dm-thin-metadata.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538
  1. /*
  2. * Copyright (C) 2011 Red Hat, Inc.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-thin-metadata.h"
  7. #include "persistent-data/dm-btree.h"
  8. #include "persistent-data/dm-space-map.h"
  9. #include "persistent-data/dm-space-map-disk.h"
  10. #include "persistent-data/dm-transaction-manager.h"
  11. #include <linux/list.h>
  12. #include <linux/device-mapper.h>
  13. #include <linux/workqueue.h>
  14. /*--------------------------------------------------------------------------
  15. * As far as the metadata goes, there is:
  16. *
  17. * - A superblock in block zero, taking up fewer than 512 bytes for
  18. * atomic writes.
  19. *
  20. * - A space map managing the metadata blocks.
  21. *
  22. * - A space map managing the data blocks.
  23. *
  24. * - A btree mapping our internal thin dev ids onto struct disk_device_details.
  25. *
  26. * - A hierarchical btree, with 2 levels which effectively maps (thin
  27. * dev id, virtual block) -> block_time. Block time is a 64-bit
  28. * field holding the time in the low 24 bits, and block in the top 48
  29. * bits.
  30. *
  31. * BTrees consist solely of btree_nodes, that fill a block. Some are
  32. * internal nodes, as such their values are a __le64 pointing to other
  33. * nodes. Leaf nodes can store data of any reasonable size (ie. much
  34. * smaller than the block size). The nodes consist of the header,
  35. * followed by an array of keys, followed by an array of values. We have
  36. * to binary search on the keys so they're all held together to help the
  37. * cpu cache.
  38. *
  39. * Space maps have 2 btrees:
  40. *
  41. * - One maps a uint64_t onto a struct index_entry. Which points to a
  42. * bitmap block, and has some details about how many free entries there
  43. * are etc.
  44. *
  45. * - The bitmap blocks have a header (for the checksum). Then the rest
  46. * of the block is pairs of bits. With the meaning being:
  47. *
  48. * 0 - ref count is 0
  49. * 1 - ref count is 1
  50. * 2 - ref count is 2
  51. * 3 - ref count is higher than 2
  52. *
  53. * - If the count is higher than 2 then the ref count is entered in a
  54. * second btree that directly maps the block_address to a uint32_t ref
  55. * count.
  56. *
  57. * The space map metadata variant doesn't have a bitmaps btree. Instead
  58. * it has one single blocks worth of index_entries. This avoids
  59. * recursive issues with the bitmap btree needing to allocate space in
  60. * order to insert. With a small data block size such as 64k the
  61. * metadata support data devices that are hundreds of terrabytes.
  62. *
  63. * The space maps allocate space linearly from front to back. Space that
  64. * is freed in a transaction is never recycled within that transaction.
  65. * To try and avoid fragmenting _free_ space the allocator always goes
  66. * back and fills in gaps.
  67. *
  68. * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
  69. * from the block manager.
  70. *--------------------------------------------------------------------------*/
  71. #define DM_MSG_PREFIX "thin metadata"
  72. #define THIN_SUPERBLOCK_MAGIC 27022010
  73. #define THIN_SUPERBLOCK_LOCATION 0
  74. #define THIN_VERSION 1
  75. #define THIN_METADATA_CACHE_SIZE 64
  76. #define SECTOR_TO_BLOCK_SHIFT 3
  77. /*
  78. * 3 for btree insert +
  79. * 2 for btree lookup used within space map
  80. */
  81. #define THIN_MAX_CONCURRENT_LOCKS 5
  82. /* This should be plenty */
  83. #define SPACE_MAP_ROOT_SIZE 128
  84. /*
  85. * Little endian on-disk superblock and device details.
  86. */
  87. struct thin_disk_superblock {
  88. __le32 csum; /* Checksum of superblock except for this field. */
  89. __le32 flags;
  90. __le64 blocknr; /* This block number, dm_block_t. */
  91. __u8 uuid[16];
  92. __le64 magic;
  93. __le32 version;
  94. __le32 time;
  95. __le64 trans_id;
  96. /*
  97. * Root held by userspace transactions.
  98. */
  99. __le64 held_root;
  100. __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
  101. __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
  102. /*
  103. * 2-level btree mapping (dev_id, (dev block, time)) -> data block
  104. */
  105. __le64 data_mapping_root;
  106. /*
  107. * Device detail root mapping dev_id -> device_details
  108. */
  109. __le64 device_details_root;
  110. __le32 data_block_size; /* In 512-byte sectors. */
  111. __le32 metadata_block_size; /* In 512-byte sectors. */
  112. __le64 metadata_nr_blocks;
  113. __le32 compat_flags;
  114. __le32 compat_ro_flags;
  115. __le32 incompat_flags;
  116. } __packed;
  117. struct disk_device_details {
  118. __le64 mapped_blocks;
  119. __le64 transaction_id; /* When created. */
  120. __le32 creation_time;
  121. __le32 snapshotted_time;
  122. } __packed;
  123. struct dm_pool_metadata {
  124. struct hlist_node hash;
  125. struct block_device *bdev;
  126. struct dm_block_manager *bm;
  127. struct dm_space_map *metadata_sm;
  128. struct dm_space_map *data_sm;
  129. struct dm_transaction_manager *tm;
  130. struct dm_transaction_manager *nb_tm;
  131. /*
  132. * Two-level btree.
  133. * First level holds thin_dev_t.
  134. * Second level holds mappings.
  135. */
  136. struct dm_btree_info info;
  137. /*
  138. * Non-blocking version of the above.
  139. */
  140. struct dm_btree_info nb_info;
  141. /*
  142. * Just the top level for deleting whole devices.
  143. */
  144. struct dm_btree_info tl_info;
  145. /*
  146. * Just the bottom level for creating new devices.
  147. */
  148. struct dm_btree_info bl_info;
  149. /*
  150. * Describes the device details btree.
  151. */
  152. struct dm_btree_info details_info;
  153. struct rw_semaphore root_lock;
  154. uint32_t time;
  155. int need_commit;
  156. dm_block_t root;
  157. dm_block_t details_root;
  158. struct list_head thin_devices;
  159. uint64_t trans_id;
  160. unsigned long flags;
  161. sector_t data_block_size;
  162. };
  163. struct dm_thin_device {
  164. struct list_head list;
  165. struct dm_pool_metadata *pmd;
  166. dm_thin_id id;
  167. int open_count;
  168. int changed;
  169. uint64_t mapped_blocks;
  170. uint64_t transaction_id;
  171. uint32_t creation_time;
  172. uint32_t snapshotted_time;
  173. };
  174. /*----------------------------------------------------------------
  175. * superblock validator
  176. *--------------------------------------------------------------*/
  177. #define SUPERBLOCK_CSUM_XOR 160774
  178. static void sb_prepare_for_write(struct dm_block_validator *v,
  179. struct dm_block *b,
  180. size_t block_size)
  181. {
  182. struct thin_disk_superblock *disk_super = dm_block_data(b);
  183. disk_super->blocknr = cpu_to_le64(dm_block_location(b));
  184. disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  185. block_size - sizeof(__le32),
  186. SUPERBLOCK_CSUM_XOR));
  187. }
  188. static int sb_check(struct dm_block_validator *v,
  189. struct dm_block *b,
  190. size_t block_size)
  191. {
  192. struct thin_disk_superblock *disk_super = dm_block_data(b);
  193. __le32 csum_le;
  194. if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
  195. DMERR("sb_check failed: blocknr %llu: "
  196. "wanted %llu", le64_to_cpu(disk_super->blocknr),
  197. (unsigned long long)dm_block_location(b));
  198. return -ENOTBLK;
  199. }
  200. if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
  201. DMERR("sb_check failed: magic %llu: "
  202. "wanted %llu", le64_to_cpu(disk_super->magic),
  203. (unsigned long long)THIN_SUPERBLOCK_MAGIC);
  204. return -EILSEQ;
  205. }
  206. csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  207. block_size - sizeof(__le32),
  208. SUPERBLOCK_CSUM_XOR));
  209. if (csum_le != disk_super->csum) {
  210. DMERR("sb_check failed: csum %u: wanted %u",
  211. le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
  212. return -EILSEQ;
  213. }
  214. return 0;
  215. }
  216. static struct dm_block_validator sb_validator = {
  217. .name = "superblock",
  218. .prepare_for_write = sb_prepare_for_write,
  219. .check = sb_check
  220. };
  221. /*----------------------------------------------------------------
  222. * Methods for the btree value types
  223. *--------------------------------------------------------------*/
  224. static uint64_t pack_block_time(dm_block_t b, uint32_t t)
  225. {
  226. return (b << 24) | t;
  227. }
  228. static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
  229. {
  230. *b = v >> 24;
  231. *t = v & ((1 << 24) - 1);
  232. }
  233. static void data_block_inc(void *context, void *value_le)
  234. {
  235. struct dm_space_map *sm = context;
  236. __le64 v_le;
  237. uint64_t b;
  238. uint32_t t;
  239. memcpy(&v_le, value_le, sizeof(v_le));
  240. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  241. dm_sm_inc_block(sm, b);
  242. }
  243. static void data_block_dec(void *context, void *value_le)
  244. {
  245. struct dm_space_map *sm = context;
  246. __le64 v_le;
  247. uint64_t b;
  248. uint32_t t;
  249. memcpy(&v_le, value_le, sizeof(v_le));
  250. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  251. dm_sm_dec_block(sm, b);
  252. }
  253. static int data_block_equal(void *context, void *value1_le, void *value2_le)
  254. {
  255. __le64 v1_le, v2_le;
  256. uint64_t b1, b2;
  257. uint32_t t;
  258. memcpy(&v1_le, value1_le, sizeof(v1_le));
  259. memcpy(&v2_le, value2_le, sizeof(v2_le));
  260. unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
  261. unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
  262. return b1 == b2;
  263. }
  264. static void subtree_inc(void *context, void *value)
  265. {
  266. struct dm_btree_info *info = context;
  267. __le64 root_le;
  268. uint64_t root;
  269. memcpy(&root_le, value, sizeof(root_le));
  270. root = le64_to_cpu(root_le);
  271. dm_tm_inc(info->tm, root);
  272. }
  273. static void subtree_dec(void *context, void *value)
  274. {
  275. struct dm_btree_info *info = context;
  276. __le64 root_le;
  277. uint64_t root;
  278. memcpy(&root_le, value, sizeof(root_le));
  279. root = le64_to_cpu(root_le);
  280. if (dm_btree_del(info, root))
  281. DMERR("btree delete failed\n");
  282. }
  283. static int subtree_equal(void *context, void *value1_le, void *value2_le)
  284. {
  285. __le64 v1_le, v2_le;
  286. memcpy(&v1_le, value1_le, sizeof(v1_le));
  287. memcpy(&v2_le, value2_le, sizeof(v2_le));
  288. return v1_le == v2_le;
  289. }
  290. /*----------------------------------------------------------------*/
  291. static int superblock_all_zeroes(struct dm_block_manager *bm, int *result)
  292. {
  293. int r;
  294. unsigned i;
  295. struct dm_block *b;
  296. __le64 *data_le, zero = cpu_to_le64(0);
  297. unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
  298. /*
  299. * We can't use a validator here - it may be all zeroes.
  300. */
  301. r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
  302. if (r)
  303. return r;
  304. data_le = dm_block_data(b);
  305. *result = 1;
  306. for (i = 0; i < block_size; i++) {
  307. if (data_le[i] != zero) {
  308. *result = 0;
  309. break;
  310. }
  311. }
  312. return dm_bm_unlock(b);
  313. }
  314. static void __setup_btree_details(struct dm_pool_metadata *pmd)
  315. {
  316. pmd->info.tm = pmd->tm;
  317. pmd->info.levels = 2;
  318. pmd->info.value_type.context = pmd->data_sm;
  319. pmd->info.value_type.size = sizeof(__le64);
  320. pmd->info.value_type.inc = data_block_inc;
  321. pmd->info.value_type.dec = data_block_dec;
  322. pmd->info.value_type.equal = data_block_equal;
  323. memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
  324. pmd->nb_info.tm = pmd->nb_tm;
  325. pmd->tl_info.tm = pmd->tm;
  326. pmd->tl_info.levels = 1;
  327. pmd->tl_info.value_type.context = &pmd->info;
  328. pmd->tl_info.value_type.size = sizeof(__le64);
  329. pmd->tl_info.value_type.inc = subtree_inc;
  330. pmd->tl_info.value_type.dec = subtree_dec;
  331. pmd->tl_info.value_type.equal = subtree_equal;
  332. pmd->bl_info.tm = pmd->tm;
  333. pmd->bl_info.levels = 1;
  334. pmd->bl_info.value_type.context = pmd->data_sm;
  335. pmd->bl_info.value_type.size = sizeof(__le64);
  336. pmd->bl_info.value_type.inc = data_block_inc;
  337. pmd->bl_info.value_type.dec = data_block_dec;
  338. pmd->bl_info.value_type.equal = data_block_equal;
  339. pmd->details_info.tm = pmd->tm;
  340. pmd->details_info.levels = 1;
  341. pmd->details_info.value_type.context = NULL;
  342. pmd->details_info.value_type.size = sizeof(struct disk_device_details);
  343. pmd->details_info.value_type.inc = NULL;
  344. pmd->details_info.value_type.dec = NULL;
  345. pmd->details_info.value_type.equal = NULL;
  346. }
  347. static int init_pmd(struct dm_pool_metadata *pmd,
  348. struct dm_block_manager *bm,
  349. dm_block_t nr_blocks, int create)
  350. {
  351. int r;
  352. struct dm_space_map *sm, *data_sm;
  353. struct dm_transaction_manager *tm;
  354. struct dm_block *sblock;
  355. if (create) {
  356. r = dm_tm_create_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
  357. &sb_validator, &tm, &sm, &sblock);
  358. if (r < 0) {
  359. DMERR("tm_create_with_sm failed");
  360. return r;
  361. }
  362. data_sm = dm_sm_disk_create(tm, nr_blocks);
  363. if (IS_ERR(data_sm)) {
  364. DMERR("sm_disk_create failed");
  365. dm_tm_unlock(tm, sblock);
  366. r = PTR_ERR(data_sm);
  367. goto bad;
  368. }
  369. } else {
  370. struct thin_disk_superblock *disk_super = NULL;
  371. size_t space_map_root_offset =
  372. offsetof(struct thin_disk_superblock, metadata_space_map_root);
  373. r = dm_tm_open_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
  374. &sb_validator, space_map_root_offset,
  375. SPACE_MAP_ROOT_SIZE, &tm, &sm, &sblock);
  376. if (r < 0) {
  377. DMERR("tm_open_with_sm failed");
  378. return r;
  379. }
  380. disk_super = dm_block_data(sblock);
  381. data_sm = dm_sm_disk_open(tm, disk_super->data_space_map_root,
  382. sizeof(disk_super->data_space_map_root));
  383. if (IS_ERR(data_sm)) {
  384. DMERR("sm_disk_open failed");
  385. r = PTR_ERR(data_sm);
  386. goto bad;
  387. }
  388. }
  389. r = dm_tm_unlock(tm, sblock);
  390. if (r < 0) {
  391. DMERR("couldn't unlock superblock");
  392. goto bad_data_sm;
  393. }
  394. pmd->bm = bm;
  395. pmd->metadata_sm = sm;
  396. pmd->data_sm = data_sm;
  397. pmd->tm = tm;
  398. pmd->nb_tm = dm_tm_create_non_blocking_clone(tm);
  399. if (!pmd->nb_tm) {
  400. DMERR("could not create clone tm");
  401. r = -ENOMEM;
  402. goto bad_data_sm;
  403. }
  404. __setup_btree_details(pmd);
  405. pmd->root = 0;
  406. init_rwsem(&pmd->root_lock);
  407. pmd->time = 0;
  408. pmd->need_commit = 0;
  409. pmd->details_root = 0;
  410. pmd->trans_id = 0;
  411. pmd->flags = 0;
  412. INIT_LIST_HEAD(&pmd->thin_devices);
  413. return 0;
  414. bad_data_sm:
  415. dm_sm_destroy(data_sm);
  416. bad:
  417. dm_tm_destroy(tm);
  418. dm_sm_destroy(sm);
  419. return r;
  420. }
  421. static int __begin_transaction(struct dm_pool_metadata *pmd)
  422. {
  423. int r;
  424. u32 features;
  425. struct thin_disk_superblock *disk_super;
  426. struct dm_block *sblock;
  427. /*
  428. * __maybe_commit_transaction() resets these
  429. */
  430. WARN_ON(pmd->need_commit);
  431. /*
  432. * We re-read the superblock every time. Shouldn't need to do this
  433. * really.
  434. */
  435. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  436. &sb_validator, &sblock);
  437. if (r)
  438. return r;
  439. disk_super = dm_block_data(sblock);
  440. pmd->time = le32_to_cpu(disk_super->time);
  441. pmd->root = le64_to_cpu(disk_super->data_mapping_root);
  442. pmd->details_root = le64_to_cpu(disk_super->device_details_root);
  443. pmd->trans_id = le64_to_cpu(disk_super->trans_id);
  444. pmd->flags = le32_to_cpu(disk_super->flags);
  445. pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
  446. features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
  447. if (features) {
  448. DMERR("could not access metadata due to "
  449. "unsupported optional features (%lx).",
  450. (unsigned long)features);
  451. r = -EINVAL;
  452. goto out;
  453. }
  454. /*
  455. * Check for read-only metadata to skip the following RDWR checks.
  456. */
  457. if (get_disk_ro(pmd->bdev->bd_disk))
  458. goto out;
  459. features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
  460. if (features) {
  461. DMERR("could not access metadata RDWR due to "
  462. "unsupported optional features (%lx).",
  463. (unsigned long)features);
  464. r = -EINVAL;
  465. }
  466. out:
  467. dm_bm_unlock(sblock);
  468. return r;
  469. }
  470. static int __write_changed_details(struct dm_pool_metadata *pmd)
  471. {
  472. int r;
  473. struct dm_thin_device *td, *tmp;
  474. struct disk_device_details details;
  475. uint64_t key;
  476. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  477. if (!td->changed)
  478. continue;
  479. key = td->id;
  480. details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
  481. details.transaction_id = cpu_to_le64(td->transaction_id);
  482. details.creation_time = cpu_to_le32(td->creation_time);
  483. details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
  484. __dm_bless_for_disk(&details);
  485. r = dm_btree_insert(&pmd->details_info, pmd->details_root,
  486. &key, &details, &pmd->details_root);
  487. if (r)
  488. return r;
  489. if (td->open_count)
  490. td->changed = 0;
  491. else {
  492. list_del(&td->list);
  493. kfree(td);
  494. }
  495. pmd->need_commit = 1;
  496. }
  497. return 0;
  498. }
  499. static int __commit_transaction(struct dm_pool_metadata *pmd)
  500. {
  501. /*
  502. * FIXME: Associated pool should be made read-only on failure.
  503. */
  504. int r;
  505. size_t metadata_len, data_len;
  506. struct thin_disk_superblock *disk_super;
  507. struct dm_block *sblock;
  508. /*
  509. * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
  510. */
  511. BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
  512. r = __write_changed_details(pmd);
  513. if (r < 0)
  514. return r;
  515. if (!pmd->need_commit)
  516. return r;
  517. r = dm_sm_commit(pmd->data_sm);
  518. if (r < 0)
  519. return r;
  520. r = dm_tm_pre_commit(pmd->tm);
  521. if (r < 0)
  522. return r;
  523. r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
  524. if (r < 0)
  525. return r;
  526. r = dm_sm_root_size(pmd->data_sm, &data_len);
  527. if (r < 0)
  528. return r;
  529. r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  530. &sb_validator, &sblock);
  531. if (r)
  532. return r;
  533. disk_super = dm_block_data(sblock);
  534. disk_super->time = cpu_to_le32(pmd->time);
  535. disk_super->data_mapping_root = cpu_to_le64(pmd->root);
  536. disk_super->device_details_root = cpu_to_le64(pmd->details_root);
  537. disk_super->trans_id = cpu_to_le64(pmd->trans_id);
  538. disk_super->flags = cpu_to_le32(pmd->flags);
  539. r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
  540. metadata_len);
  541. if (r < 0)
  542. goto out_locked;
  543. r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
  544. data_len);
  545. if (r < 0)
  546. goto out_locked;
  547. r = dm_tm_commit(pmd->tm, sblock);
  548. if (!r)
  549. pmd->need_commit = 0;
  550. return r;
  551. out_locked:
  552. dm_bm_unlock(sblock);
  553. return r;
  554. }
  555. struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
  556. sector_t data_block_size)
  557. {
  558. int r;
  559. struct thin_disk_superblock *disk_super;
  560. struct dm_pool_metadata *pmd;
  561. sector_t bdev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
  562. struct dm_block_manager *bm;
  563. int create;
  564. struct dm_block *sblock;
  565. pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
  566. if (!pmd) {
  567. DMERR("could not allocate metadata struct");
  568. return ERR_PTR(-ENOMEM);
  569. }
  570. bm = dm_block_manager_create(bdev, THIN_METADATA_BLOCK_SIZE,
  571. THIN_METADATA_CACHE_SIZE,
  572. THIN_MAX_CONCURRENT_LOCKS);
  573. if (!bm) {
  574. DMERR("could not create block manager");
  575. kfree(pmd);
  576. return ERR_PTR(-ENOMEM);
  577. }
  578. r = superblock_all_zeroes(bm, &create);
  579. if (r) {
  580. dm_block_manager_destroy(bm);
  581. kfree(pmd);
  582. return ERR_PTR(r);
  583. }
  584. r = init_pmd(pmd, bm, 0, create);
  585. if (r) {
  586. dm_block_manager_destroy(bm);
  587. kfree(pmd);
  588. return ERR_PTR(r);
  589. }
  590. pmd->bdev = bdev;
  591. if (!create) {
  592. r = __begin_transaction(pmd);
  593. if (r < 0)
  594. goto bad;
  595. return pmd;
  596. }
  597. /*
  598. * Create.
  599. */
  600. r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  601. &sb_validator, &sblock);
  602. if (r)
  603. goto bad;
  604. if (bdev_size > THIN_METADATA_MAX_SECTORS)
  605. bdev_size = THIN_METADATA_MAX_SECTORS;
  606. disk_super = dm_block_data(sblock);
  607. disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
  608. disk_super->version = cpu_to_le32(THIN_VERSION);
  609. disk_super->time = 0;
  610. disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
  611. disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
  612. disk_super->data_block_size = cpu_to_le32(data_block_size);
  613. r = dm_bm_unlock(sblock);
  614. if (r < 0)
  615. goto bad;
  616. r = dm_btree_empty(&pmd->info, &pmd->root);
  617. if (r < 0)
  618. goto bad;
  619. r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
  620. if (r < 0) {
  621. DMERR("couldn't create devices root");
  622. goto bad;
  623. }
  624. pmd->flags = 0;
  625. pmd->need_commit = 1;
  626. r = dm_pool_commit_metadata(pmd);
  627. if (r < 0) {
  628. DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
  629. __func__, r);
  630. goto bad;
  631. }
  632. return pmd;
  633. bad:
  634. if (dm_pool_metadata_close(pmd) < 0)
  635. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  636. return ERR_PTR(r);
  637. }
  638. int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
  639. {
  640. int r;
  641. unsigned open_devices = 0;
  642. struct dm_thin_device *td, *tmp;
  643. down_read(&pmd->root_lock);
  644. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  645. if (td->open_count)
  646. open_devices++;
  647. else {
  648. list_del(&td->list);
  649. kfree(td);
  650. }
  651. }
  652. up_read(&pmd->root_lock);
  653. if (open_devices) {
  654. DMERR("attempt to close pmd when %u device(s) are still open",
  655. open_devices);
  656. return -EBUSY;
  657. }
  658. r = __commit_transaction(pmd);
  659. if (r < 0)
  660. DMWARN("%s: __commit_transaction() failed, error = %d",
  661. __func__, r);
  662. dm_tm_destroy(pmd->tm);
  663. dm_tm_destroy(pmd->nb_tm);
  664. dm_block_manager_destroy(pmd->bm);
  665. dm_sm_destroy(pmd->metadata_sm);
  666. dm_sm_destroy(pmd->data_sm);
  667. kfree(pmd);
  668. return 0;
  669. }
  670. /*
  671. * __open_device: Returns @td corresponding to device with id @dev,
  672. * creating it if @create is set and incrementing @td->open_count.
  673. * On failure, @td is undefined.
  674. */
  675. static int __open_device(struct dm_pool_metadata *pmd,
  676. dm_thin_id dev, int create,
  677. struct dm_thin_device **td)
  678. {
  679. int r, changed = 0;
  680. struct dm_thin_device *td2;
  681. uint64_t key = dev;
  682. struct disk_device_details details_le;
  683. /*
  684. * If the device is already open, return it.
  685. */
  686. list_for_each_entry(td2, &pmd->thin_devices, list)
  687. if (td2->id == dev) {
  688. /*
  689. * May not create an already-open device.
  690. */
  691. if (create)
  692. return -EEXIST;
  693. td2->open_count++;
  694. *td = td2;
  695. return 0;
  696. }
  697. /*
  698. * Check the device exists.
  699. */
  700. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  701. &key, &details_le);
  702. if (r) {
  703. if (r != -ENODATA || !create)
  704. return r;
  705. /*
  706. * Create new device.
  707. */
  708. changed = 1;
  709. details_le.mapped_blocks = 0;
  710. details_le.transaction_id = cpu_to_le64(pmd->trans_id);
  711. details_le.creation_time = cpu_to_le32(pmd->time);
  712. details_le.snapshotted_time = cpu_to_le32(pmd->time);
  713. }
  714. *td = kmalloc(sizeof(**td), GFP_NOIO);
  715. if (!*td)
  716. return -ENOMEM;
  717. (*td)->pmd = pmd;
  718. (*td)->id = dev;
  719. (*td)->open_count = 1;
  720. (*td)->changed = changed;
  721. (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
  722. (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
  723. (*td)->creation_time = le32_to_cpu(details_le.creation_time);
  724. (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
  725. list_add(&(*td)->list, &pmd->thin_devices);
  726. return 0;
  727. }
  728. static void __close_device(struct dm_thin_device *td)
  729. {
  730. --td->open_count;
  731. }
  732. static int __create_thin(struct dm_pool_metadata *pmd,
  733. dm_thin_id dev)
  734. {
  735. int r;
  736. dm_block_t dev_root;
  737. uint64_t key = dev;
  738. struct disk_device_details details_le;
  739. struct dm_thin_device *td;
  740. __le64 value;
  741. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  742. &key, &details_le);
  743. if (!r)
  744. return -EEXIST;
  745. /*
  746. * Create an empty btree for the mappings.
  747. */
  748. r = dm_btree_empty(&pmd->bl_info, &dev_root);
  749. if (r)
  750. return r;
  751. /*
  752. * Insert it into the main mapping tree.
  753. */
  754. value = cpu_to_le64(dev_root);
  755. __dm_bless_for_disk(&value);
  756. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  757. if (r) {
  758. dm_btree_del(&pmd->bl_info, dev_root);
  759. return r;
  760. }
  761. r = __open_device(pmd, dev, 1, &td);
  762. if (r) {
  763. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  764. dm_btree_del(&pmd->bl_info, dev_root);
  765. return r;
  766. }
  767. __close_device(td);
  768. return r;
  769. }
  770. int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
  771. {
  772. int r;
  773. down_write(&pmd->root_lock);
  774. r = __create_thin(pmd, dev);
  775. up_write(&pmd->root_lock);
  776. return r;
  777. }
  778. static int __set_snapshot_details(struct dm_pool_metadata *pmd,
  779. struct dm_thin_device *snap,
  780. dm_thin_id origin, uint32_t time)
  781. {
  782. int r;
  783. struct dm_thin_device *td;
  784. r = __open_device(pmd, origin, 0, &td);
  785. if (r)
  786. return r;
  787. td->changed = 1;
  788. td->snapshotted_time = time;
  789. snap->mapped_blocks = td->mapped_blocks;
  790. snap->snapshotted_time = time;
  791. __close_device(td);
  792. return 0;
  793. }
  794. static int __create_snap(struct dm_pool_metadata *pmd,
  795. dm_thin_id dev, dm_thin_id origin)
  796. {
  797. int r;
  798. dm_block_t origin_root;
  799. uint64_t key = origin, dev_key = dev;
  800. struct dm_thin_device *td;
  801. struct disk_device_details details_le;
  802. __le64 value;
  803. /* check this device is unused */
  804. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  805. &dev_key, &details_le);
  806. if (!r)
  807. return -EEXIST;
  808. /* find the mapping tree for the origin */
  809. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
  810. if (r)
  811. return r;
  812. origin_root = le64_to_cpu(value);
  813. /* clone the origin, an inc will do */
  814. dm_tm_inc(pmd->tm, origin_root);
  815. /* insert into the main mapping tree */
  816. value = cpu_to_le64(origin_root);
  817. __dm_bless_for_disk(&value);
  818. key = dev;
  819. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  820. if (r) {
  821. dm_tm_dec(pmd->tm, origin_root);
  822. return r;
  823. }
  824. pmd->time++;
  825. r = __open_device(pmd, dev, 1, &td);
  826. if (r)
  827. goto bad;
  828. r = __set_snapshot_details(pmd, td, origin, pmd->time);
  829. __close_device(td);
  830. if (r)
  831. goto bad;
  832. return 0;
  833. bad:
  834. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  835. dm_btree_remove(&pmd->details_info, pmd->details_root,
  836. &key, &pmd->details_root);
  837. return r;
  838. }
  839. int dm_pool_create_snap(struct dm_pool_metadata *pmd,
  840. dm_thin_id dev,
  841. dm_thin_id origin)
  842. {
  843. int r;
  844. down_write(&pmd->root_lock);
  845. r = __create_snap(pmd, dev, origin);
  846. up_write(&pmd->root_lock);
  847. return r;
  848. }
  849. static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
  850. {
  851. int r;
  852. uint64_t key = dev;
  853. struct dm_thin_device *td;
  854. /* TODO: failure should mark the transaction invalid */
  855. r = __open_device(pmd, dev, 0, &td);
  856. if (r)
  857. return r;
  858. if (td->open_count > 1) {
  859. __close_device(td);
  860. return -EBUSY;
  861. }
  862. list_del(&td->list);
  863. kfree(td);
  864. r = dm_btree_remove(&pmd->details_info, pmd->details_root,
  865. &key, &pmd->details_root);
  866. if (r)
  867. return r;
  868. r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  869. if (r)
  870. return r;
  871. pmd->need_commit = 1;
  872. return 0;
  873. }
  874. int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
  875. dm_thin_id dev)
  876. {
  877. int r;
  878. down_write(&pmd->root_lock);
  879. r = __delete_device(pmd, dev);
  880. up_write(&pmd->root_lock);
  881. return r;
  882. }
  883. int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
  884. uint64_t current_id,
  885. uint64_t new_id)
  886. {
  887. down_write(&pmd->root_lock);
  888. if (pmd->trans_id != current_id) {
  889. up_write(&pmd->root_lock);
  890. DMERR("mismatched transaction id");
  891. return -EINVAL;
  892. }
  893. pmd->trans_id = new_id;
  894. pmd->need_commit = 1;
  895. up_write(&pmd->root_lock);
  896. return 0;
  897. }
  898. int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
  899. uint64_t *result)
  900. {
  901. down_read(&pmd->root_lock);
  902. *result = pmd->trans_id;
  903. up_read(&pmd->root_lock);
  904. return 0;
  905. }
  906. static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
  907. {
  908. int r, inc;
  909. struct thin_disk_superblock *disk_super;
  910. struct dm_block *copy, *sblock;
  911. dm_block_t held_root;
  912. /*
  913. * Copy the superblock.
  914. */
  915. dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
  916. r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
  917. &sb_validator, &copy, &inc);
  918. if (r)
  919. return r;
  920. BUG_ON(!inc);
  921. held_root = dm_block_location(copy);
  922. disk_super = dm_block_data(copy);
  923. if (le64_to_cpu(disk_super->held_root)) {
  924. DMWARN("Pool metadata snapshot already exists: release this before taking another.");
  925. dm_tm_dec(pmd->tm, held_root);
  926. dm_tm_unlock(pmd->tm, copy);
  927. pmd->need_commit = 1;
  928. return -EBUSY;
  929. }
  930. /*
  931. * Wipe the spacemap since we're not publishing this.
  932. */
  933. memset(&disk_super->data_space_map_root, 0,
  934. sizeof(disk_super->data_space_map_root));
  935. memset(&disk_super->metadata_space_map_root, 0,
  936. sizeof(disk_super->metadata_space_map_root));
  937. /*
  938. * Increment the data structures that need to be preserved.
  939. */
  940. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
  941. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
  942. dm_tm_unlock(pmd->tm, copy);
  943. /*
  944. * Write the held root into the superblock.
  945. */
  946. r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  947. &sb_validator, &sblock);
  948. if (r) {
  949. dm_tm_dec(pmd->tm, held_root);
  950. pmd->need_commit = 1;
  951. return r;
  952. }
  953. disk_super = dm_block_data(sblock);
  954. disk_super->held_root = cpu_to_le64(held_root);
  955. dm_bm_unlock(sblock);
  956. pmd->need_commit = 1;
  957. return 0;
  958. }
  959. int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
  960. {
  961. int r;
  962. down_write(&pmd->root_lock);
  963. r = __reserve_metadata_snap(pmd);
  964. up_write(&pmd->root_lock);
  965. return r;
  966. }
  967. static int __release_metadata_snap(struct dm_pool_metadata *pmd)
  968. {
  969. int r;
  970. struct thin_disk_superblock *disk_super;
  971. struct dm_block *sblock, *copy;
  972. dm_block_t held_root;
  973. r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  974. &sb_validator, &sblock);
  975. if (r)
  976. return r;
  977. disk_super = dm_block_data(sblock);
  978. held_root = le64_to_cpu(disk_super->held_root);
  979. disk_super->held_root = cpu_to_le64(0);
  980. pmd->need_commit = 1;
  981. dm_bm_unlock(sblock);
  982. if (!held_root) {
  983. DMWARN("No pool metadata snapshot found: nothing to release.");
  984. return -EINVAL;
  985. }
  986. r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
  987. if (r)
  988. return r;
  989. disk_super = dm_block_data(copy);
  990. dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root));
  991. dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root));
  992. dm_sm_dec_block(pmd->metadata_sm, held_root);
  993. return dm_tm_unlock(pmd->tm, copy);
  994. }
  995. int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
  996. {
  997. int r;
  998. down_write(&pmd->root_lock);
  999. r = __release_metadata_snap(pmd);
  1000. up_write(&pmd->root_lock);
  1001. return r;
  1002. }
  1003. static int __get_metadata_snap(struct dm_pool_metadata *pmd,
  1004. dm_block_t *result)
  1005. {
  1006. int r;
  1007. struct thin_disk_superblock *disk_super;
  1008. struct dm_block *sblock;
  1009. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  1010. &sb_validator, &sblock);
  1011. if (r)
  1012. return r;
  1013. disk_super = dm_block_data(sblock);
  1014. *result = le64_to_cpu(disk_super->held_root);
  1015. return dm_bm_unlock(sblock);
  1016. }
  1017. int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
  1018. dm_block_t *result)
  1019. {
  1020. int r;
  1021. down_read(&pmd->root_lock);
  1022. r = __get_metadata_snap(pmd, result);
  1023. up_read(&pmd->root_lock);
  1024. return r;
  1025. }
  1026. int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
  1027. struct dm_thin_device **td)
  1028. {
  1029. int r;
  1030. down_write(&pmd->root_lock);
  1031. r = __open_device(pmd, dev, 0, td);
  1032. up_write(&pmd->root_lock);
  1033. return r;
  1034. }
  1035. int dm_pool_close_thin_device(struct dm_thin_device *td)
  1036. {
  1037. down_write(&td->pmd->root_lock);
  1038. __close_device(td);
  1039. up_write(&td->pmd->root_lock);
  1040. return 0;
  1041. }
  1042. dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
  1043. {
  1044. return td->id;
  1045. }
  1046. static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
  1047. {
  1048. return td->snapshotted_time > time;
  1049. }
  1050. int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
  1051. int can_block, struct dm_thin_lookup_result *result)
  1052. {
  1053. int r;
  1054. uint64_t block_time = 0;
  1055. __le64 value;
  1056. struct dm_pool_metadata *pmd = td->pmd;
  1057. dm_block_t keys[2] = { td->id, block };
  1058. if (can_block) {
  1059. down_read(&pmd->root_lock);
  1060. r = dm_btree_lookup(&pmd->info, pmd->root, keys, &value);
  1061. if (!r)
  1062. block_time = le64_to_cpu(value);
  1063. up_read(&pmd->root_lock);
  1064. } else if (down_read_trylock(&pmd->root_lock)) {
  1065. r = dm_btree_lookup(&pmd->nb_info, pmd->root, keys, &value);
  1066. if (!r)
  1067. block_time = le64_to_cpu(value);
  1068. up_read(&pmd->root_lock);
  1069. } else
  1070. return -EWOULDBLOCK;
  1071. if (!r) {
  1072. dm_block_t exception_block;
  1073. uint32_t exception_time;
  1074. unpack_block_time(block_time, &exception_block,
  1075. &exception_time);
  1076. result->block = exception_block;
  1077. result->shared = __snapshotted_since(td, exception_time);
  1078. }
  1079. return r;
  1080. }
  1081. static int __insert(struct dm_thin_device *td, dm_block_t block,
  1082. dm_block_t data_block)
  1083. {
  1084. int r, inserted;
  1085. __le64 value;
  1086. struct dm_pool_metadata *pmd = td->pmd;
  1087. dm_block_t keys[2] = { td->id, block };
  1088. pmd->need_commit = 1;
  1089. value = cpu_to_le64(pack_block_time(data_block, pmd->time));
  1090. __dm_bless_for_disk(&value);
  1091. r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
  1092. &pmd->root, &inserted);
  1093. if (r)
  1094. return r;
  1095. if (inserted) {
  1096. td->mapped_blocks++;
  1097. td->changed = 1;
  1098. }
  1099. return 0;
  1100. }
  1101. int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
  1102. dm_block_t data_block)
  1103. {
  1104. int r;
  1105. down_write(&td->pmd->root_lock);
  1106. r = __insert(td, block, data_block);
  1107. up_write(&td->pmd->root_lock);
  1108. return r;
  1109. }
  1110. static int __remove(struct dm_thin_device *td, dm_block_t block)
  1111. {
  1112. int r;
  1113. struct dm_pool_metadata *pmd = td->pmd;
  1114. dm_block_t keys[2] = { td->id, block };
  1115. r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
  1116. if (r)
  1117. return r;
  1118. td->mapped_blocks--;
  1119. td->changed = 1;
  1120. pmd->need_commit = 1;
  1121. return 0;
  1122. }
  1123. int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
  1124. {
  1125. int r;
  1126. down_write(&td->pmd->root_lock);
  1127. r = __remove(td, block);
  1128. up_write(&td->pmd->root_lock);
  1129. return r;
  1130. }
  1131. int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
  1132. {
  1133. int r;
  1134. down_write(&pmd->root_lock);
  1135. r = dm_sm_new_block(pmd->data_sm, result);
  1136. pmd->need_commit = 1;
  1137. up_write(&pmd->root_lock);
  1138. return r;
  1139. }
  1140. int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
  1141. {
  1142. int r;
  1143. down_write(&pmd->root_lock);
  1144. r = __commit_transaction(pmd);
  1145. if (r <= 0)
  1146. goto out;
  1147. /*
  1148. * Open the next transaction.
  1149. */
  1150. r = __begin_transaction(pmd);
  1151. out:
  1152. up_write(&pmd->root_lock);
  1153. return r;
  1154. }
  1155. int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
  1156. {
  1157. int r;
  1158. down_read(&pmd->root_lock);
  1159. r = dm_sm_get_nr_free(pmd->data_sm, result);
  1160. up_read(&pmd->root_lock);
  1161. return r;
  1162. }
  1163. int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
  1164. dm_block_t *result)
  1165. {
  1166. int r;
  1167. down_read(&pmd->root_lock);
  1168. r = dm_sm_get_nr_free(pmd->metadata_sm, result);
  1169. up_read(&pmd->root_lock);
  1170. return r;
  1171. }
  1172. int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
  1173. dm_block_t *result)
  1174. {
  1175. int r;
  1176. down_read(&pmd->root_lock);
  1177. r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
  1178. up_read(&pmd->root_lock);
  1179. return r;
  1180. }
  1181. int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
  1182. {
  1183. down_read(&pmd->root_lock);
  1184. *result = pmd->data_block_size;
  1185. up_read(&pmd->root_lock);
  1186. return 0;
  1187. }
  1188. int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
  1189. {
  1190. int r;
  1191. down_read(&pmd->root_lock);
  1192. r = dm_sm_get_nr_blocks(pmd->data_sm, result);
  1193. up_read(&pmd->root_lock);
  1194. return r;
  1195. }
  1196. int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
  1197. {
  1198. struct dm_pool_metadata *pmd = td->pmd;
  1199. down_read(&pmd->root_lock);
  1200. *result = td->mapped_blocks;
  1201. up_read(&pmd->root_lock);
  1202. return 0;
  1203. }
  1204. static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
  1205. {
  1206. int r;
  1207. __le64 value_le;
  1208. dm_block_t thin_root;
  1209. struct dm_pool_metadata *pmd = td->pmd;
  1210. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
  1211. if (r)
  1212. return r;
  1213. thin_root = le64_to_cpu(value_le);
  1214. return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
  1215. }
  1216. int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
  1217. dm_block_t *result)
  1218. {
  1219. int r;
  1220. struct dm_pool_metadata *pmd = td->pmd;
  1221. down_read(&pmd->root_lock);
  1222. r = __highest_block(td, result);
  1223. up_read(&pmd->root_lock);
  1224. return r;
  1225. }
  1226. static int __resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1227. {
  1228. int r;
  1229. dm_block_t old_count;
  1230. r = dm_sm_get_nr_blocks(pmd->data_sm, &old_count);
  1231. if (r)
  1232. return r;
  1233. if (new_count == old_count)
  1234. return 0;
  1235. if (new_count < old_count) {
  1236. DMERR("cannot reduce size of data device");
  1237. return -EINVAL;
  1238. }
  1239. r = dm_sm_extend(pmd->data_sm, new_count - old_count);
  1240. if (!r)
  1241. pmd->need_commit = 1;
  1242. return r;
  1243. }
  1244. int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1245. {
  1246. int r;
  1247. down_write(&pmd->root_lock);
  1248. r = __resize_data_dev(pmd, new_count);
  1249. up_write(&pmd->root_lock);
  1250. return r;
  1251. }