msg.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071
  1. /*
  2. * linux/ipc/msg.c
  3. * Copyright (C) 1992 Krishna Balasubramanian
  4. *
  5. * Removed all the remaining kerneld mess
  6. * Catch the -EFAULT stuff properly
  7. * Use GFP_KERNEL for messages as in 1.2
  8. * Fixed up the unchecked user space derefs
  9. * Copyright (C) 1998 Alan Cox & Andi Kleen
  10. *
  11. * /proc/sysvipc/msg support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
  12. *
  13. * mostly rewritten, threaded and wake-one semantics added
  14. * MSGMAX limit removed, sysctl's added
  15. * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
  16. *
  17. * support for audit of ipc object properties and permission changes
  18. * Dustin Kirkland <dustin.kirkland@us.ibm.com>
  19. *
  20. * namespaces support
  21. * OpenVZ, SWsoft Inc.
  22. * Pavel Emelianov <xemul@openvz.org>
  23. */
  24. #include <linux/capability.h>
  25. #include <linux/msg.h>
  26. #include <linux/spinlock.h>
  27. #include <linux/init.h>
  28. #include <linux/mm.h>
  29. #include <linux/proc_fs.h>
  30. #include <linux/list.h>
  31. #include <linux/security.h>
  32. #include <linux/sched.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/audit.h>
  35. #include <linux/seq_file.h>
  36. #include <linux/rwsem.h>
  37. #include <linux/nsproxy.h>
  38. #include <linux/ipc_namespace.h>
  39. #include <asm/current.h>
  40. #include <asm/uaccess.h>
  41. #include "util.h"
  42. /*
  43. * one msg_receiver structure for each sleeping receiver:
  44. */
  45. struct msg_receiver {
  46. struct list_head r_list;
  47. struct task_struct *r_tsk;
  48. int r_mode;
  49. long r_msgtype;
  50. long r_maxsize;
  51. struct msg_msg *volatile r_msg;
  52. };
  53. /* one msg_sender for each sleeping sender */
  54. struct msg_sender {
  55. struct list_head list;
  56. struct task_struct *tsk;
  57. };
  58. #define SEARCH_ANY 1
  59. #define SEARCH_EQUAL 2
  60. #define SEARCH_NOTEQUAL 3
  61. #define SEARCH_LESSEQUAL 4
  62. #define SEARCH_NUMBER 5
  63. #define msg_ids(ns) ((ns)->ids[IPC_MSG_IDS])
  64. #define msg_unlock(msq) ipc_unlock(&(msq)->q_perm)
  65. static void freeque(struct ipc_namespace *, struct kern_ipc_perm *);
  66. static int newque(struct ipc_namespace *, struct ipc_params *);
  67. #ifdef CONFIG_PROC_FS
  68. static int sysvipc_msg_proc_show(struct seq_file *s, void *it);
  69. #endif
  70. /*
  71. * Scale msgmni with the available lowmem size: the memory dedicated to msg
  72. * queues should occupy at most 1/MSG_MEM_SCALE of lowmem.
  73. * Also take into account the number of nsproxies created so far.
  74. * This should be done staying within the (MSGMNI , IPCMNI/nr_ipc_ns) range.
  75. */
  76. void recompute_msgmni(struct ipc_namespace *ns)
  77. {
  78. struct sysinfo i;
  79. unsigned long allowed;
  80. int nb_ns;
  81. si_meminfo(&i);
  82. allowed = (((i.totalram - i.totalhigh) / MSG_MEM_SCALE) * i.mem_unit)
  83. / MSGMNB;
  84. nb_ns = atomic_read(&nr_ipc_ns);
  85. allowed /= nb_ns;
  86. if (allowed < MSGMNI) {
  87. ns->msg_ctlmni = MSGMNI;
  88. return;
  89. }
  90. if (allowed > IPCMNI / nb_ns) {
  91. ns->msg_ctlmni = IPCMNI / nb_ns;
  92. return;
  93. }
  94. ns->msg_ctlmni = allowed;
  95. }
  96. void msg_init_ns(struct ipc_namespace *ns)
  97. {
  98. ns->msg_ctlmax = MSGMAX;
  99. ns->msg_ctlmnb = MSGMNB;
  100. recompute_msgmni(ns);
  101. atomic_set(&ns->msg_bytes, 0);
  102. atomic_set(&ns->msg_hdrs, 0);
  103. ipc_init_ids(&ns->ids[IPC_MSG_IDS]);
  104. }
  105. #ifdef CONFIG_IPC_NS
  106. void msg_exit_ns(struct ipc_namespace *ns)
  107. {
  108. free_ipcs(ns, &msg_ids(ns), freeque);
  109. idr_destroy(&ns->ids[IPC_MSG_IDS].ipcs_idr);
  110. }
  111. #endif
  112. void __init msg_init(void)
  113. {
  114. msg_init_ns(&init_ipc_ns);
  115. printk(KERN_INFO "msgmni has been set to %d\n",
  116. init_ipc_ns.msg_ctlmni);
  117. ipc_init_proc_interface("sysvipc/msg",
  118. " key msqid perms cbytes qnum lspid lrpid uid gid cuid cgid stime rtime ctime\n",
  119. IPC_MSG_IDS, sysvipc_msg_proc_show);
  120. }
  121. /*
  122. * msg_lock_(check_) routines are called in the paths where the rw_mutex
  123. * is not held.
  124. */
  125. static inline struct msg_queue *msg_lock(struct ipc_namespace *ns, int id)
  126. {
  127. struct kern_ipc_perm *ipcp = ipc_lock(&msg_ids(ns), id);
  128. if (IS_ERR(ipcp))
  129. return (struct msg_queue *)ipcp;
  130. return container_of(ipcp, struct msg_queue, q_perm);
  131. }
  132. static inline struct msg_queue *msg_lock_check(struct ipc_namespace *ns,
  133. int id)
  134. {
  135. struct kern_ipc_perm *ipcp = ipc_lock_check(&msg_ids(ns), id);
  136. if (IS_ERR(ipcp))
  137. return (struct msg_queue *)ipcp;
  138. return container_of(ipcp, struct msg_queue, q_perm);
  139. }
  140. static inline struct msg_queue *msq_obtain_object(struct ipc_namespace *ns, int id)
  141. {
  142. struct kern_ipc_perm *ipcp = ipc_obtain_object(&msg_ids(ns), id);
  143. if (IS_ERR(ipcp))
  144. return ERR_CAST(ipcp);
  145. return container_of(ipcp, struct msg_queue, q_perm);
  146. }
  147. static inline struct msg_queue *msq_obtain_object_check(struct ipc_namespace *ns,
  148. int id)
  149. {
  150. struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&msg_ids(ns), id);
  151. if (IS_ERR(ipcp))
  152. return ERR_CAST(ipcp);
  153. return container_of(ipcp, struct msg_queue, q_perm);
  154. }
  155. static inline void msg_rmid(struct ipc_namespace *ns, struct msg_queue *s)
  156. {
  157. ipc_rmid(&msg_ids(ns), &s->q_perm);
  158. }
  159. /**
  160. * newque - Create a new msg queue
  161. * @ns: namespace
  162. * @params: ptr to the structure that contains the key and msgflg
  163. *
  164. * Called with msg_ids.rw_mutex held (writer)
  165. */
  166. static int newque(struct ipc_namespace *ns, struct ipc_params *params)
  167. {
  168. struct msg_queue *msq;
  169. int id, retval;
  170. key_t key = params->key;
  171. int msgflg = params->flg;
  172. msq = ipc_rcu_alloc(sizeof(*msq));
  173. if (!msq)
  174. return -ENOMEM;
  175. msq->q_perm.mode = msgflg & S_IRWXUGO;
  176. msq->q_perm.key = key;
  177. msq->q_perm.security = NULL;
  178. retval = security_msg_queue_alloc(msq);
  179. if (retval) {
  180. ipc_rcu_putref(msq);
  181. return retval;
  182. }
  183. /* ipc_addid() locks msq upon success. */
  184. id = ipc_addid(&msg_ids(ns), &msq->q_perm, ns->msg_ctlmni);
  185. if (id < 0) {
  186. security_msg_queue_free(msq);
  187. ipc_rcu_putref(msq);
  188. return id;
  189. }
  190. msq->q_stime = msq->q_rtime = 0;
  191. msq->q_ctime = get_seconds();
  192. msq->q_cbytes = msq->q_qnum = 0;
  193. msq->q_qbytes = ns->msg_ctlmnb;
  194. msq->q_lspid = msq->q_lrpid = 0;
  195. INIT_LIST_HEAD(&msq->q_messages);
  196. INIT_LIST_HEAD(&msq->q_receivers);
  197. INIT_LIST_HEAD(&msq->q_senders);
  198. ipc_unlock_object(&msq->q_perm);
  199. rcu_read_unlock();
  200. return msq->q_perm.id;
  201. }
  202. static inline void ss_add(struct msg_queue *msq, struct msg_sender *mss)
  203. {
  204. mss->tsk = current;
  205. current->state = TASK_INTERRUPTIBLE;
  206. list_add_tail(&mss->list, &msq->q_senders);
  207. }
  208. static inline void ss_del(struct msg_sender *mss)
  209. {
  210. if (mss->list.next != NULL)
  211. list_del(&mss->list);
  212. }
  213. static void ss_wakeup(struct list_head *h, int kill)
  214. {
  215. struct msg_sender *mss, *t;
  216. list_for_each_entry_safe(mss, t, h, list) {
  217. if (kill)
  218. mss->list.next = NULL;
  219. wake_up_process(mss->tsk);
  220. }
  221. }
  222. static void expunge_all(struct msg_queue *msq, int res)
  223. {
  224. struct msg_receiver *msr, *t;
  225. list_for_each_entry_safe(msr, t, &msq->q_receivers, r_list) {
  226. msr->r_msg = NULL;
  227. wake_up_process(msr->r_tsk);
  228. smp_mb();
  229. msr->r_msg = ERR_PTR(res);
  230. }
  231. }
  232. /*
  233. * freeque() wakes up waiters on the sender and receiver waiting queue,
  234. * removes the message queue from message queue ID IDR, and cleans up all the
  235. * messages associated with this queue.
  236. *
  237. * msg_ids.rw_mutex (writer) and the spinlock for this message queue are held
  238. * before freeque() is called. msg_ids.rw_mutex remains locked on exit.
  239. */
  240. static void freeque(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
  241. {
  242. struct msg_msg *msg, *t;
  243. struct msg_queue *msq = container_of(ipcp, struct msg_queue, q_perm);
  244. expunge_all(msq, -EIDRM);
  245. ss_wakeup(&msq->q_senders, 1);
  246. msg_rmid(ns, msq);
  247. msg_unlock(msq);
  248. list_for_each_entry_safe(msg, t, &msq->q_messages, m_list) {
  249. atomic_dec(&ns->msg_hdrs);
  250. free_msg(msg);
  251. }
  252. atomic_sub(msq->q_cbytes, &ns->msg_bytes);
  253. security_msg_queue_free(msq);
  254. ipc_rcu_putref(msq);
  255. }
  256. /*
  257. * Called with msg_ids.rw_mutex and ipcp locked.
  258. */
  259. static inline int msg_security(struct kern_ipc_perm *ipcp, int msgflg)
  260. {
  261. struct msg_queue *msq = container_of(ipcp, struct msg_queue, q_perm);
  262. return security_msg_queue_associate(msq, msgflg);
  263. }
  264. SYSCALL_DEFINE2(msgget, key_t, key, int, msgflg)
  265. {
  266. struct ipc_namespace *ns;
  267. struct ipc_ops msg_ops;
  268. struct ipc_params msg_params;
  269. ns = current->nsproxy->ipc_ns;
  270. msg_ops.getnew = newque;
  271. msg_ops.associate = msg_security;
  272. msg_ops.more_checks = NULL;
  273. msg_params.key = key;
  274. msg_params.flg = msgflg;
  275. return ipcget(ns, &msg_ids(ns), &msg_ops, &msg_params);
  276. }
  277. static inline unsigned long
  278. copy_msqid_to_user(void __user *buf, struct msqid64_ds *in, int version)
  279. {
  280. switch(version) {
  281. case IPC_64:
  282. return copy_to_user(buf, in, sizeof(*in));
  283. case IPC_OLD:
  284. {
  285. struct msqid_ds out;
  286. memset(&out, 0, sizeof(out));
  287. ipc64_perm_to_ipc_perm(&in->msg_perm, &out.msg_perm);
  288. out.msg_stime = in->msg_stime;
  289. out.msg_rtime = in->msg_rtime;
  290. out.msg_ctime = in->msg_ctime;
  291. if (in->msg_cbytes > USHRT_MAX)
  292. out.msg_cbytes = USHRT_MAX;
  293. else
  294. out.msg_cbytes = in->msg_cbytes;
  295. out.msg_lcbytes = in->msg_cbytes;
  296. if (in->msg_qnum > USHRT_MAX)
  297. out.msg_qnum = USHRT_MAX;
  298. else
  299. out.msg_qnum = in->msg_qnum;
  300. if (in->msg_qbytes > USHRT_MAX)
  301. out.msg_qbytes = USHRT_MAX;
  302. else
  303. out.msg_qbytes = in->msg_qbytes;
  304. out.msg_lqbytes = in->msg_qbytes;
  305. out.msg_lspid = in->msg_lspid;
  306. out.msg_lrpid = in->msg_lrpid;
  307. return copy_to_user(buf, &out, sizeof(out));
  308. }
  309. default:
  310. return -EINVAL;
  311. }
  312. }
  313. static inline unsigned long
  314. copy_msqid_from_user(struct msqid64_ds *out, void __user *buf, int version)
  315. {
  316. switch(version) {
  317. case IPC_64:
  318. if (copy_from_user(out, buf, sizeof(*out)))
  319. return -EFAULT;
  320. return 0;
  321. case IPC_OLD:
  322. {
  323. struct msqid_ds tbuf_old;
  324. if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
  325. return -EFAULT;
  326. out->msg_perm.uid = tbuf_old.msg_perm.uid;
  327. out->msg_perm.gid = tbuf_old.msg_perm.gid;
  328. out->msg_perm.mode = tbuf_old.msg_perm.mode;
  329. if (tbuf_old.msg_qbytes == 0)
  330. out->msg_qbytes = tbuf_old.msg_lqbytes;
  331. else
  332. out->msg_qbytes = tbuf_old.msg_qbytes;
  333. return 0;
  334. }
  335. default:
  336. return -EINVAL;
  337. }
  338. }
  339. /*
  340. * This function handles some msgctl commands which require the rw_mutex
  341. * to be held in write mode.
  342. * NOTE: no locks must be held, the rw_mutex is taken inside this function.
  343. */
  344. static int msgctl_down(struct ipc_namespace *ns, int msqid, int cmd,
  345. struct msqid_ds __user *buf, int version)
  346. {
  347. struct kern_ipc_perm *ipcp;
  348. struct msqid64_ds uninitialized_var(msqid64);
  349. struct msg_queue *msq;
  350. int err;
  351. if (cmd == IPC_SET) {
  352. if (copy_msqid_from_user(&msqid64, buf, version))
  353. return -EFAULT;
  354. }
  355. down_write(&msg_ids(ns).rw_mutex);
  356. rcu_read_lock();
  357. ipcp = ipcctl_pre_down_nolock(ns, &msg_ids(ns), msqid, cmd,
  358. &msqid64.msg_perm, msqid64.msg_qbytes);
  359. if (IS_ERR(ipcp)) {
  360. err = PTR_ERR(ipcp);
  361. goto out_unlock1;
  362. }
  363. msq = container_of(ipcp, struct msg_queue, q_perm);
  364. err = security_msg_queue_msgctl(msq, cmd);
  365. if (err)
  366. goto out_unlock1;
  367. switch (cmd) {
  368. case IPC_RMID:
  369. ipc_lock_object(&msq->q_perm);
  370. /* freeque unlocks the ipc object and rcu */
  371. freeque(ns, ipcp);
  372. goto out_up;
  373. case IPC_SET:
  374. if (msqid64.msg_qbytes > ns->msg_ctlmnb &&
  375. !capable(CAP_SYS_RESOURCE)) {
  376. err = -EPERM;
  377. goto out_unlock1;
  378. }
  379. ipc_lock_object(&msq->q_perm);
  380. err = ipc_update_perm(&msqid64.msg_perm, ipcp);
  381. if (err)
  382. goto out_unlock0;
  383. msq->q_qbytes = msqid64.msg_qbytes;
  384. msq->q_ctime = get_seconds();
  385. /* sleeping receivers might be excluded by
  386. * stricter permissions.
  387. */
  388. expunge_all(msq, -EAGAIN);
  389. /* sleeping senders might be able to send
  390. * due to a larger queue size.
  391. */
  392. ss_wakeup(&msq->q_senders, 0);
  393. break;
  394. default:
  395. err = -EINVAL;
  396. goto out_unlock1;
  397. }
  398. out_unlock0:
  399. ipc_unlock_object(&msq->q_perm);
  400. out_unlock1:
  401. rcu_read_unlock();
  402. out_up:
  403. up_write(&msg_ids(ns).rw_mutex);
  404. return err;
  405. }
  406. static int msgctl_nolock(struct ipc_namespace *ns, int msqid,
  407. int cmd, int version, void __user *buf)
  408. {
  409. int err;
  410. struct msg_queue *msq;
  411. switch (cmd) {
  412. case IPC_INFO:
  413. case MSG_INFO:
  414. {
  415. struct msginfo msginfo;
  416. int max_id;
  417. if (!buf)
  418. return -EFAULT;
  419. /*
  420. * We must not return kernel stack data.
  421. * due to padding, it's not enough
  422. * to set all member fields.
  423. */
  424. err = security_msg_queue_msgctl(NULL, cmd);
  425. if (err)
  426. return err;
  427. memset(&msginfo, 0, sizeof(msginfo));
  428. msginfo.msgmni = ns->msg_ctlmni;
  429. msginfo.msgmax = ns->msg_ctlmax;
  430. msginfo.msgmnb = ns->msg_ctlmnb;
  431. msginfo.msgssz = MSGSSZ;
  432. msginfo.msgseg = MSGSEG;
  433. down_read(&msg_ids(ns).rw_mutex);
  434. if (cmd == MSG_INFO) {
  435. msginfo.msgpool = msg_ids(ns).in_use;
  436. msginfo.msgmap = atomic_read(&ns->msg_hdrs);
  437. msginfo.msgtql = atomic_read(&ns->msg_bytes);
  438. } else {
  439. msginfo.msgmap = MSGMAP;
  440. msginfo.msgpool = MSGPOOL;
  441. msginfo.msgtql = MSGTQL;
  442. }
  443. max_id = ipc_get_maxid(&msg_ids(ns));
  444. up_read(&msg_ids(ns).rw_mutex);
  445. if (copy_to_user(buf, &msginfo, sizeof(struct msginfo)))
  446. return -EFAULT;
  447. return (max_id < 0) ? 0 : max_id;
  448. }
  449. case MSG_STAT:
  450. case IPC_STAT:
  451. {
  452. struct msqid64_ds tbuf;
  453. int success_return;
  454. if (!buf)
  455. return -EFAULT;
  456. memset(&tbuf, 0, sizeof(tbuf));
  457. rcu_read_lock();
  458. if (cmd == MSG_STAT) {
  459. msq = msq_obtain_object(ns, msqid);
  460. if (IS_ERR(msq)) {
  461. err = PTR_ERR(msq);
  462. goto out_unlock;
  463. }
  464. success_return = msq->q_perm.id;
  465. } else {
  466. msq = msq_obtain_object_check(ns, msqid);
  467. if (IS_ERR(msq)) {
  468. err = PTR_ERR(msq);
  469. goto out_unlock;
  470. }
  471. success_return = 0;
  472. }
  473. err = -EACCES;
  474. if (ipcperms(ns, &msq->q_perm, S_IRUGO))
  475. goto out_unlock;
  476. err = security_msg_queue_msgctl(msq, cmd);
  477. if (err)
  478. goto out_unlock;
  479. kernel_to_ipc64_perm(&msq->q_perm, &tbuf.msg_perm);
  480. tbuf.msg_stime = msq->q_stime;
  481. tbuf.msg_rtime = msq->q_rtime;
  482. tbuf.msg_ctime = msq->q_ctime;
  483. tbuf.msg_cbytes = msq->q_cbytes;
  484. tbuf.msg_qnum = msq->q_qnum;
  485. tbuf.msg_qbytes = msq->q_qbytes;
  486. tbuf.msg_lspid = msq->q_lspid;
  487. tbuf.msg_lrpid = msq->q_lrpid;
  488. rcu_read_unlock();
  489. if (copy_msqid_to_user(buf, &tbuf, version))
  490. return -EFAULT;
  491. return success_return;
  492. }
  493. default:
  494. return -EINVAL;
  495. }
  496. return err;
  497. out_unlock:
  498. rcu_read_unlock();
  499. return err;
  500. }
  501. SYSCALL_DEFINE3(msgctl, int, msqid, int, cmd, struct msqid_ds __user *, buf)
  502. {
  503. int version;
  504. struct ipc_namespace *ns;
  505. if (msqid < 0 || cmd < 0)
  506. return -EINVAL;
  507. version = ipc_parse_version(&cmd);
  508. ns = current->nsproxy->ipc_ns;
  509. switch (cmd) {
  510. case IPC_INFO:
  511. case MSG_INFO:
  512. case MSG_STAT: /* msqid is an index rather than a msg queue id */
  513. case IPC_STAT:
  514. return msgctl_nolock(ns, msqid, cmd, version, buf);
  515. case IPC_SET:
  516. case IPC_RMID:
  517. return msgctl_down(ns, msqid, cmd, buf, version);
  518. default:
  519. return -EINVAL;
  520. }
  521. }
  522. static int testmsg(struct msg_msg *msg, long type, int mode)
  523. {
  524. switch(mode)
  525. {
  526. case SEARCH_ANY:
  527. case SEARCH_NUMBER:
  528. return 1;
  529. case SEARCH_LESSEQUAL:
  530. if (msg->m_type <=type)
  531. return 1;
  532. break;
  533. case SEARCH_EQUAL:
  534. if (msg->m_type == type)
  535. return 1;
  536. break;
  537. case SEARCH_NOTEQUAL:
  538. if (msg->m_type != type)
  539. return 1;
  540. break;
  541. }
  542. return 0;
  543. }
  544. static inline int pipelined_send(struct msg_queue *msq, struct msg_msg *msg)
  545. {
  546. struct msg_receiver *msr, *t;
  547. list_for_each_entry_safe(msr, t, &msq->q_receivers, r_list) {
  548. if (testmsg(msg, msr->r_msgtype, msr->r_mode) &&
  549. !security_msg_queue_msgrcv(msq, msg, msr->r_tsk,
  550. msr->r_msgtype, msr->r_mode)) {
  551. list_del(&msr->r_list);
  552. if (msr->r_maxsize < msg->m_ts) {
  553. msr->r_msg = NULL;
  554. wake_up_process(msr->r_tsk);
  555. smp_mb();
  556. msr->r_msg = ERR_PTR(-E2BIG);
  557. } else {
  558. msr->r_msg = NULL;
  559. msq->q_lrpid = task_pid_vnr(msr->r_tsk);
  560. msq->q_rtime = get_seconds();
  561. wake_up_process(msr->r_tsk);
  562. smp_mb();
  563. msr->r_msg = msg;
  564. return 1;
  565. }
  566. }
  567. }
  568. return 0;
  569. }
  570. long do_msgsnd(int msqid, long mtype, void __user *mtext,
  571. size_t msgsz, int msgflg)
  572. {
  573. struct msg_queue *msq;
  574. struct msg_msg *msg;
  575. int err;
  576. struct ipc_namespace *ns;
  577. ns = current->nsproxy->ipc_ns;
  578. if (msgsz > ns->msg_ctlmax || (long) msgsz < 0 || msqid < 0)
  579. return -EINVAL;
  580. if (mtype < 1)
  581. return -EINVAL;
  582. msg = load_msg(mtext, msgsz);
  583. if (IS_ERR(msg))
  584. return PTR_ERR(msg);
  585. msg->m_type = mtype;
  586. msg->m_ts = msgsz;
  587. rcu_read_lock();
  588. msq = msq_obtain_object_check(ns, msqid);
  589. if (IS_ERR(msq)) {
  590. err = PTR_ERR(msq);
  591. goto out_unlock1;
  592. }
  593. for (;;) {
  594. struct msg_sender s;
  595. err = -EACCES;
  596. if (ipcperms(ns, &msq->q_perm, S_IWUGO))
  597. goto out_unlock1;
  598. err = security_msg_queue_msgsnd(msq, msg, msgflg);
  599. if (err)
  600. goto out_unlock1;
  601. if (msgsz + msq->q_cbytes <= msq->q_qbytes &&
  602. 1 + msq->q_qnum <= msq->q_qbytes) {
  603. break;
  604. }
  605. /* queue full, wait: */
  606. if (msgflg & IPC_NOWAIT) {
  607. err = -EAGAIN;
  608. goto out_unlock1;
  609. }
  610. ipc_lock_object(&msq->q_perm);
  611. ss_add(msq, &s);
  612. if (!ipc_rcu_getref(msq)) {
  613. err = -EIDRM;
  614. goto out_unlock0;
  615. }
  616. ipc_unlock_object(&msq->q_perm);
  617. rcu_read_unlock();
  618. schedule();
  619. rcu_read_lock();
  620. ipc_lock_object(&msq->q_perm);
  621. ipc_rcu_putref(msq);
  622. if (msq->q_perm.deleted) {
  623. err = -EIDRM;
  624. goto out_unlock0;
  625. }
  626. ss_del(&s);
  627. if (signal_pending(current)) {
  628. err = -ERESTARTNOHAND;
  629. goto out_unlock0;
  630. }
  631. ipc_unlock_object(&msq->q_perm);
  632. }
  633. ipc_lock_object(&msq->q_perm);
  634. msq->q_lspid = task_tgid_vnr(current);
  635. msq->q_stime = get_seconds();
  636. if (!pipelined_send(msq, msg)) {
  637. /* no one is waiting for this message, enqueue it */
  638. list_add_tail(&msg->m_list, &msq->q_messages);
  639. msq->q_cbytes += msgsz;
  640. msq->q_qnum++;
  641. atomic_add(msgsz, &ns->msg_bytes);
  642. atomic_inc(&ns->msg_hdrs);
  643. }
  644. err = 0;
  645. msg = NULL;
  646. out_unlock0:
  647. ipc_unlock_object(&msq->q_perm);
  648. out_unlock1:
  649. rcu_read_unlock();
  650. if (msg != NULL)
  651. free_msg(msg);
  652. return err;
  653. }
  654. SYSCALL_DEFINE4(msgsnd, int, msqid, struct msgbuf __user *, msgp, size_t, msgsz,
  655. int, msgflg)
  656. {
  657. long mtype;
  658. if (get_user(mtype, &msgp->mtype))
  659. return -EFAULT;
  660. return do_msgsnd(msqid, mtype, msgp->mtext, msgsz, msgflg);
  661. }
  662. static inline int convert_mode(long *msgtyp, int msgflg)
  663. {
  664. if (msgflg & MSG_COPY)
  665. return SEARCH_NUMBER;
  666. /*
  667. * find message of correct type.
  668. * msgtyp = 0 => get first.
  669. * msgtyp > 0 => get first message of matching type.
  670. * msgtyp < 0 => get message with least type must be < abs(msgtype).
  671. */
  672. if (*msgtyp == 0)
  673. return SEARCH_ANY;
  674. if (*msgtyp < 0) {
  675. *msgtyp = -*msgtyp;
  676. return SEARCH_LESSEQUAL;
  677. }
  678. if (msgflg & MSG_EXCEPT)
  679. return SEARCH_NOTEQUAL;
  680. return SEARCH_EQUAL;
  681. }
  682. static long do_msg_fill(void __user *dest, struct msg_msg *msg, size_t bufsz)
  683. {
  684. struct msgbuf __user *msgp = dest;
  685. size_t msgsz;
  686. if (put_user(msg->m_type, &msgp->mtype))
  687. return -EFAULT;
  688. msgsz = (bufsz > msg->m_ts) ? msg->m_ts : bufsz;
  689. if (store_msg(msgp->mtext, msg, msgsz))
  690. return -EFAULT;
  691. return msgsz;
  692. }
  693. #ifdef CONFIG_CHECKPOINT_RESTORE
  694. /*
  695. * This function creates new kernel message structure, large enough to store
  696. * bufsz message bytes.
  697. */
  698. static inline struct msg_msg *prepare_copy(void __user *buf, size_t bufsz)
  699. {
  700. struct msg_msg *copy;
  701. /*
  702. * Create dummy message to copy real message to.
  703. */
  704. copy = load_msg(buf, bufsz);
  705. if (!IS_ERR(copy))
  706. copy->m_ts = bufsz;
  707. return copy;
  708. }
  709. static inline void free_copy(struct msg_msg *copy)
  710. {
  711. if (copy)
  712. free_msg(copy);
  713. }
  714. #else
  715. static inline struct msg_msg *prepare_copy(void __user *buf, size_t bufsz)
  716. {
  717. return ERR_PTR(-ENOSYS);
  718. }
  719. static inline void free_copy(struct msg_msg *copy)
  720. {
  721. }
  722. #endif
  723. static struct msg_msg *find_msg(struct msg_queue *msq, long *msgtyp, int mode)
  724. {
  725. struct msg_msg *msg;
  726. long count = 0;
  727. list_for_each_entry(msg, &msq->q_messages, m_list) {
  728. if (testmsg(msg, *msgtyp, mode) &&
  729. !security_msg_queue_msgrcv(msq, msg, current,
  730. *msgtyp, mode)) {
  731. if (mode == SEARCH_LESSEQUAL && msg->m_type != 1) {
  732. *msgtyp = msg->m_type - 1;
  733. } else if (mode == SEARCH_NUMBER) {
  734. if (*msgtyp == count)
  735. return msg;
  736. } else
  737. return msg;
  738. count++;
  739. }
  740. }
  741. return ERR_PTR(-EAGAIN);
  742. }
  743. long do_msgrcv(int msqid, void __user *buf, size_t bufsz, long msgtyp, int msgflg,
  744. long (*msg_handler)(void __user *, struct msg_msg *, size_t))
  745. {
  746. int mode;
  747. struct msg_queue *msq;
  748. struct ipc_namespace *ns;
  749. struct msg_msg *msg, *copy = NULL;
  750. ns = current->nsproxy->ipc_ns;
  751. if (msqid < 0 || (long) bufsz < 0)
  752. return -EINVAL;
  753. if (msgflg & MSG_COPY) {
  754. copy = prepare_copy(buf, min_t(size_t, bufsz, ns->msg_ctlmax));
  755. if (IS_ERR(copy))
  756. return PTR_ERR(copy);
  757. }
  758. mode = convert_mode(&msgtyp, msgflg);
  759. rcu_read_lock();
  760. msq = msq_obtain_object_check(ns, msqid);
  761. if (IS_ERR(msq)) {
  762. rcu_read_unlock();
  763. free_copy(copy);
  764. return PTR_ERR(msq);
  765. }
  766. for (;;) {
  767. struct msg_receiver msr_d;
  768. msg = ERR_PTR(-EACCES);
  769. if (ipcperms(ns, &msq->q_perm, S_IRUGO))
  770. goto out_unlock1;
  771. ipc_lock_object(&msq->q_perm);
  772. msg = find_msg(msq, &msgtyp, mode);
  773. if (!IS_ERR(msg)) {
  774. /*
  775. * Found a suitable message.
  776. * Unlink it from the queue.
  777. */
  778. if ((bufsz < msg->m_ts) && !(msgflg & MSG_NOERROR)) {
  779. msg = ERR_PTR(-E2BIG);
  780. goto out_unlock0;
  781. }
  782. /*
  783. * If we are copying, then do not unlink message and do
  784. * not update queue parameters.
  785. */
  786. if (msgflg & MSG_COPY) {
  787. msg = copy_msg(msg, copy);
  788. goto out_unlock0;
  789. }
  790. list_del(&msg->m_list);
  791. msq->q_qnum--;
  792. msq->q_rtime = get_seconds();
  793. msq->q_lrpid = task_tgid_vnr(current);
  794. msq->q_cbytes -= msg->m_ts;
  795. atomic_sub(msg->m_ts, &ns->msg_bytes);
  796. atomic_dec(&ns->msg_hdrs);
  797. ss_wakeup(&msq->q_senders, 0);
  798. goto out_unlock0;
  799. }
  800. /* No message waiting. Wait for a message */
  801. if (msgflg & IPC_NOWAIT) {
  802. msg = ERR_PTR(-ENOMSG);
  803. goto out_unlock0;
  804. }
  805. list_add_tail(&msr_d.r_list, &msq->q_receivers);
  806. msr_d.r_tsk = current;
  807. msr_d.r_msgtype = msgtyp;
  808. msr_d.r_mode = mode;
  809. if (msgflg & MSG_NOERROR)
  810. msr_d.r_maxsize = INT_MAX;
  811. else
  812. msr_d.r_maxsize = bufsz;
  813. msr_d.r_msg = ERR_PTR(-EAGAIN);
  814. current->state = TASK_INTERRUPTIBLE;
  815. ipc_unlock_object(&msq->q_perm);
  816. rcu_read_unlock();
  817. schedule();
  818. /* Lockless receive, part 1:
  819. * Disable preemption. We don't hold a reference to the queue
  820. * and getting a reference would defeat the idea of a lockless
  821. * operation, thus the code relies on rcu to guarantee the
  822. * existence of msq:
  823. * Prior to destruction, expunge_all(-EIRDM) changes r_msg.
  824. * Thus if r_msg is -EAGAIN, then the queue not yet destroyed.
  825. * rcu_read_lock() prevents preemption between reading r_msg
  826. * and acquiring the q_perm.lock in ipc_lock_object().
  827. */
  828. rcu_read_lock();
  829. /* Lockless receive, part 2:
  830. * Wait until pipelined_send or expunge_all are outside of
  831. * wake_up_process(). There is a race with exit(), see
  832. * ipc/mqueue.c for the details.
  833. */
  834. msg = (struct msg_msg*)msr_d.r_msg;
  835. while (msg == NULL) {
  836. cpu_relax();
  837. msg = (struct msg_msg *)msr_d.r_msg;
  838. }
  839. /* Lockless receive, part 3:
  840. * If there is a message or an error then accept it without
  841. * locking.
  842. */
  843. if (msg != ERR_PTR(-EAGAIN))
  844. goto out_unlock1;
  845. /* Lockless receive, part 3:
  846. * Acquire the queue spinlock.
  847. */
  848. ipc_lock_object(&msq->q_perm);
  849. /* Lockless receive, part 4:
  850. * Repeat test after acquiring the spinlock.
  851. */
  852. msg = (struct msg_msg*)msr_d.r_msg;
  853. if (msg != ERR_PTR(-EAGAIN))
  854. goto out_unlock0;
  855. list_del(&msr_d.r_list);
  856. if (signal_pending(current)) {
  857. msg = ERR_PTR(-ERESTARTNOHAND);
  858. goto out_unlock0;
  859. }
  860. ipc_unlock_object(&msq->q_perm);
  861. }
  862. out_unlock0:
  863. ipc_unlock_object(&msq->q_perm);
  864. out_unlock1:
  865. rcu_read_unlock();
  866. if (IS_ERR(msg)) {
  867. free_copy(copy);
  868. return PTR_ERR(msg);
  869. }
  870. bufsz = msg_handler(buf, msg, bufsz);
  871. free_msg(msg);
  872. return bufsz;
  873. }
  874. SYSCALL_DEFINE5(msgrcv, int, msqid, struct msgbuf __user *, msgp, size_t, msgsz,
  875. long, msgtyp, int, msgflg)
  876. {
  877. return do_msgrcv(msqid, msgp, msgsz, msgtyp, msgflg, do_msg_fill);
  878. }
  879. #ifdef CONFIG_PROC_FS
  880. static int sysvipc_msg_proc_show(struct seq_file *s, void *it)
  881. {
  882. struct user_namespace *user_ns = seq_user_ns(s);
  883. struct msg_queue *msq = it;
  884. return seq_printf(s,
  885. "%10d %10d %4o %10lu %10lu %5u %5u %5u %5u %5u %5u %10lu %10lu %10lu\n",
  886. msq->q_perm.key,
  887. msq->q_perm.id,
  888. msq->q_perm.mode,
  889. msq->q_cbytes,
  890. msq->q_qnum,
  891. msq->q_lspid,
  892. msq->q_lrpid,
  893. from_kuid_munged(user_ns, msq->q_perm.uid),
  894. from_kgid_munged(user_ns, msq->q_perm.gid),
  895. from_kuid_munged(user_ns, msq->q_perm.cuid),
  896. from_kgid_munged(user_ns, msq->q_perm.cgid),
  897. msq->q_stime,
  898. msq->q_rtime,
  899. msq->q_ctime);
  900. }
  901. #endif