page_alloc.c 170 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_cgroup.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/compaction.h>
  54. #include <trace/events/kmem.h>
  55. #include <linux/ftrace_event.h>
  56. #include <linux/memcontrol.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/migrate.h>
  59. #include <linux/page-debug-flags.h>
  60. #include <asm/tlbflush.h>
  61. #include <asm/div64.h>
  62. #include "internal.h"
  63. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  64. DEFINE_PER_CPU(int, numa_node);
  65. EXPORT_PER_CPU_SYMBOL(numa_node);
  66. #endif
  67. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  68. /*
  69. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  70. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  71. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  72. * defined in <linux/topology.h>.
  73. */
  74. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  75. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  76. #endif
  77. /*
  78. * Array of node states.
  79. */
  80. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  81. [N_POSSIBLE] = NODE_MASK_ALL,
  82. [N_ONLINE] = { { [0] = 1UL } },
  83. #ifndef CONFIG_NUMA
  84. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  85. #ifdef CONFIG_HIGHMEM
  86. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  87. #endif
  88. #ifdef CONFIG_MOVABLE_NODE
  89. [N_MEMORY] = { { [0] = 1UL } },
  90. #endif
  91. [N_CPU] = { { [0] = 1UL } },
  92. #endif /* NUMA */
  93. };
  94. EXPORT_SYMBOL(node_states);
  95. unsigned long totalram_pages __read_mostly;
  96. unsigned long totalreserve_pages __read_mostly;
  97. /*
  98. * When calculating the number of globally allowed dirty pages, there
  99. * is a certain number of per-zone reserves that should not be
  100. * considered dirtyable memory. This is the sum of those reserves
  101. * over all existing zones that contribute dirtyable memory.
  102. */
  103. unsigned long dirty_balance_reserve __read_mostly;
  104. int percpu_pagelist_fraction;
  105. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  106. #ifdef CONFIG_PM_SLEEP
  107. /*
  108. * The following functions are used by the suspend/hibernate code to temporarily
  109. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  110. * while devices are suspended. To avoid races with the suspend/hibernate code,
  111. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  112. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  113. * guaranteed not to run in parallel with that modification).
  114. */
  115. static gfp_t saved_gfp_mask;
  116. void pm_restore_gfp_mask(void)
  117. {
  118. WARN_ON(!mutex_is_locked(&pm_mutex));
  119. if (saved_gfp_mask) {
  120. gfp_allowed_mask = saved_gfp_mask;
  121. saved_gfp_mask = 0;
  122. }
  123. }
  124. void pm_restrict_gfp_mask(void)
  125. {
  126. WARN_ON(!mutex_is_locked(&pm_mutex));
  127. WARN_ON(saved_gfp_mask);
  128. saved_gfp_mask = gfp_allowed_mask;
  129. gfp_allowed_mask &= ~GFP_IOFS;
  130. }
  131. bool pm_suspended_storage(void)
  132. {
  133. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  134. return false;
  135. return true;
  136. }
  137. #endif /* CONFIG_PM_SLEEP */
  138. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  139. int pageblock_order __read_mostly;
  140. #endif
  141. static void __free_pages_ok(struct page *page, unsigned int order);
  142. /*
  143. * results with 256, 32 in the lowmem_reserve sysctl:
  144. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  145. * 1G machine -> (16M dma, 784M normal, 224M high)
  146. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  147. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  148. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  149. *
  150. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  151. * don't need any ZONE_NORMAL reservation
  152. */
  153. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  154. #ifdef CONFIG_ZONE_DMA
  155. 256,
  156. #endif
  157. #ifdef CONFIG_ZONE_DMA32
  158. 256,
  159. #endif
  160. #ifdef CONFIG_HIGHMEM
  161. 32,
  162. #endif
  163. 32,
  164. };
  165. EXPORT_SYMBOL(totalram_pages);
  166. static char * const zone_names[MAX_NR_ZONES] = {
  167. #ifdef CONFIG_ZONE_DMA
  168. "DMA",
  169. #endif
  170. #ifdef CONFIG_ZONE_DMA32
  171. "DMA32",
  172. #endif
  173. "Normal",
  174. #ifdef CONFIG_HIGHMEM
  175. "HighMem",
  176. #endif
  177. "Movable",
  178. };
  179. int min_free_kbytes = 1024;
  180. static unsigned long __meminitdata nr_kernel_pages;
  181. static unsigned long __meminitdata nr_all_pages;
  182. static unsigned long __meminitdata dma_reserve;
  183. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  184. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  185. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  186. static unsigned long __initdata required_kernelcore;
  187. static unsigned long __initdata required_movablecore;
  188. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  189. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  190. int movable_zone;
  191. EXPORT_SYMBOL(movable_zone);
  192. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  193. #if MAX_NUMNODES > 1
  194. int nr_node_ids __read_mostly = MAX_NUMNODES;
  195. int nr_online_nodes __read_mostly = 1;
  196. EXPORT_SYMBOL(nr_node_ids);
  197. EXPORT_SYMBOL(nr_online_nodes);
  198. #endif
  199. int page_group_by_mobility_disabled __read_mostly;
  200. void set_pageblock_migratetype(struct page *page, int migratetype)
  201. {
  202. if (unlikely(page_group_by_mobility_disabled))
  203. migratetype = MIGRATE_UNMOVABLE;
  204. set_pageblock_flags_group(page, (unsigned long)migratetype,
  205. PB_migrate, PB_migrate_end);
  206. }
  207. bool oom_killer_disabled __read_mostly;
  208. #ifdef CONFIG_DEBUG_VM
  209. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  210. {
  211. int ret = 0;
  212. unsigned seq;
  213. unsigned long pfn = page_to_pfn(page);
  214. do {
  215. seq = zone_span_seqbegin(zone);
  216. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  217. ret = 1;
  218. else if (pfn < zone->zone_start_pfn)
  219. ret = 1;
  220. } while (zone_span_seqretry(zone, seq));
  221. return ret;
  222. }
  223. static int page_is_consistent(struct zone *zone, struct page *page)
  224. {
  225. if (!pfn_valid_within(page_to_pfn(page)))
  226. return 0;
  227. if (zone != page_zone(page))
  228. return 0;
  229. return 1;
  230. }
  231. /*
  232. * Temporary debugging check for pages not lying within a given zone.
  233. */
  234. static int bad_range(struct zone *zone, struct page *page)
  235. {
  236. if (page_outside_zone_boundaries(zone, page))
  237. return 1;
  238. if (!page_is_consistent(zone, page))
  239. return 1;
  240. return 0;
  241. }
  242. #else
  243. static inline int bad_range(struct zone *zone, struct page *page)
  244. {
  245. return 0;
  246. }
  247. #endif
  248. static void bad_page(struct page *page)
  249. {
  250. static unsigned long resume;
  251. static unsigned long nr_shown;
  252. static unsigned long nr_unshown;
  253. /* Don't complain about poisoned pages */
  254. if (PageHWPoison(page)) {
  255. reset_page_mapcount(page); /* remove PageBuddy */
  256. return;
  257. }
  258. /*
  259. * Allow a burst of 60 reports, then keep quiet for that minute;
  260. * or allow a steady drip of one report per second.
  261. */
  262. if (nr_shown == 60) {
  263. if (time_before(jiffies, resume)) {
  264. nr_unshown++;
  265. goto out;
  266. }
  267. if (nr_unshown) {
  268. printk(KERN_ALERT
  269. "BUG: Bad page state: %lu messages suppressed\n",
  270. nr_unshown);
  271. nr_unshown = 0;
  272. }
  273. nr_shown = 0;
  274. }
  275. if (nr_shown++ == 0)
  276. resume = jiffies + 60 * HZ;
  277. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  278. current->comm, page_to_pfn(page));
  279. dump_page(page);
  280. print_modules();
  281. dump_stack();
  282. out:
  283. /* Leave bad fields for debug, except PageBuddy could make trouble */
  284. reset_page_mapcount(page); /* remove PageBuddy */
  285. add_taint(TAINT_BAD_PAGE);
  286. }
  287. /*
  288. * Higher-order pages are called "compound pages". They are structured thusly:
  289. *
  290. * The first PAGE_SIZE page is called the "head page".
  291. *
  292. * The remaining PAGE_SIZE pages are called "tail pages".
  293. *
  294. * All pages have PG_compound set. All tail pages have their ->first_page
  295. * pointing at the head page.
  296. *
  297. * The first tail page's ->lru.next holds the address of the compound page's
  298. * put_page() function. Its ->lru.prev holds the order of allocation.
  299. * This usage means that zero-order pages may not be compound.
  300. */
  301. static void free_compound_page(struct page *page)
  302. {
  303. __free_pages_ok(page, compound_order(page));
  304. }
  305. void prep_compound_page(struct page *page, unsigned long order)
  306. {
  307. int i;
  308. int nr_pages = 1 << order;
  309. set_compound_page_dtor(page, free_compound_page);
  310. set_compound_order(page, order);
  311. __SetPageHead(page);
  312. for (i = 1; i < nr_pages; i++) {
  313. struct page *p = page + i;
  314. __SetPageTail(p);
  315. set_page_count(p, 0);
  316. p->first_page = page;
  317. }
  318. }
  319. /* update __split_huge_page_refcount if you change this function */
  320. static int destroy_compound_page(struct page *page, unsigned long order)
  321. {
  322. int i;
  323. int nr_pages = 1 << order;
  324. int bad = 0;
  325. if (unlikely(compound_order(page) != order)) {
  326. bad_page(page);
  327. bad++;
  328. }
  329. __ClearPageHead(page);
  330. for (i = 1; i < nr_pages; i++) {
  331. struct page *p = page + i;
  332. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  333. bad_page(page);
  334. bad++;
  335. }
  336. __ClearPageTail(p);
  337. }
  338. return bad;
  339. }
  340. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  341. {
  342. int i;
  343. /*
  344. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  345. * and __GFP_HIGHMEM from hard or soft interrupt context.
  346. */
  347. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  348. for (i = 0; i < (1 << order); i++)
  349. clear_highpage(page + i);
  350. }
  351. #ifdef CONFIG_DEBUG_PAGEALLOC
  352. unsigned int _debug_guardpage_minorder;
  353. static int __init debug_guardpage_minorder_setup(char *buf)
  354. {
  355. unsigned long res;
  356. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  357. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  358. return 0;
  359. }
  360. _debug_guardpage_minorder = res;
  361. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  362. return 0;
  363. }
  364. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  365. static inline void set_page_guard_flag(struct page *page)
  366. {
  367. __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  368. }
  369. static inline void clear_page_guard_flag(struct page *page)
  370. {
  371. __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  372. }
  373. #else
  374. static inline void set_page_guard_flag(struct page *page) { }
  375. static inline void clear_page_guard_flag(struct page *page) { }
  376. #endif
  377. static inline void set_page_order(struct page *page, int order)
  378. {
  379. set_page_private(page, order);
  380. __SetPageBuddy(page);
  381. }
  382. static inline void rmv_page_order(struct page *page)
  383. {
  384. __ClearPageBuddy(page);
  385. set_page_private(page, 0);
  386. }
  387. /*
  388. * Locate the struct page for both the matching buddy in our
  389. * pair (buddy1) and the combined O(n+1) page they form (page).
  390. *
  391. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  392. * the following equation:
  393. * B2 = B1 ^ (1 << O)
  394. * For example, if the starting buddy (buddy2) is #8 its order
  395. * 1 buddy is #10:
  396. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  397. *
  398. * 2) Any buddy B will have an order O+1 parent P which
  399. * satisfies the following equation:
  400. * P = B & ~(1 << O)
  401. *
  402. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  403. */
  404. static inline unsigned long
  405. __find_buddy_index(unsigned long page_idx, unsigned int order)
  406. {
  407. return page_idx ^ (1 << order);
  408. }
  409. /*
  410. * This function checks whether a page is free && is the buddy
  411. * we can do coalesce a page and its buddy if
  412. * (a) the buddy is not in a hole &&
  413. * (b) the buddy is in the buddy system &&
  414. * (c) a page and its buddy have the same order &&
  415. * (d) a page and its buddy are in the same zone.
  416. *
  417. * For recording whether a page is in the buddy system, we set ->_mapcount -2.
  418. * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
  419. *
  420. * For recording page's order, we use page_private(page).
  421. */
  422. static inline int page_is_buddy(struct page *page, struct page *buddy,
  423. int order)
  424. {
  425. if (!pfn_valid_within(page_to_pfn(buddy)))
  426. return 0;
  427. if (page_zone_id(page) != page_zone_id(buddy))
  428. return 0;
  429. if (page_is_guard(buddy) && page_order(buddy) == order) {
  430. VM_BUG_ON(page_count(buddy) != 0);
  431. return 1;
  432. }
  433. if (PageBuddy(buddy) && page_order(buddy) == order) {
  434. VM_BUG_ON(page_count(buddy) != 0);
  435. return 1;
  436. }
  437. return 0;
  438. }
  439. /*
  440. * Freeing function for a buddy system allocator.
  441. *
  442. * The concept of a buddy system is to maintain direct-mapped table
  443. * (containing bit values) for memory blocks of various "orders".
  444. * The bottom level table contains the map for the smallest allocatable
  445. * units of memory (here, pages), and each level above it describes
  446. * pairs of units from the levels below, hence, "buddies".
  447. * At a high level, all that happens here is marking the table entry
  448. * at the bottom level available, and propagating the changes upward
  449. * as necessary, plus some accounting needed to play nicely with other
  450. * parts of the VM system.
  451. * At each level, we keep a list of pages, which are heads of continuous
  452. * free pages of length of (1 << order) and marked with _mapcount -2. Page's
  453. * order is recorded in page_private(page) field.
  454. * So when we are allocating or freeing one, we can derive the state of the
  455. * other. That is, if we allocate a small block, and both were
  456. * free, the remainder of the region must be split into blocks.
  457. * If a block is freed, and its buddy is also free, then this
  458. * triggers coalescing into a block of larger size.
  459. *
  460. * -- nyc
  461. */
  462. static inline void __free_one_page(struct page *page,
  463. struct zone *zone, unsigned int order,
  464. int migratetype)
  465. {
  466. unsigned long page_idx;
  467. unsigned long combined_idx;
  468. unsigned long uninitialized_var(buddy_idx);
  469. struct page *buddy;
  470. if (unlikely(PageCompound(page)))
  471. if (unlikely(destroy_compound_page(page, order)))
  472. return;
  473. VM_BUG_ON(migratetype == -1);
  474. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  475. VM_BUG_ON(page_idx & ((1 << order) - 1));
  476. VM_BUG_ON(bad_range(zone, page));
  477. while (order < MAX_ORDER-1) {
  478. buddy_idx = __find_buddy_index(page_idx, order);
  479. buddy = page + (buddy_idx - page_idx);
  480. if (!page_is_buddy(page, buddy, order))
  481. break;
  482. /*
  483. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  484. * merge with it and move up one order.
  485. */
  486. if (page_is_guard(buddy)) {
  487. clear_page_guard_flag(buddy);
  488. set_page_private(page, 0);
  489. __mod_zone_freepage_state(zone, 1 << order,
  490. migratetype);
  491. } else {
  492. list_del(&buddy->lru);
  493. zone->free_area[order].nr_free--;
  494. rmv_page_order(buddy);
  495. }
  496. combined_idx = buddy_idx & page_idx;
  497. page = page + (combined_idx - page_idx);
  498. page_idx = combined_idx;
  499. order++;
  500. }
  501. set_page_order(page, order);
  502. /*
  503. * If this is not the largest possible page, check if the buddy
  504. * of the next-highest order is free. If it is, it's possible
  505. * that pages are being freed that will coalesce soon. In case,
  506. * that is happening, add the free page to the tail of the list
  507. * so it's less likely to be used soon and more likely to be merged
  508. * as a higher order page
  509. */
  510. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  511. struct page *higher_page, *higher_buddy;
  512. combined_idx = buddy_idx & page_idx;
  513. higher_page = page + (combined_idx - page_idx);
  514. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  515. higher_buddy = higher_page + (buddy_idx - combined_idx);
  516. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  517. list_add_tail(&page->lru,
  518. &zone->free_area[order].free_list[migratetype]);
  519. goto out;
  520. }
  521. }
  522. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  523. out:
  524. zone->free_area[order].nr_free++;
  525. }
  526. static inline int free_pages_check(struct page *page)
  527. {
  528. if (unlikely(page_mapcount(page) |
  529. (page->mapping != NULL) |
  530. (atomic_read(&page->_count) != 0) |
  531. (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
  532. (mem_cgroup_bad_page_check(page)))) {
  533. bad_page(page);
  534. return 1;
  535. }
  536. reset_page_last_nid(page);
  537. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  538. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  539. return 0;
  540. }
  541. /*
  542. * Frees a number of pages from the PCP lists
  543. * Assumes all pages on list are in same zone, and of same order.
  544. * count is the number of pages to free.
  545. *
  546. * If the zone was previously in an "all pages pinned" state then look to
  547. * see if this freeing clears that state.
  548. *
  549. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  550. * pinned" detection logic.
  551. */
  552. static void free_pcppages_bulk(struct zone *zone, int count,
  553. struct per_cpu_pages *pcp)
  554. {
  555. int migratetype = 0;
  556. int batch_free = 0;
  557. int to_free = count;
  558. spin_lock(&zone->lock);
  559. zone->all_unreclaimable = 0;
  560. zone->pages_scanned = 0;
  561. while (to_free) {
  562. struct page *page;
  563. struct list_head *list;
  564. /*
  565. * Remove pages from lists in a round-robin fashion. A
  566. * batch_free count is maintained that is incremented when an
  567. * empty list is encountered. This is so more pages are freed
  568. * off fuller lists instead of spinning excessively around empty
  569. * lists
  570. */
  571. do {
  572. batch_free++;
  573. if (++migratetype == MIGRATE_PCPTYPES)
  574. migratetype = 0;
  575. list = &pcp->lists[migratetype];
  576. } while (list_empty(list));
  577. /* This is the only non-empty list. Free them all. */
  578. if (batch_free == MIGRATE_PCPTYPES)
  579. batch_free = to_free;
  580. do {
  581. int mt; /* migratetype of the to-be-freed page */
  582. page = list_entry(list->prev, struct page, lru);
  583. /* must delete as __free_one_page list manipulates */
  584. list_del(&page->lru);
  585. mt = get_freepage_migratetype(page);
  586. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  587. __free_one_page(page, zone, 0, mt);
  588. trace_mm_page_pcpu_drain(page, 0, mt);
  589. if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
  590. __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
  591. if (is_migrate_cma(mt))
  592. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
  593. }
  594. } while (--to_free && --batch_free && !list_empty(list));
  595. }
  596. spin_unlock(&zone->lock);
  597. }
  598. static void free_one_page(struct zone *zone, struct page *page, int order,
  599. int migratetype)
  600. {
  601. spin_lock(&zone->lock);
  602. zone->all_unreclaimable = 0;
  603. zone->pages_scanned = 0;
  604. __free_one_page(page, zone, order, migratetype);
  605. if (unlikely(migratetype != MIGRATE_ISOLATE))
  606. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  607. spin_unlock(&zone->lock);
  608. }
  609. static bool free_pages_prepare(struct page *page, unsigned int order)
  610. {
  611. int i;
  612. int bad = 0;
  613. trace_mm_page_free(page, order);
  614. kmemcheck_free_shadow(page, order);
  615. if (PageAnon(page))
  616. page->mapping = NULL;
  617. for (i = 0; i < (1 << order); i++)
  618. bad += free_pages_check(page + i);
  619. if (bad)
  620. return false;
  621. if (!PageHighMem(page)) {
  622. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  623. debug_check_no_obj_freed(page_address(page),
  624. PAGE_SIZE << order);
  625. }
  626. arch_free_page(page, order);
  627. kernel_map_pages(page, 1 << order, 0);
  628. return true;
  629. }
  630. static void __free_pages_ok(struct page *page, unsigned int order)
  631. {
  632. unsigned long flags;
  633. int migratetype;
  634. if (!free_pages_prepare(page, order))
  635. return;
  636. local_irq_save(flags);
  637. __count_vm_events(PGFREE, 1 << order);
  638. migratetype = get_pageblock_migratetype(page);
  639. set_freepage_migratetype(page, migratetype);
  640. free_one_page(page_zone(page), page, order, migratetype);
  641. local_irq_restore(flags);
  642. }
  643. /*
  644. * Read access to zone->managed_pages is safe because it's unsigned long,
  645. * but we still need to serialize writers. Currently all callers of
  646. * __free_pages_bootmem() except put_page_bootmem() should only be used
  647. * at boot time. So for shorter boot time, we shift the burden to
  648. * put_page_bootmem() to serialize writers.
  649. */
  650. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  651. {
  652. unsigned int nr_pages = 1 << order;
  653. unsigned int loop;
  654. prefetchw(page);
  655. for (loop = 0; loop < nr_pages; loop++) {
  656. struct page *p = &page[loop];
  657. if (loop + 1 < nr_pages)
  658. prefetchw(p + 1);
  659. __ClearPageReserved(p);
  660. set_page_count(p, 0);
  661. }
  662. page_zone(page)->managed_pages += 1 << order;
  663. set_page_refcounted(page);
  664. __free_pages(page, order);
  665. }
  666. #ifdef CONFIG_CMA
  667. /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
  668. void __init init_cma_reserved_pageblock(struct page *page)
  669. {
  670. unsigned i = pageblock_nr_pages;
  671. struct page *p = page;
  672. do {
  673. __ClearPageReserved(p);
  674. set_page_count(p, 0);
  675. } while (++p, --i);
  676. set_page_refcounted(page);
  677. set_pageblock_migratetype(page, MIGRATE_CMA);
  678. __free_pages(page, pageblock_order);
  679. totalram_pages += pageblock_nr_pages;
  680. #ifdef CONFIG_HIGHMEM
  681. if (PageHighMem(page))
  682. totalhigh_pages += pageblock_nr_pages;
  683. #endif
  684. }
  685. #endif
  686. /*
  687. * The order of subdivision here is critical for the IO subsystem.
  688. * Please do not alter this order without good reasons and regression
  689. * testing. Specifically, as large blocks of memory are subdivided,
  690. * the order in which smaller blocks are delivered depends on the order
  691. * they're subdivided in this function. This is the primary factor
  692. * influencing the order in which pages are delivered to the IO
  693. * subsystem according to empirical testing, and this is also justified
  694. * by considering the behavior of a buddy system containing a single
  695. * large block of memory acted on by a series of small allocations.
  696. * This behavior is a critical factor in sglist merging's success.
  697. *
  698. * -- nyc
  699. */
  700. static inline void expand(struct zone *zone, struct page *page,
  701. int low, int high, struct free_area *area,
  702. int migratetype)
  703. {
  704. unsigned long size = 1 << high;
  705. while (high > low) {
  706. area--;
  707. high--;
  708. size >>= 1;
  709. VM_BUG_ON(bad_range(zone, &page[size]));
  710. #ifdef CONFIG_DEBUG_PAGEALLOC
  711. if (high < debug_guardpage_minorder()) {
  712. /*
  713. * Mark as guard pages (or page), that will allow to
  714. * merge back to allocator when buddy will be freed.
  715. * Corresponding page table entries will not be touched,
  716. * pages will stay not present in virtual address space
  717. */
  718. INIT_LIST_HEAD(&page[size].lru);
  719. set_page_guard_flag(&page[size]);
  720. set_page_private(&page[size], high);
  721. /* Guard pages are not available for any usage */
  722. __mod_zone_freepage_state(zone, -(1 << high),
  723. migratetype);
  724. continue;
  725. }
  726. #endif
  727. list_add(&page[size].lru, &area->free_list[migratetype]);
  728. area->nr_free++;
  729. set_page_order(&page[size], high);
  730. }
  731. }
  732. /*
  733. * This page is about to be returned from the page allocator
  734. */
  735. static inline int check_new_page(struct page *page)
  736. {
  737. if (unlikely(page_mapcount(page) |
  738. (page->mapping != NULL) |
  739. (atomic_read(&page->_count) != 0) |
  740. (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
  741. (mem_cgroup_bad_page_check(page)))) {
  742. bad_page(page);
  743. return 1;
  744. }
  745. return 0;
  746. }
  747. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  748. {
  749. int i;
  750. for (i = 0; i < (1 << order); i++) {
  751. struct page *p = page + i;
  752. if (unlikely(check_new_page(p)))
  753. return 1;
  754. }
  755. set_page_private(page, 0);
  756. set_page_refcounted(page);
  757. arch_alloc_page(page, order);
  758. kernel_map_pages(page, 1 << order, 1);
  759. if (gfp_flags & __GFP_ZERO)
  760. prep_zero_page(page, order, gfp_flags);
  761. if (order && (gfp_flags & __GFP_COMP))
  762. prep_compound_page(page, order);
  763. return 0;
  764. }
  765. /*
  766. * Go through the free lists for the given migratetype and remove
  767. * the smallest available page from the freelists
  768. */
  769. static inline
  770. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  771. int migratetype)
  772. {
  773. unsigned int current_order;
  774. struct free_area * area;
  775. struct page *page;
  776. /* Find a page of the appropriate size in the preferred list */
  777. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  778. area = &(zone->free_area[current_order]);
  779. if (list_empty(&area->free_list[migratetype]))
  780. continue;
  781. page = list_entry(area->free_list[migratetype].next,
  782. struct page, lru);
  783. list_del(&page->lru);
  784. rmv_page_order(page);
  785. area->nr_free--;
  786. expand(zone, page, order, current_order, area, migratetype);
  787. return page;
  788. }
  789. return NULL;
  790. }
  791. /*
  792. * This array describes the order lists are fallen back to when
  793. * the free lists for the desirable migrate type are depleted
  794. */
  795. static int fallbacks[MIGRATE_TYPES][4] = {
  796. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  797. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  798. #ifdef CONFIG_CMA
  799. [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  800. [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
  801. #else
  802. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  803. #endif
  804. [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
  805. [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
  806. };
  807. /*
  808. * Move the free pages in a range to the free lists of the requested type.
  809. * Note that start_page and end_pages are not aligned on a pageblock
  810. * boundary. If alignment is required, use move_freepages_block()
  811. */
  812. int move_freepages(struct zone *zone,
  813. struct page *start_page, struct page *end_page,
  814. int migratetype)
  815. {
  816. struct page *page;
  817. unsigned long order;
  818. int pages_moved = 0;
  819. #ifndef CONFIG_HOLES_IN_ZONE
  820. /*
  821. * page_zone is not safe to call in this context when
  822. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  823. * anyway as we check zone boundaries in move_freepages_block().
  824. * Remove at a later date when no bug reports exist related to
  825. * grouping pages by mobility
  826. */
  827. BUG_ON(page_zone(start_page) != page_zone(end_page));
  828. #endif
  829. for (page = start_page; page <= end_page;) {
  830. /* Make sure we are not inadvertently changing nodes */
  831. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  832. if (!pfn_valid_within(page_to_pfn(page))) {
  833. page++;
  834. continue;
  835. }
  836. if (!PageBuddy(page)) {
  837. page++;
  838. continue;
  839. }
  840. order = page_order(page);
  841. list_move(&page->lru,
  842. &zone->free_area[order].free_list[migratetype]);
  843. set_freepage_migratetype(page, migratetype);
  844. page += 1 << order;
  845. pages_moved += 1 << order;
  846. }
  847. return pages_moved;
  848. }
  849. int move_freepages_block(struct zone *zone, struct page *page,
  850. int migratetype)
  851. {
  852. unsigned long start_pfn, end_pfn;
  853. struct page *start_page, *end_page;
  854. start_pfn = page_to_pfn(page);
  855. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  856. start_page = pfn_to_page(start_pfn);
  857. end_page = start_page + pageblock_nr_pages - 1;
  858. end_pfn = start_pfn + pageblock_nr_pages - 1;
  859. /* Do not cross zone boundaries */
  860. if (start_pfn < zone->zone_start_pfn)
  861. start_page = page;
  862. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  863. return 0;
  864. return move_freepages(zone, start_page, end_page, migratetype);
  865. }
  866. static void change_pageblock_range(struct page *pageblock_page,
  867. int start_order, int migratetype)
  868. {
  869. int nr_pageblocks = 1 << (start_order - pageblock_order);
  870. while (nr_pageblocks--) {
  871. set_pageblock_migratetype(pageblock_page, migratetype);
  872. pageblock_page += pageblock_nr_pages;
  873. }
  874. }
  875. /* Remove an element from the buddy allocator from the fallback list */
  876. static inline struct page *
  877. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  878. {
  879. struct free_area * area;
  880. int current_order;
  881. struct page *page;
  882. int migratetype, i;
  883. /* Find the largest possible block of pages in the other list */
  884. for (current_order = MAX_ORDER-1; current_order >= order;
  885. --current_order) {
  886. for (i = 0;; i++) {
  887. migratetype = fallbacks[start_migratetype][i];
  888. /* MIGRATE_RESERVE handled later if necessary */
  889. if (migratetype == MIGRATE_RESERVE)
  890. break;
  891. area = &(zone->free_area[current_order]);
  892. if (list_empty(&area->free_list[migratetype]))
  893. continue;
  894. page = list_entry(area->free_list[migratetype].next,
  895. struct page, lru);
  896. area->nr_free--;
  897. /*
  898. * If breaking a large block of pages, move all free
  899. * pages to the preferred allocation list. If falling
  900. * back for a reclaimable kernel allocation, be more
  901. * aggressive about taking ownership of free pages
  902. *
  903. * On the other hand, never change migration
  904. * type of MIGRATE_CMA pageblocks nor move CMA
  905. * pages on different free lists. We don't
  906. * want unmovable pages to be allocated from
  907. * MIGRATE_CMA areas.
  908. */
  909. if (!is_migrate_cma(migratetype) &&
  910. (unlikely(current_order >= pageblock_order / 2) ||
  911. start_migratetype == MIGRATE_RECLAIMABLE ||
  912. page_group_by_mobility_disabled)) {
  913. int pages;
  914. pages = move_freepages_block(zone, page,
  915. start_migratetype);
  916. /* Claim the whole block if over half of it is free */
  917. if (pages >= (1 << (pageblock_order-1)) ||
  918. page_group_by_mobility_disabled)
  919. set_pageblock_migratetype(page,
  920. start_migratetype);
  921. migratetype = start_migratetype;
  922. }
  923. /* Remove the page from the freelists */
  924. list_del(&page->lru);
  925. rmv_page_order(page);
  926. /* Take ownership for orders >= pageblock_order */
  927. if (current_order >= pageblock_order &&
  928. !is_migrate_cma(migratetype))
  929. change_pageblock_range(page, current_order,
  930. start_migratetype);
  931. expand(zone, page, order, current_order, area,
  932. is_migrate_cma(migratetype)
  933. ? migratetype : start_migratetype);
  934. trace_mm_page_alloc_extfrag(page, order, current_order,
  935. start_migratetype, migratetype);
  936. return page;
  937. }
  938. }
  939. return NULL;
  940. }
  941. /*
  942. * Do the hard work of removing an element from the buddy allocator.
  943. * Call me with the zone->lock already held.
  944. */
  945. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  946. int migratetype)
  947. {
  948. struct page *page;
  949. retry_reserve:
  950. page = __rmqueue_smallest(zone, order, migratetype);
  951. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  952. page = __rmqueue_fallback(zone, order, migratetype);
  953. /*
  954. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  955. * is used because __rmqueue_smallest is an inline function
  956. * and we want just one call site
  957. */
  958. if (!page) {
  959. migratetype = MIGRATE_RESERVE;
  960. goto retry_reserve;
  961. }
  962. }
  963. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  964. return page;
  965. }
  966. /*
  967. * Obtain a specified number of elements from the buddy allocator, all under
  968. * a single hold of the lock, for efficiency. Add them to the supplied list.
  969. * Returns the number of new pages which were placed at *list.
  970. */
  971. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  972. unsigned long count, struct list_head *list,
  973. int migratetype, int cold)
  974. {
  975. int mt = migratetype, i;
  976. spin_lock(&zone->lock);
  977. for (i = 0; i < count; ++i) {
  978. struct page *page = __rmqueue(zone, order, migratetype);
  979. if (unlikely(page == NULL))
  980. break;
  981. /*
  982. * Split buddy pages returned by expand() are received here
  983. * in physical page order. The page is added to the callers and
  984. * list and the list head then moves forward. From the callers
  985. * perspective, the linked list is ordered by page number in
  986. * some conditions. This is useful for IO devices that can
  987. * merge IO requests if the physical pages are ordered
  988. * properly.
  989. */
  990. if (likely(cold == 0))
  991. list_add(&page->lru, list);
  992. else
  993. list_add_tail(&page->lru, list);
  994. if (IS_ENABLED(CONFIG_CMA)) {
  995. mt = get_pageblock_migratetype(page);
  996. if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
  997. mt = migratetype;
  998. }
  999. set_freepage_migratetype(page, mt);
  1000. list = &page->lru;
  1001. if (is_migrate_cma(mt))
  1002. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1003. -(1 << order));
  1004. }
  1005. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1006. spin_unlock(&zone->lock);
  1007. return i;
  1008. }
  1009. #ifdef CONFIG_NUMA
  1010. /*
  1011. * Called from the vmstat counter updater to drain pagesets of this
  1012. * currently executing processor on remote nodes after they have
  1013. * expired.
  1014. *
  1015. * Note that this function must be called with the thread pinned to
  1016. * a single processor.
  1017. */
  1018. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1019. {
  1020. unsigned long flags;
  1021. int to_drain;
  1022. local_irq_save(flags);
  1023. if (pcp->count >= pcp->batch)
  1024. to_drain = pcp->batch;
  1025. else
  1026. to_drain = pcp->count;
  1027. if (to_drain > 0) {
  1028. free_pcppages_bulk(zone, to_drain, pcp);
  1029. pcp->count -= to_drain;
  1030. }
  1031. local_irq_restore(flags);
  1032. }
  1033. #endif
  1034. /*
  1035. * Drain pages of the indicated processor.
  1036. *
  1037. * The processor must either be the current processor and the
  1038. * thread pinned to the current processor or a processor that
  1039. * is not online.
  1040. */
  1041. static void drain_pages(unsigned int cpu)
  1042. {
  1043. unsigned long flags;
  1044. struct zone *zone;
  1045. for_each_populated_zone(zone) {
  1046. struct per_cpu_pageset *pset;
  1047. struct per_cpu_pages *pcp;
  1048. local_irq_save(flags);
  1049. pset = per_cpu_ptr(zone->pageset, cpu);
  1050. pcp = &pset->pcp;
  1051. if (pcp->count) {
  1052. free_pcppages_bulk(zone, pcp->count, pcp);
  1053. pcp->count = 0;
  1054. }
  1055. local_irq_restore(flags);
  1056. }
  1057. }
  1058. /*
  1059. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1060. */
  1061. void drain_local_pages(void *arg)
  1062. {
  1063. drain_pages(smp_processor_id());
  1064. }
  1065. /*
  1066. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1067. *
  1068. * Note that this code is protected against sending an IPI to an offline
  1069. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1070. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1071. * nothing keeps CPUs from showing up after we populated the cpumask and
  1072. * before the call to on_each_cpu_mask().
  1073. */
  1074. void drain_all_pages(void)
  1075. {
  1076. int cpu;
  1077. struct per_cpu_pageset *pcp;
  1078. struct zone *zone;
  1079. /*
  1080. * Allocate in the BSS so we wont require allocation in
  1081. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1082. */
  1083. static cpumask_t cpus_with_pcps;
  1084. /*
  1085. * We don't care about racing with CPU hotplug event
  1086. * as offline notification will cause the notified
  1087. * cpu to drain that CPU pcps and on_each_cpu_mask
  1088. * disables preemption as part of its processing
  1089. */
  1090. for_each_online_cpu(cpu) {
  1091. bool has_pcps = false;
  1092. for_each_populated_zone(zone) {
  1093. pcp = per_cpu_ptr(zone->pageset, cpu);
  1094. if (pcp->pcp.count) {
  1095. has_pcps = true;
  1096. break;
  1097. }
  1098. }
  1099. if (has_pcps)
  1100. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1101. else
  1102. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1103. }
  1104. on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
  1105. }
  1106. #ifdef CONFIG_HIBERNATION
  1107. void mark_free_pages(struct zone *zone)
  1108. {
  1109. unsigned long pfn, max_zone_pfn;
  1110. unsigned long flags;
  1111. int order, t;
  1112. struct list_head *curr;
  1113. if (!zone->spanned_pages)
  1114. return;
  1115. spin_lock_irqsave(&zone->lock, flags);
  1116. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  1117. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1118. if (pfn_valid(pfn)) {
  1119. struct page *page = pfn_to_page(pfn);
  1120. if (!swsusp_page_is_forbidden(page))
  1121. swsusp_unset_page_free(page);
  1122. }
  1123. for_each_migratetype_order(order, t) {
  1124. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1125. unsigned long i;
  1126. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1127. for (i = 0; i < (1UL << order); i++)
  1128. swsusp_set_page_free(pfn_to_page(pfn + i));
  1129. }
  1130. }
  1131. spin_unlock_irqrestore(&zone->lock, flags);
  1132. }
  1133. #endif /* CONFIG_PM */
  1134. /*
  1135. * Free a 0-order page
  1136. * cold == 1 ? free a cold page : free a hot page
  1137. */
  1138. void free_hot_cold_page(struct page *page, int cold)
  1139. {
  1140. struct zone *zone = page_zone(page);
  1141. struct per_cpu_pages *pcp;
  1142. unsigned long flags;
  1143. int migratetype;
  1144. if (!free_pages_prepare(page, 0))
  1145. return;
  1146. migratetype = get_pageblock_migratetype(page);
  1147. set_freepage_migratetype(page, migratetype);
  1148. local_irq_save(flags);
  1149. __count_vm_event(PGFREE);
  1150. /*
  1151. * We only track unmovable, reclaimable and movable on pcp lists.
  1152. * Free ISOLATE pages back to the allocator because they are being
  1153. * offlined but treat RESERVE as movable pages so we can get those
  1154. * areas back if necessary. Otherwise, we may have to free
  1155. * excessively into the page allocator
  1156. */
  1157. if (migratetype >= MIGRATE_PCPTYPES) {
  1158. if (unlikely(migratetype == MIGRATE_ISOLATE)) {
  1159. free_one_page(zone, page, 0, migratetype);
  1160. goto out;
  1161. }
  1162. migratetype = MIGRATE_MOVABLE;
  1163. }
  1164. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1165. if (cold)
  1166. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1167. else
  1168. list_add(&page->lru, &pcp->lists[migratetype]);
  1169. pcp->count++;
  1170. if (pcp->count >= pcp->high) {
  1171. free_pcppages_bulk(zone, pcp->batch, pcp);
  1172. pcp->count -= pcp->batch;
  1173. }
  1174. out:
  1175. local_irq_restore(flags);
  1176. }
  1177. /*
  1178. * Free a list of 0-order pages
  1179. */
  1180. void free_hot_cold_page_list(struct list_head *list, int cold)
  1181. {
  1182. struct page *page, *next;
  1183. list_for_each_entry_safe(page, next, list, lru) {
  1184. trace_mm_page_free_batched(page, cold);
  1185. free_hot_cold_page(page, cold);
  1186. }
  1187. }
  1188. /*
  1189. * split_page takes a non-compound higher-order page, and splits it into
  1190. * n (1<<order) sub-pages: page[0..n]
  1191. * Each sub-page must be freed individually.
  1192. *
  1193. * Note: this is probably too low level an operation for use in drivers.
  1194. * Please consult with lkml before using this in your driver.
  1195. */
  1196. void split_page(struct page *page, unsigned int order)
  1197. {
  1198. int i;
  1199. VM_BUG_ON(PageCompound(page));
  1200. VM_BUG_ON(!page_count(page));
  1201. #ifdef CONFIG_KMEMCHECK
  1202. /*
  1203. * Split shadow pages too, because free(page[0]) would
  1204. * otherwise free the whole shadow.
  1205. */
  1206. if (kmemcheck_page_is_tracked(page))
  1207. split_page(virt_to_page(page[0].shadow), order);
  1208. #endif
  1209. for (i = 1; i < (1 << order); i++)
  1210. set_page_refcounted(page + i);
  1211. }
  1212. static int __isolate_free_page(struct page *page, unsigned int order)
  1213. {
  1214. unsigned long watermark;
  1215. struct zone *zone;
  1216. int mt;
  1217. BUG_ON(!PageBuddy(page));
  1218. zone = page_zone(page);
  1219. mt = get_pageblock_migratetype(page);
  1220. if (mt != MIGRATE_ISOLATE) {
  1221. /* Obey watermarks as if the page was being allocated */
  1222. watermark = low_wmark_pages(zone) + (1 << order);
  1223. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1224. return 0;
  1225. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  1226. }
  1227. /* Remove page from free list */
  1228. list_del(&page->lru);
  1229. zone->free_area[order].nr_free--;
  1230. rmv_page_order(page);
  1231. /* Set the pageblock if the isolated page is at least a pageblock */
  1232. if (order >= pageblock_order - 1) {
  1233. struct page *endpage = page + (1 << order) - 1;
  1234. for (; page < endpage; page += pageblock_nr_pages) {
  1235. int mt = get_pageblock_migratetype(page);
  1236. if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
  1237. set_pageblock_migratetype(page,
  1238. MIGRATE_MOVABLE);
  1239. }
  1240. }
  1241. return 1UL << order;
  1242. }
  1243. /*
  1244. * Similar to split_page except the page is already free. As this is only
  1245. * being used for migration, the migratetype of the block also changes.
  1246. * As this is called with interrupts disabled, the caller is responsible
  1247. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1248. * are enabled.
  1249. *
  1250. * Note: this is probably too low level an operation for use in drivers.
  1251. * Please consult with lkml before using this in your driver.
  1252. */
  1253. int split_free_page(struct page *page)
  1254. {
  1255. unsigned int order;
  1256. int nr_pages;
  1257. order = page_order(page);
  1258. nr_pages = __isolate_free_page(page, order);
  1259. if (!nr_pages)
  1260. return 0;
  1261. /* Split into individual pages */
  1262. set_page_refcounted(page);
  1263. split_page(page, order);
  1264. return nr_pages;
  1265. }
  1266. /*
  1267. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1268. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1269. * or two.
  1270. */
  1271. static inline
  1272. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1273. struct zone *zone, int order, gfp_t gfp_flags,
  1274. int migratetype)
  1275. {
  1276. unsigned long flags;
  1277. struct page *page;
  1278. int cold = !!(gfp_flags & __GFP_COLD);
  1279. again:
  1280. if (likely(order == 0)) {
  1281. struct per_cpu_pages *pcp;
  1282. struct list_head *list;
  1283. local_irq_save(flags);
  1284. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1285. list = &pcp->lists[migratetype];
  1286. if (list_empty(list)) {
  1287. pcp->count += rmqueue_bulk(zone, 0,
  1288. pcp->batch, list,
  1289. migratetype, cold);
  1290. if (unlikely(list_empty(list)))
  1291. goto failed;
  1292. }
  1293. if (cold)
  1294. page = list_entry(list->prev, struct page, lru);
  1295. else
  1296. page = list_entry(list->next, struct page, lru);
  1297. list_del(&page->lru);
  1298. pcp->count--;
  1299. } else {
  1300. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1301. /*
  1302. * __GFP_NOFAIL is not to be used in new code.
  1303. *
  1304. * All __GFP_NOFAIL callers should be fixed so that they
  1305. * properly detect and handle allocation failures.
  1306. *
  1307. * We most definitely don't want callers attempting to
  1308. * allocate greater than order-1 page units with
  1309. * __GFP_NOFAIL.
  1310. */
  1311. WARN_ON_ONCE(order > 1);
  1312. }
  1313. spin_lock_irqsave(&zone->lock, flags);
  1314. page = __rmqueue(zone, order, migratetype);
  1315. spin_unlock(&zone->lock);
  1316. if (!page)
  1317. goto failed;
  1318. __mod_zone_freepage_state(zone, -(1 << order),
  1319. get_pageblock_migratetype(page));
  1320. }
  1321. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1322. zone_statistics(preferred_zone, zone, gfp_flags);
  1323. local_irq_restore(flags);
  1324. VM_BUG_ON(bad_range(zone, page));
  1325. if (prep_new_page(page, order, gfp_flags))
  1326. goto again;
  1327. return page;
  1328. failed:
  1329. local_irq_restore(flags);
  1330. return NULL;
  1331. }
  1332. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1333. static struct {
  1334. struct fault_attr attr;
  1335. u32 ignore_gfp_highmem;
  1336. u32 ignore_gfp_wait;
  1337. u32 min_order;
  1338. } fail_page_alloc = {
  1339. .attr = FAULT_ATTR_INITIALIZER,
  1340. .ignore_gfp_wait = 1,
  1341. .ignore_gfp_highmem = 1,
  1342. .min_order = 1,
  1343. };
  1344. static int __init setup_fail_page_alloc(char *str)
  1345. {
  1346. return setup_fault_attr(&fail_page_alloc.attr, str);
  1347. }
  1348. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1349. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1350. {
  1351. if (order < fail_page_alloc.min_order)
  1352. return false;
  1353. if (gfp_mask & __GFP_NOFAIL)
  1354. return false;
  1355. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1356. return false;
  1357. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1358. return false;
  1359. return should_fail(&fail_page_alloc.attr, 1 << order);
  1360. }
  1361. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1362. static int __init fail_page_alloc_debugfs(void)
  1363. {
  1364. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1365. struct dentry *dir;
  1366. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1367. &fail_page_alloc.attr);
  1368. if (IS_ERR(dir))
  1369. return PTR_ERR(dir);
  1370. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1371. &fail_page_alloc.ignore_gfp_wait))
  1372. goto fail;
  1373. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1374. &fail_page_alloc.ignore_gfp_highmem))
  1375. goto fail;
  1376. if (!debugfs_create_u32("min-order", mode, dir,
  1377. &fail_page_alloc.min_order))
  1378. goto fail;
  1379. return 0;
  1380. fail:
  1381. debugfs_remove_recursive(dir);
  1382. return -ENOMEM;
  1383. }
  1384. late_initcall(fail_page_alloc_debugfs);
  1385. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1386. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1387. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1388. {
  1389. return false;
  1390. }
  1391. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1392. /*
  1393. * Return true if free pages are above 'mark'. This takes into account the order
  1394. * of the allocation.
  1395. */
  1396. static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1397. int classzone_idx, int alloc_flags, long free_pages)
  1398. {
  1399. /* free_pages my go negative - that's OK */
  1400. long min = mark;
  1401. long lowmem_reserve = z->lowmem_reserve[classzone_idx];
  1402. int o;
  1403. free_pages -= (1 << order) - 1;
  1404. if (alloc_flags & ALLOC_HIGH)
  1405. min -= min / 2;
  1406. if (alloc_flags & ALLOC_HARDER)
  1407. min -= min / 4;
  1408. #ifdef CONFIG_CMA
  1409. /* If allocation can't use CMA areas don't use free CMA pages */
  1410. if (!(alloc_flags & ALLOC_CMA))
  1411. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  1412. #endif
  1413. if (free_pages <= min + lowmem_reserve)
  1414. return false;
  1415. for (o = 0; o < order; o++) {
  1416. /* At the next order, this order's pages become unavailable */
  1417. free_pages -= z->free_area[o].nr_free << o;
  1418. /* Require fewer higher order pages to be free */
  1419. min >>= 1;
  1420. if (free_pages <= min)
  1421. return false;
  1422. }
  1423. return true;
  1424. }
  1425. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1426. int classzone_idx, int alloc_flags)
  1427. {
  1428. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1429. zone_page_state(z, NR_FREE_PAGES));
  1430. }
  1431. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  1432. int classzone_idx, int alloc_flags)
  1433. {
  1434. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1435. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1436. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1437. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1438. free_pages);
  1439. }
  1440. #ifdef CONFIG_NUMA
  1441. /*
  1442. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1443. * skip over zones that are not allowed by the cpuset, or that have
  1444. * been recently (in last second) found to be nearly full. See further
  1445. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1446. * that have to skip over a lot of full or unallowed zones.
  1447. *
  1448. * If the zonelist cache is present in the passed in zonelist, then
  1449. * returns a pointer to the allowed node mask (either the current
  1450. * tasks mems_allowed, or node_states[N_MEMORY].)
  1451. *
  1452. * If the zonelist cache is not available for this zonelist, does
  1453. * nothing and returns NULL.
  1454. *
  1455. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1456. * a second since last zap'd) then we zap it out (clear its bits.)
  1457. *
  1458. * We hold off even calling zlc_setup, until after we've checked the
  1459. * first zone in the zonelist, on the theory that most allocations will
  1460. * be satisfied from that first zone, so best to examine that zone as
  1461. * quickly as we can.
  1462. */
  1463. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1464. {
  1465. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1466. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1467. zlc = zonelist->zlcache_ptr;
  1468. if (!zlc)
  1469. return NULL;
  1470. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1471. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1472. zlc->last_full_zap = jiffies;
  1473. }
  1474. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1475. &cpuset_current_mems_allowed :
  1476. &node_states[N_MEMORY];
  1477. return allowednodes;
  1478. }
  1479. /*
  1480. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1481. * if it is worth looking at further for free memory:
  1482. * 1) Check that the zone isn't thought to be full (doesn't have its
  1483. * bit set in the zonelist_cache fullzones BITMAP).
  1484. * 2) Check that the zones node (obtained from the zonelist_cache
  1485. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1486. * Return true (non-zero) if zone is worth looking at further, or
  1487. * else return false (zero) if it is not.
  1488. *
  1489. * This check -ignores- the distinction between various watermarks,
  1490. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1491. * found to be full for any variation of these watermarks, it will
  1492. * be considered full for up to one second by all requests, unless
  1493. * we are so low on memory on all allowed nodes that we are forced
  1494. * into the second scan of the zonelist.
  1495. *
  1496. * In the second scan we ignore this zonelist cache and exactly
  1497. * apply the watermarks to all zones, even it is slower to do so.
  1498. * We are low on memory in the second scan, and should leave no stone
  1499. * unturned looking for a free page.
  1500. */
  1501. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1502. nodemask_t *allowednodes)
  1503. {
  1504. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1505. int i; /* index of *z in zonelist zones */
  1506. int n; /* node that zone *z is on */
  1507. zlc = zonelist->zlcache_ptr;
  1508. if (!zlc)
  1509. return 1;
  1510. i = z - zonelist->_zonerefs;
  1511. n = zlc->z_to_n[i];
  1512. /* This zone is worth trying if it is allowed but not full */
  1513. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1514. }
  1515. /*
  1516. * Given 'z' scanning a zonelist, set the corresponding bit in
  1517. * zlc->fullzones, so that subsequent attempts to allocate a page
  1518. * from that zone don't waste time re-examining it.
  1519. */
  1520. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1521. {
  1522. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1523. int i; /* index of *z in zonelist zones */
  1524. zlc = zonelist->zlcache_ptr;
  1525. if (!zlc)
  1526. return;
  1527. i = z - zonelist->_zonerefs;
  1528. set_bit(i, zlc->fullzones);
  1529. }
  1530. /*
  1531. * clear all zones full, called after direct reclaim makes progress so that
  1532. * a zone that was recently full is not skipped over for up to a second
  1533. */
  1534. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1535. {
  1536. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1537. zlc = zonelist->zlcache_ptr;
  1538. if (!zlc)
  1539. return;
  1540. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1541. }
  1542. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1543. {
  1544. return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
  1545. }
  1546. static void __paginginit init_zone_allows_reclaim(int nid)
  1547. {
  1548. int i;
  1549. for_each_online_node(i)
  1550. if (node_distance(nid, i) <= RECLAIM_DISTANCE)
  1551. node_set(i, NODE_DATA(nid)->reclaim_nodes);
  1552. else
  1553. zone_reclaim_mode = 1;
  1554. }
  1555. #else /* CONFIG_NUMA */
  1556. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1557. {
  1558. return NULL;
  1559. }
  1560. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1561. nodemask_t *allowednodes)
  1562. {
  1563. return 1;
  1564. }
  1565. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1566. {
  1567. }
  1568. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1569. {
  1570. }
  1571. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1572. {
  1573. return true;
  1574. }
  1575. static inline void init_zone_allows_reclaim(int nid)
  1576. {
  1577. }
  1578. #endif /* CONFIG_NUMA */
  1579. /*
  1580. * get_page_from_freelist goes through the zonelist trying to allocate
  1581. * a page.
  1582. */
  1583. static struct page *
  1584. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1585. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1586. struct zone *preferred_zone, int migratetype)
  1587. {
  1588. struct zoneref *z;
  1589. struct page *page = NULL;
  1590. int classzone_idx;
  1591. struct zone *zone;
  1592. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1593. int zlc_active = 0; /* set if using zonelist_cache */
  1594. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1595. classzone_idx = zone_idx(preferred_zone);
  1596. zonelist_scan:
  1597. /*
  1598. * Scan zonelist, looking for a zone with enough free.
  1599. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1600. */
  1601. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1602. high_zoneidx, nodemask) {
  1603. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1604. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1605. continue;
  1606. if ((alloc_flags & ALLOC_CPUSET) &&
  1607. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1608. continue;
  1609. /*
  1610. * When allocating a page cache page for writing, we
  1611. * want to get it from a zone that is within its dirty
  1612. * limit, such that no single zone holds more than its
  1613. * proportional share of globally allowed dirty pages.
  1614. * The dirty limits take into account the zone's
  1615. * lowmem reserves and high watermark so that kswapd
  1616. * should be able to balance it without having to
  1617. * write pages from its LRU list.
  1618. *
  1619. * This may look like it could increase pressure on
  1620. * lower zones by failing allocations in higher zones
  1621. * before they are full. But the pages that do spill
  1622. * over are limited as the lower zones are protected
  1623. * by this very same mechanism. It should not become
  1624. * a practical burden to them.
  1625. *
  1626. * XXX: For now, allow allocations to potentially
  1627. * exceed the per-zone dirty limit in the slowpath
  1628. * (ALLOC_WMARK_LOW unset) before going into reclaim,
  1629. * which is important when on a NUMA setup the allowed
  1630. * zones are together not big enough to reach the
  1631. * global limit. The proper fix for these situations
  1632. * will require awareness of zones in the
  1633. * dirty-throttling and the flusher threads.
  1634. */
  1635. if ((alloc_flags & ALLOC_WMARK_LOW) &&
  1636. (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
  1637. goto this_zone_full;
  1638. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1639. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1640. unsigned long mark;
  1641. int ret;
  1642. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1643. if (zone_watermark_ok(zone, order, mark,
  1644. classzone_idx, alloc_flags))
  1645. goto try_this_zone;
  1646. if (IS_ENABLED(CONFIG_NUMA) &&
  1647. !did_zlc_setup && nr_online_nodes > 1) {
  1648. /*
  1649. * we do zlc_setup if there are multiple nodes
  1650. * and before considering the first zone allowed
  1651. * by the cpuset.
  1652. */
  1653. allowednodes = zlc_setup(zonelist, alloc_flags);
  1654. zlc_active = 1;
  1655. did_zlc_setup = 1;
  1656. }
  1657. if (zone_reclaim_mode == 0 ||
  1658. !zone_allows_reclaim(preferred_zone, zone))
  1659. goto this_zone_full;
  1660. /*
  1661. * As we may have just activated ZLC, check if the first
  1662. * eligible zone has failed zone_reclaim recently.
  1663. */
  1664. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1665. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1666. continue;
  1667. ret = zone_reclaim(zone, gfp_mask, order);
  1668. switch (ret) {
  1669. case ZONE_RECLAIM_NOSCAN:
  1670. /* did not scan */
  1671. continue;
  1672. case ZONE_RECLAIM_FULL:
  1673. /* scanned but unreclaimable */
  1674. continue;
  1675. default:
  1676. /* did we reclaim enough */
  1677. if (!zone_watermark_ok(zone, order, mark,
  1678. classzone_idx, alloc_flags))
  1679. goto this_zone_full;
  1680. }
  1681. }
  1682. try_this_zone:
  1683. page = buffered_rmqueue(preferred_zone, zone, order,
  1684. gfp_mask, migratetype);
  1685. if (page)
  1686. break;
  1687. this_zone_full:
  1688. if (IS_ENABLED(CONFIG_NUMA))
  1689. zlc_mark_zone_full(zonelist, z);
  1690. }
  1691. if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
  1692. /* Disable zlc cache for second zonelist scan */
  1693. zlc_active = 0;
  1694. goto zonelist_scan;
  1695. }
  1696. if (page)
  1697. /*
  1698. * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
  1699. * necessary to allocate the page. The expectation is
  1700. * that the caller is taking steps that will free more
  1701. * memory. The caller should avoid the page being used
  1702. * for !PFMEMALLOC purposes.
  1703. */
  1704. page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
  1705. return page;
  1706. }
  1707. /*
  1708. * Large machines with many possible nodes should not always dump per-node
  1709. * meminfo in irq context.
  1710. */
  1711. static inline bool should_suppress_show_mem(void)
  1712. {
  1713. bool ret = false;
  1714. #if NODES_SHIFT > 8
  1715. ret = in_interrupt();
  1716. #endif
  1717. return ret;
  1718. }
  1719. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1720. DEFAULT_RATELIMIT_INTERVAL,
  1721. DEFAULT_RATELIMIT_BURST);
  1722. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1723. {
  1724. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1725. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  1726. debug_guardpage_minorder() > 0)
  1727. return;
  1728. /*
  1729. * This documents exceptions given to allocations in certain
  1730. * contexts that are allowed to allocate outside current's set
  1731. * of allowed nodes.
  1732. */
  1733. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1734. if (test_thread_flag(TIF_MEMDIE) ||
  1735. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1736. filter &= ~SHOW_MEM_FILTER_NODES;
  1737. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1738. filter &= ~SHOW_MEM_FILTER_NODES;
  1739. if (fmt) {
  1740. struct va_format vaf;
  1741. va_list args;
  1742. va_start(args, fmt);
  1743. vaf.fmt = fmt;
  1744. vaf.va = &args;
  1745. pr_warn("%pV", &vaf);
  1746. va_end(args);
  1747. }
  1748. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  1749. current->comm, order, gfp_mask);
  1750. dump_stack();
  1751. if (!should_suppress_show_mem())
  1752. show_mem(filter);
  1753. }
  1754. static inline int
  1755. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1756. unsigned long did_some_progress,
  1757. unsigned long pages_reclaimed)
  1758. {
  1759. /* Do not loop if specifically requested */
  1760. if (gfp_mask & __GFP_NORETRY)
  1761. return 0;
  1762. /* Always retry if specifically requested */
  1763. if (gfp_mask & __GFP_NOFAIL)
  1764. return 1;
  1765. /*
  1766. * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
  1767. * making forward progress without invoking OOM. Suspend also disables
  1768. * storage devices so kswapd will not help. Bail if we are suspending.
  1769. */
  1770. if (!did_some_progress && pm_suspended_storage())
  1771. return 0;
  1772. /*
  1773. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1774. * means __GFP_NOFAIL, but that may not be true in other
  1775. * implementations.
  1776. */
  1777. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1778. return 1;
  1779. /*
  1780. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1781. * specified, then we retry until we no longer reclaim any pages
  1782. * (above), or we've reclaimed an order of pages at least as
  1783. * large as the allocation's order. In both cases, if the
  1784. * allocation still fails, we stop retrying.
  1785. */
  1786. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1787. return 1;
  1788. return 0;
  1789. }
  1790. static inline struct page *
  1791. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1792. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1793. nodemask_t *nodemask, struct zone *preferred_zone,
  1794. int migratetype)
  1795. {
  1796. struct page *page;
  1797. /* Acquire the OOM killer lock for the zones in zonelist */
  1798. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1799. schedule_timeout_uninterruptible(1);
  1800. return NULL;
  1801. }
  1802. /*
  1803. * Go through the zonelist yet one more time, keep very high watermark
  1804. * here, this is only to catch a parallel oom killing, we must fail if
  1805. * we're still under heavy pressure.
  1806. */
  1807. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1808. order, zonelist, high_zoneidx,
  1809. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1810. preferred_zone, migratetype);
  1811. if (page)
  1812. goto out;
  1813. if (!(gfp_mask & __GFP_NOFAIL)) {
  1814. /* The OOM killer will not help higher order allocs */
  1815. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1816. goto out;
  1817. /* The OOM killer does not needlessly kill tasks for lowmem */
  1818. if (high_zoneidx < ZONE_NORMAL)
  1819. goto out;
  1820. /*
  1821. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1822. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1823. * The caller should handle page allocation failure by itself if
  1824. * it specifies __GFP_THISNODE.
  1825. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1826. */
  1827. if (gfp_mask & __GFP_THISNODE)
  1828. goto out;
  1829. }
  1830. /* Exhausted what can be done so it's blamo time */
  1831. out_of_memory(zonelist, gfp_mask, order, nodemask, false);
  1832. out:
  1833. clear_zonelist_oom(zonelist, gfp_mask);
  1834. return page;
  1835. }
  1836. #ifdef CONFIG_COMPACTION
  1837. /* Try memory compaction for high-order allocations before reclaim */
  1838. static struct page *
  1839. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1840. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1841. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1842. int migratetype, bool sync_migration,
  1843. bool *contended_compaction, bool *deferred_compaction,
  1844. unsigned long *did_some_progress)
  1845. {
  1846. if (!order)
  1847. return NULL;
  1848. if (compaction_deferred(preferred_zone, order)) {
  1849. *deferred_compaction = true;
  1850. return NULL;
  1851. }
  1852. current->flags |= PF_MEMALLOC;
  1853. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1854. nodemask, sync_migration,
  1855. contended_compaction);
  1856. current->flags &= ~PF_MEMALLOC;
  1857. if (*did_some_progress != COMPACT_SKIPPED) {
  1858. struct page *page;
  1859. /* Page migration frees to the PCP lists but we want merging */
  1860. drain_pages(get_cpu());
  1861. put_cpu();
  1862. page = get_page_from_freelist(gfp_mask, nodemask,
  1863. order, zonelist, high_zoneidx,
  1864. alloc_flags & ~ALLOC_NO_WATERMARKS,
  1865. preferred_zone, migratetype);
  1866. if (page) {
  1867. preferred_zone->compact_blockskip_flush = false;
  1868. preferred_zone->compact_considered = 0;
  1869. preferred_zone->compact_defer_shift = 0;
  1870. if (order >= preferred_zone->compact_order_failed)
  1871. preferred_zone->compact_order_failed = order + 1;
  1872. count_vm_event(COMPACTSUCCESS);
  1873. return page;
  1874. }
  1875. /*
  1876. * It's bad if compaction run occurs and fails.
  1877. * The most likely reason is that pages exist,
  1878. * but not enough to satisfy watermarks.
  1879. */
  1880. count_vm_event(COMPACTFAIL);
  1881. /*
  1882. * As async compaction considers a subset of pageblocks, only
  1883. * defer if the failure was a sync compaction failure.
  1884. */
  1885. if (sync_migration)
  1886. defer_compaction(preferred_zone, order);
  1887. cond_resched();
  1888. }
  1889. return NULL;
  1890. }
  1891. #else
  1892. static inline struct page *
  1893. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1894. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1895. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1896. int migratetype, bool sync_migration,
  1897. bool *contended_compaction, bool *deferred_compaction,
  1898. unsigned long *did_some_progress)
  1899. {
  1900. return NULL;
  1901. }
  1902. #endif /* CONFIG_COMPACTION */
  1903. /* Perform direct synchronous page reclaim */
  1904. static int
  1905. __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
  1906. nodemask_t *nodemask)
  1907. {
  1908. struct reclaim_state reclaim_state;
  1909. int progress;
  1910. cond_resched();
  1911. /* We now go into synchronous reclaim */
  1912. cpuset_memory_pressure_bump();
  1913. current->flags |= PF_MEMALLOC;
  1914. lockdep_set_current_reclaim_state(gfp_mask);
  1915. reclaim_state.reclaimed_slab = 0;
  1916. current->reclaim_state = &reclaim_state;
  1917. progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1918. current->reclaim_state = NULL;
  1919. lockdep_clear_current_reclaim_state();
  1920. current->flags &= ~PF_MEMALLOC;
  1921. cond_resched();
  1922. return progress;
  1923. }
  1924. /* The really slow allocator path where we enter direct reclaim */
  1925. static inline struct page *
  1926. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1927. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1928. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1929. int migratetype, unsigned long *did_some_progress)
  1930. {
  1931. struct page *page = NULL;
  1932. bool drained = false;
  1933. *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
  1934. nodemask);
  1935. if (unlikely(!(*did_some_progress)))
  1936. return NULL;
  1937. /* After successful reclaim, reconsider all zones for allocation */
  1938. if (IS_ENABLED(CONFIG_NUMA))
  1939. zlc_clear_zones_full(zonelist);
  1940. retry:
  1941. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1942. zonelist, high_zoneidx,
  1943. alloc_flags & ~ALLOC_NO_WATERMARKS,
  1944. preferred_zone, migratetype);
  1945. /*
  1946. * If an allocation failed after direct reclaim, it could be because
  1947. * pages are pinned on the per-cpu lists. Drain them and try again
  1948. */
  1949. if (!page && !drained) {
  1950. drain_all_pages();
  1951. drained = true;
  1952. goto retry;
  1953. }
  1954. return page;
  1955. }
  1956. /*
  1957. * This is called in the allocator slow-path if the allocation request is of
  1958. * sufficient urgency to ignore watermarks and take other desperate measures
  1959. */
  1960. static inline struct page *
  1961. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1962. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1963. nodemask_t *nodemask, struct zone *preferred_zone,
  1964. int migratetype)
  1965. {
  1966. struct page *page;
  1967. do {
  1968. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1969. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1970. preferred_zone, migratetype);
  1971. if (!page && gfp_mask & __GFP_NOFAIL)
  1972. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1973. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1974. return page;
  1975. }
  1976. static inline
  1977. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1978. enum zone_type high_zoneidx,
  1979. enum zone_type classzone_idx)
  1980. {
  1981. struct zoneref *z;
  1982. struct zone *zone;
  1983. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1984. wakeup_kswapd(zone, order, classzone_idx);
  1985. }
  1986. static inline int
  1987. gfp_to_alloc_flags(gfp_t gfp_mask)
  1988. {
  1989. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1990. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1991. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1992. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  1993. /*
  1994. * The caller may dip into page reserves a bit more if the caller
  1995. * cannot run direct reclaim, or if the caller has realtime scheduling
  1996. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1997. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1998. */
  1999. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2000. if (!wait) {
  2001. /*
  2002. * Not worth trying to allocate harder for
  2003. * __GFP_NOMEMALLOC even if it can't schedule.
  2004. */
  2005. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2006. alloc_flags |= ALLOC_HARDER;
  2007. /*
  2008. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  2009. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  2010. */
  2011. alloc_flags &= ~ALLOC_CPUSET;
  2012. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2013. alloc_flags |= ALLOC_HARDER;
  2014. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2015. if (gfp_mask & __GFP_MEMALLOC)
  2016. alloc_flags |= ALLOC_NO_WATERMARKS;
  2017. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2018. alloc_flags |= ALLOC_NO_WATERMARKS;
  2019. else if (!in_interrupt() &&
  2020. ((current->flags & PF_MEMALLOC) ||
  2021. unlikely(test_thread_flag(TIF_MEMDIE))))
  2022. alloc_flags |= ALLOC_NO_WATERMARKS;
  2023. }
  2024. #ifdef CONFIG_CMA
  2025. if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2026. alloc_flags |= ALLOC_CMA;
  2027. #endif
  2028. return alloc_flags;
  2029. }
  2030. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2031. {
  2032. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2033. }
  2034. static inline struct page *
  2035. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2036. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2037. nodemask_t *nodemask, struct zone *preferred_zone,
  2038. int migratetype)
  2039. {
  2040. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2041. struct page *page = NULL;
  2042. int alloc_flags;
  2043. unsigned long pages_reclaimed = 0;
  2044. unsigned long did_some_progress;
  2045. bool sync_migration = false;
  2046. bool deferred_compaction = false;
  2047. bool contended_compaction = false;
  2048. /*
  2049. * In the slowpath, we sanity check order to avoid ever trying to
  2050. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2051. * be using allocators in order of preference for an area that is
  2052. * too large.
  2053. */
  2054. if (order >= MAX_ORDER) {
  2055. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2056. return NULL;
  2057. }
  2058. /*
  2059. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  2060. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  2061. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  2062. * using a larger set of nodes after it has established that the
  2063. * allowed per node queues are empty and that nodes are
  2064. * over allocated.
  2065. */
  2066. if (IS_ENABLED(CONFIG_NUMA) &&
  2067. (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  2068. goto nopage;
  2069. restart:
  2070. if (!(gfp_mask & __GFP_NO_KSWAPD))
  2071. wake_all_kswapd(order, zonelist, high_zoneidx,
  2072. zone_idx(preferred_zone));
  2073. /*
  2074. * OK, we're below the kswapd watermark and have kicked background
  2075. * reclaim. Now things get more complex, so set up alloc_flags according
  2076. * to how we want to proceed.
  2077. */
  2078. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2079. /*
  2080. * Find the true preferred zone if the allocation is unconstrained by
  2081. * cpusets.
  2082. */
  2083. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
  2084. first_zones_zonelist(zonelist, high_zoneidx, NULL,
  2085. &preferred_zone);
  2086. rebalance:
  2087. /* This is the last chance, in general, before the goto nopage. */
  2088. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  2089. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  2090. preferred_zone, migratetype);
  2091. if (page)
  2092. goto got_pg;
  2093. /* Allocate without watermarks if the context allows */
  2094. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2095. /*
  2096. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2097. * the allocation is high priority and these type of
  2098. * allocations are system rather than user orientated
  2099. */
  2100. zonelist = node_zonelist(numa_node_id(), gfp_mask);
  2101. page = __alloc_pages_high_priority(gfp_mask, order,
  2102. zonelist, high_zoneidx, nodemask,
  2103. preferred_zone, migratetype);
  2104. if (page) {
  2105. goto got_pg;
  2106. }
  2107. }
  2108. /* Atomic allocations - we can't balance anything */
  2109. if (!wait)
  2110. goto nopage;
  2111. /* Avoid recursion of direct reclaim */
  2112. if (current->flags & PF_MEMALLOC)
  2113. goto nopage;
  2114. /* Avoid allocations with no watermarks from looping endlessly */
  2115. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2116. goto nopage;
  2117. /*
  2118. * Try direct compaction. The first pass is asynchronous. Subsequent
  2119. * attempts after direct reclaim are synchronous
  2120. */
  2121. page = __alloc_pages_direct_compact(gfp_mask, order,
  2122. zonelist, high_zoneidx,
  2123. nodemask,
  2124. alloc_flags, preferred_zone,
  2125. migratetype, sync_migration,
  2126. &contended_compaction,
  2127. &deferred_compaction,
  2128. &did_some_progress);
  2129. if (page)
  2130. goto got_pg;
  2131. sync_migration = true;
  2132. /*
  2133. * If compaction is deferred for high-order allocations, it is because
  2134. * sync compaction recently failed. In this is the case and the caller
  2135. * requested a movable allocation that does not heavily disrupt the
  2136. * system then fail the allocation instead of entering direct reclaim.
  2137. */
  2138. if ((deferred_compaction || contended_compaction) &&
  2139. (gfp_mask & __GFP_NO_KSWAPD))
  2140. goto nopage;
  2141. /* Try direct reclaim and then allocating */
  2142. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  2143. zonelist, high_zoneidx,
  2144. nodemask,
  2145. alloc_flags, preferred_zone,
  2146. migratetype, &did_some_progress);
  2147. if (page)
  2148. goto got_pg;
  2149. /*
  2150. * If we failed to make any progress reclaiming, then we are
  2151. * running out of options and have to consider going OOM
  2152. */
  2153. if (!did_some_progress) {
  2154. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  2155. if (oom_killer_disabled)
  2156. goto nopage;
  2157. /* Coredumps can quickly deplete all memory reserves */
  2158. if ((current->flags & PF_DUMPCORE) &&
  2159. !(gfp_mask & __GFP_NOFAIL))
  2160. goto nopage;
  2161. page = __alloc_pages_may_oom(gfp_mask, order,
  2162. zonelist, high_zoneidx,
  2163. nodemask, preferred_zone,
  2164. migratetype);
  2165. if (page)
  2166. goto got_pg;
  2167. if (!(gfp_mask & __GFP_NOFAIL)) {
  2168. /*
  2169. * The oom killer is not called for high-order
  2170. * allocations that may fail, so if no progress
  2171. * is being made, there are no other options and
  2172. * retrying is unlikely to help.
  2173. */
  2174. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2175. goto nopage;
  2176. /*
  2177. * The oom killer is not called for lowmem
  2178. * allocations to prevent needlessly killing
  2179. * innocent tasks.
  2180. */
  2181. if (high_zoneidx < ZONE_NORMAL)
  2182. goto nopage;
  2183. }
  2184. goto restart;
  2185. }
  2186. }
  2187. /* Check if we should retry the allocation */
  2188. pages_reclaimed += did_some_progress;
  2189. if (should_alloc_retry(gfp_mask, order, did_some_progress,
  2190. pages_reclaimed)) {
  2191. /* Wait for some write requests to complete then retry */
  2192. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2193. goto rebalance;
  2194. } else {
  2195. /*
  2196. * High-order allocations do not necessarily loop after
  2197. * direct reclaim and reclaim/compaction depends on compaction
  2198. * being called after reclaim so call directly if necessary
  2199. */
  2200. page = __alloc_pages_direct_compact(gfp_mask, order,
  2201. zonelist, high_zoneidx,
  2202. nodemask,
  2203. alloc_flags, preferred_zone,
  2204. migratetype, sync_migration,
  2205. &contended_compaction,
  2206. &deferred_compaction,
  2207. &did_some_progress);
  2208. if (page)
  2209. goto got_pg;
  2210. }
  2211. nopage:
  2212. warn_alloc_failed(gfp_mask, order, NULL);
  2213. return page;
  2214. got_pg:
  2215. if (kmemcheck_enabled)
  2216. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2217. return page;
  2218. }
  2219. /*
  2220. * This is the 'heart' of the zoned buddy allocator.
  2221. */
  2222. struct page *
  2223. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2224. struct zonelist *zonelist, nodemask_t *nodemask)
  2225. {
  2226. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  2227. struct zone *preferred_zone;
  2228. struct page *page = NULL;
  2229. int migratetype = allocflags_to_migratetype(gfp_mask);
  2230. unsigned int cpuset_mems_cookie;
  2231. int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
  2232. struct mem_cgroup *memcg = NULL;
  2233. gfp_mask &= gfp_allowed_mask;
  2234. lockdep_trace_alloc(gfp_mask);
  2235. might_sleep_if(gfp_mask & __GFP_WAIT);
  2236. if (should_fail_alloc_page(gfp_mask, order))
  2237. return NULL;
  2238. /*
  2239. * Check the zones suitable for the gfp_mask contain at least one
  2240. * valid zone. It's possible to have an empty zonelist as a result
  2241. * of GFP_THISNODE and a memoryless node
  2242. */
  2243. if (unlikely(!zonelist->_zonerefs->zone))
  2244. return NULL;
  2245. /*
  2246. * Will only have any effect when __GFP_KMEMCG is set. This is
  2247. * verified in the (always inline) callee
  2248. */
  2249. if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
  2250. return NULL;
  2251. retry_cpuset:
  2252. cpuset_mems_cookie = get_mems_allowed();
  2253. /* The preferred zone is used for statistics later */
  2254. first_zones_zonelist(zonelist, high_zoneidx,
  2255. nodemask ? : &cpuset_current_mems_allowed,
  2256. &preferred_zone);
  2257. if (!preferred_zone)
  2258. goto out;
  2259. #ifdef CONFIG_CMA
  2260. if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2261. alloc_flags |= ALLOC_CMA;
  2262. #endif
  2263. /* First allocation attempt */
  2264. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  2265. zonelist, high_zoneidx, alloc_flags,
  2266. preferred_zone, migratetype);
  2267. if (unlikely(!page))
  2268. page = __alloc_pages_slowpath(gfp_mask, order,
  2269. zonelist, high_zoneidx, nodemask,
  2270. preferred_zone, migratetype);
  2271. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  2272. out:
  2273. /*
  2274. * When updating a task's mems_allowed, it is possible to race with
  2275. * parallel threads in such a way that an allocation can fail while
  2276. * the mask is being updated. If a page allocation is about to fail,
  2277. * check if the cpuset changed during allocation and if so, retry.
  2278. */
  2279. if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
  2280. goto retry_cpuset;
  2281. memcg_kmem_commit_charge(page, memcg, order);
  2282. return page;
  2283. }
  2284. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2285. /*
  2286. * Common helper functions.
  2287. */
  2288. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2289. {
  2290. struct page *page;
  2291. /*
  2292. * __get_free_pages() returns a 32-bit address, which cannot represent
  2293. * a highmem page
  2294. */
  2295. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2296. page = alloc_pages(gfp_mask, order);
  2297. if (!page)
  2298. return 0;
  2299. return (unsigned long) page_address(page);
  2300. }
  2301. EXPORT_SYMBOL(__get_free_pages);
  2302. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2303. {
  2304. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2305. }
  2306. EXPORT_SYMBOL(get_zeroed_page);
  2307. void __free_pages(struct page *page, unsigned int order)
  2308. {
  2309. if (put_page_testzero(page)) {
  2310. if (order == 0)
  2311. free_hot_cold_page(page, 0);
  2312. else
  2313. __free_pages_ok(page, order);
  2314. }
  2315. }
  2316. EXPORT_SYMBOL(__free_pages);
  2317. void free_pages(unsigned long addr, unsigned int order)
  2318. {
  2319. if (addr != 0) {
  2320. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2321. __free_pages(virt_to_page((void *)addr), order);
  2322. }
  2323. }
  2324. EXPORT_SYMBOL(free_pages);
  2325. /*
  2326. * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
  2327. * pages allocated with __GFP_KMEMCG.
  2328. *
  2329. * Those pages are accounted to a particular memcg, embedded in the
  2330. * corresponding page_cgroup. To avoid adding a hit in the allocator to search
  2331. * for that information only to find out that it is NULL for users who have no
  2332. * interest in that whatsoever, we provide these functions.
  2333. *
  2334. * The caller knows better which flags it relies on.
  2335. */
  2336. void __free_memcg_kmem_pages(struct page *page, unsigned int order)
  2337. {
  2338. memcg_kmem_uncharge_pages(page, order);
  2339. __free_pages(page, order);
  2340. }
  2341. void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
  2342. {
  2343. if (addr != 0) {
  2344. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2345. __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
  2346. }
  2347. }
  2348. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2349. {
  2350. if (addr) {
  2351. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2352. unsigned long used = addr + PAGE_ALIGN(size);
  2353. split_page(virt_to_page((void *)addr), order);
  2354. while (used < alloc_end) {
  2355. free_page(used);
  2356. used += PAGE_SIZE;
  2357. }
  2358. }
  2359. return (void *)addr;
  2360. }
  2361. /**
  2362. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2363. * @size: the number of bytes to allocate
  2364. * @gfp_mask: GFP flags for the allocation
  2365. *
  2366. * This function is similar to alloc_pages(), except that it allocates the
  2367. * minimum number of pages to satisfy the request. alloc_pages() can only
  2368. * allocate memory in power-of-two pages.
  2369. *
  2370. * This function is also limited by MAX_ORDER.
  2371. *
  2372. * Memory allocated by this function must be released by free_pages_exact().
  2373. */
  2374. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2375. {
  2376. unsigned int order = get_order(size);
  2377. unsigned long addr;
  2378. addr = __get_free_pages(gfp_mask, order);
  2379. return make_alloc_exact(addr, order, size);
  2380. }
  2381. EXPORT_SYMBOL(alloc_pages_exact);
  2382. /**
  2383. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2384. * pages on a node.
  2385. * @nid: the preferred node ID where memory should be allocated
  2386. * @size: the number of bytes to allocate
  2387. * @gfp_mask: GFP flags for the allocation
  2388. *
  2389. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2390. * back.
  2391. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2392. * but is not exact.
  2393. */
  2394. void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2395. {
  2396. unsigned order = get_order(size);
  2397. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2398. if (!p)
  2399. return NULL;
  2400. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2401. }
  2402. EXPORT_SYMBOL(alloc_pages_exact_nid);
  2403. /**
  2404. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2405. * @virt: the value returned by alloc_pages_exact.
  2406. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2407. *
  2408. * Release the memory allocated by a previous call to alloc_pages_exact.
  2409. */
  2410. void free_pages_exact(void *virt, size_t size)
  2411. {
  2412. unsigned long addr = (unsigned long)virt;
  2413. unsigned long end = addr + PAGE_ALIGN(size);
  2414. while (addr < end) {
  2415. free_page(addr);
  2416. addr += PAGE_SIZE;
  2417. }
  2418. }
  2419. EXPORT_SYMBOL(free_pages_exact);
  2420. static unsigned int nr_free_zone_pages(int offset)
  2421. {
  2422. struct zoneref *z;
  2423. struct zone *zone;
  2424. /* Just pick one node, since fallback list is circular */
  2425. unsigned int sum = 0;
  2426. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2427. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2428. unsigned long size = zone->present_pages;
  2429. unsigned long high = high_wmark_pages(zone);
  2430. if (size > high)
  2431. sum += size - high;
  2432. }
  2433. return sum;
  2434. }
  2435. /*
  2436. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  2437. */
  2438. unsigned int nr_free_buffer_pages(void)
  2439. {
  2440. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2441. }
  2442. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2443. /*
  2444. * Amount of free RAM allocatable within all zones
  2445. */
  2446. unsigned int nr_free_pagecache_pages(void)
  2447. {
  2448. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2449. }
  2450. static inline void show_node(struct zone *zone)
  2451. {
  2452. if (IS_ENABLED(CONFIG_NUMA))
  2453. printk("Node %d ", zone_to_nid(zone));
  2454. }
  2455. void si_meminfo(struct sysinfo *val)
  2456. {
  2457. val->totalram = totalram_pages;
  2458. val->sharedram = 0;
  2459. val->freeram = global_page_state(NR_FREE_PAGES);
  2460. val->bufferram = nr_blockdev_pages();
  2461. val->totalhigh = totalhigh_pages;
  2462. val->freehigh = nr_free_highpages();
  2463. val->mem_unit = PAGE_SIZE;
  2464. }
  2465. EXPORT_SYMBOL(si_meminfo);
  2466. #ifdef CONFIG_NUMA
  2467. void si_meminfo_node(struct sysinfo *val, int nid)
  2468. {
  2469. pg_data_t *pgdat = NODE_DATA(nid);
  2470. val->totalram = pgdat->node_present_pages;
  2471. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2472. #ifdef CONFIG_HIGHMEM
  2473. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  2474. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2475. NR_FREE_PAGES);
  2476. #else
  2477. val->totalhigh = 0;
  2478. val->freehigh = 0;
  2479. #endif
  2480. val->mem_unit = PAGE_SIZE;
  2481. }
  2482. #endif
  2483. /*
  2484. * Determine whether the node should be displayed or not, depending on whether
  2485. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2486. */
  2487. bool skip_free_areas_node(unsigned int flags, int nid)
  2488. {
  2489. bool ret = false;
  2490. unsigned int cpuset_mems_cookie;
  2491. if (!(flags & SHOW_MEM_FILTER_NODES))
  2492. goto out;
  2493. do {
  2494. cpuset_mems_cookie = get_mems_allowed();
  2495. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2496. } while (!put_mems_allowed(cpuset_mems_cookie));
  2497. out:
  2498. return ret;
  2499. }
  2500. #define K(x) ((x) << (PAGE_SHIFT-10))
  2501. static void show_migration_types(unsigned char type)
  2502. {
  2503. static const char types[MIGRATE_TYPES] = {
  2504. [MIGRATE_UNMOVABLE] = 'U',
  2505. [MIGRATE_RECLAIMABLE] = 'E',
  2506. [MIGRATE_MOVABLE] = 'M',
  2507. [MIGRATE_RESERVE] = 'R',
  2508. #ifdef CONFIG_CMA
  2509. [MIGRATE_CMA] = 'C',
  2510. #endif
  2511. [MIGRATE_ISOLATE] = 'I',
  2512. };
  2513. char tmp[MIGRATE_TYPES + 1];
  2514. char *p = tmp;
  2515. int i;
  2516. for (i = 0; i < MIGRATE_TYPES; i++) {
  2517. if (type & (1 << i))
  2518. *p++ = types[i];
  2519. }
  2520. *p = '\0';
  2521. printk("(%s) ", tmp);
  2522. }
  2523. /*
  2524. * Show free area list (used inside shift_scroll-lock stuff)
  2525. * We also calculate the percentage fragmentation. We do this by counting the
  2526. * memory on each free list with the exception of the first item on the list.
  2527. * Suppresses nodes that are not allowed by current's cpuset if
  2528. * SHOW_MEM_FILTER_NODES is passed.
  2529. */
  2530. void show_free_areas(unsigned int filter)
  2531. {
  2532. int cpu;
  2533. struct zone *zone;
  2534. for_each_populated_zone(zone) {
  2535. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2536. continue;
  2537. show_node(zone);
  2538. printk("%s per-cpu:\n", zone->name);
  2539. for_each_online_cpu(cpu) {
  2540. struct per_cpu_pageset *pageset;
  2541. pageset = per_cpu_ptr(zone->pageset, cpu);
  2542. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2543. cpu, pageset->pcp.high,
  2544. pageset->pcp.batch, pageset->pcp.count);
  2545. }
  2546. }
  2547. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2548. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2549. " unevictable:%lu"
  2550. " dirty:%lu writeback:%lu unstable:%lu\n"
  2551. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2552. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  2553. " free_cma:%lu\n",
  2554. global_page_state(NR_ACTIVE_ANON),
  2555. global_page_state(NR_INACTIVE_ANON),
  2556. global_page_state(NR_ISOLATED_ANON),
  2557. global_page_state(NR_ACTIVE_FILE),
  2558. global_page_state(NR_INACTIVE_FILE),
  2559. global_page_state(NR_ISOLATED_FILE),
  2560. global_page_state(NR_UNEVICTABLE),
  2561. global_page_state(NR_FILE_DIRTY),
  2562. global_page_state(NR_WRITEBACK),
  2563. global_page_state(NR_UNSTABLE_NFS),
  2564. global_page_state(NR_FREE_PAGES),
  2565. global_page_state(NR_SLAB_RECLAIMABLE),
  2566. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2567. global_page_state(NR_FILE_MAPPED),
  2568. global_page_state(NR_SHMEM),
  2569. global_page_state(NR_PAGETABLE),
  2570. global_page_state(NR_BOUNCE),
  2571. global_page_state(NR_FREE_CMA_PAGES));
  2572. for_each_populated_zone(zone) {
  2573. int i;
  2574. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2575. continue;
  2576. show_node(zone);
  2577. printk("%s"
  2578. " free:%lukB"
  2579. " min:%lukB"
  2580. " low:%lukB"
  2581. " high:%lukB"
  2582. " active_anon:%lukB"
  2583. " inactive_anon:%lukB"
  2584. " active_file:%lukB"
  2585. " inactive_file:%lukB"
  2586. " unevictable:%lukB"
  2587. " isolated(anon):%lukB"
  2588. " isolated(file):%lukB"
  2589. " present:%lukB"
  2590. " managed:%lukB"
  2591. " mlocked:%lukB"
  2592. " dirty:%lukB"
  2593. " writeback:%lukB"
  2594. " mapped:%lukB"
  2595. " shmem:%lukB"
  2596. " slab_reclaimable:%lukB"
  2597. " slab_unreclaimable:%lukB"
  2598. " kernel_stack:%lukB"
  2599. " pagetables:%lukB"
  2600. " unstable:%lukB"
  2601. " bounce:%lukB"
  2602. " free_cma:%lukB"
  2603. " writeback_tmp:%lukB"
  2604. " pages_scanned:%lu"
  2605. " all_unreclaimable? %s"
  2606. "\n",
  2607. zone->name,
  2608. K(zone_page_state(zone, NR_FREE_PAGES)),
  2609. K(min_wmark_pages(zone)),
  2610. K(low_wmark_pages(zone)),
  2611. K(high_wmark_pages(zone)),
  2612. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2613. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2614. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2615. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2616. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2617. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2618. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2619. K(zone->present_pages),
  2620. K(zone->managed_pages),
  2621. K(zone_page_state(zone, NR_MLOCK)),
  2622. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2623. K(zone_page_state(zone, NR_WRITEBACK)),
  2624. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2625. K(zone_page_state(zone, NR_SHMEM)),
  2626. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2627. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2628. zone_page_state(zone, NR_KERNEL_STACK) *
  2629. THREAD_SIZE / 1024,
  2630. K(zone_page_state(zone, NR_PAGETABLE)),
  2631. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2632. K(zone_page_state(zone, NR_BOUNCE)),
  2633. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  2634. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2635. zone->pages_scanned,
  2636. (zone->all_unreclaimable ? "yes" : "no")
  2637. );
  2638. printk("lowmem_reserve[]:");
  2639. for (i = 0; i < MAX_NR_ZONES; i++)
  2640. printk(" %lu", zone->lowmem_reserve[i]);
  2641. printk("\n");
  2642. }
  2643. for_each_populated_zone(zone) {
  2644. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2645. unsigned char types[MAX_ORDER];
  2646. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2647. continue;
  2648. show_node(zone);
  2649. printk("%s: ", zone->name);
  2650. spin_lock_irqsave(&zone->lock, flags);
  2651. for (order = 0; order < MAX_ORDER; order++) {
  2652. struct free_area *area = &zone->free_area[order];
  2653. int type;
  2654. nr[order] = area->nr_free;
  2655. total += nr[order] << order;
  2656. types[order] = 0;
  2657. for (type = 0; type < MIGRATE_TYPES; type++) {
  2658. if (!list_empty(&area->free_list[type]))
  2659. types[order] |= 1 << type;
  2660. }
  2661. }
  2662. spin_unlock_irqrestore(&zone->lock, flags);
  2663. for (order = 0; order < MAX_ORDER; order++) {
  2664. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2665. if (nr[order])
  2666. show_migration_types(types[order]);
  2667. }
  2668. printk("= %lukB\n", K(total));
  2669. }
  2670. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2671. show_swap_cache_info();
  2672. }
  2673. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2674. {
  2675. zoneref->zone = zone;
  2676. zoneref->zone_idx = zone_idx(zone);
  2677. }
  2678. /*
  2679. * Builds allocation fallback zone lists.
  2680. *
  2681. * Add all populated zones of a node to the zonelist.
  2682. */
  2683. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2684. int nr_zones, enum zone_type zone_type)
  2685. {
  2686. struct zone *zone;
  2687. BUG_ON(zone_type >= MAX_NR_ZONES);
  2688. zone_type++;
  2689. do {
  2690. zone_type--;
  2691. zone = pgdat->node_zones + zone_type;
  2692. if (populated_zone(zone)) {
  2693. zoneref_set_zone(zone,
  2694. &zonelist->_zonerefs[nr_zones++]);
  2695. check_highest_zone(zone_type);
  2696. }
  2697. } while (zone_type);
  2698. return nr_zones;
  2699. }
  2700. /*
  2701. * zonelist_order:
  2702. * 0 = automatic detection of better ordering.
  2703. * 1 = order by ([node] distance, -zonetype)
  2704. * 2 = order by (-zonetype, [node] distance)
  2705. *
  2706. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2707. * the same zonelist. So only NUMA can configure this param.
  2708. */
  2709. #define ZONELIST_ORDER_DEFAULT 0
  2710. #define ZONELIST_ORDER_NODE 1
  2711. #define ZONELIST_ORDER_ZONE 2
  2712. /* zonelist order in the kernel.
  2713. * set_zonelist_order() will set this to NODE or ZONE.
  2714. */
  2715. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2716. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2717. #ifdef CONFIG_NUMA
  2718. /* The value user specified ....changed by config */
  2719. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2720. /* string for sysctl */
  2721. #define NUMA_ZONELIST_ORDER_LEN 16
  2722. char numa_zonelist_order[16] = "default";
  2723. /*
  2724. * interface for configure zonelist ordering.
  2725. * command line option "numa_zonelist_order"
  2726. * = "[dD]efault - default, automatic configuration.
  2727. * = "[nN]ode - order by node locality, then by zone within node
  2728. * = "[zZ]one - order by zone, then by locality within zone
  2729. */
  2730. static int __parse_numa_zonelist_order(char *s)
  2731. {
  2732. if (*s == 'd' || *s == 'D') {
  2733. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2734. } else if (*s == 'n' || *s == 'N') {
  2735. user_zonelist_order = ZONELIST_ORDER_NODE;
  2736. } else if (*s == 'z' || *s == 'Z') {
  2737. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2738. } else {
  2739. printk(KERN_WARNING
  2740. "Ignoring invalid numa_zonelist_order value: "
  2741. "%s\n", s);
  2742. return -EINVAL;
  2743. }
  2744. return 0;
  2745. }
  2746. static __init int setup_numa_zonelist_order(char *s)
  2747. {
  2748. int ret;
  2749. if (!s)
  2750. return 0;
  2751. ret = __parse_numa_zonelist_order(s);
  2752. if (ret == 0)
  2753. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2754. return ret;
  2755. }
  2756. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2757. /*
  2758. * sysctl handler for numa_zonelist_order
  2759. */
  2760. int numa_zonelist_order_handler(ctl_table *table, int write,
  2761. void __user *buffer, size_t *length,
  2762. loff_t *ppos)
  2763. {
  2764. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2765. int ret;
  2766. static DEFINE_MUTEX(zl_order_mutex);
  2767. mutex_lock(&zl_order_mutex);
  2768. if (write)
  2769. strcpy(saved_string, (char*)table->data);
  2770. ret = proc_dostring(table, write, buffer, length, ppos);
  2771. if (ret)
  2772. goto out;
  2773. if (write) {
  2774. int oldval = user_zonelist_order;
  2775. if (__parse_numa_zonelist_order((char*)table->data)) {
  2776. /*
  2777. * bogus value. restore saved string
  2778. */
  2779. strncpy((char*)table->data, saved_string,
  2780. NUMA_ZONELIST_ORDER_LEN);
  2781. user_zonelist_order = oldval;
  2782. } else if (oldval != user_zonelist_order) {
  2783. mutex_lock(&zonelists_mutex);
  2784. build_all_zonelists(NULL, NULL);
  2785. mutex_unlock(&zonelists_mutex);
  2786. }
  2787. }
  2788. out:
  2789. mutex_unlock(&zl_order_mutex);
  2790. return ret;
  2791. }
  2792. #define MAX_NODE_LOAD (nr_online_nodes)
  2793. static int node_load[MAX_NUMNODES];
  2794. /**
  2795. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2796. * @node: node whose fallback list we're appending
  2797. * @used_node_mask: nodemask_t of already used nodes
  2798. *
  2799. * We use a number of factors to determine which is the next node that should
  2800. * appear on a given node's fallback list. The node should not have appeared
  2801. * already in @node's fallback list, and it should be the next closest node
  2802. * according to the distance array (which contains arbitrary distance values
  2803. * from each node to each node in the system), and should also prefer nodes
  2804. * with no CPUs, since presumably they'll have very little allocation pressure
  2805. * on them otherwise.
  2806. * It returns -1 if no node is found.
  2807. */
  2808. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2809. {
  2810. int n, val;
  2811. int min_val = INT_MAX;
  2812. int best_node = -1;
  2813. const struct cpumask *tmp = cpumask_of_node(0);
  2814. /* Use the local node if we haven't already */
  2815. if (!node_isset(node, *used_node_mask)) {
  2816. node_set(node, *used_node_mask);
  2817. return node;
  2818. }
  2819. for_each_node_state(n, N_MEMORY) {
  2820. /* Don't want a node to appear more than once */
  2821. if (node_isset(n, *used_node_mask))
  2822. continue;
  2823. /* Use the distance array to find the distance */
  2824. val = node_distance(node, n);
  2825. /* Penalize nodes under us ("prefer the next node") */
  2826. val += (n < node);
  2827. /* Give preference to headless and unused nodes */
  2828. tmp = cpumask_of_node(n);
  2829. if (!cpumask_empty(tmp))
  2830. val += PENALTY_FOR_NODE_WITH_CPUS;
  2831. /* Slight preference for less loaded node */
  2832. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2833. val += node_load[n];
  2834. if (val < min_val) {
  2835. min_val = val;
  2836. best_node = n;
  2837. }
  2838. }
  2839. if (best_node >= 0)
  2840. node_set(best_node, *used_node_mask);
  2841. return best_node;
  2842. }
  2843. /*
  2844. * Build zonelists ordered by node and zones within node.
  2845. * This results in maximum locality--normal zone overflows into local
  2846. * DMA zone, if any--but risks exhausting DMA zone.
  2847. */
  2848. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2849. {
  2850. int j;
  2851. struct zonelist *zonelist;
  2852. zonelist = &pgdat->node_zonelists[0];
  2853. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2854. ;
  2855. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2856. MAX_NR_ZONES - 1);
  2857. zonelist->_zonerefs[j].zone = NULL;
  2858. zonelist->_zonerefs[j].zone_idx = 0;
  2859. }
  2860. /*
  2861. * Build gfp_thisnode zonelists
  2862. */
  2863. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2864. {
  2865. int j;
  2866. struct zonelist *zonelist;
  2867. zonelist = &pgdat->node_zonelists[1];
  2868. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2869. zonelist->_zonerefs[j].zone = NULL;
  2870. zonelist->_zonerefs[j].zone_idx = 0;
  2871. }
  2872. /*
  2873. * Build zonelists ordered by zone and nodes within zones.
  2874. * This results in conserving DMA zone[s] until all Normal memory is
  2875. * exhausted, but results in overflowing to remote node while memory
  2876. * may still exist in local DMA zone.
  2877. */
  2878. static int node_order[MAX_NUMNODES];
  2879. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2880. {
  2881. int pos, j, node;
  2882. int zone_type; /* needs to be signed */
  2883. struct zone *z;
  2884. struct zonelist *zonelist;
  2885. zonelist = &pgdat->node_zonelists[0];
  2886. pos = 0;
  2887. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2888. for (j = 0; j < nr_nodes; j++) {
  2889. node = node_order[j];
  2890. z = &NODE_DATA(node)->node_zones[zone_type];
  2891. if (populated_zone(z)) {
  2892. zoneref_set_zone(z,
  2893. &zonelist->_zonerefs[pos++]);
  2894. check_highest_zone(zone_type);
  2895. }
  2896. }
  2897. }
  2898. zonelist->_zonerefs[pos].zone = NULL;
  2899. zonelist->_zonerefs[pos].zone_idx = 0;
  2900. }
  2901. static int default_zonelist_order(void)
  2902. {
  2903. int nid, zone_type;
  2904. unsigned long low_kmem_size,total_size;
  2905. struct zone *z;
  2906. int average_size;
  2907. /*
  2908. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  2909. * If they are really small and used heavily, the system can fall
  2910. * into OOM very easily.
  2911. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  2912. */
  2913. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2914. low_kmem_size = 0;
  2915. total_size = 0;
  2916. for_each_online_node(nid) {
  2917. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2918. z = &NODE_DATA(nid)->node_zones[zone_type];
  2919. if (populated_zone(z)) {
  2920. if (zone_type < ZONE_NORMAL)
  2921. low_kmem_size += z->present_pages;
  2922. total_size += z->present_pages;
  2923. } else if (zone_type == ZONE_NORMAL) {
  2924. /*
  2925. * If any node has only lowmem, then node order
  2926. * is preferred to allow kernel allocations
  2927. * locally; otherwise, they can easily infringe
  2928. * on other nodes when there is an abundance of
  2929. * lowmem available to allocate from.
  2930. */
  2931. return ZONELIST_ORDER_NODE;
  2932. }
  2933. }
  2934. }
  2935. if (!low_kmem_size || /* there are no DMA area. */
  2936. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2937. return ZONELIST_ORDER_NODE;
  2938. /*
  2939. * look into each node's config.
  2940. * If there is a node whose DMA/DMA32 memory is very big area on
  2941. * local memory, NODE_ORDER may be suitable.
  2942. */
  2943. average_size = total_size /
  2944. (nodes_weight(node_states[N_MEMORY]) + 1);
  2945. for_each_online_node(nid) {
  2946. low_kmem_size = 0;
  2947. total_size = 0;
  2948. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2949. z = &NODE_DATA(nid)->node_zones[zone_type];
  2950. if (populated_zone(z)) {
  2951. if (zone_type < ZONE_NORMAL)
  2952. low_kmem_size += z->present_pages;
  2953. total_size += z->present_pages;
  2954. }
  2955. }
  2956. if (low_kmem_size &&
  2957. total_size > average_size && /* ignore small node */
  2958. low_kmem_size > total_size * 70/100)
  2959. return ZONELIST_ORDER_NODE;
  2960. }
  2961. return ZONELIST_ORDER_ZONE;
  2962. }
  2963. static void set_zonelist_order(void)
  2964. {
  2965. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2966. current_zonelist_order = default_zonelist_order();
  2967. else
  2968. current_zonelist_order = user_zonelist_order;
  2969. }
  2970. static void build_zonelists(pg_data_t *pgdat)
  2971. {
  2972. int j, node, load;
  2973. enum zone_type i;
  2974. nodemask_t used_mask;
  2975. int local_node, prev_node;
  2976. struct zonelist *zonelist;
  2977. int order = current_zonelist_order;
  2978. /* initialize zonelists */
  2979. for (i = 0; i < MAX_ZONELISTS; i++) {
  2980. zonelist = pgdat->node_zonelists + i;
  2981. zonelist->_zonerefs[0].zone = NULL;
  2982. zonelist->_zonerefs[0].zone_idx = 0;
  2983. }
  2984. /* NUMA-aware ordering of nodes */
  2985. local_node = pgdat->node_id;
  2986. load = nr_online_nodes;
  2987. prev_node = local_node;
  2988. nodes_clear(used_mask);
  2989. memset(node_order, 0, sizeof(node_order));
  2990. j = 0;
  2991. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2992. /*
  2993. * We don't want to pressure a particular node.
  2994. * So adding penalty to the first node in same
  2995. * distance group to make it round-robin.
  2996. */
  2997. if (node_distance(local_node, node) !=
  2998. node_distance(local_node, prev_node))
  2999. node_load[node] = load;
  3000. prev_node = node;
  3001. load--;
  3002. if (order == ZONELIST_ORDER_NODE)
  3003. build_zonelists_in_node_order(pgdat, node);
  3004. else
  3005. node_order[j++] = node; /* remember order */
  3006. }
  3007. if (order == ZONELIST_ORDER_ZONE) {
  3008. /* calculate node order -- i.e., DMA last! */
  3009. build_zonelists_in_zone_order(pgdat, j);
  3010. }
  3011. build_thisnode_zonelists(pgdat);
  3012. }
  3013. /* Construct the zonelist performance cache - see further mmzone.h */
  3014. static void build_zonelist_cache(pg_data_t *pgdat)
  3015. {
  3016. struct zonelist *zonelist;
  3017. struct zonelist_cache *zlc;
  3018. struct zoneref *z;
  3019. zonelist = &pgdat->node_zonelists[0];
  3020. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  3021. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  3022. for (z = zonelist->_zonerefs; z->zone; z++)
  3023. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  3024. }
  3025. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3026. /*
  3027. * Return node id of node used for "local" allocations.
  3028. * I.e., first node id of first zone in arg node's generic zonelist.
  3029. * Used for initializing percpu 'numa_mem', which is used primarily
  3030. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  3031. */
  3032. int local_memory_node(int node)
  3033. {
  3034. struct zone *zone;
  3035. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  3036. gfp_zone(GFP_KERNEL),
  3037. NULL,
  3038. &zone);
  3039. return zone->node;
  3040. }
  3041. #endif
  3042. #else /* CONFIG_NUMA */
  3043. static void set_zonelist_order(void)
  3044. {
  3045. current_zonelist_order = ZONELIST_ORDER_ZONE;
  3046. }
  3047. static void build_zonelists(pg_data_t *pgdat)
  3048. {
  3049. int node, local_node;
  3050. enum zone_type j;
  3051. struct zonelist *zonelist;
  3052. local_node = pgdat->node_id;
  3053. zonelist = &pgdat->node_zonelists[0];
  3054. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  3055. /*
  3056. * Now we build the zonelist so that it contains the zones
  3057. * of all the other nodes.
  3058. * We don't want to pressure a particular node, so when
  3059. * building the zones for node N, we make sure that the
  3060. * zones coming right after the local ones are those from
  3061. * node N+1 (modulo N)
  3062. */
  3063. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3064. if (!node_online(node))
  3065. continue;
  3066. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  3067. MAX_NR_ZONES - 1);
  3068. }
  3069. for (node = 0; node < local_node; node++) {
  3070. if (!node_online(node))
  3071. continue;
  3072. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  3073. MAX_NR_ZONES - 1);
  3074. }
  3075. zonelist->_zonerefs[j].zone = NULL;
  3076. zonelist->_zonerefs[j].zone_idx = 0;
  3077. }
  3078. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  3079. static void build_zonelist_cache(pg_data_t *pgdat)
  3080. {
  3081. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  3082. }
  3083. #endif /* CONFIG_NUMA */
  3084. /*
  3085. * Boot pageset table. One per cpu which is going to be used for all
  3086. * zones and all nodes. The parameters will be set in such a way
  3087. * that an item put on a list will immediately be handed over to
  3088. * the buddy list. This is safe since pageset manipulation is done
  3089. * with interrupts disabled.
  3090. *
  3091. * The boot_pagesets must be kept even after bootup is complete for
  3092. * unused processors and/or zones. They do play a role for bootstrapping
  3093. * hotplugged processors.
  3094. *
  3095. * zoneinfo_show() and maybe other functions do
  3096. * not check if the processor is online before following the pageset pointer.
  3097. * Other parts of the kernel may not check if the zone is available.
  3098. */
  3099. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3100. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3101. static void setup_zone_pageset(struct zone *zone);
  3102. /*
  3103. * Global mutex to protect against size modification of zonelists
  3104. * as well as to serialize pageset setup for the new populated zone.
  3105. */
  3106. DEFINE_MUTEX(zonelists_mutex);
  3107. /* return values int ....just for stop_machine() */
  3108. static int __build_all_zonelists(void *data)
  3109. {
  3110. int nid;
  3111. int cpu;
  3112. pg_data_t *self = data;
  3113. #ifdef CONFIG_NUMA
  3114. memset(node_load, 0, sizeof(node_load));
  3115. #endif
  3116. if (self && !node_online(self->node_id)) {
  3117. build_zonelists(self);
  3118. build_zonelist_cache(self);
  3119. }
  3120. for_each_online_node(nid) {
  3121. pg_data_t *pgdat = NODE_DATA(nid);
  3122. build_zonelists(pgdat);
  3123. build_zonelist_cache(pgdat);
  3124. }
  3125. /*
  3126. * Initialize the boot_pagesets that are going to be used
  3127. * for bootstrapping processors. The real pagesets for
  3128. * each zone will be allocated later when the per cpu
  3129. * allocator is available.
  3130. *
  3131. * boot_pagesets are used also for bootstrapping offline
  3132. * cpus if the system is already booted because the pagesets
  3133. * are needed to initialize allocators on a specific cpu too.
  3134. * F.e. the percpu allocator needs the page allocator which
  3135. * needs the percpu allocator in order to allocate its pagesets
  3136. * (a chicken-egg dilemma).
  3137. */
  3138. for_each_possible_cpu(cpu) {
  3139. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3140. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3141. /*
  3142. * We now know the "local memory node" for each node--
  3143. * i.e., the node of the first zone in the generic zonelist.
  3144. * Set up numa_mem percpu variable for on-line cpus. During
  3145. * boot, only the boot cpu should be on-line; we'll init the
  3146. * secondary cpus' numa_mem as they come on-line. During
  3147. * node/memory hotplug, we'll fixup all on-line cpus.
  3148. */
  3149. if (cpu_online(cpu))
  3150. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3151. #endif
  3152. }
  3153. return 0;
  3154. }
  3155. /*
  3156. * Called with zonelists_mutex held always
  3157. * unless system_state == SYSTEM_BOOTING.
  3158. */
  3159. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3160. {
  3161. set_zonelist_order();
  3162. if (system_state == SYSTEM_BOOTING) {
  3163. __build_all_zonelists(NULL);
  3164. mminit_verify_zonelist();
  3165. cpuset_init_current_mems_allowed();
  3166. } else {
  3167. /* we have to stop all cpus to guarantee there is no user
  3168. of zonelist */
  3169. #ifdef CONFIG_MEMORY_HOTPLUG
  3170. if (zone)
  3171. setup_zone_pageset(zone);
  3172. #endif
  3173. stop_machine(__build_all_zonelists, pgdat, NULL);
  3174. /* cpuset refresh routine should be here */
  3175. }
  3176. vm_total_pages = nr_free_pagecache_pages();
  3177. /*
  3178. * Disable grouping by mobility if the number of pages in the
  3179. * system is too low to allow the mechanism to work. It would be
  3180. * more accurate, but expensive to check per-zone. This check is
  3181. * made on memory-hotadd so a system can start with mobility
  3182. * disabled and enable it later
  3183. */
  3184. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3185. page_group_by_mobility_disabled = 1;
  3186. else
  3187. page_group_by_mobility_disabled = 0;
  3188. printk("Built %i zonelists in %s order, mobility grouping %s. "
  3189. "Total pages: %ld\n",
  3190. nr_online_nodes,
  3191. zonelist_order_name[current_zonelist_order],
  3192. page_group_by_mobility_disabled ? "off" : "on",
  3193. vm_total_pages);
  3194. #ifdef CONFIG_NUMA
  3195. printk("Policy zone: %s\n", zone_names[policy_zone]);
  3196. #endif
  3197. }
  3198. /*
  3199. * Helper functions to size the waitqueue hash table.
  3200. * Essentially these want to choose hash table sizes sufficiently
  3201. * large so that collisions trying to wait on pages are rare.
  3202. * But in fact, the number of active page waitqueues on typical
  3203. * systems is ridiculously low, less than 200. So this is even
  3204. * conservative, even though it seems large.
  3205. *
  3206. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3207. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3208. */
  3209. #define PAGES_PER_WAITQUEUE 256
  3210. #ifndef CONFIG_MEMORY_HOTPLUG
  3211. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3212. {
  3213. unsigned long size = 1;
  3214. pages /= PAGES_PER_WAITQUEUE;
  3215. while (size < pages)
  3216. size <<= 1;
  3217. /*
  3218. * Once we have dozens or even hundreds of threads sleeping
  3219. * on IO we've got bigger problems than wait queue collision.
  3220. * Limit the size of the wait table to a reasonable size.
  3221. */
  3222. size = min(size, 4096UL);
  3223. return max(size, 4UL);
  3224. }
  3225. #else
  3226. /*
  3227. * A zone's size might be changed by hot-add, so it is not possible to determine
  3228. * a suitable size for its wait_table. So we use the maximum size now.
  3229. *
  3230. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3231. *
  3232. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3233. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3234. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3235. *
  3236. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3237. * or more by the traditional way. (See above). It equals:
  3238. *
  3239. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3240. * ia64(16K page size) : = ( 8G + 4M)byte.
  3241. * powerpc (64K page size) : = (32G +16M)byte.
  3242. */
  3243. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3244. {
  3245. return 4096UL;
  3246. }
  3247. #endif
  3248. /*
  3249. * This is an integer logarithm so that shifts can be used later
  3250. * to extract the more random high bits from the multiplicative
  3251. * hash function before the remainder is taken.
  3252. */
  3253. static inline unsigned long wait_table_bits(unsigned long size)
  3254. {
  3255. return ffz(~size);
  3256. }
  3257. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  3258. /*
  3259. * Check if a pageblock contains reserved pages
  3260. */
  3261. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  3262. {
  3263. unsigned long pfn;
  3264. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3265. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  3266. return 1;
  3267. }
  3268. return 0;
  3269. }
  3270. /*
  3271. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  3272. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  3273. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  3274. * higher will lead to a bigger reserve which will get freed as contiguous
  3275. * blocks as reclaim kicks in
  3276. */
  3277. static void setup_zone_migrate_reserve(struct zone *zone)
  3278. {
  3279. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  3280. struct page *page;
  3281. unsigned long block_migratetype;
  3282. int reserve;
  3283. /*
  3284. * Get the start pfn, end pfn and the number of blocks to reserve
  3285. * We have to be careful to be aligned to pageblock_nr_pages to
  3286. * make sure that we always check pfn_valid for the first page in
  3287. * the block.
  3288. */
  3289. start_pfn = zone->zone_start_pfn;
  3290. end_pfn = start_pfn + zone->spanned_pages;
  3291. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  3292. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  3293. pageblock_order;
  3294. /*
  3295. * Reserve blocks are generally in place to help high-order atomic
  3296. * allocations that are short-lived. A min_free_kbytes value that
  3297. * would result in more than 2 reserve blocks for atomic allocations
  3298. * is assumed to be in place to help anti-fragmentation for the
  3299. * future allocation of hugepages at runtime.
  3300. */
  3301. reserve = min(2, reserve);
  3302. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3303. if (!pfn_valid(pfn))
  3304. continue;
  3305. page = pfn_to_page(pfn);
  3306. /* Watch out for overlapping nodes */
  3307. if (page_to_nid(page) != zone_to_nid(zone))
  3308. continue;
  3309. block_migratetype = get_pageblock_migratetype(page);
  3310. /* Only test what is necessary when the reserves are not met */
  3311. if (reserve > 0) {
  3312. /*
  3313. * Blocks with reserved pages will never free, skip
  3314. * them.
  3315. */
  3316. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3317. if (pageblock_is_reserved(pfn, block_end_pfn))
  3318. continue;
  3319. /* If this block is reserved, account for it */
  3320. if (block_migratetype == MIGRATE_RESERVE) {
  3321. reserve--;
  3322. continue;
  3323. }
  3324. /* Suitable for reserving if this block is movable */
  3325. if (block_migratetype == MIGRATE_MOVABLE) {
  3326. set_pageblock_migratetype(page,
  3327. MIGRATE_RESERVE);
  3328. move_freepages_block(zone, page,
  3329. MIGRATE_RESERVE);
  3330. reserve--;
  3331. continue;
  3332. }
  3333. }
  3334. /*
  3335. * If the reserve is met and this is a previous reserved block,
  3336. * take it back
  3337. */
  3338. if (block_migratetype == MIGRATE_RESERVE) {
  3339. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3340. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3341. }
  3342. }
  3343. }
  3344. /*
  3345. * Initially all pages are reserved - free ones are freed
  3346. * up by free_all_bootmem() once the early boot process is
  3347. * done. Non-atomic initialization, single-pass.
  3348. */
  3349. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3350. unsigned long start_pfn, enum memmap_context context)
  3351. {
  3352. struct page *page;
  3353. unsigned long end_pfn = start_pfn + size;
  3354. unsigned long pfn;
  3355. struct zone *z;
  3356. if (highest_memmap_pfn < end_pfn - 1)
  3357. highest_memmap_pfn = end_pfn - 1;
  3358. z = &NODE_DATA(nid)->node_zones[zone];
  3359. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3360. /*
  3361. * There can be holes in boot-time mem_map[]s
  3362. * handed to this function. They do not
  3363. * exist on hotplugged memory.
  3364. */
  3365. if (context == MEMMAP_EARLY) {
  3366. if (!early_pfn_valid(pfn))
  3367. continue;
  3368. if (!early_pfn_in_nid(pfn, nid))
  3369. continue;
  3370. }
  3371. page = pfn_to_page(pfn);
  3372. set_page_links(page, zone, nid, pfn);
  3373. mminit_verify_page_links(page, zone, nid, pfn);
  3374. init_page_count(page);
  3375. reset_page_mapcount(page);
  3376. reset_page_last_nid(page);
  3377. SetPageReserved(page);
  3378. /*
  3379. * Mark the block movable so that blocks are reserved for
  3380. * movable at startup. This will force kernel allocations
  3381. * to reserve their blocks rather than leaking throughout
  3382. * the address space during boot when many long-lived
  3383. * kernel allocations are made. Later some blocks near
  3384. * the start are marked MIGRATE_RESERVE by
  3385. * setup_zone_migrate_reserve()
  3386. *
  3387. * bitmap is created for zone's valid pfn range. but memmap
  3388. * can be created for invalid pages (for alignment)
  3389. * check here not to call set_pageblock_migratetype() against
  3390. * pfn out of zone.
  3391. */
  3392. if ((z->zone_start_pfn <= pfn)
  3393. && (pfn < z->zone_start_pfn + z->spanned_pages)
  3394. && !(pfn & (pageblock_nr_pages - 1)))
  3395. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3396. INIT_LIST_HEAD(&page->lru);
  3397. #ifdef WANT_PAGE_VIRTUAL
  3398. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3399. if (!is_highmem_idx(zone))
  3400. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3401. #endif
  3402. }
  3403. }
  3404. static void __meminit zone_init_free_lists(struct zone *zone)
  3405. {
  3406. int order, t;
  3407. for_each_migratetype_order(order, t) {
  3408. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3409. zone->free_area[order].nr_free = 0;
  3410. }
  3411. }
  3412. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3413. #define memmap_init(size, nid, zone, start_pfn) \
  3414. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3415. #endif
  3416. static int __meminit zone_batchsize(struct zone *zone)
  3417. {
  3418. #ifdef CONFIG_MMU
  3419. int batch;
  3420. /*
  3421. * The per-cpu-pages pools are set to around 1000th of the
  3422. * size of the zone. But no more than 1/2 of a meg.
  3423. *
  3424. * OK, so we don't know how big the cache is. So guess.
  3425. */
  3426. batch = zone->present_pages / 1024;
  3427. if (batch * PAGE_SIZE > 512 * 1024)
  3428. batch = (512 * 1024) / PAGE_SIZE;
  3429. batch /= 4; /* We effectively *= 4 below */
  3430. if (batch < 1)
  3431. batch = 1;
  3432. /*
  3433. * Clamp the batch to a 2^n - 1 value. Having a power
  3434. * of 2 value was found to be more likely to have
  3435. * suboptimal cache aliasing properties in some cases.
  3436. *
  3437. * For example if 2 tasks are alternately allocating
  3438. * batches of pages, one task can end up with a lot
  3439. * of pages of one half of the possible page colors
  3440. * and the other with pages of the other colors.
  3441. */
  3442. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3443. return batch;
  3444. #else
  3445. /* The deferral and batching of frees should be suppressed under NOMMU
  3446. * conditions.
  3447. *
  3448. * The problem is that NOMMU needs to be able to allocate large chunks
  3449. * of contiguous memory as there's no hardware page translation to
  3450. * assemble apparent contiguous memory from discontiguous pages.
  3451. *
  3452. * Queueing large contiguous runs of pages for batching, however,
  3453. * causes the pages to actually be freed in smaller chunks. As there
  3454. * can be a significant delay between the individual batches being
  3455. * recycled, this leads to the once large chunks of space being
  3456. * fragmented and becoming unavailable for high-order allocations.
  3457. */
  3458. return 0;
  3459. #endif
  3460. }
  3461. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3462. {
  3463. struct per_cpu_pages *pcp;
  3464. int migratetype;
  3465. memset(p, 0, sizeof(*p));
  3466. pcp = &p->pcp;
  3467. pcp->count = 0;
  3468. pcp->high = 6 * batch;
  3469. pcp->batch = max(1UL, 1 * batch);
  3470. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3471. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3472. }
  3473. /*
  3474. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  3475. * to the value high for the pageset p.
  3476. */
  3477. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  3478. unsigned long high)
  3479. {
  3480. struct per_cpu_pages *pcp;
  3481. pcp = &p->pcp;
  3482. pcp->high = high;
  3483. pcp->batch = max(1UL, high/4);
  3484. if ((high/4) > (PAGE_SHIFT * 8))
  3485. pcp->batch = PAGE_SHIFT * 8;
  3486. }
  3487. static void __meminit setup_zone_pageset(struct zone *zone)
  3488. {
  3489. int cpu;
  3490. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3491. for_each_possible_cpu(cpu) {
  3492. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3493. setup_pageset(pcp, zone_batchsize(zone));
  3494. if (percpu_pagelist_fraction)
  3495. setup_pagelist_highmark(pcp,
  3496. (zone->present_pages /
  3497. percpu_pagelist_fraction));
  3498. }
  3499. }
  3500. /*
  3501. * Allocate per cpu pagesets and initialize them.
  3502. * Before this call only boot pagesets were available.
  3503. */
  3504. void __init setup_per_cpu_pageset(void)
  3505. {
  3506. struct zone *zone;
  3507. for_each_populated_zone(zone)
  3508. setup_zone_pageset(zone);
  3509. }
  3510. static noinline __init_refok
  3511. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3512. {
  3513. int i;
  3514. struct pglist_data *pgdat = zone->zone_pgdat;
  3515. size_t alloc_size;
  3516. /*
  3517. * The per-page waitqueue mechanism uses hashed waitqueues
  3518. * per zone.
  3519. */
  3520. zone->wait_table_hash_nr_entries =
  3521. wait_table_hash_nr_entries(zone_size_pages);
  3522. zone->wait_table_bits =
  3523. wait_table_bits(zone->wait_table_hash_nr_entries);
  3524. alloc_size = zone->wait_table_hash_nr_entries
  3525. * sizeof(wait_queue_head_t);
  3526. if (!slab_is_available()) {
  3527. zone->wait_table = (wait_queue_head_t *)
  3528. alloc_bootmem_node_nopanic(pgdat, alloc_size);
  3529. } else {
  3530. /*
  3531. * This case means that a zone whose size was 0 gets new memory
  3532. * via memory hot-add.
  3533. * But it may be the case that a new node was hot-added. In
  3534. * this case vmalloc() will not be able to use this new node's
  3535. * memory - this wait_table must be initialized to use this new
  3536. * node itself as well.
  3537. * To use this new node's memory, further consideration will be
  3538. * necessary.
  3539. */
  3540. zone->wait_table = vmalloc(alloc_size);
  3541. }
  3542. if (!zone->wait_table)
  3543. return -ENOMEM;
  3544. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3545. init_waitqueue_head(zone->wait_table + i);
  3546. return 0;
  3547. }
  3548. static __meminit void zone_pcp_init(struct zone *zone)
  3549. {
  3550. /*
  3551. * per cpu subsystem is not up at this point. The following code
  3552. * relies on the ability of the linker to provide the
  3553. * offset of a (static) per cpu variable into the per cpu area.
  3554. */
  3555. zone->pageset = &boot_pageset;
  3556. if (zone->present_pages)
  3557. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3558. zone->name, zone->present_pages,
  3559. zone_batchsize(zone));
  3560. }
  3561. int __meminit init_currently_empty_zone(struct zone *zone,
  3562. unsigned long zone_start_pfn,
  3563. unsigned long size,
  3564. enum memmap_context context)
  3565. {
  3566. struct pglist_data *pgdat = zone->zone_pgdat;
  3567. int ret;
  3568. ret = zone_wait_table_init(zone, size);
  3569. if (ret)
  3570. return ret;
  3571. pgdat->nr_zones = zone_idx(zone) + 1;
  3572. zone->zone_start_pfn = zone_start_pfn;
  3573. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3574. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3575. pgdat->node_id,
  3576. (unsigned long)zone_idx(zone),
  3577. zone_start_pfn, (zone_start_pfn + size));
  3578. zone_init_free_lists(zone);
  3579. return 0;
  3580. }
  3581. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3582. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3583. /*
  3584. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3585. * Architectures may implement their own version but if add_active_range()
  3586. * was used and there are no special requirements, this is a convenient
  3587. * alternative
  3588. */
  3589. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3590. {
  3591. unsigned long start_pfn, end_pfn;
  3592. int i, nid;
  3593. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  3594. if (start_pfn <= pfn && pfn < end_pfn)
  3595. return nid;
  3596. /* This is a memory hole */
  3597. return -1;
  3598. }
  3599. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3600. int __meminit early_pfn_to_nid(unsigned long pfn)
  3601. {
  3602. int nid;
  3603. nid = __early_pfn_to_nid(pfn);
  3604. if (nid >= 0)
  3605. return nid;
  3606. /* just returns 0 */
  3607. return 0;
  3608. }
  3609. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3610. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3611. {
  3612. int nid;
  3613. nid = __early_pfn_to_nid(pfn);
  3614. if (nid >= 0 && nid != node)
  3615. return false;
  3616. return true;
  3617. }
  3618. #endif
  3619. /**
  3620. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3621. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3622. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3623. *
  3624. * If an architecture guarantees that all ranges registered with
  3625. * add_active_ranges() contain no holes and may be freed, this
  3626. * this function may be used instead of calling free_bootmem() manually.
  3627. */
  3628. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  3629. {
  3630. unsigned long start_pfn, end_pfn;
  3631. int i, this_nid;
  3632. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  3633. start_pfn = min(start_pfn, max_low_pfn);
  3634. end_pfn = min(end_pfn, max_low_pfn);
  3635. if (start_pfn < end_pfn)
  3636. free_bootmem_node(NODE_DATA(this_nid),
  3637. PFN_PHYS(start_pfn),
  3638. (end_pfn - start_pfn) << PAGE_SHIFT);
  3639. }
  3640. }
  3641. /**
  3642. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3643. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3644. *
  3645. * If an architecture guarantees that all ranges registered with
  3646. * add_active_ranges() contain no holes and may be freed, this
  3647. * function may be used instead of calling memory_present() manually.
  3648. */
  3649. void __init sparse_memory_present_with_active_regions(int nid)
  3650. {
  3651. unsigned long start_pfn, end_pfn;
  3652. int i, this_nid;
  3653. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  3654. memory_present(this_nid, start_pfn, end_pfn);
  3655. }
  3656. /**
  3657. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3658. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3659. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3660. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3661. *
  3662. * It returns the start and end page frame of a node based on information
  3663. * provided by an arch calling add_active_range(). If called for a node
  3664. * with no available memory, a warning is printed and the start and end
  3665. * PFNs will be 0.
  3666. */
  3667. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3668. unsigned long *start_pfn, unsigned long *end_pfn)
  3669. {
  3670. unsigned long this_start_pfn, this_end_pfn;
  3671. int i;
  3672. *start_pfn = -1UL;
  3673. *end_pfn = 0;
  3674. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3675. *start_pfn = min(*start_pfn, this_start_pfn);
  3676. *end_pfn = max(*end_pfn, this_end_pfn);
  3677. }
  3678. if (*start_pfn == -1UL)
  3679. *start_pfn = 0;
  3680. }
  3681. /*
  3682. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3683. * assumption is made that zones within a node are ordered in monotonic
  3684. * increasing memory addresses so that the "highest" populated zone is used
  3685. */
  3686. static void __init find_usable_zone_for_movable(void)
  3687. {
  3688. int zone_index;
  3689. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3690. if (zone_index == ZONE_MOVABLE)
  3691. continue;
  3692. if (arch_zone_highest_possible_pfn[zone_index] >
  3693. arch_zone_lowest_possible_pfn[zone_index])
  3694. break;
  3695. }
  3696. VM_BUG_ON(zone_index == -1);
  3697. movable_zone = zone_index;
  3698. }
  3699. /*
  3700. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3701. * because it is sized independent of architecture. Unlike the other zones,
  3702. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3703. * in each node depending on the size of each node and how evenly kernelcore
  3704. * is distributed. This helper function adjusts the zone ranges
  3705. * provided by the architecture for a given node by using the end of the
  3706. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3707. * zones within a node are in order of monotonic increases memory addresses
  3708. */
  3709. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3710. unsigned long zone_type,
  3711. unsigned long node_start_pfn,
  3712. unsigned long node_end_pfn,
  3713. unsigned long *zone_start_pfn,
  3714. unsigned long *zone_end_pfn)
  3715. {
  3716. /* Only adjust if ZONE_MOVABLE is on this node */
  3717. if (zone_movable_pfn[nid]) {
  3718. /* Size ZONE_MOVABLE */
  3719. if (zone_type == ZONE_MOVABLE) {
  3720. *zone_start_pfn = zone_movable_pfn[nid];
  3721. *zone_end_pfn = min(node_end_pfn,
  3722. arch_zone_highest_possible_pfn[movable_zone]);
  3723. /* Adjust for ZONE_MOVABLE starting within this range */
  3724. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3725. *zone_end_pfn > zone_movable_pfn[nid]) {
  3726. *zone_end_pfn = zone_movable_pfn[nid];
  3727. /* Check if this whole range is within ZONE_MOVABLE */
  3728. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3729. *zone_start_pfn = *zone_end_pfn;
  3730. }
  3731. }
  3732. /*
  3733. * Return the number of pages a zone spans in a node, including holes
  3734. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3735. */
  3736. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3737. unsigned long zone_type,
  3738. unsigned long *ignored)
  3739. {
  3740. unsigned long node_start_pfn, node_end_pfn;
  3741. unsigned long zone_start_pfn, zone_end_pfn;
  3742. /* Get the start and end of the node and zone */
  3743. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3744. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3745. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3746. adjust_zone_range_for_zone_movable(nid, zone_type,
  3747. node_start_pfn, node_end_pfn,
  3748. &zone_start_pfn, &zone_end_pfn);
  3749. /* Check that this node has pages within the zone's required range */
  3750. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3751. return 0;
  3752. /* Move the zone boundaries inside the node if necessary */
  3753. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3754. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3755. /* Return the spanned pages */
  3756. return zone_end_pfn - zone_start_pfn;
  3757. }
  3758. /*
  3759. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3760. * then all holes in the requested range will be accounted for.
  3761. */
  3762. unsigned long __meminit __absent_pages_in_range(int nid,
  3763. unsigned long range_start_pfn,
  3764. unsigned long range_end_pfn)
  3765. {
  3766. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  3767. unsigned long start_pfn, end_pfn;
  3768. int i;
  3769. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  3770. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  3771. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  3772. nr_absent -= end_pfn - start_pfn;
  3773. }
  3774. return nr_absent;
  3775. }
  3776. /**
  3777. * absent_pages_in_range - Return number of page frames in holes within a range
  3778. * @start_pfn: The start PFN to start searching for holes
  3779. * @end_pfn: The end PFN to stop searching for holes
  3780. *
  3781. * It returns the number of pages frames in memory holes within a range.
  3782. */
  3783. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3784. unsigned long end_pfn)
  3785. {
  3786. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3787. }
  3788. /* Return the number of page frames in holes in a zone on a node */
  3789. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3790. unsigned long zone_type,
  3791. unsigned long *ignored)
  3792. {
  3793. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  3794. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  3795. unsigned long node_start_pfn, node_end_pfn;
  3796. unsigned long zone_start_pfn, zone_end_pfn;
  3797. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3798. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  3799. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  3800. adjust_zone_range_for_zone_movable(nid, zone_type,
  3801. node_start_pfn, node_end_pfn,
  3802. &zone_start_pfn, &zone_end_pfn);
  3803. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3804. }
  3805. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3806. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3807. unsigned long zone_type,
  3808. unsigned long *zones_size)
  3809. {
  3810. return zones_size[zone_type];
  3811. }
  3812. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3813. unsigned long zone_type,
  3814. unsigned long *zholes_size)
  3815. {
  3816. if (!zholes_size)
  3817. return 0;
  3818. return zholes_size[zone_type];
  3819. }
  3820. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3821. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3822. unsigned long *zones_size, unsigned long *zholes_size)
  3823. {
  3824. unsigned long realtotalpages, totalpages = 0;
  3825. enum zone_type i;
  3826. for (i = 0; i < MAX_NR_ZONES; i++)
  3827. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3828. zones_size);
  3829. pgdat->node_spanned_pages = totalpages;
  3830. realtotalpages = totalpages;
  3831. for (i = 0; i < MAX_NR_ZONES; i++)
  3832. realtotalpages -=
  3833. zone_absent_pages_in_node(pgdat->node_id, i,
  3834. zholes_size);
  3835. pgdat->node_present_pages = realtotalpages;
  3836. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3837. realtotalpages);
  3838. }
  3839. #ifndef CONFIG_SPARSEMEM
  3840. /*
  3841. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3842. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3843. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3844. * round what is now in bits to nearest long in bits, then return it in
  3845. * bytes.
  3846. */
  3847. static unsigned long __init usemap_size(unsigned long zonesize)
  3848. {
  3849. unsigned long usemapsize;
  3850. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3851. usemapsize = usemapsize >> pageblock_order;
  3852. usemapsize *= NR_PAGEBLOCK_BITS;
  3853. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3854. return usemapsize / 8;
  3855. }
  3856. static void __init setup_usemap(struct pglist_data *pgdat,
  3857. struct zone *zone, unsigned long zonesize)
  3858. {
  3859. unsigned long usemapsize = usemap_size(zonesize);
  3860. zone->pageblock_flags = NULL;
  3861. if (usemapsize)
  3862. zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
  3863. usemapsize);
  3864. }
  3865. #else
  3866. static inline void setup_usemap(struct pglist_data *pgdat,
  3867. struct zone *zone, unsigned long zonesize) {}
  3868. #endif /* CONFIG_SPARSEMEM */
  3869. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3870. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3871. void __init set_pageblock_order(void)
  3872. {
  3873. unsigned int order;
  3874. /* Check that pageblock_nr_pages has not already been setup */
  3875. if (pageblock_order)
  3876. return;
  3877. if (HPAGE_SHIFT > PAGE_SHIFT)
  3878. order = HUGETLB_PAGE_ORDER;
  3879. else
  3880. order = MAX_ORDER - 1;
  3881. /*
  3882. * Assume the largest contiguous order of interest is a huge page.
  3883. * This value may be variable depending on boot parameters on IA64 and
  3884. * powerpc.
  3885. */
  3886. pageblock_order = order;
  3887. }
  3888. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3889. /*
  3890. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3891. * is unused as pageblock_order is set at compile-time. See
  3892. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  3893. * the kernel config
  3894. */
  3895. void __init set_pageblock_order(void)
  3896. {
  3897. }
  3898. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3899. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  3900. unsigned long present_pages)
  3901. {
  3902. unsigned long pages = spanned_pages;
  3903. /*
  3904. * Provide a more accurate estimation if there are holes within
  3905. * the zone and SPARSEMEM is in use. If there are holes within the
  3906. * zone, each populated memory region may cost us one or two extra
  3907. * memmap pages due to alignment because memmap pages for each
  3908. * populated regions may not naturally algined on page boundary.
  3909. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  3910. */
  3911. if (spanned_pages > present_pages + (present_pages >> 4) &&
  3912. IS_ENABLED(CONFIG_SPARSEMEM))
  3913. pages = present_pages;
  3914. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  3915. }
  3916. /*
  3917. * Set up the zone data structures:
  3918. * - mark all pages reserved
  3919. * - mark all memory queues empty
  3920. * - clear the memory bitmaps
  3921. *
  3922. * NOTE: pgdat should get zeroed by caller.
  3923. */
  3924. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3925. unsigned long *zones_size, unsigned long *zholes_size)
  3926. {
  3927. enum zone_type j;
  3928. int nid = pgdat->node_id;
  3929. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3930. int ret;
  3931. pgdat_resize_init(pgdat);
  3932. #ifdef CONFIG_NUMA_BALANCING
  3933. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  3934. pgdat->numabalancing_migrate_nr_pages = 0;
  3935. pgdat->numabalancing_migrate_next_window = jiffies;
  3936. #endif
  3937. init_waitqueue_head(&pgdat->kswapd_wait);
  3938. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  3939. pgdat_page_cgroup_init(pgdat);
  3940. for (j = 0; j < MAX_NR_ZONES; j++) {
  3941. struct zone *zone = pgdat->node_zones + j;
  3942. unsigned long size, realsize, freesize, memmap_pages;
  3943. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3944. realsize = freesize = size - zone_absent_pages_in_node(nid, j,
  3945. zholes_size);
  3946. /*
  3947. * Adjust freesize so that it accounts for how much memory
  3948. * is used by this zone for memmap. This affects the watermark
  3949. * and per-cpu initialisations
  3950. */
  3951. memmap_pages = calc_memmap_size(size, realsize);
  3952. if (freesize >= memmap_pages) {
  3953. freesize -= memmap_pages;
  3954. if (memmap_pages)
  3955. printk(KERN_DEBUG
  3956. " %s zone: %lu pages used for memmap\n",
  3957. zone_names[j], memmap_pages);
  3958. } else
  3959. printk(KERN_WARNING
  3960. " %s zone: %lu pages exceeds freesize %lu\n",
  3961. zone_names[j], memmap_pages, freesize);
  3962. /* Account for reserved pages */
  3963. if (j == 0 && freesize > dma_reserve) {
  3964. freesize -= dma_reserve;
  3965. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3966. zone_names[0], dma_reserve);
  3967. }
  3968. if (!is_highmem_idx(j))
  3969. nr_kernel_pages += freesize;
  3970. /* Charge for highmem memmap if there are enough kernel pages */
  3971. else if (nr_kernel_pages > memmap_pages * 2)
  3972. nr_kernel_pages -= memmap_pages;
  3973. nr_all_pages += freesize;
  3974. zone->spanned_pages = size;
  3975. zone->present_pages = freesize;
  3976. /*
  3977. * Set an approximate value for lowmem here, it will be adjusted
  3978. * when the bootmem allocator frees pages into the buddy system.
  3979. * And all highmem pages will be managed by the buddy system.
  3980. */
  3981. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  3982. #ifdef CONFIG_NUMA
  3983. zone->node = nid;
  3984. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  3985. / 100;
  3986. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  3987. #endif
  3988. zone->name = zone_names[j];
  3989. spin_lock_init(&zone->lock);
  3990. spin_lock_init(&zone->lru_lock);
  3991. zone_seqlock_init(zone);
  3992. zone->zone_pgdat = pgdat;
  3993. zone_pcp_init(zone);
  3994. lruvec_init(&zone->lruvec);
  3995. if (!size)
  3996. continue;
  3997. set_pageblock_order();
  3998. setup_usemap(pgdat, zone, size);
  3999. ret = init_currently_empty_zone(zone, zone_start_pfn,
  4000. size, MEMMAP_EARLY);
  4001. BUG_ON(ret);
  4002. memmap_init(size, nid, j, zone_start_pfn);
  4003. zone_start_pfn += size;
  4004. }
  4005. }
  4006. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  4007. {
  4008. /* Skip empty nodes */
  4009. if (!pgdat->node_spanned_pages)
  4010. return;
  4011. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4012. /* ia64 gets its own node_mem_map, before this, without bootmem */
  4013. if (!pgdat->node_mem_map) {
  4014. unsigned long size, start, end;
  4015. struct page *map;
  4016. /*
  4017. * The zone's endpoints aren't required to be MAX_ORDER
  4018. * aligned but the node_mem_map endpoints must be in order
  4019. * for the buddy allocator to function correctly.
  4020. */
  4021. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  4022. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  4023. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  4024. size = (end - start) * sizeof(struct page);
  4025. map = alloc_remap(pgdat->node_id, size);
  4026. if (!map)
  4027. map = alloc_bootmem_node_nopanic(pgdat, size);
  4028. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  4029. }
  4030. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4031. /*
  4032. * With no DISCONTIG, the global mem_map is just set as node 0's
  4033. */
  4034. if (pgdat == NODE_DATA(0)) {
  4035. mem_map = NODE_DATA(0)->node_mem_map;
  4036. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4037. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  4038. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  4039. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4040. }
  4041. #endif
  4042. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  4043. }
  4044. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  4045. unsigned long node_start_pfn, unsigned long *zholes_size)
  4046. {
  4047. pg_data_t *pgdat = NODE_DATA(nid);
  4048. /* pg_data_t should be reset to zero when it's allocated */
  4049. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  4050. pgdat->node_id = nid;
  4051. pgdat->node_start_pfn = node_start_pfn;
  4052. init_zone_allows_reclaim(nid);
  4053. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  4054. alloc_node_mem_map(pgdat);
  4055. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4056. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  4057. nid, (unsigned long)pgdat,
  4058. (unsigned long)pgdat->node_mem_map);
  4059. #endif
  4060. free_area_init_core(pgdat, zones_size, zholes_size);
  4061. }
  4062. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4063. #if MAX_NUMNODES > 1
  4064. /*
  4065. * Figure out the number of possible node ids.
  4066. */
  4067. static void __init setup_nr_node_ids(void)
  4068. {
  4069. unsigned int node;
  4070. unsigned int highest = 0;
  4071. for_each_node_mask(node, node_possible_map)
  4072. highest = node;
  4073. nr_node_ids = highest + 1;
  4074. }
  4075. #else
  4076. static inline void setup_nr_node_ids(void)
  4077. {
  4078. }
  4079. #endif
  4080. /**
  4081. * node_map_pfn_alignment - determine the maximum internode alignment
  4082. *
  4083. * This function should be called after node map is populated and sorted.
  4084. * It calculates the maximum power of two alignment which can distinguish
  4085. * all the nodes.
  4086. *
  4087. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4088. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4089. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4090. * shifted, 1GiB is enough and this function will indicate so.
  4091. *
  4092. * This is used to test whether pfn -> nid mapping of the chosen memory
  4093. * model has fine enough granularity to avoid incorrect mapping for the
  4094. * populated node map.
  4095. *
  4096. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4097. * requirement (single node).
  4098. */
  4099. unsigned long __init node_map_pfn_alignment(void)
  4100. {
  4101. unsigned long accl_mask = 0, last_end = 0;
  4102. unsigned long start, end, mask;
  4103. int last_nid = -1;
  4104. int i, nid;
  4105. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4106. if (!start || last_nid < 0 || last_nid == nid) {
  4107. last_nid = nid;
  4108. last_end = end;
  4109. continue;
  4110. }
  4111. /*
  4112. * Start with a mask granular enough to pin-point to the
  4113. * start pfn and tick off bits one-by-one until it becomes
  4114. * too coarse to separate the current node from the last.
  4115. */
  4116. mask = ~((1 << __ffs(start)) - 1);
  4117. while (mask && last_end <= (start & (mask << 1)))
  4118. mask <<= 1;
  4119. /* accumulate all internode masks */
  4120. accl_mask |= mask;
  4121. }
  4122. /* convert mask to number of pages */
  4123. return ~accl_mask + 1;
  4124. }
  4125. /* Find the lowest pfn for a node */
  4126. static unsigned long __init find_min_pfn_for_node(int nid)
  4127. {
  4128. unsigned long min_pfn = ULONG_MAX;
  4129. unsigned long start_pfn;
  4130. int i;
  4131. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4132. min_pfn = min(min_pfn, start_pfn);
  4133. if (min_pfn == ULONG_MAX) {
  4134. printk(KERN_WARNING
  4135. "Could not find start_pfn for node %d\n", nid);
  4136. return 0;
  4137. }
  4138. return min_pfn;
  4139. }
  4140. /**
  4141. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4142. *
  4143. * It returns the minimum PFN based on information provided via
  4144. * add_active_range().
  4145. */
  4146. unsigned long __init find_min_pfn_with_active_regions(void)
  4147. {
  4148. return find_min_pfn_for_node(MAX_NUMNODES);
  4149. }
  4150. /*
  4151. * early_calculate_totalpages()
  4152. * Sum pages in active regions for movable zone.
  4153. * Populate N_MEMORY for calculating usable_nodes.
  4154. */
  4155. static unsigned long __init early_calculate_totalpages(void)
  4156. {
  4157. unsigned long totalpages = 0;
  4158. unsigned long start_pfn, end_pfn;
  4159. int i, nid;
  4160. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4161. unsigned long pages = end_pfn - start_pfn;
  4162. totalpages += pages;
  4163. if (pages)
  4164. node_set_state(nid, N_MEMORY);
  4165. }
  4166. return totalpages;
  4167. }
  4168. /*
  4169. * Find the PFN the Movable zone begins in each node. Kernel memory
  4170. * is spread evenly between nodes as long as the nodes have enough
  4171. * memory. When they don't, some nodes will have more kernelcore than
  4172. * others
  4173. */
  4174. static void __init find_zone_movable_pfns_for_nodes(void)
  4175. {
  4176. int i, nid;
  4177. unsigned long usable_startpfn;
  4178. unsigned long kernelcore_node, kernelcore_remaining;
  4179. /* save the state before borrow the nodemask */
  4180. nodemask_t saved_node_state = node_states[N_MEMORY];
  4181. unsigned long totalpages = early_calculate_totalpages();
  4182. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  4183. /*
  4184. * If movablecore was specified, calculate what size of
  4185. * kernelcore that corresponds so that memory usable for
  4186. * any allocation type is evenly spread. If both kernelcore
  4187. * and movablecore are specified, then the value of kernelcore
  4188. * will be used for required_kernelcore if it's greater than
  4189. * what movablecore would have allowed.
  4190. */
  4191. if (required_movablecore) {
  4192. unsigned long corepages;
  4193. /*
  4194. * Round-up so that ZONE_MOVABLE is at least as large as what
  4195. * was requested by the user
  4196. */
  4197. required_movablecore =
  4198. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4199. corepages = totalpages - required_movablecore;
  4200. required_kernelcore = max(required_kernelcore, corepages);
  4201. }
  4202. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4203. if (!required_kernelcore)
  4204. goto out;
  4205. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4206. find_usable_zone_for_movable();
  4207. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4208. restart:
  4209. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4210. kernelcore_node = required_kernelcore / usable_nodes;
  4211. for_each_node_state(nid, N_MEMORY) {
  4212. unsigned long start_pfn, end_pfn;
  4213. /*
  4214. * Recalculate kernelcore_node if the division per node
  4215. * now exceeds what is necessary to satisfy the requested
  4216. * amount of memory for the kernel
  4217. */
  4218. if (required_kernelcore < kernelcore_node)
  4219. kernelcore_node = required_kernelcore / usable_nodes;
  4220. /*
  4221. * As the map is walked, we track how much memory is usable
  4222. * by the kernel using kernelcore_remaining. When it is
  4223. * 0, the rest of the node is usable by ZONE_MOVABLE
  4224. */
  4225. kernelcore_remaining = kernelcore_node;
  4226. /* Go through each range of PFNs within this node */
  4227. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4228. unsigned long size_pages;
  4229. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4230. if (start_pfn >= end_pfn)
  4231. continue;
  4232. /* Account for what is only usable for kernelcore */
  4233. if (start_pfn < usable_startpfn) {
  4234. unsigned long kernel_pages;
  4235. kernel_pages = min(end_pfn, usable_startpfn)
  4236. - start_pfn;
  4237. kernelcore_remaining -= min(kernel_pages,
  4238. kernelcore_remaining);
  4239. required_kernelcore -= min(kernel_pages,
  4240. required_kernelcore);
  4241. /* Continue if range is now fully accounted */
  4242. if (end_pfn <= usable_startpfn) {
  4243. /*
  4244. * Push zone_movable_pfn to the end so
  4245. * that if we have to rebalance
  4246. * kernelcore across nodes, we will
  4247. * not double account here
  4248. */
  4249. zone_movable_pfn[nid] = end_pfn;
  4250. continue;
  4251. }
  4252. start_pfn = usable_startpfn;
  4253. }
  4254. /*
  4255. * The usable PFN range for ZONE_MOVABLE is from
  4256. * start_pfn->end_pfn. Calculate size_pages as the
  4257. * number of pages used as kernelcore
  4258. */
  4259. size_pages = end_pfn - start_pfn;
  4260. if (size_pages > kernelcore_remaining)
  4261. size_pages = kernelcore_remaining;
  4262. zone_movable_pfn[nid] = start_pfn + size_pages;
  4263. /*
  4264. * Some kernelcore has been met, update counts and
  4265. * break if the kernelcore for this node has been
  4266. * satisified
  4267. */
  4268. required_kernelcore -= min(required_kernelcore,
  4269. size_pages);
  4270. kernelcore_remaining -= size_pages;
  4271. if (!kernelcore_remaining)
  4272. break;
  4273. }
  4274. }
  4275. /*
  4276. * If there is still required_kernelcore, we do another pass with one
  4277. * less node in the count. This will push zone_movable_pfn[nid] further
  4278. * along on the nodes that still have memory until kernelcore is
  4279. * satisified
  4280. */
  4281. usable_nodes--;
  4282. if (usable_nodes && required_kernelcore > usable_nodes)
  4283. goto restart;
  4284. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4285. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4286. zone_movable_pfn[nid] =
  4287. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4288. out:
  4289. /* restore the node_state */
  4290. node_states[N_MEMORY] = saved_node_state;
  4291. }
  4292. /* Any regular or high memory on that node ? */
  4293. static void check_for_memory(pg_data_t *pgdat, int nid)
  4294. {
  4295. enum zone_type zone_type;
  4296. if (N_MEMORY == N_NORMAL_MEMORY)
  4297. return;
  4298. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  4299. struct zone *zone = &pgdat->node_zones[zone_type];
  4300. if (zone->present_pages) {
  4301. node_set_state(nid, N_HIGH_MEMORY);
  4302. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  4303. zone_type <= ZONE_NORMAL)
  4304. node_set_state(nid, N_NORMAL_MEMORY);
  4305. break;
  4306. }
  4307. }
  4308. }
  4309. /**
  4310. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4311. * @max_zone_pfn: an array of max PFNs for each zone
  4312. *
  4313. * This will call free_area_init_node() for each active node in the system.
  4314. * Using the page ranges provided by add_active_range(), the size of each
  4315. * zone in each node and their holes is calculated. If the maximum PFN
  4316. * between two adjacent zones match, it is assumed that the zone is empty.
  4317. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4318. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4319. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4320. * at arch_max_dma_pfn.
  4321. */
  4322. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4323. {
  4324. unsigned long start_pfn, end_pfn;
  4325. int i, nid;
  4326. /* Record where the zone boundaries are */
  4327. memset(arch_zone_lowest_possible_pfn, 0,
  4328. sizeof(arch_zone_lowest_possible_pfn));
  4329. memset(arch_zone_highest_possible_pfn, 0,
  4330. sizeof(arch_zone_highest_possible_pfn));
  4331. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4332. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4333. for (i = 1; i < MAX_NR_ZONES; i++) {
  4334. if (i == ZONE_MOVABLE)
  4335. continue;
  4336. arch_zone_lowest_possible_pfn[i] =
  4337. arch_zone_highest_possible_pfn[i-1];
  4338. arch_zone_highest_possible_pfn[i] =
  4339. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4340. }
  4341. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4342. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4343. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4344. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4345. find_zone_movable_pfns_for_nodes();
  4346. /* Print out the zone ranges */
  4347. printk("Zone ranges:\n");
  4348. for (i = 0; i < MAX_NR_ZONES; i++) {
  4349. if (i == ZONE_MOVABLE)
  4350. continue;
  4351. printk(KERN_CONT " %-8s ", zone_names[i]);
  4352. if (arch_zone_lowest_possible_pfn[i] ==
  4353. arch_zone_highest_possible_pfn[i])
  4354. printk(KERN_CONT "empty\n");
  4355. else
  4356. printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
  4357. arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
  4358. (arch_zone_highest_possible_pfn[i]
  4359. << PAGE_SHIFT) - 1);
  4360. }
  4361. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4362. printk("Movable zone start for each node\n");
  4363. for (i = 0; i < MAX_NUMNODES; i++) {
  4364. if (zone_movable_pfn[i])
  4365. printk(" Node %d: %#010lx\n", i,
  4366. zone_movable_pfn[i] << PAGE_SHIFT);
  4367. }
  4368. /* Print out the early node map */
  4369. printk("Early memory node ranges\n");
  4370. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4371. printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
  4372. start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
  4373. /* Initialise every node */
  4374. mminit_verify_pageflags_layout();
  4375. setup_nr_node_ids();
  4376. for_each_online_node(nid) {
  4377. pg_data_t *pgdat = NODE_DATA(nid);
  4378. free_area_init_node(nid, NULL,
  4379. find_min_pfn_for_node(nid), NULL);
  4380. /* Any memory on that node */
  4381. if (pgdat->node_present_pages)
  4382. node_set_state(nid, N_MEMORY);
  4383. check_for_memory(pgdat, nid);
  4384. }
  4385. }
  4386. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4387. {
  4388. unsigned long long coremem;
  4389. if (!p)
  4390. return -EINVAL;
  4391. coremem = memparse(p, &p);
  4392. *core = coremem >> PAGE_SHIFT;
  4393. /* Paranoid check that UL is enough for the coremem value */
  4394. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4395. return 0;
  4396. }
  4397. /*
  4398. * kernelcore=size sets the amount of memory for use for allocations that
  4399. * cannot be reclaimed or migrated.
  4400. */
  4401. static int __init cmdline_parse_kernelcore(char *p)
  4402. {
  4403. return cmdline_parse_core(p, &required_kernelcore);
  4404. }
  4405. /*
  4406. * movablecore=size sets the amount of memory for use for allocations that
  4407. * can be reclaimed or migrated.
  4408. */
  4409. static int __init cmdline_parse_movablecore(char *p)
  4410. {
  4411. return cmdline_parse_core(p, &required_movablecore);
  4412. }
  4413. early_param("kernelcore", cmdline_parse_kernelcore);
  4414. early_param("movablecore", cmdline_parse_movablecore);
  4415. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4416. /**
  4417. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4418. * @new_dma_reserve: The number of pages to mark reserved
  4419. *
  4420. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4421. * In the DMA zone, a significant percentage may be consumed by kernel image
  4422. * and other unfreeable allocations which can skew the watermarks badly. This
  4423. * function may optionally be used to account for unfreeable pages in the
  4424. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4425. * smaller per-cpu batchsize.
  4426. */
  4427. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4428. {
  4429. dma_reserve = new_dma_reserve;
  4430. }
  4431. void __init free_area_init(unsigned long *zones_size)
  4432. {
  4433. free_area_init_node(0, zones_size,
  4434. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4435. }
  4436. static int page_alloc_cpu_notify(struct notifier_block *self,
  4437. unsigned long action, void *hcpu)
  4438. {
  4439. int cpu = (unsigned long)hcpu;
  4440. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4441. lru_add_drain_cpu(cpu);
  4442. drain_pages(cpu);
  4443. /*
  4444. * Spill the event counters of the dead processor
  4445. * into the current processors event counters.
  4446. * This artificially elevates the count of the current
  4447. * processor.
  4448. */
  4449. vm_events_fold_cpu(cpu);
  4450. /*
  4451. * Zero the differential counters of the dead processor
  4452. * so that the vm statistics are consistent.
  4453. *
  4454. * This is only okay since the processor is dead and cannot
  4455. * race with what we are doing.
  4456. */
  4457. refresh_cpu_vm_stats(cpu);
  4458. }
  4459. return NOTIFY_OK;
  4460. }
  4461. void __init page_alloc_init(void)
  4462. {
  4463. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4464. }
  4465. /*
  4466. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4467. * or min_free_kbytes changes.
  4468. */
  4469. static void calculate_totalreserve_pages(void)
  4470. {
  4471. struct pglist_data *pgdat;
  4472. unsigned long reserve_pages = 0;
  4473. enum zone_type i, j;
  4474. for_each_online_pgdat(pgdat) {
  4475. for (i = 0; i < MAX_NR_ZONES; i++) {
  4476. struct zone *zone = pgdat->node_zones + i;
  4477. unsigned long max = 0;
  4478. /* Find valid and maximum lowmem_reserve in the zone */
  4479. for (j = i; j < MAX_NR_ZONES; j++) {
  4480. if (zone->lowmem_reserve[j] > max)
  4481. max = zone->lowmem_reserve[j];
  4482. }
  4483. /* we treat the high watermark as reserved pages. */
  4484. max += high_wmark_pages(zone);
  4485. if (max > zone->present_pages)
  4486. max = zone->present_pages;
  4487. reserve_pages += max;
  4488. /*
  4489. * Lowmem reserves are not available to
  4490. * GFP_HIGHUSER page cache allocations and
  4491. * kswapd tries to balance zones to their high
  4492. * watermark. As a result, neither should be
  4493. * regarded as dirtyable memory, to prevent a
  4494. * situation where reclaim has to clean pages
  4495. * in order to balance the zones.
  4496. */
  4497. zone->dirty_balance_reserve = max;
  4498. }
  4499. }
  4500. dirty_balance_reserve = reserve_pages;
  4501. totalreserve_pages = reserve_pages;
  4502. }
  4503. /*
  4504. * setup_per_zone_lowmem_reserve - called whenever
  4505. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4506. * has a correct pages reserved value, so an adequate number of
  4507. * pages are left in the zone after a successful __alloc_pages().
  4508. */
  4509. static void setup_per_zone_lowmem_reserve(void)
  4510. {
  4511. struct pglist_data *pgdat;
  4512. enum zone_type j, idx;
  4513. for_each_online_pgdat(pgdat) {
  4514. for (j = 0; j < MAX_NR_ZONES; j++) {
  4515. struct zone *zone = pgdat->node_zones + j;
  4516. unsigned long present_pages = zone->present_pages;
  4517. zone->lowmem_reserve[j] = 0;
  4518. idx = j;
  4519. while (idx) {
  4520. struct zone *lower_zone;
  4521. idx--;
  4522. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4523. sysctl_lowmem_reserve_ratio[idx] = 1;
  4524. lower_zone = pgdat->node_zones + idx;
  4525. lower_zone->lowmem_reserve[j] = present_pages /
  4526. sysctl_lowmem_reserve_ratio[idx];
  4527. present_pages += lower_zone->present_pages;
  4528. }
  4529. }
  4530. }
  4531. /* update totalreserve_pages */
  4532. calculate_totalreserve_pages();
  4533. }
  4534. static void __setup_per_zone_wmarks(void)
  4535. {
  4536. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4537. unsigned long lowmem_pages = 0;
  4538. struct zone *zone;
  4539. unsigned long flags;
  4540. /* Calculate total number of !ZONE_HIGHMEM pages */
  4541. for_each_zone(zone) {
  4542. if (!is_highmem(zone))
  4543. lowmem_pages += zone->present_pages;
  4544. }
  4545. for_each_zone(zone) {
  4546. u64 tmp;
  4547. spin_lock_irqsave(&zone->lock, flags);
  4548. tmp = (u64)pages_min * zone->present_pages;
  4549. do_div(tmp, lowmem_pages);
  4550. if (is_highmem(zone)) {
  4551. /*
  4552. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4553. * need highmem pages, so cap pages_min to a small
  4554. * value here.
  4555. *
  4556. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4557. * deltas controls asynch page reclaim, and so should
  4558. * not be capped for highmem.
  4559. */
  4560. int min_pages;
  4561. min_pages = zone->present_pages / 1024;
  4562. if (min_pages < SWAP_CLUSTER_MAX)
  4563. min_pages = SWAP_CLUSTER_MAX;
  4564. if (min_pages > 128)
  4565. min_pages = 128;
  4566. zone->watermark[WMARK_MIN] = min_pages;
  4567. } else {
  4568. /*
  4569. * If it's a lowmem zone, reserve a number of pages
  4570. * proportionate to the zone's size.
  4571. */
  4572. zone->watermark[WMARK_MIN] = tmp;
  4573. }
  4574. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4575. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4576. setup_zone_migrate_reserve(zone);
  4577. spin_unlock_irqrestore(&zone->lock, flags);
  4578. }
  4579. /* update totalreserve_pages */
  4580. calculate_totalreserve_pages();
  4581. }
  4582. /**
  4583. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4584. * or when memory is hot-{added|removed}
  4585. *
  4586. * Ensures that the watermark[min,low,high] values for each zone are set
  4587. * correctly with respect to min_free_kbytes.
  4588. */
  4589. void setup_per_zone_wmarks(void)
  4590. {
  4591. mutex_lock(&zonelists_mutex);
  4592. __setup_per_zone_wmarks();
  4593. mutex_unlock(&zonelists_mutex);
  4594. }
  4595. /*
  4596. * The inactive anon list should be small enough that the VM never has to
  4597. * do too much work, but large enough that each inactive page has a chance
  4598. * to be referenced again before it is swapped out.
  4599. *
  4600. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4601. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4602. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4603. * the anonymous pages are kept on the inactive list.
  4604. *
  4605. * total target max
  4606. * memory ratio inactive anon
  4607. * -------------------------------------
  4608. * 10MB 1 5MB
  4609. * 100MB 1 50MB
  4610. * 1GB 3 250MB
  4611. * 10GB 10 0.9GB
  4612. * 100GB 31 3GB
  4613. * 1TB 101 10GB
  4614. * 10TB 320 32GB
  4615. */
  4616. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  4617. {
  4618. unsigned int gb, ratio;
  4619. /* Zone size in gigabytes */
  4620. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  4621. if (gb)
  4622. ratio = int_sqrt(10 * gb);
  4623. else
  4624. ratio = 1;
  4625. zone->inactive_ratio = ratio;
  4626. }
  4627. static void __meminit setup_per_zone_inactive_ratio(void)
  4628. {
  4629. struct zone *zone;
  4630. for_each_zone(zone)
  4631. calculate_zone_inactive_ratio(zone);
  4632. }
  4633. /*
  4634. * Initialise min_free_kbytes.
  4635. *
  4636. * For small machines we want it small (128k min). For large machines
  4637. * we want it large (64MB max). But it is not linear, because network
  4638. * bandwidth does not increase linearly with machine size. We use
  4639. *
  4640. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4641. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4642. *
  4643. * which yields
  4644. *
  4645. * 16MB: 512k
  4646. * 32MB: 724k
  4647. * 64MB: 1024k
  4648. * 128MB: 1448k
  4649. * 256MB: 2048k
  4650. * 512MB: 2896k
  4651. * 1024MB: 4096k
  4652. * 2048MB: 5792k
  4653. * 4096MB: 8192k
  4654. * 8192MB: 11584k
  4655. * 16384MB: 16384k
  4656. */
  4657. int __meminit init_per_zone_wmark_min(void)
  4658. {
  4659. unsigned long lowmem_kbytes;
  4660. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4661. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4662. if (min_free_kbytes < 128)
  4663. min_free_kbytes = 128;
  4664. if (min_free_kbytes > 65536)
  4665. min_free_kbytes = 65536;
  4666. setup_per_zone_wmarks();
  4667. refresh_zone_stat_thresholds();
  4668. setup_per_zone_lowmem_reserve();
  4669. setup_per_zone_inactive_ratio();
  4670. return 0;
  4671. }
  4672. module_init(init_per_zone_wmark_min)
  4673. /*
  4674. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4675. * that we can call two helper functions whenever min_free_kbytes
  4676. * changes.
  4677. */
  4678. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4679. void __user *buffer, size_t *length, loff_t *ppos)
  4680. {
  4681. proc_dointvec(table, write, buffer, length, ppos);
  4682. if (write)
  4683. setup_per_zone_wmarks();
  4684. return 0;
  4685. }
  4686. #ifdef CONFIG_NUMA
  4687. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4688. void __user *buffer, size_t *length, loff_t *ppos)
  4689. {
  4690. struct zone *zone;
  4691. int rc;
  4692. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4693. if (rc)
  4694. return rc;
  4695. for_each_zone(zone)
  4696. zone->min_unmapped_pages = (zone->present_pages *
  4697. sysctl_min_unmapped_ratio) / 100;
  4698. return 0;
  4699. }
  4700. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4701. void __user *buffer, size_t *length, loff_t *ppos)
  4702. {
  4703. struct zone *zone;
  4704. int rc;
  4705. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4706. if (rc)
  4707. return rc;
  4708. for_each_zone(zone)
  4709. zone->min_slab_pages = (zone->present_pages *
  4710. sysctl_min_slab_ratio) / 100;
  4711. return 0;
  4712. }
  4713. #endif
  4714. /*
  4715. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4716. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4717. * whenever sysctl_lowmem_reserve_ratio changes.
  4718. *
  4719. * The reserve ratio obviously has absolutely no relation with the
  4720. * minimum watermarks. The lowmem reserve ratio can only make sense
  4721. * if in function of the boot time zone sizes.
  4722. */
  4723. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4724. void __user *buffer, size_t *length, loff_t *ppos)
  4725. {
  4726. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4727. setup_per_zone_lowmem_reserve();
  4728. return 0;
  4729. }
  4730. /*
  4731. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4732. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4733. * can have before it gets flushed back to buddy allocator.
  4734. */
  4735. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4736. void __user *buffer, size_t *length, loff_t *ppos)
  4737. {
  4738. struct zone *zone;
  4739. unsigned int cpu;
  4740. int ret;
  4741. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4742. if (!write || (ret < 0))
  4743. return ret;
  4744. for_each_populated_zone(zone) {
  4745. for_each_possible_cpu(cpu) {
  4746. unsigned long high;
  4747. high = zone->present_pages / percpu_pagelist_fraction;
  4748. setup_pagelist_highmark(
  4749. per_cpu_ptr(zone->pageset, cpu), high);
  4750. }
  4751. }
  4752. return 0;
  4753. }
  4754. int hashdist = HASHDIST_DEFAULT;
  4755. #ifdef CONFIG_NUMA
  4756. static int __init set_hashdist(char *str)
  4757. {
  4758. if (!str)
  4759. return 0;
  4760. hashdist = simple_strtoul(str, &str, 0);
  4761. return 1;
  4762. }
  4763. __setup("hashdist=", set_hashdist);
  4764. #endif
  4765. /*
  4766. * allocate a large system hash table from bootmem
  4767. * - it is assumed that the hash table must contain an exact power-of-2
  4768. * quantity of entries
  4769. * - limit is the number of hash buckets, not the total allocation size
  4770. */
  4771. void *__init alloc_large_system_hash(const char *tablename,
  4772. unsigned long bucketsize,
  4773. unsigned long numentries,
  4774. int scale,
  4775. int flags,
  4776. unsigned int *_hash_shift,
  4777. unsigned int *_hash_mask,
  4778. unsigned long low_limit,
  4779. unsigned long high_limit)
  4780. {
  4781. unsigned long long max = high_limit;
  4782. unsigned long log2qty, size;
  4783. void *table = NULL;
  4784. /* allow the kernel cmdline to have a say */
  4785. if (!numentries) {
  4786. /* round applicable memory size up to nearest megabyte */
  4787. numentries = nr_kernel_pages;
  4788. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4789. numentries >>= 20 - PAGE_SHIFT;
  4790. numentries <<= 20 - PAGE_SHIFT;
  4791. /* limit to 1 bucket per 2^scale bytes of low memory */
  4792. if (scale > PAGE_SHIFT)
  4793. numentries >>= (scale - PAGE_SHIFT);
  4794. else
  4795. numentries <<= (PAGE_SHIFT - scale);
  4796. /* Make sure we've got at least a 0-order allocation.. */
  4797. if (unlikely(flags & HASH_SMALL)) {
  4798. /* Makes no sense without HASH_EARLY */
  4799. WARN_ON(!(flags & HASH_EARLY));
  4800. if (!(numentries >> *_hash_shift)) {
  4801. numentries = 1UL << *_hash_shift;
  4802. BUG_ON(!numentries);
  4803. }
  4804. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4805. numentries = PAGE_SIZE / bucketsize;
  4806. }
  4807. numentries = roundup_pow_of_two(numentries);
  4808. /* limit allocation size to 1/16 total memory by default */
  4809. if (max == 0) {
  4810. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4811. do_div(max, bucketsize);
  4812. }
  4813. max = min(max, 0x80000000ULL);
  4814. if (numentries < low_limit)
  4815. numentries = low_limit;
  4816. if (numentries > max)
  4817. numentries = max;
  4818. log2qty = ilog2(numentries);
  4819. do {
  4820. size = bucketsize << log2qty;
  4821. if (flags & HASH_EARLY)
  4822. table = alloc_bootmem_nopanic(size);
  4823. else if (hashdist)
  4824. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4825. else {
  4826. /*
  4827. * If bucketsize is not a power-of-two, we may free
  4828. * some pages at the end of hash table which
  4829. * alloc_pages_exact() automatically does
  4830. */
  4831. if (get_order(size) < MAX_ORDER) {
  4832. table = alloc_pages_exact(size, GFP_ATOMIC);
  4833. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4834. }
  4835. }
  4836. } while (!table && size > PAGE_SIZE && --log2qty);
  4837. if (!table)
  4838. panic("Failed to allocate %s hash table\n", tablename);
  4839. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  4840. tablename,
  4841. (1UL << log2qty),
  4842. ilog2(size) - PAGE_SHIFT,
  4843. size);
  4844. if (_hash_shift)
  4845. *_hash_shift = log2qty;
  4846. if (_hash_mask)
  4847. *_hash_mask = (1 << log2qty) - 1;
  4848. return table;
  4849. }
  4850. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4851. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4852. unsigned long pfn)
  4853. {
  4854. #ifdef CONFIG_SPARSEMEM
  4855. return __pfn_to_section(pfn)->pageblock_flags;
  4856. #else
  4857. return zone->pageblock_flags;
  4858. #endif /* CONFIG_SPARSEMEM */
  4859. }
  4860. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4861. {
  4862. #ifdef CONFIG_SPARSEMEM
  4863. pfn &= (PAGES_PER_SECTION-1);
  4864. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4865. #else
  4866. pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
  4867. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4868. #endif /* CONFIG_SPARSEMEM */
  4869. }
  4870. /**
  4871. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4872. * @page: The page within the block of interest
  4873. * @start_bitidx: The first bit of interest to retrieve
  4874. * @end_bitidx: The last bit of interest
  4875. * returns pageblock_bits flags
  4876. */
  4877. unsigned long get_pageblock_flags_group(struct page *page,
  4878. int start_bitidx, int end_bitidx)
  4879. {
  4880. struct zone *zone;
  4881. unsigned long *bitmap;
  4882. unsigned long pfn, bitidx;
  4883. unsigned long flags = 0;
  4884. unsigned long value = 1;
  4885. zone = page_zone(page);
  4886. pfn = page_to_pfn(page);
  4887. bitmap = get_pageblock_bitmap(zone, pfn);
  4888. bitidx = pfn_to_bitidx(zone, pfn);
  4889. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4890. if (test_bit(bitidx + start_bitidx, bitmap))
  4891. flags |= value;
  4892. return flags;
  4893. }
  4894. /**
  4895. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4896. * @page: The page within the block of interest
  4897. * @start_bitidx: The first bit of interest
  4898. * @end_bitidx: The last bit of interest
  4899. * @flags: The flags to set
  4900. */
  4901. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4902. int start_bitidx, int end_bitidx)
  4903. {
  4904. struct zone *zone;
  4905. unsigned long *bitmap;
  4906. unsigned long pfn, bitidx;
  4907. unsigned long value = 1;
  4908. zone = page_zone(page);
  4909. pfn = page_to_pfn(page);
  4910. bitmap = get_pageblock_bitmap(zone, pfn);
  4911. bitidx = pfn_to_bitidx(zone, pfn);
  4912. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4913. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4914. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4915. if (flags & value)
  4916. __set_bit(bitidx + start_bitidx, bitmap);
  4917. else
  4918. __clear_bit(bitidx + start_bitidx, bitmap);
  4919. }
  4920. /*
  4921. * This function checks whether pageblock includes unmovable pages or not.
  4922. * If @count is not zero, it is okay to include less @count unmovable pages
  4923. *
  4924. * PageLRU check wihtout isolation or lru_lock could race so that
  4925. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  4926. * expect this function should be exact.
  4927. */
  4928. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  4929. bool skip_hwpoisoned_pages)
  4930. {
  4931. unsigned long pfn, iter, found;
  4932. int mt;
  4933. /*
  4934. * For avoiding noise data, lru_add_drain_all() should be called
  4935. * If ZONE_MOVABLE, the zone never contains unmovable pages
  4936. */
  4937. if (zone_idx(zone) == ZONE_MOVABLE)
  4938. return false;
  4939. mt = get_pageblock_migratetype(page);
  4940. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  4941. return false;
  4942. pfn = page_to_pfn(page);
  4943. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  4944. unsigned long check = pfn + iter;
  4945. if (!pfn_valid_within(check))
  4946. continue;
  4947. page = pfn_to_page(check);
  4948. /*
  4949. * We can't use page_count without pin a page
  4950. * because another CPU can free compound page.
  4951. * This check already skips compound tails of THP
  4952. * because their page->_count is zero at all time.
  4953. */
  4954. if (!atomic_read(&page->_count)) {
  4955. if (PageBuddy(page))
  4956. iter += (1 << page_order(page)) - 1;
  4957. continue;
  4958. }
  4959. /*
  4960. * The HWPoisoned page may be not in buddy system, and
  4961. * page_count() is not 0.
  4962. */
  4963. if (skip_hwpoisoned_pages && PageHWPoison(page))
  4964. continue;
  4965. if (!PageLRU(page))
  4966. found++;
  4967. /*
  4968. * If there are RECLAIMABLE pages, we need to check it.
  4969. * But now, memory offline itself doesn't call shrink_slab()
  4970. * and it still to be fixed.
  4971. */
  4972. /*
  4973. * If the page is not RAM, page_count()should be 0.
  4974. * we don't need more check. This is an _used_ not-movable page.
  4975. *
  4976. * The problematic thing here is PG_reserved pages. PG_reserved
  4977. * is set to both of a memory hole page and a _used_ kernel
  4978. * page at boot.
  4979. */
  4980. if (found > count)
  4981. return true;
  4982. }
  4983. return false;
  4984. }
  4985. bool is_pageblock_removable_nolock(struct page *page)
  4986. {
  4987. struct zone *zone;
  4988. unsigned long pfn;
  4989. /*
  4990. * We have to be careful here because we are iterating over memory
  4991. * sections which are not zone aware so we might end up outside of
  4992. * the zone but still within the section.
  4993. * We have to take care about the node as well. If the node is offline
  4994. * its NODE_DATA will be NULL - see page_zone.
  4995. */
  4996. if (!node_online(page_to_nid(page)))
  4997. return false;
  4998. zone = page_zone(page);
  4999. pfn = page_to_pfn(page);
  5000. if (zone->zone_start_pfn > pfn ||
  5001. zone->zone_start_pfn + zone->spanned_pages <= pfn)
  5002. return false;
  5003. return !has_unmovable_pages(zone, page, 0, true);
  5004. }
  5005. #ifdef CONFIG_CMA
  5006. static unsigned long pfn_max_align_down(unsigned long pfn)
  5007. {
  5008. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5009. pageblock_nr_pages) - 1);
  5010. }
  5011. static unsigned long pfn_max_align_up(unsigned long pfn)
  5012. {
  5013. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5014. pageblock_nr_pages));
  5015. }
  5016. /* [start, end) must belong to a single zone. */
  5017. static int __alloc_contig_migrate_range(struct compact_control *cc,
  5018. unsigned long start, unsigned long end)
  5019. {
  5020. /* This function is based on compact_zone() from compaction.c. */
  5021. unsigned long nr_reclaimed;
  5022. unsigned long pfn = start;
  5023. unsigned int tries = 0;
  5024. int ret = 0;
  5025. migrate_prep();
  5026. while (pfn < end || !list_empty(&cc->migratepages)) {
  5027. if (fatal_signal_pending(current)) {
  5028. ret = -EINTR;
  5029. break;
  5030. }
  5031. if (list_empty(&cc->migratepages)) {
  5032. cc->nr_migratepages = 0;
  5033. pfn = isolate_migratepages_range(cc->zone, cc,
  5034. pfn, end, true);
  5035. if (!pfn) {
  5036. ret = -EINTR;
  5037. break;
  5038. }
  5039. tries = 0;
  5040. } else if (++tries == 5) {
  5041. ret = ret < 0 ? ret : -EBUSY;
  5042. break;
  5043. }
  5044. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  5045. &cc->migratepages);
  5046. cc->nr_migratepages -= nr_reclaimed;
  5047. ret = migrate_pages(&cc->migratepages,
  5048. alloc_migrate_target,
  5049. 0, false, MIGRATE_SYNC,
  5050. MR_CMA);
  5051. }
  5052. putback_movable_pages(&cc->migratepages);
  5053. return ret > 0 ? 0 : ret;
  5054. }
  5055. /**
  5056. * alloc_contig_range() -- tries to allocate given range of pages
  5057. * @start: start PFN to allocate
  5058. * @end: one-past-the-last PFN to allocate
  5059. * @migratetype: migratetype of the underlaying pageblocks (either
  5060. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5061. * in range must have the same migratetype and it must
  5062. * be either of the two.
  5063. *
  5064. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5065. * aligned, however it's the caller's responsibility to guarantee that
  5066. * we are the only thread that changes migrate type of pageblocks the
  5067. * pages fall in.
  5068. *
  5069. * The PFN range must belong to a single zone.
  5070. *
  5071. * Returns zero on success or negative error code. On success all
  5072. * pages which PFN is in [start, end) are allocated for the caller and
  5073. * need to be freed with free_contig_range().
  5074. */
  5075. int alloc_contig_range(unsigned long start, unsigned long end,
  5076. unsigned migratetype)
  5077. {
  5078. unsigned long outer_start, outer_end;
  5079. int ret = 0, order;
  5080. struct compact_control cc = {
  5081. .nr_migratepages = 0,
  5082. .order = -1,
  5083. .zone = page_zone(pfn_to_page(start)),
  5084. .sync = true,
  5085. .ignore_skip_hint = true,
  5086. };
  5087. INIT_LIST_HEAD(&cc.migratepages);
  5088. /*
  5089. * What we do here is we mark all pageblocks in range as
  5090. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5091. * have different sizes, and due to the way page allocator
  5092. * work, we align the range to biggest of the two pages so
  5093. * that page allocator won't try to merge buddies from
  5094. * different pageblocks and change MIGRATE_ISOLATE to some
  5095. * other migration type.
  5096. *
  5097. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5098. * migrate the pages from an unaligned range (ie. pages that
  5099. * we are interested in). This will put all the pages in
  5100. * range back to page allocator as MIGRATE_ISOLATE.
  5101. *
  5102. * When this is done, we take the pages in range from page
  5103. * allocator removing them from the buddy system. This way
  5104. * page allocator will never consider using them.
  5105. *
  5106. * This lets us mark the pageblocks back as
  5107. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5108. * aligned range but not in the unaligned, original range are
  5109. * put back to page allocator so that buddy can use them.
  5110. */
  5111. ret = start_isolate_page_range(pfn_max_align_down(start),
  5112. pfn_max_align_up(end), migratetype,
  5113. false);
  5114. if (ret)
  5115. return ret;
  5116. ret = __alloc_contig_migrate_range(&cc, start, end);
  5117. if (ret)
  5118. goto done;
  5119. /*
  5120. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5121. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5122. * more, all pages in [start, end) are free in page allocator.
  5123. * What we are going to do is to allocate all pages from
  5124. * [start, end) (that is remove them from page allocator).
  5125. *
  5126. * The only problem is that pages at the beginning and at the
  5127. * end of interesting range may be not aligned with pages that
  5128. * page allocator holds, ie. they can be part of higher order
  5129. * pages. Because of this, we reserve the bigger range and
  5130. * once this is done free the pages we are not interested in.
  5131. *
  5132. * We don't have to hold zone->lock here because the pages are
  5133. * isolated thus they won't get removed from buddy.
  5134. */
  5135. lru_add_drain_all();
  5136. drain_all_pages();
  5137. order = 0;
  5138. outer_start = start;
  5139. while (!PageBuddy(pfn_to_page(outer_start))) {
  5140. if (++order >= MAX_ORDER) {
  5141. ret = -EBUSY;
  5142. goto done;
  5143. }
  5144. outer_start &= ~0UL << order;
  5145. }
  5146. /* Make sure the range is really isolated. */
  5147. if (test_pages_isolated(outer_start, end, false)) {
  5148. pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
  5149. outer_start, end);
  5150. ret = -EBUSY;
  5151. goto done;
  5152. }
  5153. /* Grab isolated pages from freelists. */
  5154. outer_end = isolate_freepages_range(&cc, outer_start, end);
  5155. if (!outer_end) {
  5156. ret = -EBUSY;
  5157. goto done;
  5158. }
  5159. /* Free head and tail (if any) */
  5160. if (start != outer_start)
  5161. free_contig_range(outer_start, start - outer_start);
  5162. if (end != outer_end)
  5163. free_contig_range(end, outer_end - end);
  5164. done:
  5165. undo_isolate_page_range(pfn_max_align_down(start),
  5166. pfn_max_align_up(end), migratetype);
  5167. return ret;
  5168. }
  5169. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  5170. {
  5171. unsigned int count = 0;
  5172. for (; nr_pages--; pfn++) {
  5173. struct page *page = pfn_to_page(pfn);
  5174. count += page_count(page) != 1;
  5175. __free_page(page);
  5176. }
  5177. WARN(count != 0, "%d pages are still in use!\n", count);
  5178. }
  5179. #endif
  5180. #ifdef CONFIG_MEMORY_HOTPLUG
  5181. static int __meminit __zone_pcp_update(void *data)
  5182. {
  5183. struct zone *zone = data;
  5184. int cpu;
  5185. unsigned long batch = zone_batchsize(zone), flags;
  5186. for_each_possible_cpu(cpu) {
  5187. struct per_cpu_pageset *pset;
  5188. struct per_cpu_pages *pcp;
  5189. pset = per_cpu_ptr(zone->pageset, cpu);
  5190. pcp = &pset->pcp;
  5191. local_irq_save(flags);
  5192. if (pcp->count > 0)
  5193. free_pcppages_bulk(zone, pcp->count, pcp);
  5194. drain_zonestat(zone, pset);
  5195. setup_pageset(pset, batch);
  5196. local_irq_restore(flags);
  5197. }
  5198. return 0;
  5199. }
  5200. void __meminit zone_pcp_update(struct zone *zone)
  5201. {
  5202. stop_machine(__zone_pcp_update, zone, NULL);
  5203. }
  5204. #endif
  5205. void zone_pcp_reset(struct zone *zone)
  5206. {
  5207. unsigned long flags;
  5208. int cpu;
  5209. struct per_cpu_pageset *pset;
  5210. /* avoid races with drain_pages() */
  5211. local_irq_save(flags);
  5212. if (zone->pageset != &boot_pageset) {
  5213. for_each_online_cpu(cpu) {
  5214. pset = per_cpu_ptr(zone->pageset, cpu);
  5215. drain_zonestat(zone, pset);
  5216. }
  5217. free_percpu(zone->pageset);
  5218. zone->pageset = &boot_pageset;
  5219. }
  5220. local_irq_restore(flags);
  5221. }
  5222. #ifdef CONFIG_MEMORY_HOTREMOVE
  5223. /*
  5224. * All pages in the range must be isolated before calling this.
  5225. */
  5226. void
  5227. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  5228. {
  5229. struct page *page;
  5230. struct zone *zone;
  5231. int order, i;
  5232. unsigned long pfn;
  5233. unsigned long flags;
  5234. /* find the first valid pfn */
  5235. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  5236. if (pfn_valid(pfn))
  5237. break;
  5238. if (pfn == end_pfn)
  5239. return;
  5240. zone = page_zone(pfn_to_page(pfn));
  5241. spin_lock_irqsave(&zone->lock, flags);
  5242. pfn = start_pfn;
  5243. while (pfn < end_pfn) {
  5244. if (!pfn_valid(pfn)) {
  5245. pfn++;
  5246. continue;
  5247. }
  5248. page = pfn_to_page(pfn);
  5249. /*
  5250. * The HWPoisoned page may be not in buddy system, and
  5251. * page_count() is not 0.
  5252. */
  5253. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  5254. pfn++;
  5255. SetPageReserved(page);
  5256. continue;
  5257. }
  5258. BUG_ON(page_count(page));
  5259. BUG_ON(!PageBuddy(page));
  5260. order = page_order(page);
  5261. #ifdef CONFIG_DEBUG_VM
  5262. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  5263. pfn, 1 << order, end_pfn);
  5264. #endif
  5265. list_del(&page->lru);
  5266. rmv_page_order(page);
  5267. zone->free_area[order].nr_free--;
  5268. for (i = 0; i < (1 << order); i++)
  5269. SetPageReserved((page+i));
  5270. pfn += (1 << order);
  5271. }
  5272. spin_unlock_irqrestore(&zone->lock, flags);
  5273. }
  5274. #endif
  5275. #ifdef CONFIG_MEMORY_FAILURE
  5276. bool is_free_buddy_page(struct page *page)
  5277. {
  5278. struct zone *zone = page_zone(page);
  5279. unsigned long pfn = page_to_pfn(page);
  5280. unsigned long flags;
  5281. int order;
  5282. spin_lock_irqsave(&zone->lock, flags);
  5283. for (order = 0; order < MAX_ORDER; order++) {
  5284. struct page *page_head = page - (pfn & ((1 << order) - 1));
  5285. if (PageBuddy(page_head) && page_order(page_head) >= order)
  5286. break;
  5287. }
  5288. spin_unlock_irqrestore(&zone->lock, flags);
  5289. return order < MAX_ORDER;
  5290. }
  5291. #endif
  5292. static const struct trace_print_flags pageflag_names[] = {
  5293. {1UL << PG_locked, "locked" },
  5294. {1UL << PG_error, "error" },
  5295. {1UL << PG_referenced, "referenced" },
  5296. {1UL << PG_uptodate, "uptodate" },
  5297. {1UL << PG_dirty, "dirty" },
  5298. {1UL << PG_lru, "lru" },
  5299. {1UL << PG_active, "active" },
  5300. {1UL << PG_slab, "slab" },
  5301. {1UL << PG_owner_priv_1, "owner_priv_1" },
  5302. {1UL << PG_arch_1, "arch_1" },
  5303. {1UL << PG_reserved, "reserved" },
  5304. {1UL << PG_private, "private" },
  5305. {1UL << PG_private_2, "private_2" },
  5306. {1UL << PG_writeback, "writeback" },
  5307. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  5308. {1UL << PG_head, "head" },
  5309. {1UL << PG_tail, "tail" },
  5310. #else
  5311. {1UL << PG_compound, "compound" },
  5312. #endif
  5313. {1UL << PG_swapcache, "swapcache" },
  5314. {1UL << PG_mappedtodisk, "mappedtodisk" },
  5315. {1UL << PG_reclaim, "reclaim" },
  5316. {1UL << PG_swapbacked, "swapbacked" },
  5317. {1UL << PG_unevictable, "unevictable" },
  5318. #ifdef CONFIG_MMU
  5319. {1UL << PG_mlocked, "mlocked" },
  5320. #endif
  5321. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  5322. {1UL << PG_uncached, "uncached" },
  5323. #endif
  5324. #ifdef CONFIG_MEMORY_FAILURE
  5325. {1UL << PG_hwpoison, "hwpoison" },
  5326. #endif
  5327. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5328. {1UL << PG_compound_lock, "compound_lock" },
  5329. #endif
  5330. };
  5331. static void dump_page_flags(unsigned long flags)
  5332. {
  5333. const char *delim = "";
  5334. unsigned long mask;
  5335. int i;
  5336. BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
  5337. printk(KERN_ALERT "page flags: %#lx(", flags);
  5338. /* remove zone id */
  5339. flags &= (1UL << NR_PAGEFLAGS) - 1;
  5340. for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
  5341. mask = pageflag_names[i].mask;
  5342. if ((flags & mask) != mask)
  5343. continue;
  5344. flags &= ~mask;
  5345. printk("%s%s", delim, pageflag_names[i].name);
  5346. delim = "|";
  5347. }
  5348. /* check for left over flags */
  5349. if (flags)
  5350. printk("%s%#lx", delim, flags);
  5351. printk(")\n");
  5352. }
  5353. void dump_page(struct page *page)
  5354. {
  5355. printk(KERN_ALERT
  5356. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  5357. page, atomic_read(&page->_count), page_mapcount(page),
  5358. page->mapping, page->index);
  5359. dump_page_flags(page->flags);
  5360. mem_cgroup_print_bad_page(page);
  5361. }