page_alloc.c 133 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/oom.h>
  31. #include <linux/notifier.h>
  32. #include <linux/topology.h>
  33. #include <linux/sysctl.h>
  34. #include <linux/cpu.h>
  35. #include <linux/cpuset.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/vmalloc.h>
  39. #include <linux/mempolicy.h>
  40. #include <linux/stop_machine.h>
  41. #include <linux/sort.h>
  42. #include <linux/pfn.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/fault-inject.h>
  45. #include <linux/page-isolation.h>
  46. #include <linux/page_cgroup.h>
  47. #include <linux/debugobjects.h>
  48. #include <linux/kmemleak.h>
  49. #include <asm/tlbflush.h>
  50. #include <asm/div64.h>
  51. #include "internal.h"
  52. /*
  53. * Array of node states.
  54. */
  55. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  56. [N_POSSIBLE] = NODE_MASK_ALL,
  57. [N_ONLINE] = { { [0] = 1UL } },
  58. #ifndef CONFIG_NUMA
  59. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  60. #ifdef CONFIG_HIGHMEM
  61. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  62. #endif
  63. [N_CPU] = { { [0] = 1UL } },
  64. #endif /* NUMA */
  65. };
  66. EXPORT_SYMBOL(node_states);
  67. unsigned long totalram_pages __read_mostly;
  68. unsigned long totalreserve_pages __read_mostly;
  69. unsigned long highest_memmap_pfn __read_mostly;
  70. int percpu_pagelist_fraction;
  71. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  72. int pageblock_order __read_mostly;
  73. #endif
  74. static void __free_pages_ok(struct page *page, unsigned int order);
  75. /*
  76. * results with 256, 32 in the lowmem_reserve sysctl:
  77. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  78. * 1G machine -> (16M dma, 784M normal, 224M high)
  79. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  80. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  81. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  82. *
  83. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  84. * don't need any ZONE_NORMAL reservation
  85. */
  86. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  87. #ifdef CONFIG_ZONE_DMA
  88. 256,
  89. #endif
  90. #ifdef CONFIG_ZONE_DMA32
  91. 256,
  92. #endif
  93. #ifdef CONFIG_HIGHMEM
  94. 32,
  95. #endif
  96. 32,
  97. };
  98. EXPORT_SYMBOL(totalram_pages);
  99. static char * const zone_names[MAX_NR_ZONES] = {
  100. #ifdef CONFIG_ZONE_DMA
  101. "DMA",
  102. #endif
  103. #ifdef CONFIG_ZONE_DMA32
  104. "DMA32",
  105. #endif
  106. "Normal",
  107. #ifdef CONFIG_HIGHMEM
  108. "HighMem",
  109. #endif
  110. "Movable",
  111. };
  112. int min_free_kbytes = 1024;
  113. unsigned long __meminitdata nr_kernel_pages;
  114. unsigned long __meminitdata nr_all_pages;
  115. static unsigned long __meminitdata dma_reserve;
  116. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  117. /*
  118. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  119. * ranges of memory (RAM) that may be registered with add_active_range().
  120. * Ranges passed to add_active_range() will be merged if possible
  121. * so the number of times add_active_range() can be called is
  122. * related to the number of nodes and the number of holes
  123. */
  124. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  125. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  126. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  127. #else
  128. #if MAX_NUMNODES >= 32
  129. /* If there can be many nodes, allow up to 50 holes per node */
  130. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  131. #else
  132. /* By default, allow up to 256 distinct regions */
  133. #define MAX_ACTIVE_REGIONS 256
  134. #endif
  135. #endif
  136. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  137. static int __meminitdata nr_nodemap_entries;
  138. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  139. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  140. static unsigned long __initdata required_kernelcore;
  141. static unsigned long __initdata required_movablecore;
  142. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  143. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  144. int movable_zone;
  145. EXPORT_SYMBOL(movable_zone);
  146. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  147. #if MAX_NUMNODES > 1
  148. int nr_node_ids __read_mostly = MAX_NUMNODES;
  149. EXPORT_SYMBOL(nr_node_ids);
  150. #endif
  151. int page_group_by_mobility_disabled __read_mostly;
  152. static void set_pageblock_migratetype(struct page *page, int migratetype)
  153. {
  154. if (unlikely(page_group_by_mobility_disabled))
  155. migratetype = MIGRATE_UNMOVABLE;
  156. set_pageblock_flags_group(page, (unsigned long)migratetype,
  157. PB_migrate, PB_migrate_end);
  158. }
  159. #ifdef CONFIG_DEBUG_VM
  160. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  161. {
  162. int ret = 0;
  163. unsigned seq;
  164. unsigned long pfn = page_to_pfn(page);
  165. do {
  166. seq = zone_span_seqbegin(zone);
  167. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  168. ret = 1;
  169. else if (pfn < zone->zone_start_pfn)
  170. ret = 1;
  171. } while (zone_span_seqretry(zone, seq));
  172. return ret;
  173. }
  174. static int page_is_consistent(struct zone *zone, struct page *page)
  175. {
  176. if (!pfn_valid_within(page_to_pfn(page)))
  177. return 0;
  178. if (zone != page_zone(page))
  179. return 0;
  180. return 1;
  181. }
  182. /*
  183. * Temporary debugging check for pages not lying within a given zone.
  184. */
  185. static int bad_range(struct zone *zone, struct page *page)
  186. {
  187. if (page_outside_zone_boundaries(zone, page))
  188. return 1;
  189. if (!page_is_consistent(zone, page))
  190. return 1;
  191. return 0;
  192. }
  193. #else
  194. static inline int bad_range(struct zone *zone, struct page *page)
  195. {
  196. return 0;
  197. }
  198. #endif
  199. static void bad_page(struct page *page)
  200. {
  201. static unsigned long resume;
  202. static unsigned long nr_shown;
  203. static unsigned long nr_unshown;
  204. /*
  205. * Allow a burst of 60 reports, then keep quiet for that minute;
  206. * or allow a steady drip of one report per second.
  207. */
  208. if (nr_shown == 60) {
  209. if (time_before(jiffies, resume)) {
  210. nr_unshown++;
  211. goto out;
  212. }
  213. if (nr_unshown) {
  214. printk(KERN_ALERT
  215. "BUG: Bad page state: %lu messages suppressed\n",
  216. nr_unshown);
  217. nr_unshown = 0;
  218. }
  219. nr_shown = 0;
  220. }
  221. if (nr_shown++ == 0)
  222. resume = jiffies + 60 * HZ;
  223. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  224. current->comm, page_to_pfn(page));
  225. printk(KERN_ALERT
  226. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  227. page, (void *)page->flags, page_count(page),
  228. page_mapcount(page), page->mapping, page->index);
  229. dump_stack();
  230. out:
  231. /* Leave bad fields for debug, except PageBuddy could make trouble */
  232. __ClearPageBuddy(page);
  233. add_taint(TAINT_BAD_PAGE);
  234. }
  235. /*
  236. * Higher-order pages are called "compound pages". They are structured thusly:
  237. *
  238. * The first PAGE_SIZE page is called the "head page".
  239. *
  240. * The remaining PAGE_SIZE pages are called "tail pages".
  241. *
  242. * All pages have PG_compound set. All pages have their ->private pointing at
  243. * the head page (even the head page has this).
  244. *
  245. * The first tail page's ->lru.next holds the address of the compound page's
  246. * put_page() function. Its ->lru.prev holds the order of allocation.
  247. * This usage means that zero-order pages may not be compound.
  248. */
  249. static void free_compound_page(struct page *page)
  250. {
  251. __free_pages_ok(page, compound_order(page));
  252. }
  253. void prep_compound_page(struct page *page, unsigned long order)
  254. {
  255. int i;
  256. int nr_pages = 1 << order;
  257. set_compound_page_dtor(page, free_compound_page);
  258. set_compound_order(page, order);
  259. __SetPageHead(page);
  260. for (i = 1; i < nr_pages; i++) {
  261. struct page *p = page + i;
  262. __SetPageTail(p);
  263. p->first_page = page;
  264. }
  265. }
  266. #ifdef CONFIG_HUGETLBFS
  267. void prep_compound_gigantic_page(struct page *page, unsigned long order)
  268. {
  269. int i;
  270. int nr_pages = 1 << order;
  271. struct page *p = page + 1;
  272. set_compound_page_dtor(page, free_compound_page);
  273. set_compound_order(page, order);
  274. __SetPageHead(page);
  275. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  276. __SetPageTail(p);
  277. p->first_page = page;
  278. }
  279. }
  280. #endif
  281. static int destroy_compound_page(struct page *page, unsigned long order)
  282. {
  283. int i;
  284. int nr_pages = 1 << order;
  285. int bad = 0;
  286. if (unlikely(compound_order(page) != order) ||
  287. unlikely(!PageHead(page))) {
  288. bad_page(page);
  289. bad++;
  290. }
  291. __ClearPageHead(page);
  292. for (i = 1; i < nr_pages; i++) {
  293. struct page *p = page + i;
  294. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  295. bad_page(page);
  296. bad++;
  297. }
  298. __ClearPageTail(p);
  299. }
  300. return bad;
  301. }
  302. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  303. {
  304. int i;
  305. /*
  306. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  307. * and __GFP_HIGHMEM from hard or soft interrupt context.
  308. */
  309. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  310. for (i = 0; i < (1 << order); i++)
  311. clear_highpage(page + i);
  312. }
  313. static inline void set_page_order(struct page *page, int order)
  314. {
  315. set_page_private(page, order);
  316. __SetPageBuddy(page);
  317. }
  318. static inline void rmv_page_order(struct page *page)
  319. {
  320. __ClearPageBuddy(page);
  321. set_page_private(page, 0);
  322. }
  323. /*
  324. * Locate the struct page for both the matching buddy in our
  325. * pair (buddy1) and the combined O(n+1) page they form (page).
  326. *
  327. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  328. * the following equation:
  329. * B2 = B1 ^ (1 << O)
  330. * For example, if the starting buddy (buddy2) is #8 its order
  331. * 1 buddy is #10:
  332. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  333. *
  334. * 2) Any buddy B will have an order O+1 parent P which
  335. * satisfies the following equation:
  336. * P = B & ~(1 << O)
  337. *
  338. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  339. */
  340. static inline struct page *
  341. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  342. {
  343. unsigned long buddy_idx = page_idx ^ (1 << order);
  344. return page + (buddy_idx - page_idx);
  345. }
  346. static inline unsigned long
  347. __find_combined_index(unsigned long page_idx, unsigned int order)
  348. {
  349. return (page_idx & ~(1 << order));
  350. }
  351. /*
  352. * This function checks whether a page is free && is the buddy
  353. * we can do coalesce a page and its buddy if
  354. * (a) the buddy is not in a hole &&
  355. * (b) the buddy is in the buddy system &&
  356. * (c) a page and its buddy have the same order &&
  357. * (d) a page and its buddy are in the same zone.
  358. *
  359. * For recording whether a page is in the buddy system, we use PG_buddy.
  360. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  361. *
  362. * For recording page's order, we use page_private(page).
  363. */
  364. static inline int page_is_buddy(struct page *page, struct page *buddy,
  365. int order)
  366. {
  367. if (!pfn_valid_within(page_to_pfn(buddy)))
  368. return 0;
  369. if (page_zone_id(page) != page_zone_id(buddy))
  370. return 0;
  371. if (PageBuddy(buddy) && page_order(buddy) == order) {
  372. VM_BUG_ON(page_count(buddy) != 0);
  373. return 1;
  374. }
  375. return 0;
  376. }
  377. /*
  378. * Freeing function for a buddy system allocator.
  379. *
  380. * The concept of a buddy system is to maintain direct-mapped table
  381. * (containing bit values) for memory blocks of various "orders".
  382. * The bottom level table contains the map for the smallest allocatable
  383. * units of memory (here, pages), and each level above it describes
  384. * pairs of units from the levels below, hence, "buddies".
  385. * At a high level, all that happens here is marking the table entry
  386. * at the bottom level available, and propagating the changes upward
  387. * as necessary, plus some accounting needed to play nicely with other
  388. * parts of the VM system.
  389. * At each level, we keep a list of pages, which are heads of continuous
  390. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  391. * order is recorded in page_private(page) field.
  392. * So when we are allocating or freeing one, we can derive the state of the
  393. * other. That is, if we allocate a small block, and both were
  394. * free, the remainder of the region must be split into blocks.
  395. * If a block is freed, and its buddy is also free, then this
  396. * triggers coalescing into a block of larger size.
  397. *
  398. * -- wli
  399. */
  400. static inline void __free_one_page(struct page *page,
  401. struct zone *zone, unsigned int order,
  402. int migratetype)
  403. {
  404. unsigned long page_idx;
  405. int order_size = 1 << order;
  406. if (unlikely(PageCompound(page)))
  407. if (unlikely(destroy_compound_page(page, order)))
  408. return;
  409. VM_BUG_ON(migratetype == -1);
  410. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  411. VM_BUG_ON(page_idx & (order_size - 1));
  412. VM_BUG_ON(bad_range(zone, page));
  413. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  414. while (order < MAX_ORDER-1) {
  415. unsigned long combined_idx;
  416. struct page *buddy;
  417. buddy = __page_find_buddy(page, page_idx, order);
  418. if (!page_is_buddy(page, buddy, order))
  419. break;
  420. /* Our buddy is free, merge with it and move up one order. */
  421. list_del(&buddy->lru);
  422. zone->free_area[order].nr_free--;
  423. rmv_page_order(buddy);
  424. combined_idx = __find_combined_index(page_idx, order);
  425. page = page + (combined_idx - page_idx);
  426. page_idx = combined_idx;
  427. order++;
  428. }
  429. set_page_order(page, order);
  430. list_add(&page->lru,
  431. &zone->free_area[order].free_list[migratetype]);
  432. zone->free_area[order].nr_free++;
  433. }
  434. static inline int free_pages_check(struct page *page)
  435. {
  436. if (unlikely(page_mapcount(page) |
  437. (page->mapping != NULL) |
  438. (atomic_read(&page->_count) != 0) |
  439. (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
  440. bad_page(page);
  441. return 1;
  442. }
  443. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  444. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  445. return 0;
  446. }
  447. /*
  448. * Frees a list of pages.
  449. * Assumes all pages on list are in same zone, and of same order.
  450. * count is the number of pages to free.
  451. *
  452. * If the zone was previously in an "all pages pinned" state then look to
  453. * see if this freeing clears that state.
  454. *
  455. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  456. * pinned" detection logic.
  457. */
  458. static void free_pages_bulk(struct zone *zone, int count,
  459. struct list_head *list, int order)
  460. {
  461. spin_lock(&zone->lock);
  462. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  463. zone->pages_scanned = 0;
  464. while (count--) {
  465. struct page *page;
  466. VM_BUG_ON(list_empty(list));
  467. page = list_entry(list->prev, struct page, lru);
  468. /* have to delete it as __free_one_page list manipulates */
  469. list_del(&page->lru);
  470. __free_one_page(page, zone, order, page_private(page));
  471. }
  472. spin_unlock(&zone->lock);
  473. }
  474. static void free_one_page(struct zone *zone, struct page *page, int order,
  475. int migratetype)
  476. {
  477. spin_lock(&zone->lock);
  478. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  479. zone->pages_scanned = 0;
  480. __free_one_page(page, zone, order, migratetype);
  481. spin_unlock(&zone->lock);
  482. }
  483. static void __free_pages_ok(struct page *page, unsigned int order)
  484. {
  485. unsigned long flags;
  486. int i;
  487. int bad = 0;
  488. int clearMlocked = PageMlocked(page);
  489. for (i = 0 ; i < (1 << order) ; ++i)
  490. bad += free_pages_check(page + i);
  491. if (bad)
  492. return;
  493. if (!PageHighMem(page)) {
  494. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  495. debug_check_no_obj_freed(page_address(page),
  496. PAGE_SIZE << order);
  497. }
  498. arch_free_page(page, order);
  499. kernel_map_pages(page, 1 << order, 0);
  500. local_irq_save(flags);
  501. if (unlikely(clearMlocked))
  502. free_page_mlock(page);
  503. __count_vm_events(PGFREE, 1 << order);
  504. free_one_page(page_zone(page), page, order,
  505. get_pageblock_migratetype(page));
  506. local_irq_restore(flags);
  507. }
  508. /*
  509. * permit the bootmem allocator to evade page validation on high-order frees
  510. */
  511. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  512. {
  513. if (order == 0) {
  514. __ClearPageReserved(page);
  515. set_page_count(page, 0);
  516. set_page_refcounted(page);
  517. __free_page(page);
  518. } else {
  519. int loop;
  520. prefetchw(page);
  521. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  522. struct page *p = &page[loop];
  523. if (loop + 1 < BITS_PER_LONG)
  524. prefetchw(p + 1);
  525. __ClearPageReserved(p);
  526. set_page_count(p, 0);
  527. }
  528. set_page_refcounted(page);
  529. __free_pages(page, order);
  530. }
  531. }
  532. /*
  533. * The order of subdivision here is critical for the IO subsystem.
  534. * Please do not alter this order without good reasons and regression
  535. * testing. Specifically, as large blocks of memory are subdivided,
  536. * the order in which smaller blocks are delivered depends on the order
  537. * they're subdivided in this function. This is the primary factor
  538. * influencing the order in which pages are delivered to the IO
  539. * subsystem according to empirical testing, and this is also justified
  540. * by considering the behavior of a buddy system containing a single
  541. * large block of memory acted on by a series of small allocations.
  542. * This behavior is a critical factor in sglist merging's success.
  543. *
  544. * -- wli
  545. */
  546. static inline void expand(struct zone *zone, struct page *page,
  547. int low, int high, struct free_area *area,
  548. int migratetype)
  549. {
  550. unsigned long size = 1 << high;
  551. while (high > low) {
  552. area--;
  553. high--;
  554. size >>= 1;
  555. VM_BUG_ON(bad_range(zone, &page[size]));
  556. list_add(&page[size].lru, &area->free_list[migratetype]);
  557. area->nr_free++;
  558. set_page_order(&page[size], high);
  559. }
  560. }
  561. /*
  562. * This page is about to be returned from the page allocator
  563. */
  564. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  565. {
  566. if (unlikely(page_mapcount(page) |
  567. (page->mapping != NULL) |
  568. (atomic_read(&page->_count) != 0) |
  569. (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
  570. bad_page(page);
  571. return 1;
  572. }
  573. set_page_private(page, 0);
  574. set_page_refcounted(page);
  575. arch_alloc_page(page, order);
  576. kernel_map_pages(page, 1 << order, 1);
  577. if (gfp_flags & __GFP_ZERO)
  578. prep_zero_page(page, order, gfp_flags);
  579. if (order && (gfp_flags & __GFP_COMP))
  580. prep_compound_page(page, order);
  581. return 0;
  582. }
  583. /*
  584. * Go through the free lists for the given migratetype and remove
  585. * the smallest available page from the freelists
  586. */
  587. static inline
  588. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  589. int migratetype)
  590. {
  591. unsigned int current_order;
  592. struct free_area * area;
  593. struct page *page;
  594. /* Find a page of the appropriate size in the preferred list */
  595. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  596. area = &(zone->free_area[current_order]);
  597. if (list_empty(&area->free_list[migratetype]))
  598. continue;
  599. page = list_entry(area->free_list[migratetype].next,
  600. struct page, lru);
  601. list_del(&page->lru);
  602. rmv_page_order(page);
  603. area->nr_free--;
  604. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  605. expand(zone, page, order, current_order, area, migratetype);
  606. return page;
  607. }
  608. return NULL;
  609. }
  610. /*
  611. * This array describes the order lists are fallen back to when
  612. * the free lists for the desirable migrate type are depleted
  613. */
  614. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  615. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  616. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  617. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  618. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  619. };
  620. /*
  621. * Move the free pages in a range to the free lists of the requested type.
  622. * Note that start_page and end_pages are not aligned on a pageblock
  623. * boundary. If alignment is required, use move_freepages_block()
  624. */
  625. static int move_freepages(struct zone *zone,
  626. struct page *start_page, struct page *end_page,
  627. int migratetype)
  628. {
  629. struct page *page;
  630. unsigned long order;
  631. int pages_moved = 0;
  632. #ifndef CONFIG_HOLES_IN_ZONE
  633. /*
  634. * page_zone is not safe to call in this context when
  635. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  636. * anyway as we check zone boundaries in move_freepages_block().
  637. * Remove at a later date when no bug reports exist related to
  638. * grouping pages by mobility
  639. */
  640. BUG_ON(page_zone(start_page) != page_zone(end_page));
  641. #endif
  642. for (page = start_page; page <= end_page;) {
  643. /* Make sure we are not inadvertently changing nodes */
  644. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  645. if (!pfn_valid_within(page_to_pfn(page))) {
  646. page++;
  647. continue;
  648. }
  649. if (!PageBuddy(page)) {
  650. page++;
  651. continue;
  652. }
  653. order = page_order(page);
  654. list_del(&page->lru);
  655. list_add(&page->lru,
  656. &zone->free_area[order].free_list[migratetype]);
  657. page += 1 << order;
  658. pages_moved += 1 << order;
  659. }
  660. return pages_moved;
  661. }
  662. static int move_freepages_block(struct zone *zone, struct page *page,
  663. int migratetype)
  664. {
  665. unsigned long start_pfn, end_pfn;
  666. struct page *start_page, *end_page;
  667. start_pfn = page_to_pfn(page);
  668. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  669. start_page = pfn_to_page(start_pfn);
  670. end_page = start_page + pageblock_nr_pages - 1;
  671. end_pfn = start_pfn + pageblock_nr_pages - 1;
  672. /* Do not cross zone boundaries */
  673. if (start_pfn < zone->zone_start_pfn)
  674. start_page = page;
  675. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  676. return 0;
  677. return move_freepages(zone, start_page, end_page, migratetype);
  678. }
  679. /* Remove an element from the buddy allocator from the fallback list */
  680. static inline struct page *
  681. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  682. {
  683. struct free_area * area;
  684. int current_order;
  685. struct page *page;
  686. int migratetype, i;
  687. /* Find the largest possible block of pages in the other list */
  688. for (current_order = MAX_ORDER-1; current_order >= order;
  689. --current_order) {
  690. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  691. migratetype = fallbacks[start_migratetype][i];
  692. /* MIGRATE_RESERVE handled later if necessary */
  693. if (migratetype == MIGRATE_RESERVE)
  694. continue;
  695. area = &(zone->free_area[current_order]);
  696. if (list_empty(&area->free_list[migratetype]))
  697. continue;
  698. page = list_entry(area->free_list[migratetype].next,
  699. struct page, lru);
  700. area->nr_free--;
  701. /*
  702. * If breaking a large block of pages, move all free
  703. * pages to the preferred allocation list. If falling
  704. * back for a reclaimable kernel allocation, be more
  705. * agressive about taking ownership of free pages
  706. */
  707. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  708. start_migratetype == MIGRATE_RECLAIMABLE) {
  709. unsigned long pages;
  710. pages = move_freepages_block(zone, page,
  711. start_migratetype);
  712. /* Claim the whole block if over half of it is free */
  713. if (pages >= (1 << (pageblock_order-1)))
  714. set_pageblock_migratetype(page,
  715. start_migratetype);
  716. migratetype = start_migratetype;
  717. }
  718. /* Remove the page from the freelists */
  719. list_del(&page->lru);
  720. rmv_page_order(page);
  721. __mod_zone_page_state(zone, NR_FREE_PAGES,
  722. -(1UL << order));
  723. if (current_order == pageblock_order)
  724. set_pageblock_migratetype(page,
  725. start_migratetype);
  726. expand(zone, page, order, current_order, area, migratetype);
  727. return page;
  728. }
  729. }
  730. return NULL;
  731. }
  732. /*
  733. * Do the hard work of removing an element from the buddy allocator.
  734. * Call me with the zone->lock already held.
  735. */
  736. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  737. int migratetype)
  738. {
  739. struct page *page;
  740. retry_reserve:
  741. page = __rmqueue_smallest(zone, order, migratetype);
  742. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  743. page = __rmqueue_fallback(zone, order, migratetype);
  744. /*
  745. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  746. * is used because __rmqueue_smallest is an inline function
  747. * and we want just one call site
  748. */
  749. if (!page) {
  750. migratetype = MIGRATE_RESERVE;
  751. goto retry_reserve;
  752. }
  753. }
  754. return page;
  755. }
  756. /*
  757. * Obtain a specified number of elements from the buddy allocator, all under
  758. * a single hold of the lock, for efficiency. Add them to the supplied list.
  759. * Returns the number of new pages which were placed at *list.
  760. */
  761. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  762. unsigned long count, struct list_head *list,
  763. int migratetype)
  764. {
  765. int i;
  766. spin_lock(&zone->lock);
  767. for (i = 0; i < count; ++i) {
  768. struct page *page = __rmqueue(zone, order, migratetype);
  769. if (unlikely(page == NULL))
  770. break;
  771. /*
  772. * Split buddy pages returned by expand() are received here
  773. * in physical page order. The page is added to the callers and
  774. * list and the list head then moves forward. From the callers
  775. * perspective, the linked list is ordered by page number in
  776. * some conditions. This is useful for IO devices that can
  777. * merge IO requests if the physical pages are ordered
  778. * properly.
  779. */
  780. list_add(&page->lru, list);
  781. set_page_private(page, migratetype);
  782. list = &page->lru;
  783. }
  784. spin_unlock(&zone->lock);
  785. return i;
  786. }
  787. #ifdef CONFIG_NUMA
  788. /*
  789. * Called from the vmstat counter updater to drain pagesets of this
  790. * currently executing processor on remote nodes after they have
  791. * expired.
  792. *
  793. * Note that this function must be called with the thread pinned to
  794. * a single processor.
  795. */
  796. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  797. {
  798. unsigned long flags;
  799. int to_drain;
  800. local_irq_save(flags);
  801. if (pcp->count >= pcp->batch)
  802. to_drain = pcp->batch;
  803. else
  804. to_drain = pcp->count;
  805. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  806. pcp->count -= to_drain;
  807. local_irq_restore(flags);
  808. }
  809. #endif
  810. /*
  811. * Drain pages of the indicated processor.
  812. *
  813. * The processor must either be the current processor and the
  814. * thread pinned to the current processor or a processor that
  815. * is not online.
  816. */
  817. static void drain_pages(unsigned int cpu)
  818. {
  819. unsigned long flags;
  820. struct zone *zone;
  821. for_each_populated_zone(zone) {
  822. struct per_cpu_pageset *pset;
  823. struct per_cpu_pages *pcp;
  824. pset = zone_pcp(zone, cpu);
  825. pcp = &pset->pcp;
  826. local_irq_save(flags);
  827. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  828. pcp->count = 0;
  829. local_irq_restore(flags);
  830. }
  831. }
  832. /*
  833. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  834. */
  835. void drain_local_pages(void *arg)
  836. {
  837. drain_pages(smp_processor_id());
  838. }
  839. /*
  840. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  841. */
  842. void drain_all_pages(void)
  843. {
  844. on_each_cpu(drain_local_pages, NULL, 1);
  845. }
  846. #ifdef CONFIG_HIBERNATION
  847. void mark_free_pages(struct zone *zone)
  848. {
  849. unsigned long pfn, max_zone_pfn;
  850. unsigned long flags;
  851. int order, t;
  852. struct list_head *curr;
  853. if (!zone->spanned_pages)
  854. return;
  855. spin_lock_irqsave(&zone->lock, flags);
  856. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  857. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  858. if (pfn_valid(pfn)) {
  859. struct page *page = pfn_to_page(pfn);
  860. if (!swsusp_page_is_forbidden(page))
  861. swsusp_unset_page_free(page);
  862. }
  863. for_each_migratetype_order(order, t) {
  864. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  865. unsigned long i;
  866. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  867. for (i = 0; i < (1UL << order); i++)
  868. swsusp_set_page_free(pfn_to_page(pfn + i));
  869. }
  870. }
  871. spin_unlock_irqrestore(&zone->lock, flags);
  872. }
  873. #endif /* CONFIG_PM */
  874. /*
  875. * Free a 0-order page
  876. */
  877. static void free_hot_cold_page(struct page *page, int cold)
  878. {
  879. struct zone *zone = page_zone(page);
  880. struct per_cpu_pages *pcp;
  881. unsigned long flags;
  882. int clearMlocked = PageMlocked(page);
  883. if (PageAnon(page))
  884. page->mapping = NULL;
  885. if (free_pages_check(page))
  886. return;
  887. if (!PageHighMem(page)) {
  888. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  889. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  890. }
  891. arch_free_page(page, 0);
  892. kernel_map_pages(page, 1, 0);
  893. pcp = &zone_pcp(zone, get_cpu())->pcp;
  894. local_irq_save(flags);
  895. if (unlikely(clearMlocked))
  896. free_page_mlock(page);
  897. __count_vm_event(PGFREE);
  898. if (cold)
  899. list_add_tail(&page->lru, &pcp->list);
  900. else
  901. list_add(&page->lru, &pcp->list);
  902. set_page_private(page, get_pageblock_migratetype(page));
  903. pcp->count++;
  904. if (pcp->count >= pcp->high) {
  905. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  906. pcp->count -= pcp->batch;
  907. }
  908. local_irq_restore(flags);
  909. put_cpu();
  910. }
  911. void free_hot_page(struct page *page)
  912. {
  913. free_hot_cold_page(page, 0);
  914. }
  915. void free_cold_page(struct page *page)
  916. {
  917. free_hot_cold_page(page, 1);
  918. }
  919. /*
  920. * split_page takes a non-compound higher-order page, and splits it into
  921. * n (1<<order) sub-pages: page[0..n]
  922. * Each sub-page must be freed individually.
  923. *
  924. * Note: this is probably too low level an operation for use in drivers.
  925. * Please consult with lkml before using this in your driver.
  926. */
  927. void split_page(struct page *page, unsigned int order)
  928. {
  929. int i;
  930. VM_BUG_ON(PageCompound(page));
  931. VM_BUG_ON(!page_count(page));
  932. for (i = 1; i < (1 << order); i++)
  933. set_page_refcounted(page + i);
  934. }
  935. /*
  936. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  937. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  938. * or two.
  939. */
  940. static inline
  941. struct page *buffered_rmqueue(struct zone *preferred_zone,
  942. struct zone *zone, int order, gfp_t gfp_flags,
  943. int migratetype)
  944. {
  945. unsigned long flags;
  946. struct page *page;
  947. int cold = !!(gfp_flags & __GFP_COLD);
  948. int cpu;
  949. again:
  950. cpu = get_cpu();
  951. if (likely(order == 0)) {
  952. struct per_cpu_pages *pcp;
  953. pcp = &zone_pcp(zone, cpu)->pcp;
  954. local_irq_save(flags);
  955. if (!pcp->count) {
  956. pcp->count = rmqueue_bulk(zone, 0,
  957. pcp->batch, &pcp->list, migratetype);
  958. if (unlikely(!pcp->count))
  959. goto failed;
  960. }
  961. /* Find a page of the appropriate migrate type */
  962. if (cold) {
  963. list_for_each_entry_reverse(page, &pcp->list, lru)
  964. if (page_private(page) == migratetype)
  965. break;
  966. } else {
  967. list_for_each_entry(page, &pcp->list, lru)
  968. if (page_private(page) == migratetype)
  969. break;
  970. }
  971. /* Allocate more to the pcp list if necessary */
  972. if (unlikely(&page->lru == &pcp->list)) {
  973. pcp->count += rmqueue_bulk(zone, 0,
  974. pcp->batch, &pcp->list, migratetype);
  975. page = list_entry(pcp->list.next, struct page, lru);
  976. }
  977. list_del(&page->lru);
  978. pcp->count--;
  979. } else {
  980. spin_lock_irqsave(&zone->lock, flags);
  981. page = __rmqueue(zone, order, migratetype);
  982. spin_unlock(&zone->lock);
  983. if (!page)
  984. goto failed;
  985. }
  986. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  987. zone_statistics(preferred_zone, zone);
  988. local_irq_restore(flags);
  989. put_cpu();
  990. VM_BUG_ON(bad_range(zone, page));
  991. if (prep_new_page(page, order, gfp_flags))
  992. goto again;
  993. return page;
  994. failed:
  995. local_irq_restore(flags);
  996. put_cpu();
  997. return NULL;
  998. }
  999. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1000. #define ALLOC_WMARK_MIN WMARK_MIN
  1001. #define ALLOC_WMARK_LOW WMARK_LOW
  1002. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1003. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1004. /* Mask to get the watermark bits */
  1005. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1006. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1007. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1008. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1009. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1010. static struct fail_page_alloc_attr {
  1011. struct fault_attr attr;
  1012. u32 ignore_gfp_highmem;
  1013. u32 ignore_gfp_wait;
  1014. u32 min_order;
  1015. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1016. struct dentry *ignore_gfp_highmem_file;
  1017. struct dentry *ignore_gfp_wait_file;
  1018. struct dentry *min_order_file;
  1019. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1020. } fail_page_alloc = {
  1021. .attr = FAULT_ATTR_INITIALIZER,
  1022. .ignore_gfp_wait = 1,
  1023. .ignore_gfp_highmem = 1,
  1024. .min_order = 1,
  1025. };
  1026. static int __init setup_fail_page_alloc(char *str)
  1027. {
  1028. return setup_fault_attr(&fail_page_alloc.attr, str);
  1029. }
  1030. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1031. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1032. {
  1033. if (order < fail_page_alloc.min_order)
  1034. return 0;
  1035. if (gfp_mask & __GFP_NOFAIL)
  1036. return 0;
  1037. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1038. return 0;
  1039. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1040. return 0;
  1041. return should_fail(&fail_page_alloc.attr, 1 << order);
  1042. }
  1043. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1044. static int __init fail_page_alloc_debugfs(void)
  1045. {
  1046. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1047. struct dentry *dir;
  1048. int err;
  1049. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1050. "fail_page_alloc");
  1051. if (err)
  1052. return err;
  1053. dir = fail_page_alloc.attr.dentries.dir;
  1054. fail_page_alloc.ignore_gfp_wait_file =
  1055. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1056. &fail_page_alloc.ignore_gfp_wait);
  1057. fail_page_alloc.ignore_gfp_highmem_file =
  1058. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1059. &fail_page_alloc.ignore_gfp_highmem);
  1060. fail_page_alloc.min_order_file =
  1061. debugfs_create_u32("min-order", mode, dir,
  1062. &fail_page_alloc.min_order);
  1063. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1064. !fail_page_alloc.ignore_gfp_highmem_file ||
  1065. !fail_page_alloc.min_order_file) {
  1066. err = -ENOMEM;
  1067. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1068. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1069. debugfs_remove(fail_page_alloc.min_order_file);
  1070. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1071. }
  1072. return err;
  1073. }
  1074. late_initcall(fail_page_alloc_debugfs);
  1075. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1076. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1077. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1078. {
  1079. return 0;
  1080. }
  1081. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1082. /*
  1083. * Return 1 if free pages are above 'mark'. This takes into account the order
  1084. * of the allocation.
  1085. */
  1086. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1087. int classzone_idx, int alloc_flags)
  1088. {
  1089. /* free_pages my go negative - that's OK */
  1090. long min = mark;
  1091. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1092. int o;
  1093. if (alloc_flags & ALLOC_HIGH)
  1094. min -= min / 2;
  1095. if (alloc_flags & ALLOC_HARDER)
  1096. min -= min / 4;
  1097. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1098. return 0;
  1099. for (o = 0; o < order; o++) {
  1100. /* At the next order, this order's pages become unavailable */
  1101. free_pages -= z->free_area[o].nr_free << o;
  1102. /* Require fewer higher order pages to be free */
  1103. min >>= 1;
  1104. if (free_pages <= min)
  1105. return 0;
  1106. }
  1107. return 1;
  1108. }
  1109. #ifdef CONFIG_NUMA
  1110. /*
  1111. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1112. * skip over zones that are not allowed by the cpuset, or that have
  1113. * been recently (in last second) found to be nearly full. See further
  1114. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1115. * that have to skip over a lot of full or unallowed zones.
  1116. *
  1117. * If the zonelist cache is present in the passed in zonelist, then
  1118. * returns a pointer to the allowed node mask (either the current
  1119. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1120. *
  1121. * If the zonelist cache is not available for this zonelist, does
  1122. * nothing and returns NULL.
  1123. *
  1124. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1125. * a second since last zap'd) then we zap it out (clear its bits.)
  1126. *
  1127. * We hold off even calling zlc_setup, until after we've checked the
  1128. * first zone in the zonelist, on the theory that most allocations will
  1129. * be satisfied from that first zone, so best to examine that zone as
  1130. * quickly as we can.
  1131. */
  1132. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1133. {
  1134. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1135. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1136. zlc = zonelist->zlcache_ptr;
  1137. if (!zlc)
  1138. return NULL;
  1139. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1140. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1141. zlc->last_full_zap = jiffies;
  1142. }
  1143. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1144. &cpuset_current_mems_allowed :
  1145. &node_states[N_HIGH_MEMORY];
  1146. return allowednodes;
  1147. }
  1148. /*
  1149. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1150. * if it is worth looking at further for free memory:
  1151. * 1) Check that the zone isn't thought to be full (doesn't have its
  1152. * bit set in the zonelist_cache fullzones BITMAP).
  1153. * 2) Check that the zones node (obtained from the zonelist_cache
  1154. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1155. * Return true (non-zero) if zone is worth looking at further, or
  1156. * else return false (zero) if it is not.
  1157. *
  1158. * This check -ignores- the distinction between various watermarks,
  1159. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1160. * found to be full for any variation of these watermarks, it will
  1161. * be considered full for up to one second by all requests, unless
  1162. * we are so low on memory on all allowed nodes that we are forced
  1163. * into the second scan of the zonelist.
  1164. *
  1165. * In the second scan we ignore this zonelist cache and exactly
  1166. * apply the watermarks to all zones, even it is slower to do so.
  1167. * We are low on memory in the second scan, and should leave no stone
  1168. * unturned looking for a free page.
  1169. */
  1170. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1171. nodemask_t *allowednodes)
  1172. {
  1173. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1174. int i; /* index of *z in zonelist zones */
  1175. int n; /* node that zone *z is on */
  1176. zlc = zonelist->zlcache_ptr;
  1177. if (!zlc)
  1178. return 1;
  1179. i = z - zonelist->_zonerefs;
  1180. n = zlc->z_to_n[i];
  1181. /* This zone is worth trying if it is allowed but not full */
  1182. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1183. }
  1184. /*
  1185. * Given 'z' scanning a zonelist, set the corresponding bit in
  1186. * zlc->fullzones, so that subsequent attempts to allocate a page
  1187. * from that zone don't waste time re-examining it.
  1188. */
  1189. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1190. {
  1191. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1192. int i; /* index of *z in zonelist zones */
  1193. zlc = zonelist->zlcache_ptr;
  1194. if (!zlc)
  1195. return;
  1196. i = z - zonelist->_zonerefs;
  1197. set_bit(i, zlc->fullzones);
  1198. }
  1199. #else /* CONFIG_NUMA */
  1200. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1201. {
  1202. return NULL;
  1203. }
  1204. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1205. nodemask_t *allowednodes)
  1206. {
  1207. return 1;
  1208. }
  1209. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1210. {
  1211. }
  1212. #endif /* CONFIG_NUMA */
  1213. /*
  1214. * get_page_from_freelist goes through the zonelist trying to allocate
  1215. * a page.
  1216. */
  1217. static struct page *
  1218. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1219. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1220. struct zone *preferred_zone, int migratetype)
  1221. {
  1222. struct zoneref *z;
  1223. struct page *page = NULL;
  1224. int classzone_idx;
  1225. struct zone *zone;
  1226. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1227. int zlc_active = 0; /* set if using zonelist_cache */
  1228. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1229. if (WARN_ON_ONCE(order >= MAX_ORDER))
  1230. return NULL;
  1231. classzone_idx = zone_idx(preferred_zone);
  1232. zonelist_scan:
  1233. /*
  1234. * Scan zonelist, looking for a zone with enough free.
  1235. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1236. */
  1237. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1238. high_zoneidx, nodemask) {
  1239. if (NUMA_BUILD && zlc_active &&
  1240. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1241. continue;
  1242. if ((alloc_flags & ALLOC_CPUSET) &&
  1243. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1244. goto try_next_zone;
  1245. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1246. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1247. unsigned long mark;
  1248. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1249. if (!zone_watermark_ok(zone, order, mark,
  1250. classzone_idx, alloc_flags)) {
  1251. if (!zone_reclaim_mode ||
  1252. !zone_reclaim(zone, gfp_mask, order))
  1253. goto this_zone_full;
  1254. }
  1255. }
  1256. page = buffered_rmqueue(preferred_zone, zone, order,
  1257. gfp_mask, migratetype);
  1258. if (page)
  1259. break;
  1260. this_zone_full:
  1261. if (NUMA_BUILD)
  1262. zlc_mark_zone_full(zonelist, z);
  1263. try_next_zone:
  1264. if (NUMA_BUILD && !did_zlc_setup && num_online_nodes() > 1) {
  1265. /*
  1266. * we do zlc_setup after the first zone is tried but only
  1267. * if there are multiple nodes make it worthwhile
  1268. */
  1269. allowednodes = zlc_setup(zonelist, alloc_flags);
  1270. zlc_active = 1;
  1271. did_zlc_setup = 1;
  1272. }
  1273. }
  1274. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1275. /* Disable zlc cache for second zonelist scan */
  1276. zlc_active = 0;
  1277. goto zonelist_scan;
  1278. }
  1279. return page;
  1280. }
  1281. static inline int
  1282. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1283. unsigned long pages_reclaimed)
  1284. {
  1285. /* Do not loop if specifically requested */
  1286. if (gfp_mask & __GFP_NORETRY)
  1287. return 0;
  1288. /*
  1289. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1290. * means __GFP_NOFAIL, but that may not be true in other
  1291. * implementations.
  1292. */
  1293. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1294. return 1;
  1295. /*
  1296. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1297. * specified, then we retry until we no longer reclaim any pages
  1298. * (above), or we've reclaimed an order of pages at least as
  1299. * large as the allocation's order. In both cases, if the
  1300. * allocation still fails, we stop retrying.
  1301. */
  1302. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1303. return 1;
  1304. /*
  1305. * Don't let big-order allocations loop unless the caller
  1306. * explicitly requests that.
  1307. */
  1308. if (gfp_mask & __GFP_NOFAIL)
  1309. return 1;
  1310. return 0;
  1311. }
  1312. static inline struct page *
  1313. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1314. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1315. nodemask_t *nodemask, struct zone *preferred_zone,
  1316. int migratetype)
  1317. {
  1318. struct page *page;
  1319. /* Acquire the OOM killer lock for the zones in zonelist */
  1320. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1321. schedule_timeout_uninterruptible(1);
  1322. return NULL;
  1323. }
  1324. /*
  1325. * Go through the zonelist yet one more time, keep very high watermark
  1326. * here, this is only to catch a parallel oom killing, we must fail if
  1327. * we're still under heavy pressure.
  1328. */
  1329. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1330. order, zonelist, high_zoneidx,
  1331. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1332. preferred_zone, migratetype);
  1333. if (page)
  1334. goto out;
  1335. /* The OOM killer will not help higher order allocs */
  1336. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1337. goto out;
  1338. /* Exhausted what can be done so it's blamo time */
  1339. out_of_memory(zonelist, gfp_mask, order);
  1340. out:
  1341. clear_zonelist_oom(zonelist, gfp_mask);
  1342. return page;
  1343. }
  1344. /* The really slow allocator path where we enter direct reclaim */
  1345. static inline struct page *
  1346. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1347. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1348. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1349. int migratetype, unsigned long *did_some_progress)
  1350. {
  1351. struct page *page = NULL;
  1352. struct reclaim_state reclaim_state;
  1353. struct task_struct *p = current;
  1354. cond_resched();
  1355. /* We now go into synchronous reclaim */
  1356. cpuset_memory_pressure_bump();
  1357. /*
  1358. * The task's cpuset might have expanded its set of allowable nodes
  1359. */
  1360. p->flags |= PF_MEMALLOC;
  1361. lockdep_set_current_reclaim_state(gfp_mask);
  1362. reclaim_state.reclaimed_slab = 0;
  1363. p->reclaim_state = &reclaim_state;
  1364. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1365. p->reclaim_state = NULL;
  1366. lockdep_clear_current_reclaim_state();
  1367. p->flags &= ~PF_MEMALLOC;
  1368. cond_resched();
  1369. if (order != 0)
  1370. drain_all_pages();
  1371. if (likely(*did_some_progress))
  1372. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1373. zonelist, high_zoneidx,
  1374. alloc_flags, preferred_zone,
  1375. migratetype);
  1376. return page;
  1377. }
  1378. /*
  1379. * This is called in the allocator slow-path if the allocation request is of
  1380. * sufficient urgency to ignore watermarks and take other desperate measures
  1381. */
  1382. static inline struct page *
  1383. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1384. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1385. nodemask_t *nodemask, struct zone *preferred_zone,
  1386. int migratetype)
  1387. {
  1388. struct page *page;
  1389. do {
  1390. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1391. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1392. preferred_zone, migratetype);
  1393. if (!page && gfp_mask & __GFP_NOFAIL)
  1394. congestion_wait(WRITE, HZ/50);
  1395. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1396. return page;
  1397. }
  1398. static inline
  1399. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1400. enum zone_type high_zoneidx)
  1401. {
  1402. struct zoneref *z;
  1403. struct zone *zone;
  1404. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1405. wakeup_kswapd(zone, order);
  1406. }
  1407. static inline int
  1408. gfp_to_alloc_flags(gfp_t gfp_mask)
  1409. {
  1410. struct task_struct *p = current;
  1411. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1412. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1413. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1414. BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
  1415. /*
  1416. * The caller may dip into page reserves a bit more if the caller
  1417. * cannot run direct reclaim, or if the caller has realtime scheduling
  1418. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1419. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1420. */
  1421. alloc_flags |= (gfp_mask & __GFP_HIGH);
  1422. if (!wait) {
  1423. alloc_flags |= ALLOC_HARDER;
  1424. /*
  1425. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1426. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1427. */
  1428. alloc_flags &= ~ALLOC_CPUSET;
  1429. } else if (unlikely(rt_task(p)))
  1430. alloc_flags |= ALLOC_HARDER;
  1431. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1432. if (!in_interrupt() &&
  1433. ((p->flags & PF_MEMALLOC) ||
  1434. unlikely(test_thread_flag(TIF_MEMDIE))))
  1435. alloc_flags |= ALLOC_NO_WATERMARKS;
  1436. }
  1437. return alloc_flags;
  1438. }
  1439. static inline struct page *
  1440. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1441. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1442. nodemask_t *nodemask, struct zone *preferred_zone,
  1443. int migratetype)
  1444. {
  1445. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1446. struct page *page = NULL;
  1447. int alloc_flags;
  1448. unsigned long pages_reclaimed = 0;
  1449. unsigned long did_some_progress;
  1450. struct task_struct *p = current;
  1451. /*
  1452. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1453. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1454. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1455. * using a larger set of nodes after it has established that the
  1456. * allowed per node queues are empty and that nodes are
  1457. * over allocated.
  1458. */
  1459. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1460. goto nopage;
  1461. wake_all_kswapd(order, zonelist, high_zoneidx);
  1462. /*
  1463. * OK, we're below the kswapd watermark and have kicked background
  1464. * reclaim. Now things get more complex, so set up alloc_flags according
  1465. * to how we want to proceed.
  1466. */
  1467. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1468. restart:
  1469. /* This is the last chance, in general, before the goto nopage. */
  1470. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1471. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1472. preferred_zone, migratetype);
  1473. if (page)
  1474. goto got_pg;
  1475. rebalance:
  1476. /* Allocate without watermarks if the context allows */
  1477. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1478. page = __alloc_pages_high_priority(gfp_mask, order,
  1479. zonelist, high_zoneidx, nodemask,
  1480. preferred_zone, migratetype);
  1481. if (page)
  1482. goto got_pg;
  1483. }
  1484. /* Atomic allocations - we can't balance anything */
  1485. if (!wait)
  1486. goto nopage;
  1487. /* Avoid recursion of direct reclaim */
  1488. if (p->flags & PF_MEMALLOC)
  1489. goto nopage;
  1490. /* Try direct reclaim and then allocating */
  1491. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  1492. zonelist, high_zoneidx,
  1493. nodemask,
  1494. alloc_flags, preferred_zone,
  1495. migratetype, &did_some_progress);
  1496. if (page)
  1497. goto got_pg;
  1498. /*
  1499. * If we failed to make any progress reclaiming, then we are
  1500. * running out of options and have to consider going OOM
  1501. */
  1502. if (!did_some_progress) {
  1503. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1504. page = __alloc_pages_may_oom(gfp_mask, order,
  1505. zonelist, high_zoneidx,
  1506. nodemask, preferred_zone,
  1507. migratetype);
  1508. if (page)
  1509. goto got_pg;
  1510. /*
  1511. * The OOM killer does not trigger for high-order allocations
  1512. * but if no progress is being made, there are no other
  1513. * options and retrying is unlikely to help
  1514. */
  1515. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1516. goto nopage;
  1517. goto restart;
  1518. }
  1519. }
  1520. /* Check if we should retry the allocation */
  1521. pages_reclaimed += did_some_progress;
  1522. if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
  1523. /* Wait for some write requests to complete then retry */
  1524. congestion_wait(WRITE, HZ/50);
  1525. goto rebalance;
  1526. }
  1527. nopage:
  1528. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1529. printk(KERN_WARNING "%s: page allocation failure."
  1530. " order:%d, mode:0x%x\n",
  1531. p->comm, order, gfp_mask);
  1532. dump_stack();
  1533. show_mem();
  1534. }
  1535. got_pg:
  1536. return page;
  1537. }
  1538. /*
  1539. * This is the 'heart' of the zoned buddy allocator.
  1540. */
  1541. struct page *
  1542. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1543. struct zonelist *zonelist, nodemask_t *nodemask)
  1544. {
  1545. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1546. struct zone *preferred_zone;
  1547. struct page *page;
  1548. int migratetype = allocflags_to_migratetype(gfp_mask);
  1549. lockdep_trace_alloc(gfp_mask);
  1550. might_sleep_if(gfp_mask & __GFP_WAIT);
  1551. if (should_fail_alloc_page(gfp_mask, order))
  1552. return NULL;
  1553. /*
  1554. * Check the zones suitable for the gfp_mask contain at least one
  1555. * valid zone. It's possible to have an empty zonelist as a result
  1556. * of GFP_THISNODE and a memoryless node
  1557. */
  1558. if (unlikely(!zonelist->_zonerefs->zone))
  1559. return NULL;
  1560. /* The preferred zone is used for statistics later */
  1561. first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
  1562. if (!preferred_zone)
  1563. return NULL;
  1564. /* First allocation attempt */
  1565. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1566. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  1567. preferred_zone, migratetype);
  1568. if (unlikely(!page))
  1569. page = __alloc_pages_slowpath(gfp_mask, order,
  1570. zonelist, high_zoneidx, nodemask,
  1571. preferred_zone, migratetype);
  1572. return page;
  1573. }
  1574. EXPORT_SYMBOL(__alloc_pages_nodemask);
  1575. /*
  1576. * Common helper functions.
  1577. */
  1578. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1579. {
  1580. struct page * page;
  1581. page = alloc_pages(gfp_mask, order);
  1582. if (!page)
  1583. return 0;
  1584. return (unsigned long) page_address(page);
  1585. }
  1586. EXPORT_SYMBOL(__get_free_pages);
  1587. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1588. {
  1589. struct page * page;
  1590. /*
  1591. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1592. * a highmem page
  1593. */
  1594. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1595. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1596. if (page)
  1597. return (unsigned long) page_address(page);
  1598. return 0;
  1599. }
  1600. EXPORT_SYMBOL(get_zeroed_page);
  1601. void __pagevec_free(struct pagevec *pvec)
  1602. {
  1603. int i = pagevec_count(pvec);
  1604. while (--i >= 0)
  1605. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1606. }
  1607. void __free_pages(struct page *page, unsigned int order)
  1608. {
  1609. if (put_page_testzero(page)) {
  1610. if (order == 0)
  1611. free_hot_page(page);
  1612. else
  1613. __free_pages_ok(page, order);
  1614. }
  1615. }
  1616. EXPORT_SYMBOL(__free_pages);
  1617. void free_pages(unsigned long addr, unsigned int order)
  1618. {
  1619. if (addr != 0) {
  1620. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1621. __free_pages(virt_to_page((void *)addr), order);
  1622. }
  1623. }
  1624. EXPORT_SYMBOL(free_pages);
  1625. /**
  1626. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1627. * @size: the number of bytes to allocate
  1628. * @gfp_mask: GFP flags for the allocation
  1629. *
  1630. * This function is similar to alloc_pages(), except that it allocates the
  1631. * minimum number of pages to satisfy the request. alloc_pages() can only
  1632. * allocate memory in power-of-two pages.
  1633. *
  1634. * This function is also limited by MAX_ORDER.
  1635. *
  1636. * Memory allocated by this function must be released by free_pages_exact().
  1637. */
  1638. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1639. {
  1640. unsigned int order = get_order(size);
  1641. unsigned long addr;
  1642. addr = __get_free_pages(gfp_mask, order);
  1643. if (addr) {
  1644. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1645. unsigned long used = addr + PAGE_ALIGN(size);
  1646. split_page(virt_to_page(addr), order);
  1647. while (used < alloc_end) {
  1648. free_page(used);
  1649. used += PAGE_SIZE;
  1650. }
  1651. }
  1652. return (void *)addr;
  1653. }
  1654. EXPORT_SYMBOL(alloc_pages_exact);
  1655. /**
  1656. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1657. * @virt: the value returned by alloc_pages_exact.
  1658. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1659. *
  1660. * Release the memory allocated by a previous call to alloc_pages_exact.
  1661. */
  1662. void free_pages_exact(void *virt, size_t size)
  1663. {
  1664. unsigned long addr = (unsigned long)virt;
  1665. unsigned long end = addr + PAGE_ALIGN(size);
  1666. while (addr < end) {
  1667. free_page(addr);
  1668. addr += PAGE_SIZE;
  1669. }
  1670. }
  1671. EXPORT_SYMBOL(free_pages_exact);
  1672. static unsigned int nr_free_zone_pages(int offset)
  1673. {
  1674. struct zoneref *z;
  1675. struct zone *zone;
  1676. /* Just pick one node, since fallback list is circular */
  1677. unsigned int sum = 0;
  1678. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1679. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1680. unsigned long size = zone->present_pages;
  1681. unsigned long high = high_wmark_pages(zone);
  1682. if (size > high)
  1683. sum += size - high;
  1684. }
  1685. return sum;
  1686. }
  1687. /*
  1688. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1689. */
  1690. unsigned int nr_free_buffer_pages(void)
  1691. {
  1692. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1693. }
  1694. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1695. /*
  1696. * Amount of free RAM allocatable within all zones
  1697. */
  1698. unsigned int nr_free_pagecache_pages(void)
  1699. {
  1700. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1701. }
  1702. static inline void show_node(struct zone *zone)
  1703. {
  1704. if (NUMA_BUILD)
  1705. printk("Node %d ", zone_to_nid(zone));
  1706. }
  1707. void si_meminfo(struct sysinfo *val)
  1708. {
  1709. val->totalram = totalram_pages;
  1710. val->sharedram = 0;
  1711. val->freeram = global_page_state(NR_FREE_PAGES);
  1712. val->bufferram = nr_blockdev_pages();
  1713. val->totalhigh = totalhigh_pages;
  1714. val->freehigh = nr_free_highpages();
  1715. val->mem_unit = PAGE_SIZE;
  1716. }
  1717. EXPORT_SYMBOL(si_meminfo);
  1718. #ifdef CONFIG_NUMA
  1719. void si_meminfo_node(struct sysinfo *val, int nid)
  1720. {
  1721. pg_data_t *pgdat = NODE_DATA(nid);
  1722. val->totalram = pgdat->node_present_pages;
  1723. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1724. #ifdef CONFIG_HIGHMEM
  1725. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1726. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1727. NR_FREE_PAGES);
  1728. #else
  1729. val->totalhigh = 0;
  1730. val->freehigh = 0;
  1731. #endif
  1732. val->mem_unit = PAGE_SIZE;
  1733. }
  1734. #endif
  1735. #define K(x) ((x) << (PAGE_SHIFT-10))
  1736. /*
  1737. * Show free area list (used inside shift_scroll-lock stuff)
  1738. * We also calculate the percentage fragmentation. We do this by counting the
  1739. * memory on each free list with the exception of the first item on the list.
  1740. */
  1741. void show_free_areas(void)
  1742. {
  1743. int cpu;
  1744. struct zone *zone;
  1745. for_each_populated_zone(zone) {
  1746. show_node(zone);
  1747. printk("%s per-cpu:\n", zone->name);
  1748. for_each_online_cpu(cpu) {
  1749. struct per_cpu_pageset *pageset;
  1750. pageset = zone_pcp(zone, cpu);
  1751. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1752. cpu, pageset->pcp.high,
  1753. pageset->pcp.batch, pageset->pcp.count);
  1754. }
  1755. }
  1756. printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
  1757. " inactive_file:%lu"
  1758. //TODO: check/adjust line lengths
  1759. #ifdef CONFIG_UNEVICTABLE_LRU
  1760. " unevictable:%lu"
  1761. #endif
  1762. " dirty:%lu writeback:%lu unstable:%lu\n"
  1763. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1764. global_page_state(NR_ACTIVE_ANON),
  1765. global_page_state(NR_ACTIVE_FILE),
  1766. global_page_state(NR_INACTIVE_ANON),
  1767. global_page_state(NR_INACTIVE_FILE),
  1768. #ifdef CONFIG_UNEVICTABLE_LRU
  1769. global_page_state(NR_UNEVICTABLE),
  1770. #endif
  1771. global_page_state(NR_FILE_DIRTY),
  1772. global_page_state(NR_WRITEBACK),
  1773. global_page_state(NR_UNSTABLE_NFS),
  1774. global_page_state(NR_FREE_PAGES),
  1775. global_page_state(NR_SLAB_RECLAIMABLE) +
  1776. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1777. global_page_state(NR_FILE_MAPPED),
  1778. global_page_state(NR_PAGETABLE),
  1779. global_page_state(NR_BOUNCE));
  1780. for_each_populated_zone(zone) {
  1781. int i;
  1782. show_node(zone);
  1783. printk("%s"
  1784. " free:%lukB"
  1785. " min:%lukB"
  1786. " low:%lukB"
  1787. " high:%lukB"
  1788. " active_anon:%lukB"
  1789. " inactive_anon:%lukB"
  1790. " active_file:%lukB"
  1791. " inactive_file:%lukB"
  1792. #ifdef CONFIG_UNEVICTABLE_LRU
  1793. " unevictable:%lukB"
  1794. #endif
  1795. " present:%lukB"
  1796. " pages_scanned:%lu"
  1797. " all_unreclaimable? %s"
  1798. "\n",
  1799. zone->name,
  1800. K(zone_page_state(zone, NR_FREE_PAGES)),
  1801. K(min_wmark_pages(zone)),
  1802. K(low_wmark_pages(zone)),
  1803. K(high_wmark_pages(zone)),
  1804. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  1805. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  1806. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  1807. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  1808. #ifdef CONFIG_UNEVICTABLE_LRU
  1809. K(zone_page_state(zone, NR_UNEVICTABLE)),
  1810. #endif
  1811. K(zone->present_pages),
  1812. zone->pages_scanned,
  1813. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1814. );
  1815. printk("lowmem_reserve[]:");
  1816. for (i = 0; i < MAX_NR_ZONES; i++)
  1817. printk(" %lu", zone->lowmem_reserve[i]);
  1818. printk("\n");
  1819. }
  1820. for_each_populated_zone(zone) {
  1821. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1822. show_node(zone);
  1823. printk("%s: ", zone->name);
  1824. spin_lock_irqsave(&zone->lock, flags);
  1825. for (order = 0; order < MAX_ORDER; order++) {
  1826. nr[order] = zone->free_area[order].nr_free;
  1827. total += nr[order] << order;
  1828. }
  1829. spin_unlock_irqrestore(&zone->lock, flags);
  1830. for (order = 0; order < MAX_ORDER; order++)
  1831. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1832. printk("= %lukB\n", K(total));
  1833. }
  1834. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1835. show_swap_cache_info();
  1836. }
  1837. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1838. {
  1839. zoneref->zone = zone;
  1840. zoneref->zone_idx = zone_idx(zone);
  1841. }
  1842. /*
  1843. * Builds allocation fallback zone lists.
  1844. *
  1845. * Add all populated zones of a node to the zonelist.
  1846. */
  1847. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1848. int nr_zones, enum zone_type zone_type)
  1849. {
  1850. struct zone *zone;
  1851. BUG_ON(zone_type >= MAX_NR_ZONES);
  1852. zone_type++;
  1853. do {
  1854. zone_type--;
  1855. zone = pgdat->node_zones + zone_type;
  1856. if (populated_zone(zone)) {
  1857. zoneref_set_zone(zone,
  1858. &zonelist->_zonerefs[nr_zones++]);
  1859. check_highest_zone(zone_type);
  1860. }
  1861. } while (zone_type);
  1862. return nr_zones;
  1863. }
  1864. /*
  1865. * zonelist_order:
  1866. * 0 = automatic detection of better ordering.
  1867. * 1 = order by ([node] distance, -zonetype)
  1868. * 2 = order by (-zonetype, [node] distance)
  1869. *
  1870. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1871. * the same zonelist. So only NUMA can configure this param.
  1872. */
  1873. #define ZONELIST_ORDER_DEFAULT 0
  1874. #define ZONELIST_ORDER_NODE 1
  1875. #define ZONELIST_ORDER_ZONE 2
  1876. /* zonelist order in the kernel.
  1877. * set_zonelist_order() will set this to NODE or ZONE.
  1878. */
  1879. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1880. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1881. #ifdef CONFIG_NUMA
  1882. /* The value user specified ....changed by config */
  1883. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1884. /* string for sysctl */
  1885. #define NUMA_ZONELIST_ORDER_LEN 16
  1886. char numa_zonelist_order[16] = "default";
  1887. /*
  1888. * interface for configure zonelist ordering.
  1889. * command line option "numa_zonelist_order"
  1890. * = "[dD]efault - default, automatic configuration.
  1891. * = "[nN]ode - order by node locality, then by zone within node
  1892. * = "[zZ]one - order by zone, then by locality within zone
  1893. */
  1894. static int __parse_numa_zonelist_order(char *s)
  1895. {
  1896. if (*s == 'd' || *s == 'D') {
  1897. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1898. } else if (*s == 'n' || *s == 'N') {
  1899. user_zonelist_order = ZONELIST_ORDER_NODE;
  1900. } else if (*s == 'z' || *s == 'Z') {
  1901. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1902. } else {
  1903. printk(KERN_WARNING
  1904. "Ignoring invalid numa_zonelist_order value: "
  1905. "%s\n", s);
  1906. return -EINVAL;
  1907. }
  1908. return 0;
  1909. }
  1910. static __init int setup_numa_zonelist_order(char *s)
  1911. {
  1912. if (s)
  1913. return __parse_numa_zonelist_order(s);
  1914. return 0;
  1915. }
  1916. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1917. /*
  1918. * sysctl handler for numa_zonelist_order
  1919. */
  1920. int numa_zonelist_order_handler(ctl_table *table, int write,
  1921. struct file *file, void __user *buffer, size_t *length,
  1922. loff_t *ppos)
  1923. {
  1924. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1925. int ret;
  1926. if (write)
  1927. strncpy(saved_string, (char*)table->data,
  1928. NUMA_ZONELIST_ORDER_LEN);
  1929. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1930. if (ret)
  1931. return ret;
  1932. if (write) {
  1933. int oldval = user_zonelist_order;
  1934. if (__parse_numa_zonelist_order((char*)table->data)) {
  1935. /*
  1936. * bogus value. restore saved string
  1937. */
  1938. strncpy((char*)table->data, saved_string,
  1939. NUMA_ZONELIST_ORDER_LEN);
  1940. user_zonelist_order = oldval;
  1941. } else if (oldval != user_zonelist_order)
  1942. build_all_zonelists();
  1943. }
  1944. return 0;
  1945. }
  1946. #define MAX_NODE_LOAD (num_online_nodes())
  1947. static int node_load[MAX_NUMNODES];
  1948. /**
  1949. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1950. * @node: node whose fallback list we're appending
  1951. * @used_node_mask: nodemask_t of already used nodes
  1952. *
  1953. * We use a number of factors to determine which is the next node that should
  1954. * appear on a given node's fallback list. The node should not have appeared
  1955. * already in @node's fallback list, and it should be the next closest node
  1956. * according to the distance array (which contains arbitrary distance values
  1957. * from each node to each node in the system), and should also prefer nodes
  1958. * with no CPUs, since presumably they'll have very little allocation pressure
  1959. * on them otherwise.
  1960. * It returns -1 if no node is found.
  1961. */
  1962. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1963. {
  1964. int n, val;
  1965. int min_val = INT_MAX;
  1966. int best_node = -1;
  1967. const struct cpumask *tmp = cpumask_of_node(0);
  1968. /* Use the local node if we haven't already */
  1969. if (!node_isset(node, *used_node_mask)) {
  1970. node_set(node, *used_node_mask);
  1971. return node;
  1972. }
  1973. for_each_node_state(n, N_HIGH_MEMORY) {
  1974. /* Don't want a node to appear more than once */
  1975. if (node_isset(n, *used_node_mask))
  1976. continue;
  1977. /* Use the distance array to find the distance */
  1978. val = node_distance(node, n);
  1979. /* Penalize nodes under us ("prefer the next node") */
  1980. val += (n < node);
  1981. /* Give preference to headless and unused nodes */
  1982. tmp = cpumask_of_node(n);
  1983. if (!cpumask_empty(tmp))
  1984. val += PENALTY_FOR_NODE_WITH_CPUS;
  1985. /* Slight preference for less loaded node */
  1986. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1987. val += node_load[n];
  1988. if (val < min_val) {
  1989. min_val = val;
  1990. best_node = n;
  1991. }
  1992. }
  1993. if (best_node >= 0)
  1994. node_set(best_node, *used_node_mask);
  1995. return best_node;
  1996. }
  1997. /*
  1998. * Build zonelists ordered by node and zones within node.
  1999. * This results in maximum locality--normal zone overflows into local
  2000. * DMA zone, if any--but risks exhausting DMA zone.
  2001. */
  2002. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2003. {
  2004. int j;
  2005. struct zonelist *zonelist;
  2006. zonelist = &pgdat->node_zonelists[0];
  2007. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2008. ;
  2009. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2010. MAX_NR_ZONES - 1);
  2011. zonelist->_zonerefs[j].zone = NULL;
  2012. zonelist->_zonerefs[j].zone_idx = 0;
  2013. }
  2014. /*
  2015. * Build gfp_thisnode zonelists
  2016. */
  2017. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2018. {
  2019. int j;
  2020. struct zonelist *zonelist;
  2021. zonelist = &pgdat->node_zonelists[1];
  2022. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2023. zonelist->_zonerefs[j].zone = NULL;
  2024. zonelist->_zonerefs[j].zone_idx = 0;
  2025. }
  2026. /*
  2027. * Build zonelists ordered by zone and nodes within zones.
  2028. * This results in conserving DMA zone[s] until all Normal memory is
  2029. * exhausted, but results in overflowing to remote node while memory
  2030. * may still exist in local DMA zone.
  2031. */
  2032. static int node_order[MAX_NUMNODES];
  2033. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2034. {
  2035. int pos, j, node;
  2036. int zone_type; /* needs to be signed */
  2037. struct zone *z;
  2038. struct zonelist *zonelist;
  2039. zonelist = &pgdat->node_zonelists[0];
  2040. pos = 0;
  2041. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2042. for (j = 0; j < nr_nodes; j++) {
  2043. node = node_order[j];
  2044. z = &NODE_DATA(node)->node_zones[zone_type];
  2045. if (populated_zone(z)) {
  2046. zoneref_set_zone(z,
  2047. &zonelist->_zonerefs[pos++]);
  2048. check_highest_zone(zone_type);
  2049. }
  2050. }
  2051. }
  2052. zonelist->_zonerefs[pos].zone = NULL;
  2053. zonelist->_zonerefs[pos].zone_idx = 0;
  2054. }
  2055. static int default_zonelist_order(void)
  2056. {
  2057. int nid, zone_type;
  2058. unsigned long low_kmem_size,total_size;
  2059. struct zone *z;
  2060. int average_size;
  2061. /*
  2062. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  2063. * If they are really small and used heavily, the system can fall
  2064. * into OOM very easily.
  2065. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  2066. */
  2067. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2068. low_kmem_size = 0;
  2069. total_size = 0;
  2070. for_each_online_node(nid) {
  2071. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2072. z = &NODE_DATA(nid)->node_zones[zone_type];
  2073. if (populated_zone(z)) {
  2074. if (zone_type < ZONE_NORMAL)
  2075. low_kmem_size += z->present_pages;
  2076. total_size += z->present_pages;
  2077. }
  2078. }
  2079. }
  2080. if (!low_kmem_size || /* there are no DMA area. */
  2081. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2082. return ZONELIST_ORDER_NODE;
  2083. /*
  2084. * look into each node's config.
  2085. * If there is a node whose DMA/DMA32 memory is very big area on
  2086. * local memory, NODE_ORDER may be suitable.
  2087. */
  2088. average_size = total_size /
  2089. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2090. for_each_online_node(nid) {
  2091. low_kmem_size = 0;
  2092. total_size = 0;
  2093. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2094. z = &NODE_DATA(nid)->node_zones[zone_type];
  2095. if (populated_zone(z)) {
  2096. if (zone_type < ZONE_NORMAL)
  2097. low_kmem_size += z->present_pages;
  2098. total_size += z->present_pages;
  2099. }
  2100. }
  2101. if (low_kmem_size &&
  2102. total_size > average_size && /* ignore small node */
  2103. low_kmem_size > total_size * 70/100)
  2104. return ZONELIST_ORDER_NODE;
  2105. }
  2106. return ZONELIST_ORDER_ZONE;
  2107. }
  2108. static void set_zonelist_order(void)
  2109. {
  2110. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2111. current_zonelist_order = default_zonelist_order();
  2112. else
  2113. current_zonelist_order = user_zonelist_order;
  2114. }
  2115. static void build_zonelists(pg_data_t *pgdat)
  2116. {
  2117. int j, node, load;
  2118. enum zone_type i;
  2119. nodemask_t used_mask;
  2120. int local_node, prev_node;
  2121. struct zonelist *zonelist;
  2122. int order = current_zonelist_order;
  2123. /* initialize zonelists */
  2124. for (i = 0; i < MAX_ZONELISTS; i++) {
  2125. zonelist = pgdat->node_zonelists + i;
  2126. zonelist->_zonerefs[0].zone = NULL;
  2127. zonelist->_zonerefs[0].zone_idx = 0;
  2128. }
  2129. /* NUMA-aware ordering of nodes */
  2130. local_node = pgdat->node_id;
  2131. load = num_online_nodes();
  2132. prev_node = local_node;
  2133. nodes_clear(used_mask);
  2134. memset(node_load, 0, sizeof(node_load));
  2135. memset(node_order, 0, sizeof(node_order));
  2136. j = 0;
  2137. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2138. int distance = node_distance(local_node, node);
  2139. /*
  2140. * If another node is sufficiently far away then it is better
  2141. * to reclaim pages in a zone before going off node.
  2142. */
  2143. if (distance > RECLAIM_DISTANCE)
  2144. zone_reclaim_mode = 1;
  2145. /*
  2146. * We don't want to pressure a particular node.
  2147. * So adding penalty to the first node in same
  2148. * distance group to make it round-robin.
  2149. */
  2150. if (distance != node_distance(local_node, prev_node))
  2151. node_load[node] = load;
  2152. prev_node = node;
  2153. load--;
  2154. if (order == ZONELIST_ORDER_NODE)
  2155. build_zonelists_in_node_order(pgdat, node);
  2156. else
  2157. node_order[j++] = node; /* remember order */
  2158. }
  2159. if (order == ZONELIST_ORDER_ZONE) {
  2160. /* calculate node order -- i.e., DMA last! */
  2161. build_zonelists_in_zone_order(pgdat, j);
  2162. }
  2163. build_thisnode_zonelists(pgdat);
  2164. }
  2165. /* Construct the zonelist performance cache - see further mmzone.h */
  2166. static void build_zonelist_cache(pg_data_t *pgdat)
  2167. {
  2168. struct zonelist *zonelist;
  2169. struct zonelist_cache *zlc;
  2170. struct zoneref *z;
  2171. zonelist = &pgdat->node_zonelists[0];
  2172. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2173. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2174. for (z = zonelist->_zonerefs; z->zone; z++)
  2175. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2176. }
  2177. #else /* CONFIG_NUMA */
  2178. static void set_zonelist_order(void)
  2179. {
  2180. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2181. }
  2182. static void build_zonelists(pg_data_t *pgdat)
  2183. {
  2184. int node, local_node;
  2185. enum zone_type j;
  2186. struct zonelist *zonelist;
  2187. local_node = pgdat->node_id;
  2188. zonelist = &pgdat->node_zonelists[0];
  2189. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2190. /*
  2191. * Now we build the zonelist so that it contains the zones
  2192. * of all the other nodes.
  2193. * We don't want to pressure a particular node, so when
  2194. * building the zones for node N, we make sure that the
  2195. * zones coming right after the local ones are those from
  2196. * node N+1 (modulo N)
  2197. */
  2198. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2199. if (!node_online(node))
  2200. continue;
  2201. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2202. MAX_NR_ZONES - 1);
  2203. }
  2204. for (node = 0; node < local_node; node++) {
  2205. if (!node_online(node))
  2206. continue;
  2207. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2208. MAX_NR_ZONES - 1);
  2209. }
  2210. zonelist->_zonerefs[j].zone = NULL;
  2211. zonelist->_zonerefs[j].zone_idx = 0;
  2212. }
  2213. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2214. static void build_zonelist_cache(pg_data_t *pgdat)
  2215. {
  2216. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2217. }
  2218. #endif /* CONFIG_NUMA */
  2219. /* return values int ....just for stop_machine() */
  2220. static int __build_all_zonelists(void *dummy)
  2221. {
  2222. int nid;
  2223. for_each_online_node(nid) {
  2224. pg_data_t *pgdat = NODE_DATA(nid);
  2225. build_zonelists(pgdat);
  2226. build_zonelist_cache(pgdat);
  2227. }
  2228. return 0;
  2229. }
  2230. void build_all_zonelists(void)
  2231. {
  2232. set_zonelist_order();
  2233. if (system_state == SYSTEM_BOOTING) {
  2234. __build_all_zonelists(NULL);
  2235. mminit_verify_zonelist();
  2236. cpuset_init_current_mems_allowed();
  2237. } else {
  2238. /* we have to stop all cpus to guarantee there is no user
  2239. of zonelist */
  2240. stop_machine(__build_all_zonelists, NULL, NULL);
  2241. /* cpuset refresh routine should be here */
  2242. }
  2243. vm_total_pages = nr_free_pagecache_pages();
  2244. /*
  2245. * Disable grouping by mobility if the number of pages in the
  2246. * system is too low to allow the mechanism to work. It would be
  2247. * more accurate, but expensive to check per-zone. This check is
  2248. * made on memory-hotadd so a system can start with mobility
  2249. * disabled and enable it later
  2250. */
  2251. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2252. page_group_by_mobility_disabled = 1;
  2253. else
  2254. page_group_by_mobility_disabled = 0;
  2255. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2256. "Total pages: %ld\n",
  2257. num_online_nodes(),
  2258. zonelist_order_name[current_zonelist_order],
  2259. page_group_by_mobility_disabled ? "off" : "on",
  2260. vm_total_pages);
  2261. #ifdef CONFIG_NUMA
  2262. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2263. #endif
  2264. }
  2265. /*
  2266. * Helper functions to size the waitqueue hash table.
  2267. * Essentially these want to choose hash table sizes sufficiently
  2268. * large so that collisions trying to wait on pages are rare.
  2269. * But in fact, the number of active page waitqueues on typical
  2270. * systems is ridiculously low, less than 200. So this is even
  2271. * conservative, even though it seems large.
  2272. *
  2273. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2274. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2275. */
  2276. #define PAGES_PER_WAITQUEUE 256
  2277. #ifndef CONFIG_MEMORY_HOTPLUG
  2278. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2279. {
  2280. unsigned long size = 1;
  2281. pages /= PAGES_PER_WAITQUEUE;
  2282. while (size < pages)
  2283. size <<= 1;
  2284. /*
  2285. * Once we have dozens or even hundreds of threads sleeping
  2286. * on IO we've got bigger problems than wait queue collision.
  2287. * Limit the size of the wait table to a reasonable size.
  2288. */
  2289. size = min(size, 4096UL);
  2290. return max(size, 4UL);
  2291. }
  2292. #else
  2293. /*
  2294. * A zone's size might be changed by hot-add, so it is not possible to determine
  2295. * a suitable size for its wait_table. So we use the maximum size now.
  2296. *
  2297. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2298. *
  2299. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2300. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2301. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2302. *
  2303. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2304. * or more by the traditional way. (See above). It equals:
  2305. *
  2306. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2307. * ia64(16K page size) : = ( 8G + 4M)byte.
  2308. * powerpc (64K page size) : = (32G +16M)byte.
  2309. */
  2310. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2311. {
  2312. return 4096UL;
  2313. }
  2314. #endif
  2315. /*
  2316. * This is an integer logarithm so that shifts can be used later
  2317. * to extract the more random high bits from the multiplicative
  2318. * hash function before the remainder is taken.
  2319. */
  2320. static inline unsigned long wait_table_bits(unsigned long size)
  2321. {
  2322. return ffz(~size);
  2323. }
  2324. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2325. /*
  2326. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2327. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  2328. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2329. * higher will lead to a bigger reserve which will get freed as contiguous
  2330. * blocks as reclaim kicks in
  2331. */
  2332. static void setup_zone_migrate_reserve(struct zone *zone)
  2333. {
  2334. unsigned long start_pfn, pfn, end_pfn;
  2335. struct page *page;
  2336. unsigned long reserve, block_migratetype;
  2337. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2338. start_pfn = zone->zone_start_pfn;
  2339. end_pfn = start_pfn + zone->spanned_pages;
  2340. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  2341. pageblock_order;
  2342. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2343. if (!pfn_valid(pfn))
  2344. continue;
  2345. page = pfn_to_page(pfn);
  2346. /* Watch out for overlapping nodes */
  2347. if (page_to_nid(page) != zone_to_nid(zone))
  2348. continue;
  2349. /* Blocks with reserved pages will never free, skip them. */
  2350. if (PageReserved(page))
  2351. continue;
  2352. block_migratetype = get_pageblock_migratetype(page);
  2353. /* If this block is reserved, account for it */
  2354. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2355. reserve--;
  2356. continue;
  2357. }
  2358. /* Suitable for reserving if this block is movable */
  2359. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2360. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2361. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2362. reserve--;
  2363. continue;
  2364. }
  2365. /*
  2366. * If the reserve is met and this is a previous reserved block,
  2367. * take it back
  2368. */
  2369. if (block_migratetype == MIGRATE_RESERVE) {
  2370. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2371. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2372. }
  2373. }
  2374. }
  2375. /*
  2376. * Initially all pages are reserved - free ones are freed
  2377. * up by free_all_bootmem() once the early boot process is
  2378. * done. Non-atomic initialization, single-pass.
  2379. */
  2380. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2381. unsigned long start_pfn, enum memmap_context context)
  2382. {
  2383. struct page *page;
  2384. unsigned long end_pfn = start_pfn + size;
  2385. unsigned long pfn;
  2386. struct zone *z;
  2387. if (highest_memmap_pfn < end_pfn - 1)
  2388. highest_memmap_pfn = end_pfn - 1;
  2389. z = &NODE_DATA(nid)->node_zones[zone];
  2390. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2391. /*
  2392. * There can be holes in boot-time mem_map[]s
  2393. * handed to this function. They do not
  2394. * exist on hotplugged memory.
  2395. */
  2396. if (context == MEMMAP_EARLY) {
  2397. if (!early_pfn_valid(pfn))
  2398. continue;
  2399. if (!early_pfn_in_nid(pfn, nid))
  2400. continue;
  2401. }
  2402. page = pfn_to_page(pfn);
  2403. set_page_links(page, zone, nid, pfn);
  2404. mminit_verify_page_links(page, zone, nid, pfn);
  2405. init_page_count(page);
  2406. reset_page_mapcount(page);
  2407. SetPageReserved(page);
  2408. /*
  2409. * Mark the block movable so that blocks are reserved for
  2410. * movable at startup. This will force kernel allocations
  2411. * to reserve their blocks rather than leaking throughout
  2412. * the address space during boot when many long-lived
  2413. * kernel allocations are made. Later some blocks near
  2414. * the start are marked MIGRATE_RESERVE by
  2415. * setup_zone_migrate_reserve()
  2416. *
  2417. * bitmap is created for zone's valid pfn range. but memmap
  2418. * can be created for invalid pages (for alignment)
  2419. * check here not to call set_pageblock_migratetype() against
  2420. * pfn out of zone.
  2421. */
  2422. if ((z->zone_start_pfn <= pfn)
  2423. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2424. && !(pfn & (pageblock_nr_pages - 1)))
  2425. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2426. INIT_LIST_HEAD(&page->lru);
  2427. #ifdef WANT_PAGE_VIRTUAL
  2428. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2429. if (!is_highmem_idx(zone))
  2430. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2431. #endif
  2432. }
  2433. }
  2434. static void __meminit zone_init_free_lists(struct zone *zone)
  2435. {
  2436. int order, t;
  2437. for_each_migratetype_order(order, t) {
  2438. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2439. zone->free_area[order].nr_free = 0;
  2440. }
  2441. }
  2442. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2443. #define memmap_init(size, nid, zone, start_pfn) \
  2444. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2445. #endif
  2446. static int zone_batchsize(struct zone *zone)
  2447. {
  2448. #ifdef CONFIG_MMU
  2449. int batch;
  2450. /*
  2451. * The per-cpu-pages pools are set to around 1000th of the
  2452. * size of the zone. But no more than 1/2 of a meg.
  2453. *
  2454. * OK, so we don't know how big the cache is. So guess.
  2455. */
  2456. batch = zone->present_pages / 1024;
  2457. if (batch * PAGE_SIZE > 512 * 1024)
  2458. batch = (512 * 1024) / PAGE_SIZE;
  2459. batch /= 4; /* We effectively *= 4 below */
  2460. if (batch < 1)
  2461. batch = 1;
  2462. /*
  2463. * Clamp the batch to a 2^n - 1 value. Having a power
  2464. * of 2 value was found to be more likely to have
  2465. * suboptimal cache aliasing properties in some cases.
  2466. *
  2467. * For example if 2 tasks are alternately allocating
  2468. * batches of pages, one task can end up with a lot
  2469. * of pages of one half of the possible page colors
  2470. * and the other with pages of the other colors.
  2471. */
  2472. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  2473. return batch;
  2474. #else
  2475. /* The deferral and batching of frees should be suppressed under NOMMU
  2476. * conditions.
  2477. *
  2478. * The problem is that NOMMU needs to be able to allocate large chunks
  2479. * of contiguous memory as there's no hardware page translation to
  2480. * assemble apparent contiguous memory from discontiguous pages.
  2481. *
  2482. * Queueing large contiguous runs of pages for batching, however,
  2483. * causes the pages to actually be freed in smaller chunks. As there
  2484. * can be a significant delay between the individual batches being
  2485. * recycled, this leads to the once large chunks of space being
  2486. * fragmented and becoming unavailable for high-order allocations.
  2487. */
  2488. return 0;
  2489. #endif
  2490. }
  2491. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2492. {
  2493. struct per_cpu_pages *pcp;
  2494. memset(p, 0, sizeof(*p));
  2495. pcp = &p->pcp;
  2496. pcp->count = 0;
  2497. pcp->high = 6 * batch;
  2498. pcp->batch = max(1UL, 1 * batch);
  2499. INIT_LIST_HEAD(&pcp->list);
  2500. }
  2501. /*
  2502. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2503. * to the value high for the pageset p.
  2504. */
  2505. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2506. unsigned long high)
  2507. {
  2508. struct per_cpu_pages *pcp;
  2509. pcp = &p->pcp;
  2510. pcp->high = high;
  2511. pcp->batch = max(1UL, high/4);
  2512. if ((high/4) > (PAGE_SHIFT * 8))
  2513. pcp->batch = PAGE_SHIFT * 8;
  2514. }
  2515. #ifdef CONFIG_NUMA
  2516. /*
  2517. * Boot pageset table. One per cpu which is going to be used for all
  2518. * zones and all nodes. The parameters will be set in such a way
  2519. * that an item put on a list will immediately be handed over to
  2520. * the buddy list. This is safe since pageset manipulation is done
  2521. * with interrupts disabled.
  2522. *
  2523. * Some NUMA counter updates may also be caught by the boot pagesets.
  2524. *
  2525. * The boot_pagesets must be kept even after bootup is complete for
  2526. * unused processors and/or zones. They do play a role for bootstrapping
  2527. * hotplugged processors.
  2528. *
  2529. * zoneinfo_show() and maybe other functions do
  2530. * not check if the processor is online before following the pageset pointer.
  2531. * Other parts of the kernel may not check if the zone is available.
  2532. */
  2533. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2534. /*
  2535. * Dynamically allocate memory for the
  2536. * per cpu pageset array in struct zone.
  2537. */
  2538. static int __cpuinit process_zones(int cpu)
  2539. {
  2540. struct zone *zone, *dzone;
  2541. int node = cpu_to_node(cpu);
  2542. node_set_state(node, N_CPU); /* this node has a cpu */
  2543. for_each_populated_zone(zone) {
  2544. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2545. GFP_KERNEL, node);
  2546. if (!zone_pcp(zone, cpu))
  2547. goto bad;
  2548. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2549. if (percpu_pagelist_fraction)
  2550. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2551. (zone->present_pages / percpu_pagelist_fraction));
  2552. }
  2553. return 0;
  2554. bad:
  2555. for_each_zone(dzone) {
  2556. if (!populated_zone(dzone))
  2557. continue;
  2558. if (dzone == zone)
  2559. break;
  2560. kfree(zone_pcp(dzone, cpu));
  2561. zone_pcp(dzone, cpu) = NULL;
  2562. }
  2563. return -ENOMEM;
  2564. }
  2565. static inline void free_zone_pagesets(int cpu)
  2566. {
  2567. struct zone *zone;
  2568. for_each_zone(zone) {
  2569. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2570. /* Free per_cpu_pageset if it is slab allocated */
  2571. if (pset != &boot_pageset[cpu])
  2572. kfree(pset);
  2573. zone_pcp(zone, cpu) = NULL;
  2574. }
  2575. }
  2576. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2577. unsigned long action,
  2578. void *hcpu)
  2579. {
  2580. int cpu = (long)hcpu;
  2581. int ret = NOTIFY_OK;
  2582. switch (action) {
  2583. case CPU_UP_PREPARE:
  2584. case CPU_UP_PREPARE_FROZEN:
  2585. if (process_zones(cpu))
  2586. ret = NOTIFY_BAD;
  2587. break;
  2588. case CPU_UP_CANCELED:
  2589. case CPU_UP_CANCELED_FROZEN:
  2590. case CPU_DEAD:
  2591. case CPU_DEAD_FROZEN:
  2592. free_zone_pagesets(cpu);
  2593. break;
  2594. default:
  2595. break;
  2596. }
  2597. return ret;
  2598. }
  2599. static struct notifier_block __cpuinitdata pageset_notifier =
  2600. { &pageset_cpuup_callback, NULL, 0 };
  2601. void __init setup_per_cpu_pageset(void)
  2602. {
  2603. int err;
  2604. /* Initialize per_cpu_pageset for cpu 0.
  2605. * A cpuup callback will do this for every cpu
  2606. * as it comes online
  2607. */
  2608. err = process_zones(smp_processor_id());
  2609. BUG_ON(err);
  2610. register_cpu_notifier(&pageset_notifier);
  2611. }
  2612. #endif
  2613. static noinline __init_refok
  2614. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2615. {
  2616. int i;
  2617. struct pglist_data *pgdat = zone->zone_pgdat;
  2618. size_t alloc_size;
  2619. /*
  2620. * The per-page waitqueue mechanism uses hashed waitqueues
  2621. * per zone.
  2622. */
  2623. zone->wait_table_hash_nr_entries =
  2624. wait_table_hash_nr_entries(zone_size_pages);
  2625. zone->wait_table_bits =
  2626. wait_table_bits(zone->wait_table_hash_nr_entries);
  2627. alloc_size = zone->wait_table_hash_nr_entries
  2628. * sizeof(wait_queue_head_t);
  2629. if (!slab_is_available()) {
  2630. zone->wait_table = (wait_queue_head_t *)
  2631. alloc_bootmem_node(pgdat, alloc_size);
  2632. } else {
  2633. /*
  2634. * This case means that a zone whose size was 0 gets new memory
  2635. * via memory hot-add.
  2636. * But it may be the case that a new node was hot-added. In
  2637. * this case vmalloc() will not be able to use this new node's
  2638. * memory - this wait_table must be initialized to use this new
  2639. * node itself as well.
  2640. * To use this new node's memory, further consideration will be
  2641. * necessary.
  2642. */
  2643. zone->wait_table = vmalloc(alloc_size);
  2644. }
  2645. if (!zone->wait_table)
  2646. return -ENOMEM;
  2647. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2648. init_waitqueue_head(zone->wait_table + i);
  2649. return 0;
  2650. }
  2651. static __meminit void zone_pcp_init(struct zone *zone)
  2652. {
  2653. int cpu;
  2654. unsigned long batch = zone_batchsize(zone);
  2655. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2656. #ifdef CONFIG_NUMA
  2657. /* Early boot. Slab allocator not functional yet */
  2658. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2659. setup_pageset(&boot_pageset[cpu],0);
  2660. #else
  2661. setup_pageset(zone_pcp(zone,cpu), batch);
  2662. #endif
  2663. }
  2664. if (zone->present_pages)
  2665. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2666. zone->name, zone->present_pages, batch);
  2667. }
  2668. __meminit int init_currently_empty_zone(struct zone *zone,
  2669. unsigned long zone_start_pfn,
  2670. unsigned long size,
  2671. enum memmap_context context)
  2672. {
  2673. struct pglist_data *pgdat = zone->zone_pgdat;
  2674. int ret;
  2675. ret = zone_wait_table_init(zone, size);
  2676. if (ret)
  2677. return ret;
  2678. pgdat->nr_zones = zone_idx(zone) + 1;
  2679. zone->zone_start_pfn = zone_start_pfn;
  2680. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2681. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2682. pgdat->node_id,
  2683. (unsigned long)zone_idx(zone),
  2684. zone_start_pfn, (zone_start_pfn + size));
  2685. zone_init_free_lists(zone);
  2686. return 0;
  2687. }
  2688. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2689. /*
  2690. * Basic iterator support. Return the first range of PFNs for a node
  2691. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2692. */
  2693. static int __meminit first_active_region_index_in_nid(int nid)
  2694. {
  2695. int i;
  2696. for (i = 0; i < nr_nodemap_entries; i++)
  2697. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2698. return i;
  2699. return -1;
  2700. }
  2701. /*
  2702. * Basic iterator support. Return the next active range of PFNs for a node
  2703. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2704. */
  2705. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2706. {
  2707. for (index = index + 1; index < nr_nodemap_entries; index++)
  2708. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2709. return index;
  2710. return -1;
  2711. }
  2712. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2713. /*
  2714. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2715. * Architectures may implement their own version but if add_active_range()
  2716. * was used and there are no special requirements, this is a convenient
  2717. * alternative
  2718. */
  2719. int __meminit __early_pfn_to_nid(unsigned long pfn)
  2720. {
  2721. int i;
  2722. for (i = 0; i < nr_nodemap_entries; i++) {
  2723. unsigned long start_pfn = early_node_map[i].start_pfn;
  2724. unsigned long end_pfn = early_node_map[i].end_pfn;
  2725. if (start_pfn <= pfn && pfn < end_pfn)
  2726. return early_node_map[i].nid;
  2727. }
  2728. /* This is a memory hole */
  2729. return -1;
  2730. }
  2731. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2732. int __meminit early_pfn_to_nid(unsigned long pfn)
  2733. {
  2734. int nid;
  2735. nid = __early_pfn_to_nid(pfn);
  2736. if (nid >= 0)
  2737. return nid;
  2738. /* just returns 0 */
  2739. return 0;
  2740. }
  2741. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  2742. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  2743. {
  2744. int nid;
  2745. nid = __early_pfn_to_nid(pfn);
  2746. if (nid >= 0 && nid != node)
  2747. return false;
  2748. return true;
  2749. }
  2750. #endif
  2751. /* Basic iterator support to walk early_node_map[] */
  2752. #define for_each_active_range_index_in_nid(i, nid) \
  2753. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2754. i = next_active_region_index_in_nid(i, nid))
  2755. /**
  2756. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2757. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2758. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2759. *
  2760. * If an architecture guarantees that all ranges registered with
  2761. * add_active_ranges() contain no holes and may be freed, this
  2762. * this function may be used instead of calling free_bootmem() manually.
  2763. */
  2764. void __init free_bootmem_with_active_regions(int nid,
  2765. unsigned long max_low_pfn)
  2766. {
  2767. int i;
  2768. for_each_active_range_index_in_nid(i, nid) {
  2769. unsigned long size_pages = 0;
  2770. unsigned long end_pfn = early_node_map[i].end_pfn;
  2771. if (early_node_map[i].start_pfn >= max_low_pfn)
  2772. continue;
  2773. if (end_pfn > max_low_pfn)
  2774. end_pfn = max_low_pfn;
  2775. size_pages = end_pfn - early_node_map[i].start_pfn;
  2776. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2777. PFN_PHYS(early_node_map[i].start_pfn),
  2778. size_pages << PAGE_SHIFT);
  2779. }
  2780. }
  2781. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2782. {
  2783. int i;
  2784. int ret;
  2785. for_each_active_range_index_in_nid(i, nid) {
  2786. ret = work_fn(early_node_map[i].start_pfn,
  2787. early_node_map[i].end_pfn, data);
  2788. if (ret)
  2789. break;
  2790. }
  2791. }
  2792. /**
  2793. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2794. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2795. *
  2796. * If an architecture guarantees that all ranges registered with
  2797. * add_active_ranges() contain no holes and may be freed, this
  2798. * function may be used instead of calling memory_present() manually.
  2799. */
  2800. void __init sparse_memory_present_with_active_regions(int nid)
  2801. {
  2802. int i;
  2803. for_each_active_range_index_in_nid(i, nid)
  2804. memory_present(early_node_map[i].nid,
  2805. early_node_map[i].start_pfn,
  2806. early_node_map[i].end_pfn);
  2807. }
  2808. /**
  2809. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2810. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2811. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2812. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2813. *
  2814. * It returns the start and end page frame of a node based on information
  2815. * provided by an arch calling add_active_range(). If called for a node
  2816. * with no available memory, a warning is printed and the start and end
  2817. * PFNs will be 0.
  2818. */
  2819. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2820. unsigned long *start_pfn, unsigned long *end_pfn)
  2821. {
  2822. int i;
  2823. *start_pfn = -1UL;
  2824. *end_pfn = 0;
  2825. for_each_active_range_index_in_nid(i, nid) {
  2826. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2827. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2828. }
  2829. if (*start_pfn == -1UL)
  2830. *start_pfn = 0;
  2831. }
  2832. /*
  2833. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2834. * assumption is made that zones within a node are ordered in monotonic
  2835. * increasing memory addresses so that the "highest" populated zone is used
  2836. */
  2837. static void __init find_usable_zone_for_movable(void)
  2838. {
  2839. int zone_index;
  2840. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2841. if (zone_index == ZONE_MOVABLE)
  2842. continue;
  2843. if (arch_zone_highest_possible_pfn[zone_index] >
  2844. arch_zone_lowest_possible_pfn[zone_index])
  2845. break;
  2846. }
  2847. VM_BUG_ON(zone_index == -1);
  2848. movable_zone = zone_index;
  2849. }
  2850. /*
  2851. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2852. * because it is sized independant of architecture. Unlike the other zones,
  2853. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2854. * in each node depending on the size of each node and how evenly kernelcore
  2855. * is distributed. This helper function adjusts the zone ranges
  2856. * provided by the architecture for a given node by using the end of the
  2857. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2858. * zones within a node are in order of monotonic increases memory addresses
  2859. */
  2860. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  2861. unsigned long zone_type,
  2862. unsigned long node_start_pfn,
  2863. unsigned long node_end_pfn,
  2864. unsigned long *zone_start_pfn,
  2865. unsigned long *zone_end_pfn)
  2866. {
  2867. /* Only adjust if ZONE_MOVABLE is on this node */
  2868. if (zone_movable_pfn[nid]) {
  2869. /* Size ZONE_MOVABLE */
  2870. if (zone_type == ZONE_MOVABLE) {
  2871. *zone_start_pfn = zone_movable_pfn[nid];
  2872. *zone_end_pfn = min(node_end_pfn,
  2873. arch_zone_highest_possible_pfn[movable_zone]);
  2874. /* Adjust for ZONE_MOVABLE starting within this range */
  2875. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2876. *zone_end_pfn > zone_movable_pfn[nid]) {
  2877. *zone_end_pfn = zone_movable_pfn[nid];
  2878. /* Check if this whole range is within ZONE_MOVABLE */
  2879. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2880. *zone_start_pfn = *zone_end_pfn;
  2881. }
  2882. }
  2883. /*
  2884. * Return the number of pages a zone spans in a node, including holes
  2885. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2886. */
  2887. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2888. unsigned long zone_type,
  2889. unsigned long *ignored)
  2890. {
  2891. unsigned long node_start_pfn, node_end_pfn;
  2892. unsigned long zone_start_pfn, zone_end_pfn;
  2893. /* Get the start and end of the node and zone */
  2894. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2895. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2896. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2897. adjust_zone_range_for_zone_movable(nid, zone_type,
  2898. node_start_pfn, node_end_pfn,
  2899. &zone_start_pfn, &zone_end_pfn);
  2900. /* Check that this node has pages within the zone's required range */
  2901. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2902. return 0;
  2903. /* Move the zone boundaries inside the node if necessary */
  2904. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2905. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2906. /* Return the spanned pages */
  2907. return zone_end_pfn - zone_start_pfn;
  2908. }
  2909. /*
  2910. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2911. * then all holes in the requested range will be accounted for.
  2912. */
  2913. static unsigned long __meminit __absent_pages_in_range(int nid,
  2914. unsigned long range_start_pfn,
  2915. unsigned long range_end_pfn)
  2916. {
  2917. int i = 0;
  2918. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2919. unsigned long start_pfn;
  2920. /* Find the end_pfn of the first active range of pfns in the node */
  2921. i = first_active_region_index_in_nid(nid);
  2922. if (i == -1)
  2923. return 0;
  2924. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2925. /* Account for ranges before physical memory on this node */
  2926. if (early_node_map[i].start_pfn > range_start_pfn)
  2927. hole_pages = prev_end_pfn - range_start_pfn;
  2928. /* Find all holes for the zone within the node */
  2929. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2930. /* No need to continue if prev_end_pfn is outside the zone */
  2931. if (prev_end_pfn >= range_end_pfn)
  2932. break;
  2933. /* Make sure the end of the zone is not within the hole */
  2934. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2935. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2936. /* Update the hole size cound and move on */
  2937. if (start_pfn > range_start_pfn) {
  2938. BUG_ON(prev_end_pfn > start_pfn);
  2939. hole_pages += start_pfn - prev_end_pfn;
  2940. }
  2941. prev_end_pfn = early_node_map[i].end_pfn;
  2942. }
  2943. /* Account for ranges past physical memory on this node */
  2944. if (range_end_pfn > prev_end_pfn)
  2945. hole_pages += range_end_pfn -
  2946. max(range_start_pfn, prev_end_pfn);
  2947. return hole_pages;
  2948. }
  2949. /**
  2950. * absent_pages_in_range - Return number of page frames in holes within a range
  2951. * @start_pfn: The start PFN to start searching for holes
  2952. * @end_pfn: The end PFN to stop searching for holes
  2953. *
  2954. * It returns the number of pages frames in memory holes within a range.
  2955. */
  2956. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2957. unsigned long end_pfn)
  2958. {
  2959. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2960. }
  2961. /* Return the number of page frames in holes in a zone on a node */
  2962. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2963. unsigned long zone_type,
  2964. unsigned long *ignored)
  2965. {
  2966. unsigned long node_start_pfn, node_end_pfn;
  2967. unsigned long zone_start_pfn, zone_end_pfn;
  2968. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2969. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2970. node_start_pfn);
  2971. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2972. node_end_pfn);
  2973. adjust_zone_range_for_zone_movable(nid, zone_type,
  2974. node_start_pfn, node_end_pfn,
  2975. &zone_start_pfn, &zone_end_pfn);
  2976. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2977. }
  2978. #else
  2979. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2980. unsigned long zone_type,
  2981. unsigned long *zones_size)
  2982. {
  2983. return zones_size[zone_type];
  2984. }
  2985. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2986. unsigned long zone_type,
  2987. unsigned long *zholes_size)
  2988. {
  2989. if (!zholes_size)
  2990. return 0;
  2991. return zholes_size[zone_type];
  2992. }
  2993. #endif
  2994. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2995. unsigned long *zones_size, unsigned long *zholes_size)
  2996. {
  2997. unsigned long realtotalpages, totalpages = 0;
  2998. enum zone_type i;
  2999. for (i = 0; i < MAX_NR_ZONES; i++)
  3000. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3001. zones_size);
  3002. pgdat->node_spanned_pages = totalpages;
  3003. realtotalpages = totalpages;
  3004. for (i = 0; i < MAX_NR_ZONES; i++)
  3005. realtotalpages -=
  3006. zone_absent_pages_in_node(pgdat->node_id, i,
  3007. zholes_size);
  3008. pgdat->node_present_pages = realtotalpages;
  3009. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3010. realtotalpages);
  3011. }
  3012. #ifndef CONFIG_SPARSEMEM
  3013. /*
  3014. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3015. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3016. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3017. * round what is now in bits to nearest long in bits, then return it in
  3018. * bytes.
  3019. */
  3020. static unsigned long __init usemap_size(unsigned long zonesize)
  3021. {
  3022. unsigned long usemapsize;
  3023. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3024. usemapsize = usemapsize >> pageblock_order;
  3025. usemapsize *= NR_PAGEBLOCK_BITS;
  3026. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3027. return usemapsize / 8;
  3028. }
  3029. static void __init setup_usemap(struct pglist_data *pgdat,
  3030. struct zone *zone, unsigned long zonesize)
  3031. {
  3032. unsigned long usemapsize = usemap_size(zonesize);
  3033. zone->pageblock_flags = NULL;
  3034. if (usemapsize)
  3035. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  3036. }
  3037. #else
  3038. static void inline setup_usemap(struct pglist_data *pgdat,
  3039. struct zone *zone, unsigned long zonesize) {}
  3040. #endif /* CONFIG_SPARSEMEM */
  3041. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3042. /* Return a sensible default order for the pageblock size. */
  3043. static inline int pageblock_default_order(void)
  3044. {
  3045. if (HPAGE_SHIFT > PAGE_SHIFT)
  3046. return HUGETLB_PAGE_ORDER;
  3047. return MAX_ORDER-1;
  3048. }
  3049. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3050. static inline void __init set_pageblock_order(unsigned int order)
  3051. {
  3052. /* Check that pageblock_nr_pages has not already been setup */
  3053. if (pageblock_order)
  3054. return;
  3055. /*
  3056. * Assume the largest contiguous order of interest is a huge page.
  3057. * This value may be variable depending on boot parameters on IA64
  3058. */
  3059. pageblock_order = order;
  3060. }
  3061. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3062. /*
  3063. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3064. * and pageblock_default_order() are unused as pageblock_order is set
  3065. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3066. * pageblock_order based on the kernel config
  3067. */
  3068. static inline int pageblock_default_order(unsigned int order)
  3069. {
  3070. return MAX_ORDER-1;
  3071. }
  3072. #define set_pageblock_order(x) do {} while (0)
  3073. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3074. /*
  3075. * Set up the zone data structures:
  3076. * - mark all pages reserved
  3077. * - mark all memory queues empty
  3078. * - clear the memory bitmaps
  3079. */
  3080. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3081. unsigned long *zones_size, unsigned long *zholes_size)
  3082. {
  3083. enum zone_type j;
  3084. int nid = pgdat->node_id;
  3085. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3086. int ret;
  3087. pgdat_resize_init(pgdat);
  3088. pgdat->nr_zones = 0;
  3089. init_waitqueue_head(&pgdat->kswapd_wait);
  3090. pgdat->kswapd_max_order = 0;
  3091. pgdat_page_cgroup_init(pgdat);
  3092. for (j = 0; j < MAX_NR_ZONES; j++) {
  3093. struct zone *zone = pgdat->node_zones + j;
  3094. unsigned long size, realsize, memmap_pages;
  3095. enum lru_list l;
  3096. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3097. realsize = size - zone_absent_pages_in_node(nid, j,
  3098. zholes_size);
  3099. /*
  3100. * Adjust realsize so that it accounts for how much memory
  3101. * is used by this zone for memmap. This affects the watermark
  3102. * and per-cpu initialisations
  3103. */
  3104. memmap_pages =
  3105. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3106. if (realsize >= memmap_pages) {
  3107. realsize -= memmap_pages;
  3108. if (memmap_pages)
  3109. printk(KERN_DEBUG
  3110. " %s zone: %lu pages used for memmap\n",
  3111. zone_names[j], memmap_pages);
  3112. } else
  3113. printk(KERN_WARNING
  3114. " %s zone: %lu pages exceeds realsize %lu\n",
  3115. zone_names[j], memmap_pages, realsize);
  3116. /* Account for reserved pages */
  3117. if (j == 0 && realsize > dma_reserve) {
  3118. realsize -= dma_reserve;
  3119. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3120. zone_names[0], dma_reserve);
  3121. }
  3122. if (!is_highmem_idx(j))
  3123. nr_kernel_pages += realsize;
  3124. nr_all_pages += realsize;
  3125. zone->spanned_pages = size;
  3126. zone->present_pages = realsize;
  3127. #ifdef CONFIG_NUMA
  3128. zone->node = nid;
  3129. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3130. / 100;
  3131. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3132. #endif
  3133. zone->name = zone_names[j];
  3134. spin_lock_init(&zone->lock);
  3135. spin_lock_init(&zone->lru_lock);
  3136. zone_seqlock_init(zone);
  3137. zone->zone_pgdat = pgdat;
  3138. zone->prev_priority = DEF_PRIORITY;
  3139. zone_pcp_init(zone);
  3140. for_each_lru(l) {
  3141. INIT_LIST_HEAD(&zone->lru[l].list);
  3142. zone->lru[l].nr_scan = 0;
  3143. }
  3144. zone->reclaim_stat.recent_rotated[0] = 0;
  3145. zone->reclaim_stat.recent_rotated[1] = 0;
  3146. zone->reclaim_stat.recent_scanned[0] = 0;
  3147. zone->reclaim_stat.recent_scanned[1] = 0;
  3148. zap_zone_vm_stats(zone);
  3149. zone->flags = 0;
  3150. if (!size)
  3151. continue;
  3152. set_pageblock_order(pageblock_default_order());
  3153. setup_usemap(pgdat, zone, size);
  3154. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3155. size, MEMMAP_EARLY);
  3156. BUG_ON(ret);
  3157. memmap_init(size, nid, j, zone_start_pfn);
  3158. zone_start_pfn += size;
  3159. }
  3160. }
  3161. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3162. {
  3163. /* Skip empty nodes */
  3164. if (!pgdat->node_spanned_pages)
  3165. return;
  3166. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3167. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3168. if (!pgdat->node_mem_map) {
  3169. unsigned long size, start, end;
  3170. struct page *map;
  3171. /*
  3172. * The zone's endpoints aren't required to be MAX_ORDER
  3173. * aligned but the node_mem_map endpoints must be in order
  3174. * for the buddy allocator to function correctly.
  3175. */
  3176. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3177. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3178. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3179. size = (end - start) * sizeof(struct page);
  3180. map = alloc_remap(pgdat->node_id, size);
  3181. if (!map)
  3182. map = alloc_bootmem_node(pgdat, size);
  3183. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3184. }
  3185. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3186. /*
  3187. * With no DISCONTIG, the global mem_map is just set as node 0's
  3188. */
  3189. if (pgdat == NODE_DATA(0)) {
  3190. mem_map = NODE_DATA(0)->node_mem_map;
  3191. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3192. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3193. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3194. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3195. }
  3196. #endif
  3197. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3198. }
  3199. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3200. unsigned long node_start_pfn, unsigned long *zholes_size)
  3201. {
  3202. pg_data_t *pgdat = NODE_DATA(nid);
  3203. pgdat->node_id = nid;
  3204. pgdat->node_start_pfn = node_start_pfn;
  3205. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3206. alloc_node_mem_map(pgdat);
  3207. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3208. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3209. nid, (unsigned long)pgdat,
  3210. (unsigned long)pgdat->node_mem_map);
  3211. #endif
  3212. free_area_init_core(pgdat, zones_size, zholes_size);
  3213. }
  3214. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3215. #if MAX_NUMNODES > 1
  3216. /*
  3217. * Figure out the number of possible node ids.
  3218. */
  3219. static void __init setup_nr_node_ids(void)
  3220. {
  3221. unsigned int node;
  3222. unsigned int highest = 0;
  3223. for_each_node_mask(node, node_possible_map)
  3224. highest = node;
  3225. nr_node_ids = highest + 1;
  3226. }
  3227. #else
  3228. static inline void setup_nr_node_ids(void)
  3229. {
  3230. }
  3231. #endif
  3232. /**
  3233. * add_active_range - Register a range of PFNs backed by physical memory
  3234. * @nid: The node ID the range resides on
  3235. * @start_pfn: The start PFN of the available physical memory
  3236. * @end_pfn: The end PFN of the available physical memory
  3237. *
  3238. * These ranges are stored in an early_node_map[] and later used by
  3239. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3240. * range spans a memory hole, it is up to the architecture to ensure
  3241. * the memory is not freed by the bootmem allocator. If possible
  3242. * the range being registered will be merged with existing ranges.
  3243. */
  3244. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3245. unsigned long end_pfn)
  3246. {
  3247. int i;
  3248. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3249. "Entering add_active_range(%d, %#lx, %#lx) "
  3250. "%d entries of %d used\n",
  3251. nid, start_pfn, end_pfn,
  3252. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3253. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3254. /* Merge with existing active regions if possible */
  3255. for (i = 0; i < nr_nodemap_entries; i++) {
  3256. if (early_node_map[i].nid != nid)
  3257. continue;
  3258. /* Skip if an existing region covers this new one */
  3259. if (start_pfn >= early_node_map[i].start_pfn &&
  3260. end_pfn <= early_node_map[i].end_pfn)
  3261. return;
  3262. /* Merge forward if suitable */
  3263. if (start_pfn <= early_node_map[i].end_pfn &&
  3264. end_pfn > early_node_map[i].end_pfn) {
  3265. early_node_map[i].end_pfn = end_pfn;
  3266. return;
  3267. }
  3268. /* Merge backward if suitable */
  3269. if (start_pfn < early_node_map[i].end_pfn &&
  3270. end_pfn >= early_node_map[i].start_pfn) {
  3271. early_node_map[i].start_pfn = start_pfn;
  3272. return;
  3273. }
  3274. }
  3275. /* Check that early_node_map is large enough */
  3276. if (i >= MAX_ACTIVE_REGIONS) {
  3277. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3278. MAX_ACTIVE_REGIONS);
  3279. return;
  3280. }
  3281. early_node_map[i].nid = nid;
  3282. early_node_map[i].start_pfn = start_pfn;
  3283. early_node_map[i].end_pfn = end_pfn;
  3284. nr_nodemap_entries = i + 1;
  3285. }
  3286. /**
  3287. * remove_active_range - Shrink an existing registered range of PFNs
  3288. * @nid: The node id the range is on that should be shrunk
  3289. * @start_pfn: The new PFN of the range
  3290. * @end_pfn: The new PFN of the range
  3291. *
  3292. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3293. * The map is kept near the end physical page range that has already been
  3294. * registered. This function allows an arch to shrink an existing registered
  3295. * range.
  3296. */
  3297. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3298. unsigned long end_pfn)
  3299. {
  3300. int i, j;
  3301. int removed = 0;
  3302. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3303. nid, start_pfn, end_pfn);
  3304. /* Find the old active region end and shrink */
  3305. for_each_active_range_index_in_nid(i, nid) {
  3306. if (early_node_map[i].start_pfn >= start_pfn &&
  3307. early_node_map[i].end_pfn <= end_pfn) {
  3308. /* clear it */
  3309. early_node_map[i].start_pfn = 0;
  3310. early_node_map[i].end_pfn = 0;
  3311. removed = 1;
  3312. continue;
  3313. }
  3314. if (early_node_map[i].start_pfn < start_pfn &&
  3315. early_node_map[i].end_pfn > start_pfn) {
  3316. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3317. early_node_map[i].end_pfn = start_pfn;
  3318. if (temp_end_pfn > end_pfn)
  3319. add_active_range(nid, end_pfn, temp_end_pfn);
  3320. continue;
  3321. }
  3322. if (early_node_map[i].start_pfn >= start_pfn &&
  3323. early_node_map[i].end_pfn > end_pfn &&
  3324. early_node_map[i].start_pfn < end_pfn) {
  3325. early_node_map[i].start_pfn = end_pfn;
  3326. continue;
  3327. }
  3328. }
  3329. if (!removed)
  3330. return;
  3331. /* remove the blank ones */
  3332. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3333. if (early_node_map[i].nid != nid)
  3334. continue;
  3335. if (early_node_map[i].end_pfn)
  3336. continue;
  3337. /* we found it, get rid of it */
  3338. for (j = i; j < nr_nodemap_entries - 1; j++)
  3339. memcpy(&early_node_map[j], &early_node_map[j+1],
  3340. sizeof(early_node_map[j]));
  3341. j = nr_nodemap_entries - 1;
  3342. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3343. nr_nodemap_entries--;
  3344. }
  3345. }
  3346. /**
  3347. * remove_all_active_ranges - Remove all currently registered regions
  3348. *
  3349. * During discovery, it may be found that a table like SRAT is invalid
  3350. * and an alternative discovery method must be used. This function removes
  3351. * all currently registered regions.
  3352. */
  3353. void __init remove_all_active_ranges(void)
  3354. {
  3355. memset(early_node_map, 0, sizeof(early_node_map));
  3356. nr_nodemap_entries = 0;
  3357. }
  3358. /* Compare two active node_active_regions */
  3359. static int __init cmp_node_active_region(const void *a, const void *b)
  3360. {
  3361. struct node_active_region *arange = (struct node_active_region *)a;
  3362. struct node_active_region *brange = (struct node_active_region *)b;
  3363. /* Done this way to avoid overflows */
  3364. if (arange->start_pfn > brange->start_pfn)
  3365. return 1;
  3366. if (arange->start_pfn < brange->start_pfn)
  3367. return -1;
  3368. return 0;
  3369. }
  3370. /* sort the node_map by start_pfn */
  3371. static void __init sort_node_map(void)
  3372. {
  3373. sort(early_node_map, (size_t)nr_nodemap_entries,
  3374. sizeof(struct node_active_region),
  3375. cmp_node_active_region, NULL);
  3376. }
  3377. /* Find the lowest pfn for a node */
  3378. static unsigned long __init find_min_pfn_for_node(int nid)
  3379. {
  3380. int i;
  3381. unsigned long min_pfn = ULONG_MAX;
  3382. /* Assuming a sorted map, the first range found has the starting pfn */
  3383. for_each_active_range_index_in_nid(i, nid)
  3384. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3385. if (min_pfn == ULONG_MAX) {
  3386. printk(KERN_WARNING
  3387. "Could not find start_pfn for node %d\n", nid);
  3388. return 0;
  3389. }
  3390. return min_pfn;
  3391. }
  3392. /**
  3393. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3394. *
  3395. * It returns the minimum PFN based on information provided via
  3396. * add_active_range().
  3397. */
  3398. unsigned long __init find_min_pfn_with_active_regions(void)
  3399. {
  3400. return find_min_pfn_for_node(MAX_NUMNODES);
  3401. }
  3402. /*
  3403. * early_calculate_totalpages()
  3404. * Sum pages in active regions for movable zone.
  3405. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3406. */
  3407. static unsigned long __init early_calculate_totalpages(void)
  3408. {
  3409. int i;
  3410. unsigned long totalpages = 0;
  3411. for (i = 0; i < nr_nodemap_entries; i++) {
  3412. unsigned long pages = early_node_map[i].end_pfn -
  3413. early_node_map[i].start_pfn;
  3414. totalpages += pages;
  3415. if (pages)
  3416. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3417. }
  3418. return totalpages;
  3419. }
  3420. /*
  3421. * Find the PFN the Movable zone begins in each node. Kernel memory
  3422. * is spread evenly between nodes as long as the nodes have enough
  3423. * memory. When they don't, some nodes will have more kernelcore than
  3424. * others
  3425. */
  3426. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3427. {
  3428. int i, nid;
  3429. unsigned long usable_startpfn;
  3430. unsigned long kernelcore_node, kernelcore_remaining;
  3431. unsigned long totalpages = early_calculate_totalpages();
  3432. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3433. /*
  3434. * If movablecore was specified, calculate what size of
  3435. * kernelcore that corresponds so that memory usable for
  3436. * any allocation type is evenly spread. If both kernelcore
  3437. * and movablecore are specified, then the value of kernelcore
  3438. * will be used for required_kernelcore if it's greater than
  3439. * what movablecore would have allowed.
  3440. */
  3441. if (required_movablecore) {
  3442. unsigned long corepages;
  3443. /*
  3444. * Round-up so that ZONE_MOVABLE is at least as large as what
  3445. * was requested by the user
  3446. */
  3447. required_movablecore =
  3448. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3449. corepages = totalpages - required_movablecore;
  3450. required_kernelcore = max(required_kernelcore, corepages);
  3451. }
  3452. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3453. if (!required_kernelcore)
  3454. return;
  3455. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3456. find_usable_zone_for_movable();
  3457. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3458. restart:
  3459. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3460. kernelcore_node = required_kernelcore / usable_nodes;
  3461. for_each_node_state(nid, N_HIGH_MEMORY) {
  3462. /*
  3463. * Recalculate kernelcore_node if the division per node
  3464. * now exceeds what is necessary to satisfy the requested
  3465. * amount of memory for the kernel
  3466. */
  3467. if (required_kernelcore < kernelcore_node)
  3468. kernelcore_node = required_kernelcore / usable_nodes;
  3469. /*
  3470. * As the map is walked, we track how much memory is usable
  3471. * by the kernel using kernelcore_remaining. When it is
  3472. * 0, the rest of the node is usable by ZONE_MOVABLE
  3473. */
  3474. kernelcore_remaining = kernelcore_node;
  3475. /* Go through each range of PFNs within this node */
  3476. for_each_active_range_index_in_nid(i, nid) {
  3477. unsigned long start_pfn, end_pfn;
  3478. unsigned long size_pages;
  3479. start_pfn = max(early_node_map[i].start_pfn,
  3480. zone_movable_pfn[nid]);
  3481. end_pfn = early_node_map[i].end_pfn;
  3482. if (start_pfn >= end_pfn)
  3483. continue;
  3484. /* Account for what is only usable for kernelcore */
  3485. if (start_pfn < usable_startpfn) {
  3486. unsigned long kernel_pages;
  3487. kernel_pages = min(end_pfn, usable_startpfn)
  3488. - start_pfn;
  3489. kernelcore_remaining -= min(kernel_pages,
  3490. kernelcore_remaining);
  3491. required_kernelcore -= min(kernel_pages,
  3492. required_kernelcore);
  3493. /* Continue if range is now fully accounted */
  3494. if (end_pfn <= usable_startpfn) {
  3495. /*
  3496. * Push zone_movable_pfn to the end so
  3497. * that if we have to rebalance
  3498. * kernelcore across nodes, we will
  3499. * not double account here
  3500. */
  3501. zone_movable_pfn[nid] = end_pfn;
  3502. continue;
  3503. }
  3504. start_pfn = usable_startpfn;
  3505. }
  3506. /*
  3507. * The usable PFN range for ZONE_MOVABLE is from
  3508. * start_pfn->end_pfn. Calculate size_pages as the
  3509. * number of pages used as kernelcore
  3510. */
  3511. size_pages = end_pfn - start_pfn;
  3512. if (size_pages > kernelcore_remaining)
  3513. size_pages = kernelcore_remaining;
  3514. zone_movable_pfn[nid] = start_pfn + size_pages;
  3515. /*
  3516. * Some kernelcore has been met, update counts and
  3517. * break if the kernelcore for this node has been
  3518. * satisified
  3519. */
  3520. required_kernelcore -= min(required_kernelcore,
  3521. size_pages);
  3522. kernelcore_remaining -= size_pages;
  3523. if (!kernelcore_remaining)
  3524. break;
  3525. }
  3526. }
  3527. /*
  3528. * If there is still required_kernelcore, we do another pass with one
  3529. * less node in the count. This will push zone_movable_pfn[nid] further
  3530. * along on the nodes that still have memory until kernelcore is
  3531. * satisified
  3532. */
  3533. usable_nodes--;
  3534. if (usable_nodes && required_kernelcore > usable_nodes)
  3535. goto restart;
  3536. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3537. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3538. zone_movable_pfn[nid] =
  3539. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3540. }
  3541. /* Any regular memory on that node ? */
  3542. static void check_for_regular_memory(pg_data_t *pgdat)
  3543. {
  3544. #ifdef CONFIG_HIGHMEM
  3545. enum zone_type zone_type;
  3546. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3547. struct zone *zone = &pgdat->node_zones[zone_type];
  3548. if (zone->present_pages)
  3549. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3550. }
  3551. #endif
  3552. }
  3553. /**
  3554. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3555. * @max_zone_pfn: an array of max PFNs for each zone
  3556. *
  3557. * This will call free_area_init_node() for each active node in the system.
  3558. * Using the page ranges provided by add_active_range(), the size of each
  3559. * zone in each node and their holes is calculated. If the maximum PFN
  3560. * between two adjacent zones match, it is assumed that the zone is empty.
  3561. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3562. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3563. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3564. * at arch_max_dma_pfn.
  3565. */
  3566. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3567. {
  3568. unsigned long nid;
  3569. int i;
  3570. /* Sort early_node_map as initialisation assumes it is sorted */
  3571. sort_node_map();
  3572. /* Record where the zone boundaries are */
  3573. memset(arch_zone_lowest_possible_pfn, 0,
  3574. sizeof(arch_zone_lowest_possible_pfn));
  3575. memset(arch_zone_highest_possible_pfn, 0,
  3576. sizeof(arch_zone_highest_possible_pfn));
  3577. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3578. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3579. for (i = 1; i < MAX_NR_ZONES; i++) {
  3580. if (i == ZONE_MOVABLE)
  3581. continue;
  3582. arch_zone_lowest_possible_pfn[i] =
  3583. arch_zone_highest_possible_pfn[i-1];
  3584. arch_zone_highest_possible_pfn[i] =
  3585. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3586. }
  3587. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3588. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3589. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3590. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3591. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3592. /* Print out the zone ranges */
  3593. printk("Zone PFN ranges:\n");
  3594. for (i = 0; i < MAX_NR_ZONES; i++) {
  3595. if (i == ZONE_MOVABLE)
  3596. continue;
  3597. printk(" %-8s %0#10lx -> %0#10lx\n",
  3598. zone_names[i],
  3599. arch_zone_lowest_possible_pfn[i],
  3600. arch_zone_highest_possible_pfn[i]);
  3601. }
  3602. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3603. printk("Movable zone start PFN for each node\n");
  3604. for (i = 0; i < MAX_NUMNODES; i++) {
  3605. if (zone_movable_pfn[i])
  3606. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3607. }
  3608. /* Print out the early_node_map[] */
  3609. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3610. for (i = 0; i < nr_nodemap_entries; i++)
  3611. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3612. early_node_map[i].start_pfn,
  3613. early_node_map[i].end_pfn);
  3614. /* Initialise every node */
  3615. mminit_verify_pageflags_layout();
  3616. setup_nr_node_ids();
  3617. for_each_online_node(nid) {
  3618. pg_data_t *pgdat = NODE_DATA(nid);
  3619. free_area_init_node(nid, NULL,
  3620. find_min_pfn_for_node(nid), NULL);
  3621. /* Any memory on that node */
  3622. if (pgdat->node_present_pages)
  3623. node_set_state(nid, N_HIGH_MEMORY);
  3624. check_for_regular_memory(pgdat);
  3625. }
  3626. }
  3627. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3628. {
  3629. unsigned long long coremem;
  3630. if (!p)
  3631. return -EINVAL;
  3632. coremem = memparse(p, &p);
  3633. *core = coremem >> PAGE_SHIFT;
  3634. /* Paranoid check that UL is enough for the coremem value */
  3635. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3636. return 0;
  3637. }
  3638. /*
  3639. * kernelcore=size sets the amount of memory for use for allocations that
  3640. * cannot be reclaimed or migrated.
  3641. */
  3642. static int __init cmdline_parse_kernelcore(char *p)
  3643. {
  3644. return cmdline_parse_core(p, &required_kernelcore);
  3645. }
  3646. /*
  3647. * movablecore=size sets the amount of memory for use for allocations that
  3648. * can be reclaimed or migrated.
  3649. */
  3650. static int __init cmdline_parse_movablecore(char *p)
  3651. {
  3652. return cmdline_parse_core(p, &required_movablecore);
  3653. }
  3654. early_param("kernelcore", cmdline_parse_kernelcore);
  3655. early_param("movablecore", cmdline_parse_movablecore);
  3656. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3657. /**
  3658. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3659. * @new_dma_reserve: The number of pages to mark reserved
  3660. *
  3661. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3662. * In the DMA zone, a significant percentage may be consumed by kernel image
  3663. * and other unfreeable allocations which can skew the watermarks badly. This
  3664. * function may optionally be used to account for unfreeable pages in the
  3665. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3666. * smaller per-cpu batchsize.
  3667. */
  3668. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3669. {
  3670. dma_reserve = new_dma_reserve;
  3671. }
  3672. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3673. struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
  3674. EXPORT_SYMBOL(contig_page_data);
  3675. #endif
  3676. void __init free_area_init(unsigned long *zones_size)
  3677. {
  3678. free_area_init_node(0, zones_size,
  3679. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3680. }
  3681. static int page_alloc_cpu_notify(struct notifier_block *self,
  3682. unsigned long action, void *hcpu)
  3683. {
  3684. int cpu = (unsigned long)hcpu;
  3685. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3686. drain_pages(cpu);
  3687. /*
  3688. * Spill the event counters of the dead processor
  3689. * into the current processors event counters.
  3690. * This artificially elevates the count of the current
  3691. * processor.
  3692. */
  3693. vm_events_fold_cpu(cpu);
  3694. /*
  3695. * Zero the differential counters of the dead processor
  3696. * so that the vm statistics are consistent.
  3697. *
  3698. * This is only okay since the processor is dead and cannot
  3699. * race with what we are doing.
  3700. */
  3701. refresh_cpu_vm_stats(cpu);
  3702. }
  3703. return NOTIFY_OK;
  3704. }
  3705. void __init page_alloc_init(void)
  3706. {
  3707. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3708. }
  3709. /*
  3710. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3711. * or min_free_kbytes changes.
  3712. */
  3713. static void calculate_totalreserve_pages(void)
  3714. {
  3715. struct pglist_data *pgdat;
  3716. unsigned long reserve_pages = 0;
  3717. enum zone_type i, j;
  3718. for_each_online_pgdat(pgdat) {
  3719. for (i = 0; i < MAX_NR_ZONES; i++) {
  3720. struct zone *zone = pgdat->node_zones + i;
  3721. unsigned long max = 0;
  3722. /* Find valid and maximum lowmem_reserve in the zone */
  3723. for (j = i; j < MAX_NR_ZONES; j++) {
  3724. if (zone->lowmem_reserve[j] > max)
  3725. max = zone->lowmem_reserve[j];
  3726. }
  3727. /* we treat the high watermark as reserved pages. */
  3728. max += high_wmark_pages(zone);
  3729. if (max > zone->present_pages)
  3730. max = zone->present_pages;
  3731. reserve_pages += max;
  3732. }
  3733. }
  3734. totalreserve_pages = reserve_pages;
  3735. }
  3736. /*
  3737. * setup_per_zone_lowmem_reserve - called whenever
  3738. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3739. * has a correct pages reserved value, so an adequate number of
  3740. * pages are left in the zone after a successful __alloc_pages().
  3741. */
  3742. static void setup_per_zone_lowmem_reserve(void)
  3743. {
  3744. struct pglist_data *pgdat;
  3745. enum zone_type j, idx;
  3746. for_each_online_pgdat(pgdat) {
  3747. for (j = 0; j < MAX_NR_ZONES; j++) {
  3748. struct zone *zone = pgdat->node_zones + j;
  3749. unsigned long present_pages = zone->present_pages;
  3750. zone->lowmem_reserve[j] = 0;
  3751. idx = j;
  3752. while (idx) {
  3753. struct zone *lower_zone;
  3754. idx--;
  3755. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3756. sysctl_lowmem_reserve_ratio[idx] = 1;
  3757. lower_zone = pgdat->node_zones + idx;
  3758. lower_zone->lowmem_reserve[j] = present_pages /
  3759. sysctl_lowmem_reserve_ratio[idx];
  3760. present_pages += lower_zone->present_pages;
  3761. }
  3762. }
  3763. }
  3764. /* update totalreserve_pages */
  3765. calculate_totalreserve_pages();
  3766. }
  3767. /**
  3768. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3769. *
  3770. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3771. * with respect to min_free_kbytes.
  3772. */
  3773. void setup_per_zone_pages_min(void)
  3774. {
  3775. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3776. unsigned long lowmem_pages = 0;
  3777. struct zone *zone;
  3778. unsigned long flags;
  3779. /* Calculate total number of !ZONE_HIGHMEM pages */
  3780. for_each_zone(zone) {
  3781. if (!is_highmem(zone))
  3782. lowmem_pages += zone->present_pages;
  3783. }
  3784. for_each_zone(zone) {
  3785. u64 tmp;
  3786. spin_lock_irqsave(&zone->lock, flags);
  3787. tmp = (u64)pages_min * zone->present_pages;
  3788. do_div(tmp, lowmem_pages);
  3789. if (is_highmem(zone)) {
  3790. /*
  3791. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3792. * need highmem pages, so cap pages_min to a small
  3793. * value here.
  3794. *
  3795. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  3796. * deltas controls asynch page reclaim, and so should
  3797. * not be capped for highmem.
  3798. */
  3799. int min_pages;
  3800. min_pages = zone->present_pages / 1024;
  3801. if (min_pages < SWAP_CLUSTER_MAX)
  3802. min_pages = SWAP_CLUSTER_MAX;
  3803. if (min_pages > 128)
  3804. min_pages = 128;
  3805. zone->watermark[WMARK_MIN] = min_pages;
  3806. } else {
  3807. /*
  3808. * If it's a lowmem zone, reserve a number of pages
  3809. * proportionate to the zone's size.
  3810. */
  3811. zone->watermark[WMARK_MIN] = tmp;
  3812. }
  3813. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  3814. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  3815. setup_zone_migrate_reserve(zone);
  3816. spin_unlock_irqrestore(&zone->lock, flags);
  3817. }
  3818. /* update totalreserve_pages */
  3819. calculate_totalreserve_pages();
  3820. }
  3821. /**
  3822. * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
  3823. *
  3824. * The inactive anon list should be small enough that the VM never has to
  3825. * do too much work, but large enough that each inactive page has a chance
  3826. * to be referenced again before it is swapped out.
  3827. *
  3828. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  3829. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  3830. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  3831. * the anonymous pages are kept on the inactive list.
  3832. *
  3833. * total target max
  3834. * memory ratio inactive anon
  3835. * -------------------------------------
  3836. * 10MB 1 5MB
  3837. * 100MB 1 50MB
  3838. * 1GB 3 250MB
  3839. * 10GB 10 0.9GB
  3840. * 100GB 31 3GB
  3841. * 1TB 101 10GB
  3842. * 10TB 320 32GB
  3843. */
  3844. static void setup_per_zone_inactive_ratio(void)
  3845. {
  3846. struct zone *zone;
  3847. for_each_zone(zone) {
  3848. unsigned int gb, ratio;
  3849. /* Zone size in gigabytes */
  3850. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  3851. ratio = int_sqrt(10 * gb);
  3852. if (!ratio)
  3853. ratio = 1;
  3854. zone->inactive_ratio = ratio;
  3855. }
  3856. }
  3857. /*
  3858. * Initialise min_free_kbytes.
  3859. *
  3860. * For small machines we want it small (128k min). For large machines
  3861. * we want it large (64MB max). But it is not linear, because network
  3862. * bandwidth does not increase linearly with machine size. We use
  3863. *
  3864. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3865. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3866. *
  3867. * which yields
  3868. *
  3869. * 16MB: 512k
  3870. * 32MB: 724k
  3871. * 64MB: 1024k
  3872. * 128MB: 1448k
  3873. * 256MB: 2048k
  3874. * 512MB: 2896k
  3875. * 1024MB: 4096k
  3876. * 2048MB: 5792k
  3877. * 4096MB: 8192k
  3878. * 8192MB: 11584k
  3879. * 16384MB: 16384k
  3880. */
  3881. static int __init init_per_zone_pages_min(void)
  3882. {
  3883. unsigned long lowmem_kbytes;
  3884. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3885. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3886. if (min_free_kbytes < 128)
  3887. min_free_kbytes = 128;
  3888. if (min_free_kbytes > 65536)
  3889. min_free_kbytes = 65536;
  3890. setup_per_zone_pages_min();
  3891. setup_per_zone_lowmem_reserve();
  3892. setup_per_zone_inactive_ratio();
  3893. return 0;
  3894. }
  3895. module_init(init_per_zone_pages_min)
  3896. /*
  3897. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3898. * that we can call two helper functions whenever min_free_kbytes
  3899. * changes.
  3900. */
  3901. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3902. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3903. {
  3904. proc_dointvec(table, write, file, buffer, length, ppos);
  3905. if (write)
  3906. setup_per_zone_pages_min();
  3907. return 0;
  3908. }
  3909. #ifdef CONFIG_NUMA
  3910. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3911. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3912. {
  3913. struct zone *zone;
  3914. int rc;
  3915. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3916. if (rc)
  3917. return rc;
  3918. for_each_zone(zone)
  3919. zone->min_unmapped_pages = (zone->present_pages *
  3920. sysctl_min_unmapped_ratio) / 100;
  3921. return 0;
  3922. }
  3923. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3924. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3925. {
  3926. struct zone *zone;
  3927. int rc;
  3928. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3929. if (rc)
  3930. return rc;
  3931. for_each_zone(zone)
  3932. zone->min_slab_pages = (zone->present_pages *
  3933. sysctl_min_slab_ratio) / 100;
  3934. return 0;
  3935. }
  3936. #endif
  3937. /*
  3938. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3939. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3940. * whenever sysctl_lowmem_reserve_ratio changes.
  3941. *
  3942. * The reserve ratio obviously has absolutely no relation with the
  3943. * minimum watermarks. The lowmem reserve ratio can only make sense
  3944. * if in function of the boot time zone sizes.
  3945. */
  3946. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3947. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3948. {
  3949. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3950. setup_per_zone_lowmem_reserve();
  3951. return 0;
  3952. }
  3953. /*
  3954. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3955. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3956. * can have before it gets flushed back to buddy allocator.
  3957. */
  3958. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3959. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3960. {
  3961. struct zone *zone;
  3962. unsigned int cpu;
  3963. int ret;
  3964. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3965. if (!write || (ret == -EINVAL))
  3966. return ret;
  3967. for_each_zone(zone) {
  3968. for_each_online_cpu(cpu) {
  3969. unsigned long high;
  3970. high = zone->present_pages / percpu_pagelist_fraction;
  3971. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3972. }
  3973. }
  3974. return 0;
  3975. }
  3976. int hashdist = HASHDIST_DEFAULT;
  3977. #ifdef CONFIG_NUMA
  3978. static int __init set_hashdist(char *str)
  3979. {
  3980. if (!str)
  3981. return 0;
  3982. hashdist = simple_strtoul(str, &str, 0);
  3983. return 1;
  3984. }
  3985. __setup("hashdist=", set_hashdist);
  3986. #endif
  3987. /*
  3988. * allocate a large system hash table from bootmem
  3989. * - it is assumed that the hash table must contain an exact power-of-2
  3990. * quantity of entries
  3991. * - limit is the number of hash buckets, not the total allocation size
  3992. */
  3993. void *__init alloc_large_system_hash(const char *tablename,
  3994. unsigned long bucketsize,
  3995. unsigned long numentries,
  3996. int scale,
  3997. int flags,
  3998. unsigned int *_hash_shift,
  3999. unsigned int *_hash_mask,
  4000. unsigned long limit)
  4001. {
  4002. unsigned long long max = limit;
  4003. unsigned long log2qty, size;
  4004. void *table = NULL;
  4005. /* allow the kernel cmdline to have a say */
  4006. if (!numentries) {
  4007. /* round applicable memory size up to nearest megabyte */
  4008. numentries = nr_kernel_pages;
  4009. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4010. numentries >>= 20 - PAGE_SHIFT;
  4011. numentries <<= 20 - PAGE_SHIFT;
  4012. /* limit to 1 bucket per 2^scale bytes of low memory */
  4013. if (scale > PAGE_SHIFT)
  4014. numentries >>= (scale - PAGE_SHIFT);
  4015. else
  4016. numentries <<= (PAGE_SHIFT - scale);
  4017. /* Make sure we've got at least a 0-order allocation.. */
  4018. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4019. numentries = PAGE_SIZE / bucketsize;
  4020. }
  4021. numentries = roundup_pow_of_two(numentries);
  4022. /* limit allocation size to 1/16 total memory by default */
  4023. if (max == 0) {
  4024. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4025. do_div(max, bucketsize);
  4026. }
  4027. if (numentries > max)
  4028. numentries = max;
  4029. log2qty = ilog2(numentries);
  4030. do {
  4031. size = bucketsize << log2qty;
  4032. if (flags & HASH_EARLY)
  4033. table = alloc_bootmem_nopanic(size);
  4034. else if (hashdist)
  4035. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4036. else {
  4037. unsigned long order = get_order(size);
  4038. if (order < MAX_ORDER)
  4039. table = (void *)__get_free_pages(GFP_ATOMIC,
  4040. order);
  4041. /*
  4042. * If bucketsize is not a power-of-two, we may free
  4043. * some pages at the end of hash table.
  4044. */
  4045. if (table) {
  4046. unsigned long alloc_end = (unsigned long)table +
  4047. (PAGE_SIZE << order);
  4048. unsigned long used = (unsigned long)table +
  4049. PAGE_ALIGN(size);
  4050. split_page(virt_to_page(table), order);
  4051. while (used < alloc_end) {
  4052. free_page(used);
  4053. used += PAGE_SIZE;
  4054. }
  4055. }
  4056. }
  4057. } while (!table && size > PAGE_SIZE && --log2qty);
  4058. if (!table)
  4059. panic("Failed to allocate %s hash table\n", tablename);
  4060. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  4061. tablename,
  4062. (1U << log2qty),
  4063. ilog2(size) - PAGE_SHIFT,
  4064. size);
  4065. if (_hash_shift)
  4066. *_hash_shift = log2qty;
  4067. if (_hash_mask)
  4068. *_hash_mask = (1 << log2qty) - 1;
  4069. /*
  4070. * If hashdist is set, the table allocation is done with __vmalloc()
  4071. * which invokes the kmemleak_alloc() callback. This function may also
  4072. * be called before the slab and kmemleak are initialised when
  4073. * kmemleak simply buffers the request to be executed later
  4074. * (GFP_ATOMIC flag ignored in this case).
  4075. */
  4076. if (!hashdist)
  4077. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4078. return table;
  4079. }
  4080. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4081. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4082. unsigned long pfn)
  4083. {
  4084. #ifdef CONFIG_SPARSEMEM
  4085. return __pfn_to_section(pfn)->pageblock_flags;
  4086. #else
  4087. return zone->pageblock_flags;
  4088. #endif /* CONFIG_SPARSEMEM */
  4089. }
  4090. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4091. {
  4092. #ifdef CONFIG_SPARSEMEM
  4093. pfn &= (PAGES_PER_SECTION-1);
  4094. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4095. #else
  4096. pfn = pfn - zone->zone_start_pfn;
  4097. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4098. #endif /* CONFIG_SPARSEMEM */
  4099. }
  4100. /**
  4101. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4102. * @page: The page within the block of interest
  4103. * @start_bitidx: The first bit of interest to retrieve
  4104. * @end_bitidx: The last bit of interest
  4105. * returns pageblock_bits flags
  4106. */
  4107. unsigned long get_pageblock_flags_group(struct page *page,
  4108. int start_bitidx, int end_bitidx)
  4109. {
  4110. struct zone *zone;
  4111. unsigned long *bitmap;
  4112. unsigned long pfn, bitidx;
  4113. unsigned long flags = 0;
  4114. unsigned long value = 1;
  4115. zone = page_zone(page);
  4116. pfn = page_to_pfn(page);
  4117. bitmap = get_pageblock_bitmap(zone, pfn);
  4118. bitidx = pfn_to_bitidx(zone, pfn);
  4119. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4120. if (test_bit(bitidx + start_bitidx, bitmap))
  4121. flags |= value;
  4122. return flags;
  4123. }
  4124. /**
  4125. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4126. * @page: The page within the block of interest
  4127. * @start_bitidx: The first bit of interest
  4128. * @end_bitidx: The last bit of interest
  4129. * @flags: The flags to set
  4130. */
  4131. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4132. int start_bitidx, int end_bitidx)
  4133. {
  4134. struct zone *zone;
  4135. unsigned long *bitmap;
  4136. unsigned long pfn, bitidx;
  4137. unsigned long value = 1;
  4138. zone = page_zone(page);
  4139. pfn = page_to_pfn(page);
  4140. bitmap = get_pageblock_bitmap(zone, pfn);
  4141. bitidx = pfn_to_bitidx(zone, pfn);
  4142. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4143. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4144. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4145. if (flags & value)
  4146. __set_bit(bitidx + start_bitidx, bitmap);
  4147. else
  4148. __clear_bit(bitidx + start_bitidx, bitmap);
  4149. }
  4150. /*
  4151. * This is designed as sub function...plz see page_isolation.c also.
  4152. * set/clear page block's type to be ISOLATE.
  4153. * page allocater never alloc memory from ISOLATE block.
  4154. */
  4155. int set_migratetype_isolate(struct page *page)
  4156. {
  4157. struct zone *zone;
  4158. unsigned long flags;
  4159. int ret = -EBUSY;
  4160. zone = page_zone(page);
  4161. spin_lock_irqsave(&zone->lock, flags);
  4162. /*
  4163. * In future, more migrate types will be able to be isolation target.
  4164. */
  4165. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  4166. goto out;
  4167. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4168. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4169. ret = 0;
  4170. out:
  4171. spin_unlock_irqrestore(&zone->lock, flags);
  4172. if (!ret)
  4173. drain_all_pages();
  4174. return ret;
  4175. }
  4176. void unset_migratetype_isolate(struct page *page)
  4177. {
  4178. struct zone *zone;
  4179. unsigned long flags;
  4180. zone = page_zone(page);
  4181. spin_lock_irqsave(&zone->lock, flags);
  4182. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4183. goto out;
  4184. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4185. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4186. out:
  4187. spin_unlock_irqrestore(&zone->lock, flags);
  4188. }
  4189. #ifdef CONFIG_MEMORY_HOTREMOVE
  4190. /*
  4191. * All pages in the range must be isolated before calling this.
  4192. */
  4193. void
  4194. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4195. {
  4196. struct page *page;
  4197. struct zone *zone;
  4198. int order, i;
  4199. unsigned long pfn;
  4200. unsigned long flags;
  4201. /* find the first valid pfn */
  4202. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4203. if (pfn_valid(pfn))
  4204. break;
  4205. if (pfn == end_pfn)
  4206. return;
  4207. zone = page_zone(pfn_to_page(pfn));
  4208. spin_lock_irqsave(&zone->lock, flags);
  4209. pfn = start_pfn;
  4210. while (pfn < end_pfn) {
  4211. if (!pfn_valid(pfn)) {
  4212. pfn++;
  4213. continue;
  4214. }
  4215. page = pfn_to_page(pfn);
  4216. BUG_ON(page_count(page));
  4217. BUG_ON(!PageBuddy(page));
  4218. order = page_order(page);
  4219. #ifdef CONFIG_DEBUG_VM
  4220. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4221. pfn, 1 << order, end_pfn);
  4222. #endif
  4223. list_del(&page->lru);
  4224. rmv_page_order(page);
  4225. zone->free_area[order].nr_free--;
  4226. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4227. - (1UL << order));
  4228. for (i = 0; i < (1 << order); i++)
  4229. SetPageReserved((page+i));
  4230. pfn += (1 << order);
  4231. }
  4232. spin_unlock_irqrestore(&zone->lock, flags);
  4233. }
  4234. #endif