af9035.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799
  1. /*
  2. * Afatech AF9035 DVB USB driver
  3. *
  4. * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
  5. * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20. */
  21. #include "af9035.h"
  22. #include "af9033.h"
  23. #include "tua9001.h"
  24. DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
  25. static DEFINE_MUTEX(af9035_usb_mutex);
  26. static struct config af9035_config;
  27. static struct dvb_usb_device_properties af9035_properties[1];
  28. static int af9035_properties_count = ARRAY_SIZE(af9035_properties);
  29. static struct af9033_config af9035_af9033_config[] = {
  30. {
  31. .ts_mode = AF9033_TS_MODE_USB,
  32. }, {
  33. .ts_mode = AF9033_TS_MODE_SERIAL,
  34. }
  35. };
  36. static int af9035_ctrl_msg(struct usb_device *udev, struct usb_req *req)
  37. {
  38. #define BUF_LEN 63
  39. #define REQ_HDR_LEN 4 /* send header size */
  40. #define ACK_HDR_LEN 3 /* rece header size */
  41. #define CHECKSUM_LEN 2
  42. #define USB_TIMEOUT 2000
  43. int ret, i, act_len;
  44. u8 buf[BUF_LEN];
  45. u32 msg_len;
  46. static u8 seq; /* packet sequence number */
  47. u16 checksum = 0;
  48. /* buffer overflow check */
  49. if (req->wlen > (BUF_LEN - REQ_HDR_LEN - CHECKSUM_LEN) ||
  50. req->rlen > (BUF_LEN - ACK_HDR_LEN - CHECKSUM_LEN)) {
  51. pr_debug("%s: too much data wlen=%d rlen=%d\n", __func__,
  52. req->wlen, req->rlen);
  53. return -EINVAL;
  54. }
  55. if (mutex_lock_interruptible(&af9035_usb_mutex) < 0)
  56. return -EAGAIN;
  57. buf[0] = REQ_HDR_LEN + req->wlen + CHECKSUM_LEN - 1;
  58. buf[1] = req->mbox;
  59. buf[2] = req->cmd;
  60. buf[3] = seq++;
  61. if (req->wlen)
  62. memcpy(&buf[4], req->wbuf, req->wlen);
  63. /* calc and add checksum */
  64. for (i = 1; i < buf[0]-1; i++) {
  65. if (i % 2)
  66. checksum += buf[i] << 8;
  67. else
  68. checksum += buf[i];
  69. }
  70. checksum = ~checksum;
  71. buf[buf[0]-1] = (checksum >> 8);
  72. buf[buf[0]-0] = (checksum & 0xff);
  73. msg_len = REQ_HDR_LEN + req->wlen + CHECKSUM_LEN ;
  74. /* send req */
  75. ret = usb_bulk_msg(udev, usb_sndbulkpipe(udev, 0x02), buf, msg_len,
  76. &act_len, USB_TIMEOUT);
  77. if (ret < 0)
  78. err("bulk message failed=%d (%d/%d)", ret, msg_len, act_len);
  79. else
  80. if (act_len != msg_len)
  81. ret = -EIO; /* all data is not send */
  82. if (ret < 0)
  83. goto err_mutex_unlock;
  84. /* no ack for those packets */
  85. if (req->cmd == CMD_FW_DL)
  86. goto exit_mutex_unlock;
  87. /* receive ack and data if read req */
  88. msg_len = ACK_HDR_LEN + req->rlen + CHECKSUM_LEN;
  89. ret = usb_bulk_msg(udev, usb_rcvbulkpipe(udev, 0x81), buf, msg_len,
  90. &act_len, USB_TIMEOUT);
  91. if (ret < 0) {
  92. err("recv bulk message failed=%d", ret);
  93. ret = -EIO;
  94. goto err_mutex_unlock;
  95. }
  96. /* check status */
  97. if (buf[2]) {
  98. pr_debug("%s: command=%02x failed fw error=%d\n", __func__,
  99. req->cmd, buf[2]);
  100. ret = -EIO;
  101. goto err_mutex_unlock;
  102. }
  103. /* read request, copy returned data to return buf */
  104. if (req->rlen)
  105. memcpy(req->rbuf, &buf[ACK_HDR_LEN], req->rlen);
  106. err_mutex_unlock:
  107. exit_mutex_unlock:
  108. mutex_unlock(&af9035_usb_mutex);
  109. return ret;
  110. }
  111. /* write multiple registers */
  112. static int af9035_wr_regs(struct dvb_usb_device *d, u32 reg, u8 *val, int len)
  113. {
  114. u8 wbuf[6 + len];
  115. u8 mbox = (reg >> 16) & 0xff;
  116. struct usb_req req = { CMD_MEM_WR, mbox, sizeof(wbuf), wbuf, 0, NULL };
  117. wbuf[0] = len;
  118. wbuf[1] = 2;
  119. wbuf[2] = 0;
  120. wbuf[3] = 0;
  121. wbuf[4] = (reg >> 8) & 0xff;
  122. wbuf[5] = (reg >> 0) & 0xff;
  123. memcpy(&wbuf[6], val, len);
  124. return af9035_ctrl_msg(d->udev, &req);
  125. }
  126. /* read multiple registers */
  127. static int af9035_rd_regs(struct dvb_usb_device *d, u32 reg, u8 *val, int len)
  128. {
  129. u8 wbuf[] = { len, 2, 0, 0, (reg >> 8) & 0xff, reg & 0xff };
  130. u8 mbox = (reg >> 16) & 0xff;
  131. struct usb_req req = { CMD_MEM_RD, mbox, sizeof(wbuf), wbuf, len, val };
  132. return af9035_ctrl_msg(d->udev, &req);
  133. }
  134. /* write single register */
  135. static int af9035_wr_reg(struct dvb_usb_device *d, u32 reg, u8 val)
  136. {
  137. return af9035_wr_regs(d, reg, &val, 1);
  138. }
  139. /* read single register */
  140. static int af9035_rd_reg(struct dvb_usb_device *d, u32 reg, u8 *val)
  141. {
  142. return af9035_rd_regs(d, reg, val, 1);
  143. }
  144. /* write single register with mask */
  145. static int af9035_wr_reg_mask(struct dvb_usb_device *d, u32 reg, u8 val,
  146. u8 mask)
  147. {
  148. int ret;
  149. u8 tmp;
  150. /* no need for read if whole reg is written */
  151. if (mask != 0xff) {
  152. ret = af9035_rd_regs(d, reg, &tmp, 1);
  153. if (ret)
  154. return ret;
  155. val &= mask;
  156. tmp &= ~mask;
  157. val |= tmp;
  158. }
  159. return af9035_wr_regs(d, reg, &val, 1);
  160. }
  161. static int af9035_i2c_master_xfer(struct i2c_adapter *adap,
  162. struct i2c_msg msg[], int num)
  163. {
  164. struct dvb_usb_device *d = i2c_get_adapdata(adap);
  165. int ret;
  166. if (mutex_lock_interruptible(&d->i2c_mutex) < 0)
  167. return -EAGAIN;
  168. if (num == 2 && !(msg[0].flags & I2C_M_RD) &&
  169. (msg[1].flags & I2C_M_RD)) {
  170. if (msg[0].len > 40 || msg[1].len > 40) {
  171. /* TODO: correct limits > 40 */
  172. ret = -EOPNOTSUPP;
  173. } else if (msg[0].addr == af9035_af9033_config[0].i2c_addr) {
  174. /* integrated demod */
  175. u32 reg = msg[0].buf[0] << 16 | msg[0].buf[1] << 8 |
  176. msg[0].buf[2];
  177. ret = af9035_rd_regs(d, reg, &msg[1].buf[0],
  178. msg[1].len);
  179. } else {
  180. /* I2C */
  181. #if 0
  182. /*
  183. * FIXME: Keep that code. It should work but as it is
  184. * not tested I left it disabled and return -EOPNOTSUPP
  185. * for the sure.
  186. */
  187. u8 buf[4 + msg[0].len];
  188. struct usb_req req = { CMD_I2C_RD, 0, sizeof(buf),
  189. buf, msg[1].len, msg[1].buf };
  190. buf[0] = msg[0].len;
  191. buf[1] = msg[0].addr << 1;
  192. buf[2] = 0x01;
  193. buf[3] = 0x00;
  194. memcpy(&buf[4], msg[0].buf, msg[0].len);
  195. ret = af9035_ctrl_msg(d->udev, &req);
  196. #endif
  197. pr_debug("%s: I2C operation not supported\n", __func__);
  198. ret = -EOPNOTSUPP;
  199. }
  200. } else if (num == 1 && !(msg[0].flags & I2C_M_RD)) {
  201. if (msg[0].len > 40) {
  202. /* TODO: correct limits > 40 */
  203. ret = -EOPNOTSUPP;
  204. } else if (msg[0].addr == af9035_af9033_config[0].i2c_addr) {
  205. /* integrated demod */
  206. u32 reg = msg[0].buf[0] << 16 | msg[0].buf[1] << 8 |
  207. msg[0].buf[2];
  208. ret = af9035_wr_regs(d, reg, &msg[0].buf[3],
  209. msg[0].len - 3);
  210. } else {
  211. /* I2C */
  212. u8 buf[4 + msg[0].len];
  213. struct usb_req req = { CMD_I2C_WR, 0, sizeof(buf), buf,
  214. 0, NULL };
  215. buf[0] = msg[0].len;
  216. buf[1] = msg[0].addr << 1;
  217. buf[2] = 0x01;
  218. buf[3] = 0x00;
  219. memcpy(&buf[4], msg[0].buf, msg[0].len);
  220. ret = af9035_ctrl_msg(d->udev, &req);
  221. }
  222. } else {
  223. /*
  224. * We support only two kind of I2C transactions:
  225. * 1) 1 x read + 1 x write
  226. * 2) 1 x write
  227. */
  228. ret = -EOPNOTSUPP;
  229. }
  230. mutex_unlock(&d->i2c_mutex);
  231. if (ret < 0)
  232. return ret;
  233. else
  234. return num;
  235. }
  236. static u32 af9035_i2c_functionality(struct i2c_adapter *adapter)
  237. {
  238. return I2C_FUNC_I2C;
  239. }
  240. static struct i2c_algorithm af9035_i2c_algo = {
  241. .master_xfer = af9035_i2c_master_xfer,
  242. .functionality = af9035_i2c_functionality,
  243. };
  244. static int af9035_init(struct dvb_usb_device *d)
  245. {
  246. int ret, i;
  247. u16 frame_size = 87 * 188 / 4;
  248. u8 packet_size = 512 / 4;
  249. struct reg_val_mask tab[] = {
  250. { 0x80f99d, 0x01, 0x01 },
  251. { 0x80f9a4, 0x01, 0x01 },
  252. { 0x00dd11, 0x00, 0x20 },
  253. { 0x00dd11, 0x00, 0x40 },
  254. { 0x00dd13, 0x00, 0x20 },
  255. { 0x00dd13, 0x00, 0x40 },
  256. { 0x00dd11, 0x20, 0x20 },
  257. { 0x00dd88, (frame_size >> 0) & 0xff, 0xff},
  258. { 0x00dd89, (frame_size >> 8) & 0xff, 0xff},
  259. { 0x00dd0c, packet_size, 0xff},
  260. { 0x00dd11, af9035_config.dual_mode << 6, 0x40 },
  261. { 0x00dd8a, (frame_size >> 0) & 0xff, 0xff},
  262. { 0x00dd8b, (frame_size >> 8) & 0xff, 0xff},
  263. { 0x00dd0d, packet_size, 0xff },
  264. { 0x80f9a3, 0x00, 0x01 },
  265. { 0x80f9cd, 0x00, 0x01 },
  266. { 0x80f99d, 0x00, 0x01 },
  267. { 0x80f9a4, 0x00, 0x01 },
  268. };
  269. pr_debug("%s: USB speed=%d frame_size=%04x packet_size=%02x\n",
  270. __func__, d->udev->speed, frame_size, packet_size);
  271. /* init endpoints */
  272. for (i = 0; i < ARRAY_SIZE(tab); i++) {
  273. ret = af9035_wr_reg_mask(d, tab[i].reg, tab[i].val,
  274. tab[i].mask);
  275. if (ret < 0)
  276. goto err;
  277. }
  278. return 0;
  279. err:
  280. pr_debug("%s: failed=%d\n", __func__, ret);
  281. return ret;
  282. }
  283. static int af9035_identify_state(struct usb_device *udev,
  284. struct dvb_usb_device_properties *props,
  285. struct dvb_usb_device_description **desc,
  286. int *cold)
  287. {
  288. int ret;
  289. u8 wbuf[1] = { 1 };
  290. u8 rbuf[4];
  291. struct usb_req req = { CMD_FW_QUERYINFO, 0, sizeof(wbuf), wbuf,
  292. sizeof(rbuf), rbuf };
  293. ret = af9035_ctrl_msg(udev, &req);
  294. if (ret < 0)
  295. goto err;
  296. pr_debug("%s: reply=%02x %02x %02x %02x\n", __func__,
  297. rbuf[0], rbuf[1], rbuf[2], rbuf[3]);
  298. if (rbuf[0] || rbuf[1] || rbuf[2] || rbuf[3])
  299. *cold = 0;
  300. else
  301. *cold = 1;
  302. return 0;
  303. err:
  304. pr_debug("%s: failed=%d\n", __func__, ret);
  305. return ret;
  306. }
  307. static int af9035_download_firmware(struct usb_device *udev,
  308. const struct firmware *fw)
  309. {
  310. int ret, i, j, len;
  311. u8 wbuf[1];
  312. u8 rbuf[4];
  313. struct usb_req req = { 0, 0, 0, NULL, 0, NULL };
  314. struct usb_req req_fw_dl = { CMD_FW_DL, 0, 0, wbuf, 0, NULL };
  315. struct usb_req req_fw_ver = { CMD_FW_QUERYINFO, 0, 1, wbuf, 4, rbuf } ;
  316. u8 hdr_core;
  317. u16 hdr_addr, hdr_data_len, hdr_checksum;
  318. #define MAX_DATA 57
  319. #define HDR_SIZE 7
  320. /*
  321. * Thanks to Daniel Glöckner <daniel-gl@gmx.net> about that info!
  322. *
  323. * byte 0: MCS 51 core
  324. * There are two inside the AF9035 (1=Link and 2=OFDM) with separate
  325. * address spaces
  326. * byte 1-2: Big endian destination address
  327. * byte 3-4: Big endian number of data bytes following the header
  328. * byte 5-6: Big endian header checksum, apparently ignored by the chip
  329. * Calculated as ~(h[0]*256+h[1]+h[2]*256+h[3]+h[4]*256)
  330. */
  331. for (i = fw->size; i > HDR_SIZE;) {
  332. hdr_core = fw->data[fw->size - i + 0];
  333. hdr_addr = fw->data[fw->size - i + 1] << 8;
  334. hdr_addr |= fw->data[fw->size - i + 2] << 0;
  335. hdr_data_len = fw->data[fw->size - i + 3] << 8;
  336. hdr_data_len |= fw->data[fw->size - i + 4] << 0;
  337. hdr_checksum = fw->data[fw->size - i + 5] << 8;
  338. hdr_checksum |= fw->data[fw->size - i + 6] << 0;
  339. pr_debug("%s: core=%d addr=%04x data_len=%d checksum=%04x\n",
  340. __func__, hdr_core, hdr_addr, hdr_data_len,
  341. hdr_checksum);
  342. if (((hdr_core != 1) && (hdr_core != 2)) ||
  343. (hdr_data_len > i)) {
  344. pr_debug("%s: bad firmware\n", __func__);
  345. break;
  346. }
  347. /* download begin packet */
  348. req.cmd = CMD_FW_DL_BEGIN;
  349. ret = af9035_ctrl_msg(udev, &req);
  350. if (ret < 0)
  351. goto err;
  352. /* download firmware packet(s) */
  353. for (j = HDR_SIZE + hdr_data_len; j > 0; j -= MAX_DATA) {
  354. len = j;
  355. if (len > MAX_DATA)
  356. len = MAX_DATA;
  357. req_fw_dl.wlen = len;
  358. req_fw_dl.wbuf = (u8 *) &fw->data[fw->size - i +
  359. HDR_SIZE + hdr_data_len - j];
  360. ret = af9035_ctrl_msg(udev, &req_fw_dl);
  361. if (ret < 0)
  362. goto err;
  363. }
  364. /* download end packet */
  365. req.cmd = CMD_FW_DL_END;
  366. ret = af9035_ctrl_msg(udev, &req);
  367. if (ret < 0)
  368. goto err;
  369. i -= hdr_data_len + HDR_SIZE;
  370. pr_debug("%s: data uploaded=%lu\n", __func__, fw->size - i);
  371. }
  372. /* firmware loaded, request boot */
  373. req.cmd = CMD_FW_BOOT;
  374. ret = af9035_ctrl_msg(udev, &req);
  375. if (ret < 0)
  376. goto err;
  377. /* ensure firmware starts */
  378. wbuf[0] = 1;
  379. ret = af9035_ctrl_msg(udev, &req_fw_ver);
  380. if (ret < 0)
  381. goto err;
  382. if (!(rbuf[0] || rbuf[1] || rbuf[2] || rbuf[3])) {
  383. info("firmware did not run");
  384. ret = -ENODEV;
  385. goto err;
  386. }
  387. info("firmware version=%d.%d.%d.%d", rbuf[0], rbuf[1], rbuf[2],
  388. rbuf[3]);
  389. return 0;
  390. err:
  391. pr_debug("%s: failed=%d\n", __func__, ret);
  392. return ret;
  393. }
  394. /* abuse that callback as there is no better one for reading eeprom */
  395. static int af9035_read_mac_address(struct dvb_usb_device *d, u8 mac[6])
  396. {
  397. int ret, i, eeprom_shift = 0;
  398. u8 tmp;
  399. u16 tmp16;
  400. /* check if there is dual tuners */
  401. ret = af9035_rd_reg(d, EEPROM_DUAL_MODE, &tmp);
  402. if (ret < 0)
  403. goto err;
  404. af9035_config.dual_mode = tmp;
  405. pr_debug("%s: dual mode=%d\n", __func__, af9035_config.dual_mode);
  406. for (i = 0; i < af9035_properties[0].num_adapters; i++) {
  407. /* tuner */
  408. ret = af9035_rd_reg(d, EEPROM_1_TUNER_ID + eeprom_shift, &tmp);
  409. if (ret < 0)
  410. goto err;
  411. af9035_af9033_config[i].tuner = tmp;
  412. pr_debug("%s: [%d]tuner=%02x\n", __func__, i, tmp);
  413. switch (tmp) {
  414. case AF9033_TUNER_TUA9001:
  415. af9035_af9033_config[i].spec_inv = 1;
  416. break;
  417. default:
  418. af9035_config.hw_not_supported = true;
  419. warn("tuner ID=%02x not supported, please report!",
  420. tmp);
  421. };
  422. /* tuner IF frequency */
  423. ret = af9035_rd_reg(d, EEPROM_1_IFFREQ_L + eeprom_shift, &tmp);
  424. if (ret < 0)
  425. goto err;
  426. tmp16 = tmp;
  427. ret = af9035_rd_reg(d, EEPROM_1_IFFREQ_H + eeprom_shift, &tmp);
  428. if (ret < 0)
  429. goto err;
  430. tmp16 |= tmp << 8;
  431. pr_debug("%s: [%d]IF=%d\n", __func__, i, tmp16);
  432. eeprom_shift = 0x10; /* shift for the 2nd tuner params */
  433. }
  434. /* get demod clock */
  435. ret = af9035_rd_reg(d, 0x00d800, &tmp);
  436. if (ret < 0)
  437. goto err;
  438. tmp = (tmp >> 0) & 0x0f;
  439. for (i = 0; i < af9035_properties[0].num_adapters; i++)
  440. af9035_af9033_config[i].clock = clock_lut[tmp];
  441. return 0;
  442. err:
  443. pr_debug("%s: failed=%d\n", __func__, ret);
  444. return ret;
  445. }
  446. static int af9035_frontend_attach(struct dvb_usb_adapter *adap)
  447. {
  448. int ret;
  449. if (af9035_config.hw_not_supported) {
  450. ret = -ENODEV;
  451. goto err;
  452. }
  453. if (adap->id == 0) {
  454. ret = af9035_wr_reg(adap->dev, 0x00417f,
  455. af9035_af9033_config[1].i2c_addr);
  456. if (ret < 0)
  457. goto err;
  458. ret = af9035_wr_reg(adap->dev, 0x00d81a,
  459. af9035_config.dual_mode);
  460. if (ret < 0)
  461. goto err;
  462. }
  463. /* attach demodulator */
  464. adap->fe_adap[0].fe = dvb_attach(af9033_attach,
  465. &af9035_af9033_config[adap->id], &adap->dev->i2c_adap);
  466. if (adap->fe_adap[0].fe == NULL) {
  467. ret = -ENODEV;
  468. goto err;
  469. }
  470. return 0;
  471. err:
  472. pr_debug("%s: failed=%d\n", __func__, ret);
  473. return ret;
  474. }
  475. static struct tua9001_config af9035_tua9001_config = {
  476. .i2c_addr = 0x60,
  477. };
  478. static int af9035_tuner_attach(struct dvb_usb_adapter *adap)
  479. {
  480. int ret;
  481. struct dvb_frontend *fe;
  482. switch (af9035_af9033_config[adap->id].tuner) {
  483. case AF9033_TUNER_TUA9001:
  484. /* AF9035 gpiot3 = TUA9001 RESETN
  485. AF9035 gpiot2 = TUA9001 RXEN */
  486. /* configure gpiot2 and gpiot2 as output */
  487. ret = af9035_wr_reg_mask(adap->dev, 0x00d8ec, 0x01, 0x01);
  488. if (ret < 0)
  489. goto err;
  490. ret = af9035_wr_reg_mask(adap->dev, 0x00d8ed, 0x01, 0x01);
  491. if (ret < 0)
  492. goto err;
  493. ret = af9035_wr_reg_mask(adap->dev, 0x00d8e8, 0x01, 0x01);
  494. if (ret < 0)
  495. goto err;
  496. ret = af9035_wr_reg_mask(adap->dev, 0x00d8e9, 0x01, 0x01);
  497. if (ret < 0)
  498. goto err;
  499. /* reset tuner */
  500. ret = af9035_wr_reg_mask(adap->dev, 0x00d8e7, 0x00, 0x01);
  501. if (ret < 0)
  502. goto err;
  503. usleep_range(2000, 20000);
  504. ret = af9035_wr_reg_mask(adap->dev, 0x00d8e7, 0x01, 0x01);
  505. if (ret < 0)
  506. goto err;
  507. /* activate tuner RX */
  508. /* TODO: use callback for TUA9001 RXEN */
  509. ret = af9035_wr_reg_mask(adap->dev, 0x00d8eb, 0x01, 0x01);
  510. if (ret < 0)
  511. goto err;
  512. /* attach tuner */
  513. fe = dvb_attach(tua9001_attach, adap->fe_adap[0].fe,
  514. &adap->dev->i2c_adap, &af9035_tua9001_config);
  515. break;
  516. default:
  517. fe = NULL;
  518. }
  519. if (fe == NULL) {
  520. ret = -ENODEV;
  521. goto err;
  522. }
  523. return 0;
  524. err:
  525. pr_debug("%s: failed=%d\n", __func__, ret);
  526. return ret;
  527. }
  528. enum af9035_id_entry {
  529. AF9035_0CCD_0093,
  530. };
  531. static struct usb_device_id af9035_id[] = {
  532. [AF9035_0CCD_0093] = {
  533. USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_CINERGY_T_STICK)},
  534. {},
  535. };
  536. MODULE_DEVICE_TABLE(usb, af9035_id);
  537. static struct dvb_usb_device_properties af9035_properties[] = {
  538. {
  539. .caps = DVB_USB_IS_AN_I2C_ADAPTER,
  540. .usb_ctrl = DEVICE_SPECIFIC,
  541. .download_firmware = af9035_download_firmware,
  542. .firmware = "dvb-usb-af9035-02.fw",
  543. .no_reconnect = 1,
  544. .num_adapters = 1,
  545. .adapter = {
  546. {
  547. .num_frontends = 1,
  548. .fe = {
  549. {
  550. .frontend_attach = af9035_frontend_attach,
  551. .tuner_attach = af9035_tuner_attach,
  552. .stream = {
  553. .type = USB_BULK,
  554. .count = 6,
  555. .endpoint = 0x84,
  556. .u = {
  557. .bulk = {
  558. .buffersize = (87 * 188),
  559. }
  560. }
  561. }
  562. }
  563. }
  564. }
  565. },
  566. .identify_state = af9035_identify_state,
  567. .read_mac_address = af9035_read_mac_address,
  568. .i2c_algo = &af9035_i2c_algo,
  569. .num_device_descs = 1,
  570. .devices = {
  571. {
  572. .name = "TerraTec Cinergy T Stick",
  573. .cold_ids = {
  574. &af9035_id[AF9035_0CCD_0093],
  575. },
  576. },
  577. }
  578. },
  579. };
  580. static int af9035_usb_probe(struct usb_interface *intf,
  581. const struct usb_device_id *id)
  582. {
  583. int ret, i;
  584. struct dvb_usb_device *d = NULL;
  585. struct usb_device *udev;
  586. bool found;
  587. pr_debug("%s: interface=%d\n", __func__,
  588. intf->cur_altsetting->desc.bInterfaceNumber);
  589. /* interface 0 is used by DVB-T receiver and
  590. interface 1 is for remote controller (HID) */
  591. if (intf->cur_altsetting->desc.bInterfaceNumber != 0)
  592. return 0;
  593. /* Dynamic USB ID support. Replaces first device ID with current one. */
  594. udev = interface_to_usbdev(intf);
  595. for (i = 0, found = false; i < ARRAY_SIZE(af9035_id) - 1; i++) {
  596. if (af9035_id[i].idVendor ==
  597. le16_to_cpu(udev->descriptor.idVendor) &&
  598. af9035_id[i].idProduct ==
  599. le16_to_cpu(udev->descriptor.idProduct)) {
  600. found = true;
  601. break;
  602. }
  603. }
  604. if (!found) {
  605. pr_debug("%s: using dynamic ID %04x:%04x\n", __func__,
  606. le16_to_cpu(udev->descriptor.idVendor),
  607. le16_to_cpu(udev->descriptor.idProduct));
  608. af9035_properties[0].devices[0].cold_ids[0]->idVendor =
  609. le16_to_cpu(udev->descriptor.idVendor);
  610. af9035_properties[0].devices[0].cold_ids[0]->idProduct =
  611. le16_to_cpu(udev->descriptor.idProduct);
  612. }
  613. for (i = 0; i < af9035_properties_count; i++) {
  614. ret = dvb_usb_device_init(intf, &af9035_properties[i],
  615. THIS_MODULE, &d, adapter_nr);
  616. if (ret == -ENODEV)
  617. continue;
  618. else
  619. break;
  620. }
  621. if (ret < 0)
  622. goto err;
  623. if (d) {
  624. ret = af9035_init(d);
  625. if (ret < 0)
  626. goto err;
  627. }
  628. return 0;
  629. err:
  630. pr_debug("%s: failed=%d\n", __func__, ret);
  631. return ret;
  632. }
  633. /* usb specific object needed to register this driver with the usb subsystem */
  634. static struct usb_driver af9035_usb_driver = {
  635. .name = "dvb_usb_af9035",
  636. .probe = af9035_usb_probe,
  637. .disconnect = dvb_usb_device_exit,
  638. .id_table = af9035_id,
  639. };
  640. /* module stuff */
  641. static int __init af9035_usb_module_init(void)
  642. {
  643. int ret;
  644. ret = usb_register(&af9035_usb_driver);
  645. if (ret < 0)
  646. goto err;
  647. return 0;
  648. err:
  649. pr_debug("%s: failed=%d\n", __func__, ret);
  650. return ret;
  651. }
  652. static void __exit af9035_usb_module_exit(void)
  653. {
  654. /* deregister this driver from the USB subsystem */
  655. usb_deregister(&af9035_usb_driver);
  656. }
  657. module_init(af9035_usb_module_init);
  658. module_exit(af9035_usb_module_exit);
  659. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  660. MODULE_DESCRIPTION("Afatech AF9035 driver");
  661. MODULE_LICENSE("GPL");