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2983. }
  2984. }
  2985. /* turn off hardware timer (unused) */
  2986. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2987. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2988. skge_write8(hw, B0_LED, LED_STAT_ON);
  2989. /* enable the Tx Arbiters */
  2990. for (i = 0; i < hw->ports; i++)
  2991. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2992. /* Initialize ram interface */
  2993. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2994. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2995. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2996. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2997. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2998. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2999. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  3000. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  3001. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  3002. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  3003. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  3004. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  3005. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  3006. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  3007. /* Set interrupt moderation for Transmit only
  3008. * Receive interrupts avoided by NAPI
  3009. */
  3010. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  3011. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  3012. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  3013. /* Leave irq disabled until first port is brought up. */
  3014. skge_write32(hw, B0_IMSK, 0);
  3015. for (i = 0; i < hw->ports; i++) {
  3016. if (is_genesis(hw))
  3017. genesis_reset(hw, i);
  3018. else
  3019. yukon_reset(hw, i);
  3020. }
  3021. return 0;
  3022. }
  3023. #ifdef CONFIG_SKGE_DEBUG
  3024. static struct dentry *skge_debug;
  3025. static int skge_debug_show(struct seq_file *seq, void *v)
  3026. {
  3027. struct net_device *dev = seq->private;
  3028. const struct skge_port *skge = netdev_priv(dev);
  3029. const struct skge_hw *hw = skge->hw;
  3030. const struct skge_element *e;
  3031. if (!netif_running(dev))
  3032. return -ENETDOWN;
  3033. seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
  3034. skge_read32(hw, B0_IMSK));
  3035. seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
  3036. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  3037. const struct skge_tx_desc *t = e->desc;
  3038. seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
  3039. t->control, t->dma_hi, t->dma_lo, t->status,
  3040. t->csum_offs, t->csum_write, t->csum_start);
  3041. }
  3042. seq_printf(seq, "\nRx Ring:\n");
  3043. for (e = skge->rx_ring.to_clean; ; e = e->next) {
  3044. const struct skge_rx_desc *r = e->desc;
  3045. if (r->control & BMU_OWN)
  3046. break;
  3047. seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
  3048. r->control, r->dma_hi, r->dma_lo, r->status,
  3049. r->timestamp, r->csum1, r->csum1_start);
  3050. }
  3051. return 0;
  3052. }
  3053. static int skge_debug_open(struct inode *inode, struct file *file)
  3054. {
  3055. return single_open(file, skge_debug_show, inode->i_private);
  3056. }
  3057. static const struct file_operations skge_debug_fops = {
  3058. .owner = THIS_MODULE,
  3059. .open = skge_debug_open,
  3060. .read = seq_read,
  3061. .llseek = seq_lseek,
  3062. .release = single_release,
  3063. };
  3064. /*
  3065. * Use network device events to create/remove/rename
  3066. * debugfs file entries
  3067. */
  3068. static int skge_device_event(struct notifier_block *unused,
  3069. unsigned long event, void *ptr)
  3070. {
  3071. struct net_device *dev = ptr;
  3072. struct skge_port *skge;
  3073. struct dentry *d;
  3074. if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
  3075. goto done;
  3076. skge = netdev_priv(dev);
  3077. switch (event) {
  3078. case NETDEV_CHANGENAME:
  3079. if (skge->debugfs) {
  3080. d = debugfs_rename(skge_debug, skge->debugfs,
  3081. skge_debug, dev->name);
  3082. if (d)
  3083. skge->debugfs = d;
  3084. else {
  3085. netdev_info(dev, "rename failed\n");
  3086. debugfs_remove(skge->debugfs);
  3087. }
  3088. }
  3089. break;
  3090. case NETDEV_GOING_DOWN:
  3091. if (skge->debugfs) {
  3092. debugfs_remove(skge->debugfs);
  3093. skge->debugfs = NULL;
  3094. }
  3095. break;
  3096. case NETDEV_UP:
  3097. d = debugfs_create_file(dev->name, S_IRUGO,
  3098. skge_debug, dev,
  3099. &skge_debug_fops);
  3100. if (!d || IS_ERR(d))
  3101. netdev_info(dev, "debugfs create failed\n");
  3102. else
  3103. skge->debugfs = d;
  3104. break;
  3105. }
  3106. done:
  3107. return NOTIFY_DONE;
  3108. }
  3109. static struct notifier_block skge_notifier = {
  3110. .notifier_call = skge_device_event,
  3111. };
  3112. static __init void skge_debug_init(void)
  3113. {
  3114. struct dentry *ent;
  3115. ent = debugfs_create_dir("skge", NULL);
  3116. if (!ent || IS_ERR(ent)) {
  3117. pr_info("debugfs create directory failed\n");
  3118. return;
  3119. }
  3120. skge_debug = ent;
  3121. register_netdevice_notifier(&skge_notifier);
  3122. }
  3123. static __exit void skge_debug_cleanup(void)
  3124. {
  3125. if (skge_debug) {
  3126. unregister_netdevice_notifier(&skge_notifier);
  3127. debugfs_remove(skge_debug);
  3128. skge_debug = NULL;
  3129. }
  3130. }
  3131. #else
  3132. #define skge_debug_init()
  3133. #define skge_debug_cleanup()
  3134. #endif
  3135. static const struct net_device_ops skge_netdev_ops = {
  3136. .ndo_open = skge_up,
  3137. .ndo_stop = skge_down,
  3138. .ndo_start_xmit = skge_xmit_frame,
  3139. .ndo_do_ioctl = skge_ioctl,
  3140. .ndo_get_stats = skge_get_stats,
  3141. .ndo_tx_timeout = skge_tx_timeout,
  3142. .ndo_change_mtu = skge_change_mtu,
  3143. .ndo_validate_addr = eth_validate_addr,
  3144. .ndo_set_rx_mode = skge_set_multicast,
  3145. .ndo_set_mac_address = skge_set_mac_address,
  3146. #ifdef CONFIG_NET_POLL_CONTROLLER
  3147. .ndo_poll_controller = skge_netpoll,
  3148. #endif
  3149. };
  3150. /* Initialize network device */
  3151. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  3152. int highmem)
  3153. {
  3154. struct skge_port *skge;
  3155. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  3156. if (!dev)
  3157. return NULL;
  3158. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  3159. dev->netdev_ops = &skge_netdev_ops;
  3160. dev->ethtool_ops = &skge_ethtool_ops;
  3161. dev->watchdog_timeo = TX_WATCHDOG;
  3162. dev->irq = hw->pdev->irq;
  3163. if (highmem)
  3164. dev->features |= NETIF_F_HIGHDMA;
  3165. skge = netdev_priv(dev);
  3166. netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
  3167. skge->netdev = dev;
  3168. skge->hw = hw;
  3169. skge->msg_enable = netif_msg_init(debug, default_msg);
  3170. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  3171. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  3172. /* Auto speed and flow control */
  3173. skge->autoneg = AUTONEG_ENABLE;
  3174. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  3175. skge->duplex = -1;
  3176. skge->speed = -1;
  3177. skge->advertising = skge_supported_modes(hw);
  3178. if (device_can_wakeup(&hw->pdev->dev)) {
  3179. skge->wol = wol_supported(hw) & WAKE_MAGIC;
  3180. device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
  3181. }
  3182. hw->dev[port] = dev;
  3183. skge->port = port;
  3184. /* Only used for Genesis XMAC */
  3185. if (is_genesis(hw))
  3186. setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
  3187. else {
  3188. dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
  3189. NETIF_F_RXCSUM;
  3190. dev->features |= dev->hw_features;
  3191. }
  3192. /* read the mac address */
  3193. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  3194. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  3195. return dev;
  3196. }
  3197. static void __devinit skge_show_addr(struct net_device *dev)
  3198. {
  3199. const struct skge_port *skge = netdev_priv(dev);
  3200. netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
  3201. }
  3202. static int only_32bit_dma;
  3203. static int __devinit skge_probe(struct pci_dev *pdev,
  3204. const struct pci_device_id *ent)
  3205. {
  3206. struct net_device *dev, *dev1;
  3207. struct skge_hw *hw;
  3208. int err, using_dac = 0;
  3209. err = pci_enable_device(pdev);
  3210. if (err) {
  3211. dev_err(&pdev->dev, "cannot enable PCI device\n");
  3212. goto err_out;
  3213. }
  3214. err = pci_request_regions(pdev, DRV_NAME);
  3215. if (err) {
  3216. dev_err(&pdev->dev, "cannot obtain PCI resources\n");
  3217. goto err_out_disable_pdev;
  3218. }
  3219. pci_set_master(pdev);
  3220. if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3221. using_dac = 1;
  3222. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3223. } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
  3224. using_dac = 0;
  3225. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3226. }
  3227. if (err) {
  3228. dev_err(&pdev->dev, "no usable DMA configuration\n");
  3229. goto err_out_free_regions;
  3230. }
  3231. #ifdef __BIG_ENDIAN
  3232. /* byte swap descriptors in hardware */
  3233. {
  3234. u32 reg;
  3235. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  3236. reg |= PCI_REV_DESC;
  3237. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  3238. }
  3239. #endif
  3240. err = -ENOMEM;
  3241. /* space for skge@pci:0000:04:00.0 */
  3242. hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
  3243. + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
  3244. if (!hw) {
  3245. dev_err(&pdev->dev, "cannot allocate hardware struct\n");
  3246. goto err_out_free_regions;
  3247. }
  3248. sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
  3249. hw->pdev = pdev;
  3250. spin_lock_init(&hw->hw_lock);
  3251. spin_lock_init(&hw->phy_lock);
  3252. tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
  3253. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  3254. if (!hw->regs) {
  3255. dev_err(&pdev->dev, "cannot map device registers\n");
  3256. goto err_out_free_hw;
  3257. }
  3258. err = skge_reset(hw);
  3259. if (err)
  3260. goto err_out_iounmap;
  3261. pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
  3262. DRV_VERSION,
  3263. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  3264. skge_board_name(hw), hw->chip_rev);
  3265. dev = skge_devinit(hw, 0, using_dac);
  3266. if (!dev)
  3267. goto err_out_led_off;
  3268. /* Some motherboards are broken and has zero in ROM. */
  3269. if (!is_valid_ether_addr(dev->dev_addr))
  3270. dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
  3271. err = register_netdev(dev);
  3272. if (err) {
  3273. dev_err(&pdev->dev, "cannot register net device\n");
  3274. goto err_out_free_netdev;
  3275. }
  3276. skge_show_addr(dev);
  3277. if (hw->ports > 1) {
  3278. dev1 = skge_devinit(hw, 1, using_dac);
  3279. if (!dev1) {
  3280. err = -ENOMEM;
  3281. goto err_out_unregister;
  3282. }
  3283. err = register_netdev(dev1);
  3284. if (err) {
  3285. dev_err(&pdev->dev, "cannot register second net device\n");
  3286. goto err_out_free_dev1;
  3287. }
  3288. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
  3289. hw->irq_name, hw);
  3290. if (err) {
  3291. dev_err(&pdev->dev, "cannot assign irq %d\n",
  3292. pdev->irq);
  3293. goto err_out_unregister_dev1;
  3294. }
  3295. skge_show_addr(dev1);
  3296. }
  3297. pci_set_drvdata(pdev, hw);
  3298. return 0;
  3299. err_out_unregister_dev1:
  3300. unregister_netdev(dev1);
  3301. err_out_free_dev1:
  3302. free_netdev(dev1);
  3303. err_out_unregister:
  3304. unregister_netdev(dev);
  3305. err_out_free_netdev:
  3306. free_netdev(dev);
  3307. err_out_led_off:
  3308. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3309. err_out_iounmap:
  3310. iounmap(hw->regs);
  3311. err_out_free_hw:
  3312. kfree(hw);
  3313. err_out_free_regions:
  3314. pci_release_regions(pdev);
  3315. err_out_disable_pdev:
  3316. pci_disable_device(pdev);
  3317. pci_set_drvdata(pdev, NULL);
  3318. err_out:
  3319. return err;
  3320. }
  3321. static void __devexit skge_remove(struct pci_dev *pdev)
  3322. {
  3323. struct skge_hw *hw = pci_get_drvdata(pdev);
  3324. struct net_device *dev0, *dev1;
  3325. if (!hw)
  3326. return;
  3327. dev1 = hw->dev[1];
  3328. if (dev1)
  3329. unregister_netdev(dev1);
  3330. dev0 = hw->dev[0];
  3331. unregister_netdev(dev0);
  3332. tasklet_disable(&hw->phy_task);
  3333. spin_lock_irq(&hw->hw_lock);
  3334. hw->intr_mask = 0;
  3335. if (hw->ports > 1) {
  3336. skge_write32(hw, B0_IMSK, 0);
  3337. skge_read32(hw, B0_IMSK);
  3338. free_irq(pdev->irq, hw);
  3339. }
  3340. spin_unlock_irq(&hw->hw_lock);
  3341. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3342. skge_write8(hw, B0_CTST, CS_RST_SET);
  3343. if (hw->ports > 1)
  3344. free_irq(pdev->irq, hw);
  3345. pci_release_regions(pdev);
  3346. pci_disable_device(pdev);
  3347. if (dev1)
  3348. free_netdev(dev1);
  3349. free_netdev(dev0);
  3350. iounmap(hw->regs);
  3351. kfree(hw);
  3352. pci_set_drvdata(pdev, NULL);
  3353. }
  3354. #ifdef CONFIG_PM_SLEEP
  3355. static int skge_suspend(struct device *dev)
  3356. {
  3357. struct pci_dev *pdev = to_pci_dev(dev);
  3358. struct skge_hw *hw = pci_get_drvdata(pdev);
  3359. int i;
  3360. if (!hw)
  3361. return 0;
  3362. for (i = 0; i < hw->ports; i++) {
  3363. struct net_device *dev = hw->dev[i];
  3364. struct skge_port *skge = netdev_priv(dev);
  3365. if (netif_running(dev))
  3366. skge_down(dev);
  3367. if (skge->wol)
  3368. skge_wol_init(skge);
  3369. }
  3370. skge_write32(hw, B0_IMSK, 0);
  3371. return 0;
  3372. }
  3373. static int skge_resume(struct device *dev)
  3374. {
  3375. struct pci_dev *pdev = to_pci_dev(dev);
  3376. struct skge_hw *hw = pci_get_drvdata(pdev);
  3377. int i, err;
  3378. if (!hw)
  3379. return 0;
  3380. err = skge_reset(hw);
  3381. if (err)
  3382. goto out;
  3383. for (i = 0; i < hw->ports; i++) {
  3384. struct net_device *dev = hw->dev[i];
  3385. if (netif_running(dev)) {
  3386. err = skge_up(dev);
  3387. if (err) {
  3388. netdev_err(dev, "could not up: %d\n", err);
  3389. dev_close(dev);
  3390. goto out;
  3391. }
  3392. }
  3393. }
  3394. out:
  3395. return err;
  3396. }
  3397. static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
  3398. #define SKGE_PM_OPS (&skge_pm_ops)
  3399. #else
  3400. #define SKGE_PM_OPS NULL
  3401. #endif /* CONFIG_PM_SLEEP */
  3402. static void skge_shutdown(struct pci_dev *pdev)
  3403. {
  3404. struct skge_hw *hw = pci_get_drvdata(pdev);
  3405. int i;
  3406. if (!hw)
  3407. return;
  3408. for (i = 0; i < hw->ports; i++) {
  3409. struct net_device *dev = hw->dev[i];
  3410. struct skge_port *skge = netdev_priv(dev);
  3411. if (skge->wol)
  3412. skge_wol_init(skge);
  3413. }
  3414. pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
  3415. pci_set_power_state(pdev, PCI_D3hot);
  3416. }
  3417. static struct pci_driver skge_driver = {
  3418. .name = DRV_NAME,
  3419. .id_table = skge_id_table,
  3420. .probe = skge_probe,
  3421. .remove = __devexit_p(skge_remove),
  3422. .shutdown = skge_shutdown,
  3423. .driver.pm = SKGE_PM_OPS,
  3424. };
  3425. static struct dmi_system_id skge_32bit_dma_boards[] = {
  3426. {
  3427. .ident = "Gigabyte nForce boards",
  3428. .matches = {
  3429. DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
  3430. DMI_MATCH(DMI_BOARD_NAME, "nForce"),
  3431. },
  3432. },
  3433. {}
  3434. };
  3435. static int __init skge_init_module(void)
  3436. {
  3437. if (dmi_check_system(skge_32bit_dma_boards))
  3438. only_32bit_dma = 1;
  3439. skge_debug_init();
  3440. return pci_register_driver(&skge_driver);
  3441. }
  3442. static void __exit skge_cleanup_module(void)
  3443. {
  3444. pci_unregister_driver(&skge_driver);
  3445. skge_debug_cleanup();
  3446. }
  3447. module_init(skge_init_module);
  3448. module_exit(skge_cleanup_module);