amd64_edac.c 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728
  1. #include "amd64_edac.h"
  2. #include <asm/amd_nb.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. static struct msr __percpu *msrs;
  13. /*
  14. * count successfully initialized driver instances for setup_pci_device()
  15. */
  16. static atomic_t drv_instances = ATOMIC_INIT(0);
  17. /* Per-node driver instances */
  18. static struct mem_ctl_info **mcis;
  19. static struct ecc_settings **ecc_stngs;
  20. /*
  21. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  22. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  23. * or higher value'.
  24. *
  25. *FIXME: Produce a better mapping/linearisation.
  26. */
  27. struct scrubrate {
  28. u32 scrubval; /* bit pattern for scrub rate */
  29. u32 bandwidth; /* bandwidth consumed (bytes/sec) */
  30. } scrubrates[] = {
  31. { 0x01, 1600000000UL},
  32. { 0x02, 800000000UL},
  33. { 0x03, 400000000UL},
  34. { 0x04, 200000000UL},
  35. { 0x05, 100000000UL},
  36. { 0x06, 50000000UL},
  37. { 0x07, 25000000UL},
  38. { 0x08, 12284069UL},
  39. { 0x09, 6274509UL},
  40. { 0x0A, 3121951UL},
  41. { 0x0B, 1560975UL},
  42. { 0x0C, 781440UL},
  43. { 0x0D, 390720UL},
  44. { 0x0E, 195300UL},
  45. { 0x0F, 97650UL},
  46. { 0x10, 48854UL},
  47. { 0x11, 24427UL},
  48. { 0x12, 12213UL},
  49. { 0x13, 6101UL},
  50. { 0x14, 3051UL},
  51. { 0x15, 1523UL},
  52. { 0x16, 761UL},
  53. { 0x00, 0UL}, /* scrubbing off */
  54. };
  55. static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
  56. u32 *val, const char *func)
  57. {
  58. int err = 0;
  59. err = pci_read_config_dword(pdev, offset, val);
  60. if (err)
  61. amd64_warn("%s: error reading F%dx%03x.\n",
  62. func, PCI_FUNC(pdev->devfn), offset);
  63. return err;
  64. }
  65. int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
  66. u32 val, const char *func)
  67. {
  68. int err = 0;
  69. err = pci_write_config_dword(pdev, offset, val);
  70. if (err)
  71. amd64_warn("%s: error writing to F%dx%03x.\n",
  72. func, PCI_FUNC(pdev->devfn), offset);
  73. return err;
  74. }
  75. /*
  76. *
  77. * Depending on the family, F2 DCT reads need special handling:
  78. *
  79. * K8: has a single DCT only
  80. *
  81. * F10h: each DCT has its own set of regs
  82. * DCT0 -> F2x040..
  83. * DCT1 -> F2x140..
  84. *
  85. * F15h: we select which DCT we access using F1x10C[DctCfgSel]
  86. *
  87. */
  88. static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  89. const char *func)
  90. {
  91. if (addr >= 0x100)
  92. return -EINVAL;
  93. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  94. }
  95. static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  96. const char *func)
  97. {
  98. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  99. }
  100. static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  101. const char *func)
  102. {
  103. u32 reg = 0;
  104. u8 dct = 0;
  105. if (addr >= 0x140 && addr <= 0x1a0) {
  106. dct = 1;
  107. addr -= 0x100;
  108. }
  109. amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
  110. reg &= 0xfffffffe;
  111. reg |= dct;
  112. amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
  113. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  114. }
  115. /*
  116. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  117. * hardware and can involve L2 cache, dcache as well as the main memory. With
  118. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  119. * functionality.
  120. *
  121. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  122. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  123. * bytes/sec for the setting.
  124. *
  125. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  126. * other archs, we might not have access to the caches directly.
  127. */
  128. /*
  129. * scan the scrub rate mapping table for a close or matching bandwidth value to
  130. * issue. If requested is too big, then use last maximum value found.
  131. */
  132. static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
  133. {
  134. u32 scrubval;
  135. int i;
  136. /*
  137. * map the configured rate (new_bw) to a value specific to the AMD64
  138. * memory controller and apply to register. Search for the first
  139. * bandwidth entry that is greater or equal than the setting requested
  140. * and program that. If at last entry, turn off DRAM scrubbing.
  141. */
  142. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  143. /*
  144. * skip scrub rates which aren't recommended
  145. * (see F10 BKDG, F3x58)
  146. */
  147. if (scrubrates[i].scrubval < min_rate)
  148. continue;
  149. if (scrubrates[i].bandwidth <= new_bw)
  150. break;
  151. /*
  152. * if no suitable bandwidth found, turn off DRAM scrubbing
  153. * entirely by falling back to the last element in the
  154. * scrubrates array.
  155. */
  156. }
  157. scrubval = scrubrates[i].scrubval;
  158. pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
  159. if (scrubval)
  160. return scrubrates[i].bandwidth;
  161. return 0;
  162. }
  163. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
  164. {
  165. struct amd64_pvt *pvt = mci->pvt_info;
  166. return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
  167. }
  168. static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
  169. {
  170. struct amd64_pvt *pvt = mci->pvt_info;
  171. u32 scrubval = 0;
  172. int i, retval = -EINVAL;
  173. amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
  174. scrubval = scrubval & 0x001F;
  175. amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
  176. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  177. if (scrubrates[i].scrubval == scrubval) {
  178. retval = scrubrates[i].bandwidth;
  179. break;
  180. }
  181. }
  182. return retval;
  183. }
  184. /*
  185. * returns true if the SysAddr given by sys_addr matches the
  186. * DRAM base/limit associated with node_id
  187. */
  188. static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, int nid)
  189. {
  190. u64 addr;
  191. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  192. * all ones if the most significant implemented address bit is 1.
  193. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  194. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  195. * Application Programming.
  196. */
  197. addr = sys_addr & 0x000000ffffffffffull;
  198. return ((addr >= get_dram_base(pvt, nid)) &&
  199. (addr <= get_dram_limit(pvt, nid)));
  200. }
  201. /*
  202. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  203. * mem_ctl_info structure for the node that the SysAddr maps to.
  204. *
  205. * On failure, return NULL.
  206. */
  207. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  208. u64 sys_addr)
  209. {
  210. struct amd64_pvt *pvt;
  211. int node_id;
  212. u32 intlv_en, bits;
  213. /*
  214. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  215. * 3.4.4.2) registers to map the SysAddr to a node ID.
  216. */
  217. pvt = mci->pvt_info;
  218. /*
  219. * The value of this field should be the same for all DRAM Base
  220. * registers. Therefore we arbitrarily choose to read it from the
  221. * register for node 0.
  222. */
  223. intlv_en = dram_intlv_en(pvt, 0);
  224. if (intlv_en == 0) {
  225. for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
  226. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  227. goto found;
  228. }
  229. goto err_no_match;
  230. }
  231. if (unlikely((intlv_en != 0x01) &&
  232. (intlv_en != 0x03) &&
  233. (intlv_en != 0x07))) {
  234. amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
  235. return NULL;
  236. }
  237. bits = (((u32) sys_addr) >> 12) & intlv_en;
  238. for (node_id = 0; ; ) {
  239. if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
  240. break; /* intlv_sel field matches */
  241. if (++node_id >= DRAM_RANGES)
  242. goto err_no_match;
  243. }
  244. /* sanity test for sys_addr */
  245. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  246. amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
  247. "range for node %d with node interleaving enabled.\n",
  248. __func__, sys_addr, node_id);
  249. return NULL;
  250. }
  251. found:
  252. return edac_mc_find(node_id);
  253. err_no_match:
  254. debugf2("sys_addr 0x%lx doesn't match any node\n",
  255. (unsigned long)sys_addr);
  256. return NULL;
  257. }
  258. /*
  259. * compute the CS base address of the @csrow on the DRAM controller @dct.
  260. * For details see F2x[5C:40] in the processor's BKDG
  261. */
  262. static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
  263. u64 *base, u64 *mask)
  264. {
  265. u64 csbase, csmask, base_bits, mask_bits;
  266. u8 addr_shift;
  267. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  268. csbase = pvt->csels[dct].csbases[csrow];
  269. csmask = pvt->csels[dct].csmasks[csrow];
  270. base_bits = GENMASK(21, 31) | GENMASK(9, 15);
  271. mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
  272. addr_shift = 4;
  273. } else {
  274. csbase = pvt->csels[dct].csbases[csrow];
  275. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  276. addr_shift = 8;
  277. if (boot_cpu_data.x86 == 0x15)
  278. base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
  279. else
  280. base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
  281. }
  282. *base = (csbase & base_bits) << addr_shift;
  283. *mask = ~0ULL;
  284. /* poke holes for the csmask */
  285. *mask &= ~(mask_bits << addr_shift);
  286. /* OR them in */
  287. *mask |= (csmask & mask_bits) << addr_shift;
  288. }
  289. #define for_each_chip_select(i, dct, pvt) \
  290. for (i = 0; i < pvt->csels[dct].b_cnt; i++)
  291. #define chip_select_base(i, dct, pvt) \
  292. pvt->csels[dct].csbases[i]
  293. #define for_each_chip_select_mask(i, dct, pvt) \
  294. for (i = 0; i < pvt->csels[dct].m_cnt; i++)
  295. /*
  296. * @input_addr is an InputAddr associated with the node given by mci. Return the
  297. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  298. */
  299. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  300. {
  301. struct amd64_pvt *pvt;
  302. int csrow;
  303. u64 base, mask;
  304. pvt = mci->pvt_info;
  305. for_each_chip_select(csrow, 0, pvt) {
  306. if (!csrow_enabled(csrow, 0, pvt))
  307. continue;
  308. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  309. mask = ~mask;
  310. if ((input_addr & mask) == (base & mask)) {
  311. debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
  312. (unsigned long)input_addr, csrow,
  313. pvt->mc_node_id);
  314. return csrow;
  315. }
  316. }
  317. debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  318. (unsigned long)input_addr, pvt->mc_node_id);
  319. return -1;
  320. }
  321. /*
  322. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  323. * for the node represented by mci. Info is passed back in *hole_base,
  324. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  325. * info is invalid. Info may be invalid for either of the following reasons:
  326. *
  327. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  328. * Address Register does not exist.
  329. *
  330. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  331. * indicating that its contents are not valid.
  332. *
  333. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  334. * complete 32-bit values despite the fact that the bitfields in the DHAR
  335. * only represent bits 31-24 of the base and offset values.
  336. */
  337. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  338. u64 *hole_offset, u64 *hole_size)
  339. {
  340. struct amd64_pvt *pvt = mci->pvt_info;
  341. u64 base;
  342. /* only revE and later have the DRAM Hole Address Register */
  343. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
  344. debugf1(" revision %d for node %d does not support DHAR\n",
  345. pvt->ext_model, pvt->mc_node_id);
  346. return 1;
  347. }
  348. /* valid for Fam10h and above */
  349. if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
  350. debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
  351. return 1;
  352. }
  353. if (!dhar_valid(pvt)) {
  354. debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
  355. pvt->mc_node_id);
  356. return 1;
  357. }
  358. /* This node has Memory Hoisting */
  359. /* +------------------+--------------------+--------------------+-----
  360. * | memory | DRAM hole | relocated |
  361. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  362. * | | | DRAM hole |
  363. * | | | [0x100000000, |
  364. * | | | (0x100000000+ |
  365. * | | | (0xffffffff-x))] |
  366. * +------------------+--------------------+--------------------+-----
  367. *
  368. * Above is a diagram of physical memory showing the DRAM hole and the
  369. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  370. * starts at address x (the base address) and extends through address
  371. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  372. * addresses in the hole so that they start at 0x100000000.
  373. */
  374. base = dhar_base(pvt);
  375. *hole_base = base;
  376. *hole_size = (0x1ull << 32) - base;
  377. if (boot_cpu_data.x86 > 0xf)
  378. *hole_offset = f10_dhar_offset(pvt);
  379. else
  380. *hole_offset = k8_dhar_offset(pvt);
  381. debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  382. pvt->mc_node_id, (unsigned long)*hole_base,
  383. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  384. return 0;
  385. }
  386. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  387. /*
  388. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  389. * assumed that sys_addr maps to the node given by mci.
  390. *
  391. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  392. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  393. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  394. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  395. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  396. * These parts of the documentation are unclear. I interpret them as follows:
  397. *
  398. * When node n receives a SysAddr, it processes the SysAddr as follows:
  399. *
  400. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  401. * Limit registers for node n. If the SysAddr is not within the range
  402. * specified by the base and limit values, then node n ignores the Sysaddr
  403. * (since it does not map to node n). Otherwise continue to step 2 below.
  404. *
  405. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  406. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  407. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  408. * hole. If not, skip to step 3 below. Else get the value of the
  409. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  410. * offset defined by this value from the SysAddr.
  411. *
  412. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  413. * Base register for node n. To obtain the DramAddr, subtract the base
  414. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  415. */
  416. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  417. {
  418. struct amd64_pvt *pvt = mci->pvt_info;
  419. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  420. int ret = 0;
  421. dram_base = get_dram_base(pvt, pvt->mc_node_id);
  422. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  423. &hole_size);
  424. if (!ret) {
  425. if ((sys_addr >= (1ull << 32)) &&
  426. (sys_addr < ((1ull << 32) + hole_size))) {
  427. /* use DHAR to translate SysAddr to DramAddr */
  428. dram_addr = sys_addr - hole_offset;
  429. debugf2("using DHAR to translate SysAddr 0x%lx to "
  430. "DramAddr 0x%lx\n",
  431. (unsigned long)sys_addr,
  432. (unsigned long)dram_addr);
  433. return dram_addr;
  434. }
  435. }
  436. /*
  437. * Translate the SysAddr to a DramAddr as shown near the start of
  438. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  439. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  440. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  441. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  442. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  443. * Programmer's Manual Volume 1 Application Programming.
  444. */
  445. dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
  446. debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
  447. "DramAddr 0x%lx\n", (unsigned long)sys_addr,
  448. (unsigned long)dram_addr);
  449. return dram_addr;
  450. }
  451. /*
  452. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  453. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  454. * for node interleaving.
  455. */
  456. static int num_node_interleave_bits(unsigned intlv_en)
  457. {
  458. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  459. int n;
  460. BUG_ON(intlv_en > 7);
  461. n = intlv_shift_table[intlv_en];
  462. return n;
  463. }
  464. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  465. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  466. {
  467. struct amd64_pvt *pvt;
  468. int intlv_shift;
  469. u64 input_addr;
  470. pvt = mci->pvt_info;
  471. /*
  472. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  473. * concerning translating a DramAddr to an InputAddr.
  474. */
  475. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  476. input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
  477. (dram_addr & 0xfff);
  478. debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  479. intlv_shift, (unsigned long)dram_addr,
  480. (unsigned long)input_addr);
  481. return input_addr;
  482. }
  483. /*
  484. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  485. * assumed that @sys_addr maps to the node given by mci.
  486. */
  487. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  488. {
  489. u64 input_addr;
  490. input_addr =
  491. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  492. debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  493. (unsigned long)sys_addr, (unsigned long)input_addr);
  494. return input_addr;
  495. }
  496. /*
  497. * @input_addr is an InputAddr associated with the node represented by mci.
  498. * Translate @input_addr to a DramAddr and return the result.
  499. */
  500. static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
  501. {
  502. struct amd64_pvt *pvt;
  503. int node_id, intlv_shift;
  504. u64 bits, dram_addr;
  505. u32 intlv_sel;
  506. /*
  507. * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  508. * shows how to translate a DramAddr to an InputAddr. Here we reverse
  509. * this procedure. When translating from a DramAddr to an InputAddr, the
  510. * bits used for node interleaving are discarded. Here we recover these
  511. * bits from the IntlvSel field of the DRAM Limit register (section
  512. * 3.4.4.2) for the node that input_addr is associated with.
  513. */
  514. pvt = mci->pvt_info;
  515. node_id = pvt->mc_node_id;
  516. BUG_ON((node_id < 0) || (node_id > 7));
  517. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  518. if (intlv_shift == 0) {
  519. debugf1(" InputAddr 0x%lx translates to DramAddr of "
  520. "same value\n", (unsigned long)input_addr);
  521. return input_addr;
  522. }
  523. bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
  524. (input_addr & 0xfff);
  525. intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
  526. dram_addr = bits + (intlv_sel << 12);
  527. debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
  528. "(%d node interleave bits)\n", (unsigned long)input_addr,
  529. (unsigned long)dram_addr, intlv_shift);
  530. return dram_addr;
  531. }
  532. /*
  533. * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
  534. * @dram_addr to a SysAddr.
  535. */
  536. static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
  537. {
  538. struct amd64_pvt *pvt = mci->pvt_info;
  539. u64 hole_base, hole_offset, hole_size, base, sys_addr;
  540. int ret = 0;
  541. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  542. &hole_size);
  543. if (!ret) {
  544. if ((dram_addr >= hole_base) &&
  545. (dram_addr < (hole_base + hole_size))) {
  546. sys_addr = dram_addr + hole_offset;
  547. debugf1("using DHAR to translate DramAddr 0x%lx to "
  548. "SysAddr 0x%lx\n", (unsigned long)dram_addr,
  549. (unsigned long)sys_addr);
  550. return sys_addr;
  551. }
  552. }
  553. base = get_dram_base(pvt, pvt->mc_node_id);
  554. sys_addr = dram_addr + base;
  555. /*
  556. * The sys_addr we have computed up to this point is a 40-bit value
  557. * because the k8 deals with 40-bit values. However, the value we are
  558. * supposed to return is a full 64-bit physical address. The AMD
  559. * x86-64 architecture specifies that the most significant implemented
  560. * address bit through bit 63 of a physical address must be either all
  561. * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
  562. * 64-bit value below. See section 3.4.2 of AMD publication 24592:
  563. * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
  564. * Programming.
  565. */
  566. sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
  567. debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
  568. pvt->mc_node_id, (unsigned long)dram_addr,
  569. (unsigned long)sys_addr);
  570. return sys_addr;
  571. }
  572. /*
  573. * @input_addr is an InputAddr associated with the node given by mci. Translate
  574. * @input_addr to a SysAddr.
  575. */
  576. static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
  577. u64 input_addr)
  578. {
  579. return dram_addr_to_sys_addr(mci,
  580. input_addr_to_dram_addr(mci, input_addr));
  581. }
  582. /*
  583. * Find the minimum and maximum InputAddr values that map to the given @csrow.
  584. * Pass back these values in *input_addr_min and *input_addr_max.
  585. */
  586. static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
  587. u64 *input_addr_min, u64 *input_addr_max)
  588. {
  589. struct amd64_pvt *pvt;
  590. u64 base, mask;
  591. pvt = mci->pvt_info;
  592. BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
  593. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  594. *input_addr_min = base & ~mask;
  595. *input_addr_max = base | mask;
  596. }
  597. /* Map the Error address to a PAGE and PAGE OFFSET. */
  598. static inline void error_address_to_page_and_offset(u64 error_address,
  599. u32 *page, u32 *offset)
  600. {
  601. *page = (u32) (error_address >> PAGE_SHIFT);
  602. *offset = ((u32) error_address) & ~PAGE_MASK;
  603. }
  604. /*
  605. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  606. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  607. * of a node that detected an ECC memory error. mci represents the node that
  608. * the error address maps to (possibly different from the node that detected
  609. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  610. * error.
  611. */
  612. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  613. {
  614. int csrow;
  615. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  616. if (csrow == -1)
  617. amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
  618. "address 0x%lx\n", (unsigned long)sys_addr);
  619. return csrow;
  620. }
  621. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
  622. /*
  623. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  624. * are ECC capable.
  625. */
  626. static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
  627. {
  628. u8 bit;
  629. enum dev_type edac_cap = EDAC_FLAG_NONE;
  630. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
  631. ? 19
  632. : 17;
  633. if (pvt->dclr0 & BIT(bit))
  634. edac_cap = EDAC_FLAG_SECDED;
  635. return edac_cap;
  636. }
  637. static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
  638. static void amd64_dump_dramcfg_low(u32 dclr, int chan)
  639. {
  640. debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  641. debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
  642. (dclr & BIT(16)) ? "un" : "",
  643. (dclr & BIT(19)) ? "yes" : "no");
  644. debugf1(" PAR/ERR parity: %s\n",
  645. (dclr & BIT(8)) ? "enabled" : "disabled");
  646. if (boot_cpu_data.x86 == 0x10)
  647. debugf1(" DCT 128bit mode width: %s\n",
  648. (dclr & BIT(11)) ? "128b" : "64b");
  649. debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  650. (dclr & BIT(12)) ? "yes" : "no",
  651. (dclr & BIT(13)) ? "yes" : "no",
  652. (dclr & BIT(14)) ? "yes" : "no",
  653. (dclr & BIT(15)) ? "yes" : "no");
  654. }
  655. /* Display and decode various NB registers for debug purposes. */
  656. static void dump_misc_regs(struct amd64_pvt *pvt)
  657. {
  658. debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  659. debugf1(" NB two channel DRAM capable: %s\n",
  660. (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
  661. debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
  662. (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
  663. (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
  664. amd64_dump_dramcfg_low(pvt->dclr0, 0);
  665. debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  666. debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
  667. "offset: 0x%08x\n",
  668. pvt->dhar, dhar_base(pvt),
  669. (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
  670. : f10_dhar_offset(pvt));
  671. debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
  672. amd64_debug_display_dimm_sizes(0, pvt);
  673. /* everything below this point is Fam10h and above */
  674. if (boot_cpu_data.x86 == 0xf)
  675. return;
  676. amd64_debug_display_dimm_sizes(1, pvt);
  677. amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
  678. /* Only if NOT ganged does dclr1 have valid info */
  679. if (!dct_ganging_enabled(pvt))
  680. amd64_dump_dramcfg_low(pvt->dclr1, 1);
  681. }
  682. /*
  683. * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
  684. */
  685. static void prep_chip_selects(struct amd64_pvt *pvt)
  686. {
  687. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  688. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  689. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
  690. } else {
  691. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  692. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
  693. }
  694. }
  695. /*
  696. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
  697. */
  698. static void read_dct_base_mask(struct amd64_pvt *pvt)
  699. {
  700. int cs;
  701. prep_chip_selects(pvt);
  702. for_each_chip_select(cs, 0, pvt) {
  703. u32 reg0 = DCSB0 + (cs * 4);
  704. u32 reg1 = DCSB1 + (cs * 4);
  705. u32 *base0 = &pvt->csels[0].csbases[cs];
  706. u32 *base1 = &pvt->csels[1].csbases[cs];
  707. if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
  708. debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
  709. cs, *base0, reg0);
  710. if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
  711. continue;
  712. if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
  713. debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
  714. cs, *base1, reg1);
  715. }
  716. for_each_chip_select_mask(cs, 0, pvt) {
  717. u32 reg0 = DCSM0 + (cs * 4);
  718. u32 reg1 = DCSM1 + (cs * 4);
  719. u32 *mask0 = &pvt->csels[0].csmasks[cs];
  720. u32 *mask1 = &pvt->csels[1].csmasks[cs];
  721. if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
  722. debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
  723. cs, *mask0, reg0);
  724. if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
  725. continue;
  726. if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
  727. debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
  728. cs, *mask1, reg1);
  729. }
  730. }
  731. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
  732. {
  733. enum mem_type type;
  734. /* F15h supports only DDR3 */
  735. if (boot_cpu_data.x86 >= 0x15)
  736. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  737. else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
  738. if (pvt->dchr0 & DDR3_MODE)
  739. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  740. else
  741. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  742. } else {
  743. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  744. }
  745. amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
  746. return type;
  747. }
  748. /* Get the number of DCT channels the memory controller is using. */
  749. static int k8_early_channel_count(struct amd64_pvt *pvt)
  750. {
  751. int flag;
  752. if (pvt->ext_model >= K8_REV_F)
  753. /* RevF (NPT) and later */
  754. flag = pvt->dclr0 & WIDTH_128;
  755. else
  756. /* RevE and earlier */
  757. flag = pvt->dclr0 & REVE_WIDTH_128;
  758. /* not used */
  759. pvt->dclr1 = 0;
  760. return (flag) ? 2 : 1;
  761. }
  762. /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
  763. static u64 get_error_address(struct mce *m)
  764. {
  765. u8 start_bit = 1;
  766. u8 end_bit = 47;
  767. if (boot_cpu_data.x86 == 0xf) {
  768. start_bit = 3;
  769. end_bit = 39;
  770. }
  771. return m->addr & GENMASK(start_bit, end_bit);
  772. }
  773. static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
  774. {
  775. u32 off = range << 3;
  776. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
  777. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
  778. if (boot_cpu_data.x86 == 0xf)
  779. return;
  780. if (!dram_rw(pvt, range))
  781. return;
  782. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
  783. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
  784. }
  785. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  786. u16 syndrome)
  787. {
  788. struct mem_ctl_info *src_mci;
  789. struct amd64_pvt *pvt = mci->pvt_info;
  790. int channel, csrow;
  791. u32 page, offset;
  792. /* CHIPKILL enabled */
  793. if (pvt->nbcfg & NBCFG_CHIPKILL) {
  794. channel = get_channel_from_ecc_syndrome(mci, syndrome);
  795. if (channel < 0) {
  796. /*
  797. * Syndrome didn't map, so we don't know which of the
  798. * 2 DIMMs is in error. So we need to ID 'both' of them
  799. * as suspect.
  800. */
  801. amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
  802. "error reporting race\n", syndrome);
  803. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  804. return;
  805. }
  806. } else {
  807. /*
  808. * non-chipkill ecc mode
  809. *
  810. * The k8 documentation is unclear about how to determine the
  811. * channel number when using non-chipkill memory. This method
  812. * was obtained from email communication with someone at AMD.
  813. * (Wish the email was placed in this comment - norsk)
  814. */
  815. channel = ((sys_addr & BIT(3)) != 0);
  816. }
  817. /*
  818. * Find out which node the error address belongs to. This may be
  819. * different from the node that detected the error.
  820. */
  821. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  822. if (!src_mci) {
  823. amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
  824. (unsigned long)sys_addr);
  825. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  826. return;
  827. }
  828. /* Now map the sys_addr to a CSROW */
  829. csrow = sys_addr_to_csrow(src_mci, sys_addr);
  830. if (csrow < 0) {
  831. edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
  832. } else {
  833. error_address_to_page_and_offset(sys_addr, &page, &offset);
  834. edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
  835. channel, EDAC_MOD_STR);
  836. }
  837. }
  838. static int ddr2_cs_size(unsigned i, bool dct_width)
  839. {
  840. unsigned shift = 0;
  841. if (i <= 2)
  842. shift = i;
  843. else if (!(i & 0x1))
  844. shift = i >> 1;
  845. else
  846. shift = (i + 1) >> 1;
  847. return 128 << (shift + !!dct_width);
  848. }
  849. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  850. unsigned cs_mode)
  851. {
  852. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  853. if (pvt->ext_model >= K8_REV_F) {
  854. WARN_ON(cs_mode > 11);
  855. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  856. }
  857. else if (pvt->ext_model >= K8_REV_D) {
  858. WARN_ON(cs_mode > 10);
  859. if (cs_mode == 3 || cs_mode == 8)
  860. return 32 << (cs_mode - 1);
  861. else
  862. return 32 << cs_mode;
  863. }
  864. else {
  865. WARN_ON(cs_mode > 6);
  866. return 32 << cs_mode;
  867. }
  868. }
  869. /*
  870. * Get the number of DCT channels in use.
  871. *
  872. * Return:
  873. * number of Memory Channels in operation
  874. * Pass back:
  875. * contents of the DCL0_LOW register
  876. */
  877. static int f1x_early_channel_count(struct amd64_pvt *pvt)
  878. {
  879. int i, j, channels = 0;
  880. /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
  881. if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
  882. return 2;
  883. /*
  884. * Need to check if in unganged mode: In such, there are 2 channels,
  885. * but they are not in 128 bit mode and thus the above 'dclr0' status
  886. * bit will be OFF.
  887. *
  888. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  889. * their CSEnable bit on. If so, then SINGLE DIMM case.
  890. */
  891. debugf0("Data width is not 128 bits - need more decoding\n");
  892. /*
  893. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  894. * is more than just one DIMM present in unganged mode. Need to check
  895. * both controllers since DIMMs can be placed in either one.
  896. */
  897. for (i = 0; i < 2; i++) {
  898. u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
  899. for (j = 0; j < 4; j++) {
  900. if (DBAM_DIMM(j, dbam) > 0) {
  901. channels++;
  902. break;
  903. }
  904. }
  905. }
  906. if (channels > 2)
  907. channels = 2;
  908. amd64_info("MCT channel count: %d\n", channels);
  909. return channels;
  910. }
  911. static int ddr3_cs_size(unsigned i, bool dct_width)
  912. {
  913. unsigned shift = 0;
  914. int cs_size = 0;
  915. if (i == 0 || i == 3 || i == 4)
  916. cs_size = -1;
  917. else if (i <= 2)
  918. shift = i;
  919. else if (i == 12)
  920. shift = 7;
  921. else if (!(i & 0x1))
  922. shift = i >> 1;
  923. else
  924. shift = (i + 1) >> 1;
  925. if (cs_size != -1)
  926. cs_size = (128 * (1 << !!dct_width)) << shift;
  927. return cs_size;
  928. }
  929. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  930. unsigned cs_mode)
  931. {
  932. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  933. WARN_ON(cs_mode > 11);
  934. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  935. return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
  936. else
  937. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  938. }
  939. /*
  940. * F15h supports only 64bit DCT interfaces
  941. */
  942. static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  943. unsigned cs_mode)
  944. {
  945. WARN_ON(cs_mode > 12);
  946. return ddr3_cs_size(cs_mode, false);
  947. }
  948. static void read_dram_ctl_register(struct amd64_pvt *pvt)
  949. {
  950. if (boot_cpu_data.x86 == 0xf)
  951. return;
  952. if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
  953. debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
  954. pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
  955. debugf0(" DCTs operate in %s mode.\n",
  956. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
  957. if (!dct_ganging_enabled(pvt))
  958. debugf0(" Address range split per DCT: %s\n",
  959. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  960. debugf0(" data interleave for ECC: %s, "
  961. "DRAM cleared since last warm reset: %s\n",
  962. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  963. (dct_memory_cleared(pvt) ? "yes" : "no"));
  964. debugf0(" channel interleave: %s, "
  965. "interleave bits selector: 0x%x\n",
  966. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  967. dct_sel_interleave_addr(pvt));
  968. }
  969. amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
  970. }
  971. /*
  972. * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  973. * Interleaving Modes.
  974. */
  975. static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  976. bool hi_range_sel, u8 intlv_en)
  977. {
  978. u32 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
  979. if (dct_ganging_enabled(pvt))
  980. return 0;
  981. if (hi_range_sel)
  982. return dct_sel_high;
  983. /*
  984. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  985. */
  986. if (dct_interleave_enabled(pvt)) {
  987. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  988. /* return DCT select function: 0=DCT0, 1=DCT1 */
  989. if (!intlv_addr)
  990. return sys_addr >> 6 & 1;
  991. if (intlv_addr & 0x2) {
  992. u8 shift = intlv_addr & 0x1 ? 9 : 6;
  993. u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  994. return ((sys_addr >> shift) & 1) ^ temp;
  995. }
  996. return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
  997. }
  998. if (dct_high_range_enabled(pvt))
  999. return ~dct_sel_high & 1;
  1000. return 0;
  1001. }
  1002. /* Convert the sys_addr to the normalized DCT address */
  1003. static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, int range,
  1004. u64 sys_addr, bool hi_rng,
  1005. u32 dct_sel_base_addr)
  1006. {
  1007. u64 chan_off;
  1008. u64 dram_base = get_dram_base(pvt, range);
  1009. u64 hole_off = f10_dhar_offset(pvt);
  1010. u32 hole_valid = dhar_valid(pvt);
  1011. u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
  1012. if (hi_rng) {
  1013. /*
  1014. * if
  1015. * base address of high range is below 4Gb
  1016. * (bits [47:27] at [31:11])
  1017. * DRAM address space on this DCT is hoisted above 4Gb &&
  1018. * sys_addr > 4Gb
  1019. *
  1020. * remove hole offset from sys_addr
  1021. * else
  1022. * remove high range offset from sys_addr
  1023. */
  1024. if ((!(dct_sel_base_addr >> 16) ||
  1025. dct_sel_base_addr < dhar_base(pvt)) &&
  1026. hole_valid &&
  1027. (sys_addr >= BIT_64(32)))
  1028. chan_off = hole_off;
  1029. else
  1030. chan_off = dct_sel_base_off;
  1031. } else {
  1032. /*
  1033. * if
  1034. * we have a valid hole &&
  1035. * sys_addr > 4Gb
  1036. *
  1037. * remove hole
  1038. * else
  1039. * remove dram base to normalize to DCT address
  1040. */
  1041. if (hole_valid && (sys_addr >= BIT_64(32)))
  1042. chan_off = hole_off;
  1043. else
  1044. chan_off = dram_base;
  1045. }
  1046. return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
  1047. }
  1048. /*
  1049. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1050. * spare row
  1051. */
  1052. static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
  1053. {
  1054. int tmp_cs;
  1055. if (online_spare_swap_done(pvt, dct) &&
  1056. csrow == online_spare_bad_dramcs(pvt, dct)) {
  1057. for_each_chip_select(tmp_cs, dct, pvt) {
  1058. if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
  1059. csrow = tmp_cs;
  1060. break;
  1061. }
  1062. }
  1063. }
  1064. return csrow;
  1065. }
  1066. /*
  1067. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1068. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1069. *
  1070. * Return:
  1071. * -EINVAL: NOT FOUND
  1072. * 0..csrow = Chip-Select Row
  1073. */
  1074. static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
  1075. {
  1076. struct mem_ctl_info *mci;
  1077. struct amd64_pvt *pvt;
  1078. u64 cs_base, cs_mask;
  1079. int cs_found = -EINVAL;
  1080. int csrow;
  1081. mci = mcis[nid];
  1082. if (!mci)
  1083. return cs_found;
  1084. pvt = mci->pvt_info;
  1085. debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
  1086. for_each_chip_select(csrow, dct, pvt) {
  1087. if (!csrow_enabled(csrow, dct, pvt))
  1088. continue;
  1089. get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
  1090. debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
  1091. csrow, cs_base, cs_mask);
  1092. cs_mask = ~cs_mask;
  1093. debugf1(" (InputAddr & ~CSMask)=0x%llx "
  1094. "(CSBase & ~CSMask)=0x%llx\n",
  1095. (in_addr & cs_mask), (cs_base & cs_mask));
  1096. if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
  1097. cs_found = f10_process_possible_spare(pvt, dct, csrow);
  1098. debugf1(" MATCH csrow=%d\n", cs_found);
  1099. break;
  1100. }
  1101. }
  1102. return cs_found;
  1103. }
  1104. /*
  1105. * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
  1106. * swapped with a region located at the bottom of memory so that the GPU can use
  1107. * the interleaved region and thus two channels.
  1108. */
  1109. static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
  1110. {
  1111. u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
  1112. if (boot_cpu_data.x86 == 0x10) {
  1113. /* only revC3 and revE have that feature */
  1114. if (boot_cpu_data.x86_model < 4 ||
  1115. (boot_cpu_data.x86_model < 0xa &&
  1116. boot_cpu_data.x86_mask < 3))
  1117. return sys_addr;
  1118. }
  1119. amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
  1120. if (!(swap_reg & 0x1))
  1121. return sys_addr;
  1122. swap_base = (swap_reg >> 3) & 0x7f;
  1123. swap_limit = (swap_reg >> 11) & 0x7f;
  1124. rgn_size = (swap_reg >> 20) & 0x7f;
  1125. tmp_addr = sys_addr >> 27;
  1126. if (!(sys_addr >> 34) &&
  1127. (((tmp_addr >= swap_base) &&
  1128. (tmp_addr <= swap_limit)) ||
  1129. (tmp_addr < rgn_size)))
  1130. return sys_addr ^ (u64)swap_base << 27;
  1131. return sys_addr;
  1132. }
  1133. /* For a given @dram_range, check if @sys_addr falls within it. */
  1134. static int f1x_match_to_this_node(struct amd64_pvt *pvt, int range,
  1135. u64 sys_addr, int *nid, int *chan_sel)
  1136. {
  1137. int cs_found = -EINVAL;
  1138. u64 chan_addr;
  1139. u32 dct_sel_base;
  1140. u8 channel;
  1141. bool high_range = false;
  1142. u8 node_id = dram_dst_node(pvt, range);
  1143. u8 intlv_en = dram_intlv_en(pvt, range);
  1144. u32 intlv_sel = dram_intlv_sel(pvt, range);
  1145. debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1146. range, sys_addr, get_dram_limit(pvt, range));
  1147. if (dhar_valid(pvt) &&
  1148. dhar_base(pvt) <= sys_addr &&
  1149. sys_addr < BIT_64(32)) {
  1150. amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
  1151. sys_addr);
  1152. return -EINVAL;
  1153. }
  1154. if (intlv_en &&
  1155. (intlv_sel != ((sys_addr >> 12) & intlv_en))) {
  1156. amd64_warn("Botched intlv bits, en: 0x%x, sel: 0x%x\n",
  1157. intlv_en, intlv_sel);
  1158. return -EINVAL;
  1159. }
  1160. sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
  1161. dct_sel_base = dct_sel_baseaddr(pvt);
  1162. /*
  1163. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1164. * select between DCT0 and DCT1.
  1165. */
  1166. if (dct_high_range_enabled(pvt) &&
  1167. !dct_ganging_enabled(pvt) &&
  1168. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1169. high_range = true;
  1170. channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1171. chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
  1172. high_range, dct_sel_base);
  1173. /* Remove node interleaving, see F1x120 */
  1174. if (intlv_en)
  1175. chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
  1176. (chan_addr & 0xfff);
  1177. /* remove channel interleave */
  1178. if (dct_interleave_enabled(pvt) &&
  1179. !dct_high_range_enabled(pvt) &&
  1180. !dct_ganging_enabled(pvt)) {
  1181. if (dct_sel_interleave_addr(pvt) != 1) {
  1182. if (dct_sel_interleave_addr(pvt) == 0x3)
  1183. /* hash 9 */
  1184. chan_addr = ((chan_addr >> 10) << 9) |
  1185. (chan_addr & 0x1ff);
  1186. else
  1187. /* A[6] or hash 6 */
  1188. chan_addr = ((chan_addr >> 7) << 6) |
  1189. (chan_addr & 0x3f);
  1190. } else
  1191. /* A[12] */
  1192. chan_addr = ((chan_addr >> 13) << 12) |
  1193. (chan_addr & 0xfff);
  1194. }
  1195. debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
  1196. cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
  1197. if (cs_found >= 0) {
  1198. *nid = node_id;
  1199. *chan_sel = channel;
  1200. }
  1201. return cs_found;
  1202. }
  1203. static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
  1204. int *node, int *chan_sel)
  1205. {
  1206. int range, cs_found = -EINVAL;
  1207. for (range = 0; range < DRAM_RANGES; range++) {
  1208. if (!dram_rw(pvt, range))
  1209. continue;
  1210. if ((get_dram_base(pvt, range) <= sys_addr) &&
  1211. (get_dram_limit(pvt, range) >= sys_addr)) {
  1212. cs_found = f1x_match_to_this_node(pvt, range,
  1213. sys_addr, node,
  1214. chan_sel);
  1215. if (cs_found >= 0)
  1216. break;
  1217. }
  1218. }
  1219. return cs_found;
  1220. }
  1221. /*
  1222. * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
  1223. * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  1224. *
  1225. * The @sys_addr is usually an error address received from the hardware
  1226. * (MCX_ADDR).
  1227. */
  1228. static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  1229. u16 syndrome)
  1230. {
  1231. struct amd64_pvt *pvt = mci->pvt_info;
  1232. u32 page, offset;
  1233. int nid, csrow, chan = 0;
  1234. csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
  1235. if (csrow < 0) {
  1236. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1237. return;
  1238. }
  1239. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1240. /*
  1241. * We need the syndromes for channel detection only when we're
  1242. * ganged. Otherwise @chan should already contain the channel at
  1243. * this point.
  1244. */
  1245. if (dct_ganging_enabled(pvt))
  1246. chan = get_channel_from_ecc_syndrome(mci, syndrome);
  1247. if (chan >= 0)
  1248. edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
  1249. EDAC_MOD_STR);
  1250. else
  1251. /*
  1252. * Channel unknown, report all channels on this CSROW as failed.
  1253. */
  1254. for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
  1255. edac_mc_handle_ce(mci, page, offset, syndrome,
  1256. csrow, chan, EDAC_MOD_STR);
  1257. }
  1258. /*
  1259. * debug routine to display the memory sizes of all logical DIMMs and its
  1260. * CSROWs
  1261. */
  1262. static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
  1263. {
  1264. int dimm, size0, size1, factor = 0;
  1265. u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
  1266. u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1267. if (boot_cpu_data.x86 == 0xf) {
  1268. if (pvt->dclr0 & WIDTH_128)
  1269. factor = 1;
  1270. /* K8 families < revF not supported yet */
  1271. if (pvt->ext_model < K8_REV_F)
  1272. return;
  1273. else
  1274. WARN_ON(ctrl != 0);
  1275. }
  1276. dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
  1277. dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
  1278. : pvt->csels[0].csbases;
  1279. debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
  1280. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1281. /* Dump memory sizes for DIMM and its CSROWs */
  1282. for (dimm = 0; dimm < 4; dimm++) {
  1283. size0 = 0;
  1284. if (dcsb[dimm*2] & DCSB_CS_ENABLE)
  1285. size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1286. DBAM_DIMM(dimm, dbam));
  1287. size1 = 0;
  1288. if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
  1289. size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1290. DBAM_DIMM(dimm, dbam));
  1291. amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
  1292. dimm * 2, size0 << factor,
  1293. dimm * 2 + 1, size1 << factor);
  1294. }
  1295. }
  1296. static struct amd64_family_type amd64_family_types[] = {
  1297. [K8_CPUS] = {
  1298. .ctl_name = "K8",
  1299. .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1300. .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1301. .ops = {
  1302. .early_channel_count = k8_early_channel_count,
  1303. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1304. .dbam_to_cs = k8_dbam_to_chip_select,
  1305. .read_dct_pci_cfg = k8_read_dct_pci_cfg,
  1306. }
  1307. },
  1308. [F10_CPUS] = {
  1309. .ctl_name = "F10h",
  1310. .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1311. .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1312. .ops = {
  1313. .early_channel_count = f1x_early_channel_count,
  1314. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1315. .dbam_to_cs = f10_dbam_to_chip_select,
  1316. .read_dct_pci_cfg = f10_read_dct_pci_cfg,
  1317. }
  1318. },
  1319. [F15_CPUS] = {
  1320. .ctl_name = "F15h",
  1321. .ops = {
  1322. .early_channel_count = f1x_early_channel_count,
  1323. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1324. .dbam_to_cs = f15_dbam_to_chip_select,
  1325. .read_dct_pci_cfg = f15_read_dct_pci_cfg,
  1326. }
  1327. },
  1328. };
  1329. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  1330. unsigned int device,
  1331. struct pci_dev *related)
  1332. {
  1333. struct pci_dev *dev = NULL;
  1334. dev = pci_get_device(vendor, device, dev);
  1335. while (dev) {
  1336. if ((dev->bus->number == related->bus->number) &&
  1337. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  1338. break;
  1339. dev = pci_get_device(vendor, device, dev);
  1340. }
  1341. return dev;
  1342. }
  1343. /*
  1344. * These are tables of eigenvectors (one per line) which can be used for the
  1345. * construction of the syndrome tables. The modified syndrome search algorithm
  1346. * uses those to find the symbol in error and thus the DIMM.
  1347. *
  1348. * Algorithm courtesy of Ross LaFetra from AMD.
  1349. */
  1350. static u16 x4_vectors[] = {
  1351. 0x2f57, 0x1afe, 0x66cc, 0xdd88,
  1352. 0x11eb, 0x3396, 0x7f4c, 0xeac8,
  1353. 0x0001, 0x0002, 0x0004, 0x0008,
  1354. 0x1013, 0x3032, 0x4044, 0x8088,
  1355. 0x106b, 0x30d6, 0x70fc, 0xe0a8,
  1356. 0x4857, 0xc4fe, 0x13cc, 0x3288,
  1357. 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
  1358. 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
  1359. 0x15c1, 0x2a42, 0x89ac, 0x4758,
  1360. 0x2b03, 0x1602, 0x4f0c, 0xca08,
  1361. 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
  1362. 0x8ba7, 0x465e, 0x244c, 0x1cc8,
  1363. 0x2b87, 0x164e, 0x642c, 0xdc18,
  1364. 0x40b9, 0x80de, 0x1094, 0x20e8,
  1365. 0x27db, 0x1eb6, 0x9dac, 0x7b58,
  1366. 0x11c1, 0x2242, 0x84ac, 0x4c58,
  1367. 0x1be5, 0x2d7a, 0x5e34, 0xa718,
  1368. 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
  1369. 0x4c97, 0xc87e, 0x11fc, 0x33a8,
  1370. 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
  1371. 0x16b3, 0x3d62, 0x4f34, 0x8518,
  1372. 0x1e2f, 0x391a, 0x5cac, 0xf858,
  1373. 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
  1374. 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
  1375. 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
  1376. 0x4397, 0xc27e, 0x17fc, 0x3ea8,
  1377. 0x1617, 0x3d3e, 0x6464, 0xb8b8,
  1378. 0x23ff, 0x12aa, 0xab6c, 0x56d8,
  1379. 0x2dfb, 0x1ba6, 0x913c, 0x7328,
  1380. 0x185d, 0x2ca6, 0x7914, 0x9e28,
  1381. 0x171b, 0x3e36, 0x7d7c, 0xebe8,
  1382. 0x4199, 0x82ee, 0x19f4, 0x2e58,
  1383. 0x4807, 0xc40e, 0x130c, 0x3208,
  1384. 0x1905, 0x2e0a, 0x5804, 0xac08,
  1385. 0x213f, 0x132a, 0xadfc, 0x5ba8,
  1386. 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
  1387. };
  1388. static u16 x8_vectors[] = {
  1389. 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
  1390. 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
  1391. 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
  1392. 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
  1393. 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
  1394. 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
  1395. 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
  1396. 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
  1397. 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
  1398. 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
  1399. 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
  1400. 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
  1401. 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
  1402. 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
  1403. 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
  1404. 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
  1405. 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
  1406. 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  1407. 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
  1408. };
  1409. static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
  1410. int v_dim)
  1411. {
  1412. unsigned int i, err_sym;
  1413. for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
  1414. u16 s = syndrome;
  1415. int v_idx = err_sym * v_dim;
  1416. int v_end = (err_sym + 1) * v_dim;
  1417. /* walk over all 16 bits of the syndrome */
  1418. for (i = 1; i < (1U << 16); i <<= 1) {
  1419. /* if bit is set in that eigenvector... */
  1420. if (v_idx < v_end && vectors[v_idx] & i) {
  1421. u16 ev_comp = vectors[v_idx++];
  1422. /* ... and bit set in the modified syndrome, */
  1423. if (s & i) {
  1424. /* remove it. */
  1425. s ^= ev_comp;
  1426. if (!s)
  1427. return err_sym;
  1428. }
  1429. } else if (s & i)
  1430. /* can't get to zero, move to next symbol */
  1431. break;
  1432. }
  1433. }
  1434. debugf0("syndrome(%x) not found\n", syndrome);
  1435. return -1;
  1436. }
  1437. static int map_err_sym_to_channel(int err_sym, int sym_size)
  1438. {
  1439. if (sym_size == 4)
  1440. switch (err_sym) {
  1441. case 0x20:
  1442. case 0x21:
  1443. return 0;
  1444. break;
  1445. case 0x22:
  1446. case 0x23:
  1447. return 1;
  1448. break;
  1449. default:
  1450. return err_sym >> 4;
  1451. break;
  1452. }
  1453. /* x8 symbols */
  1454. else
  1455. switch (err_sym) {
  1456. /* imaginary bits not in a DIMM */
  1457. case 0x10:
  1458. WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
  1459. err_sym);
  1460. return -1;
  1461. break;
  1462. case 0x11:
  1463. return 0;
  1464. break;
  1465. case 0x12:
  1466. return 1;
  1467. break;
  1468. default:
  1469. return err_sym >> 3;
  1470. break;
  1471. }
  1472. return -1;
  1473. }
  1474. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
  1475. {
  1476. struct amd64_pvt *pvt = mci->pvt_info;
  1477. int err_sym = -1;
  1478. if (pvt->syn_type == 8)
  1479. err_sym = decode_syndrome(syndrome, x8_vectors,
  1480. ARRAY_SIZE(x8_vectors),
  1481. pvt->syn_type);
  1482. else if (pvt->syn_type == 4)
  1483. err_sym = decode_syndrome(syndrome, x4_vectors,
  1484. ARRAY_SIZE(x4_vectors),
  1485. pvt->syn_type);
  1486. else {
  1487. amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
  1488. return err_sym;
  1489. }
  1490. return map_err_sym_to_channel(err_sym, pvt->syn_type);
  1491. }
  1492. /*
  1493. * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
  1494. * ADDRESS and process.
  1495. */
  1496. static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
  1497. {
  1498. struct amd64_pvt *pvt = mci->pvt_info;
  1499. u64 sys_addr;
  1500. u16 syndrome;
  1501. /* Ensure that the Error Address is VALID */
  1502. if (!(m->status & MCI_STATUS_ADDRV)) {
  1503. amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
  1504. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1505. return;
  1506. }
  1507. sys_addr = get_error_address(m);
  1508. syndrome = extract_syndrome(m->status);
  1509. amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
  1510. pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
  1511. }
  1512. /* Handle any Un-correctable Errors (UEs) */
  1513. static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
  1514. {
  1515. struct mem_ctl_info *log_mci, *src_mci = NULL;
  1516. int csrow;
  1517. u64 sys_addr;
  1518. u32 page, offset;
  1519. log_mci = mci;
  1520. if (!(m->status & MCI_STATUS_ADDRV)) {
  1521. amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
  1522. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1523. return;
  1524. }
  1525. sys_addr = get_error_address(m);
  1526. /*
  1527. * Find out which node the error address belongs to. This may be
  1528. * different from the node that detected the error.
  1529. */
  1530. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  1531. if (!src_mci) {
  1532. amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
  1533. (unsigned long)sys_addr);
  1534. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1535. return;
  1536. }
  1537. log_mci = src_mci;
  1538. csrow = sys_addr_to_csrow(log_mci, sys_addr);
  1539. if (csrow < 0) {
  1540. amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
  1541. (unsigned long)sys_addr);
  1542. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1543. } else {
  1544. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1545. edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
  1546. }
  1547. }
  1548. static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
  1549. struct mce *m)
  1550. {
  1551. u16 ec = EC(m->status);
  1552. u8 xec = XEC(m->status, 0x1f);
  1553. u8 ecc_type = (m->status >> 45) & 0x3;
  1554. /* Bail early out if this was an 'observed' error */
  1555. if (PP(ec) == NBSL_PP_OBS)
  1556. return;
  1557. /* Do only ECC errors */
  1558. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1559. return;
  1560. if (ecc_type == 2)
  1561. amd64_handle_ce(mci, m);
  1562. else if (ecc_type == 1)
  1563. amd64_handle_ue(mci, m);
  1564. }
  1565. void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
  1566. {
  1567. struct mem_ctl_info *mci = mcis[node_id];
  1568. __amd64_decode_bus_error(mci, m);
  1569. }
  1570. /*
  1571. * Use pvt->F2 which contains the F2 CPU PCI device to get the related
  1572. * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
  1573. */
  1574. static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
  1575. {
  1576. /* Reserve the ADDRESS MAP Device */
  1577. pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
  1578. if (!pvt->F1) {
  1579. amd64_err("error address map device not found: "
  1580. "vendor %x device 0x%x (broken BIOS?)\n",
  1581. PCI_VENDOR_ID_AMD, f1_id);
  1582. return -ENODEV;
  1583. }
  1584. /* Reserve the MISC Device */
  1585. pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
  1586. if (!pvt->F3) {
  1587. pci_dev_put(pvt->F1);
  1588. pvt->F1 = NULL;
  1589. amd64_err("error F3 device not found: "
  1590. "vendor %x device 0x%x (broken BIOS?)\n",
  1591. PCI_VENDOR_ID_AMD, f3_id);
  1592. return -ENODEV;
  1593. }
  1594. debugf1("F1: %s\n", pci_name(pvt->F1));
  1595. debugf1("F2: %s\n", pci_name(pvt->F2));
  1596. debugf1("F3: %s\n", pci_name(pvt->F3));
  1597. return 0;
  1598. }
  1599. static void free_mc_sibling_devs(struct amd64_pvt *pvt)
  1600. {
  1601. pci_dev_put(pvt->F1);
  1602. pci_dev_put(pvt->F3);
  1603. }
  1604. /*
  1605. * Retrieve the hardware registers of the memory controller (this includes the
  1606. * 'Address Map' and 'Misc' device regs)
  1607. */
  1608. static void read_mc_regs(struct amd64_pvt *pvt)
  1609. {
  1610. u64 msr_val;
  1611. u32 tmp;
  1612. int range;
  1613. /*
  1614. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  1615. * those are Read-As-Zero
  1616. */
  1617. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  1618. debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
  1619. /* check first whether TOP_MEM2 is enabled */
  1620. rdmsrl(MSR_K8_SYSCFG, msr_val);
  1621. if (msr_val & (1U << 21)) {
  1622. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  1623. debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  1624. } else
  1625. debugf0(" TOP_MEM2 disabled.\n");
  1626. amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
  1627. read_dram_ctl_register(pvt);
  1628. for (range = 0; range < DRAM_RANGES; range++) {
  1629. u8 rw;
  1630. /* read settings for this DRAM range */
  1631. read_dram_base_limit_regs(pvt, range);
  1632. rw = dram_rw(pvt, range);
  1633. if (!rw)
  1634. continue;
  1635. debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
  1636. range,
  1637. get_dram_base(pvt, range),
  1638. get_dram_limit(pvt, range));
  1639. debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
  1640. dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
  1641. (rw & 0x1) ? "R" : "-",
  1642. (rw & 0x2) ? "W" : "-",
  1643. dram_intlv_sel(pvt, range),
  1644. dram_dst_node(pvt, range));
  1645. }
  1646. read_dct_base_mask(pvt);
  1647. amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
  1648. amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
  1649. amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
  1650. amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
  1651. amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
  1652. if (!dct_ganging_enabled(pvt)) {
  1653. amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
  1654. amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
  1655. }
  1656. if (boot_cpu_data.x86 >= 0x10) {
  1657. amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
  1658. amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
  1659. }
  1660. if (boot_cpu_data.x86 == 0x10 &&
  1661. boot_cpu_data.x86_model > 7 &&
  1662. /* F3x180[EccSymbolSize]=1 => x8 symbols */
  1663. tmp & BIT(25))
  1664. pvt->syn_type = 8;
  1665. else
  1666. pvt->syn_type = 4;
  1667. dump_misc_regs(pvt);
  1668. }
  1669. /*
  1670. * NOTE: CPU Revision Dependent code
  1671. *
  1672. * Input:
  1673. * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
  1674. * k8 private pointer to -->
  1675. * DRAM Bank Address mapping register
  1676. * node_id
  1677. * DCL register where dual_channel_active is
  1678. *
  1679. * The DBAM register consists of 4 sets of 4 bits each definitions:
  1680. *
  1681. * Bits: CSROWs
  1682. * 0-3 CSROWs 0 and 1
  1683. * 4-7 CSROWs 2 and 3
  1684. * 8-11 CSROWs 4 and 5
  1685. * 12-15 CSROWs 6 and 7
  1686. *
  1687. * Values range from: 0 to 15
  1688. * The meaning of the values depends on CPU revision and dual-channel state,
  1689. * see relevant BKDG more info.
  1690. *
  1691. * The memory controller provides for total of only 8 CSROWs in its current
  1692. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  1693. * single channel or two (2) DIMMs in dual channel mode.
  1694. *
  1695. * The following code logic collapses the various tables for CSROW based on CPU
  1696. * revision.
  1697. *
  1698. * Returns:
  1699. * The number of PAGE_SIZE pages on the specified CSROW number it
  1700. * encompasses
  1701. *
  1702. */
  1703. static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
  1704. {
  1705. u32 cs_mode, nr_pages;
  1706. /*
  1707. * The math on this doesn't look right on the surface because x/2*4 can
  1708. * be simplified to x*2 but this expression makes use of the fact that
  1709. * it is integral math where 1/2=0. This intermediate value becomes the
  1710. * number of bits to shift the DBAM register to extract the proper CSROW
  1711. * field.
  1712. */
  1713. cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
  1714. nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
  1715. /*
  1716. * If dual channel then double the memory size of single channel.
  1717. * Channel count is 1 or 2
  1718. */
  1719. nr_pages <<= (pvt->channel_count - 1);
  1720. debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
  1721. debugf0(" nr_pages= %u channel-count = %d\n",
  1722. nr_pages, pvt->channel_count);
  1723. return nr_pages;
  1724. }
  1725. /*
  1726. * Initialize the array of csrow attribute instances, based on the values
  1727. * from pci config hardware registers.
  1728. */
  1729. static int init_csrows(struct mem_ctl_info *mci)
  1730. {
  1731. struct csrow_info *csrow;
  1732. struct amd64_pvt *pvt = mci->pvt_info;
  1733. u64 input_addr_min, input_addr_max, sys_addr, base, mask;
  1734. u32 val;
  1735. int i, empty = 1;
  1736. amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
  1737. pvt->nbcfg = val;
  1738. debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  1739. pvt->mc_node_id, val,
  1740. !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
  1741. for_each_chip_select(i, 0, pvt) {
  1742. csrow = &mci->csrows[i];
  1743. if (!csrow_enabled(i, 0, pvt)) {
  1744. debugf1("----CSROW %d EMPTY for node %d\n", i,
  1745. pvt->mc_node_id);
  1746. continue;
  1747. }
  1748. debugf1("----CSROW %d VALID for MC node %d\n",
  1749. i, pvt->mc_node_id);
  1750. empty = 0;
  1751. csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
  1752. find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
  1753. sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
  1754. csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
  1755. sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
  1756. csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
  1757. get_cs_base_and_mask(pvt, i, 0, &base, &mask);
  1758. csrow->page_mask = ~mask;
  1759. /* 8 bytes of resolution */
  1760. csrow->mtype = amd64_determine_memory_type(pvt, i);
  1761. debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
  1762. debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
  1763. (unsigned long)input_addr_min,
  1764. (unsigned long)input_addr_max);
  1765. debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
  1766. (unsigned long)sys_addr, csrow->page_mask);
  1767. debugf1(" nr_pages: %u first_page: 0x%lx "
  1768. "last_page: 0x%lx\n",
  1769. (unsigned)csrow->nr_pages,
  1770. csrow->first_page, csrow->last_page);
  1771. /*
  1772. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  1773. */
  1774. if (pvt->nbcfg & NBCFG_ECC_ENABLE)
  1775. csrow->edac_mode =
  1776. (pvt->nbcfg & NBCFG_CHIPKILL) ?
  1777. EDAC_S4ECD4ED : EDAC_SECDED;
  1778. else
  1779. csrow->edac_mode = EDAC_NONE;
  1780. }
  1781. return empty;
  1782. }
  1783. /* get all cores on this DCT */
  1784. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
  1785. {
  1786. int cpu;
  1787. for_each_online_cpu(cpu)
  1788. if (amd_get_nb_id(cpu) == nid)
  1789. cpumask_set_cpu(cpu, mask);
  1790. }
  1791. /* check MCG_CTL on all the cpus on this node */
  1792. static bool amd64_nb_mce_bank_enabled_on_node(int nid)
  1793. {
  1794. cpumask_var_t mask;
  1795. int cpu, nbe;
  1796. bool ret = false;
  1797. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  1798. amd64_warn("%s: Error allocating mask\n", __func__);
  1799. return false;
  1800. }
  1801. get_cpus_on_this_dct_cpumask(mask, nid);
  1802. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  1803. for_each_cpu(cpu, mask) {
  1804. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1805. nbe = reg->l & MSR_MCGCTL_NBE;
  1806. debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  1807. cpu, reg->q,
  1808. (nbe ? "enabled" : "disabled"));
  1809. if (!nbe)
  1810. goto out;
  1811. }
  1812. ret = true;
  1813. out:
  1814. free_cpumask_var(mask);
  1815. return ret;
  1816. }
  1817. static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
  1818. {
  1819. cpumask_var_t cmask;
  1820. int cpu;
  1821. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  1822. amd64_warn("%s: error allocating mask\n", __func__);
  1823. return false;
  1824. }
  1825. get_cpus_on_this_dct_cpumask(cmask, nid);
  1826. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1827. for_each_cpu(cpu, cmask) {
  1828. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1829. if (on) {
  1830. if (reg->l & MSR_MCGCTL_NBE)
  1831. s->flags.nb_mce_enable = 1;
  1832. reg->l |= MSR_MCGCTL_NBE;
  1833. } else {
  1834. /*
  1835. * Turn off NB MCE reporting only when it was off before
  1836. */
  1837. if (!s->flags.nb_mce_enable)
  1838. reg->l &= ~MSR_MCGCTL_NBE;
  1839. }
  1840. }
  1841. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1842. free_cpumask_var(cmask);
  1843. return 0;
  1844. }
  1845. static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
  1846. struct pci_dev *F3)
  1847. {
  1848. bool ret = true;
  1849. u32 value, mask = 0x3; /* UECC/CECC enable */
  1850. if (toggle_ecc_err_reporting(s, nid, ON)) {
  1851. amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
  1852. return false;
  1853. }
  1854. amd64_read_pci_cfg(F3, NBCTL, &value);
  1855. s->old_nbctl = value & mask;
  1856. s->nbctl_valid = true;
  1857. value |= mask;
  1858. amd64_write_pci_cfg(F3, NBCTL, value);
  1859. amd64_read_pci_cfg(F3, NBCFG, &value);
  1860. debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  1861. nid, value, !!(value & NBCFG_ECC_ENABLE));
  1862. if (!(value & NBCFG_ECC_ENABLE)) {
  1863. amd64_warn("DRAM ECC disabled on this node, enabling...\n");
  1864. s->flags.nb_ecc_prev = 0;
  1865. /* Attempt to turn on DRAM ECC Enable */
  1866. value |= NBCFG_ECC_ENABLE;
  1867. amd64_write_pci_cfg(F3, NBCFG, value);
  1868. amd64_read_pci_cfg(F3, NBCFG, &value);
  1869. if (!(value & NBCFG_ECC_ENABLE)) {
  1870. amd64_warn("Hardware rejected DRAM ECC enable,"
  1871. "check memory DIMM configuration.\n");
  1872. ret = false;
  1873. } else {
  1874. amd64_info("Hardware accepted DRAM ECC Enable\n");
  1875. }
  1876. } else {
  1877. s->flags.nb_ecc_prev = 1;
  1878. }
  1879. debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  1880. nid, value, !!(value & NBCFG_ECC_ENABLE));
  1881. return ret;
  1882. }
  1883. static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
  1884. struct pci_dev *F3)
  1885. {
  1886. u32 value, mask = 0x3; /* UECC/CECC enable */
  1887. if (!s->nbctl_valid)
  1888. return;
  1889. amd64_read_pci_cfg(F3, NBCTL, &value);
  1890. value &= ~mask;
  1891. value |= s->old_nbctl;
  1892. amd64_write_pci_cfg(F3, NBCTL, value);
  1893. /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
  1894. if (!s->flags.nb_ecc_prev) {
  1895. amd64_read_pci_cfg(F3, NBCFG, &value);
  1896. value &= ~NBCFG_ECC_ENABLE;
  1897. amd64_write_pci_cfg(F3, NBCFG, value);
  1898. }
  1899. /* restore the NB Enable MCGCTL bit */
  1900. if (toggle_ecc_err_reporting(s, nid, OFF))
  1901. amd64_warn("Error restoring NB MCGCTL settings!\n");
  1902. }
  1903. /*
  1904. * EDAC requires that the BIOS have ECC enabled before
  1905. * taking over the processing of ECC errors. A command line
  1906. * option allows to force-enable hardware ECC later in
  1907. * enable_ecc_error_reporting().
  1908. */
  1909. static const char *ecc_msg =
  1910. "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
  1911. " Either enable ECC checking or force module loading by setting "
  1912. "'ecc_enable_override'.\n"
  1913. " (Note that use of the override may cause unknown side effects.)\n";
  1914. static bool ecc_enabled(struct pci_dev *F3, u8 nid)
  1915. {
  1916. u32 value;
  1917. u8 ecc_en = 0;
  1918. bool nb_mce_en = false;
  1919. amd64_read_pci_cfg(F3, NBCFG, &value);
  1920. ecc_en = !!(value & NBCFG_ECC_ENABLE);
  1921. amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
  1922. nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
  1923. if (!nb_mce_en)
  1924. amd64_notice("NB MCE bank disabled, set MSR "
  1925. "0x%08x[4] on node %d to enable.\n",
  1926. MSR_IA32_MCG_CTL, nid);
  1927. if (!ecc_en || !nb_mce_en) {
  1928. amd64_notice("%s", ecc_msg);
  1929. return false;
  1930. }
  1931. return true;
  1932. }
  1933. struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
  1934. ARRAY_SIZE(amd64_inj_attrs) +
  1935. 1];
  1936. struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
  1937. static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
  1938. {
  1939. unsigned int i = 0, j = 0;
  1940. for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
  1941. sysfs_attrs[i] = amd64_dbg_attrs[i];
  1942. if (boot_cpu_data.x86 >= 0x10)
  1943. for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
  1944. sysfs_attrs[i] = amd64_inj_attrs[j];
  1945. sysfs_attrs[i] = terminator;
  1946. mci->mc_driver_sysfs_attributes = sysfs_attrs;
  1947. }
  1948. static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
  1949. {
  1950. struct amd64_pvt *pvt = mci->pvt_info;
  1951. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  1952. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  1953. if (pvt->nbcap & NBCAP_SECDED)
  1954. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  1955. if (pvt->nbcap & NBCAP_CHIPKILL)
  1956. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  1957. mci->edac_cap = amd64_determine_edac_cap(pvt);
  1958. mci->mod_name = EDAC_MOD_STR;
  1959. mci->mod_ver = EDAC_AMD64_VERSION;
  1960. mci->ctl_name = pvt->ctl_name;
  1961. mci->dev_name = pci_name(pvt->F2);
  1962. mci->ctl_page_to_phys = NULL;
  1963. /* memory scrubber interface */
  1964. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  1965. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  1966. }
  1967. /*
  1968. * returns a pointer to the family descriptor on success, NULL otherwise.
  1969. */
  1970. static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
  1971. {
  1972. u8 fam = boot_cpu_data.x86;
  1973. struct amd64_family_type *fam_type = NULL;
  1974. switch (fam) {
  1975. case 0xf:
  1976. fam_type = &amd64_family_types[K8_CPUS];
  1977. pvt->ops = &amd64_family_types[K8_CPUS].ops;
  1978. pvt->ctl_name = fam_type->ctl_name;
  1979. pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
  1980. break;
  1981. case 0x10:
  1982. fam_type = &amd64_family_types[F10_CPUS];
  1983. pvt->ops = &amd64_family_types[F10_CPUS].ops;
  1984. pvt->ctl_name = fam_type->ctl_name;
  1985. pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
  1986. break;
  1987. default:
  1988. amd64_err("Unsupported family!\n");
  1989. return NULL;
  1990. }
  1991. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  1992. amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
  1993. (fam == 0xf ?
  1994. (pvt->ext_model >= K8_REV_F ? "revF or later "
  1995. : "revE or earlier ")
  1996. : ""), pvt->mc_node_id);
  1997. return fam_type;
  1998. }
  1999. static int amd64_init_one_instance(struct pci_dev *F2)
  2000. {
  2001. struct amd64_pvt *pvt = NULL;
  2002. struct amd64_family_type *fam_type = NULL;
  2003. struct mem_ctl_info *mci = NULL;
  2004. int err = 0, ret;
  2005. u8 nid = get_node_id(F2);
  2006. ret = -ENOMEM;
  2007. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2008. if (!pvt)
  2009. goto err_ret;
  2010. pvt->mc_node_id = nid;
  2011. pvt->F2 = F2;
  2012. ret = -EINVAL;
  2013. fam_type = amd64_per_family_init(pvt);
  2014. if (!fam_type)
  2015. goto err_free;
  2016. ret = -ENODEV;
  2017. err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
  2018. if (err)
  2019. goto err_free;
  2020. read_mc_regs(pvt);
  2021. /*
  2022. * We need to determine how many memory channels there are. Then use
  2023. * that information for calculating the size of the dynamic instance
  2024. * tables in the 'mci' structure.
  2025. */
  2026. ret = -EINVAL;
  2027. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2028. if (pvt->channel_count < 0)
  2029. goto err_siblings;
  2030. ret = -ENOMEM;
  2031. mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
  2032. if (!mci)
  2033. goto err_siblings;
  2034. mci->pvt_info = pvt;
  2035. mci->dev = &pvt->F2->dev;
  2036. setup_mci_misc_attrs(mci);
  2037. if (init_csrows(mci))
  2038. mci->edac_cap = EDAC_FLAG_NONE;
  2039. set_mc_sysfs_attrs(mci);
  2040. ret = -ENODEV;
  2041. if (edac_mc_add_mc(mci)) {
  2042. debugf1("failed edac_mc_add_mc()\n");
  2043. goto err_add_mc;
  2044. }
  2045. /* register stuff with EDAC MCE */
  2046. if (report_gart_errors)
  2047. amd_report_gart_errors(true);
  2048. amd_register_ecc_decoder(amd64_decode_bus_error);
  2049. mcis[nid] = mci;
  2050. atomic_inc(&drv_instances);
  2051. return 0;
  2052. err_add_mc:
  2053. edac_mc_free(mci);
  2054. err_siblings:
  2055. free_mc_sibling_devs(pvt);
  2056. err_free:
  2057. kfree(pvt);
  2058. err_ret:
  2059. return ret;
  2060. }
  2061. static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
  2062. const struct pci_device_id *mc_type)
  2063. {
  2064. u8 nid = get_node_id(pdev);
  2065. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2066. struct ecc_settings *s;
  2067. int ret = 0;
  2068. ret = pci_enable_device(pdev);
  2069. if (ret < 0) {
  2070. debugf0("ret=%d\n", ret);
  2071. return -EIO;
  2072. }
  2073. ret = -ENOMEM;
  2074. s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
  2075. if (!s)
  2076. goto err_out;
  2077. ecc_stngs[nid] = s;
  2078. if (!ecc_enabled(F3, nid)) {
  2079. ret = -ENODEV;
  2080. if (!ecc_enable_override)
  2081. goto err_enable;
  2082. amd64_warn("Forcing ECC on!\n");
  2083. if (!enable_ecc_error_reporting(s, nid, F3))
  2084. goto err_enable;
  2085. }
  2086. ret = amd64_init_one_instance(pdev);
  2087. if (ret < 0) {
  2088. amd64_err("Error probing instance: %d\n", nid);
  2089. restore_ecc_error_reporting(s, nid, F3);
  2090. }
  2091. return ret;
  2092. err_enable:
  2093. kfree(s);
  2094. ecc_stngs[nid] = NULL;
  2095. err_out:
  2096. return ret;
  2097. }
  2098. static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
  2099. {
  2100. struct mem_ctl_info *mci;
  2101. struct amd64_pvt *pvt;
  2102. u8 nid = get_node_id(pdev);
  2103. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2104. struct ecc_settings *s = ecc_stngs[nid];
  2105. /* Remove from EDAC CORE tracking list */
  2106. mci = edac_mc_del_mc(&pdev->dev);
  2107. if (!mci)
  2108. return;
  2109. pvt = mci->pvt_info;
  2110. restore_ecc_error_reporting(s, nid, F3);
  2111. free_mc_sibling_devs(pvt);
  2112. /* unregister from EDAC MCE */
  2113. amd_report_gart_errors(false);
  2114. amd_unregister_ecc_decoder(amd64_decode_bus_error);
  2115. kfree(ecc_stngs[nid]);
  2116. ecc_stngs[nid] = NULL;
  2117. /* Free the EDAC CORE resources */
  2118. mci->pvt_info = NULL;
  2119. mcis[nid] = NULL;
  2120. kfree(pvt);
  2121. edac_mc_free(mci);
  2122. }
  2123. /*
  2124. * This table is part of the interface for loading drivers for PCI devices. The
  2125. * PCI core identifies what devices are on a system during boot, and then
  2126. * inquiry this table to see if this driver is for a given device found.
  2127. */
  2128. static const struct pci_device_id amd64_pci_table[] __devinitdata = {
  2129. {
  2130. .vendor = PCI_VENDOR_ID_AMD,
  2131. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2132. .subvendor = PCI_ANY_ID,
  2133. .subdevice = PCI_ANY_ID,
  2134. .class = 0,
  2135. .class_mask = 0,
  2136. },
  2137. {
  2138. .vendor = PCI_VENDOR_ID_AMD,
  2139. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2140. .subvendor = PCI_ANY_ID,
  2141. .subdevice = PCI_ANY_ID,
  2142. .class = 0,
  2143. .class_mask = 0,
  2144. },
  2145. {0, }
  2146. };
  2147. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2148. static struct pci_driver amd64_pci_driver = {
  2149. .name = EDAC_MOD_STR,
  2150. .probe = amd64_probe_one_instance,
  2151. .remove = __devexit_p(amd64_remove_one_instance),
  2152. .id_table = amd64_pci_table,
  2153. };
  2154. static void setup_pci_device(void)
  2155. {
  2156. struct mem_ctl_info *mci;
  2157. struct amd64_pvt *pvt;
  2158. if (amd64_ctl_pci)
  2159. return;
  2160. mci = mcis[0];
  2161. if (mci) {
  2162. pvt = mci->pvt_info;
  2163. amd64_ctl_pci =
  2164. edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
  2165. if (!amd64_ctl_pci) {
  2166. pr_warning("%s(): Unable to create PCI control\n",
  2167. __func__);
  2168. pr_warning("%s(): PCI error report via EDAC not set\n",
  2169. __func__);
  2170. }
  2171. }
  2172. }
  2173. static int __init amd64_edac_init(void)
  2174. {
  2175. int err = -ENODEV;
  2176. edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
  2177. opstate_init();
  2178. if (amd_cache_northbridges() < 0)
  2179. goto err_ret;
  2180. err = -ENOMEM;
  2181. mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
  2182. ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
  2183. if (!(mcis && ecc_stngs))
  2184. goto err_ret;
  2185. msrs = msrs_alloc();
  2186. if (!msrs)
  2187. goto err_free;
  2188. err = pci_register_driver(&amd64_pci_driver);
  2189. if (err)
  2190. goto err_pci;
  2191. err = -ENODEV;
  2192. if (!atomic_read(&drv_instances))
  2193. goto err_no_instances;
  2194. setup_pci_device();
  2195. return 0;
  2196. err_no_instances:
  2197. pci_unregister_driver(&amd64_pci_driver);
  2198. err_pci:
  2199. msrs_free(msrs);
  2200. msrs = NULL;
  2201. err_free:
  2202. kfree(mcis);
  2203. mcis = NULL;
  2204. kfree(ecc_stngs);
  2205. ecc_stngs = NULL;
  2206. err_ret:
  2207. return err;
  2208. }
  2209. static void __exit amd64_edac_exit(void)
  2210. {
  2211. if (amd64_ctl_pci)
  2212. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2213. pci_unregister_driver(&amd64_pci_driver);
  2214. kfree(ecc_stngs);
  2215. ecc_stngs = NULL;
  2216. kfree(mcis);
  2217. mcis = NULL;
  2218. msrs_free(msrs);
  2219. msrs = NULL;
  2220. }
  2221. module_init(amd64_edac_init);
  2222. module_exit(amd64_edac_exit);
  2223. MODULE_LICENSE("GPL");
  2224. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2225. "Dave Peterson, Thayne Harbaugh");
  2226. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2227. EDAC_AMD64_VERSION);
  2228. module_param(edac_op_state, int, 0444);
  2229. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");