mmzone.h 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifndef __ASSEMBLY__
  4. #ifndef __GENERATING_BOUNDS_H
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/bitops.h>
  9. #include <linux/cache.h>
  10. #include <linux/threads.h>
  11. #include <linux/numa.h>
  12. #include <linux/init.h>
  13. #include <linux/seqlock.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/pageblock-flags.h>
  16. #include <linux/bounds.h>
  17. #include <asm/atomic.h>
  18. #include <asm/page.h>
  19. /* Free memory management - zoned buddy allocator. */
  20. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  21. #define MAX_ORDER 11
  22. #else
  23. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  24. #endif
  25. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  26. /*
  27. * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  28. * costly to service. That is between allocation orders which should
  29. * coelesce naturally under reasonable reclaim pressure and those which
  30. * will not.
  31. */
  32. #define PAGE_ALLOC_COSTLY_ORDER 3
  33. #define MIGRATE_UNMOVABLE 0
  34. #define MIGRATE_RECLAIMABLE 1
  35. #define MIGRATE_MOVABLE 2
  36. #define MIGRATE_RESERVE 3
  37. #define MIGRATE_ISOLATE 4 /* can't allocate from here */
  38. #define MIGRATE_TYPES 5
  39. #define for_each_migratetype_order(order, type) \
  40. for (order = 0; order < MAX_ORDER; order++) \
  41. for (type = 0; type < MIGRATE_TYPES; type++)
  42. extern int page_group_by_mobility_disabled;
  43. static inline int get_pageblock_migratetype(struct page *page)
  44. {
  45. return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  46. }
  47. struct free_area {
  48. struct list_head free_list[MIGRATE_TYPES];
  49. unsigned long nr_free;
  50. };
  51. struct pglist_data;
  52. /*
  53. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  54. * So add a wild amount of padding here to ensure that they fall into separate
  55. * cachelines. There are very few zone structures in the machine, so space
  56. * consumption is not a concern here.
  57. */
  58. #if defined(CONFIG_SMP)
  59. struct zone_padding {
  60. char x[0];
  61. } ____cacheline_internodealigned_in_smp;
  62. #define ZONE_PADDING(name) struct zone_padding name;
  63. #else
  64. #define ZONE_PADDING(name)
  65. #endif
  66. enum zone_stat_item {
  67. /* First 128 byte cacheline (assuming 64 bit words) */
  68. NR_FREE_PAGES,
  69. NR_LRU_BASE,
  70. NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
  71. NR_ACTIVE_ANON, /* " " " " " */
  72. NR_INACTIVE_FILE, /* " " " " " */
  73. NR_ACTIVE_FILE, /* " " " " " */
  74. #ifdef CONFIG_UNEVICTABLE_LRU
  75. NR_UNEVICTABLE, /* " " " " " */
  76. NR_MLOCK, /* mlock()ed pages found and moved off LRU */
  77. #else
  78. NR_UNEVICTABLE = NR_ACTIVE_FILE, /* avoid compiler errors in dead code */
  79. NR_MLOCK = NR_ACTIVE_FILE,
  80. #endif
  81. NR_ANON_PAGES, /* Mapped anonymous pages */
  82. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  83. only modified from process context */
  84. NR_FILE_PAGES,
  85. NR_FILE_DIRTY,
  86. NR_WRITEBACK,
  87. NR_SLAB_RECLAIMABLE,
  88. NR_SLAB_UNRECLAIMABLE,
  89. NR_PAGETABLE, /* used for pagetables */
  90. NR_UNSTABLE_NFS, /* NFS unstable pages */
  91. NR_BOUNCE,
  92. NR_VMSCAN_WRITE,
  93. /* Second 128 byte cacheline */
  94. NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
  95. #ifdef CONFIG_NUMA
  96. NUMA_HIT, /* allocated in intended node */
  97. NUMA_MISS, /* allocated in non intended node */
  98. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  99. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  100. NUMA_LOCAL, /* allocation from local node */
  101. NUMA_OTHER, /* allocation from other node */
  102. #endif
  103. NR_VM_ZONE_STAT_ITEMS };
  104. /*
  105. * We do arithmetic on the LRU lists in various places in the code,
  106. * so it is important to keep the active lists LRU_ACTIVE higher in
  107. * the array than the corresponding inactive lists, and to keep
  108. * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
  109. *
  110. * This has to be kept in sync with the statistics in zone_stat_item
  111. * above and the descriptions in vmstat_text in mm/vmstat.c
  112. */
  113. #define LRU_BASE 0
  114. #define LRU_ACTIVE 1
  115. #define LRU_FILE 2
  116. enum lru_list {
  117. LRU_INACTIVE_ANON = LRU_BASE,
  118. LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
  119. LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
  120. LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
  121. #ifdef CONFIG_UNEVICTABLE_LRU
  122. LRU_UNEVICTABLE,
  123. #else
  124. LRU_UNEVICTABLE = LRU_ACTIVE_FILE, /* avoid compiler errors in dead code */
  125. #endif
  126. NR_LRU_LISTS
  127. };
  128. #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
  129. #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
  130. static inline int is_file_lru(enum lru_list l)
  131. {
  132. return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
  133. }
  134. static inline int is_active_lru(enum lru_list l)
  135. {
  136. return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
  137. }
  138. static inline int is_unevictable_lru(enum lru_list l)
  139. {
  140. #ifdef CONFIG_UNEVICTABLE_LRU
  141. return (l == LRU_UNEVICTABLE);
  142. #else
  143. return 0;
  144. #endif
  145. }
  146. enum zone_watermarks {
  147. WMARK_MIN,
  148. WMARK_LOW,
  149. WMARK_HIGH,
  150. NR_WMARK
  151. };
  152. #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
  153. #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
  154. #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
  155. struct per_cpu_pages {
  156. int count; /* number of pages in the list */
  157. int high; /* high watermark, emptying needed */
  158. int batch; /* chunk size for buddy add/remove */
  159. struct list_head list; /* the list of pages */
  160. };
  161. struct per_cpu_pageset {
  162. struct per_cpu_pages pcp;
  163. #ifdef CONFIG_NUMA
  164. s8 expire;
  165. #endif
  166. #ifdef CONFIG_SMP
  167. s8 stat_threshold;
  168. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  169. #endif
  170. } ____cacheline_aligned_in_smp;
  171. #ifdef CONFIG_NUMA
  172. #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
  173. #else
  174. #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
  175. #endif
  176. #endif /* !__GENERATING_BOUNDS.H */
  177. enum zone_type {
  178. #ifdef CONFIG_ZONE_DMA
  179. /*
  180. * ZONE_DMA is used when there are devices that are not able
  181. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  182. * carve out the portion of memory that is needed for these devices.
  183. * The range is arch specific.
  184. *
  185. * Some examples
  186. *
  187. * Architecture Limit
  188. * ---------------------------
  189. * parisc, ia64, sparc <4G
  190. * s390 <2G
  191. * arm Various
  192. * alpha Unlimited or 0-16MB.
  193. *
  194. * i386, x86_64 and multiple other arches
  195. * <16M.
  196. */
  197. ZONE_DMA,
  198. #endif
  199. #ifdef CONFIG_ZONE_DMA32
  200. /*
  201. * x86_64 needs two ZONE_DMAs because it supports devices that are
  202. * only able to do DMA to the lower 16M but also 32 bit devices that
  203. * can only do DMA areas below 4G.
  204. */
  205. ZONE_DMA32,
  206. #endif
  207. /*
  208. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  209. * performed on pages in ZONE_NORMAL if the DMA devices support
  210. * transfers to all addressable memory.
  211. */
  212. ZONE_NORMAL,
  213. #ifdef CONFIG_HIGHMEM
  214. /*
  215. * A memory area that is only addressable by the kernel through
  216. * mapping portions into its own address space. This is for example
  217. * used by i386 to allow the kernel to address the memory beyond
  218. * 900MB. The kernel will set up special mappings (page
  219. * table entries on i386) for each page that the kernel needs to
  220. * access.
  221. */
  222. ZONE_HIGHMEM,
  223. #endif
  224. ZONE_MOVABLE,
  225. __MAX_NR_ZONES
  226. };
  227. #ifndef __GENERATING_BOUNDS_H
  228. /*
  229. * When a memory allocation must conform to specific limitations (such
  230. * as being suitable for DMA) the caller will pass in hints to the
  231. * allocator in the gfp_mask, in the zone modifier bits. These bits
  232. * are used to select a priority ordered list of memory zones which
  233. * match the requested limits. See gfp_zone() in include/linux/gfp.h
  234. */
  235. #if MAX_NR_ZONES < 2
  236. #define ZONES_SHIFT 0
  237. #elif MAX_NR_ZONES <= 2
  238. #define ZONES_SHIFT 1
  239. #elif MAX_NR_ZONES <= 4
  240. #define ZONES_SHIFT 2
  241. #else
  242. #error ZONES_SHIFT -- too many zones configured adjust calculation
  243. #endif
  244. struct zone_reclaim_stat {
  245. /*
  246. * The pageout code in vmscan.c keeps track of how many of the
  247. * mem/swap backed and file backed pages are refeferenced.
  248. * The higher the rotated/scanned ratio, the more valuable
  249. * that cache is.
  250. *
  251. * The anon LRU stats live in [0], file LRU stats in [1]
  252. */
  253. unsigned long recent_rotated[2];
  254. unsigned long recent_scanned[2];
  255. };
  256. struct zone {
  257. /* Fields commonly accessed by the page allocator */
  258. /* zone watermarks, access with *_wmark_pages(zone) macros */
  259. unsigned long watermark[NR_WMARK];
  260. /*
  261. * We don't know if the memory that we're going to allocate will be freeable
  262. * or/and it will be released eventually, so to avoid totally wasting several
  263. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  264. * to run OOM on the lower zones despite there's tons of freeable ram
  265. * on the higher zones). This array is recalculated at runtime if the
  266. * sysctl_lowmem_reserve_ratio sysctl changes.
  267. */
  268. unsigned long lowmem_reserve[MAX_NR_ZONES];
  269. #ifdef CONFIG_NUMA
  270. int node;
  271. /*
  272. * zone reclaim becomes active if more unmapped pages exist.
  273. */
  274. unsigned long min_unmapped_pages;
  275. unsigned long min_slab_pages;
  276. struct per_cpu_pageset *pageset[NR_CPUS];
  277. #else
  278. struct per_cpu_pageset pageset[NR_CPUS];
  279. #endif
  280. /*
  281. * free areas of different sizes
  282. */
  283. spinlock_t lock;
  284. #ifdef CONFIG_MEMORY_HOTPLUG
  285. /* see spanned/present_pages for more description */
  286. seqlock_t span_seqlock;
  287. #endif
  288. struct free_area free_area[MAX_ORDER];
  289. #ifndef CONFIG_SPARSEMEM
  290. /*
  291. * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
  292. * In SPARSEMEM, this map is stored in struct mem_section
  293. */
  294. unsigned long *pageblock_flags;
  295. #endif /* CONFIG_SPARSEMEM */
  296. ZONE_PADDING(_pad1_)
  297. /* Fields commonly accessed by the page reclaim scanner */
  298. spinlock_t lru_lock;
  299. struct {
  300. struct list_head list;
  301. unsigned long nr_scan;
  302. } lru[NR_LRU_LISTS];
  303. struct zone_reclaim_stat reclaim_stat;
  304. unsigned long pages_scanned; /* since last reclaim */
  305. unsigned long flags; /* zone flags, see below */
  306. /* Zone statistics */
  307. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  308. /*
  309. * prev_priority holds the scanning priority for this zone. It is
  310. * defined as the scanning priority at which we achieved our reclaim
  311. * target at the previous try_to_free_pages() or balance_pgdat()
  312. * invokation.
  313. *
  314. * We use prev_priority as a measure of how much stress page reclaim is
  315. * under - it drives the swappiness decision: whether to unmap mapped
  316. * pages.
  317. *
  318. * Access to both this field is quite racy even on uniprocessor. But
  319. * it is expected to average out OK.
  320. */
  321. int prev_priority;
  322. /*
  323. * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
  324. * this zone's LRU. Maintained by the pageout code.
  325. */
  326. unsigned int inactive_ratio;
  327. ZONE_PADDING(_pad2_)
  328. /* Rarely used or read-mostly fields */
  329. /*
  330. * wait_table -- the array holding the hash table
  331. * wait_table_hash_nr_entries -- the size of the hash table array
  332. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  333. *
  334. * The purpose of all these is to keep track of the people
  335. * waiting for a page to become available and make them
  336. * runnable again when possible. The trouble is that this
  337. * consumes a lot of space, especially when so few things
  338. * wait on pages at a given time. So instead of using
  339. * per-page waitqueues, we use a waitqueue hash table.
  340. *
  341. * The bucket discipline is to sleep on the same queue when
  342. * colliding and wake all in that wait queue when removing.
  343. * When something wakes, it must check to be sure its page is
  344. * truly available, a la thundering herd. The cost of a
  345. * collision is great, but given the expected load of the
  346. * table, they should be so rare as to be outweighed by the
  347. * benefits from the saved space.
  348. *
  349. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  350. * primary users of these fields, and in mm/page_alloc.c
  351. * free_area_init_core() performs the initialization of them.
  352. */
  353. wait_queue_head_t * wait_table;
  354. unsigned long wait_table_hash_nr_entries;
  355. unsigned long wait_table_bits;
  356. /*
  357. * Discontig memory support fields.
  358. */
  359. struct pglist_data *zone_pgdat;
  360. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  361. unsigned long zone_start_pfn;
  362. /*
  363. * zone_start_pfn, spanned_pages and present_pages are all
  364. * protected by span_seqlock. It is a seqlock because it has
  365. * to be read outside of zone->lock, and it is done in the main
  366. * allocator path. But, it is written quite infrequently.
  367. *
  368. * The lock is declared along with zone->lock because it is
  369. * frequently read in proximity to zone->lock. It's good to
  370. * give them a chance of being in the same cacheline.
  371. */
  372. unsigned long spanned_pages; /* total size, including holes */
  373. unsigned long present_pages; /* amount of memory (excluding holes) */
  374. /*
  375. * rarely used fields:
  376. */
  377. const char *name;
  378. } ____cacheline_internodealigned_in_smp;
  379. typedef enum {
  380. ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
  381. ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
  382. ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
  383. } zone_flags_t;
  384. static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
  385. {
  386. set_bit(flag, &zone->flags);
  387. }
  388. static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
  389. {
  390. return test_and_set_bit(flag, &zone->flags);
  391. }
  392. static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
  393. {
  394. clear_bit(flag, &zone->flags);
  395. }
  396. static inline int zone_is_all_unreclaimable(const struct zone *zone)
  397. {
  398. return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
  399. }
  400. static inline int zone_is_reclaim_locked(const struct zone *zone)
  401. {
  402. return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
  403. }
  404. static inline int zone_is_oom_locked(const struct zone *zone)
  405. {
  406. return test_bit(ZONE_OOM_LOCKED, &zone->flags);
  407. }
  408. /*
  409. * The "priority" of VM scanning is how much of the queues we will scan in one
  410. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  411. * queues ("queue_length >> 12") during an aging round.
  412. */
  413. #define DEF_PRIORITY 12
  414. /* Maximum number of zones on a zonelist */
  415. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  416. #ifdef CONFIG_NUMA
  417. /*
  418. * The NUMA zonelists are doubled becausse we need zonelists that restrict the
  419. * allocations to a single node for GFP_THISNODE.
  420. *
  421. * [0] : Zonelist with fallback
  422. * [1] : No fallback (GFP_THISNODE)
  423. */
  424. #define MAX_ZONELISTS 2
  425. /*
  426. * We cache key information from each zonelist for smaller cache
  427. * footprint when scanning for free pages in get_page_from_freelist().
  428. *
  429. * 1) The BITMAP fullzones tracks which zones in a zonelist have come
  430. * up short of free memory since the last time (last_fullzone_zap)
  431. * we zero'd fullzones.
  432. * 2) The array z_to_n[] maps each zone in the zonelist to its node
  433. * id, so that we can efficiently evaluate whether that node is
  434. * set in the current tasks mems_allowed.
  435. *
  436. * Both fullzones and z_to_n[] are one-to-one with the zonelist,
  437. * indexed by a zones offset in the zonelist zones[] array.
  438. *
  439. * The get_page_from_freelist() routine does two scans. During the
  440. * first scan, we skip zones whose corresponding bit in 'fullzones'
  441. * is set or whose corresponding node in current->mems_allowed (which
  442. * comes from cpusets) is not set. During the second scan, we bypass
  443. * this zonelist_cache, to ensure we look methodically at each zone.
  444. *
  445. * Once per second, we zero out (zap) fullzones, forcing us to
  446. * reconsider nodes that might have regained more free memory.
  447. * The field last_full_zap is the time we last zapped fullzones.
  448. *
  449. * This mechanism reduces the amount of time we waste repeatedly
  450. * reexaming zones for free memory when they just came up low on
  451. * memory momentarilly ago.
  452. *
  453. * The zonelist_cache struct members logically belong in struct
  454. * zonelist. However, the mempolicy zonelists constructed for
  455. * MPOL_BIND are intentionally variable length (and usually much
  456. * shorter). A general purpose mechanism for handling structs with
  457. * multiple variable length members is more mechanism than we want
  458. * here. We resort to some special case hackery instead.
  459. *
  460. * The MPOL_BIND zonelists don't need this zonelist_cache (in good
  461. * part because they are shorter), so we put the fixed length stuff
  462. * at the front of the zonelist struct, ending in a variable length
  463. * zones[], as is needed by MPOL_BIND.
  464. *
  465. * Then we put the optional zonelist cache on the end of the zonelist
  466. * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
  467. * the fixed length portion at the front of the struct. This pointer
  468. * both enables us to find the zonelist cache, and in the case of
  469. * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
  470. * to know that the zonelist cache is not there.
  471. *
  472. * The end result is that struct zonelists come in two flavors:
  473. * 1) The full, fixed length version, shown below, and
  474. * 2) The custom zonelists for MPOL_BIND.
  475. * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
  476. *
  477. * Even though there may be multiple CPU cores on a node modifying
  478. * fullzones or last_full_zap in the same zonelist_cache at the same
  479. * time, we don't lock it. This is just hint data - if it is wrong now
  480. * and then, the allocator will still function, perhaps a bit slower.
  481. */
  482. struct zonelist_cache {
  483. unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
  484. DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
  485. unsigned long last_full_zap; /* when last zap'd (jiffies) */
  486. };
  487. #else
  488. #define MAX_ZONELISTS 1
  489. struct zonelist_cache;
  490. #endif
  491. /*
  492. * This struct contains information about a zone in a zonelist. It is stored
  493. * here to avoid dereferences into large structures and lookups of tables
  494. */
  495. struct zoneref {
  496. struct zone *zone; /* Pointer to actual zone */
  497. int zone_idx; /* zone_idx(zoneref->zone) */
  498. };
  499. /*
  500. * One allocation request operates on a zonelist. A zonelist
  501. * is a list of zones, the first one is the 'goal' of the
  502. * allocation, the other zones are fallback zones, in decreasing
  503. * priority.
  504. *
  505. * If zlcache_ptr is not NULL, then it is just the address of zlcache,
  506. * as explained above. If zlcache_ptr is NULL, there is no zlcache.
  507. * *
  508. * To speed the reading of the zonelist, the zonerefs contain the zone index
  509. * of the entry being read. Helper functions to access information given
  510. * a struct zoneref are
  511. *
  512. * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
  513. * zonelist_zone_idx() - Return the index of the zone for an entry
  514. * zonelist_node_idx() - Return the index of the node for an entry
  515. */
  516. struct zonelist {
  517. struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
  518. struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
  519. #ifdef CONFIG_NUMA
  520. struct zonelist_cache zlcache; // optional ...
  521. #endif
  522. };
  523. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  524. struct node_active_region {
  525. unsigned long start_pfn;
  526. unsigned long end_pfn;
  527. int nid;
  528. };
  529. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  530. #ifndef CONFIG_DISCONTIGMEM
  531. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  532. extern struct page *mem_map;
  533. #endif
  534. /*
  535. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  536. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  537. * zone denotes.
  538. *
  539. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  540. * it's memory layout.
  541. *
  542. * Memory statistics and page replacement data structures are maintained on a
  543. * per-zone basis.
  544. */
  545. struct bootmem_data;
  546. typedef struct pglist_data {
  547. struct zone node_zones[MAX_NR_ZONES];
  548. struct zonelist node_zonelists[MAX_ZONELISTS];
  549. int nr_zones;
  550. #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
  551. struct page *node_mem_map;
  552. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  553. struct page_cgroup *node_page_cgroup;
  554. #endif
  555. #endif
  556. struct bootmem_data *bdata;
  557. #ifdef CONFIG_MEMORY_HOTPLUG
  558. /*
  559. * Must be held any time you expect node_start_pfn, node_present_pages
  560. * or node_spanned_pages stay constant. Holding this will also
  561. * guarantee that any pfn_valid() stays that way.
  562. *
  563. * Nests above zone->lock and zone->size_seqlock.
  564. */
  565. spinlock_t node_size_lock;
  566. #endif
  567. unsigned long node_start_pfn;
  568. unsigned long node_present_pages; /* total number of physical pages */
  569. unsigned long node_spanned_pages; /* total size of physical page
  570. range, including holes */
  571. int node_id;
  572. wait_queue_head_t kswapd_wait;
  573. struct task_struct *kswapd;
  574. int kswapd_max_order;
  575. } pg_data_t;
  576. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  577. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  578. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  579. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  580. #else
  581. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  582. #endif
  583. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  584. #include <linux/memory_hotplug.h>
  585. void get_zone_counts(unsigned long *active, unsigned long *inactive,
  586. unsigned long *free);
  587. void build_all_zonelists(void);
  588. void wakeup_kswapd(struct zone *zone, int order);
  589. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  590. int classzone_idx, int alloc_flags);
  591. enum memmap_context {
  592. MEMMAP_EARLY,
  593. MEMMAP_HOTPLUG,
  594. };
  595. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  596. unsigned long size,
  597. enum memmap_context context);
  598. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  599. void memory_present(int nid, unsigned long start, unsigned long end);
  600. #else
  601. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  602. #endif
  603. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  604. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  605. #endif
  606. /*
  607. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  608. */
  609. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  610. static inline int populated_zone(struct zone *zone)
  611. {
  612. return (!!zone->present_pages);
  613. }
  614. extern int movable_zone;
  615. static inline int zone_movable_is_highmem(void)
  616. {
  617. #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  618. return movable_zone == ZONE_HIGHMEM;
  619. #else
  620. return 0;
  621. #endif
  622. }
  623. static inline int is_highmem_idx(enum zone_type idx)
  624. {
  625. #ifdef CONFIG_HIGHMEM
  626. return (idx == ZONE_HIGHMEM ||
  627. (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
  628. #else
  629. return 0;
  630. #endif
  631. }
  632. static inline int is_normal_idx(enum zone_type idx)
  633. {
  634. return (idx == ZONE_NORMAL);
  635. }
  636. /**
  637. * is_highmem - helper function to quickly check if a struct zone is a
  638. * highmem zone or not. This is an attempt to keep references
  639. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  640. * @zone - pointer to struct zone variable
  641. */
  642. static inline int is_highmem(struct zone *zone)
  643. {
  644. #ifdef CONFIG_HIGHMEM
  645. int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
  646. return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
  647. (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
  648. zone_movable_is_highmem());
  649. #else
  650. return 0;
  651. #endif
  652. }
  653. static inline int is_normal(struct zone *zone)
  654. {
  655. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  656. }
  657. static inline int is_dma32(struct zone *zone)
  658. {
  659. #ifdef CONFIG_ZONE_DMA32
  660. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  661. #else
  662. return 0;
  663. #endif
  664. }
  665. static inline int is_dma(struct zone *zone)
  666. {
  667. #ifdef CONFIG_ZONE_DMA
  668. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  669. #else
  670. return 0;
  671. #endif
  672. }
  673. /* These two functions are used to setup the per zone pages min values */
  674. struct ctl_table;
  675. struct file;
  676. int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
  677. void __user *, size_t *, loff_t *);
  678. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  679. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
  680. void __user *, size_t *, loff_t *);
  681. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
  682. void __user *, size_t *, loff_t *);
  683. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  684. struct file *, void __user *, size_t *, loff_t *);
  685. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  686. struct file *, void __user *, size_t *, loff_t *);
  687. extern int numa_zonelist_order_handler(struct ctl_table *, int,
  688. struct file *, void __user *, size_t *, loff_t *);
  689. extern char numa_zonelist_order[];
  690. #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
  691. #ifndef CONFIG_NEED_MULTIPLE_NODES
  692. extern struct pglist_data contig_page_data;
  693. #define NODE_DATA(nid) (&contig_page_data)
  694. #define NODE_MEM_MAP(nid) mem_map
  695. #else /* CONFIG_NEED_MULTIPLE_NODES */
  696. #include <asm/mmzone.h>
  697. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  698. extern struct pglist_data *first_online_pgdat(void);
  699. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  700. extern struct zone *next_zone(struct zone *zone);
  701. /**
  702. * for_each_online_pgdat - helper macro to iterate over all online nodes
  703. * @pgdat - pointer to a pg_data_t variable
  704. */
  705. #define for_each_online_pgdat(pgdat) \
  706. for (pgdat = first_online_pgdat(); \
  707. pgdat; \
  708. pgdat = next_online_pgdat(pgdat))
  709. /**
  710. * for_each_zone - helper macro to iterate over all memory zones
  711. * @zone - pointer to struct zone variable
  712. *
  713. * The user only needs to declare the zone variable, for_each_zone
  714. * fills it in.
  715. */
  716. #define for_each_zone(zone) \
  717. for (zone = (first_online_pgdat())->node_zones; \
  718. zone; \
  719. zone = next_zone(zone))
  720. #define for_each_populated_zone(zone) \
  721. for (zone = (first_online_pgdat())->node_zones; \
  722. zone; \
  723. zone = next_zone(zone)) \
  724. if (!populated_zone(zone)) \
  725. ; /* do nothing */ \
  726. else
  727. static inline struct zone *zonelist_zone(struct zoneref *zoneref)
  728. {
  729. return zoneref->zone;
  730. }
  731. static inline int zonelist_zone_idx(struct zoneref *zoneref)
  732. {
  733. return zoneref->zone_idx;
  734. }
  735. static inline int zonelist_node_idx(struct zoneref *zoneref)
  736. {
  737. #ifdef CONFIG_NUMA
  738. /* zone_to_nid not available in this context */
  739. return zoneref->zone->node;
  740. #else
  741. return 0;
  742. #endif /* CONFIG_NUMA */
  743. }
  744. /**
  745. * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
  746. * @z - The cursor used as a starting point for the search
  747. * @highest_zoneidx - The zone index of the highest zone to return
  748. * @nodes - An optional nodemask to filter the zonelist with
  749. * @zone - The first suitable zone found is returned via this parameter
  750. *
  751. * This function returns the next zone at or below a given zone index that is
  752. * within the allowed nodemask using a cursor as the starting point for the
  753. * search. The zoneref returned is a cursor that represents the current zone
  754. * being examined. It should be advanced by one before calling
  755. * next_zones_zonelist again.
  756. */
  757. struct zoneref *next_zones_zonelist(struct zoneref *z,
  758. enum zone_type highest_zoneidx,
  759. nodemask_t *nodes,
  760. struct zone **zone);
  761. /**
  762. * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
  763. * @zonelist - The zonelist to search for a suitable zone
  764. * @highest_zoneidx - The zone index of the highest zone to return
  765. * @nodes - An optional nodemask to filter the zonelist with
  766. * @zone - The first suitable zone found is returned via this parameter
  767. *
  768. * This function returns the first zone at or below a given zone index that is
  769. * within the allowed nodemask. The zoneref returned is a cursor that can be
  770. * used to iterate the zonelist with next_zones_zonelist by advancing it by
  771. * one before calling.
  772. */
  773. static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
  774. enum zone_type highest_zoneidx,
  775. nodemask_t *nodes,
  776. struct zone **zone)
  777. {
  778. return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
  779. zone);
  780. }
  781. /**
  782. * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
  783. * @zone - The current zone in the iterator
  784. * @z - The current pointer within zonelist->zones being iterated
  785. * @zlist - The zonelist being iterated
  786. * @highidx - The zone index of the highest zone to return
  787. * @nodemask - Nodemask allowed by the allocator
  788. *
  789. * This iterator iterates though all zones at or below a given zone index and
  790. * within a given nodemask
  791. */
  792. #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
  793. for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
  794. zone; \
  795. z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
  796. /**
  797. * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
  798. * @zone - The current zone in the iterator
  799. * @z - The current pointer within zonelist->zones being iterated
  800. * @zlist - The zonelist being iterated
  801. * @highidx - The zone index of the highest zone to return
  802. *
  803. * This iterator iterates though all zones at or below a given zone index.
  804. */
  805. #define for_each_zone_zonelist(zone, z, zlist, highidx) \
  806. for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
  807. #ifdef CONFIG_SPARSEMEM
  808. #include <asm/sparsemem.h>
  809. #endif
  810. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  811. !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  812. static inline unsigned long early_pfn_to_nid(unsigned long pfn)
  813. {
  814. return 0;
  815. }
  816. #endif
  817. #ifdef CONFIG_FLATMEM
  818. #define pfn_to_nid(pfn) (0)
  819. #endif
  820. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  821. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  822. #ifdef CONFIG_SPARSEMEM
  823. /*
  824. * SECTION_SHIFT #bits space required to store a section #
  825. *
  826. * PA_SECTION_SHIFT physical address to/from section number
  827. * PFN_SECTION_SHIFT pfn to/from section number
  828. */
  829. #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
  830. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  831. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  832. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  833. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  834. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  835. #define SECTION_BLOCKFLAGS_BITS \
  836. ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
  837. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  838. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  839. #endif
  840. struct page;
  841. struct page_cgroup;
  842. struct mem_section {
  843. /*
  844. * This is, logically, a pointer to an array of struct
  845. * pages. However, it is stored with some other magic.
  846. * (see sparse.c::sparse_init_one_section())
  847. *
  848. * Additionally during early boot we encode node id of
  849. * the location of the section here to guide allocation.
  850. * (see sparse.c::memory_present())
  851. *
  852. * Making it a UL at least makes someone do a cast
  853. * before using it wrong.
  854. */
  855. unsigned long section_mem_map;
  856. /* See declaration of similar field in struct zone */
  857. unsigned long *pageblock_flags;
  858. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  859. /*
  860. * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
  861. * section. (see memcontrol.h/page_cgroup.h about this.)
  862. */
  863. struct page_cgroup *page_cgroup;
  864. unsigned long pad;
  865. #endif
  866. };
  867. #ifdef CONFIG_SPARSEMEM_EXTREME
  868. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  869. #else
  870. #define SECTIONS_PER_ROOT 1
  871. #endif
  872. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  873. #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
  874. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  875. #ifdef CONFIG_SPARSEMEM_EXTREME
  876. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  877. #else
  878. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  879. #endif
  880. static inline struct mem_section *__nr_to_section(unsigned long nr)
  881. {
  882. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  883. return NULL;
  884. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  885. }
  886. extern int __section_nr(struct mem_section* ms);
  887. extern unsigned long usemap_size(void);
  888. /*
  889. * We use the lower bits of the mem_map pointer to store
  890. * a little bit of information. There should be at least
  891. * 3 bits here due to 32-bit alignment.
  892. */
  893. #define SECTION_MARKED_PRESENT (1UL<<0)
  894. #define SECTION_HAS_MEM_MAP (1UL<<1)
  895. #define SECTION_MAP_LAST_BIT (1UL<<2)
  896. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  897. #define SECTION_NID_SHIFT 2
  898. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  899. {
  900. unsigned long map = section->section_mem_map;
  901. map &= SECTION_MAP_MASK;
  902. return (struct page *)map;
  903. }
  904. static inline int present_section(struct mem_section *section)
  905. {
  906. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  907. }
  908. static inline int present_section_nr(unsigned long nr)
  909. {
  910. return present_section(__nr_to_section(nr));
  911. }
  912. static inline int valid_section(struct mem_section *section)
  913. {
  914. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  915. }
  916. static inline int valid_section_nr(unsigned long nr)
  917. {
  918. return valid_section(__nr_to_section(nr));
  919. }
  920. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  921. {
  922. return __nr_to_section(pfn_to_section_nr(pfn));
  923. }
  924. static inline int pfn_valid(unsigned long pfn)
  925. {
  926. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  927. return 0;
  928. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  929. }
  930. static inline int pfn_present(unsigned long pfn)
  931. {
  932. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  933. return 0;
  934. return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
  935. }
  936. /*
  937. * These are _only_ used during initialisation, therefore they
  938. * can use __initdata ... They could have names to indicate
  939. * this restriction.
  940. */
  941. #ifdef CONFIG_NUMA
  942. #define pfn_to_nid(pfn) \
  943. ({ \
  944. unsigned long __pfn_to_nid_pfn = (pfn); \
  945. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  946. })
  947. #else
  948. #define pfn_to_nid(pfn) (0)
  949. #endif
  950. #define early_pfn_valid(pfn) pfn_valid(pfn)
  951. void sparse_init(void);
  952. #else
  953. #define sparse_init() do {} while (0)
  954. #define sparse_index_init(_sec, _nid) do {} while (0)
  955. #endif /* CONFIG_SPARSEMEM */
  956. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  957. bool early_pfn_in_nid(unsigned long pfn, int nid);
  958. #else
  959. #define early_pfn_in_nid(pfn, nid) (1)
  960. #endif
  961. #ifndef early_pfn_valid
  962. #define early_pfn_valid(pfn) (1)
  963. #endif
  964. void memory_present(int nid, unsigned long start, unsigned long end);
  965. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  966. /*
  967. * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
  968. * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
  969. * pfn_valid_within() should be used in this case; we optimise this away
  970. * when we have no holes within a MAX_ORDER_NR_PAGES block.
  971. */
  972. #ifdef CONFIG_HOLES_IN_ZONE
  973. #define pfn_valid_within(pfn) pfn_valid(pfn)
  974. #else
  975. #define pfn_valid_within(pfn) (1)
  976. #endif
  977. #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
  978. /*
  979. * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
  980. * associated with it or not. In FLATMEM, it is expected that holes always
  981. * have valid memmap as long as there is valid PFNs either side of the hole.
  982. * In SPARSEMEM, it is assumed that a valid section has a memmap for the
  983. * entire section.
  984. *
  985. * However, an ARM, and maybe other embedded architectures in the future
  986. * free memmap backing holes to save memory on the assumption the memmap is
  987. * never used. The page_zone linkages are then broken even though pfn_valid()
  988. * returns true. A walker of the full memmap must then do this additional
  989. * check to ensure the memmap they are looking at is sane by making sure
  990. * the zone and PFN linkages are still valid. This is expensive, but walkers
  991. * of the full memmap are extremely rare.
  992. */
  993. int memmap_valid_within(unsigned long pfn,
  994. struct page *page, struct zone *zone);
  995. #else
  996. static inline int memmap_valid_within(unsigned long pfn,
  997. struct page *page, struct zone *zone)
  998. {
  999. return 1;
  1000. }
  1001. #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
  1002. #endif /* !__GENERATING_BOUNDS.H */
  1003. #endif /* !__ASSEMBLY__ */
  1004. #endif /* _LINUX_MMZONE_H */