kvm_main.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "x86_emulate.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/reboot.h>
  30. #include <linux/debugfs.h>
  31. #include <linux/highmem.h>
  32. #include <linux/file.h>
  33. #include <linux/sysdev.h>
  34. #include <linux/cpu.h>
  35. #include <linux/sched.h>
  36. #include <linux/cpumask.h>
  37. #include <linux/smp.h>
  38. #include <linux/anon_inodes.h>
  39. #include <linux/profile.h>
  40. #include <linux/kvm_para.h>
  41. #include <linux/pagemap.h>
  42. #include <linux/mman.h>
  43. #include <asm/processor.h>
  44. #include <asm/msr.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/desc.h>
  48. MODULE_AUTHOR("Qumranet");
  49. MODULE_LICENSE("GPL");
  50. static DEFINE_SPINLOCK(kvm_lock);
  51. static LIST_HEAD(vm_list);
  52. static cpumask_t cpus_hardware_enabled;
  53. struct kvm_x86_ops *kvm_x86_ops;
  54. struct kmem_cache *kvm_vcpu_cache;
  55. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  56. static __read_mostly struct preempt_ops kvm_preempt_ops;
  57. static struct dentry *debugfs_dir;
  58. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  59. unsigned long arg);
  60. static inline int valid_vcpu(int n)
  61. {
  62. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  63. }
  64. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  65. {
  66. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  67. return;
  68. vcpu->guest_fpu_loaded = 1;
  69. fx_save(&vcpu->host_fx_image);
  70. fx_restore(&vcpu->guest_fx_image);
  71. }
  72. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  73. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  74. {
  75. if (!vcpu->guest_fpu_loaded)
  76. return;
  77. vcpu->guest_fpu_loaded = 0;
  78. fx_save(&vcpu->guest_fx_image);
  79. fx_restore(&vcpu->host_fx_image);
  80. }
  81. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  82. /*
  83. * Switches to specified vcpu, until a matching vcpu_put()
  84. */
  85. void vcpu_load(struct kvm_vcpu *vcpu)
  86. {
  87. int cpu;
  88. mutex_lock(&vcpu->mutex);
  89. cpu = get_cpu();
  90. preempt_notifier_register(&vcpu->preempt_notifier);
  91. kvm_arch_vcpu_load(vcpu, cpu);
  92. put_cpu();
  93. }
  94. void vcpu_put(struct kvm_vcpu *vcpu)
  95. {
  96. preempt_disable();
  97. kvm_arch_vcpu_put(vcpu);
  98. preempt_notifier_unregister(&vcpu->preempt_notifier);
  99. preempt_enable();
  100. mutex_unlock(&vcpu->mutex);
  101. }
  102. static void ack_flush(void *_completed)
  103. {
  104. }
  105. void kvm_flush_remote_tlbs(struct kvm *kvm)
  106. {
  107. int i, cpu;
  108. cpumask_t cpus;
  109. struct kvm_vcpu *vcpu;
  110. cpus_clear(cpus);
  111. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  112. vcpu = kvm->vcpus[i];
  113. if (!vcpu)
  114. continue;
  115. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  116. continue;
  117. cpu = vcpu->cpu;
  118. if (cpu != -1 && cpu != raw_smp_processor_id())
  119. cpu_set(cpu, cpus);
  120. }
  121. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  122. }
  123. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  124. {
  125. struct page *page;
  126. int r;
  127. mutex_init(&vcpu->mutex);
  128. vcpu->cpu = -1;
  129. vcpu->mmu.root_hpa = INVALID_PAGE;
  130. vcpu->kvm = kvm;
  131. vcpu->vcpu_id = id;
  132. if (!irqchip_in_kernel(kvm) || id == 0)
  133. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  134. else
  135. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  136. init_waitqueue_head(&vcpu->wq);
  137. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  138. if (!page) {
  139. r = -ENOMEM;
  140. goto fail;
  141. }
  142. vcpu->run = page_address(page);
  143. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  144. if (!page) {
  145. r = -ENOMEM;
  146. goto fail_free_run;
  147. }
  148. vcpu->pio_data = page_address(page);
  149. r = kvm_mmu_create(vcpu);
  150. if (r < 0)
  151. goto fail_free_pio_data;
  152. if (irqchip_in_kernel(kvm)) {
  153. r = kvm_create_lapic(vcpu);
  154. if (r < 0)
  155. goto fail_mmu_destroy;
  156. }
  157. return 0;
  158. fail_mmu_destroy:
  159. kvm_mmu_destroy(vcpu);
  160. fail_free_pio_data:
  161. free_page((unsigned long)vcpu->pio_data);
  162. fail_free_run:
  163. free_page((unsigned long)vcpu->run);
  164. fail:
  165. return r;
  166. }
  167. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  168. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  169. {
  170. kvm_free_lapic(vcpu);
  171. kvm_mmu_destroy(vcpu);
  172. free_page((unsigned long)vcpu->pio_data);
  173. free_page((unsigned long)vcpu->run);
  174. }
  175. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  176. static struct kvm *kvm_create_vm(void)
  177. {
  178. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  179. if (!kvm)
  180. return ERR_PTR(-ENOMEM);
  181. kvm_io_bus_init(&kvm->pio_bus);
  182. mutex_init(&kvm->lock);
  183. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  184. kvm_io_bus_init(&kvm->mmio_bus);
  185. spin_lock(&kvm_lock);
  186. list_add(&kvm->vm_list, &vm_list);
  187. spin_unlock(&kvm_lock);
  188. return kvm;
  189. }
  190. /*
  191. * Free any memory in @free but not in @dont.
  192. */
  193. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  194. struct kvm_memory_slot *dont)
  195. {
  196. if (!dont || free->rmap != dont->rmap)
  197. vfree(free->rmap);
  198. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  199. vfree(free->dirty_bitmap);
  200. free->npages = 0;
  201. free->dirty_bitmap = NULL;
  202. free->rmap = NULL;
  203. }
  204. static void kvm_free_physmem(struct kvm *kvm)
  205. {
  206. int i;
  207. for (i = 0; i < kvm->nmemslots; ++i)
  208. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  209. }
  210. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  211. {
  212. vcpu_load(vcpu);
  213. kvm_mmu_unload(vcpu);
  214. vcpu_put(vcpu);
  215. }
  216. static void kvm_free_vcpus(struct kvm *kvm)
  217. {
  218. unsigned int i;
  219. /*
  220. * Unpin any mmu pages first.
  221. */
  222. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  223. if (kvm->vcpus[i])
  224. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  225. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  226. if (kvm->vcpus[i]) {
  227. kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
  228. kvm->vcpus[i] = NULL;
  229. }
  230. }
  231. }
  232. static void kvm_destroy_vm(struct kvm *kvm)
  233. {
  234. spin_lock(&kvm_lock);
  235. list_del(&kvm->vm_list);
  236. spin_unlock(&kvm_lock);
  237. kvm_io_bus_destroy(&kvm->pio_bus);
  238. kvm_io_bus_destroy(&kvm->mmio_bus);
  239. kfree(kvm->vpic);
  240. kfree(kvm->vioapic);
  241. kvm_free_vcpus(kvm);
  242. kvm_free_physmem(kvm);
  243. kfree(kvm);
  244. }
  245. static int kvm_vm_release(struct inode *inode, struct file *filp)
  246. {
  247. struct kvm *kvm = filp->private_data;
  248. kvm_destroy_vm(kvm);
  249. return 0;
  250. }
  251. void fx_init(struct kvm_vcpu *vcpu)
  252. {
  253. unsigned after_mxcsr_mask;
  254. /* Initialize guest FPU by resetting ours and saving into guest's */
  255. preempt_disable();
  256. fx_save(&vcpu->host_fx_image);
  257. fpu_init();
  258. fx_save(&vcpu->guest_fx_image);
  259. fx_restore(&vcpu->host_fx_image);
  260. preempt_enable();
  261. vcpu->cr0 |= X86_CR0_ET;
  262. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  263. vcpu->guest_fx_image.mxcsr = 0x1f80;
  264. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  265. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  266. }
  267. EXPORT_SYMBOL_GPL(fx_init);
  268. /*
  269. * Allocate some memory and give it an address in the guest physical address
  270. * space.
  271. *
  272. * Discontiguous memory is allowed, mostly for framebuffers.
  273. *
  274. * Must be called holding kvm->lock.
  275. */
  276. int __kvm_set_memory_region(struct kvm *kvm,
  277. struct kvm_userspace_memory_region *mem,
  278. int user_alloc)
  279. {
  280. int r;
  281. gfn_t base_gfn;
  282. unsigned long npages;
  283. unsigned long i;
  284. struct kvm_memory_slot *memslot;
  285. struct kvm_memory_slot old, new;
  286. r = -EINVAL;
  287. /* General sanity checks */
  288. if (mem->memory_size & (PAGE_SIZE - 1))
  289. goto out;
  290. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  291. goto out;
  292. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  293. goto out;
  294. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  295. goto out;
  296. memslot = &kvm->memslots[mem->slot];
  297. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  298. npages = mem->memory_size >> PAGE_SHIFT;
  299. if (!npages)
  300. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  301. new = old = *memslot;
  302. new.base_gfn = base_gfn;
  303. new.npages = npages;
  304. new.flags = mem->flags;
  305. /* Disallow changing a memory slot's size. */
  306. r = -EINVAL;
  307. if (npages && old.npages && npages != old.npages)
  308. goto out_free;
  309. /* Check for overlaps */
  310. r = -EEXIST;
  311. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  312. struct kvm_memory_slot *s = &kvm->memslots[i];
  313. if (s == memslot)
  314. continue;
  315. if (!((base_gfn + npages <= s->base_gfn) ||
  316. (base_gfn >= s->base_gfn + s->npages)))
  317. goto out_free;
  318. }
  319. /* Free page dirty bitmap if unneeded */
  320. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  321. new.dirty_bitmap = NULL;
  322. r = -ENOMEM;
  323. /* Allocate if a slot is being created */
  324. if (npages && !new.rmap) {
  325. new.rmap = vmalloc(npages * sizeof(struct page *));
  326. if (!new.rmap)
  327. goto out_free;
  328. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  329. new.user_alloc = user_alloc;
  330. if (user_alloc)
  331. new.userspace_addr = mem->userspace_addr;
  332. else {
  333. down_write(&current->mm->mmap_sem);
  334. new.userspace_addr = do_mmap(NULL, 0,
  335. npages * PAGE_SIZE,
  336. PROT_READ | PROT_WRITE,
  337. MAP_SHARED | MAP_ANONYMOUS,
  338. 0);
  339. up_write(&current->mm->mmap_sem);
  340. if (IS_ERR((void *)new.userspace_addr))
  341. goto out_free;
  342. }
  343. } else {
  344. if (!old.user_alloc && old.rmap) {
  345. int ret;
  346. down_write(&current->mm->mmap_sem);
  347. ret = do_munmap(current->mm, old.userspace_addr,
  348. old.npages * PAGE_SIZE);
  349. up_write(&current->mm->mmap_sem);
  350. if (ret < 0)
  351. printk(KERN_WARNING
  352. "kvm_vm_ioctl_set_memory_region: "
  353. "failed to munmap memory\n");
  354. }
  355. }
  356. /* Allocate page dirty bitmap if needed */
  357. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  358. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  359. new.dirty_bitmap = vmalloc(dirty_bytes);
  360. if (!new.dirty_bitmap)
  361. goto out_free;
  362. memset(new.dirty_bitmap, 0, dirty_bytes);
  363. }
  364. if (mem->slot >= kvm->nmemslots)
  365. kvm->nmemslots = mem->slot + 1;
  366. if (!kvm->n_requested_mmu_pages) {
  367. unsigned int n_pages;
  368. if (npages) {
  369. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  370. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  371. n_pages);
  372. } else {
  373. unsigned int nr_mmu_pages;
  374. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  375. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  376. nr_mmu_pages = max(nr_mmu_pages,
  377. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  378. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  379. }
  380. }
  381. *memslot = new;
  382. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  383. kvm_flush_remote_tlbs(kvm);
  384. kvm_free_physmem_slot(&old, &new);
  385. return 0;
  386. out_free:
  387. kvm_free_physmem_slot(&new, &old);
  388. out:
  389. return r;
  390. }
  391. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  392. int kvm_set_memory_region(struct kvm *kvm,
  393. struct kvm_userspace_memory_region *mem,
  394. int user_alloc)
  395. {
  396. int r;
  397. mutex_lock(&kvm->lock);
  398. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  399. mutex_unlock(&kvm->lock);
  400. return r;
  401. }
  402. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  403. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  404. struct
  405. kvm_userspace_memory_region *mem,
  406. int user_alloc)
  407. {
  408. if (mem->slot >= KVM_MEMORY_SLOTS)
  409. return -EINVAL;
  410. return kvm_set_memory_region(kvm, mem, user_alloc);
  411. }
  412. /*
  413. * Get (and clear) the dirty memory log for a memory slot.
  414. */
  415. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  416. struct kvm_dirty_log *log)
  417. {
  418. struct kvm_memory_slot *memslot;
  419. int r, i;
  420. int n;
  421. unsigned long any = 0;
  422. mutex_lock(&kvm->lock);
  423. r = -EINVAL;
  424. if (log->slot >= KVM_MEMORY_SLOTS)
  425. goto out;
  426. memslot = &kvm->memslots[log->slot];
  427. r = -ENOENT;
  428. if (!memslot->dirty_bitmap)
  429. goto out;
  430. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  431. for (i = 0; !any && i < n/sizeof(long); ++i)
  432. any = memslot->dirty_bitmap[i];
  433. r = -EFAULT;
  434. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  435. goto out;
  436. /* If nothing is dirty, don't bother messing with page tables. */
  437. if (any) {
  438. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  439. kvm_flush_remote_tlbs(kvm);
  440. memset(memslot->dirty_bitmap, 0, n);
  441. }
  442. r = 0;
  443. out:
  444. mutex_unlock(&kvm->lock);
  445. return r;
  446. }
  447. int is_error_page(struct page *page)
  448. {
  449. return page == bad_page;
  450. }
  451. EXPORT_SYMBOL_GPL(is_error_page);
  452. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  453. {
  454. int i;
  455. struct kvm_mem_alias *alias;
  456. for (i = 0; i < kvm->naliases; ++i) {
  457. alias = &kvm->aliases[i];
  458. if (gfn >= alias->base_gfn
  459. && gfn < alias->base_gfn + alias->npages)
  460. return alias->target_gfn + gfn - alias->base_gfn;
  461. }
  462. return gfn;
  463. }
  464. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  465. {
  466. int i;
  467. for (i = 0; i < kvm->nmemslots; ++i) {
  468. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  469. if (gfn >= memslot->base_gfn
  470. && gfn < memslot->base_gfn + memslot->npages)
  471. return memslot;
  472. }
  473. return NULL;
  474. }
  475. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  476. {
  477. gfn = unalias_gfn(kvm, gfn);
  478. return __gfn_to_memslot(kvm, gfn);
  479. }
  480. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  481. {
  482. int i;
  483. gfn = unalias_gfn(kvm, gfn);
  484. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  485. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  486. if (gfn >= memslot->base_gfn
  487. && gfn < memslot->base_gfn + memslot->npages)
  488. return 1;
  489. }
  490. return 0;
  491. }
  492. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  493. /*
  494. * Requires current->mm->mmap_sem to be held
  495. */
  496. static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
  497. {
  498. struct kvm_memory_slot *slot;
  499. struct page *page[1];
  500. int npages;
  501. might_sleep();
  502. gfn = unalias_gfn(kvm, gfn);
  503. slot = __gfn_to_memslot(kvm, gfn);
  504. if (!slot) {
  505. get_page(bad_page);
  506. return bad_page;
  507. }
  508. npages = get_user_pages(current, current->mm,
  509. slot->userspace_addr
  510. + (gfn - slot->base_gfn) * PAGE_SIZE, 1,
  511. 1, 1, page, NULL);
  512. if (npages != 1) {
  513. get_page(bad_page);
  514. return bad_page;
  515. }
  516. return page[0];
  517. }
  518. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  519. {
  520. struct page *page;
  521. down_read(&current->mm->mmap_sem);
  522. page = __gfn_to_page(kvm, gfn);
  523. up_read(&current->mm->mmap_sem);
  524. return page;
  525. }
  526. EXPORT_SYMBOL_GPL(gfn_to_page);
  527. void kvm_release_page(struct page *page)
  528. {
  529. if (!PageReserved(page))
  530. SetPageDirty(page);
  531. put_page(page);
  532. }
  533. EXPORT_SYMBOL_GPL(kvm_release_page);
  534. static int next_segment(unsigned long len, int offset)
  535. {
  536. if (len > PAGE_SIZE - offset)
  537. return PAGE_SIZE - offset;
  538. else
  539. return len;
  540. }
  541. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  542. int len)
  543. {
  544. void *page_virt;
  545. struct page *page;
  546. page = gfn_to_page(kvm, gfn);
  547. if (is_error_page(page)) {
  548. kvm_release_page(page);
  549. return -EFAULT;
  550. }
  551. page_virt = kmap_atomic(page, KM_USER0);
  552. memcpy(data, page_virt + offset, len);
  553. kunmap_atomic(page_virt, KM_USER0);
  554. kvm_release_page(page);
  555. return 0;
  556. }
  557. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  558. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  559. {
  560. gfn_t gfn = gpa >> PAGE_SHIFT;
  561. int seg;
  562. int offset = offset_in_page(gpa);
  563. int ret;
  564. while ((seg = next_segment(len, offset)) != 0) {
  565. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  566. if (ret < 0)
  567. return ret;
  568. offset = 0;
  569. len -= seg;
  570. data += seg;
  571. ++gfn;
  572. }
  573. return 0;
  574. }
  575. EXPORT_SYMBOL_GPL(kvm_read_guest);
  576. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  577. int offset, int len)
  578. {
  579. void *page_virt;
  580. struct page *page;
  581. page = gfn_to_page(kvm, gfn);
  582. if (is_error_page(page)) {
  583. kvm_release_page(page);
  584. return -EFAULT;
  585. }
  586. page_virt = kmap_atomic(page, KM_USER0);
  587. memcpy(page_virt + offset, data, len);
  588. kunmap_atomic(page_virt, KM_USER0);
  589. mark_page_dirty(kvm, gfn);
  590. kvm_release_page(page);
  591. return 0;
  592. }
  593. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  594. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  595. unsigned long len)
  596. {
  597. gfn_t gfn = gpa >> PAGE_SHIFT;
  598. int seg;
  599. int offset = offset_in_page(gpa);
  600. int ret;
  601. while ((seg = next_segment(len, offset)) != 0) {
  602. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  603. if (ret < 0)
  604. return ret;
  605. offset = 0;
  606. len -= seg;
  607. data += seg;
  608. ++gfn;
  609. }
  610. return 0;
  611. }
  612. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  613. {
  614. void *page_virt;
  615. struct page *page;
  616. page = gfn_to_page(kvm, gfn);
  617. if (is_error_page(page)) {
  618. kvm_release_page(page);
  619. return -EFAULT;
  620. }
  621. page_virt = kmap_atomic(page, KM_USER0);
  622. memset(page_virt + offset, 0, len);
  623. kunmap_atomic(page_virt, KM_USER0);
  624. kvm_release_page(page);
  625. return 0;
  626. }
  627. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  628. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  629. {
  630. gfn_t gfn = gpa >> PAGE_SHIFT;
  631. int seg;
  632. int offset = offset_in_page(gpa);
  633. int ret;
  634. while ((seg = next_segment(len, offset)) != 0) {
  635. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  636. if (ret < 0)
  637. return ret;
  638. offset = 0;
  639. len -= seg;
  640. ++gfn;
  641. }
  642. return 0;
  643. }
  644. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  645. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  646. {
  647. struct kvm_memory_slot *memslot;
  648. gfn = unalias_gfn(kvm, gfn);
  649. memslot = __gfn_to_memslot(kvm, gfn);
  650. if (memslot && memslot->dirty_bitmap) {
  651. unsigned long rel_gfn = gfn - memslot->base_gfn;
  652. /* avoid RMW */
  653. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  654. set_bit(rel_gfn, memslot->dirty_bitmap);
  655. }
  656. }
  657. /*
  658. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  659. */
  660. static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  661. {
  662. DECLARE_WAITQUEUE(wait, current);
  663. add_wait_queue(&vcpu->wq, &wait);
  664. /*
  665. * We will block until either an interrupt or a signal wakes us up
  666. */
  667. while (!kvm_cpu_has_interrupt(vcpu)
  668. && !signal_pending(current)
  669. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  670. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  671. set_current_state(TASK_INTERRUPTIBLE);
  672. vcpu_put(vcpu);
  673. schedule();
  674. vcpu_load(vcpu);
  675. }
  676. __set_current_state(TASK_RUNNING);
  677. remove_wait_queue(&vcpu->wq, &wait);
  678. }
  679. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  680. {
  681. ++vcpu->stat.halt_exits;
  682. if (irqchip_in_kernel(vcpu->kvm)) {
  683. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  684. kvm_vcpu_block(vcpu);
  685. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  686. return -EINTR;
  687. return 1;
  688. } else {
  689. vcpu->run->exit_reason = KVM_EXIT_HLT;
  690. return 0;
  691. }
  692. }
  693. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  694. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  695. {
  696. unsigned long nr, a0, a1, a2, a3, ret;
  697. kvm_x86_ops->cache_regs(vcpu);
  698. nr = vcpu->regs[VCPU_REGS_RAX];
  699. a0 = vcpu->regs[VCPU_REGS_RBX];
  700. a1 = vcpu->regs[VCPU_REGS_RCX];
  701. a2 = vcpu->regs[VCPU_REGS_RDX];
  702. a3 = vcpu->regs[VCPU_REGS_RSI];
  703. if (!is_long_mode(vcpu)) {
  704. nr &= 0xFFFFFFFF;
  705. a0 &= 0xFFFFFFFF;
  706. a1 &= 0xFFFFFFFF;
  707. a2 &= 0xFFFFFFFF;
  708. a3 &= 0xFFFFFFFF;
  709. }
  710. switch (nr) {
  711. default:
  712. ret = -KVM_ENOSYS;
  713. break;
  714. }
  715. vcpu->regs[VCPU_REGS_RAX] = ret;
  716. kvm_x86_ops->decache_regs(vcpu);
  717. return 0;
  718. }
  719. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  720. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  721. {
  722. char instruction[3];
  723. int ret = 0;
  724. mutex_lock(&vcpu->kvm->lock);
  725. /*
  726. * Blow out the MMU to ensure that no other VCPU has an active mapping
  727. * to ensure that the updated hypercall appears atomically across all
  728. * VCPUs.
  729. */
  730. kvm_mmu_zap_all(vcpu->kvm);
  731. kvm_x86_ops->cache_regs(vcpu);
  732. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  733. if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
  734. != X86EMUL_CONTINUE)
  735. ret = -EFAULT;
  736. mutex_unlock(&vcpu->kvm->lock);
  737. return ret;
  738. }
  739. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  740. {
  741. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  742. }
  743. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  744. {
  745. struct descriptor_table dt = { limit, base };
  746. kvm_x86_ops->set_gdt(vcpu, &dt);
  747. }
  748. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  749. {
  750. struct descriptor_table dt = { limit, base };
  751. kvm_x86_ops->set_idt(vcpu, &dt);
  752. }
  753. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  754. unsigned long *rflags)
  755. {
  756. lmsw(vcpu, msw);
  757. *rflags = kvm_x86_ops->get_rflags(vcpu);
  758. }
  759. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  760. {
  761. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  762. switch (cr) {
  763. case 0:
  764. return vcpu->cr0;
  765. case 2:
  766. return vcpu->cr2;
  767. case 3:
  768. return vcpu->cr3;
  769. case 4:
  770. return vcpu->cr4;
  771. default:
  772. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  773. return 0;
  774. }
  775. }
  776. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  777. unsigned long *rflags)
  778. {
  779. switch (cr) {
  780. case 0:
  781. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  782. *rflags = kvm_x86_ops->get_rflags(vcpu);
  783. break;
  784. case 2:
  785. vcpu->cr2 = val;
  786. break;
  787. case 3:
  788. set_cr3(vcpu, val);
  789. break;
  790. case 4:
  791. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  792. break;
  793. default:
  794. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  795. }
  796. }
  797. void kvm_resched(struct kvm_vcpu *vcpu)
  798. {
  799. if (!need_resched())
  800. return;
  801. cond_resched();
  802. }
  803. EXPORT_SYMBOL_GPL(kvm_resched);
  804. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  805. {
  806. int i;
  807. u32 function;
  808. struct kvm_cpuid_entry *e, *best;
  809. kvm_x86_ops->cache_regs(vcpu);
  810. function = vcpu->regs[VCPU_REGS_RAX];
  811. vcpu->regs[VCPU_REGS_RAX] = 0;
  812. vcpu->regs[VCPU_REGS_RBX] = 0;
  813. vcpu->regs[VCPU_REGS_RCX] = 0;
  814. vcpu->regs[VCPU_REGS_RDX] = 0;
  815. best = NULL;
  816. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  817. e = &vcpu->cpuid_entries[i];
  818. if (e->function == function) {
  819. best = e;
  820. break;
  821. }
  822. /*
  823. * Both basic or both extended?
  824. */
  825. if (((e->function ^ function) & 0x80000000) == 0)
  826. if (!best || e->function > best->function)
  827. best = e;
  828. }
  829. if (best) {
  830. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  831. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  832. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  833. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  834. }
  835. kvm_x86_ops->decache_regs(vcpu);
  836. kvm_x86_ops->skip_emulated_instruction(vcpu);
  837. }
  838. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  839. /*
  840. * Check if userspace requested an interrupt window, and that the
  841. * interrupt window is open.
  842. *
  843. * No need to exit to userspace if we already have an interrupt queued.
  844. */
  845. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  846. struct kvm_run *kvm_run)
  847. {
  848. return (!vcpu->irq_summary &&
  849. kvm_run->request_interrupt_window &&
  850. vcpu->interrupt_window_open &&
  851. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  852. }
  853. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  854. struct kvm_run *kvm_run)
  855. {
  856. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  857. kvm_run->cr8 = get_cr8(vcpu);
  858. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  859. if (irqchip_in_kernel(vcpu->kvm))
  860. kvm_run->ready_for_interrupt_injection = 1;
  861. else
  862. kvm_run->ready_for_interrupt_injection =
  863. (vcpu->interrupt_window_open &&
  864. vcpu->irq_summary == 0);
  865. }
  866. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  867. {
  868. int r;
  869. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  870. pr_debug("vcpu %d received sipi with vector # %x\n",
  871. vcpu->vcpu_id, vcpu->sipi_vector);
  872. kvm_lapic_reset(vcpu);
  873. r = kvm_x86_ops->vcpu_reset(vcpu);
  874. if (r)
  875. return r;
  876. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  877. }
  878. preempted:
  879. if (vcpu->guest_debug.enabled)
  880. kvm_x86_ops->guest_debug_pre(vcpu);
  881. again:
  882. r = kvm_mmu_reload(vcpu);
  883. if (unlikely(r))
  884. goto out;
  885. kvm_inject_pending_timer_irqs(vcpu);
  886. preempt_disable();
  887. kvm_x86_ops->prepare_guest_switch(vcpu);
  888. kvm_load_guest_fpu(vcpu);
  889. local_irq_disable();
  890. if (signal_pending(current)) {
  891. local_irq_enable();
  892. preempt_enable();
  893. r = -EINTR;
  894. kvm_run->exit_reason = KVM_EXIT_INTR;
  895. ++vcpu->stat.signal_exits;
  896. goto out;
  897. }
  898. if (irqchip_in_kernel(vcpu->kvm))
  899. kvm_x86_ops->inject_pending_irq(vcpu);
  900. else if (!vcpu->mmio_read_completed)
  901. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  902. vcpu->guest_mode = 1;
  903. kvm_guest_enter();
  904. if (vcpu->requests)
  905. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  906. kvm_x86_ops->tlb_flush(vcpu);
  907. kvm_x86_ops->run(vcpu, kvm_run);
  908. vcpu->guest_mode = 0;
  909. local_irq_enable();
  910. ++vcpu->stat.exits;
  911. /*
  912. * We must have an instruction between local_irq_enable() and
  913. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  914. * the interrupt shadow. The stat.exits increment will do nicely.
  915. * But we need to prevent reordering, hence this barrier():
  916. */
  917. barrier();
  918. kvm_guest_exit();
  919. preempt_enable();
  920. /*
  921. * Profile KVM exit RIPs:
  922. */
  923. if (unlikely(prof_on == KVM_PROFILING)) {
  924. kvm_x86_ops->cache_regs(vcpu);
  925. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  926. }
  927. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  928. if (r > 0) {
  929. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  930. r = -EINTR;
  931. kvm_run->exit_reason = KVM_EXIT_INTR;
  932. ++vcpu->stat.request_irq_exits;
  933. goto out;
  934. }
  935. if (!need_resched()) {
  936. ++vcpu->stat.light_exits;
  937. goto again;
  938. }
  939. }
  940. out:
  941. if (r > 0) {
  942. kvm_resched(vcpu);
  943. goto preempted;
  944. }
  945. post_kvm_run_save(vcpu, kvm_run);
  946. return r;
  947. }
  948. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  949. {
  950. int r;
  951. sigset_t sigsaved;
  952. vcpu_load(vcpu);
  953. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  954. kvm_vcpu_block(vcpu);
  955. vcpu_put(vcpu);
  956. return -EAGAIN;
  957. }
  958. if (vcpu->sigset_active)
  959. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  960. /* re-sync apic's tpr */
  961. if (!irqchip_in_kernel(vcpu->kvm))
  962. set_cr8(vcpu, kvm_run->cr8);
  963. if (vcpu->pio.cur_count) {
  964. r = complete_pio(vcpu);
  965. if (r)
  966. goto out;
  967. }
  968. #if CONFIG_HAS_IOMEM
  969. if (vcpu->mmio_needed) {
  970. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  971. vcpu->mmio_read_completed = 1;
  972. vcpu->mmio_needed = 0;
  973. r = emulate_instruction(vcpu, kvm_run,
  974. vcpu->mmio_fault_cr2, 0, 1);
  975. if (r == EMULATE_DO_MMIO) {
  976. /*
  977. * Read-modify-write. Back to userspace.
  978. */
  979. r = 0;
  980. goto out;
  981. }
  982. }
  983. #endif
  984. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  985. kvm_x86_ops->cache_regs(vcpu);
  986. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  987. kvm_x86_ops->decache_regs(vcpu);
  988. }
  989. r = __vcpu_run(vcpu, kvm_run);
  990. out:
  991. if (vcpu->sigset_active)
  992. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  993. vcpu_put(vcpu);
  994. return r;
  995. }
  996. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  997. struct kvm_regs *regs)
  998. {
  999. vcpu_load(vcpu);
  1000. kvm_x86_ops->cache_regs(vcpu);
  1001. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1002. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1003. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1004. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1005. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1006. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1007. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1008. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1009. #ifdef CONFIG_X86_64
  1010. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1011. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1012. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1013. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1014. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1015. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1016. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1017. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1018. #endif
  1019. regs->rip = vcpu->rip;
  1020. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  1021. /*
  1022. * Don't leak debug flags in case they were set for guest debugging
  1023. */
  1024. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1025. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1026. vcpu_put(vcpu);
  1027. return 0;
  1028. }
  1029. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1030. struct kvm_regs *regs)
  1031. {
  1032. vcpu_load(vcpu);
  1033. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1034. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1035. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1036. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1037. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1038. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1039. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1040. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1041. #ifdef CONFIG_X86_64
  1042. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1043. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1044. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1045. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1046. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1047. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1048. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1049. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1050. #endif
  1051. vcpu->rip = regs->rip;
  1052. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  1053. kvm_x86_ops->decache_regs(vcpu);
  1054. vcpu_put(vcpu);
  1055. return 0;
  1056. }
  1057. static void get_segment(struct kvm_vcpu *vcpu,
  1058. struct kvm_segment *var, int seg)
  1059. {
  1060. return kvm_x86_ops->get_segment(vcpu, var, seg);
  1061. }
  1062. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1063. struct kvm_sregs *sregs)
  1064. {
  1065. struct descriptor_table dt;
  1066. int pending_vec;
  1067. vcpu_load(vcpu);
  1068. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1069. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1070. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1071. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1072. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1073. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1074. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1075. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1076. kvm_x86_ops->get_idt(vcpu, &dt);
  1077. sregs->idt.limit = dt.limit;
  1078. sregs->idt.base = dt.base;
  1079. kvm_x86_ops->get_gdt(vcpu, &dt);
  1080. sregs->gdt.limit = dt.limit;
  1081. sregs->gdt.base = dt.base;
  1082. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1083. sregs->cr0 = vcpu->cr0;
  1084. sregs->cr2 = vcpu->cr2;
  1085. sregs->cr3 = vcpu->cr3;
  1086. sregs->cr4 = vcpu->cr4;
  1087. sregs->cr8 = get_cr8(vcpu);
  1088. sregs->efer = vcpu->shadow_efer;
  1089. sregs->apic_base = kvm_get_apic_base(vcpu);
  1090. if (irqchip_in_kernel(vcpu->kvm)) {
  1091. memset(sregs->interrupt_bitmap, 0,
  1092. sizeof sregs->interrupt_bitmap);
  1093. pending_vec = kvm_x86_ops->get_irq(vcpu);
  1094. if (pending_vec >= 0)
  1095. set_bit(pending_vec,
  1096. (unsigned long *)sregs->interrupt_bitmap);
  1097. } else
  1098. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1099. sizeof sregs->interrupt_bitmap);
  1100. vcpu_put(vcpu);
  1101. return 0;
  1102. }
  1103. static void set_segment(struct kvm_vcpu *vcpu,
  1104. struct kvm_segment *var, int seg)
  1105. {
  1106. return kvm_x86_ops->set_segment(vcpu, var, seg);
  1107. }
  1108. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1109. struct kvm_sregs *sregs)
  1110. {
  1111. int mmu_reset_needed = 0;
  1112. int i, pending_vec, max_bits;
  1113. struct descriptor_table dt;
  1114. vcpu_load(vcpu);
  1115. dt.limit = sregs->idt.limit;
  1116. dt.base = sregs->idt.base;
  1117. kvm_x86_ops->set_idt(vcpu, &dt);
  1118. dt.limit = sregs->gdt.limit;
  1119. dt.base = sregs->gdt.base;
  1120. kvm_x86_ops->set_gdt(vcpu, &dt);
  1121. vcpu->cr2 = sregs->cr2;
  1122. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1123. vcpu->cr3 = sregs->cr3;
  1124. set_cr8(vcpu, sregs->cr8);
  1125. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1126. #ifdef CONFIG_X86_64
  1127. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  1128. #endif
  1129. kvm_set_apic_base(vcpu, sregs->apic_base);
  1130. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1131. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1132. vcpu->cr0 = sregs->cr0;
  1133. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  1134. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1135. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  1136. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1137. load_pdptrs(vcpu, vcpu->cr3);
  1138. if (mmu_reset_needed)
  1139. kvm_mmu_reset_context(vcpu);
  1140. if (!irqchip_in_kernel(vcpu->kvm)) {
  1141. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1142. sizeof vcpu->irq_pending);
  1143. vcpu->irq_summary = 0;
  1144. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1145. if (vcpu->irq_pending[i])
  1146. __set_bit(i, &vcpu->irq_summary);
  1147. } else {
  1148. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  1149. pending_vec = find_first_bit(
  1150. (const unsigned long *)sregs->interrupt_bitmap,
  1151. max_bits);
  1152. /* Only pending external irq is handled here */
  1153. if (pending_vec < max_bits) {
  1154. kvm_x86_ops->set_irq(vcpu, pending_vec);
  1155. pr_debug("Set back pending irq %d\n",
  1156. pending_vec);
  1157. }
  1158. }
  1159. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1160. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1161. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1162. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1163. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1164. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1165. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1166. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1167. vcpu_put(vcpu);
  1168. return 0;
  1169. }
  1170. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1171. {
  1172. struct kvm_segment cs;
  1173. get_segment(vcpu, &cs, VCPU_SREG_CS);
  1174. *db = cs.db;
  1175. *l = cs.l;
  1176. }
  1177. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  1178. /*
  1179. * Translate a guest virtual address to a guest physical address.
  1180. */
  1181. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1182. struct kvm_translation *tr)
  1183. {
  1184. unsigned long vaddr = tr->linear_address;
  1185. gpa_t gpa;
  1186. vcpu_load(vcpu);
  1187. mutex_lock(&vcpu->kvm->lock);
  1188. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1189. tr->physical_address = gpa;
  1190. tr->valid = gpa != UNMAPPED_GVA;
  1191. tr->writeable = 1;
  1192. tr->usermode = 0;
  1193. mutex_unlock(&vcpu->kvm->lock);
  1194. vcpu_put(vcpu);
  1195. return 0;
  1196. }
  1197. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1198. struct kvm_interrupt *irq)
  1199. {
  1200. if (irq->irq < 0 || irq->irq >= 256)
  1201. return -EINVAL;
  1202. if (irqchip_in_kernel(vcpu->kvm))
  1203. return -ENXIO;
  1204. vcpu_load(vcpu);
  1205. set_bit(irq->irq, vcpu->irq_pending);
  1206. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1207. vcpu_put(vcpu);
  1208. return 0;
  1209. }
  1210. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1211. struct kvm_debug_guest *dbg)
  1212. {
  1213. int r;
  1214. vcpu_load(vcpu);
  1215. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  1216. vcpu_put(vcpu);
  1217. return r;
  1218. }
  1219. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1220. unsigned long address,
  1221. int *type)
  1222. {
  1223. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1224. unsigned long pgoff;
  1225. struct page *page;
  1226. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1227. if (pgoff == 0)
  1228. page = virt_to_page(vcpu->run);
  1229. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1230. page = virt_to_page(vcpu->pio_data);
  1231. else
  1232. return NOPAGE_SIGBUS;
  1233. get_page(page);
  1234. if (type != NULL)
  1235. *type = VM_FAULT_MINOR;
  1236. return page;
  1237. }
  1238. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1239. .nopage = kvm_vcpu_nopage,
  1240. };
  1241. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1242. {
  1243. vma->vm_ops = &kvm_vcpu_vm_ops;
  1244. return 0;
  1245. }
  1246. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1247. {
  1248. struct kvm_vcpu *vcpu = filp->private_data;
  1249. fput(vcpu->kvm->filp);
  1250. return 0;
  1251. }
  1252. static struct file_operations kvm_vcpu_fops = {
  1253. .release = kvm_vcpu_release,
  1254. .unlocked_ioctl = kvm_vcpu_ioctl,
  1255. .compat_ioctl = kvm_vcpu_ioctl,
  1256. .mmap = kvm_vcpu_mmap,
  1257. };
  1258. /*
  1259. * Allocates an inode for the vcpu.
  1260. */
  1261. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1262. {
  1263. int fd, r;
  1264. struct inode *inode;
  1265. struct file *file;
  1266. r = anon_inode_getfd(&fd, &inode, &file,
  1267. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  1268. if (r)
  1269. return r;
  1270. atomic_inc(&vcpu->kvm->filp->f_count);
  1271. return fd;
  1272. }
  1273. /*
  1274. * Creates some virtual cpus. Good luck creating more than one.
  1275. */
  1276. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1277. {
  1278. int r;
  1279. struct kvm_vcpu *vcpu;
  1280. if (!valid_vcpu(n))
  1281. return -EINVAL;
  1282. vcpu = kvm_x86_ops->vcpu_create(kvm, n);
  1283. if (IS_ERR(vcpu))
  1284. return PTR_ERR(vcpu);
  1285. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1286. /* We do fxsave: this must be aligned. */
  1287. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  1288. vcpu_load(vcpu);
  1289. r = kvm_x86_ops->vcpu_reset(vcpu);
  1290. if (r == 0)
  1291. r = kvm_mmu_setup(vcpu);
  1292. vcpu_put(vcpu);
  1293. if (r < 0)
  1294. goto free_vcpu;
  1295. mutex_lock(&kvm->lock);
  1296. if (kvm->vcpus[n]) {
  1297. r = -EEXIST;
  1298. mutex_unlock(&kvm->lock);
  1299. goto mmu_unload;
  1300. }
  1301. kvm->vcpus[n] = vcpu;
  1302. mutex_unlock(&kvm->lock);
  1303. /* Now it's all set up, let userspace reach it */
  1304. r = create_vcpu_fd(vcpu);
  1305. if (r < 0)
  1306. goto unlink;
  1307. return r;
  1308. unlink:
  1309. mutex_lock(&kvm->lock);
  1310. kvm->vcpus[n] = NULL;
  1311. mutex_unlock(&kvm->lock);
  1312. mmu_unload:
  1313. vcpu_load(vcpu);
  1314. kvm_mmu_unload(vcpu);
  1315. vcpu_put(vcpu);
  1316. free_vcpu:
  1317. kvm_x86_ops->vcpu_free(vcpu);
  1318. return r;
  1319. }
  1320. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1321. {
  1322. if (sigset) {
  1323. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1324. vcpu->sigset_active = 1;
  1325. vcpu->sigset = *sigset;
  1326. } else
  1327. vcpu->sigset_active = 0;
  1328. return 0;
  1329. }
  1330. /*
  1331. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  1332. * we have asm/x86/processor.h
  1333. */
  1334. struct fxsave {
  1335. u16 cwd;
  1336. u16 swd;
  1337. u16 twd;
  1338. u16 fop;
  1339. u64 rip;
  1340. u64 rdp;
  1341. u32 mxcsr;
  1342. u32 mxcsr_mask;
  1343. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  1344. #ifdef CONFIG_X86_64
  1345. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  1346. #else
  1347. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  1348. #endif
  1349. };
  1350. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1351. {
  1352. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  1353. vcpu_load(vcpu);
  1354. memcpy(fpu->fpr, fxsave->st_space, 128);
  1355. fpu->fcw = fxsave->cwd;
  1356. fpu->fsw = fxsave->swd;
  1357. fpu->ftwx = fxsave->twd;
  1358. fpu->last_opcode = fxsave->fop;
  1359. fpu->last_ip = fxsave->rip;
  1360. fpu->last_dp = fxsave->rdp;
  1361. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  1362. vcpu_put(vcpu);
  1363. return 0;
  1364. }
  1365. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1366. {
  1367. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  1368. vcpu_load(vcpu);
  1369. memcpy(fxsave->st_space, fpu->fpr, 128);
  1370. fxsave->cwd = fpu->fcw;
  1371. fxsave->swd = fpu->fsw;
  1372. fxsave->twd = fpu->ftwx;
  1373. fxsave->fop = fpu->last_opcode;
  1374. fxsave->rip = fpu->last_ip;
  1375. fxsave->rdp = fpu->last_dp;
  1376. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  1377. vcpu_put(vcpu);
  1378. return 0;
  1379. }
  1380. static long kvm_vcpu_ioctl(struct file *filp,
  1381. unsigned int ioctl, unsigned long arg)
  1382. {
  1383. struct kvm_vcpu *vcpu = filp->private_data;
  1384. void __user *argp = (void __user *)arg;
  1385. int r;
  1386. switch (ioctl) {
  1387. case KVM_RUN:
  1388. r = -EINVAL;
  1389. if (arg)
  1390. goto out;
  1391. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  1392. break;
  1393. case KVM_GET_REGS: {
  1394. struct kvm_regs kvm_regs;
  1395. memset(&kvm_regs, 0, sizeof kvm_regs);
  1396. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  1397. if (r)
  1398. goto out;
  1399. r = -EFAULT;
  1400. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  1401. goto out;
  1402. r = 0;
  1403. break;
  1404. }
  1405. case KVM_SET_REGS: {
  1406. struct kvm_regs kvm_regs;
  1407. r = -EFAULT;
  1408. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  1409. goto out;
  1410. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  1411. if (r)
  1412. goto out;
  1413. r = 0;
  1414. break;
  1415. }
  1416. case KVM_GET_SREGS: {
  1417. struct kvm_sregs kvm_sregs;
  1418. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  1419. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  1420. if (r)
  1421. goto out;
  1422. r = -EFAULT;
  1423. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  1424. goto out;
  1425. r = 0;
  1426. break;
  1427. }
  1428. case KVM_SET_SREGS: {
  1429. struct kvm_sregs kvm_sregs;
  1430. r = -EFAULT;
  1431. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  1432. goto out;
  1433. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  1434. if (r)
  1435. goto out;
  1436. r = 0;
  1437. break;
  1438. }
  1439. case KVM_TRANSLATE: {
  1440. struct kvm_translation tr;
  1441. r = -EFAULT;
  1442. if (copy_from_user(&tr, argp, sizeof tr))
  1443. goto out;
  1444. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  1445. if (r)
  1446. goto out;
  1447. r = -EFAULT;
  1448. if (copy_to_user(argp, &tr, sizeof tr))
  1449. goto out;
  1450. r = 0;
  1451. break;
  1452. }
  1453. case KVM_INTERRUPT: {
  1454. struct kvm_interrupt irq;
  1455. r = -EFAULT;
  1456. if (copy_from_user(&irq, argp, sizeof irq))
  1457. goto out;
  1458. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1459. if (r)
  1460. goto out;
  1461. r = 0;
  1462. break;
  1463. }
  1464. case KVM_DEBUG_GUEST: {
  1465. struct kvm_debug_guest dbg;
  1466. r = -EFAULT;
  1467. if (copy_from_user(&dbg, argp, sizeof dbg))
  1468. goto out;
  1469. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  1470. if (r)
  1471. goto out;
  1472. r = 0;
  1473. break;
  1474. }
  1475. case KVM_SET_SIGNAL_MASK: {
  1476. struct kvm_signal_mask __user *sigmask_arg = argp;
  1477. struct kvm_signal_mask kvm_sigmask;
  1478. sigset_t sigset, *p;
  1479. p = NULL;
  1480. if (argp) {
  1481. r = -EFAULT;
  1482. if (copy_from_user(&kvm_sigmask, argp,
  1483. sizeof kvm_sigmask))
  1484. goto out;
  1485. r = -EINVAL;
  1486. if (kvm_sigmask.len != sizeof sigset)
  1487. goto out;
  1488. r = -EFAULT;
  1489. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1490. sizeof sigset))
  1491. goto out;
  1492. p = &sigset;
  1493. }
  1494. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1495. break;
  1496. }
  1497. case KVM_GET_FPU: {
  1498. struct kvm_fpu fpu;
  1499. memset(&fpu, 0, sizeof fpu);
  1500. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  1501. if (r)
  1502. goto out;
  1503. r = -EFAULT;
  1504. if (copy_to_user(argp, &fpu, sizeof fpu))
  1505. goto out;
  1506. r = 0;
  1507. break;
  1508. }
  1509. case KVM_SET_FPU: {
  1510. struct kvm_fpu fpu;
  1511. r = -EFAULT;
  1512. if (copy_from_user(&fpu, argp, sizeof fpu))
  1513. goto out;
  1514. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  1515. if (r)
  1516. goto out;
  1517. r = 0;
  1518. break;
  1519. }
  1520. default:
  1521. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1522. }
  1523. out:
  1524. return r;
  1525. }
  1526. static long kvm_vm_ioctl(struct file *filp,
  1527. unsigned int ioctl, unsigned long arg)
  1528. {
  1529. struct kvm *kvm = filp->private_data;
  1530. void __user *argp = (void __user *)arg;
  1531. int r;
  1532. switch (ioctl) {
  1533. case KVM_CREATE_VCPU:
  1534. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1535. if (r < 0)
  1536. goto out;
  1537. break;
  1538. case KVM_SET_USER_MEMORY_REGION: {
  1539. struct kvm_userspace_memory_region kvm_userspace_mem;
  1540. r = -EFAULT;
  1541. if (copy_from_user(&kvm_userspace_mem, argp,
  1542. sizeof kvm_userspace_mem))
  1543. goto out;
  1544. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1545. if (r)
  1546. goto out;
  1547. break;
  1548. }
  1549. case KVM_GET_DIRTY_LOG: {
  1550. struct kvm_dirty_log log;
  1551. r = -EFAULT;
  1552. if (copy_from_user(&log, argp, sizeof log))
  1553. goto out;
  1554. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1555. if (r)
  1556. goto out;
  1557. break;
  1558. }
  1559. default:
  1560. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1561. }
  1562. out:
  1563. return r;
  1564. }
  1565. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  1566. unsigned long address,
  1567. int *type)
  1568. {
  1569. struct kvm *kvm = vma->vm_file->private_data;
  1570. unsigned long pgoff;
  1571. struct page *page;
  1572. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1573. if (!kvm_is_visible_gfn(kvm, pgoff))
  1574. return NOPAGE_SIGBUS;
  1575. /* current->mm->mmap_sem is already held so call lockless version */
  1576. page = __gfn_to_page(kvm, pgoff);
  1577. if (is_error_page(page)) {
  1578. kvm_release_page(page);
  1579. return NOPAGE_SIGBUS;
  1580. }
  1581. if (type != NULL)
  1582. *type = VM_FAULT_MINOR;
  1583. return page;
  1584. }
  1585. static struct vm_operations_struct kvm_vm_vm_ops = {
  1586. .nopage = kvm_vm_nopage,
  1587. };
  1588. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1589. {
  1590. vma->vm_ops = &kvm_vm_vm_ops;
  1591. return 0;
  1592. }
  1593. static struct file_operations kvm_vm_fops = {
  1594. .release = kvm_vm_release,
  1595. .unlocked_ioctl = kvm_vm_ioctl,
  1596. .compat_ioctl = kvm_vm_ioctl,
  1597. .mmap = kvm_vm_mmap,
  1598. };
  1599. static int kvm_dev_ioctl_create_vm(void)
  1600. {
  1601. int fd, r;
  1602. struct inode *inode;
  1603. struct file *file;
  1604. struct kvm *kvm;
  1605. kvm = kvm_create_vm();
  1606. if (IS_ERR(kvm))
  1607. return PTR_ERR(kvm);
  1608. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  1609. if (r) {
  1610. kvm_destroy_vm(kvm);
  1611. return r;
  1612. }
  1613. kvm->filp = file;
  1614. return fd;
  1615. }
  1616. static long kvm_dev_ioctl(struct file *filp,
  1617. unsigned int ioctl, unsigned long arg)
  1618. {
  1619. void __user *argp = (void __user *)arg;
  1620. long r = -EINVAL;
  1621. switch (ioctl) {
  1622. case KVM_GET_API_VERSION:
  1623. r = -EINVAL;
  1624. if (arg)
  1625. goto out;
  1626. r = KVM_API_VERSION;
  1627. break;
  1628. case KVM_CREATE_VM:
  1629. r = -EINVAL;
  1630. if (arg)
  1631. goto out;
  1632. r = kvm_dev_ioctl_create_vm();
  1633. break;
  1634. case KVM_CHECK_EXTENSION: {
  1635. int ext = (long)argp;
  1636. switch (ext) {
  1637. case KVM_CAP_IRQCHIP:
  1638. case KVM_CAP_HLT:
  1639. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1640. case KVM_CAP_USER_MEMORY:
  1641. case KVM_CAP_SET_TSS_ADDR:
  1642. r = 1;
  1643. break;
  1644. default:
  1645. r = 0;
  1646. break;
  1647. }
  1648. break;
  1649. }
  1650. case KVM_GET_VCPU_MMAP_SIZE:
  1651. r = -EINVAL;
  1652. if (arg)
  1653. goto out;
  1654. r = 2 * PAGE_SIZE;
  1655. break;
  1656. default:
  1657. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1658. }
  1659. out:
  1660. return r;
  1661. }
  1662. static struct file_operations kvm_chardev_ops = {
  1663. .unlocked_ioctl = kvm_dev_ioctl,
  1664. .compat_ioctl = kvm_dev_ioctl,
  1665. };
  1666. static struct miscdevice kvm_dev = {
  1667. KVM_MINOR,
  1668. "kvm",
  1669. &kvm_chardev_ops,
  1670. };
  1671. /*
  1672. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  1673. * cached on it.
  1674. */
  1675. static void decache_vcpus_on_cpu(int cpu)
  1676. {
  1677. struct kvm *vm;
  1678. struct kvm_vcpu *vcpu;
  1679. int i;
  1680. spin_lock(&kvm_lock);
  1681. list_for_each_entry(vm, &vm_list, vm_list)
  1682. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1683. vcpu = vm->vcpus[i];
  1684. if (!vcpu)
  1685. continue;
  1686. /*
  1687. * If the vcpu is locked, then it is running on some
  1688. * other cpu and therefore it is not cached on the
  1689. * cpu in question.
  1690. *
  1691. * If it's not locked, check the last cpu it executed
  1692. * on.
  1693. */
  1694. if (mutex_trylock(&vcpu->mutex)) {
  1695. if (vcpu->cpu == cpu) {
  1696. kvm_x86_ops->vcpu_decache(vcpu);
  1697. vcpu->cpu = -1;
  1698. }
  1699. mutex_unlock(&vcpu->mutex);
  1700. }
  1701. }
  1702. spin_unlock(&kvm_lock);
  1703. }
  1704. static void hardware_enable(void *junk)
  1705. {
  1706. int cpu = raw_smp_processor_id();
  1707. if (cpu_isset(cpu, cpus_hardware_enabled))
  1708. return;
  1709. cpu_set(cpu, cpus_hardware_enabled);
  1710. kvm_x86_ops->hardware_enable(NULL);
  1711. }
  1712. static void hardware_disable(void *junk)
  1713. {
  1714. int cpu = raw_smp_processor_id();
  1715. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1716. return;
  1717. cpu_clear(cpu, cpus_hardware_enabled);
  1718. decache_vcpus_on_cpu(cpu);
  1719. kvm_x86_ops->hardware_disable(NULL);
  1720. }
  1721. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1722. void *v)
  1723. {
  1724. int cpu = (long)v;
  1725. switch (val) {
  1726. case CPU_DYING:
  1727. case CPU_DYING_FROZEN:
  1728. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1729. cpu);
  1730. hardware_disable(NULL);
  1731. break;
  1732. case CPU_UP_CANCELED:
  1733. case CPU_UP_CANCELED_FROZEN:
  1734. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1735. cpu);
  1736. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  1737. break;
  1738. case CPU_ONLINE:
  1739. case CPU_ONLINE_FROZEN:
  1740. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1741. cpu);
  1742. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  1743. break;
  1744. }
  1745. return NOTIFY_OK;
  1746. }
  1747. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1748. void *v)
  1749. {
  1750. if (val == SYS_RESTART) {
  1751. /*
  1752. * Some (well, at least mine) BIOSes hang on reboot if
  1753. * in vmx root mode.
  1754. */
  1755. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1756. on_each_cpu(hardware_disable, NULL, 0, 1);
  1757. }
  1758. return NOTIFY_OK;
  1759. }
  1760. static struct notifier_block kvm_reboot_notifier = {
  1761. .notifier_call = kvm_reboot,
  1762. .priority = 0,
  1763. };
  1764. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1765. {
  1766. memset(bus, 0, sizeof(*bus));
  1767. }
  1768. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1769. {
  1770. int i;
  1771. for (i = 0; i < bus->dev_count; i++) {
  1772. struct kvm_io_device *pos = bus->devs[i];
  1773. kvm_iodevice_destructor(pos);
  1774. }
  1775. }
  1776. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  1777. {
  1778. int i;
  1779. for (i = 0; i < bus->dev_count; i++) {
  1780. struct kvm_io_device *pos = bus->devs[i];
  1781. if (pos->in_range(pos, addr))
  1782. return pos;
  1783. }
  1784. return NULL;
  1785. }
  1786. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1787. {
  1788. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1789. bus->devs[bus->dev_count++] = dev;
  1790. }
  1791. static struct notifier_block kvm_cpu_notifier = {
  1792. .notifier_call = kvm_cpu_hotplug,
  1793. .priority = 20, /* must be > scheduler priority */
  1794. };
  1795. static u64 stat_get(void *_offset)
  1796. {
  1797. unsigned offset = (long)_offset;
  1798. u64 total = 0;
  1799. struct kvm *kvm;
  1800. struct kvm_vcpu *vcpu;
  1801. int i;
  1802. spin_lock(&kvm_lock);
  1803. list_for_each_entry(kvm, &vm_list, vm_list)
  1804. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1805. vcpu = kvm->vcpus[i];
  1806. if (vcpu)
  1807. total += *(u32 *)((void *)vcpu + offset);
  1808. }
  1809. spin_unlock(&kvm_lock);
  1810. return total;
  1811. }
  1812. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  1813. static __init void kvm_init_debug(void)
  1814. {
  1815. struct kvm_stats_debugfs_item *p;
  1816. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1817. for (p = debugfs_entries; p->name; ++p)
  1818. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  1819. (void *)(long)p->offset,
  1820. &stat_fops);
  1821. }
  1822. static void kvm_exit_debug(void)
  1823. {
  1824. struct kvm_stats_debugfs_item *p;
  1825. for (p = debugfs_entries; p->name; ++p)
  1826. debugfs_remove(p->dentry);
  1827. debugfs_remove(debugfs_dir);
  1828. }
  1829. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1830. {
  1831. hardware_disable(NULL);
  1832. return 0;
  1833. }
  1834. static int kvm_resume(struct sys_device *dev)
  1835. {
  1836. hardware_enable(NULL);
  1837. return 0;
  1838. }
  1839. static struct sysdev_class kvm_sysdev_class = {
  1840. .name = "kvm",
  1841. .suspend = kvm_suspend,
  1842. .resume = kvm_resume,
  1843. };
  1844. static struct sys_device kvm_sysdev = {
  1845. .id = 0,
  1846. .cls = &kvm_sysdev_class,
  1847. };
  1848. struct page *bad_page;
  1849. static inline
  1850. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1851. {
  1852. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1853. }
  1854. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1855. {
  1856. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1857. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1858. }
  1859. static void kvm_sched_out(struct preempt_notifier *pn,
  1860. struct task_struct *next)
  1861. {
  1862. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1863. kvm_x86_ops->vcpu_put(vcpu);
  1864. }
  1865. int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
  1866. struct module *module)
  1867. {
  1868. int r;
  1869. int cpu;
  1870. if (kvm_x86_ops) {
  1871. printk(KERN_ERR "kvm: already loaded the other module\n");
  1872. return -EEXIST;
  1873. }
  1874. if (!ops->cpu_has_kvm_support()) {
  1875. printk(KERN_ERR "kvm: no hardware support\n");
  1876. return -EOPNOTSUPP;
  1877. }
  1878. if (ops->disabled_by_bios()) {
  1879. printk(KERN_ERR "kvm: disabled by bios\n");
  1880. return -EOPNOTSUPP;
  1881. }
  1882. kvm_x86_ops = ops;
  1883. r = kvm_x86_ops->hardware_setup();
  1884. if (r < 0)
  1885. goto out;
  1886. for_each_online_cpu(cpu) {
  1887. smp_call_function_single(cpu,
  1888. kvm_x86_ops->check_processor_compatibility,
  1889. &r, 0, 1);
  1890. if (r < 0)
  1891. goto out_free_0;
  1892. }
  1893. on_each_cpu(hardware_enable, NULL, 0, 1);
  1894. r = register_cpu_notifier(&kvm_cpu_notifier);
  1895. if (r)
  1896. goto out_free_1;
  1897. register_reboot_notifier(&kvm_reboot_notifier);
  1898. r = sysdev_class_register(&kvm_sysdev_class);
  1899. if (r)
  1900. goto out_free_2;
  1901. r = sysdev_register(&kvm_sysdev);
  1902. if (r)
  1903. goto out_free_3;
  1904. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1905. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1906. __alignof__(struct kvm_vcpu), 0, 0);
  1907. if (!kvm_vcpu_cache) {
  1908. r = -ENOMEM;
  1909. goto out_free_4;
  1910. }
  1911. kvm_chardev_ops.owner = module;
  1912. r = misc_register(&kvm_dev);
  1913. if (r) {
  1914. printk(KERN_ERR "kvm: misc device register failed\n");
  1915. goto out_free;
  1916. }
  1917. kvm_preempt_ops.sched_in = kvm_sched_in;
  1918. kvm_preempt_ops.sched_out = kvm_sched_out;
  1919. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  1920. return 0;
  1921. out_free:
  1922. kmem_cache_destroy(kvm_vcpu_cache);
  1923. out_free_4:
  1924. sysdev_unregister(&kvm_sysdev);
  1925. out_free_3:
  1926. sysdev_class_unregister(&kvm_sysdev_class);
  1927. out_free_2:
  1928. unregister_reboot_notifier(&kvm_reboot_notifier);
  1929. unregister_cpu_notifier(&kvm_cpu_notifier);
  1930. out_free_1:
  1931. on_each_cpu(hardware_disable, NULL, 0, 1);
  1932. out_free_0:
  1933. kvm_x86_ops->hardware_unsetup();
  1934. out:
  1935. kvm_x86_ops = NULL;
  1936. return r;
  1937. }
  1938. EXPORT_SYMBOL_GPL(kvm_init_x86);
  1939. void kvm_exit_x86(void)
  1940. {
  1941. misc_deregister(&kvm_dev);
  1942. kmem_cache_destroy(kvm_vcpu_cache);
  1943. sysdev_unregister(&kvm_sysdev);
  1944. sysdev_class_unregister(&kvm_sysdev_class);
  1945. unregister_reboot_notifier(&kvm_reboot_notifier);
  1946. unregister_cpu_notifier(&kvm_cpu_notifier);
  1947. on_each_cpu(hardware_disable, NULL, 0, 1);
  1948. kvm_x86_ops->hardware_unsetup();
  1949. kvm_x86_ops = NULL;
  1950. }
  1951. EXPORT_SYMBOL_GPL(kvm_exit_x86);
  1952. static __init int kvm_init(void)
  1953. {
  1954. int r;
  1955. r = kvm_mmu_module_init();
  1956. if (r)
  1957. goto out4;
  1958. kvm_init_debug();
  1959. kvm_arch_init();
  1960. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1961. if (bad_page == NULL) {
  1962. r = -ENOMEM;
  1963. goto out;
  1964. }
  1965. return 0;
  1966. out:
  1967. kvm_exit_debug();
  1968. kvm_mmu_module_exit();
  1969. out4:
  1970. return r;
  1971. }
  1972. static __exit void kvm_exit(void)
  1973. {
  1974. kvm_exit_debug();
  1975. __free_page(bad_page);
  1976. kvm_mmu_module_exit();
  1977. }
  1978. module_init(kvm_init)
  1979. module_exit(kvm_exit)