cfq-iosched.c 97 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/blkdev.h>
  11. #include <linux/elevator.h>
  12. #include <linux/jiffies.h>
  13. #include <linux/rbtree.h>
  14. #include <linux/ioprio.h>
  15. #include <linux/blktrace_api.h>
  16. #include "blk-cgroup.h"
  17. /*
  18. * tunables
  19. */
  20. /* max queue in one round of service */
  21. static const int cfq_quantum = 4;
  22. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  23. /* maximum backwards seek, in KiB */
  24. static const int cfq_back_max = 16 * 1024;
  25. /* penalty of a backwards seek */
  26. static const int cfq_back_penalty = 2;
  27. static const int cfq_slice_sync = HZ / 10;
  28. static int cfq_slice_async = HZ / 25;
  29. static const int cfq_slice_async_rq = 2;
  30. static int cfq_slice_idle = HZ / 125;
  31. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  32. static const int cfq_hist_divisor = 4;
  33. /*
  34. * offset from end of service tree
  35. */
  36. #define CFQ_IDLE_DELAY (HZ / 5)
  37. /*
  38. * below this threshold, we consider thinktime immediate
  39. */
  40. #define CFQ_MIN_TT (2)
  41. #define CFQ_SLICE_SCALE (5)
  42. #define CFQ_HW_QUEUE_MIN (5)
  43. #define CFQ_SERVICE_SHIFT 12
  44. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  45. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  46. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  47. #define RQ_CIC(rq) \
  48. ((struct cfq_io_context *) (rq)->elevator_private)
  49. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
  50. static struct kmem_cache *cfq_pool;
  51. static struct kmem_cache *cfq_ioc_pool;
  52. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  53. static struct completion *ioc_gone;
  54. static DEFINE_SPINLOCK(ioc_gone_lock);
  55. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  56. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  57. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  58. #define sample_valid(samples) ((samples) > 80)
  59. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  60. /*
  61. * Most of our rbtree usage is for sorting with min extraction, so
  62. * if we cache the leftmost node we don't have to walk down the tree
  63. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  64. * move this into the elevator for the rq sorting as well.
  65. */
  66. struct cfq_rb_root {
  67. struct rb_root rb;
  68. struct rb_node *left;
  69. unsigned count;
  70. u64 min_vdisktime;
  71. struct rb_node *active;
  72. unsigned total_weight;
  73. };
  74. #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
  75. /*
  76. * Per process-grouping structure
  77. */
  78. struct cfq_queue {
  79. /* reference count */
  80. atomic_t ref;
  81. /* various state flags, see below */
  82. unsigned int flags;
  83. /* parent cfq_data */
  84. struct cfq_data *cfqd;
  85. /* service_tree member */
  86. struct rb_node rb_node;
  87. /* service_tree key */
  88. unsigned long rb_key;
  89. /* prio tree member */
  90. struct rb_node p_node;
  91. /* prio tree root we belong to, if any */
  92. struct rb_root *p_root;
  93. /* sorted list of pending requests */
  94. struct rb_root sort_list;
  95. /* if fifo isn't expired, next request to serve */
  96. struct request *next_rq;
  97. /* requests queued in sort_list */
  98. int queued[2];
  99. /* currently allocated requests */
  100. int allocated[2];
  101. /* fifo list of requests in sort_list */
  102. struct list_head fifo;
  103. /* time when queue got scheduled in to dispatch first request. */
  104. unsigned long dispatch_start;
  105. unsigned int allocated_slice;
  106. unsigned int slice_dispatch;
  107. /* time when first request from queue completed and slice started. */
  108. unsigned long slice_start;
  109. unsigned long slice_end;
  110. long slice_resid;
  111. /* pending metadata requests */
  112. int meta_pending;
  113. /* number of requests that are on the dispatch list or inside driver */
  114. int dispatched;
  115. /* io prio of this group */
  116. unsigned short ioprio, org_ioprio;
  117. unsigned short ioprio_class, org_ioprio_class;
  118. pid_t pid;
  119. u32 seek_history;
  120. sector_t last_request_pos;
  121. struct cfq_rb_root *service_tree;
  122. struct cfq_queue *new_cfqq;
  123. struct cfq_group *cfqg;
  124. struct cfq_group *orig_cfqg;
  125. /* Sectors dispatched in current dispatch round */
  126. unsigned long nr_sectors;
  127. };
  128. /*
  129. * First index in the service_trees.
  130. * IDLE is handled separately, so it has negative index
  131. */
  132. enum wl_prio_t {
  133. BE_WORKLOAD = 0,
  134. RT_WORKLOAD = 1,
  135. IDLE_WORKLOAD = 2,
  136. };
  137. /*
  138. * Second index in the service_trees.
  139. */
  140. enum wl_type_t {
  141. ASYNC_WORKLOAD = 0,
  142. SYNC_NOIDLE_WORKLOAD = 1,
  143. SYNC_WORKLOAD = 2
  144. };
  145. /* This is per cgroup per device grouping structure */
  146. struct cfq_group {
  147. /* group service_tree member */
  148. struct rb_node rb_node;
  149. /* group service_tree key */
  150. u64 vdisktime;
  151. unsigned int weight;
  152. bool on_st;
  153. /* number of cfqq currently on this group */
  154. int nr_cfqq;
  155. /* Per group busy queus average. Useful for workload slice calc. */
  156. unsigned int busy_queues_avg[2];
  157. /*
  158. * rr lists of queues with requests, onle rr for each priority class.
  159. * Counts are embedded in the cfq_rb_root
  160. */
  161. struct cfq_rb_root service_trees[2][3];
  162. struct cfq_rb_root service_tree_idle;
  163. unsigned long saved_workload_slice;
  164. enum wl_type_t saved_workload;
  165. enum wl_prio_t saved_serving_prio;
  166. struct blkio_group blkg;
  167. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  168. struct hlist_node cfqd_node;
  169. atomic_t ref;
  170. #endif
  171. };
  172. /*
  173. * Per block device queue structure
  174. */
  175. struct cfq_data {
  176. struct request_queue *queue;
  177. /* Root service tree for cfq_groups */
  178. struct cfq_rb_root grp_service_tree;
  179. struct cfq_group root_group;
  180. /*
  181. * The priority currently being served
  182. */
  183. enum wl_prio_t serving_prio;
  184. enum wl_type_t serving_type;
  185. unsigned long workload_expires;
  186. struct cfq_group *serving_group;
  187. bool noidle_tree_requires_idle;
  188. /*
  189. * Each priority tree is sorted by next_request position. These
  190. * trees are used when determining if two or more queues are
  191. * interleaving requests (see cfq_close_cooperator).
  192. */
  193. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  194. unsigned int busy_queues;
  195. int rq_in_driver[2];
  196. int sync_flight;
  197. /*
  198. * queue-depth detection
  199. */
  200. int rq_queued;
  201. int hw_tag;
  202. /*
  203. * hw_tag can be
  204. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  205. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  206. * 0 => no NCQ
  207. */
  208. int hw_tag_est_depth;
  209. unsigned int hw_tag_samples;
  210. /*
  211. * idle window management
  212. */
  213. struct timer_list idle_slice_timer;
  214. struct work_struct unplug_work;
  215. struct cfq_queue *active_queue;
  216. struct cfq_io_context *active_cic;
  217. /*
  218. * async queue for each priority case
  219. */
  220. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  221. struct cfq_queue *async_idle_cfqq;
  222. sector_t last_position;
  223. /*
  224. * tunables, see top of file
  225. */
  226. unsigned int cfq_quantum;
  227. unsigned int cfq_fifo_expire[2];
  228. unsigned int cfq_back_penalty;
  229. unsigned int cfq_back_max;
  230. unsigned int cfq_slice[2];
  231. unsigned int cfq_slice_async_rq;
  232. unsigned int cfq_slice_idle;
  233. unsigned int cfq_latency;
  234. unsigned int cfq_group_isolation;
  235. struct list_head cic_list;
  236. /*
  237. * Fallback dummy cfqq for extreme OOM conditions
  238. */
  239. struct cfq_queue oom_cfqq;
  240. unsigned long last_delayed_sync;
  241. /* List of cfq groups being managed on this device*/
  242. struct hlist_head cfqg_list;
  243. struct rcu_head rcu;
  244. };
  245. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  246. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  247. enum wl_prio_t prio,
  248. enum wl_type_t type)
  249. {
  250. if (!cfqg)
  251. return NULL;
  252. if (prio == IDLE_WORKLOAD)
  253. return &cfqg->service_tree_idle;
  254. return &cfqg->service_trees[prio][type];
  255. }
  256. enum cfqq_state_flags {
  257. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  258. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  259. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  260. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  261. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  262. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  263. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  264. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  265. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  266. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  267. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  268. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  269. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  270. };
  271. #define CFQ_CFQQ_FNS(name) \
  272. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  273. { \
  274. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  275. } \
  276. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  277. { \
  278. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  279. } \
  280. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  281. { \
  282. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  283. }
  284. CFQ_CFQQ_FNS(on_rr);
  285. CFQ_CFQQ_FNS(wait_request);
  286. CFQ_CFQQ_FNS(must_dispatch);
  287. CFQ_CFQQ_FNS(must_alloc_slice);
  288. CFQ_CFQQ_FNS(fifo_expire);
  289. CFQ_CFQQ_FNS(idle_window);
  290. CFQ_CFQQ_FNS(prio_changed);
  291. CFQ_CFQQ_FNS(slice_new);
  292. CFQ_CFQQ_FNS(sync);
  293. CFQ_CFQQ_FNS(coop);
  294. CFQ_CFQQ_FNS(split_coop);
  295. CFQ_CFQQ_FNS(deep);
  296. CFQ_CFQQ_FNS(wait_busy);
  297. #undef CFQ_CFQQ_FNS
  298. #ifdef CONFIG_DEBUG_CFQ_IOSCHED
  299. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  300. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  301. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  302. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  303. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  304. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  305. blkg_path(&(cfqg)->blkg), ##args); \
  306. #else
  307. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  308. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  309. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  310. #endif
  311. #define cfq_log(cfqd, fmt, args...) \
  312. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  313. /* Traverses through cfq group service trees */
  314. #define for_each_cfqg_st(cfqg, i, j, st) \
  315. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  316. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  317. : &cfqg->service_tree_idle; \
  318. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  319. (i == IDLE_WORKLOAD && j == 0); \
  320. j++, st = i < IDLE_WORKLOAD ? \
  321. &cfqg->service_trees[i][j]: NULL) \
  322. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  323. {
  324. if (cfq_class_idle(cfqq))
  325. return IDLE_WORKLOAD;
  326. if (cfq_class_rt(cfqq))
  327. return RT_WORKLOAD;
  328. return BE_WORKLOAD;
  329. }
  330. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  331. {
  332. if (!cfq_cfqq_sync(cfqq))
  333. return ASYNC_WORKLOAD;
  334. if (!cfq_cfqq_idle_window(cfqq))
  335. return SYNC_NOIDLE_WORKLOAD;
  336. return SYNC_WORKLOAD;
  337. }
  338. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  339. struct cfq_data *cfqd,
  340. struct cfq_group *cfqg)
  341. {
  342. if (wl == IDLE_WORKLOAD)
  343. return cfqg->service_tree_idle.count;
  344. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  345. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  346. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  347. }
  348. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  349. struct cfq_group *cfqg)
  350. {
  351. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  352. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  353. }
  354. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  355. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  356. struct io_context *, gfp_t);
  357. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  358. struct io_context *);
  359. static inline int rq_in_driver(struct cfq_data *cfqd)
  360. {
  361. return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
  362. }
  363. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  364. bool is_sync)
  365. {
  366. return cic->cfqq[is_sync];
  367. }
  368. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  369. struct cfq_queue *cfqq, bool is_sync)
  370. {
  371. cic->cfqq[is_sync] = cfqq;
  372. }
  373. /*
  374. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  375. * set (in which case it could also be direct WRITE).
  376. */
  377. static inline bool cfq_bio_sync(struct bio *bio)
  378. {
  379. return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
  380. }
  381. /*
  382. * scheduler run of queue, if there are requests pending and no one in the
  383. * driver that will restart queueing
  384. */
  385. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  386. {
  387. if (cfqd->busy_queues) {
  388. cfq_log(cfqd, "schedule dispatch");
  389. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  390. }
  391. }
  392. static int cfq_queue_empty(struct request_queue *q)
  393. {
  394. struct cfq_data *cfqd = q->elevator->elevator_data;
  395. return !cfqd->rq_queued;
  396. }
  397. /*
  398. * Scale schedule slice based on io priority. Use the sync time slice only
  399. * if a queue is marked sync and has sync io queued. A sync queue with async
  400. * io only, should not get full sync slice length.
  401. */
  402. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  403. unsigned short prio)
  404. {
  405. const int base_slice = cfqd->cfq_slice[sync];
  406. WARN_ON(prio >= IOPRIO_BE_NR);
  407. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  408. }
  409. static inline int
  410. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  411. {
  412. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  413. }
  414. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  415. {
  416. u64 d = delta << CFQ_SERVICE_SHIFT;
  417. d = d * BLKIO_WEIGHT_DEFAULT;
  418. do_div(d, cfqg->weight);
  419. return d;
  420. }
  421. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  422. {
  423. s64 delta = (s64)(vdisktime - min_vdisktime);
  424. if (delta > 0)
  425. min_vdisktime = vdisktime;
  426. return min_vdisktime;
  427. }
  428. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  429. {
  430. s64 delta = (s64)(vdisktime - min_vdisktime);
  431. if (delta < 0)
  432. min_vdisktime = vdisktime;
  433. return min_vdisktime;
  434. }
  435. static void update_min_vdisktime(struct cfq_rb_root *st)
  436. {
  437. u64 vdisktime = st->min_vdisktime;
  438. struct cfq_group *cfqg;
  439. if (st->active) {
  440. cfqg = rb_entry_cfqg(st->active);
  441. vdisktime = cfqg->vdisktime;
  442. }
  443. if (st->left) {
  444. cfqg = rb_entry_cfqg(st->left);
  445. vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
  446. }
  447. st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
  448. }
  449. /*
  450. * get averaged number of queues of RT/BE priority.
  451. * average is updated, with a formula that gives more weight to higher numbers,
  452. * to quickly follows sudden increases and decrease slowly
  453. */
  454. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  455. struct cfq_group *cfqg, bool rt)
  456. {
  457. unsigned min_q, max_q;
  458. unsigned mult = cfq_hist_divisor - 1;
  459. unsigned round = cfq_hist_divisor / 2;
  460. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  461. min_q = min(cfqg->busy_queues_avg[rt], busy);
  462. max_q = max(cfqg->busy_queues_avg[rt], busy);
  463. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  464. cfq_hist_divisor;
  465. return cfqg->busy_queues_avg[rt];
  466. }
  467. static inline unsigned
  468. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  469. {
  470. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  471. return cfq_target_latency * cfqg->weight / st->total_weight;
  472. }
  473. static inline void
  474. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  475. {
  476. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  477. if (cfqd->cfq_latency) {
  478. /*
  479. * interested queues (we consider only the ones with the same
  480. * priority class in the cfq group)
  481. */
  482. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  483. cfq_class_rt(cfqq));
  484. unsigned sync_slice = cfqd->cfq_slice[1];
  485. unsigned expect_latency = sync_slice * iq;
  486. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  487. if (expect_latency > group_slice) {
  488. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  489. /* scale low_slice according to IO priority
  490. * and sync vs async */
  491. unsigned low_slice =
  492. min(slice, base_low_slice * slice / sync_slice);
  493. /* the adapted slice value is scaled to fit all iqs
  494. * into the target latency */
  495. slice = max(slice * group_slice / expect_latency,
  496. low_slice);
  497. }
  498. }
  499. cfqq->slice_start = jiffies;
  500. cfqq->slice_end = jiffies + slice;
  501. cfqq->allocated_slice = slice;
  502. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  503. }
  504. /*
  505. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  506. * isn't valid until the first request from the dispatch is activated
  507. * and the slice time set.
  508. */
  509. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  510. {
  511. if (cfq_cfqq_slice_new(cfqq))
  512. return 0;
  513. if (time_before(jiffies, cfqq->slice_end))
  514. return 0;
  515. return 1;
  516. }
  517. /*
  518. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  519. * We choose the request that is closest to the head right now. Distance
  520. * behind the head is penalized and only allowed to a certain extent.
  521. */
  522. static struct request *
  523. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  524. {
  525. sector_t s1, s2, d1 = 0, d2 = 0;
  526. unsigned long back_max;
  527. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  528. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  529. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  530. if (rq1 == NULL || rq1 == rq2)
  531. return rq2;
  532. if (rq2 == NULL)
  533. return rq1;
  534. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  535. return rq1;
  536. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  537. return rq2;
  538. if (rq_is_meta(rq1) && !rq_is_meta(rq2))
  539. return rq1;
  540. else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
  541. return rq2;
  542. s1 = blk_rq_pos(rq1);
  543. s2 = blk_rq_pos(rq2);
  544. /*
  545. * by definition, 1KiB is 2 sectors
  546. */
  547. back_max = cfqd->cfq_back_max * 2;
  548. /*
  549. * Strict one way elevator _except_ in the case where we allow
  550. * short backward seeks which are biased as twice the cost of a
  551. * similar forward seek.
  552. */
  553. if (s1 >= last)
  554. d1 = s1 - last;
  555. else if (s1 + back_max >= last)
  556. d1 = (last - s1) * cfqd->cfq_back_penalty;
  557. else
  558. wrap |= CFQ_RQ1_WRAP;
  559. if (s2 >= last)
  560. d2 = s2 - last;
  561. else if (s2 + back_max >= last)
  562. d2 = (last - s2) * cfqd->cfq_back_penalty;
  563. else
  564. wrap |= CFQ_RQ2_WRAP;
  565. /* Found required data */
  566. /*
  567. * By doing switch() on the bit mask "wrap" we avoid having to
  568. * check two variables for all permutations: --> faster!
  569. */
  570. switch (wrap) {
  571. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  572. if (d1 < d2)
  573. return rq1;
  574. else if (d2 < d1)
  575. return rq2;
  576. else {
  577. if (s1 >= s2)
  578. return rq1;
  579. else
  580. return rq2;
  581. }
  582. case CFQ_RQ2_WRAP:
  583. return rq1;
  584. case CFQ_RQ1_WRAP:
  585. return rq2;
  586. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  587. default:
  588. /*
  589. * Since both rqs are wrapped,
  590. * start with the one that's further behind head
  591. * (--> only *one* back seek required),
  592. * since back seek takes more time than forward.
  593. */
  594. if (s1 <= s2)
  595. return rq1;
  596. else
  597. return rq2;
  598. }
  599. }
  600. /*
  601. * The below is leftmost cache rbtree addon
  602. */
  603. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  604. {
  605. /* Service tree is empty */
  606. if (!root->count)
  607. return NULL;
  608. if (!root->left)
  609. root->left = rb_first(&root->rb);
  610. if (root->left)
  611. return rb_entry(root->left, struct cfq_queue, rb_node);
  612. return NULL;
  613. }
  614. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  615. {
  616. if (!root->left)
  617. root->left = rb_first(&root->rb);
  618. if (root->left)
  619. return rb_entry_cfqg(root->left);
  620. return NULL;
  621. }
  622. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  623. {
  624. rb_erase(n, root);
  625. RB_CLEAR_NODE(n);
  626. }
  627. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  628. {
  629. if (root->left == n)
  630. root->left = NULL;
  631. rb_erase_init(n, &root->rb);
  632. --root->count;
  633. }
  634. /*
  635. * would be nice to take fifo expire time into account as well
  636. */
  637. static struct request *
  638. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  639. struct request *last)
  640. {
  641. struct rb_node *rbnext = rb_next(&last->rb_node);
  642. struct rb_node *rbprev = rb_prev(&last->rb_node);
  643. struct request *next = NULL, *prev = NULL;
  644. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  645. if (rbprev)
  646. prev = rb_entry_rq(rbprev);
  647. if (rbnext)
  648. next = rb_entry_rq(rbnext);
  649. else {
  650. rbnext = rb_first(&cfqq->sort_list);
  651. if (rbnext && rbnext != &last->rb_node)
  652. next = rb_entry_rq(rbnext);
  653. }
  654. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  655. }
  656. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  657. struct cfq_queue *cfqq)
  658. {
  659. /*
  660. * just an approximation, should be ok.
  661. */
  662. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  663. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  664. }
  665. static inline s64
  666. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  667. {
  668. return cfqg->vdisktime - st->min_vdisktime;
  669. }
  670. static void
  671. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  672. {
  673. struct rb_node **node = &st->rb.rb_node;
  674. struct rb_node *parent = NULL;
  675. struct cfq_group *__cfqg;
  676. s64 key = cfqg_key(st, cfqg);
  677. int left = 1;
  678. while (*node != NULL) {
  679. parent = *node;
  680. __cfqg = rb_entry_cfqg(parent);
  681. if (key < cfqg_key(st, __cfqg))
  682. node = &parent->rb_left;
  683. else {
  684. node = &parent->rb_right;
  685. left = 0;
  686. }
  687. }
  688. if (left)
  689. st->left = &cfqg->rb_node;
  690. rb_link_node(&cfqg->rb_node, parent, node);
  691. rb_insert_color(&cfqg->rb_node, &st->rb);
  692. }
  693. static void
  694. cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  695. {
  696. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  697. struct cfq_group *__cfqg;
  698. struct rb_node *n;
  699. cfqg->nr_cfqq++;
  700. if (cfqg->on_st)
  701. return;
  702. /*
  703. * Currently put the group at the end. Later implement something
  704. * so that groups get lesser vtime based on their weights, so that
  705. * if group does not loose all if it was not continously backlogged.
  706. */
  707. n = rb_last(&st->rb);
  708. if (n) {
  709. __cfqg = rb_entry_cfqg(n);
  710. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  711. } else
  712. cfqg->vdisktime = st->min_vdisktime;
  713. __cfq_group_service_tree_add(st, cfqg);
  714. cfqg->on_st = true;
  715. st->total_weight += cfqg->weight;
  716. }
  717. static void
  718. cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  719. {
  720. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  721. if (st->active == &cfqg->rb_node)
  722. st->active = NULL;
  723. BUG_ON(cfqg->nr_cfqq < 1);
  724. cfqg->nr_cfqq--;
  725. /* If there are other cfq queues under this group, don't delete it */
  726. if (cfqg->nr_cfqq)
  727. return;
  728. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  729. cfqg->on_st = false;
  730. st->total_weight -= cfqg->weight;
  731. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  732. cfq_rb_erase(&cfqg->rb_node, st);
  733. cfqg->saved_workload_slice = 0;
  734. blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
  735. }
  736. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
  737. {
  738. unsigned int slice_used;
  739. /*
  740. * Queue got expired before even a single request completed or
  741. * got expired immediately after first request completion.
  742. */
  743. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  744. /*
  745. * Also charge the seek time incurred to the group, otherwise
  746. * if there are mutiple queues in the group, each can dispatch
  747. * a single request on seeky media and cause lots of seek time
  748. * and group will never know it.
  749. */
  750. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  751. 1);
  752. } else {
  753. slice_used = jiffies - cfqq->slice_start;
  754. if (slice_used > cfqq->allocated_slice)
  755. slice_used = cfqq->allocated_slice;
  756. }
  757. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
  758. cfqq->nr_sectors);
  759. return slice_used;
  760. }
  761. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  762. struct cfq_queue *cfqq)
  763. {
  764. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  765. unsigned int used_sl, charge_sl;
  766. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  767. - cfqg->service_tree_idle.count;
  768. BUG_ON(nr_sync < 0);
  769. used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
  770. if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  771. charge_sl = cfqq->allocated_slice;
  772. /* Can't update vdisktime while group is on service tree */
  773. cfq_rb_erase(&cfqg->rb_node, st);
  774. cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
  775. __cfq_group_service_tree_add(st, cfqg);
  776. /* This group is being expired. Save the context */
  777. if (time_after(cfqd->workload_expires, jiffies)) {
  778. cfqg->saved_workload_slice = cfqd->workload_expires
  779. - jiffies;
  780. cfqg->saved_workload = cfqd->serving_type;
  781. cfqg->saved_serving_prio = cfqd->serving_prio;
  782. } else
  783. cfqg->saved_workload_slice = 0;
  784. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  785. st->min_vdisktime);
  786. blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
  787. cfqq->nr_sectors);
  788. }
  789. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  790. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  791. {
  792. if (blkg)
  793. return container_of(blkg, struct cfq_group, blkg);
  794. return NULL;
  795. }
  796. void
  797. cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
  798. {
  799. cfqg_of_blkg(blkg)->weight = weight;
  800. }
  801. static struct cfq_group *
  802. cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
  803. {
  804. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
  805. struct cfq_group *cfqg = NULL;
  806. void *key = cfqd;
  807. int i, j;
  808. struct cfq_rb_root *st;
  809. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  810. unsigned int major, minor;
  811. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  812. if (cfqg || !create)
  813. goto done;
  814. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  815. if (!cfqg)
  816. goto done;
  817. cfqg->weight = blkcg->weight;
  818. for_each_cfqg_st(cfqg, i, j, st)
  819. *st = CFQ_RB_ROOT;
  820. RB_CLEAR_NODE(&cfqg->rb_node);
  821. /*
  822. * Take the initial reference that will be released on destroy
  823. * This can be thought of a joint reference by cgroup and
  824. * elevator which will be dropped by either elevator exit
  825. * or cgroup deletion path depending on who is exiting first.
  826. */
  827. atomic_set(&cfqg->ref, 1);
  828. /* Add group onto cgroup list */
  829. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  830. blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  831. MKDEV(major, minor));
  832. /* Add group on cfqd list */
  833. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  834. done:
  835. return cfqg;
  836. }
  837. /*
  838. * Search for the cfq group current task belongs to. If create = 1, then also
  839. * create the cfq group if it does not exist. request_queue lock must be held.
  840. */
  841. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  842. {
  843. struct cgroup *cgroup;
  844. struct cfq_group *cfqg = NULL;
  845. rcu_read_lock();
  846. cgroup = task_cgroup(current, blkio_subsys_id);
  847. cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
  848. if (!cfqg && create)
  849. cfqg = &cfqd->root_group;
  850. rcu_read_unlock();
  851. return cfqg;
  852. }
  853. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  854. {
  855. /* Currently, all async queues are mapped to root group */
  856. if (!cfq_cfqq_sync(cfqq))
  857. cfqg = &cfqq->cfqd->root_group;
  858. cfqq->cfqg = cfqg;
  859. /* cfqq reference on cfqg */
  860. atomic_inc(&cfqq->cfqg->ref);
  861. }
  862. static void cfq_put_cfqg(struct cfq_group *cfqg)
  863. {
  864. struct cfq_rb_root *st;
  865. int i, j;
  866. BUG_ON(atomic_read(&cfqg->ref) <= 0);
  867. if (!atomic_dec_and_test(&cfqg->ref))
  868. return;
  869. for_each_cfqg_st(cfqg, i, j, st)
  870. BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
  871. kfree(cfqg);
  872. }
  873. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  874. {
  875. /* Something wrong if we are trying to remove same group twice */
  876. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  877. hlist_del_init(&cfqg->cfqd_node);
  878. /*
  879. * Put the reference taken at the time of creation so that when all
  880. * queues are gone, group can be destroyed.
  881. */
  882. cfq_put_cfqg(cfqg);
  883. }
  884. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  885. {
  886. struct hlist_node *pos, *n;
  887. struct cfq_group *cfqg;
  888. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  889. /*
  890. * If cgroup removal path got to blk_group first and removed
  891. * it from cgroup list, then it will take care of destroying
  892. * cfqg also.
  893. */
  894. if (!blkiocg_del_blkio_group(&cfqg->blkg))
  895. cfq_destroy_cfqg(cfqd, cfqg);
  896. }
  897. }
  898. /*
  899. * Blk cgroup controller notification saying that blkio_group object is being
  900. * delinked as associated cgroup object is going away. That also means that
  901. * no new IO will come in this group. So get rid of this group as soon as
  902. * any pending IO in the group is finished.
  903. *
  904. * This function is called under rcu_read_lock(). key is the rcu protected
  905. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  906. * read lock.
  907. *
  908. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  909. * it should not be NULL as even if elevator was exiting, cgroup deltion
  910. * path got to it first.
  911. */
  912. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  913. {
  914. unsigned long flags;
  915. struct cfq_data *cfqd = key;
  916. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  917. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  918. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  919. }
  920. #else /* GROUP_IOSCHED */
  921. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  922. {
  923. return &cfqd->root_group;
  924. }
  925. static inline void
  926. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  927. cfqq->cfqg = cfqg;
  928. }
  929. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  930. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  931. #endif /* GROUP_IOSCHED */
  932. /*
  933. * The cfqd->service_trees holds all pending cfq_queue's that have
  934. * requests waiting to be processed. It is sorted in the order that
  935. * we will service the queues.
  936. */
  937. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  938. bool add_front)
  939. {
  940. struct rb_node **p, *parent;
  941. struct cfq_queue *__cfqq;
  942. unsigned long rb_key;
  943. struct cfq_rb_root *service_tree;
  944. int left;
  945. int new_cfqq = 1;
  946. int group_changed = 0;
  947. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  948. if (!cfqd->cfq_group_isolation
  949. && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
  950. && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
  951. /* Move this cfq to root group */
  952. cfq_log_cfqq(cfqd, cfqq, "moving to root group");
  953. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  954. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  955. cfqq->orig_cfqg = cfqq->cfqg;
  956. cfqq->cfqg = &cfqd->root_group;
  957. atomic_inc(&cfqd->root_group.ref);
  958. group_changed = 1;
  959. } else if (!cfqd->cfq_group_isolation
  960. && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
  961. /* cfqq is sequential now needs to go to its original group */
  962. BUG_ON(cfqq->cfqg != &cfqd->root_group);
  963. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  964. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  965. cfq_put_cfqg(cfqq->cfqg);
  966. cfqq->cfqg = cfqq->orig_cfqg;
  967. cfqq->orig_cfqg = NULL;
  968. group_changed = 1;
  969. cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
  970. }
  971. #endif
  972. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  973. cfqq_type(cfqq));
  974. if (cfq_class_idle(cfqq)) {
  975. rb_key = CFQ_IDLE_DELAY;
  976. parent = rb_last(&service_tree->rb);
  977. if (parent && parent != &cfqq->rb_node) {
  978. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  979. rb_key += __cfqq->rb_key;
  980. } else
  981. rb_key += jiffies;
  982. } else if (!add_front) {
  983. /*
  984. * Get our rb key offset. Subtract any residual slice
  985. * value carried from last service. A negative resid
  986. * count indicates slice overrun, and this should position
  987. * the next service time further away in the tree.
  988. */
  989. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  990. rb_key -= cfqq->slice_resid;
  991. cfqq->slice_resid = 0;
  992. } else {
  993. rb_key = -HZ;
  994. __cfqq = cfq_rb_first(service_tree);
  995. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  996. }
  997. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  998. new_cfqq = 0;
  999. /*
  1000. * same position, nothing more to do
  1001. */
  1002. if (rb_key == cfqq->rb_key &&
  1003. cfqq->service_tree == service_tree)
  1004. return;
  1005. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1006. cfqq->service_tree = NULL;
  1007. }
  1008. left = 1;
  1009. parent = NULL;
  1010. cfqq->service_tree = service_tree;
  1011. p = &service_tree->rb.rb_node;
  1012. while (*p) {
  1013. struct rb_node **n;
  1014. parent = *p;
  1015. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1016. /*
  1017. * sort by key, that represents service time.
  1018. */
  1019. if (time_before(rb_key, __cfqq->rb_key))
  1020. n = &(*p)->rb_left;
  1021. else {
  1022. n = &(*p)->rb_right;
  1023. left = 0;
  1024. }
  1025. p = n;
  1026. }
  1027. if (left)
  1028. service_tree->left = &cfqq->rb_node;
  1029. cfqq->rb_key = rb_key;
  1030. rb_link_node(&cfqq->rb_node, parent, p);
  1031. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1032. service_tree->count++;
  1033. if ((add_front || !new_cfqq) && !group_changed)
  1034. return;
  1035. cfq_group_service_tree_add(cfqd, cfqq->cfqg);
  1036. }
  1037. static struct cfq_queue *
  1038. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1039. sector_t sector, struct rb_node **ret_parent,
  1040. struct rb_node ***rb_link)
  1041. {
  1042. struct rb_node **p, *parent;
  1043. struct cfq_queue *cfqq = NULL;
  1044. parent = NULL;
  1045. p = &root->rb_node;
  1046. while (*p) {
  1047. struct rb_node **n;
  1048. parent = *p;
  1049. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1050. /*
  1051. * Sort strictly based on sector. Smallest to the left,
  1052. * largest to the right.
  1053. */
  1054. if (sector > blk_rq_pos(cfqq->next_rq))
  1055. n = &(*p)->rb_right;
  1056. else if (sector < blk_rq_pos(cfqq->next_rq))
  1057. n = &(*p)->rb_left;
  1058. else
  1059. break;
  1060. p = n;
  1061. cfqq = NULL;
  1062. }
  1063. *ret_parent = parent;
  1064. if (rb_link)
  1065. *rb_link = p;
  1066. return cfqq;
  1067. }
  1068. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1069. {
  1070. struct rb_node **p, *parent;
  1071. struct cfq_queue *__cfqq;
  1072. if (cfqq->p_root) {
  1073. rb_erase(&cfqq->p_node, cfqq->p_root);
  1074. cfqq->p_root = NULL;
  1075. }
  1076. if (cfq_class_idle(cfqq))
  1077. return;
  1078. if (!cfqq->next_rq)
  1079. return;
  1080. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1081. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1082. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1083. if (!__cfqq) {
  1084. rb_link_node(&cfqq->p_node, parent, p);
  1085. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1086. } else
  1087. cfqq->p_root = NULL;
  1088. }
  1089. /*
  1090. * Update cfqq's position in the service tree.
  1091. */
  1092. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1093. {
  1094. /*
  1095. * Resorting requires the cfqq to be on the RR list already.
  1096. */
  1097. if (cfq_cfqq_on_rr(cfqq)) {
  1098. cfq_service_tree_add(cfqd, cfqq, 0);
  1099. cfq_prio_tree_add(cfqd, cfqq);
  1100. }
  1101. }
  1102. /*
  1103. * add to busy list of queues for service, trying to be fair in ordering
  1104. * the pending list according to last request service
  1105. */
  1106. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1107. {
  1108. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1109. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1110. cfq_mark_cfqq_on_rr(cfqq);
  1111. cfqd->busy_queues++;
  1112. cfq_resort_rr_list(cfqd, cfqq);
  1113. }
  1114. /*
  1115. * Called when the cfqq no longer has requests pending, remove it from
  1116. * the service tree.
  1117. */
  1118. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1119. {
  1120. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1121. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1122. cfq_clear_cfqq_on_rr(cfqq);
  1123. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1124. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1125. cfqq->service_tree = NULL;
  1126. }
  1127. if (cfqq->p_root) {
  1128. rb_erase(&cfqq->p_node, cfqq->p_root);
  1129. cfqq->p_root = NULL;
  1130. }
  1131. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1132. BUG_ON(!cfqd->busy_queues);
  1133. cfqd->busy_queues--;
  1134. }
  1135. /*
  1136. * rb tree support functions
  1137. */
  1138. static void cfq_del_rq_rb(struct request *rq)
  1139. {
  1140. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1141. const int sync = rq_is_sync(rq);
  1142. BUG_ON(!cfqq->queued[sync]);
  1143. cfqq->queued[sync]--;
  1144. elv_rb_del(&cfqq->sort_list, rq);
  1145. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1146. /*
  1147. * Queue will be deleted from service tree when we actually
  1148. * expire it later. Right now just remove it from prio tree
  1149. * as it is empty.
  1150. */
  1151. if (cfqq->p_root) {
  1152. rb_erase(&cfqq->p_node, cfqq->p_root);
  1153. cfqq->p_root = NULL;
  1154. }
  1155. }
  1156. }
  1157. static void cfq_add_rq_rb(struct request *rq)
  1158. {
  1159. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1160. struct cfq_data *cfqd = cfqq->cfqd;
  1161. struct request *__alias, *prev;
  1162. cfqq->queued[rq_is_sync(rq)]++;
  1163. /*
  1164. * looks a little odd, but the first insert might return an alias.
  1165. * if that happens, put the alias on the dispatch list
  1166. */
  1167. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1168. cfq_dispatch_insert(cfqd->queue, __alias);
  1169. if (!cfq_cfqq_on_rr(cfqq))
  1170. cfq_add_cfqq_rr(cfqd, cfqq);
  1171. /*
  1172. * check if this request is a better next-serve candidate
  1173. */
  1174. prev = cfqq->next_rq;
  1175. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1176. /*
  1177. * adjust priority tree position, if ->next_rq changes
  1178. */
  1179. if (prev != cfqq->next_rq)
  1180. cfq_prio_tree_add(cfqd, cfqq);
  1181. BUG_ON(!cfqq->next_rq);
  1182. }
  1183. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1184. {
  1185. elv_rb_del(&cfqq->sort_list, rq);
  1186. cfqq->queued[rq_is_sync(rq)]--;
  1187. cfq_add_rq_rb(rq);
  1188. }
  1189. static struct request *
  1190. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1191. {
  1192. struct task_struct *tsk = current;
  1193. struct cfq_io_context *cic;
  1194. struct cfq_queue *cfqq;
  1195. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1196. if (!cic)
  1197. return NULL;
  1198. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1199. if (cfqq) {
  1200. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1201. return elv_rb_find(&cfqq->sort_list, sector);
  1202. }
  1203. return NULL;
  1204. }
  1205. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1206. {
  1207. struct cfq_data *cfqd = q->elevator->elevator_data;
  1208. cfqd->rq_in_driver[rq_is_sync(rq)]++;
  1209. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1210. rq_in_driver(cfqd));
  1211. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1212. }
  1213. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1214. {
  1215. struct cfq_data *cfqd = q->elevator->elevator_data;
  1216. const int sync = rq_is_sync(rq);
  1217. WARN_ON(!cfqd->rq_in_driver[sync]);
  1218. cfqd->rq_in_driver[sync]--;
  1219. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1220. rq_in_driver(cfqd));
  1221. }
  1222. static void cfq_remove_request(struct request *rq)
  1223. {
  1224. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1225. if (cfqq->next_rq == rq)
  1226. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1227. list_del_init(&rq->queuelist);
  1228. cfq_del_rq_rb(rq);
  1229. cfqq->cfqd->rq_queued--;
  1230. if (rq_is_meta(rq)) {
  1231. WARN_ON(!cfqq->meta_pending);
  1232. cfqq->meta_pending--;
  1233. }
  1234. }
  1235. static int cfq_merge(struct request_queue *q, struct request **req,
  1236. struct bio *bio)
  1237. {
  1238. struct cfq_data *cfqd = q->elevator->elevator_data;
  1239. struct request *__rq;
  1240. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1241. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1242. *req = __rq;
  1243. return ELEVATOR_FRONT_MERGE;
  1244. }
  1245. return ELEVATOR_NO_MERGE;
  1246. }
  1247. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1248. int type)
  1249. {
  1250. if (type == ELEVATOR_FRONT_MERGE) {
  1251. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1252. cfq_reposition_rq_rb(cfqq, req);
  1253. }
  1254. }
  1255. static void
  1256. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1257. struct request *next)
  1258. {
  1259. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1260. /*
  1261. * reposition in fifo if next is older than rq
  1262. */
  1263. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1264. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1265. list_move(&rq->queuelist, &next->queuelist);
  1266. rq_set_fifo_time(rq, rq_fifo_time(next));
  1267. }
  1268. if (cfqq->next_rq == next)
  1269. cfqq->next_rq = rq;
  1270. cfq_remove_request(next);
  1271. }
  1272. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1273. struct bio *bio)
  1274. {
  1275. struct cfq_data *cfqd = q->elevator->elevator_data;
  1276. struct cfq_io_context *cic;
  1277. struct cfq_queue *cfqq;
  1278. /*
  1279. * Disallow merge of a sync bio into an async request.
  1280. */
  1281. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1282. return false;
  1283. /*
  1284. * Lookup the cfqq that this bio will be queued with. Allow
  1285. * merge only if rq is queued there.
  1286. */
  1287. cic = cfq_cic_lookup(cfqd, current->io_context);
  1288. if (!cic)
  1289. return false;
  1290. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1291. return cfqq == RQ_CFQQ(rq);
  1292. }
  1293. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1294. struct cfq_queue *cfqq)
  1295. {
  1296. if (cfqq) {
  1297. cfq_log_cfqq(cfqd, cfqq, "set_active");
  1298. cfqq->slice_start = 0;
  1299. cfqq->dispatch_start = jiffies;
  1300. cfqq->allocated_slice = 0;
  1301. cfqq->slice_end = 0;
  1302. cfqq->slice_dispatch = 0;
  1303. cfqq->nr_sectors = 0;
  1304. cfq_clear_cfqq_wait_request(cfqq);
  1305. cfq_clear_cfqq_must_dispatch(cfqq);
  1306. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1307. cfq_clear_cfqq_fifo_expire(cfqq);
  1308. cfq_mark_cfqq_slice_new(cfqq);
  1309. del_timer(&cfqd->idle_slice_timer);
  1310. }
  1311. cfqd->active_queue = cfqq;
  1312. }
  1313. /*
  1314. * current cfqq expired its slice (or was too idle), select new one
  1315. */
  1316. static void
  1317. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1318. bool timed_out)
  1319. {
  1320. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1321. if (cfq_cfqq_wait_request(cfqq))
  1322. del_timer(&cfqd->idle_slice_timer);
  1323. cfq_clear_cfqq_wait_request(cfqq);
  1324. cfq_clear_cfqq_wait_busy(cfqq);
  1325. /*
  1326. * If this cfqq is shared between multiple processes, check to
  1327. * make sure that those processes are still issuing I/Os within
  1328. * the mean seek distance. If not, it may be time to break the
  1329. * queues apart again.
  1330. */
  1331. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1332. cfq_mark_cfqq_split_coop(cfqq);
  1333. /*
  1334. * store what was left of this slice, if the queue idled/timed out
  1335. */
  1336. if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
  1337. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1338. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1339. }
  1340. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1341. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1342. cfq_del_cfqq_rr(cfqd, cfqq);
  1343. cfq_resort_rr_list(cfqd, cfqq);
  1344. if (cfqq == cfqd->active_queue)
  1345. cfqd->active_queue = NULL;
  1346. if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
  1347. cfqd->grp_service_tree.active = NULL;
  1348. if (cfqd->active_cic) {
  1349. put_io_context(cfqd->active_cic->ioc);
  1350. cfqd->active_cic = NULL;
  1351. }
  1352. }
  1353. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1354. {
  1355. struct cfq_queue *cfqq = cfqd->active_queue;
  1356. if (cfqq)
  1357. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1358. }
  1359. /*
  1360. * Get next queue for service. Unless we have a queue preemption,
  1361. * we'll simply select the first cfqq in the service tree.
  1362. */
  1363. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1364. {
  1365. struct cfq_rb_root *service_tree =
  1366. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1367. cfqd->serving_type);
  1368. if (!cfqd->rq_queued)
  1369. return NULL;
  1370. /* There is nothing to dispatch */
  1371. if (!service_tree)
  1372. return NULL;
  1373. if (RB_EMPTY_ROOT(&service_tree->rb))
  1374. return NULL;
  1375. return cfq_rb_first(service_tree);
  1376. }
  1377. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1378. {
  1379. struct cfq_group *cfqg;
  1380. struct cfq_queue *cfqq;
  1381. int i, j;
  1382. struct cfq_rb_root *st;
  1383. if (!cfqd->rq_queued)
  1384. return NULL;
  1385. cfqg = cfq_get_next_cfqg(cfqd);
  1386. if (!cfqg)
  1387. return NULL;
  1388. for_each_cfqg_st(cfqg, i, j, st)
  1389. if ((cfqq = cfq_rb_first(st)) != NULL)
  1390. return cfqq;
  1391. return NULL;
  1392. }
  1393. /*
  1394. * Get and set a new active queue for service.
  1395. */
  1396. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1397. struct cfq_queue *cfqq)
  1398. {
  1399. if (!cfqq)
  1400. cfqq = cfq_get_next_queue(cfqd);
  1401. __cfq_set_active_queue(cfqd, cfqq);
  1402. return cfqq;
  1403. }
  1404. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1405. struct request *rq)
  1406. {
  1407. if (blk_rq_pos(rq) >= cfqd->last_position)
  1408. return blk_rq_pos(rq) - cfqd->last_position;
  1409. else
  1410. return cfqd->last_position - blk_rq_pos(rq);
  1411. }
  1412. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1413. struct request *rq, bool for_preempt)
  1414. {
  1415. return cfq_dist_from_last(cfqd, rq) <= CFQQ_SEEK_THR;
  1416. }
  1417. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1418. struct cfq_queue *cur_cfqq)
  1419. {
  1420. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1421. struct rb_node *parent, *node;
  1422. struct cfq_queue *__cfqq;
  1423. sector_t sector = cfqd->last_position;
  1424. if (RB_EMPTY_ROOT(root))
  1425. return NULL;
  1426. /*
  1427. * First, if we find a request starting at the end of the last
  1428. * request, choose it.
  1429. */
  1430. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1431. if (__cfqq)
  1432. return __cfqq;
  1433. /*
  1434. * If the exact sector wasn't found, the parent of the NULL leaf
  1435. * will contain the closest sector.
  1436. */
  1437. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1438. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
  1439. return __cfqq;
  1440. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1441. node = rb_next(&__cfqq->p_node);
  1442. else
  1443. node = rb_prev(&__cfqq->p_node);
  1444. if (!node)
  1445. return NULL;
  1446. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1447. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
  1448. return __cfqq;
  1449. return NULL;
  1450. }
  1451. /*
  1452. * cfqd - obvious
  1453. * cur_cfqq - passed in so that we don't decide that the current queue is
  1454. * closely cooperating with itself.
  1455. *
  1456. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1457. * one request, and that cfqd->last_position reflects a position on the disk
  1458. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1459. * assumption.
  1460. */
  1461. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1462. struct cfq_queue *cur_cfqq)
  1463. {
  1464. struct cfq_queue *cfqq;
  1465. if (!cfq_cfqq_sync(cur_cfqq))
  1466. return NULL;
  1467. if (CFQQ_SEEKY(cur_cfqq))
  1468. return NULL;
  1469. /*
  1470. * Don't search priority tree if it's the only queue in the group.
  1471. */
  1472. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1473. return NULL;
  1474. /*
  1475. * We should notice if some of the queues are cooperating, eg
  1476. * working closely on the same area of the disk. In that case,
  1477. * we can group them together and don't waste time idling.
  1478. */
  1479. cfqq = cfqq_close(cfqd, cur_cfqq);
  1480. if (!cfqq)
  1481. return NULL;
  1482. /* If new queue belongs to different cfq_group, don't choose it */
  1483. if (cur_cfqq->cfqg != cfqq->cfqg)
  1484. return NULL;
  1485. /*
  1486. * It only makes sense to merge sync queues.
  1487. */
  1488. if (!cfq_cfqq_sync(cfqq))
  1489. return NULL;
  1490. if (CFQQ_SEEKY(cfqq))
  1491. return NULL;
  1492. /*
  1493. * Do not merge queues of different priority classes
  1494. */
  1495. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1496. return NULL;
  1497. return cfqq;
  1498. }
  1499. /*
  1500. * Determine whether we should enforce idle window for this queue.
  1501. */
  1502. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1503. {
  1504. enum wl_prio_t prio = cfqq_prio(cfqq);
  1505. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1506. BUG_ON(!service_tree);
  1507. BUG_ON(!service_tree->count);
  1508. /* We never do for idle class queues. */
  1509. if (prio == IDLE_WORKLOAD)
  1510. return false;
  1511. /* We do for queues that were marked with idle window flag. */
  1512. if (cfq_cfqq_idle_window(cfqq) &&
  1513. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1514. return true;
  1515. /*
  1516. * Otherwise, we do only if they are the last ones
  1517. * in their service tree.
  1518. */
  1519. return service_tree->count == 1 && cfq_cfqq_sync(cfqq);
  1520. }
  1521. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1522. {
  1523. struct cfq_queue *cfqq = cfqd->active_queue;
  1524. struct cfq_io_context *cic;
  1525. unsigned long sl;
  1526. /*
  1527. * SSD device without seek penalty, disable idling. But only do so
  1528. * for devices that support queuing, otherwise we still have a problem
  1529. * with sync vs async workloads.
  1530. */
  1531. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1532. return;
  1533. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1534. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1535. /*
  1536. * idle is disabled, either manually or by past process history
  1537. */
  1538. if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
  1539. return;
  1540. /*
  1541. * still active requests from this queue, don't idle
  1542. */
  1543. if (cfqq->dispatched)
  1544. return;
  1545. /*
  1546. * task has exited, don't wait
  1547. */
  1548. cic = cfqd->active_cic;
  1549. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1550. return;
  1551. /*
  1552. * If our average think time is larger than the remaining time
  1553. * slice, then don't idle. This avoids overrunning the allotted
  1554. * time slice.
  1555. */
  1556. if (sample_valid(cic->ttime_samples) &&
  1557. (cfqq->slice_end - jiffies < cic->ttime_mean))
  1558. return;
  1559. cfq_mark_cfqq_wait_request(cfqq);
  1560. sl = cfqd->cfq_slice_idle;
  1561. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1562. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
  1563. }
  1564. /*
  1565. * Move request from internal lists to the request queue dispatch list.
  1566. */
  1567. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1568. {
  1569. struct cfq_data *cfqd = q->elevator->elevator_data;
  1570. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1571. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1572. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1573. cfq_remove_request(rq);
  1574. cfqq->dispatched++;
  1575. elv_dispatch_sort(q, rq);
  1576. if (cfq_cfqq_sync(cfqq))
  1577. cfqd->sync_flight++;
  1578. cfqq->nr_sectors += blk_rq_sectors(rq);
  1579. }
  1580. /*
  1581. * return expired entry, or NULL to just start from scratch in rbtree
  1582. */
  1583. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1584. {
  1585. struct request *rq = NULL;
  1586. if (cfq_cfqq_fifo_expire(cfqq))
  1587. return NULL;
  1588. cfq_mark_cfqq_fifo_expire(cfqq);
  1589. if (list_empty(&cfqq->fifo))
  1590. return NULL;
  1591. rq = rq_entry_fifo(cfqq->fifo.next);
  1592. if (time_before(jiffies, rq_fifo_time(rq)))
  1593. rq = NULL;
  1594. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1595. return rq;
  1596. }
  1597. static inline int
  1598. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1599. {
  1600. const int base_rq = cfqd->cfq_slice_async_rq;
  1601. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1602. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1603. }
  1604. /*
  1605. * Must be called with the queue_lock held.
  1606. */
  1607. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1608. {
  1609. int process_refs, io_refs;
  1610. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1611. process_refs = atomic_read(&cfqq->ref) - io_refs;
  1612. BUG_ON(process_refs < 0);
  1613. return process_refs;
  1614. }
  1615. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1616. {
  1617. int process_refs, new_process_refs;
  1618. struct cfq_queue *__cfqq;
  1619. /* Avoid a circular list and skip interim queue merges */
  1620. while ((__cfqq = new_cfqq->new_cfqq)) {
  1621. if (__cfqq == cfqq)
  1622. return;
  1623. new_cfqq = __cfqq;
  1624. }
  1625. process_refs = cfqq_process_refs(cfqq);
  1626. /*
  1627. * If the process for the cfqq has gone away, there is no
  1628. * sense in merging the queues.
  1629. */
  1630. if (process_refs == 0)
  1631. return;
  1632. /*
  1633. * Merge in the direction of the lesser amount of work.
  1634. */
  1635. new_process_refs = cfqq_process_refs(new_cfqq);
  1636. if (new_process_refs >= process_refs) {
  1637. cfqq->new_cfqq = new_cfqq;
  1638. atomic_add(process_refs, &new_cfqq->ref);
  1639. } else {
  1640. new_cfqq->new_cfqq = cfqq;
  1641. atomic_add(new_process_refs, &cfqq->ref);
  1642. }
  1643. }
  1644. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1645. struct cfq_group *cfqg, enum wl_prio_t prio)
  1646. {
  1647. struct cfq_queue *queue;
  1648. int i;
  1649. bool key_valid = false;
  1650. unsigned long lowest_key = 0;
  1651. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1652. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1653. /* select the one with lowest rb_key */
  1654. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1655. if (queue &&
  1656. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1657. lowest_key = queue->rb_key;
  1658. cur_best = i;
  1659. key_valid = true;
  1660. }
  1661. }
  1662. return cur_best;
  1663. }
  1664. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1665. {
  1666. unsigned slice;
  1667. unsigned count;
  1668. struct cfq_rb_root *st;
  1669. unsigned group_slice;
  1670. if (!cfqg) {
  1671. cfqd->serving_prio = IDLE_WORKLOAD;
  1672. cfqd->workload_expires = jiffies + 1;
  1673. return;
  1674. }
  1675. /* Choose next priority. RT > BE > IDLE */
  1676. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1677. cfqd->serving_prio = RT_WORKLOAD;
  1678. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1679. cfqd->serving_prio = BE_WORKLOAD;
  1680. else {
  1681. cfqd->serving_prio = IDLE_WORKLOAD;
  1682. cfqd->workload_expires = jiffies + 1;
  1683. return;
  1684. }
  1685. /*
  1686. * For RT and BE, we have to choose also the type
  1687. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1688. * expiration time
  1689. */
  1690. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1691. count = st->count;
  1692. /*
  1693. * check workload expiration, and that we still have other queues ready
  1694. */
  1695. if (count && !time_after(jiffies, cfqd->workload_expires))
  1696. return;
  1697. /* otherwise select new workload type */
  1698. cfqd->serving_type =
  1699. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1700. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1701. count = st->count;
  1702. /*
  1703. * the workload slice is computed as a fraction of target latency
  1704. * proportional to the number of queues in that workload, over
  1705. * all the queues in the same priority class
  1706. */
  1707. group_slice = cfq_group_slice(cfqd, cfqg);
  1708. slice = group_slice * count /
  1709. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1710. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1711. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1712. unsigned int tmp;
  1713. /*
  1714. * Async queues are currently system wide. Just taking
  1715. * proportion of queues with-in same group will lead to higher
  1716. * async ratio system wide as generally root group is going
  1717. * to have higher weight. A more accurate thing would be to
  1718. * calculate system wide asnc/sync ratio.
  1719. */
  1720. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1721. tmp = tmp/cfqd->busy_queues;
  1722. slice = min_t(unsigned, slice, tmp);
  1723. /* async workload slice is scaled down according to
  1724. * the sync/async slice ratio. */
  1725. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1726. } else
  1727. /* sync workload slice is at least 2 * cfq_slice_idle */
  1728. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1729. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1730. cfqd->workload_expires = jiffies + slice;
  1731. cfqd->noidle_tree_requires_idle = false;
  1732. }
  1733. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1734. {
  1735. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1736. struct cfq_group *cfqg;
  1737. if (RB_EMPTY_ROOT(&st->rb))
  1738. return NULL;
  1739. cfqg = cfq_rb_first_group(st);
  1740. st->active = &cfqg->rb_node;
  1741. update_min_vdisktime(st);
  1742. return cfqg;
  1743. }
  1744. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1745. {
  1746. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1747. cfqd->serving_group = cfqg;
  1748. /* Restore the workload type data */
  1749. if (cfqg->saved_workload_slice) {
  1750. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1751. cfqd->serving_type = cfqg->saved_workload;
  1752. cfqd->serving_prio = cfqg->saved_serving_prio;
  1753. } else
  1754. cfqd->workload_expires = jiffies - 1;
  1755. choose_service_tree(cfqd, cfqg);
  1756. }
  1757. /*
  1758. * Select a queue for service. If we have a current active queue,
  1759. * check whether to continue servicing it, or retrieve and set a new one.
  1760. */
  1761. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1762. {
  1763. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1764. cfqq = cfqd->active_queue;
  1765. if (!cfqq)
  1766. goto new_queue;
  1767. if (!cfqd->rq_queued)
  1768. return NULL;
  1769. /*
  1770. * We were waiting for group to get backlogged. Expire the queue
  1771. */
  1772. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1773. goto expire;
  1774. /*
  1775. * The active queue has run out of time, expire it and select new.
  1776. */
  1777. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1778. /*
  1779. * If slice had not expired at the completion of last request
  1780. * we might not have turned on wait_busy flag. Don't expire
  1781. * the queue yet. Allow the group to get backlogged.
  1782. *
  1783. * The very fact that we have used the slice, that means we
  1784. * have been idling all along on this queue and it should be
  1785. * ok to wait for this request to complete.
  1786. */
  1787. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1788. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1789. cfqq = NULL;
  1790. goto keep_queue;
  1791. } else
  1792. goto expire;
  1793. }
  1794. /*
  1795. * The active queue has requests and isn't expired, allow it to
  1796. * dispatch.
  1797. */
  1798. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1799. goto keep_queue;
  1800. /*
  1801. * If another queue has a request waiting within our mean seek
  1802. * distance, let it run. The expire code will check for close
  1803. * cooperators and put the close queue at the front of the service
  1804. * tree. If possible, merge the expiring queue with the new cfqq.
  1805. */
  1806. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1807. if (new_cfqq) {
  1808. if (!cfqq->new_cfqq)
  1809. cfq_setup_merge(cfqq, new_cfqq);
  1810. goto expire;
  1811. }
  1812. /*
  1813. * No requests pending. If the active queue still has requests in
  1814. * flight or is idling for a new request, allow either of these
  1815. * conditions to happen (or time out) before selecting a new queue.
  1816. */
  1817. if (timer_pending(&cfqd->idle_slice_timer) ||
  1818. (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
  1819. cfqq = NULL;
  1820. goto keep_queue;
  1821. }
  1822. expire:
  1823. cfq_slice_expired(cfqd, 0);
  1824. new_queue:
  1825. /*
  1826. * Current queue expired. Check if we have to switch to a new
  1827. * service tree
  1828. */
  1829. if (!new_cfqq)
  1830. cfq_choose_cfqg(cfqd);
  1831. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1832. keep_queue:
  1833. return cfqq;
  1834. }
  1835. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1836. {
  1837. int dispatched = 0;
  1838. while (cfqq->next_rq) {
  1839. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1840. dispatched++;
  1841. }
  1842. BUG_ON(!list_empty(&cfqq->fifo));
  1843. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1844. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1845. return dispatched;
  1846. }
  1847. /*
  1848. * Drain our current requests. Used for barriers and when switching
  1849. * io schedulers on-the-fly.
  1850. */
  1851. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1852. {
  1853. struct cfq_queue *cfqq;
  1854. int dispatched = 0;
  1855. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
  1856. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1857. cfq_slice_expired(cfqd, 0);
  1858. BUG_ON(cfqd->busy_queues);
  1859. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  1860. return dispatched;
  1861. }
  1862. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1863. {
  1864. unsigned int max_dispatch;
  1865. /*
  1866. * Drain async requests before we start sync IO
  1867. */
  1868. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
  1869. return false;
  1870. /*
  1871. * If this is an async queue and we have sync IO in flight, let it wait
  1872. */
  1873. if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
  1874. return false;
  1875. max_dispatch = cfqd->cfq_quantum;
  1876. if (cfq_class_idle(cfqq))
  1877. max_dispatch = 1;
  1878. /*
  1879. * Does this cfqq already have too much IO in flight?
  1880. */
  1881. if (cfqq->dispatched >= max_dispatch) {
  1882. /*
  1883. * idle queue must always only have a single IO in flight
  1884. */
  1885. if (cfq_class_idle(cfqq))
  1886. return false;
  1887. /*
  1888. * We have other queues, don't allow more IO from this one
  1889. */
  1890. if (cfqd->busy_queues > 1)
  1891. return false;
  1892. /*
  1893. * Sole queue user, no limit
  1894. */
  1895. max_dispatch = -1;
  1896. }
  1897. /*
  1898. * Async queues must wait a bit before being allowed dispatch.
  1899. * We also ramp up the dispatch depth gradually for async IO,
  1900. * based on the last sync IO we serviced
  1901. */
  1902. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  1903. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  1904. unsigned int depth;
  1905. depth = last_sync / cfqd->cfq_slice[1];
  1906. if (!depth && !cfqq->dispatched)
  1907. depth = 1;
  1908. if (depth < max_dispatch)
  1909. max_dispatch = depth;
  1910. }
  1911. /*
  1912. * If we're below the current max, allow a dispatch
  1913. */
  1914. return cfqq->dispatched < max_dispatch;
  1915. }
  1916. /*
  1917. * Dispatch a request from cfqq, moving them to the request queue
  1918. * dispatch list.
  1919. */
  1920. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1921. {
  1922. struct request *rq;
  1923. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  1924. if (!cfq_may_dispatch(cfqd, cfqq))
  1925. return false;
  1926. /*
  1927. * follow expired path, else get first next available
  1928. */
  1929. rq = cfq_check_fifo(cfqq);
  1930. if (!rq)
  1931. rq = cfqq->next_rq;
  1932. /*
  1933. * insert request into driver dispatch list
  1934. */
  1935. cfq_dispatch_insert(cfqd->queue, rq);
  1936. if (!cfqd->active_cic) {
  1937. struct cfq_io_context *cic = RQ_CIC(rq);
  1938. atomic_long_inc(&cic->ioc->refcount);
  1939. cfqd->active_cic = cic;
  1940. }
  1941. return true;
  1942. }
  1943. /*
  1944. * Find the cfqq that we need to service and move a request from that to the
  1945. * dispatch list
  1946. */
  1947. static int cfq_dispatch_requests(struct request_queue *q, int force)
  1948. {
  1949. struct cfq_data *cfqd = q->elevator->elevator_data;
  1950. struct cfq_queue *cfqq;
  1951. if (!cfqd->busy_queues)
  1952. return 0;
  1953. if (unlikely(force))
  1954. return cfq_forced_dispatch(cfqd);
  1955. cfqq = cfq_select_queue(cfqd);
  1956. if (!cfqq)
  1957. return 0;
  1958. /*
  1959. * Dispatch a request from this cfqq, if it is allowed
  1960. */
  1961. if (!cfq_dispatch_request(cfqd, cfqq))
  1962. return 0;
  1963. cfqq->slice_dispatch++;
  1964. cfq_clear_cfqq_must_dispatch(cfqq);
  1965. /*
  1966. * expire an async queue immediately if it has used up its slice. idle
  1967. * queue always expire after 1 dispatch round.
  1968. */
  1969. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  1970. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  1971. cfq_class_idle(cfqq))) {
  1972. cfqq->slice_end = jiffies + 1;
  1973. cfq_slice_expired(cfqd, 0);
  1974. }
  1975. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  1976. return 1;
  1977. }
  1978. /*
  1979. * task holds one reference to the queue, dropped when task exits. each rq
  1980. * in-flight on this queue also holds a reference, dropped when rq is freed.
  1981. *
  1982. * Each cfq queue took a reference on the parent group. Drop it now.
  1983. * queue lock must be held here.
  1984. */
  1985. static void cfq_put_queue(struct cfq_queue *cfqq)
  1986. {
  1987. struct cfq_data *cfqd = cfqq->cfqd;
  1988. struct cfq_group *cfqg, *orig_cfqg;
  1989. BUG_ON(atomic_read(&cfqq->ref) <= 0);
  1990. if (!atomic_dec_and_test(&cfqq->ref))
  1991. return;
  1992. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  1993. BUG_ON(rb_first(&cfqq->sort_list));
  1994. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  1995. cfqg = cfqq->cfqg;
  1996. orig_cfqg = cfqq->orig_cfqg;
  1997. if (unlikely(cfqd->active_queue == cfqq)) {
  1998. __cfq_slice_expired(cfqd, cfqq, 0);
  1999. cfq_schedule_dispatch(cfqd);
  2000. }
  2001. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2002. kmem_cache_free(cfq_pool, cfqq);
  2003. cfq_put_cfqg(cfqg);
  2004. if (orig_cfqg)
  2005. cfq_put_cfqg(orig_cfqg);
  2006. }
  2007. /*
  2008. * Must always be called with the rcu_read_lock() held
  2009. */
  2010. static void
  2011. __call_for_each_cic(struct io_context *ioc,
  2012. void (*func)(struct io_context *, struct cfq_io_context *))
  2013. {
  2014. struct cfq_io_context *cic;
  2015. struct hlist_node *n;
  2016. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2017. func(ioc, cic);
  2018. }
  2019. /*
  2020. * Call func for each cic attached to this ioc.
  2021. */
  2022. static void
  2023. call_for_each_cic(struct io_context *ioc,
  2024. void (*func)(struct io_context *, struct cfq_io_context *))
  2025. {
  2026. rcu_read_lock();
  2027. __call_for_each_cic(ioc, func);
  2028. rcu_read_unlock();
  2029. }
  2030. static void cfq_cic_free_rcu(struct rcu_head *head)
  2031. {
  2032. struct cfq_io_context *cic;
  2033. cic = container_of(head, struct cfq_io_context, rcu_head);
  2034. kmem_cache_free(cfq_ioc_pool, cic);
  2035. elv_ioc_count_dec(cfq_ioc_count);
  2036. if (ioc_gone) {
  2037. /*
  2038. * CFQ scheduler is exiting, grab exit lock and check
  2039. * the pending io context count. If it hits zero,
  2040. * complete ioc_gone and set it back to NULL
  2041. */
  2042. spin_lock(&ioc_gone_lock);
  2043. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2044. complete(ioc_gone);
  2045. ioc_gone = NULL;
  2046. }
  2047. spin_unlock(&ioc_gone_lock);
  2048. }
  2049. }
  2050. static void cfq_cic_free(struct cfq_io_context *cic)
  2051. {
  2052. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2053. }
  2054. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2055. {
  2056. unsigned long flags;
  2057. BUG_ON(!cic->dead_key);
  2058. spin_lock_irqsave(&ioc->lock, flags);
  2059. radix_tree_delete(&ioc->radix_root, cic->dead_key);
  2060. hlist_del_rcu(&cic->cic_list);
  2061. spin_unlock_irqrestore(&ioc->lock, flags);
  2062. cfq_cic_free(cic);
  2063. }
  2064. /*
  2065. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2066. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2067. * and ->trim() which is called with the task lock held
  2068. */
  2069. static void cfq_free_io_context(struct io_context *ioc)
  2070. {
  2071. /*
  2072. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2073. * so no more cic's are allowed to be linked into this ioc. So it
  2074. * should be ok to iterate over the known list, we will see all cic's
  2075. * since no new ones are added.
  2076. */
  2077. __call_for_each_cic(ioc, cic_free_func);
  2078. }
  2079. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2080. {
  2081. struct cfq_queue *__cfqq, *next;
  2082. if (unlikely(cfqq == cfqd->active_queue)) {
  2083. __cfq_slice_expired(cfqd, cfqq, 0);
  2084. cfq_schedule_dispatch(cfqd);
  2085. }
  2086. /*
  2087. * If this queue was scheduled to merge with another queue, be
  2088. * sure to drop the reference taken on that queue (and others in
  2089. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2090. */
  2091. __cfqq = cfqq->new_cfqq;
  2092. while (__cfqq) {
  2093. if (__cfqq == cfqq) {
  2094. WARN(1, "cfqq->new_cfqq loop detected\n");
  2095. break;
  2096. }
  2097. next = __cfqq->new_cfqq;
  2098. cfq_put_queue(__cfqq);
  2099. __cfqq = next;
  2100. }
  2101. cfq_put_queue(cfqq);
  2102. }
  2103. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2104. struct cfq_io_context *cic)
  2105. {
  2106. struct io_context *ioc = cic->ioc;
  2107. list_del_init(&cic->queue_list);
  2108. /*
  2109. * Make sure key == NULL is seen for dead queues
  2110. */
  2111. smp_wmb();
  2112. cic->dead_key = (unsigned long) cic->key;
  2113. cic->key = NULL;
  2114. if (ioc->ioc_data == cic)
  2115. rcu_assign_pointer(ioc->ioc_data, NULL);
  2116. if (cic->cfqq[BLK_RW_ASYNC]) {
  2117. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2118. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2119. }
  2120. if (cic->cfqq[BLK_RW_SYNC]) {
  2121. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2122. cic->cfqq[BLK_RW_SYNC] = NULL;
  2123. }
  2124. }
  2125. static void cfq_exit_single_io_context(struct io_context *ioc,
  2126. struct cfq_io_context *cic)
  2127. {
  2128. struct cfq_data *cfqd = cic->key;
  2129. if (cfqd) {
  2130. struct request_queue *q = cfqd->queue;
  2131. unsigned long flags;
  2132. spin_lock_irqsave(q->queue_lock, flags);
  2133. /*
  2134. * Ensure we get a fresh copy of the ->key to prevent
  2135. * race between exiting task and queue
  2136. */
  2137. smp_read_barrier_depends();
  2138. if (cic->key)
  2139. __cfq_exit_single_io_context(cfqd, cic);
  2140. spin_unlock_irqrestore(q->queue_lock, flags);
  2141. }
  2142. }
  2143. /*
  2144. * The process that ioc belongs to has exited, we need to clean up
  2145. * and put the internal structures we have that belongs to that process.
  2146. */
  2147. static void cfq_exit_io_context(struct io_context *ioc)
  2148. {
  2149. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2150. }
  2151. static struct cfq_io_context *
  2152. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2153. {
  2154. struct cfq_io_context *cic;
  2155. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2156. cfqd->queue->node);
  2157. if (cic) {
  2158. cic->last_end_request = jiffies;
  2159. INIT_LIST_HEAD(&cic->queue_list);
  2160. INIT_HLIST_NODE(&cic->cic_list);
  2161. cic->dtor = cfq_free_io_context;
  2162. cic->exit = cfq_exit_io_context;
  2163. elv_ioc_count_inc(cfq_ioc_count);
  2164. }
  2165. return cic;
  2166. }
  2167. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2168. {
  2169. struct task_struct *tsk = current;
  2170. int ioprio_class;
  2171. if (!cfq_cfqq_prio_changed(cfqq))
  2172. return;
  2173. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2174. switch (ioprio_class) {
  2175. default:
  2176. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2177. case IOPRIO_CLASS_NONE:
  2178. /*
  2179. * no prio set, inherit CPU scheduling settings
  2180. */
  2181. cfqq->ioprio = task_nice_ioprio(tsk);
  2182. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2183. break;
  2184. case IOPRIO_CLASS_RT:
  2185. cfqq->ioprio = task_ioprio(ioc);
  2186. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2187. break;
  2188. case IOPRIO_CLASS_BE:
  2189. cfqq->ioprio = task_ioprio(ioc);
  2190. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2191. break;
  2192. case IOPRIO_CLASS_IDLE:
  2193. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2194. cfqq->ioprio = 7;
  2195. cfq_clear_cfqq_idle_window(cfqq);
  2196. break;
  2197. }
  2198. /*
  2199. * keep track of original prio settings in case we have to temporarily
  2200. * elevate the priority of this queue
  2201. */
  2202. cfqq->org_ioprio = cfqq->ioprio;
  2203. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2204. cfq_clear_cfqq_prio_changed(cfqq);
  2205. }
  2206. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2207. {
  2208. struct cfq_data *cfqd = cic->key;
  2209. struct cfq_queue *cfqq;
  2210. unsigned long flags;
  2211. if (unlikely(!cfqd))
  2212. return;
  2213. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2214. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2215. if (cfqq) {
  2216. struct cfq_queue *new_cfqq;
  2217. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2218. GFP_ATOMIC);
  2219. if (new_cfqq) {
  2220. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2221. cfq_put_queue(cfqq);
  2222. }
  2223. }
  2224. cfqq = cic->cfqq[BLK_RW_SYNC];
  2225. if (cfqq)
  2226. cfq_mark_cfqq_prio_changed(cfqq);
  2227. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2228. }
  2229. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2230. {
  2231. call_for_each_cic(ioc, changed_ioprio);
  2232. ioc->ioprio_changed = 0;
  2233. }
  2234. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2235. pid_t pid, bool is_sync)
  2236. {
  2237. RB_CLEAR_NODE(&cfqq->rb_node);
  2238. RB_CLEAR_NODE(&cfqq->p_node);
  2239. INIT_LIST_HEAD(&cfqq->fifo);
  2240. atomic_set(&cfqq->ref, 0);
  2241. cfqq->cfqd = cfqd;
  2242. cfq_mark_cfqq_prio_changed(cfqq);
  2243. if (is_sync) {
  2244. if (!cfq_class_idle(cfqq))
  2245. cfq_mark_cfqq_idle_window(cfqq);
  2246. cfq_mark_cfqq_sync(cfqq);
  2247. }
  2248. cfqq->pid = pid;
  2249. }
  2250. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2251. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2252. {
  2253. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2254. struct cfq_data *cfqd = cic->key;
  2255. unsigned long flags;
  2256. struct request_queue *q;
  2257. if (unlikely(!cfqd))
  2258. return;
  2259. q = cfqd->queue;
  2260. spin_lock_irqsave(q->queue_lock, flags);
  2261. if (sync_cfqq) {
  2262. /*
  2263. * Drop reference to sync queue. A new sync queue will be
  2264. * assigned in new group upon arrival of a fresh request.
  2265. */
  2266. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2267. cic_set_cfqq(cic, NULL, 1);
  2268. cfq_put_queue(sync_cfqq);
  2269. }
  2270. spin_unlock_irqrestore(q->queue_lock, flags);
  2271. }
  2272. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2273. {
  2274. call_for_each_cic(ioc, changed_cgroup);
  2275. ioc->cgroup_changed = 0;
  2276. }
  2277. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2278. static struct cfq_queue *
  2279. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2280. struct io_context *ioc, gfp_t gfp_mask)
  2281. {
  2282. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2283. struct cfq_io_context *cic;
  2284. struct cfq_group *cfqg;
  2285. retry:
  2286. cfqg = cfq_get_cfqg(cfqd, 1);
  2287. cic = cfq_cic_lookup(cfqd, ioc);
  2288. /* cic always exists here */
  2289. cfqq = cic_to_cfqq(cic, is_sync);
  2290. /*
  2291. * Always try a new alloc if we fell back to the OOM cfqq
  2292. * originally, since it should just be a temporary situation.
  2293. */
  2294. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2295. cfqq = NULL;
  2296. if (new_cfqq) {
  2297. cfqq = new_cfqq;
  2298. new_cfqq = NULL;
  2299. } else if (gfp_mask & __GFP_WAIT) {
  2300. spin_unlock_irq(cfqd->queue->queue_lock);
  2301. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2302. gfp_mask | __GFP_ZERO,
  2303. cfqd->queue->node);
  2304. spin_lock_irq(cfqd->queue->queue_lock);
  2305. if (new_cfqq)
  2306. goto retry;
  2307. } else {
  2308. cfqq = kmem_cache_alloc_node(cfq_pool,
  2309. gfp_mask | __GFP_ZERO,
  2310. cfqd->queue->node);
  2311. }
  2312. if (cfqq) {
  2313. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2314. cfq_init_prio_data(cfqq, ioc);
  2315. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2316. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2317. } else
  2318. cfqq = &cfqd->oom_cfqq;
  2319. }
  2320. if (new_cfqq)
  2321. kmem_cache_free(cfq_pool, new_cfqq);
  2322. return cfqq;
  2323. }
  2324. static struct cfq_queue **
  2325. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2326. {
  2327. switch (ioprio_class) {
  2328. case IOPRIO_CLASS_RT:
  2329. return &cfqd->async_cfqq[0][ioprio];
  2330. case IOPRIO_CLASS_BE:
  2331. return &cfqd->async_cfqq[1][ioprio];
  2332. case IOPRIO_CLASS_IDLE:
  2333. return &cfqd->async_idle_cfqq;
  2334. default:
  2335. BUG();
  2336. }
  2337. }
  2338. static struct cfq_queue *
  2339. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2340. gfp_t gfp_mask)
  2341. {
  2342. const int ioprio = task_ioprio(ioc);
  2343. const int ioprio_class = task_ioprio_class(ioc);
  2344. struct cfq_queue **async_cfqq = NULL;
  2345. struct cfq_queue *cfqq = NULL;
  2346. if (!is_sync) {
  2347. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2348. cfqq = *async_cfqq;
  2349. }
  2350. if (!cfqq)
  2351. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2352. /*
  2353. * pin the queue now that it's allocated, scheduler exit will prune it
  2354. */
  2355. if (!is_sync && !(*async_cfqq)) {
  2356. atomic_inc(&cfqq->ref);
  2357. *async_cfqq = cfqq;
  2358. }
  2359. atomic_inc(&cfqq->ref);
  2360. return cfqq;
  2361. }
  2362. /*
  2363. * We drop cfq io contexts lazily, so we may find a dead one.
  2364. */
  2365. static void
  2366. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2367. struct cfq_io_context *cic)
  2368. {
  2369. unsigned long flags;
  2370. WARN_ON(!list_empty(&cic->queue_list));
  2371. spin_lock_irqsave(&ioc->lock, flags);
  2372. BUG_ON(ioc->ioc_data == cic);
  2373. radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
  2374. hlist_del_rcu(&cic->cic_list);
  2375. spin_unlock_irqrestore(&ioc->lock, flags);
  2376. cfq_cic_free(cic);
  2377. }
  2378. static struct cfq_io_context *
  2379. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2380. {
  2381. struct cfq_io_context *cic;
  2382. unsigned long flags;
  2383. void *k;
  2384. if (unlikely(!ioc))
  2385. return NULL;
  2386. rcu_read_lock();
  2387. /*
  2388. * we maintain a last-hit cache, to avoid browsing over the tree
  2389. */
  2390. cic = rcu_dereference(ioc->ioc_data);
  2391. if (cic && cic->key == cfqd) {
  2392. rcu_read_unlock();
  2393. return cic;
  2394. }
  2395. do {
  2396. cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
  2397. rcu_read_unlock();
  2398. if (!cic)
  2399. break;
  2400. /* ->key must be copied to avoid race with cfq_exit_queue() */
  2401. k = cic->key;
  2402. if (unlikely(!k)) {
  2403. cfq_drop_dead_cic(cfqd, ioc, cic);
  2404. rcu_read_lock();
  2405. continue;
  2406. }
  2407. spin_lock_irqsave(&ioc->lock, flags);
  2408. rcu_assign_pointer(ioc->ioc_data, cic);
  2409. spin_unlock_irqrestore(&ioc->lock, flags);
  2410. break;
  2411. } while (1);
  2412. return cic;
  2413. }
  2414. /*
  2415. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2416. * the process specific cfq io context when entered from the block layer.
  2417. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2418. */
  2419. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2420. struct cfq_io_context *cic, gfp_t gfp_mask)
  2421. {
  2422. unsigned long flags;
  2423. int ret;
  2424. ret = radix_tree_preload(gfp_mask);
  2425. if (!ret) {
  2426. cic->ioc = ioc;
  2427. cic->key = cfqd;
  2428. spin_lock_irqsave(&ioc->lock, flags);
  2429. ret = radix_tree_insert(&ioc->radix_root,
  2430. (unsigned long) cfqd, cic);
  2431. if (!ret)
  2432. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2433. spin_unlock_irqrestore(&ioc->lock, flags);
  2434. radix_tree_preload_end();
  2435. if (!ret) {
  2436. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2437. list_add(&cic->queue_list, &cfqd->cic_list);
  2438. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2439. }
  2440. }
  2441. if (ret)
  2442. printk(KERN_ERR "cfq: cic link failed!\n");
  2443. return ret;
  2444. }
  2445. /*
  2446. * Setup general io context and cfq io context. There can be several cfq
  2447. * io contexts per general io context, if this process is doing io to more
  2448. * than one device managed by cfq.
  2449. */
  2450. static struct cfq_io_context *
  2451. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2452. {
  2453. struct io_context *ioc = NULL;
  2454. struct cfq_io_context *cic;
  2455. might_sleep_if(gfp_mask & __GFP_WAIT);
  2456. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2457. if (!ioc)
  2458. return NULL;
  2459. cic = cfq_cic_lookup(cfqd, ioc);
  2460. if (cic)
  2461. goto out;
  2462. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2463. if (cic == NULL)
  2464. goto err;
  2465. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2466. goto err_free;
  2467. out:
  2468. smp_read_barrier_depends();
  2469. if (unlikely(ioc->ioprio_changed))
  2470. cfq_ioc_set_ioprio(ioc);
  2471. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2472. if (unlikely(ioc->cgroup_changed))
  2473. cfq_ioc_set_cgroup(ioc);
  2474. #endif
  2475. return cic;
  2476. err_free:
  2477. cfq_cic_free(cic);
  2478. err:
  2479. put_io_context(ioc);
  2480. return NULL;
  2481. }
  2482. static void
  2483. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2484. {
  2485. unsigned long elapsed = jiffies - cic->last_end_request;
  2486. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2487. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2488. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2489. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2490. }
  2491. static void
  2492. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2493. struct request *rq)
  2494. {
  2495. sector_t sdist = 0;
  2496. sector_t n_sec = blk_rq_sectors(rq);
  2497. if (cfqq->last_request_pos) {
  2498. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2499. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2500. else
  2501. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2502. }
  2503. cfqq->seek_history <<= 1;
  2504. if (blk_queue_nonrot(cfqd->queue))
  2505. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2506. else
  2507. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2508. }
  2509. /*
  2510. * Disable idle window if the process thinks too long or seeks so much that
  2511. * it doesn't matter
  2512. */
  2513. static void
  2514. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2515. struct cfq_io_context *cic)
  2516. {
  2517. int old_idle, enable_idle;
  2518. /*
  2519. * Don't idle for async or idle io prio class
  2520. */
  2521. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2522. return;
  2523. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2524. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2525. cfq_mark_cfqq_deep(cfqq);
  2526. if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2527. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2528. enable_idle = 0;
  2529. else if (sample_valid(cic->ttime_samples)) {
  2530. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2531. enable_idle = 0;
  2532. else
  2533. enable_idle = 1;
  2534. }
  2535. if (old_idle != enable_idle) {
  2536. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2537. if (enable_idle)
  2538. cfq_mark_cfqq_idle_window(cfqq);
  2539. else
  2540. cfq_clear_cfqq_idle_window(cfqq);
  2541. }
  2542. }
  2543. /*
  2544. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2545. * no or if we aren't sure, a 1 will cause a preempt.
  2546. */
  2547. static bool
  2548. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2549. struct request *rq)
  2550. {
  2551. struct cfq_queue *cfqq;
  2552. cfqq = cfqd->active_queue;
  2553. if (!cfqq)
  2554. return false;
  2555. if (cfq_class_idle(new_cfqq))
  2556. return false;
  2557. if (cfq_class_idle(cfqq))
  2558. return true;
  2559. /*
  2560. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2561. */
  2562. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2563. return false;
  2564. /*
  2565. * if the new request is sync, but the currently running queue is
  2566. * not, let the sync request have priority.
  2567. */
  2568. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2569. return true;
  2570. if (new_cfqq->cfqg != cfqq->cfqg)
  2571. return false;
  2572. if (cfq_slice_used(cfqq))
  2573. return true;
  2574. /* Allow preemption only if we are idling on sync-noidle tree */
  2575. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2576. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2577. new_cfqq->service_tree->count == 2 &&
  2578. RB_EMPTY_ROOT(&cfqq->sort_list))
  2579. return true;
  2580. /*
  2581. * So both queues are sync. Let the new request get disk time if
  2582. * it's a metadata request and the current queue is doing regular IO.
  2583. */
  2584. if (rq_is_meta(rq) && !cfqq->meta_pending)
  2585. return true;
  2586. /*
  2587. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2588. */
  2589. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2590. return true;
  2591. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2592. return false;
  2593. /*
  2594. * if this request is as-good as one we would expect from the
  2595. * current cfqq, let it preempt
  2596. */
  2597. if (cfq_rq_close(cfqd, cfqq, rq, true))
  2598. return true;
  2599. return false;
  2600. }
  2601. /*
  2602. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2603. * let it have half of its nominal slice.
  2604. */
  2605. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2606. {
  2607. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2608. cfq_slice_expired(cfqd, 1);
  2609. /*
  2610. * Put the new queue at the front of the of the current list,
  2611. * so we know that it will be selected next.
  2612. */
  2613. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2614. cfq_service_tree_add(cfqd, cfqq, 1);
  2615. cfqq->slice_end = 0;
  2616. cfq_mark_cfqq_slice_new(cfqq);
  2617. }
  2618. /*
  2619. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2620. * something we should do about it
  2621. */
  2622. static void
  2623. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2624. struct request *rq)
  2625. {
  2626. struct cfq_io_context *cic = RQ_CIC(rq);
  2627. cfqd->rq_queued++;
  2628. if (rq_is_meta(rq))
  2629. cfqq->meta_pending++;
  2630. cfq_update_io_thinktime(cfqd, cic);
  2631. cfq_update_io_seektime(cfqd, cfqq, rq);
  2632. cfq_update_idle_window(cfqd, cfqq, cic);
  2633. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2634. if (cfqq == cfqd->active_queue) {
  2635. /*
  2636. * Remember that we saw a request from this process, but
  2637. * don't start queuing just yet. Otherwise we risk seeing lots
  2638. * of tiny requests, because we disrupt the normal plugging
  2639. * and merging. If the request is already larger than a single
  2640. * page, let it rip immediately. For that case we assume that
  2641. * merging is already done. Ditto for a busy system that
  2642. * has other work pending, don't risk delaying until the
  2643. * idle timer unplug to continue working.
  2644. */
  2645. if (cfq_cfqq_wait_request(cfqq)) {
  2646. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2647. cfqd->busy_queues > 1) {
  2648. del_timer(&cfqd->idle_slice_timer);
  2649. cfq_clear_cfqq_wait_request(cfqq);
  2650. __blk_run_queue(cfqd->queue);
  2651. } else
  2652. cfq_mark_cfqq_must_dispatch(cfqq);
  2653. }
  2654. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2655. /*
  2656. * not the active queue - expire current slice if it is
  2657. * idle and has expired it's mean thinktime or this new queue
  2658. * has some old slice time left and is of higher priority or
  2659. * this new queue is RT and the current one is BE
  2660. */
  2661. cfq_preempt_queue(cfqd, cfqq);
  2662. __blk_run_queue(cfqd->queue);
  2663. }
  2664. }
  2665. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2666. {
  2667. struct cfq_data *cfqd = q->elevator->elevator_data;
  2668. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2669. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2670. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2671. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2672. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2673. cfq_add_rq_rb(rq);
  2674. cfq_rq_enqueued(cfqd, cfqq, rq);
  2675. }
  2676. /*
  2677. * Update hw_tag based on peak queue depth over 50 samples under
  2678. * sufficient load.
  2679. */
  2680. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2681. {
  2682. struct cfq_queue *cfqq = cfqd->active_queue;
  2683. if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
  2684. cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
  2685. if (cfqd->hw_tag == 1)
  2686. return;
  2687. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2688. rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
  2689. return;
  2690. /*
  2691. * If active queue hasn't enough requests and can idle, cfq might not
  2692. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2693. * case
  2694. */
  2695. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2696. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2697. CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
  2698. return;
  2699. if (cfqd->hw_tag_samples++ < 50)
  2700. return;
  2701. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2702. cfqd->hw_tag = 1;
  2703. else
  2704. cfqd->hw_tag = 0;
  2705. }
  2706. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2707. {
  2708. struct cfq_io_context *cic = cfqd->active_cic;
  2709. /* If there are other queues in the group, don't wait */
  2710. if (cfqq->cfqg->nr_cfqq > 1)
  2711. return false;
  2712. if (cfq_slice_used(cfqq))
  2713. return true;
  2714. /* if slice left is less than think time, wait busy */
  2715. if (cic && sample_valid(cic->ttime_samples)
  2716. && (cfqq->slice_end - jiffies < cic->ttime_mean))
  2717. return true;
  2718. /*
  2719. * If think times is less than a jiffy than ttime_mean=0 and above
  2720. * will not be true. It might happen that slice has not expired yet
  2721. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2722. * case where think time is less than a jiffy, mark the queue wait
  2723. * busy if only 1 jiffy is left in the slice.
  2724. */
  2725. if (cfqq->slice_end - jiffies == 1)
  2726. return true;
  2727. return false;
  2728. }
  2729. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2730. {
  2731. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2732. struct cfq_data *cfqd = cfqq->cfqd;
  2733. const int sync = rq_is_sync(rq);
  2734. unsigned long now;
  2735. now = jiffies;
  2736. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
  2737. cfq_update_hw_tag(cfqd);
  2738. WARN_ON(!cfqd->rq_in_driver[sync]);
  2739. WARN_ON(!cfqq->dispatched);
  2740. cfqd->rq_in_driver[sync]--;
  2741. cfqq->dispatched--;
  2742. if (cfq_cfqq_sync(cfqq))
  2743. cfqd->sync_flight--;
  2744. if (sync) {
  2745. RQ_CIC(rq)->last_end_request = now;
  2746. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2747. cfqd->last_delayed_sync = now;
  2748. }
  2749. /*
  2750. * If this is the active queue, check if it needs to be expired,
  2751. * or if we want to idle in case it has no pending requests.
  2752. */
  2753. if (cfqd->active_queue == cfqq) {
  2754. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2755. if (cfq_cfqq_slice_new(cfqq)) {
  2756. cfq_set_prio_slice(cfqd, cfqq);
  2757. cfq_clear_cfqq_slice_new(cfqq);
  2758. }
  2759. /*
  2760. * Should we wait for next request to come in before we expire
  2761. * the queue.
  2762. */
  2763. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2764. cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
  2765. cfq_mark_cfqq_wait_busy(cfqq);
  2766. }
  2767. /*
  2768. * Idling is not enabled on:
  2769. * - expired queues
  2770. * - idle-priority queues
  2771. * - async queues
  2772. * - queues with still some requests queued
  2773. * - when there is a close cooperator
  2774. */
  2775. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2776. cfq_slice_expired(cfqd, 1);
  2777. else if (sync && cfqq_empty &&
  2778. !cfq_close_cooperator(cfqd, cfqq)) {
  2779. cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
  2780. /*
  2781. * Idling is enabled for SYNC_WORKLOAD.
  2782. * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
  2783. * only if we processed at least one !rq_noidle request
  2784. */
  2785. if (cfqd->serving_type == SYNC_WORKLOAD
  2786. || cfqd->noidle_tree_requires_idle
  2787. || cfqq->cfqg->nr_cfqq == 1)
  2788. cfq_arm_slice_timer(cfqd);
  2789. }
  2790. }
  2791. if (!rq_in_driver(cfqd))
  2792. cfq_schedule_dispatch(cfqd);
  2793. }
  2794. /*
  2795. * we temporarily boost lower priority queues if they are holding fs exclusive
  2796. * resources. they are boosted to normal prio (CLASS_BE/4)
  2797. */
  2798. static void cfq_prio_boost(struct cfq_queue *cfqq)
  2799. {
  2800. if (has_fs_excl()) {
  2801. /*
  2802. * boost idle prio on transactions that would lock out other
  2803. * users of the filesystem
  2804. */
  2805. if (cfq_class_idle(cfqq))
  2806. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2807. if (cfqq->ioprio > IOPRIO_NORM)
  2808. cfqq->ioprio = IOPRIO_NORM;
  2809. } else {
  2810. /*
  2811. * unboost the queue (if needed)
  2812. */
  2813. cfqq->ioprio_class = cfqq->org_ioprio_class;
  2814. cfqq->ioprio = cfqq->org_ioprio;
  2815. }
  2816. }
  2817. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2818. {
  2819. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2820. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2821. return ELV_MQUEUE_MUST;
  2822. }
  2823. return ELV_MQUEUE_MAY;
  2824. }
  2825. static int cfq_may_queue(struct request_queue *q, int rw)
  2826. {
  2827. struct cfq_data *cfqd = q->elevator->elevator_data;
  2828. struct task_struct *tsk = current;
  2829. struct cfq_io_context *cic;
  2830. struct cfq_queue *cfqq;
  2831. /*
  2832. * don't force setup of a queue from here, as a call to may_queue
  2833. * does not necessarily imply that a request actually will be queued.
  2834. * so just lookup a possibly existing queue, or return 'may queue'
  2835. * if that fails
  2836. */
  2837. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  2838. if (!cic)
  2839. return ELV_MQUEUE_MAY;
  2840. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  2841. if (cfqq) {
  2842. cfq_init_prio_data(cfqq, cic->ioc);
  2843. cfq_prio_boost(cfqq);
  2844. return __cfq_may_queue(cfqq);
  2845. }
  2846. return ELV_MQUEUE_MAY;
  2847. }
  2848. /*
  2849. * queue lock held here
  2850. */
  2851. static void cfq_put_request(struct request *rq)
  2852. {
  2853. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2854. if (cfqq) {
  2855. const int rw = rq_data_dir(rq);
  2856. BUG_ON(!cfqq->allocated[rw]);
  2857. cfqq->allocated[rw]--;
  2858. put_io_context(RQ_CIC(rq)->ioc);
  2859. rq->elevator_private = NULL;
  2860. rq->elevator_private2 = NULL;
  2861. cfq_put_queue(cfqq);
  2862. }
  2863. }
  2864. static struct cfq_queue *
  2865. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  2866. struct cfq_queue *cfqq)
  2867. {
  2868. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  2869. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  2870. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  2871. cfq_put_queue(cfqq);
  2872. return cic_to_cfqq(cic, 1);
  2873. }
  2874. /*
  2875. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  2876. * was the last process referring to said cfqq.
  2877. */
  2878. static struct cfq_queue *
  2879. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  2880. {
  2881. if (cfqq_process_refs(cfqq) == 1) {
  2882. cfqq->pid = current->pid;
  2883. cfq_clear_cfqq_coop(cfqq);
  2884. cfq_clear_cfqq_split_coop(cfqq);
  2885. return cfqq;
  2886. }
  2887. cic_set_cfqq(cic, NULL, 1);
  2888. cfq_put_queue(cfqq);
  2889. return NULL;
  2890. }
  2891. /*
  2892. * Allocate cfq data structures associated with this request.
  2893. */
  2894. static int
  2895. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  2896. {
  2897. struct cfq_data *cfqd = q->elevator->elevator_data;
  2898. struct cfq_io_context *cic;
  2899. const int rw = rq_data_dir(rq);
  2900. const bool is_sync = rq_is_sync(rq);
  2901. struct cfq_queue *cfqq;
  2902. unsigned long flags;
  2903. might_sleep_if(gfp_mask & __GFP_WAIT);
  2904. cic = cfq_get_io_context(cfqd, gfp_mask);
  2905. spin_lock_irqsave(q->queue_lock, flags);
  2906. if (!cic)
  2907. goto queue_fail;
  2908. new_queue:
  2909. cfqq = cic_to_cfqq(cic, is_sync);
  2910. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2911. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  2912. cic_set_cfqq(cic, cfqq, is_sync);
  2913. } else {
  2914. /*
  2915. * If the queue was seeky for too long, break it apart.
  2916. */
  2917. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  2918. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  2919. cfqq = split_cfqq(cic, cfqq);
  2920. if (!cfqq)
  2921. goto new_queue;
  2922. }
  2923. /*
  2924. * Check to see if this queue is scheduled to merge with
  2925. * another, closely cooperating queue. The merging of
  2926. * queues happens here as it must be done in process context.
  2927. * The reference on new_cfqq was taken in merge_cfqqs.
  2928. */
  2929. if (cfqq->new_cfqq)
  2930. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  2931. }
  2932. cfqq->allocated[rw]++;
  2933. atomic_inc(&cfqq->ref);
  2934. spin_unlock_irqrestore(q->queue_lock, flags);
  2935. rq->elevator_private = cic;
  2936. rq->elevator_private2 = cfqq;
  2937. return 0;
  2938. queue_fail:
  2939. if (cic)
  2940. put_io_context(cic->ioc);
  2941. cfq_schedule_dispatch(cfqd);
  2942. spin_unlock_irqrestore(q->queue_lock, flags);
  2943. cfq_log(cfqd, "set_request fail");
  2944. return 1;
  2945. }
  2946. static void cfq_kick_queue(struct work_struct *work)
  2947. {
  2948. struct cfq_data *cfqd =
  2949. container_of(work, struct cfq_data, unplug_work);
  2950. struct request_queue *q = cfqd->queue;
  2951. spin_lock_irq(q->queue_lock);
  2952. __blk_run_queue(cfqd->queue);
  2953. spin_unlock_irq(q->queue_lock);
  2954. }
  2955. /*
  2956. * Timer running if the active_queue is currently idling inside its time slice
  2957. */
  2958. static void cfq_idle_slice_timer(unsigned long data)
  2959. {
  2960. struct cfq_data *cfqd = (struct cfq_data *) data;
  2961. struct cfq_queue *cfqq;
  2962. unsigned long flags;
  2963. int timed_out = 1;
  2964. cfq_log(cfqd, "idle timer fired");
  2965. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2966. cfqq = cfqd->active_queue;
  2967. if (cfqq) {
  2968. timed_out = 0;
  2969. /*
  2970. * We saw a request before the queue expired, let it through
  2971. */
  2972. if (cfq_cfqq_must_dispatch(cfqq))
  2973. goto out_kick;
  2974. /*
  2975. * expired
  2976. */
  2977. if (cfq_slice_used(cfqq))
  2978. goto expire;
  2979. /*
  2980. * only expire and reinvoke request handler, if there are
  2981. * other queues with pending requests
  2982. */
  2983. if (!cfqd->busy_queues)
  2984. goto out_cont;
  2985. /*
  2986. * not expired and it has a request pending, let it dispatch
  2987. */
  2988. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2989. goto out_kick;
  2990. /*
  2991. * Queue depth flag is reset only when the idle didn't succeed
  2992. */
  2993. cfq_clear_cfqq_deep(cfqq);
  2994. }
  2995. expire:
  2996. cfq_slice_expired(cfqd, timed_out);
  2997. out_kick:
  2998. cfq_schedule_dispatch(cfqd);
  2999. out_cont:
  3000. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3001. }
  3002. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3003. {
  3004. del_timer_sync(&cfqd->idle_slice_timer);
  3005. cancel_work_sync(&cfqd->unplug_work);
  3006. }
  3007. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3008. {
  3009. int i;
  3010. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3011. if (cfqd->async_cfqq[0][i])
  3012. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3013. if (cfqd->async_cfqq[1][i])
  3014. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3015. }
  3016. if (cfqd->async_idle_cfqq)
  3017. cfq_put_queue(cfqd->async_idle_cfqq);
  3018. }
  3019. static void cfq_cfqd_free(struct rcu_head *head)
  3020. {
  3021. kfree(container_of(head, struct cfq_data, rcu));
  3022. }
  3023. static void cfq_exit_queue(struct elevator_queue *e)
  3024. {
  3025. struct cfq_data *cfqd = e->elevator_data;
  3026. struct request_queue *q = cfqd->queue;
  3027. cfq_shutdown_timer_wq(cfqd);
  3028. spin_lock_irq(q->queue_lock);
  3029. if (cfqd->active_queue)
  3030. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3031. while (!list_empty(&cfqd->cic_list)) {
  3032. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3033. struct cfq_io_context,
  3034. queue_list);
  3035. __cfq_exit_single_io_context(cfqd, cic);
  3036. }
  3037. cfq_put_async_queues(cfqd);
  3038. cfq_release_cfq_groups(cfqd);
  3039. blkiocg_del_blkio_group(&cfqd->root_group.blkg);
  3040. spin_unlock_irq(q->queue_lock);
  3041. cfq_shutdown_timer_wq(cfqd);
  3042. /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
  3043. call_rcu(&cfqd->rcu, cfq_cfqd_free);
  3044. }
  3045. static void *cfq_init_queue(struct request_queue *q)
  3046. {
  3047. struct cfq_data *cfqd;
  3048. int i, j;
  3049. struct cfq_group *cfqg;
  3050. struct cfq_rb_root *st;
  3051. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3052. if (!cfqd)
  3053. return NULL;
  3054. /* Init root service tree */
  3055. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3056. /* Init root group */
  3057. cfqg = &cfqd->root_group;
  3058. for_each_cfqg_st(cfqg, i, j, st)
  3059. *st = CFQ_RB_ROOT;
  3060. RB_CLEAR_NODE(&cfqg->rb_node);
  3061. /* Give preference to root group over other groups */
  3062. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3063. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3064. /*
  3065. * Take a reference to root group which we never drop. This is just
  3066. * to make sure that cfq_put_cfqg() does not try to kfree root group
  3067. */
  3068. atomic_set(&cfqg->ref, 1);
  3069. blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
  3070. 0);
  3071. #endif
  3072. /*
  3073. * Not strictly needed (since RB_ROOT just clears the node and we
  3074. * zeroed cfqd on alloc), but better be safe in case someone decides
  3075. * to add magic to the rb code
  3076. */
  3077. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3078. cfqd->prio_trees[i] = RB_ROOT;
  3079. /*
  3080. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3081. * Grab a permanent reference to it, so that the normal code flow
  3082. * will not attempt to free it.
  3083. */
  3084. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3085. atomic_inc(&cfqd->oom_cfqq.ref);
  3086. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3087. INIT_LIST_HEAD(&cfqd->cic_list);
  3088. cfqd->queue = q;
  3089. init_timer(&cfqd->idle_slice_timer);
  3090. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3091. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3092. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3093. cfqd->cfq_quantum = cfq_quantum;
  3094. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3095. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3096. cfqd->cfq_back_max = cfq_back_max;
  3097. cfqd->cfq_back_penalty = cfq_back_penalty;
  3098. cfqd->cfq_slice[0] = cfq_slice_async;
  3099. cfqd->cfq_slice[1] = cfq_slice_sync;
  3100. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3101. cfqd->cfq_slice_idle = cfq_slice_idle;
  3102. cfqd->cfq_latency = 1;
  3103. cfqd->cfq_group_isolation = 0;
  3104. cfqd->hw_tag = -1;
  3105. /*
  3106. * we optimistically start assuming sync ops weren't delayed in last
  3107. * second, in order to have larger depth for async operations.
  3108. */
  3109. cfqd->last_delayed_sync = jiffies - HZ;
  3110. INIT_RCU_HEAD(&cfqd->rcu);
  3111. return cfqd;
  3112. }
  3113. static void cfq_slab_kill(void)
  3114. {
  3115. /*
  3116. * Caller already ensured that pending RCU callbacks are completed,
  3117. * so we should have no busy allocations at this point.
  3118. */
  3119. if (cfq_pool)
  3120. kmem_cache_destroy(cfq_pool);
  3121. if (cfq_ioc_pool)
  3122. kmem_cache_destroy(cfq_ioc_pool);
  3123. }
  3124. static int __init cfq_slab_setup(void)
  3125. {
  3126. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3127. if (!cfq_pool)
  3128. goto fail;
  3129. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3130. if (!cfq_ioc_pool)
  3131. goto fail;
  3132. return 0;
  3133. fail:
  3134. cfq_slab_kill();
  3135. return -ENOMEM;
  3136. }
  3137. /*
  3138. * sysfs parts below -->
  3139. */
  3140. static ssize_t
  3141. cfq_var_show(unsigned int var, char *page)
  3142. {
  3143. return sprintf(page, "%d\n", var);
  3144. }
  3145. static ssize_t
  3146. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3147. {
  3148. char *p = (char *) page;
  3149. *var = simple_strtoul(p, &p, 10);
  3150. return count;
  3151. }
  3152. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3153. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3154. { \
  3155. struct cfq_data *cfqd = e->elevator_data; \
  3156. unsigned int __data = __VAR; \
  3157. if (__CONV) \
  3158. __data = jiffies_to_msecs(__data); \
  3159. return cfq_var_show(__data, (page)); \
  3160. }
  3161. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3162. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3163. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3164. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3165. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3166. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3167. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3168. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3169. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3170. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3171. SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
  3172. #undef SHOW_FUNCTION
  3173. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3174. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3175. { \
  3176. struct cfq_data *cfqd = e->elevator_data; \
  3177. unsigned int __data; \
  3178. int ret = cfq_var_store(&__data, (page), count); \
  3179. if (__data < (MIN)) \
  3180. __data = (MIN); \
  3181. else if (__data > (MAX)) \
  3182. __data = (MAX); \
  3183. if (__CONV) \
  3184. *(__PTR) = msecs_to_jiffies(__data); \
  3185. else \
  3186. *(__PTR) = __data; \
  3187. return ret; \
  3188. }
  3189. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3190. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3191. UINT_MAX, 1);
  3192. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3193. UINT_MAX, 1);
  3194. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3195. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3196. UINT_MAX, 0);
  3197. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3198. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3199. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3200. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3201. UINT_MAX, 0);
  3202. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3203. STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
  3204. #undef STORE_FUNCTION
  3205. #define CFQ_ATTR(name) \
  3206. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3207. static struct elv_fs_entry cfq_attrs[] = {
  3208. CFQ_ATTR(quantum),
  3209. CFQ_ATTR(fifo_expire_sync),
  3210. CFQ_ATTR(fifo_expire_async),
  3211. CFQ_ATTR(back_seek_max),
  3212. CFQ_ATTR(back_seek_penalty),
  3213. CFQ_ATTR(slice_sync),
  3214. CFQ_ATTR(slice_async),
  3215. CFQ_ATTR(slice_async_rq),
  3216. CFQ_ATTR(slice_idle),
  3217. CFQ_ATTR(low_latency),
  3218. CFQ_ATTR(group_isolation),
  3219. __ATTR_NULL
  3220. };
  3221. static struct elevator_type iosched_cfq = {
  3222. .ops = {
  3223. .elevator_merge_fn = cfq_merge,
  3224. .elevator_merged_fn = cfq_merged_request,
  3225. .elevator_merge_req_fn = cfq_merged_requests,
  3226. .elevator_allow_merge_fn = cfq_allow_merge,
  3227. .elevator_dispatch_fn = cfq_dispatch_requests,
  3228. .elevator_add_req_fn = cfq_insert_request,
  3229. .elevator_activate_req_fn = cfq_activate_request,
  3230. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3231. .elevator_queue_empty_fn = cfq_queue_empty,
  3232. .elevator_completed_req_fn = cfq_completed_request,
  3233. .elevator_former_req_fn = elv_rb_former_request,
  3234. .elevator_latter_req_fn = elv_rb_latter_request,
  3235. .elevator_set_req_fn = cfq_set_request,
  3236. .elevator_put_req_fn = cfq_put_request,
  3237. .elevator_may_queue_fn = cfq_may_queue,
  3238. .elevator_init_fn = cfq_init_queue,
  3239. .elevator_exit_fn = cfq_exit_queue,
  3240. .trim = cfq_free_io_context,
  3241. },
  3242. .elevator_attrs = cfq_attrs,
  3243. .elevator_name = "cfq",
  3244. .elevator_owner = THIS_MODULE,
  3245. };
  3246. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3247. static struct blkio_policy_type blkio_policy_cfq = {
  3248. .ops = {
  3249. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3250. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3251. },
  3252. };
  3253. #else
  3254. static struct blkio_policy_type blkio_policy_cfq;
  3255. #endif
  3256. static int __init cfq_init(void)
  3257. {
  3258. /*
  3259. * could be 0 on HZ < 1000 setups
  3260. */
  3261. if (!cfq_slice_async)
  3262. cfq_slice_async = 1;
  3263. if (!cfq_slice_idle)
  3264. cfq_slice_idle = 1;
  3265. if (cfq_slab_setup())
  3266. return -ENOMEM;
  3267. elv_register(&iosched_cfq);
  3268. blkio_policy_register(&blkio_policy_cfq);
  3269. return 0;
  3270. }
  3271. static void __exit cfq_exit(void)
  3272. {
  3273. DECLARE_COMPLETION_ONSTACK(all_gone);
  3274. blkio_policy_unregister(&blkio_policy_cfq);
  3275. elv_unregister(&iosched_cfq);
  3276. ioc_gone = &all_gone;
  3277. /* ioc_gone's update must be visible before reading ioc_count */
  3278. smp_wmb();
  3279. /*
  3280. * this also protects us from entering cfq_slab_kill() with
  3281. * pending RCU callbacks
  3282. */
  3283. if (elv_ioc_count_read(cfq_ioc_count))
  3284. wait_for_completion(&all_gone);
  3285. cfq_slab_kill();
  3286. }
  3287. module_init(cfq_init);
  3288. module_exit(cfq_exit);
  3289. MODULE_AUTHOR("Jens Axboe");
  3290. MODULE_LICENSE("GPL");
  3291. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");