spi_bfin5xx.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470
  1. /*
  2. * Blackfin On-Chip SPI Driver
  3. *
  4. * Copyright 2004-2007 Analog Devices Inc.
  5. *
  6. * Enter bugs at http://blackfin.uclinux.org/
  7. *
  8. * Licensed under the GPL-2 or later.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/delay.h>
  13. #include <linux/device.h>
  14. #include <linux/slab.h>
  15. #include <linux/io.h>
  16. #include <linux/ioport.h>
  17. #include <linux/irq.h>
  18. #include <linux/errno.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/workqueue.h>
  24. #include <asm/dma.h>
  25. #include <asm/portmux.h>
  26. #include <asm/bfin5xx_spi.h>
  27. #include <asm/cacheflush.h>
  28. #define DRV_NAME "bfin-spi"
  29. #define DRV_AUTHOR "Bryan Wu, Luke Yang"
  30. #define DRV_DESC "Blackfin on-chip SPI Controller Driver"
  31. #define DRV_VERSION "1.0"
  32. MODULE_AUTHOR(DRV_AUTHOR);
  33. MODULE_DESCRIPTION(DRV_DESC);
  34. MODULE_LICENSE("GPL");
  35. #define START_STATE ((void *)0)
  36. #define RUNNING_STATE ((void *)1)
  37. #define DONE_STATE ((void *)2)
  38. #define ERROR_STATE ((void *)-1)
  39. struct master_data;
  40. struct transfer_ops {
  41. void (*write) (struct master_data *);
  42. void (*read) (struct master_data *);
  43. void (*duplex) (struct master_data *);
  44. };
  45. struct master_data {
  46. /* Driver model hookup */
  47. struct platform_device *pdev;
  48. /* SPI framework hookup */
  49. struct spi_master *master;
  50. /* Regs base of SPI controller */
  51. void __iomem *regs_base;
  52. /* Pin request list */
  53. u16 *pin_req;
  54. /* BFIN hookup */
  55. struct bfin5xx_spi_master *master_info;
  56. /* Driver message queue */
  57. struct workqueue_struct *workqueue;
  58. struct work_struct pump_messages;
  59. spinlock_t lock;
  60. struct list_head queue;
  61. int busy;
  62. bool running;
  63. /* Message Transfer pump */
  64. struct tasklet_struct pump_transfers;
  65. /* Current message transfer state info */
  66. struct spi_message *cur_msg;
  67. struct spi_transfer *cur_transfer;
  68. struct slave_data *cur_chip;
  69. size_t len_in_bytes;
  70. size_t len;
  71. void *tx;
  72. void *tx_end;
  73. void *rx;
  74. void *rx_end;
  75. /* DMA stuffs */
  76. int dma_channel;
  77. int dma_mapped;
  78. int dma_requested;
  79. dma_addr_t rx_dma;
  80. dma_addr_t tx_dma;
  81. int irq_requested;
  82. int spi_irq;
  83. size_t rx_map_len;
  84. size_t tx_map_len;
  85. u8 n_bytes;
  86. u16 ctrl_reg;
  87. u16 flag_reg;
  88. int cs_change;
  89. const struct transfer_ops *ops;
  90. };
  91. struct slave_data {
  92. u16 ctl_reg;
  93. u16 baud;
  94. u16 flag;
  95. u8 chip_select_num;
  96. u8 enable_dma;
  97. u16 cs_chg_udelay; /* Some devices require > 255usec delay */
  98. u32 cs_gpio;
  99. u16 idle_tx_val;
  100. u8 pio_interrupt; /* use spi data irq */
  101. const struct transfer_ops *ops;
  102. };
  103. #define DEFINE_SPI_REG(reg, off) \
  104. static inline u16 read_##reg(struct master_data *drv_data) \
  105. { return bfin_read16(drv_data->regs_base + off); } \
  106. static inline void write_##reg(struct master_data *drv_data, u16 v) \
  107. { bfin_write16(drv_data->regs_base + off, v); }
  108. DEFINE_SPI_REG(CTRL, 0x00)
  109. DEFINE_SPI_REG(FLAG, 0x04)
  110. DEFINE_SPI_REG(STAT, 0x08)
  111. DEFINE_SPI_REG(TDBR, 0x0C)
  112. DEFINE_SPI_REG(RDBR, 0x10)
  113. DEFINE_SPI_REG(BAUD, 0x14)
  114. DEFINE_SPI_REG(SHAW, 0x18)
  115. static void bfin_spi_enable(struct master_data *drv_data)
  116. {
  117. u16 cr;
  118. cr = read_CTRL(drv_data);
  119. write_CTRL(drv_data, (cr | BIT_CTL_ENABLE));
  120. }
  121. static void bfin_spi_disable(struct master_data *drv_data)
  122. {
  123. u16 cr;
  124. cr = read_CTRL(drv_data);
  125. write_CTRL(drv_data, (cr & (~BIT_CTL_ENABLE)));
  126. }
  127. /* Caculate the SPI_BAUD register value based on input HZ */
  128. static u16 hz_to_spi_baud(u32 speed_hz)
  129. {
  130. u_long sclk = get_sclk();
  131. u16 spi_baud = (sclk / (2 * speed_hz));
  132. if ((sclk % (2 * speed_hz)) > 0)
  133. spi_baud++;
  134. if (spi_baud < MIN_SPI_BAUD_VAL)
  135. spi_baud = MIN_SPI_BAUD_VAL;
  136. return spi_baud;
  137. }
  138. static int bfin_spi_flush(struct master_data *drv_data)
  139. {
  140. unsigned long limit = loops_per_jiffy << 1;
  141. /* wait for stop and clear stat */
  142. while (!(read_STAT(drv_data) & BIT_STAT_SPIF) && --limit)
  143. cpu_relax();
  144. write_STAT(drv_data, BIT_STAT_CLR);
  145. return limit;
  146. }
  147. /* Chip select operation functions for cs_change flag */
  148. static void bfin_spi_cs_active(struct master_data *drv_data, struct slave_data *chip)
  149. {
  150. if (likely(chip->chip_select_num < MAX_CTRL_CS)) {
  151. u16 flag = read_FLAG(drv_data);
  152. flag &= ~chip->flag;
  153. write_FLAG(drv_data, flag);
  154. } else {
  155. gpio_set_value(chip->cs_gpio, 0);
  156. }
  157. }
  158. static void bfin_spi_cs_deactive(struct master_data *drv_data, struct slave_data *chip)
  159. {
  160. if (likely(chip->chip_select_num < MAX_CTRL_CS)) {
  161. u16 flag = read_FLAG(drv_data);
  162. flag |= chip->flag;
  163. write_FLAG(drv_data, flag);
  164. } else {
  165. gpio_set_value(chip->cs_gpio, 1);
  166. }
  167. /* Move delay here for consistency */
  168. if (chip->cs_chg_udelay)
  169. udelay(chip->cs_chg_udelay);
  170. }
  171. /* enable or disable the pin muxed by GPIO and SPI CS to work as SPI CS */
  172. static inline void bfin_spi_cs_enable(struct master_data *drv_data, struct slave_data *chip)
  173. {
  174. if (chip->chip_select_num < MAX_CTRL_CS) {
  175. u16 flag = read_FLAG(drv_data);
  176. flag |= (chip->flag >> 8);
  177. write_FLAG(drv_data, flag);
  178. }
  179. }
  180. static inline void bfin_spi_cs_disable(struct master_data *drv_data, struct slave_data *chip)
  181. {
  182. if (chip->chip_select_num < MAX_CTRL_CS) {
  183. u16 flag = read_FLAG(drv_data);
  184. flag &= ~(chip->flag >> 8);
  185. write_FLAG(drv_data, flag);
  186. }
  187. }
  188. /* stop controller and re-config current chip*/
  189. static void bfin_spi_restore_state(struct master_data *drv_data)
  190. {
  191. struct slave_data *chip = drv_data->cur_chip;
  192. /* Clear status and disable clock */
  193. write_STAT(drv_data, BIT_STAT_CLR);
  194. bfin_spi_disable(drv_data);
  195. dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
  196. SSYNC();
  197. /* Load the registers */
  198. write_CTRL(drv_data, chip->ctl_reg);
  199. write_BAUD(drv_data, chip->baud);
  200. bfin_spi_enable(drv_data);
  201. bfin_spi_cs_active(drv_data, chip);
  202. }
  203. /* used to kick off transfer in rx mode and read unwanted RX data */
  204. static inline void bfin_spi_dummy_read(struct master_data *drv_data)
  205. {
  206. (void) read_RDBR(drv_data);
  207. }
  208. static void bfin_spi_u8_writer(struct master_data *drv_data)
  209. {
  210. /* clear RXS (we check for RXS inside the loop) */
  211. bfin_spi_dummy_read(drv_data);
  212. while (drv_data->tx < drv_data->tx_end) {
  213. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  214. /* wait until transfer finished.
  215. checking SPIF or TXS may not guarantee transfer completion */
  216. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  217. cpu_relax();
  218. /* discard RX data and clear RXS */
  219. bfin_spi_dummy_read(drv_data);
  220. }
  221. }
  222. static void bfin_spi_u8_reader(struct master_data *drv_data)
  223. {
  224. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  225. /* discard old RX data and clear RXS */
  226. bfin_spi_dummy_read(drv_data);
  227. while (drv_data->rx < drv_data->rx_end) {
  228. write_TDBR(drv_data, tx_val);
  229. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  230. cpu_relax();
  231. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  232. }
  233. }
  234. static void bfin_spi_u8_duplex(struct master_data *drv_data)
  235. {
  236. /* discard old RX data and clear RXS */
  237. bfin_spi_dummy_read(drv_data);
  238. while (drv_data->rx < drv_data->rx_end) {
  239. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  240. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  241. cpu_relax();
  242. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  243. }
  244. }
  245. static const struct transfer_ops bfin_transfer_ops_u8 = {
  246. .write = bfin_spi_u8_writer,
  247. .read = bfin_spi_u8_reader,
  248. .duplex = bfin_spi_u8_duplex,
  249. };
  250. static void bfin_spi_u16_writer(struct master_data *drv_data)
  251. {
  252. /* clear RXS (we check for RXS inside the loop) */
  253. bfin_spi_dummy_read(drv_data);
  254. while (drv_data->tx < drv_data->tx_end) {
  255. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  256. drv_data->tx += 2;
  257. /* wait until transfer finished.
  258. checking SPIF or TXS may not guarantee transfer completion */
  259. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  260. cpu_relax();
  261. /* discard RX data and clear RXS */
  262. bfin_spi_dummy_read(drv_data);
  263. }
  264. }
  265. static void bfin_spi_u16_reader(struct master_data *drv_data)
  266. {
  267. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  268. /* discard old RX data and clear RXS */
  269. bfin_spi_dummy_read(drv_data);
  270. while (drv_data->rx < drv_data->rx_end) {
  271. write_TDBR(drv_data, tx_val);
  272. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  273. cpu_relax();
  274. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  275. drv_data->rx += 2;
  276. }
  277. }
  278. static void bfin_spi_u16_duplex(struct master_data *drv_data)
  279. {
  280. /* discard old RX data and clear RXS */
  281. bfin_spi_dummy_read(drv_data);
  282. while (drv_data->rx < drv_data->rx_end) {
  283. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  284. drv_data->tx += 2;
  285. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  286. cpu_relax();
  287. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  288. drv_data->rx += 2;
  289. }
  290. }
  291. static const struct transfer_ops bfin_transfer_ops_u16 = {
  292. .write = bfin_spi_u16_writer,
  293. .read = bfin_spi_u16_reader,
  294. .duplex = bfin_spi_u16_duplex,
  295. };
  296. /* test if there is more transfer to be done */
  297. static void *bfin_spi_next_transfer(struct master_data *drv_data)
  298. {
  299. struct spi_message *msg = drv_data->cur_msg;
  300. struct spi_transfer *trans = drv_data->cur_transfer;
  301. /* Move to next transfer */
  302. if (trans->transfer_list.next != &msg->transfers) {
  303. drv_data->cur_transfer =
  304. list_entry(trans->transfer_list.next,
  305. struct spi_transfer, transfer_list);
  306. return RUNNING_STATE;
  307. } else
  308. return DONE_STATE;
  309. }
  310. /*
  311. * caller already set message->status;
  312. * dma and pio irqs are blocked give finished message back
  313. */
  314. static void bfin_spi_giveback(struct master_data *drv_data)
  315. {
  316. struct slave_data *chip = drv_data->cur_chip;
  317. struct spi_transfer *last_transfer;
  318. unsigned long flags;
  319. struct spi_message *msg;
  320. spin_lock_irqsave(&drv_data->lock, flags);
  321. msg = drv_data->cur_msg;
  322. drv_data->cur_msg = NULL;
  323. drv_data->cur_transfer = NULL;
  324. drv_data->cur_chip = NULL;
  325. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  326. spin_unlock_irqrestore(&drv_data->lock, flags);
  327. last_transfer = list_entry(msg->transfers.prev,
  328. struct spi_transfer, transfer_list);
  329. msg->state = NULL;
  330. if (!drv_data->cs_change)
  331. bfin_spi_cs_deactive(drv_data, chip);
  332. /* Not stop spi in autobuffer mode */
  333. if (drv_data->tx_dma != 0xFFFF)
  334. bfin_spi_disable(drv_data);
  335. if (msg->complete)
  336. msg->complete(msg->context);
  337. }
  338. /* spi data irq handler */
  339. static irqreturn_t bfin_spi_pio_irq_handler(int irq, void *dev_id)
  340. {
  341. struct master_data *drv_data = dev_id;
  342. struct slave_data *chip = drv_data->cur_chip;
  343. struct spi_message *msg = drv_data->cur_msg;
  344. int n_bytes = drv_data->n_bytes;
  345. /* wait until transfer finished. */
  346. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  347. cpu_relax();
  348. if ((drv_data->tx && drv_data->tx >= drv_data->tx_end) ||
  349. (drv_data->rx && drv_data->rx >= (drv_data->rx_end - n_bytes))) {
  350. /* last read */
  351. if (drv_data->rx) {
  352. dev_dbg(&drv_data->pdev->dev, "last read\n");
  353. if (n_bytes == 2)
  354. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  355. else if (n_bytes == 1)
  356. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  357. drv_data->rx += n_bytes;
  358. }
  359. msg->actual_length += drv_data->len_in_bytes;
  360. if (drv_data->cs_change)
  361. bfin_spi_cs_deactive(drv_data, chip);
  362. /* Move to next transfer */
  363. msg->state = bfin_spi_next_transfer(drv_data);
  364. disable_irq_nosync(drv_data->spi_irq);
  365. /* Schedule transfer tasklet */
  366. tasklet_schedule(&drv_data->pump_transfers);
  367. return IRQ_HANDLED;
  368. }
  369. if (drv_data->rx && drv_data->tx) {
  370. /* duplex */
  371. dev_dbg(&drv_data->pdev->dev, "duplex: write_TDBR\n");
  372. if (drv_data->n_bytes == 2) {
  373. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  374. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  375. } else if (drv_data->n_bytes == 1) {
  376. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  377. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  378. }
  379. } else if (drv_data->rx) {
  380. /* read */
  381. dev_dbg(&drv_data->pdev->dev, "read: write_TDBR\n");
  382. if (drv_data->n_bytes == 2)
  383. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  384. else if (drv_data->n_bytes == 1)
  385. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  386. write_TDBR(drv_data, chip->idle_tx_val);
  387. } else if (drv_data->tx) {
  388. /* write */
  389. dev_dbg(&drv_data->pdev->dev, "write: write_TDBR\n");
  390. bfin_spi_dummy_read(drv_data);
  391. if (drv_data->n_bytes == 2)
  392. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  393. else if (drv_data->n_bytes == 1)
  394. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  395. }
  396. if (drv_data->tx)
  397. drv_data->tx += n_bytes;
  398. if (drv_data->rx)
  399. drv_data->rx += n_bytes;
  400. return IRQ_HANDLED;
  401. }
  402. static irqreturn_t bfin_spi_dma_irq_handler(int irq, void *dev_id)
  403. {
  404. struct master_data *drv_data = dev_id;
  405. struct slave_data *chip = drv_data->cur_chip;
  406. struct spi_message *msg = drv_data->cur_msg;
  407. unsigned long timeout;
  408. unsigned short dmastat = get_dma_curr_irqstat(drv_data->dma_channel);
  409. u16 spistat = read_STAT(drv_data);
  410. dev_dbg(&drv_data->pdev->dev,
  411. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  412. dmastat, spistat);
  413. clear_dma_irqstat(drv_data->dma_channel);
  414. /*
  415. * wait for the last transaction shifted out. HRM states:
  416. * at this point there may still be data in the SPI DMA FIFO waiting
  417. * to be transmitted ... software needs to poll TXS in the SPI_STAT
  418. * register until it goes low for 2 successive reads
  419. */
  420. if (drv_data->tx != NULL) {
  421. while ((read_STAT(drv_data) & BIT_STAT_TXS) ||
  422. (read_STAT(drv_data) & BIT_STAT_TXS))
  423. cpu_relax();
  424. }
  425. dev_dbg(&drv_data->pdev->dev,
  426. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  427. dmastat, read_STAT(drv_data));
  428. timeout = jiffies + HZ;
  429. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  430. if (!time_before(jiffies, timeout)) {
  431. dev_warn(&drv_data->pdev->dev, "timeout waiting for SPIF");
  432. break;
  433. } else
  434. cpu_relax();
  435. if ((dmastat & DMA_ERR) && (spistat & BIT_STAT_RBSY)) {
  436. msg->state = ERROR_STATE;
  437. dev_err(&drv_data->pdev->dev, "dma receive: fifo/buffer overflow\n");
  438. } else {
  439. msg->actual_length += drv_data->len_in_bytes;
  440. if (drv_data->cs_change)
  441. bfin_spi_cs_deactive(drv_data, chip);
  442. /* Move to next transfer */
  443. msg->state = bfin_spi_next_transfer(drv_data);
  444. }
  445. /* Schedule transfer tasklet */
  446. tasklet_schedule(&drv_data->pump_transfers);
  447. /* free the irq handler before next transfer */
  448. dev_dbg(&drv_data->pdev->dev,
  449. "disable dma channel irq%d\n",
  450. drv_data->dma_channel);
  451. dma_disable_irq_nosync(drv_data->dma_channel);
  452. return IRQ_HANDLED;
  453. }
  454. static void bfin_spi_pump_transfers(unsigned long data)
  455. {
  456. struct master_data *drv_data = (struct master_data *)data;
  457. struct spi_message *message = NULL;
  458. struct spi_transfer *transfer = NULL;
  459. struct spi_transfer *previous = NULL;
  460. struct slave_data *chip = NULL;
  461. unsigned int bits_per_word;
  462. u16 cr, cr_width, dma_width, dma_config;
  463. u32 tranf_success = 1;
  464. u8 full_duplex = 0;
  465. /* Get current state information */
  466. message = drv_data->cur_msg;
  467. transfer = drv_data->cur_transfer;
  468. chip = drv_data->cur_chip;
  469. /*
  470. * if msg is error or done, report it back using complete() callback
  471. */
  472. /* Handle for abort */
  473. if (message->state == ERROR_STATE) {
  474. dev_dbg(&drv_data->pdev->dev, "transfer: we've hit an error\n");
  475. message->status = -EIO;
  476. bfin_spi_giveback(drv_data);
  477. return;
  478. }
  479. /* Handle end of message */
  480. if (message->state == DONE_STATE) {
  481. dev_dbg(&drv_data->pdev->dev, "transfer: all done!\n");
  482. message->status = 0;
  483. bfin_spi_giveback(drv_data);
  484. return;
  485. }
  486. /* Delay if requested at end of transfer */
  487. if (message->state == RUNNING_STATE) {
  488. dev_dbg(&drv_data->pdev->dev, "transfer: still running ...\n");
  489. previous = list_entry(transfer->transfer_list.prev,
  490. struct spi_transfer, transfer_list);
  491. if (previous->delay_usecs)
  492. udelay(previous->delay_usecs);
  493. }
  494. /* Flush any existing transfers that may be sitting in the hardware */
  495. if (bfin_spi_flush(drv_data) == 0) {
  496. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  497. message->status = -EIO;
  498. bfin_spi_giveback(drv_data);
  499. return;
  500. }
  501. if (transfer->len == 0) {
  502. /* Move to next transfer of this msg */
  503. message->state = bfin_spi_next_transfer(drv_data);
  504. /* Schedule next transfer tasklet */
  505. tasklet_schedule(&drv_data->pump_transfers);
  506. }
  507. if (transfer->tx_buf != NULL) {
  508. drv_data->tx = (void *)transfer->tx_buf;
  509. drv_data->tx_end = drv_data->tx + transfer->len;
  510. dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
  511. transfer->tx_buf, drv_data->tx_end);
  512. } else {
  513. drv_data->tx = NULL;
  514. }
  515. if (transfer->rx_buf != NULL) {
  516. full_duplex = transfer->tx_buf != NULL;
  517. drv_data->rx = transfer->rx_buf;
  518. drv_data->rx_end = drv_data->rx + transfer->len;
  519. dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
  520. transfer->rx_buf, drv_data->rx_end);
  521. } else {
  522. drv_data->rx = NULL;
  523. }
  524. drv_data->rx_dma = transfer->rx_dma;
  525. drv_data->tx_dma = transfer->tx_dma;
  526. drv_data->len_in_bytes = transfer->len;
  527. drv_data->cs_change = transfer->cs_change;
  528. /* Bits per word setup */
  529. bits_per_word = transfer->bits_per_word ? : message->spi->bits_per_word;
  530. if (bits_per_word == 8) {
  531. drv_data->n_bytes = 1;
  532. drv_data->len = transfer->len;
  533. cr_width = 0;
  534. drv_data->ops = &bfin_transfer_ops_u8;
  535. } else {
  536. drv_data->n_bytes = 2;
  537. drv_data->len = (transfer->len) >> 1;
  538. cr_width = BIT_CTL_WORDSIZE;
  539. drv_data->ops = &bfin_transfer_ops_u16;
  540. }
  541. cr = read_CTRL(drv_data) & ~(BIT_CTL_TIMOD | BIT_CTL_WORDSIZE);
  542. cr |= cr_width;
  543. write_CTRL(drv_data, cr);
  544. dev_dbg(&drv_data->pdev->dev,
  545. "transfer: drv_data->ops is %p, chip->ops is %p, u8_ops is %p\n",
  546. drv_data->ops, chip->ops, &bfin_transfer_ops_u8);
  547. message->state = RUNNING_STATE;
  548. dma_config = 0;
  549. /* Speed setup (surely valid because already checked) */
  550. if (transfer->speed_hz)
  551. write_BAUD(drv_data, hz_to_spi_baud(transfer->speed_hz));
  552. else
  553. write_BAUD(drv_data, chip->baud);
  554. write_STAT(drv_data, BIT_STAT_CLR);
  555. bfin_spi_cs_active(drv_data, chip);
  556. dev_dbg(&drv_data->pdev->dev,
  557. "now pumping a transfer: width is %d, len is %d\n",
  558. cr_width, transfer->len);
  559. /*
  560. * Try to map dma buffer and do a dma transfer. If successful use,
  561. * different way to r/w according to the enable_dma settings and if
  562. * we are not doing a full duplex transfer (since the hardware does
  563. * not support full duplex DMA transfers).
  564. */
  565. if (!full_duplex && drv_data->cur_chip->enable_dma
  566. && drv_data->len > 6) {
  567. unsigned long dma_start_addr, flags;
  568. disable_dma(drv_data->dma_channel);
  569. clear_dma_irqstat(drv_data->dma_channel);
  570. /* config dma channel */
  571. dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
  572. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  573. if (cr_width == BIT_CTL_WORDSIZE) {
  574. set_dma_x_modify(drv_data->dma_channel, 2);
  575. dma_width = WDSIZE_16;
  576. } else {
  577. set_dma_x_modify(drv_data->dma_channel, 1);
  578. dma_width = WDSIZE_8;
  579. }
  580. /* poll for SPI completion before start */
  581. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  582. cpu_relax();
  583. /* dirty hack for autobuffer DMA mode */
  584. if (drv_data->tx_dma == 0xFFFF) {
  585. dev_dbg(&drv_data->pdev->dev,
  586. "doing autobuffer DMA out.\n");
  587. /* no irq in autobuffer mode */
  588. dma_config =
  589. (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
  590. set_dma_config(drv_data->dma_channel, dma_config);
  591. set_dma_start_addr(drv_data->dma_channel,
  592. (unsigned long)drv_data->tx);
  593. enable_dma(drv_data->dma_channel);
  594. /* start SPI transfer */
  595. write_CTRL(drv_data, cr | BIT_CTL_TIMOD_DMA_TX);
  596. /* just return here, there can only be one transfer
  597. * in this mode
  598. */
  599. message->status = 0;
  600. bfin_spi_giveback(drv_data);
  601. return;
  602. }
  603. /* In dma mode, rx or tx must be NULL in one transfer */
  604. dma_config = (RESTART | dma_width | DI_EN);
  605. if (drv_data->rx != NULL) {
  606. /* set transfer mode, and enable SPI */
  607. dev_dbg(&drv_data->pdev->dev, "doing DMA in to %p (size %zx)\n",
  608. drv_data->rx, drv_data->len_in_bytes);
  609. /* invalidate caches, if needed */
  610. if (bfin_addr_dcacheable((unsigned long) drv_data->rx))
  611. invalidate_dcache_range((unsigned long) drv_data->rx,
  612. (unsigned long) (drv_data->rx +
  613. drv_data->len_in_bytes));
  614. dma_config |= WNR;
  615. dma_start_addr = (unsigned long)drv_data->rx;
  616. cr |= BIT_CTL_TIMOD_DMA_RX | BIT_CTL_SENDOPT;
  617. } else if (drv_data->tx != NULL) {
  618. dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
  619. /* flush caches, if needed */
  620. if (bfin_addr_dcacheable((unsigned long) drv_data->tx))
  621. flush_dcache_range((unsigned long) drv_data->tx,
  622. (unsigned long) (drv_data->tx +
  623. drv_data->len_in_bytes));
  624. dma_start_addr = (unsigned long)drv_data->tx;
  625. cr |= BIT_CTL_TIMOD_DMA_TX;
  626. } else
  627. BUG();
  628. /* oh man, here there be monsters ... and i dont mean the
  629. * fluffy cute ones from pixar, i mean the kind that'll eat
  630. * your data, kick your dog, and love it all. do *not* try
  631. * and change these lines unless you (1) heavily test DMA
  632. * with SPI flashes on a loaded system (e.g. ping floods),
  633. * (2) know just how broken the DMA engine interaction with
  634. * the SPI peripheral is, and (3) have someone else to blame
  635. * when you screw it all up anyways.
  636. */
  637. set_dma_start_addr(drv_data->dma_channel, dma_start_addr);
  638. set_dma_config(drv_data->dma_channel, dma_config);
  639. local_irq_save(flags);
  640. SSYNC();
  641. write_CTRL(drv_data, cr);
  642. enable_dma(drv_data->dma_channel);
  643. dma_enable_irq(drv_data->dma_channel);
  644. local_irq_restore(flags);
  645. return;
  646. }
  647. /*
  648. * We always use SPI_WRITE mode (transfer starts with TDBR write).
  649. * SPI_READ mode (transfer starts with RDBR read) seems to have
  650. * problems with setting up the output value in TDBR prior to the
  651. * start of the transfer.
  652. */
  653. write_CTRL(drv_data, cr | BIT_CTL_TXMOD);
  654. if (chip->pio_interrupt) {
  655. /* SPI irq should have been disabled by now */
  656. /* discard old RX data and clear RXS */
  657. bfin_spi_dummy_read(drv_data);
  658. /* start transfer */
  659. if (drv_data->tx == NULL)
  660. write_TDBR(drv_data, chip->idle_tx_val);
  661. else {
  662. if (bits_per_word == 8)
  663. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  664. else
  665. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  666. drv_data->tx += drv_data->n_bytes;
  667. }
  668. /* once TDBR is empty, interrupt is triggered */
  669. enable_irq(drv_data->spi_irq);
  670. return;
  671. }
  672. /* IO mode */
  673. dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
  674. if (full_duplex) {
  675. /* full duplex mode */
  676. BUG_ON((drv_data->tx_end - drv_data->tx) !=
  677. (drv_data->rx_end - drv_data->rx));
  678. dev_dbg(&drv_data->pdev->dev,
  679. "IO duplex: cr is 0x%x\n", cr);
  680. drv_data->ops->duplex(drv_data);
  681. if (drv_data->tx != drv_data->tx_end)
  682. tranf_success = 0;
  683. } else if (drv_data->tx != NULL) {
  684. /* write only half duplex */
  685. dev_dbg(&drv_data->pdev->dev,
  686. "IO write: cr is 0x%x\n", cr);
  687. drv_data->ops->write(drv_data);
  688. if (drv_data->tx != drv_data->tx_end)
  689. tranf_success = 0;
  690. } else if (drv_data->rx != NULL) {
  691. /* read only half duplex */
  692. dev_dbg(&drv_data->pdev->dev,
  693. "IO read: cr is 0x%x\n", cr);
  694. drv_data->ops->read(drv_data);
  695. if (drv_data->rx != drv_data->rx_end)
  696. tranf_success = 0;
  697. }
  698. if (!tranf_success) {
  699. dev_dbg(&drv_data->pdev->dev,
  700. "IO write error!\n");
  701. message->state = ERROR_STATE;
  702. } else {
  703. /* Update total byte transfered */
  704. message->actual_length += drv_data->len_in_bytes;
  705. /* Move to next transfer of this msg */
  706. message->state = bfin_spi_next_transfer(drv_data);
  707. if (drv_data->cs_change)
  708. bfin_spi_cs_deactive(drv_data, chip);
  709. }
  710. /* Schedule next transfer tasklet */
  711. tasklet_schedule(&drv_data->pump_transfers);
  712. }
  713. /* pop a msg from queue and kick off real transfer */
  714. static void bfin_spi_pump_messages(struct work_struct *work)
  715. {
  716. struct master_data *drv_data;
  717. unsigned long flags;
  718. drv_data = container_of(work, struct master_data, pump_messages);
  719. /* Lock queue and check for queue work */
  720. spin_lock_irqsave(&drv_data->lock, flags);
  721. if (list_empty(&drv_data->queue) || !drv_data->running) {
  722. /* pumper kicked off but no work to do */
  723. drv_data->busy = 0;
  724. spin_unlock_irqrestore(&drv_data->lock, flags);
  725. return;
  726. }
  727. /* Make sure we are not already running a message */
  728. if (drv_data->cur_msg) {
  729. spin_unlock_irqrestore(&drv_data->lock, flags);
  730. return;
  731. }
  732. /* Extract head of queue */
  733. drv_data->cur_msg = list_entry(drv_data->queue.next,
  734. struct spi_message, queue);
  735. /* Setup the SSP using the per chip configuration */
  736. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  737. bfin_spi_restore_state(drv_data);
  738. list_del_init(&drv_data->cur_msg->queue);
  739. /* Initial message state */
  740. drv_data->cur_msg->state = START_STATE;
  741. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  742. struct spi_transfer, transfer_list);
  743. dev_dbg(&drv_data->pdev->dev, "got a message to pump, "
  744. "state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
  745. drv_data->cur_chip->baud, drv_data->cur_chip->flag,
  746. drv_data->cur_chip->ctl_reg);
  747. dev_dbg(&drv_data->pdev->dev,
  748. "the first transfer len is %d\n",
  749. drv_data->cur_transfer->len);
  750. /* Mark as busy and launch transfers */
  751. tasklet_schedule(&drv_data->pump_transfers);
  752. drv_data->busy = 1;
  753. spin_unlock_irqrestore(&drv_data->lock, flags);
  754. }
  755. /*
  756. * got a msg to transfer, queue it in drv_data->queue.
  757. * And kick off message pumper
  758. */
  759. static int bfin_spi_transfer(struct spi_device *spi, struct spi_message *msg)
  760. {
  761. struct master_data *drv_data = spi_master_get_devdata(spi->master);
  762. unsigned long flags;
  763. spin_lock_irqsave(&drv_data->lock, flags);
  764. if (!drv_data->running) {
  765. spin_unlock_irqrestore(&drv_data->lock, flags);
  766. return -ESHUTDOWN;
  767. }
  768. msg->actual_length = 0;
  769. msg->status = -EINPROGRESS;
  770. msg->state = START_STATE;
  771. dev_dbg(&spi->dev, "adding an msg in transfer() \n");
  772. list_add_tail(&msg->queue, &drv_data->queue);
  773. if (drv_data->running && !drv_data->busy)
  774. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  775. spin_unlock_irqrestore(&drv_data->lock, flags);
  776. return 0;
  777. }
  778. #define MAX_SPI_SSEL 7
  779. static u16 ssel[][MAX_SPI_SSEL] = {
  780. {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
  781. P_SPI0_SSEL4, P_SPI0_SSEL5,
  782. P_SPI0_SSEL6, P_SPI0_SSEL7},
  783. {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
  784. P_SPI1_SSEL4, P_SPI1_SSEL5,
  785. P_SPI1_SSEL6, P_SPI1_SSEL7},
  786. {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
  787. P_SPI2_SSEL4, P_SPI2_SSEL5,
  788. P_SPI2_SSEL6, P_SPI2_SSEL7},
  789. };
  790. /* setup for devices (may be called multiple times -- not just first setup) */
  791. static int bfin_spi_setup(struct spi_device *spi)
  792. {
  793. struct bfin5xx_spi_chip *chip_info;
  794. struct slave_data *chip = NULL;
  795. struct master_data *drv_data = spi_master_get_devdata(spi->master);
  796. u16 bfin_ctl_reg;
  797. int ret = -EINVAL;
  798. /* Only alloc (or use chip_info) on first setup */
  799. chip_info = NULL;
  800. chip = spi_get_ctldata(spi);
  801. if (chip == NULL) {
  802. chip = kzalloc(sizeof(*chip), GFP_KERNEL);
  803. if (!chip) {
  804. dev_err(&spi->dev, "cannot allocate chip data\n");
  805. ret = -ENOMEM;
  806. goto error;
  807. }
  808. chip->enable_dma = 0;
  809. chip_info = spi->controller_data;
  810. }
  811. /* Let people set non-standard bits directly */
  812. bfin_ctl_reg = BIT_CTL_OPENDRAIN | BIT_CTL_EMISO |
  813. BIT_CTL_PSSE | BIT_CTL_GM | BIT_CTL_SZ;
  814. /* chip_info isn't always needed */
  815. if (chip_info) {
  816. /* Make sure people stop trying to set fields via ctl_reg
  817. * when they should actually be using common SPI framework.
  818. * Currently we let through: WOM EMISO PSSE GM SZ.
  819. * Not sure if a user actually needs/uses any of these,
  820. * but let's assume (for now) they do.
  821. */
  822. if (chip_info->ctl_reg & ~bfin_ctl_reg) {
  823. dev_err(&spi->dev, "do not set bits in ctl_reg "
  824. "that the SPI framework manages\n");
  825. goto error;
  826. }
  827. chip->enable_dma = chip_info->enable_dma != 0
  828. && drv_data->master_info->enable_dma;
  829. chip->ctl_reg = chip_info->ctl_reg;
  830. chip->cs_chg_udelay = chip_info->cs_chg_udelay;
  831. chip->idle_tx_val = chip_info->idle_tx_val;
  832. chip->pio_interrupt = chip_info->pio_interrupt;
  833. spi->bits_per_word = chip_info->bits_per_word;
  834. } else {
  835. /* force a default base state */
  836. chip->ctl_reg &= bfin_ctl_reg;
  837. }
  838. if (spi->bits_per_word != 8 && spi->bits_per_word != 16) {
  839. dev_err(&spi->dev, "%d bits_per_word is not supported\n",
  840. spi->bits_per_word);
  841. goto error;
  842. }
  843. /* translate common spi framework into our register */
  844. if (spi->mode & ~(SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST)) {
  845. dev_err(&spi->dev, "unsupported spi modes detected\n");
  846. goto error;
  847. }
  848. if (spi->mode & SPI_CPOL)
  849. chip->ctl_reg |= BIT_CTL_CPOL;
  850. if (spi->mode & SPI_CPHA)
  851. chip->ctl_reg |= BIT_CTL_CPHA;
  852. if (spi->mode & SPI_LSB_FIRST)
  853. chip->ctl_reg |= BIT_CTL_LSBF;
  854. /* we dont support running in slave mode (yet?) */
  855. chip->ctl_reg |= BIT_CTL_MASTER;
  856. /*
  857. * Notice: for blackfin, the speed_hz is the value of register
  858. * SPI_BAUD, not the real baudrate
  859. */
  860. chip->baud = hz_to_spi_baud(spi->max_speed_hz);
  861. chip->chip_select_num = spi->chip_select;
  862. if (chip->chip_select_num < MAX_CTRL_CS) {
  863. if (!(spi->mode & SPI_CPHA))
  864. dev_warn(&spi->dev, "Warning: SPI CPHA not set:"
  865. " Slave Select not under software control!\n"
  866. " See Documentation/blackfin/bfin-spi-notes.txt");
  867. chip->flag = (1 << spi->chip_select) << 8;
  868. } else
  869. chip->cs_gpio = chip->chip_select_num - MAX_CTRL_CS;
  870. if (chip->enable_dma && chip->pio_interrupt) {
  871. dev_err(&spi->dev, "enable_dma is set, "
  872. "do not set pio_interrupt\n");
  873. goto error;
  874. }
  875. /*
  876. * if any one SPI chip is registered and wants DMA, request the
  877. * DMA channel for it
  878. */
  879. if (chip->enable_dma && !drv_data->dma_requested) {
  880. /* register dma irq handler */
  881. ret = request_dma(drv_data->dma_channel, "BFIN_SPI_DMA");
  882. if (ret) {
  883. dev_err(&spi->dev,
  884. "Unable to request BlackFin SPI DMA channel\n");
  885. goto error;
  886. }
  887. drv_data->dma_requested = 1;
  888. ret = set_dma_callback(drv_data->dma_channel,
  889. bfin_spi_dma_irq_handler, drv_data);
  890. if (ret) {
  891. dev_err(&spi->dev, "Unable to set dma callback\n");
  892. goto error;
  893. }
  894. dma_disable_irq(drv_data->dma_channel);
  895. }
  896. if (chip->pio_interrupt && !drv_data->irq_requested) {
  897. ret = request_irq(drv_data->spi_irq, bfin_spi_pio_irq_handler,
  898. IRQF_DISABLED, "BFIN_SPI", drv_data);
  899. if (ret) {
  900. dev_err(&spi->dev, "Unable to register spi IRQ\n");
  901. goto error;
  902. }
  903. drv_data->irq_requested = 1;
  904. /* we use write mode, spi irq has to be disabled here */
  905. disable_irq(drv_data->spi_irq);
  906. }
  907. if (chip->chip_select_num >= MAX_CTRL_CS) {
  908. ret = gpio_request(chip->cs_gpio, spi->modalias);
  909. if (ret) {
  910. dev_err(&spi->dev, "gpio_request() error\n");
  911. goto pin_error;
  912. }
  913. gpio_direction_output(chip->cs_gpio, 1);
  914. }
  915. dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d\n",
  916. spi->modalias, spi->bits_per_word, chip->enable_dma);
  917. dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
  918. chip->ctl_reg, chip->flag);
  919. spi_set_ctldata(spi, chip);
  920. dev_dbg(&spi->dev, "chip select number is %d\n", chip->chip_select_num);
  921. if (chip->chip_select_num < MAX_CTRL_CS) {
  922. ret = peripheral_request(ssel[spi->master->bus_num]
  923. [chip->chip_select_num-1], spi->modalias);
  924. if (ret) {
  925. dev_err(&spi->dev, "peripheral_request() error\n");
  926. goto pin_error;
  927. }
  928. }
  929. bfin_spi_cs_enable(drv_data, chip);
  930. bfin_spi_cs_deactive(drv_data, chip);
  931. return 0;
  932. pin_error:
  933. if (chip->chip_select_num >= MAX_CTRL_CS)
  934. gpio_free(chip->cs_gpio);
  935. else
  936. peripheral_free(ssel[spi->master->bus_num]
  937. [chip->chip_select_num - 1]);
  938. error:
  939. if (chip) {
  940. if (drv_data->dma_requested)
  941. free_dma(drv_data->dma_channel);
  942. drv_data->dma_requested = 0;
  943. kfree(chip);
  944. /* prevent free 'chip' twice */
  945. spi_set_ctldata(spi, NULL);
  946. }
  947. return ret;
  948. }
  949. /*
  950. * callback for spi framework.
  951. * clean driver specific data
  952. */
  953. static void bfin_spi_cleanup(struct spi_device *spi)
  954. {
  955. struct slave_data *chip = spi_get_ctldata(spi);
  956. struct master_data *drv_data = spi_master_get_devdata(spi->master);
  957. if (!chip)
  958. return;
  959. if (chip->chip_select_num < MAX_CTRL_CS) {
  960. peripheral_free(ssel[spi->master->bus_num]
  961. [chip->chip_select_num-1]);
  962. bfin_spi_cs_disable(drv_data, chip);
  963. } else
  964. gpio_free(chip->cs_gpio);
  965. kfree(chip);
  966. /* prevent free 'chip' twice */
  967. spi_set_ctldata(spi, NULL);
  968. }
  969. static inline int bfin_spi_init_queue(struct master_data *drv_data)
  970. {
  971. INIT_LIST_HEAD(&drv_data->queue);
  972. spin_lock_init(&drv_data->lock);
  973. drv_data->running = false;
  974. drv_data->busy = 0;
  975. /* init transfer tasklet */
  976. tasklet_init(&drv_data->pump_transfers,
  977. bfin_spi_pump_transfers, (unsigned long)drv_data);
  978. /* init messages workqueue */
  979. INIT_WORK(&drv_data->pump_messages, bfin_spi_pump_messages);
  980. drv_data->workqueue = create_singlethread_workqueue(
  981. dev_name(drv_data->master->dev.parent));
  982. if (drv_data->workqueue == NULL)
  983. return -EBUSY;
  984. return 0;
  985. }
  986. static inline int bfin_spi_start_queue(struct master_data *drv_data)
  987. {
  988. unsigned long flags;
  989. spin_lock_irqsave(&drv_data->lock, flags);
  990. if (drv_data->running || drv_data->busy) {
  991. spin_unlock_irqrestore(&drv_data->lock, flags);
  992. return -EBUSY;
  993. }
  994. drv_data->running = true;
  995. drv_data->cur_msg = NULL;
  996. drv_data->cur_transfer = NULL;
  997. drv_data->cur_chip = NULL;
  998. spin_unlock_irqrestore(&drv_data->lock, flags);
  999. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1000. return 0;
  1001. }
  1002. static inline int bfin_spi_stop_queue(struct master_data *drv_data)
  1003. {
  1004. unsigned long flags;
  1005. unsigned limit = 500;
  1006. int status = 0;
  1007. spin_lock_irqsave(&drv_data->lock, flags);
  1008. /*
  1009. * This is a bit lame, but is optimized for the common execution path.
  1010. * A wait_queue on the drv_data->busy could be used, but then the common
  1011. * execution path (pump_messages) would be required to call wake_up or
  1012. * friends on every SPI message. Do this instead
  1013. */
  1014. drv_data->running = false;
  1015. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1016. spin_unlock_irqrestore(&drv_data->lock, flags);
  1017. msleep(10);
  1018. spin_lock_irqsave(&drv_data->lock, flags);
  1019. }
  1020. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1021. status = -EBUSY;
  1022. spin_unlock_irqrestore(&drv_data->lock, flags);
  1023. return status;
  1024. }
  1025. static inline int bfin_spi_destroy_queue(struct master_data *drv_data)
  1026. {
  1027. int status;
  1028. status = bfin_spi_stop_queue(drv_data);
  1029. if (status != 0)
  1030. return status;
  1031. destroy_workqueue(drv_data->workqueue);
  1032. return 0;
  1033. }
  1034. static int __init bfin_spi_probe(struct platform_device *pdev)
  1035. {
  1036. struct device *dev = &pdev->dev;
  1037. struct bfin5xx_spi_master *platform_info;
  1038. struct spi_master *master;
  1039. struct master_data *drv_data;
  1040. struct resource *res;
  1041. int status = 0;
  1042. platform_info = dev->platform_data;
  1043. /* Allocate master with space for drv_data */
  1044. master = spi_alloc_master(dev, sizeof(*drv_data));
  1045. if (!master) {
  1046. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1047. return -ENOMEM;
  1048. }
  1049. drv_data = spi_master_get_devdata(master);
  1050. drv_data->master = master;
  1051. drv_data->master_info = platform_info;
  1052. drv_data->pdev = pdev;
  1053. drv_data->pin_req = platform_info->pin_req;
  1054. /* the spi->mode bits supported by this driver: */
  1055. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  1056. master->bus_num = pdev->id;
  1057. master->num_chipselect = platform_info->num_chipselect;
  1058. master->cleanup = bfin_spi_cleanup;
  1059. master->setup = bfin_spi_setup;
  1060. master->transfer = bfin_spi_transfer;
  1061. /* Find and map our resources */
  1062. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1063. if (res == NULL) {
  1064. dev_err(dev, "Cannot get IORESOURCE_MEM\n");
  1065. status = -ENOENT;
  1066. goto out_error_get_res;
  1067. }
  1068. drv_data->regs_base = ioremap(res->start, resource_size(res));
  1069. if (drv_data->regs_base == NULL) {
  1070. dev_err(dev, "Cannot map IO\n");
  1071. status = -ENXIO;
  1072. goto out_error_ioremap;
  1073. }
  1074. res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  1075. if (res == NULL) {
  1076. dev_err(dev, "No DMA channel specified\n");
  1077. status = -ENOENT;
  1078. goto out_error_free_io;
  1079. }
  1080. drv_data->dma_channel = res->start;
  1081. drv_data->spi_irq = platform_get_irq(pdev, 0);
  1082. if (drv_data->spi_irq < 0) {
  1083. dev_err(dev, "No spi pio irq specified\n");
  1084. status = -ENOENT;
  1085. goto out_error_free_io;
  1086. }
  1087. /* Initial and start queue */
  1088. status = bfin_spi_init_queue(drv_data);
  1089. if (status != 0) {
  1090. dev_err(dev, "problem initializing queue\n");
  1091. goto out_error_queue_alloc;
  1092. }
  1093. status = bfin_spi_start_queue(drv_data);
  1094. if (status != 0) {
  1095. dev_err(dev, "problem starting queue\n");
  1096. goto out_error_queue_alloc;
  1097. }
  1098. status = peripheral_request_list(drv_data->pin_req, DRV_NAME);
  1099. if (status != 0) {
  1100. dev_err(&pdev->dev, ": Requesting Peripherals failed\n");
  1101. goto out_error_queue_alloc;
  1102. }
  1103. /* Reset SPI registers. If these registers were used by the boot loader,
  1104. * the sky may fall on your head if you enable the dma controller.
  1105. */
  1106. write_CTRL(drv_data, BIT_CTL_CPHA | BIT_CTL_MASTER);
  1107. write_FLAG(drv_data, 0xFF00);
  1108. /* Register with the SPI framework */
  1109. platform_set_drvdata(pdev, drv_data);
  1110. status = spi_register_master(master);
  1111. if (status != 0) {
  1112. dev_err(dev, "problem registering spi master\n");
  1113. goto out_error_queue_alloc;
  1114. }
  1115. dev_info(dev, "%s, Version %s, regs_base@%p, dma channel@%d\n",
  1116. DRV_DESC, DRV_VERSION, drv_data->regs_base,
  1117. drv_data->dma_channel);
  1118. return status;
  1119. out_error_queue_alloc:
  1120. bfin_spi_destroy_queue(drv_data);
  1121. out_error_free_io:
  1122. iounmap((void *) drv_data->regs_base);
  1123. out_error_ioremap:
  1124. out_error_get_res:
  1125. spi_master_put(master);
  1126. return status;
  1127. }
  1128. /* stop hardware and remove the driver */
  1129. static int __devexit bfin_spi_remove(struct platform_device *pdev)
  1130. {
  1131. struct master_data *drv_data = platform_get_drvdata(pdev);
  1132. int status = 0;
  1133. if (!drv_data)
  1134. return 0;
  1135. /* Remove the queue */
  1136. status = bfin_spi_destroy_queue(drv_data);
  1137. if (status != 0)
  1138. return status;
  1139. /* Disable the SSP at the peripheral and SOC level */
  1140. bfin_spi_disable(drv_data);
  1141. /* Release DMA */
  1142. if (drv_data->master_info->enable_dma) {
  1143. if (dma_channel_active(drv_data->dma_channel))
  1144. free_dma(drv_data->dma_channel);
  1145. }
  1146. if (drv_data->irq_requested) {
  1147. free_irq(drv_data->spi_irq, drv_data);
  1148. drv_data->irq_requested = 0;
  1149. }
  1150. /* Disconnect from the SPI framework */
  1151. spi_unregister_master(drv_data->master);
  1152. peripheral_free_list(drv_data->pin_req);
  1153. /* Prevent double remove */
  1154. platform_set_drvdata(pdev, NULL);
  1155. return 0;
  1156. }
  1157. #ifdef CONFIG_PM
  1158. static int bfin_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1159. {
  1160. struct master_data *drv_data = platform_get_drvdata(pdev);
  1161. int status = 0;
  1162. status = bfin_spi_stop_queue(drv_data);
  1163. if (status != 0)
  1164. return status;
  1165. drv_data->ctrl_reg = read_CTRL(drv_data);
  1166. drv_data->flag_reg = read_FLAG(drv_data);
  1167. /*
  1168. * reset SPI_CTL and SPI_FLG registers
  1169. */
  1170. write_CTRL(drv_data, BIT_CTL_CPHA | BIT_CTL_MASTER);
  1171. write_FLAG(drv_data, 0xFF00);
  1172. return 0;
  1173. }
  1174. static int bfin_spi_resume(struct platform_device *pdev)
  1175. {
  1176. struct master_data *drv_data = platform_get_drvdata(pdev);
  1177. int status = 0;
  1178. write_CTRL(drv_data, drv_data->ctrl_reg);
  1179. write_FLAG(drv_data, drv_data->flag_reg);
  1180. /* Start the queue running */
  1181. status = bfin_spi_start_queue(drv_data);
  1182. if (status != 0) {
  1183. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1184. return status;
  1185. }
  1186. return 0;
  1187. }
  1188. #else
  1189. #define bfin_spi_suspend NULL
  1190. #define bfin_spi_resume NULL
  1191. #endif /* CONFIG_PM */
  1192. MODULE_ALIAS("platform:bfin-spi");
  1193. static struct platform_driver bfin_spi_driver = {
  1194. .driver = {
  1195. .name = DRV_NAME,
  1196. .owner = THIS_MODULE,
  1197. },
  1198. .suspend = bfin_spi_suspend,
  1199. .resume = bfin_spi_resume,
  1200. .remove = __devexit_p(bfin_spi_remove),
  1201. };
  1202. static int __init bfin_spi_init(void)
  1203. {
  1204. return platform_driver_probe(&bfin_spi_driver, bfin_spi_probe);
  1205. }
  1206. module_init(bfin_spi_init);
  1207. static void __exit bfin_spi_exit(void)
  1208. {
  1209. platform_driver_unregister(&bfin_spi_driver);
  1210. }
  1211. module_exit(bfin_spi_exit);