main.c 72 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/nl80211.h>
  17. #include "ath9k.h"
  18. #define ATH_PCI_VERSION "0.1"
  19. static char *dev_info = "ath9k";
  20. MODULE_AUTHOR("Atheros Communications");
  21. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  22. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  23. MODULE_LICENSE("Dual BSD/GPL");
  24. static int modparam_nohwcrypt;
  25. module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
  26. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
  27. /* We use the hw_value as an index into our private channel structure */
  28. #define CHAN2G(_freq, _idx) { \
  29. .center_freq = (_freq), \
  30. .hw_value = (_idx), \
  31. .max_power = 30, \
  32. }
  33. #define CHAN5G(_freq, _idx) { \
  34. .band = IEEE80211_BAND_5GHZ, \
  35. .center_freq = (_freq), \
  36. .hw_value = (_idx), \
  37. .max_power = 30, \
  38. }
  39. /* Some 2 GHz radios are actually tunable on 2312-2732
  40. * on 5 MHz steps, we support the channels which we know
  41. * we have calibration data for all cards though to make
  42. * this static */
  43. static struct ieee80211_channel ath9k_2ghz_chantable[] = {
  44. CHAN2G(2412, 0), /* Channel 1 */
  45. CHAN2G(2417, 1), /* Channel 2 */
  46. CHAN2G(2422, 2), /* Channel 3 */
  47. CHAN2G(2427, 3), /* Channel 4 */
  48. CHAN2G(2432, 4), /* Channel 5 */
  49. CHAN2G(2437, 5), /* Channel 6 */
  50. CHAN2G(2442, 6), /* Channel 7 */
  51. CHAN2G(2447, 7), /* Channel 8 */
  52. CHAN2G(2452, 8), /* Channel 9 */
  53. CHAN2G(2457, 9), /* Channel 10 */
  54. CHAN2G(2462, 10), /* Channel 11 */
  55. CHAN2G(2467, 11), /* Channel 12 */
  56. CHAN2G(2472, 12), /* Channel 13 */
  57. CHAN2G(2484, 13), /* Channel 14 */
  58. };
  59. /* Some 5 GHz radios are actually tunable on XXXX-YYYY
  60. * on 5 MHz steps, we support the channels which we know
  61. * we have calibration data for all cards though to make
  62. * this static */
  63. static struct ieee80211_channel ath9k_5ghz_chantable[] = {
  64. /* _We_ call this UNII 1 */
  65. CHAN5G(5180, 14), /* Channel 36 */
  66. CHAN5G(5200, 15), /* Channel 40 */
  67. CHAN5G(5220, 16), /* Channel 44 */
  68. CHAN5G(5240, 17), /* Channel 48 */
  69. /* _We_ call this UNII 2 */
  70. CHAN5G(5260, 18), /* Channel 52 */
  71. CHAN5G(5280, 19), /* Channel 56 */
  72. CHAN5G(5300, 20), /* Channel 60 */
  73. CHAN5G(5320, 21), /* Channel 64 */
  74. /* _We_ call this "Middle band" */
  75. CHAN5G(5500, 22), /* Channel 100 */
  76. CHAN5G(5520, 23), /* Channel 104 */
  77. CHAN5G(5540, 24), /* Channel 108 */
  78. CHAN5G(5560, 25), /* Channel 112 */
  79. CHAN5G(5580, 26), /* Channel 116 */
  80. CHAN5G(5600, 27), /* Channel 120 */
  81. CHAN5G(5620, 28), /* Channel 124 */
  82. CHAN5G(5640, 29), /* Channel 128 */
  83. CHAN5G(5660, 30), /* Channel 132 */
  84. CHAN5G(5680, 31), /* Channel 136 */
  85. CHAN5G(5700, 32), /* Channel 140 */
  86. /* _We_ call this UNII 3 */
  87. CHAN5G(5745, 33), /* Channel 149 */
  88. CHAN5G(5765, 34), /* Channel 153 */
  89. CHAN5G(5785, 35), /* Channel 157 */
  90. CHAN5G(5805, 36), /* Channel 161 */
  91. CHAN5G(5825, 37), /* Channel 165 */
  92. };
  93. static void ath_cache_conf_rate(struct ath_softc *sc,
  94. struct ieee80211_conf *conf)
  95. {
  96. switch (conf->channel->band) {
  97. case IEEE80211_BAND_2GHZ:
  98. if (conf_is_ht20(conf))
  99. sc->cur_rate_table =
  100. sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
  101. else if (conf_is_ht40_minus(conf))
  102. sc->cur_rate_table =
  103. sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
  104. else if (conf_is_ht40_plus(conf))
  105. sc->cur_rate_table =
  106. sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
  107. else
  108. sc->cur_rate_table =
  109. sc->hw_rate_table[ATH9K_MODE_11G];
  110. break;
  111. case IEEE80211_BAND_5GHZ:
  112. if (conf_is_ht20(conf))
  113. sc->cur_rate_table =
  114. sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
  115. else if (conf_is_ht40_minus(conf))
  116. sc->cur_rate_table =
  117. sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
  118. else if (conf_is_ht40_plus(conf))
  119. sc->cur_rate_table =
  120. sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
  121. else
  122. sc->cur_rate_table =
  123. sc->hw_rate_table[ATH9K_MODE_11A];
  124. break;
  125. default:
  126. BUG_ON(1);
  127. break;
  128. }
  129. }
  130. static void ath_update_txpow(struct ath_softc *sc)
  131. {
  132. struct ath_hw *ah = sc->sc_ah;
  133. u32 txpow;
  134. if (sc->curtxpow != sc->config.txpowlimit) {
  135. ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
  136. /* read back in case value is clamped */
  137. ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
  138. sc->curtxpow = txpow;
  139. }
  140. }
  141. static u8 parse_mpdudensity(u8 mpdudensity)
  142. {
  143. /*
  144. * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
  145. * 0 for no restriction
  146. * 1 for 1/4 us
  147. * 2 for 1/2 us
  148. * 3 for 1 us
  149. * 4 for 2 us
  150. * 5 for 4 us
  151. * 6 for 8 us
  152. * 7 for 16 us
  153. */
  154. switch (mpdudensity) {
  155. case 0:
  156. return 0;
  157. case 1:
  158. case 2:
  159. case 3:
  160. /* Our lower layer calculations limit our precision to
  161. 1 microsecond */
  162. return 1;
  163. case 4:
  164. return 2;
  165. case 5:
  166. return 4;
  167. case 6:
  168. return 8;
  169. case 7:
  170. return 16;
  171. default:
  172. return 0;
  173. }
  174. }
  175. static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
  176. {
  177. struct ath_rate_table *rate_table = NULL;
  178. struct ieee80211_supported_band *sband;
  179. struct ieee80211_rate *rate;
  180. int i, maxrates;
  181. switch (band) {
  182. case IEEE80211_BAND_2GHZ:
  183. rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
  184. break;
  185. case IEEE80211_BAND_5GHZ:
  186. rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
  187. break;
  188. default:
  189. break;
  190. }
  191. if (rate_table == NULL)
  192. return;
  193. sband = &sc->sbands[band];
  194. rate = sc->rates[band];
  195. if (rate_table->rate_cnt > ATH_RATE_MAX)
  196. maxrates = ATH_RATE_MAX;
  197. else
  198. maxrates = rate_table->rate_cnt;
  199. for (i = 0; i < maxrates; i++) {
  200. rate[i].bitrate = rate_table->info[i].ratekbps / 100;
  201. rate[i].hw_value = rate_table->info[i].ratecode;
  202. if (rate_table->info[i].short_preamble) {
  203. rate[i].hw_value_short = rate_table->info[i].ratecode |
  204. rate_table->info[i].short_preamble;
  205. rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
  206. }
  207. sband->n_bitrates++;
  208. DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
  209. rate[i].bitrate / 10, rate[i].hw_value);
  210. }
  211. }
  212. /*
  213. * Set/change channels. If the channel is really being changed, it's done
  214. * by reseting the chip. To accomplish this we must first cleanup any pending
  215. * DMA, then restart stuff.
  216. */
  217. int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
  218. struct ath9k_channel *hchan)
  219. {
  220. struct ath_hw *ah = sc->sc_ah;
  221. bool fastcc = true, stopped;
  222. struct ieee80211_channel *channel = hw->conf.channel;
  223. int r;
  224. if (sc->sc_flags & SC_OP_INVALID)
  225. return -EIO;
  226. ath9k_ps_wakeup(sc);
  227. /*
  228. * This is only performed if the channel settings have
  229. * actually changed.
  230. *
  231. * To switch channels clear any pending DMA operations;
  232. * wait long enough for the RX fifo to drain, reset the
  233. * hardware at the new frequency, and then re-enable
  234. * the relevant bits of the h/w.
  235. */
  236. ath9k_hw_set_interrupts(ah, 0);
  237. ath_drain_all_txq(sc, false);
  238. stopped = ath_stoprecv(sc);
  239. /* XXX: do not flush receive queue here. We don't want
  240. * to flush data frames already in queue because of
  241. * changing channel. */
  242. if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
  243. fastcc = false;
  244. DPRINTF(sc, ATH_DBG_CONFIG,
  245. "(%u MHz) -> (%u MHz), chanwidth: %d\n",
  246. sc->sc_ah->curchan->channel,
  247. channel->center_freq, sc->tx_chan_width);
  248. spin_lock_bh(&sc->sc_resetlock);
  249. r = ath9k_hw_reset(ah, hchan, fastcc);
  250. if (r) {
  251. DPRINTF(sc, ATH_DBG_FATAL,
  252. "Unable to reset channel (%u Mhz) "
  253. "reset status %u\n",
  254. channel->center_freq, r);
  255. spin_unlock_bh(&sc->sc_resetlock);
  256. return r;
  257. }
  258. spin_unlock_bh(&sc->sc_resetlock);
  259. sc->sc_flags &= ~SC_OP_FULL_RESET;
  260. if (ath_startrecv(sc) != 0) {
  261. DPRINTF(sc, ATH_DBG_FATAL,
  262. "Unable to restart recv logic\n");
  263. return -EIO;
  264. }
  265. ath_cache_conf_rate(sc, &hw->conf);
  266. ath_update_txpow(sc);
  267. ath9k_hw_set_interrupts(ah, sc->imask);
  268. ath9k_ps_restore(sc);
  269. return 0;
  270. }
  271. /*
  272. * This routine performs the periodic noise floor calibration function
  273. * that is used to adjust and optimize the chip performance. This
  274. * takes environmental changes (location, temperature) into account.
  275. * When the task is complete, it reschedules itself depending on the
  276. * appropriate interval that was calculated.
  277. */
  278. static void ath_ani_calibrate(unsigned long data)
  279. {
  280. struct ath_softc *sc = (struct ath_softc *)data;
  281. struct ath_hw *ah = sc->sc_ah;
  282. bool longcal = false;
  283. bool shortcal = false;
  284. bool aniflag = false;
  285. unsigned int timestamp = jiffies_to_msecs(jiffies);
  286. u32 cal_interval, short_cal_interval;
  287. short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
  288. ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
  289. /*
  290. * don't calibrate when we're scanning.
  291. * we are most likely not on our home channel.
  292. */
  293. if (sc->sc_flags & SC_OP_SCANNING)
  294. goto set_timer;
  295. /* Long calibration runs independently of short calibration. */
  296. if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
  297. longcal = true;
  298. DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
  299. sc->ani.longcal_timer = timestamp;
  300. }
  301. /* Short calibration applies only while caldone is false */
  302. if (!sc->ani.caldone) {
  303. if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
  304. shortcal = true;
  305. DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
  306. sc->ani.shortcal_timer = timestamp;
  307. sc->ani.resetcal_timer = timestamp;
  308. }
  309. } else {
  310. if ((timestamp - sc->ani.resetcal_timer) >=
  311. ATH_RESTART_CALINTERVAL) {
  312. sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
  313. if (sc->ani.caldone)
  314. sc->ani.resetcal_timer = timestamp;
  315. }
  316. }
  317. /* Verify whether we must check ANI */
  318. if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
  319. aniflag = true;
  320. sc->ani.checkani_timer = timestamp;
  321. }
  322. /* Skip all processing if there's nothing to do. */
  323. if (longcal || shortcal || aniflag) {
  324. /* Call ANI routine if necessary */
  325. if (aniflag)
  326. ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
  327. /* Perform calibration if necessary */
  328. if (longcal || shortcal) {
  329. bool iscaldone = false;
  330. if (ath9k_hw_calibrate(ah, ah->curchan,
  331. sc->rx_chainmask, longcal,
  332. &iscaldone)) {
  333. if (longcal)
  334. sc->ani.noise_floor =
  335. ath9k_hw_getchan_noise(ah,
  336. ah->curchan);
  337. DPRINTF(sc, ATH_DBG_ANI,
  338. "calibrate chan %u/%x nf: %d\n",
  339. ah->curchan->channel,
  340. ah->curchan->channelFlags,
  341. sc->ani.noise_floor);
  342. } else {
  343. DPRINTF(sc, ATH_DBG_ANY,
  344. "calibrate chan %u/%x failed\n",
  345. ah->curchan->channel,
  346. ah->curchan->channelFlags);
  347. }
  348. sc->ani.caldone = iscaldone;
  349. }
  350. }
  351. set_timer:
  352. /*
  353. * Set timer interval based on previous results.
  354. * The interval must be the shortest necessary to satisfy ANI,
  355. * short calibration and long calibration.
  356. */
  357. cal_interval = ATH_LONG_CALINTERVAL;
  358. if (sc->sc_ah->config.enable_ani)
  359. cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
  360. if (!sc->ani.caldone)
  361. cal_interval = min(cal_interval, (u32)short_cal_interval);
  362. mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
  363. }
  364. static void ath_start_ani(struct ath_softc *sc)
  365. {
  366. unsigned long timestamp = jiffies_to_msecs(jiffies);
  367. sc->ani.longcal_timer = timestamp;
  368. sc->ani.shortcal_timer = timestamp;
  369. sc->ani.checkani_timer = timestamp;
  370. mod_timer(&sc->ani.timer,
  371. jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
  372. }
  373. /*
  374. * Update tx/rx chainmask. For legacy association,
  375. * hard code chainmask to 1x1, for 11n association, use
  376. * the chainmask configuration, for bt coexistence, use
  377. * the chainmask configuration even in legacy mode.
  378. */
  379. void ath_update_chainmask(struct ath_softc *sc, int is_ht)
  380. {
  381. if (is_ht ||
  382. (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
  383. sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
  384. sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
  385. } else {
  386. sc->tx_chainmask = 1;
  387. sc->rx_chainmask = 1;
  388. }
  389. DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
  390. sc->tx_chainmask, sc->rx_chainmask);
  391. }
  392. static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
  393. {
  394. struct ath_node *an;
  395. an = (struct ath_node *)sta->drv_priv;
  396. if (sc->sc_flags & SC_OP_TXAGGR) {
  397. ath_tx_node_init(sc, an);
  398. an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
  399. sta->ht_cap.ampdu_factor);
  400. an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
  401. }
  402. }
  403. static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
  404. {
  405. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  406. if (sc->sc_flags & SC_OP_TXAGGR)
  407. ath_tx_node_cleanup(sc, an);
  408. }
  409. static void ath9k_tasklet(unsigned long data)
  410. {
  411. struct ath_softc *sc = (struct ath_softc *)data;
  412. u32 status = sc->intrstatus;
  413. if (status & ATH9K_INT_FATAL) {
  414. ath_reset(sc, false);
  415. return;
  416. }
  417. if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
  418. spin_lock_bh(&sc->rx.rxflushlock);
  419. ath_rx_tasklet(sc, 0);
  420. spin_unlock_bh(&sc->rx.rxflushlock);
  421. }
  422. if (status & ATH9K_INT_TX)
  423. ath_tx_tasklet(sc);
  424. /* re-enable hardware interrupt */
  425. ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
  426. }
  427. irqreturn_t ath_isr(int irq, void *dev)
  428. {
  429. #define SCHED_INTR ( \
  430. ATH9K_INT_FATAL | \
  431. ATH9K_INT_RXORN | \
  432. ATH9K_INT_RXEOL | \
  433. ATH9K_INT_RX | \
  434. ATH9K_INT_TX | \
  435. ATH9K_INT_BMISS | \
  436. ATH9K_INT_CST | \
  437. ATH9K_INT_TSFOOR)
  438. struct ath_softc *sc = dev;
  439. struct ath_hw *ah = sc->sc_ah;
  440. enum ath9k_int status;
  441. bool sched = false;
  442. /*
  443. * The hardware is not ready/present, don't
  444. * touch anything. Note this can happen early
  445. * on if the IRQ is shared.
  446. */
  447. if (sc->sc_flags & SC_OP_INVALID)
  448. return IRQ_NONE;
  449. ath9k_ps_wakeup(sc);
  450. /* shared irq, not for us */
  451. if (!ath9k_hw_intrpend(ah)) {
  452. ath9k_ps_restore(sc);
  453. return IRQ_NONE;
  454. }
  455. /*
  456. * Figure out the reason(s) for the interrupt. Note
  457. * that the hal returns a pseudo-ISR that may include
  458. * bits we haven't explicitly enabled so we mask the
  459. * value to insure we only process bits we requested.
  460. */
  461. ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
  462. status &= sc->imask; /* discard unasked-for bits */
  463. /*
  464. * If there are no status bits set, then this interrupt was not
  465. * for me (should have been caught above).
  466. */
  467. if (!status) {
  468. ath9k_ps_restore(sc);
  469. return IRQ_NONE;
  470. }
  471. /* Cache the status */
  472. sc->intrstatus = status;
  473. if (status & SCHED_INTR)
  474. sched = true;
  475. /*
  476. * If a FATAL or RXORN interrupt is received, we have to reset the
  477. * chip immediately.
  478. */
  479. if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
  480. goto chip_reset;
  481. if (status & ATH9K_INT_SWBA)
  482. tasklet_schedule(&sc->bcon_tasklet);
  483. if (status & ATH9K_INT_TXURN)
  484. ath9k_hw_updatetxtriglevel(ah, true);
  485. if (status & ATH9K_INT_MIB) {
  486. /*
  487. * Disable interrupts until we service the MIB
  488. * interrupt; otherwise it will continue to
  489. * fire.
  490. */
  491. ath9k_hw_set_interrupts(ah, 0);
  492. /*
  493. * Let the hal handle the event. We assume
  494. * it will clear whatever condition caused
  495. * the interrupt.
  496. */
  497. ath9k_hw_procmibevent(ah, &sc->nodestats);
  498. ath9k_hw_set_interrupts(ah, sc->imask);
  499. }
  500. if (status & ATH9K_INT_TIM_TIMER) {
  501. if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  502. /* Clear RxAbort bit so that we can
  503. * receive frames */
  504. ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
  505. ath9k_hw_setrxabort(ah, 0);
  506. sched = true;
  507. sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
  508. }
  509. }
  510. chip_reset:
  511. ath9k_ps_restore(sc);
  512. ath_debug_stat_interrupt(sc, status);
  513. if (sched) {
  514. /* turn off every interrupt except SWBA */
  515. ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
  516. tasklet_schedule(&sc->intr_tq);
  517. }
  518. return IRQ_HANDLED;
  519. #undef SCHED_INTR
  520. }
  521. static u32 ath_get_extchanmode(struct ath_softc *sc,
  522. struct ieee80211_channel *chan,
  523. enum nl80211_channel_type channel_type)
  524. {
  525. u32 chanmode = 0;
  526. switch (chan->band) {
  527. case IEEE80211_BAND_2GHZ:
  528. switch(channel_type) {
  529. case NL80211_CHAN_NO_HT:
  530. case NL80211_CHAN_HT20:
  531. chanmode = CHANNEL_G_HT20;
  532. break;
  533. case NL80211_CHAN_HT40PLUS:
  534. chanmode = CHANNEL_G_HT40PLUS;
  535. break;
  536. case NL80211_CHAN_HT40MINUS:
  537. chanmode = CHANNEL_G_HT40MINUS;
  538. break;
  539. }
  540. break;
  541. case IEEE80211_BAND_5GHZ:
  542. switch(channel_type) {
  543. case NL80211_CHAN_NO_HT:
  544. case NL80211_CHAN_HT20:
  545. chanmode = CHANNEL_A_HT20;
  546. break;
  547. case NL80211_CHAN_HT40PLUS:
  548. chanmode = CHANNEL_A_HT40PLUS;
  549. break;
  550. case NL80211_CHAN_HT40MINUS:
  551. chanmode = CHANNEL_A_HT40MINUS;
  552. break;
  553. }
  554. break;
  555. default:
  556. break;
  557. }
  558. return chanmode;
  559. }
  560. static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
  561. struct ath9k_keyval *hk, const u8 *addr,
  562. bool authenticator)
  563. {
  564. const u8 *key_rxmic;
  565. const u8 *key_txmic;
  566. key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
  567. key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
  568. if (addr == NULL) {
  569. /*
  570. * Group key installation - only two key cache entries are used
  571. * regardless of splitmic capability since group key is only
  572. * used either for TX or RX.
  573. */
  574. if (authenticator) {
  575. memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
  576. memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
  577. } else {
  578. memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
  579. memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
  580. }
  581. return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
  582. }
  583. if (!sc->splitmic) {
  584. /* TX and RX keys share the same key cache entry. */
  585. memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
  586. memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
  587. return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
  588. }
  589. /* Separate key cache entries for TX and RX */
  590. /* TX key goes at first index, RX key at +32. */
  591. memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
  592. if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
  593. /* TX MIC entry failed. No need to proceed further */
  594. DPRINTF(sc, ATH_DBG_FATAL,
  595. "Setting TX MIC Key Failed\n");
  596. return 0;
  597. }
  598. memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
  599. /* XXX delete tx key on failure? */
  600. return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
  601. }
  602. static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
  603. {
  604. int i;
  605. for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
  606. if (test_bit(i, sc->keymap) ||
  607. test_bit(i + 64, sc->keymap))
  608. continue; /* At least one part of TKIP key allocated */
  609. if (sc->splitmic &&
  610. (test_bit(i + 32, sc->keymap) ||
  611. test_bit(i + 64 + 32, sc->keymap)))
  612. continue; /* At least one part of TKIP key allocated */
  613. /* Found a free slot for a TKIP key */
  614. return i;
  615. }
  616. return -1;
  617. }
  618. static int ath_reserve_key_cache_slot(struct ath_softc *sc)
  619. {
  620. int i;
  621. /* First, try to find slots that would not be available for TKIP. */
  622. if (sc->splitmic) {
  623. for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
  624. if (!test_bit(i, sc->keymap) &&
  625. (test_bit(i + 32, sc->keymap) ||
  626. test_bit(i + 64, sc->keymap) ||
  627. test_bit(i + 64 + 32, sc->keymap)))
  628. return i;
  629. if (!test_bit(i + 32, sc->keymap) &&
  630. (test_bit(i, sc->keymap) ||
  631. test_bit(i + 64, sc->keymap) ||
  632. test_bit(i + 64 + 32, sc->keymap)))
  633. return i + 32;
  634. if (!test_bit(i + 64, sc->keymap) &&
  635. (test_bit(i , sc->keymap) ||
  636. test_bit(i + 32, sc->keymap) ||
  637. test_bit(i + 64 + 32, sc->keymap)))
  638. return i + 64;
  639. if (!test_bit(i + 64 + 32, sc->keymap) &&
  640. (test_bit(i, sc->keymap) ||
  641. test_bit(i + 32, sc->keymap) ||
  642. test_bit(i + 64, sc->keymap)))
  643. return i + 64 + 32;
  644. }
  645. } else {
  646. for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
  647. if (!test_bit(i, sc->keymap) &&
  648. test_bit(i + 64, sc->keymap))
  649. return i;
  650. if (test_bit(i, sc->keymap) &&
  651. !test_bit(i + 64, sc->keymap))
  652. return i + 64;
  653. }
  654. }
  655. /* No partially used TKIP slots, pick any available slot */
  656. for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
  657. /* Do not allow slots that could be needed for TKIP group keys
  658. * to be used. This limitation could be removed if we know that
  659. * TKIP will not be used. */
  660. if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
  661. continue;
  662. if (sc->splitmic) {
  663. if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
  664. continue;
  665. if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
  666. continue;
  667. }
  668. if (!test_bit(i, sc->keymap))
  669. return i; /* Found a free slot for a key */
  670. }
  671. /* No free slot found */
  672. return -1;
  673. }
  674. static int ath_key_config(struct ath_softc *sc,
  675. struct ieee80211_vif *vif,
  676. struct ieee80211_sta *sta,
  677. struct ieee80211_key_conf *key)
  678. {
  679. struct ath9k_keyval hk;
  680. const u8 *mac = NULL;
  681. int ret = 0;
  682. int idx;
  683. memset(&hk, 0, sizeof(hk));
  684. switch (key->alg) {
  685. case ALG_WEP:
  686. hk.kv_type = ATH9K_CIPHER_WEP;
  687. break;
  688. case ALG_TKIP:
  689. hk.kv_type = ATH9K_CIPHER_TKIP;
  690. break;
  691. case ALG_CCMP:
  692. hk.kv_type = ATH9K_CIPHER_AES_CCM;
  693. break;
  694. default:
  695. return -EOPNOTSUPP;
  696. }
  697. hk.kv_len = key->keylen;
  698. memcpy(hk.kv_val, key->key, key->keylen);
  699. if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
  700. /* For now, use the default keys for broadcast keys. This may
  701. * need to change with virtual interfaces. */
  702. idx = key->keyidx;
  703. } else if (key->keyidx) {
  704. if (WARN_ON(!sta))
  705. return -EOPNOTSUPP;
  706. mac = sta->addr;
  707. if (vif->type != NL80211_IFTYPE_AP) {
  708. /* Only keyidx 0 should be used with unicast key, but
  709. * allow this for client mode for now. */
  710. idx = key->keyidx;
  711. } else
  712. return -EIO;
  713. } else {
  714. if (WARN_ON(!sta))
  715. return -EOPNOTSUPP;
  716. mac = sta->addr;
  717. if (key->alg == ALG_TKIP)
  718. idx = ath_reserve_key_cache_slot_tkip(sc);
  719. else
  720. idx = ath_reserve_key_cache_slot(sc);
  721. if (idx < 0)
  722. return -ENOSPC; /* no free key cache entries */
  723. }
  724. if (key->alg == ALG_TKIP)
  725. ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
  726. vif->type == NL80211_IFTYPE_AP);
  727. else
  728. ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
  729. if (!ret)
  730. return -EIO;
  731. set_bit(idx, sc->keymap);
  732. if (key->alg == ALG_TKIP) {
  733. set_bit(idx + 64, sc->keymap);
  734. if (sc->splitmic) {
  735. set_bit(idx + 32, sc->keymap);
  736. set_bit(idx + 64 + 32, sc->keymap);
  737. }
  738. }
  739. return idx;
  740. }
  741. static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
  742. {
  743. ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
  744. if (key->hw_key_idx < IEEE80211_WEP_NKID)
  745. return;
  746. clear_bit(key->hw_key_idx, sc->keymap);
  747. if (key->alg != ALG_TKIP)
  748. return;
  749. clear_bit(key->hw_key_idx + 64, sc->keymap);
  750. if (sc->splitmic) {
  751. clear_bit(key->hw_key_idx + 32, sc->keymap);
  752. clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
  753. }
  754. }
  755. static void setup_ht_cap(struct ath_softc *sc,
  756. struct ieee80211_sta_ht_cap *ht_info)
  757. {
  758. #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
  759. #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
  760. ht_info->ht_supported = true;
  761. ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
  762. IEEE80211_HT_CAP_SM_PS |
  763. IEEE80211_HT_CAP_SGI_40 |
  764. IEEE80211_HT_CAP_DSSSCCK40;
  765. ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
  766. ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
  767. /* set up supported mcs set */
  768. memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
  769. switch(sc->rx_chainmask) {
  770. case 1:
  771. ht_info->mcs.rx_mask[0] = 0xff;
  772. break;
  773. case 3:
  774. case 5:
  775. case 7:
  776. default:
  777. ht_info->mcs.rx_mask[0] = 0xff;
  778. ht_info->mcs.rx_mask[1] = 0xff;
  779. break;
  780. }
  781. ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
  782. }
  783. static void ath9k_bss_assoc_info(struct ath_softc *sc,
  784. struct ieee80211_vif *vif,
  785. struct ieee80211_bss_conf *bss_conf)
  786. {
  787. struct ath_vif *avp = (void *)vif->drv_priv;
  788. if (bss_conf->assoc) {
  789. DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
  790. bss_conf->aid, sc->curbssid);
  791. /* New association, store aid */
  792. if (avp->av_opmode == NL80211_IFTYPE_STATION) {
  793. sc->curaid = bss_conf->aid;
  794. ath9k_hw_write_associd(sc);
  795. }
  796. /* Configure the beacon */
  797. ath_beacon_config(sc, vif);
  798. /* Reset rssi stats */
  799. sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
  800. sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
  801. sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
  802. sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
  803. ath_start_ani(sc);
  804. } else {
  805. DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
  806. sc->curaid = 0;
  807. }
  808. }
  809. /********************************/
  810. /* LED functions */
  811. /********************************/
  812. static void ath_led_blink_work(struct work_struct *work)
  813. {
  814. struct ath_softc *sc = container_of(work, struct ath_softc,
  815. ath_led_blink_work.work);
  816. if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
  817. return;
  818. if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
  819. (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
  820. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
  821. else
  822. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
  823. (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
  824. queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
  825. (sc->sc_flags & SC_OP_LED_ON) ?
  826. msecs_to_jiffies(sc->led_off_duration) :
  827. msecs_to_jiffies(sc->led_on_duration));
  828. sc->led_on_duration = sc->led_on_cnt ?
  829. max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
  830. ATH_LED_ON_DURATION_IDLE;
  831. sc->led_off_duration = sc->led_off_cnt ?
  832. max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
  833. ATH_LED_OFF_DURATION_IDLE;
  834. sc->led_on_cnt = sc->led_off_cnt = 0;
  835. if (sc->sc_flags & SC_OP_LED_ON)
  836. sc->sc_flags &= ~SC_OP_LED_ON;
  837. else
  838. sc->sc_flags |= SC_OP_LED_ON;
  839. }
  840. static void ath_led_brightness(struct led_classdev *led_cdev,
  841. enum led_brightness brightness)
  842. {
  843. struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
  844. struct ath_softc *sc = led->sc;
  845. switch (brightness) {
  846. case LED_OFF:
  847. if (led->led_type == ATH_LED_ASSOC ||
  848. led->led_type == ATH_LED_RADIO) {
  849. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
  850. (led->led_type == ATH_LED_RADIO));
  851. sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
  852. if (led->led_type == ATH_LED_RADIO)
  853. sc->sc_flags &= ~SC_OP_LED_ON;
  854. } else {
  855. sc->led_off_cnt++;
  856. }
  857. break;
  858. case LED_FULL:
  859. if (led->led_type == ATH_LED_ASSOC) {
  860. sc->sc_flags |= SC_OP_LED_ASSOCIATED;
  861. queue_delayed_work(sc->hw->workqueue,
  862. &sc->ath_led_blink_work, 0);
  863. } else if (led->led_type == ATH_LED_RADIO) {
  864. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
  865. sc->sc_flags |= SC_OP_LED_ON;
  866. } else {
  867. sc->led_on_cnt++;
  868. }
  869. break;
  870. default:
  871. break;
  872. }
  873. }
  874. static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
  875. char *trigger)
  876. {
  877. int ret;
  878. led->sc = sc;
  879. led->led_cdev.name = led->name;
  880. led->led_cdev.default_trigger = trigger;
  881. led->led_cdev.brightness_set = ath_led_brightness;
  882. ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
  883. if (ret)
  884. DPRINTF(sc, ATH_DBG_FATAL,
  885. "Failed to register led:%s", led->name);
  886. else
  887. led->registered = 1;
  888. return ret;
  889. }
  890. static void ath_unregister_led(struct ath_led *led)
  891. {
  892. if (led->registered) {
  893. led_classdev_unregister(&led->led_cdev);
  894. led->registered = 0;
  895. }
  896. }
  897. static void ath_deinit_leds(struct ath_softc *sc)
  898. {
  899. cancel_delayed_work_sync(&sc->ath_led_blink_work);
  900. ath_unregister_led(&sc->assoc_led);
  901. sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
  902. ath_unregister_led(&sc->tx_led);
  903. ath_unregister_led(&sc->rx_led);
  904. ath_unregister_led(&sc->radio_led);
  905. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
  906. }
  907. static void ath_init_leds(struct ath_softc *sc)
  908. {
  909. char *trigger;
  910. int ret;
  911. /* Configure gpio 1 for output */
  912. ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
  913. AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  914. /* LED off, active low */
  915. ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
  916. INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
  917. trigger = ieee80211_get_radio_led_name(sc->hw);
  918. snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
  919. "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
  920. ret = ath_register_led(sc, &sc->radio_led, trigger);
  921. sc->radio_led.led_type = ATH_LED_RADIO;
  922. if (ret)
  923. goto fail;
  924. trigger = ieee80211_get_assoc_led_name(sc->hw);
  925. snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
  926. "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
  927. ret = ath_register_led(sc, &sc->assoc_led, trigger);
  928. sc->assoc_led.led_type = ATH_LED_ASSOC;
  929. if (ret)
  930. goto fail;
  931. trigger = ieee80211_get_tx_led_name(sc->hw);
  932. snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
  933. "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
  934. ret = ath_register_led(sc, &sc->tx_led, trigger);
  935. sc->tx_led.led_type = ATH_LED_TX;
  936. if (ret)
  937. goto fail;
  938. trigger = ieee80211_get_rx_led_name(sc->hw);
  939. snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
  940. "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
  941. ret = ath_register_led(sc, &sc->rx_led, trigger);
  942. sc->rx_led.led_type = ATH_LED_RX;
  943. if (ret)
  944. goto fail;
  945. return;
  946. fail:
  947. ath_deinit_leds(sc);
  948. }
  949. void ath_radio_enable(struct ath_softc *sc)
  950. {
  951. struct ath_hw *ah = sc->sc_ah;
  952. struct ieee80211_channel *channel = sc->hw->conf.channel;
  953. int r;
  954. ath9k_ps_wakeup(sc);
  955. ath9k_hw_configpcipowersave(ah, 0);
  956. spin_lock_bh(&sc->sc_resetlock);
  957. r = ath9k_hw_reset(ah, ah->curchan, false);
  958. if (r) {
  959. DPRINTF(sc, ATH_DBG_FATAL,
  960. "Unable to reset channel %u (%uMhz) ",
  961. "reset status %u\n",
  962. channel->center_freq, r);
  963. }
  964. spin_unlock_bh(&sc->sc_resetlock);
  965. ath_update_txpow(sc);
  966. if (ath_startrecv(sc) != 0) {
  967. DPRINTF(sc, ATH_DBG_FATAL,
  968. "Unable to restart recv logic\n");
  969. return;
  970. }
  971. if (sc->sc_flags & SC_OP_BEACONS)
  972. ath_beacon_config(sc, NULL); /* restart beacons */
  973. /* Re-Enable interrupts */
  974. ath9k_hw_set_interrupts(ah, sc->imask);
  975. /* Enable LED */
  976. ath9k_hw_cfg_output(ah, ATH_LED_PIN,
  977. AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  978. ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
  979. ieee80211_wake_queues(sc->hw);
  980. ath9k_ps_restore(sc);
  981. }
  982. void ath_radio_disable(struct ath_softc *sc)
  983. {
  984. struct ath_hw *ah = sc->sc_ah;
  985. struct ieee80211_channel *channel = sc->hw->conf.channel;
  986. int r;
  987. ath9k_ps_wakeup(sc);
  988. ieee80211_stop_queues(sc->hw);
  989. /* Disable LED */
  990. ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
  991. ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
  992. /* Disable interrupts */
  993. ath9k_hw_set_interrupts(ah, 0);
  994. ath_drain_all_txq(sc, false); /* clear pending tx frames */
  995. ath_stoprecv(sc); /* turn off frame recv */
  996. ath_flushrecv(sc); /* flush recv queue */
  997. spin_lock_bh(&sc->sc_resetlock);
  998. r = ath9k_hw_reset(ah, ah->curchan, false);
  999. if (r) {
  1000. DPRINTF(sc, ATH_DBG_FATAL,
  1001. "Unable to reset channel %u (%uMhz) "
  1002. "reset status %u\n",
  1003. channel->center_freq, r);
  1004. }
  1005. spin_unlock_bh(&sc->sc_resetlock);
  1006. ath9k_hw_phy_disable(ah);
  1007. ath9k_hw_configpcipowersave(ah, 1);
  1008. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  1009. ath9k_ps_restore(sc);
  1010. }
  1011. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1012. /*******************/
  1013. /* Rfkill */
  1014. /*******************/
  1015. static bool ath_is_rfkill_set(struct ath_softc *sc)
  1016. {
  1017. struct ath_hw *ah = sc->sc_ah;
  1018. return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
  1019. ah->rfkill_polarity;
  1020. }
  1021. /* h/w rfkill poll function */
  1022. static void ath_rfkill_poll(struct work_struct *work)
  1023. {
  1024. struct ath_softc *sc = container_of(work, struct ath_softc,
  1025. rf_kill.rfkill_poll.work);
  1026. bool radio_on;
  1027. if (sc->sc_flags & SC_OP_INVALID)
  1028. return;
  1029. radio_on = !ath_is_rfkill_set(sc);
  1030. /*
  1031. * enable/disable radio only when there is a
  1032. * state change in RF switch
  1033. */
  1034. if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
  1035. enum rfkill_state state;
  1036. if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
  1037. state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
  1038. : RFKILL_STATE_HARD_BLOCKED;
  1039. } else if (radio_on) {
  1040. ath_radio_enable(sc);
  1041. state = RFKILL_STATE_UNBLOCKED;
  1042. } else {
  1043. ath_radio_disable(sc);
  1044. state = RFKILL_STATE_HARD_BLOCKED;
  1045. }
  1046. if (state == RFKILL_STATE_HARD_BLOCKED)
  1047. sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
  1048. else
  1049. sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
  1050. rfkill_force_state(sc->rf_kill.rfkill, state);
  1051. }
  1052. queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
  1053. msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
  1054. }
  1055. /* s/w rfkill handler */
  1056. static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
  1057. {
  1058. struct ath_softc *sc = data;
  1059. switch (state) {
  1060. case RFKILL_STATE_SOFT_BLOCKED:
  1061. if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
  1062. SC_OP_RFKILL_SW_BLOCKED)))
  1063. ath_radio_disable(sc);
  1064. sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
  1065. return 0;
  1066. case RFKILL_STATE_UNBLOCKED:
  1067. if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
  1068. sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
  1069. if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
  1070. DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
  1071. "radio as it is disabled by h/w\n");
  1072. return -EPERM;
  1073. }
  1074. ath_radio_enable(sc);
  1075. }
  1076. return 0;
  1077. default:
  1078. return -EINVAL;
  1079. }
  1080. }
  1081. /* Init s/w rfkill */
  1082. static int ath_init_sw_rfkill(struct ath_softc *sc)
  1083. {
  1084. sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
  1085. RFKILL_TYPE_WLAN);
  1086. if (!sc->rf_kill.rfkill) {
  1087. DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
  1088. return -ENOMEM;
  1089. }
  1090. snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
  1091. "ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy));
  1092. sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
  1093. sc->rf_kill.rfkill->data = sc;
  1094. sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
  1095. sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
  1096. return 0;
  1097. }
  1098. /* Deinitialize rfkill */
  1099. static void ath_deinit_rfkill(struct ath_softc *sc)
  1100. {
  1101. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1102. cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
  1103. if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
  1104. rfkill_unregister(sc->rf_kill.rfkill);
  1105. sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
  1106. sc->rf_kill.rfkill = NULL;
  1107. }
  1108. }
  1109. static int ath_start_rfkill_poll(struct ath_softc *sc)
  1110. {
  1111. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1112. queue_delayed_work(sc->hw->workqueue,
  1113. &sc->rf_kill.rfkill_poll, 0);
  1114. if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
  1115. if (rfkill_register(sc->rf_kill.rfkill)) {
  1116. DPRINTF(sc, ATH_DBG_FATAL,
  1117. "Unable to register rfkill\n");
  1118. rfkill_free(sc->rf_kill.rfkill);
  1119. /* Deinitialize the device */
  1120. ath_cleanup(sc);
  1121. return -EIO;
  1122. } else {
  1123. sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
  1124. }
  1125. }
  1126. return 0;
  1127. }
  1128. #endif /* CONFIG_RFKILL */
  1129. void ath_cleanup(struct ath_softc *sc)
  1130. {
  1131. ath_detach(sc);
  1132. free_irq(sc->irq, sc);
  1133. ath_bus_cleanup(sc);
  1134. kfree(sc->sec_wiphy);
  1135. ieee80211_free_hw(sc->hw);
  1136. }
  1137. void ath_detach(struct ath_softc *sc)
  1138. {
  1139. struct ieee80211_hw *hw = sc->hw;
  1140. int i = 0;
  1141. ath9k_ps_wakeup(sc);
  1142. DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
  1143. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1144. ath_deinit_rfkill(sc);
  1145. #endif
  1146. ath_deinit_leds(sc);
  1147. cancel_work_sync(&sc->chan_work);
  1148. cancel_delayed_work_sync(&sc->wiphy_work);
  1149. for (i = 0; i < sc->num_sec_wiphy; i++) {
  1150. struct ath_wiphy *aphy = sc->sec_wiphy[i];
  1151. if (aphy == NULL)
  1152. continue;
  1153. sc->sec_wiphy[i] = NULL;
  1154. ieee80211_unregister_hw(aphy->hw);
  1155. ieee80211_free_hw(aphy->hw);
  1156. }
  1157. ieee80211_unregister_hw(hw);
  1158. ath_rx_cleanup(sc);
  1159. ath_tx_cleanup(sc);
  1160. tasklet_kill(&sc->intr_tq);
  1161. tasklet_kill(&sc->bcon_tasklet);
  1162. if (!(sc->sc_flags & SC_OP_INVALID))
  1163. ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
  1164. /* cleanup tx queues */
  1165. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1166. if (ATH_TXQ_SETUP(sc, i))
  1167. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  1168. ath9k_hw_detach(sc->sc_ah);
  1169. ath9k_exit_debug(sc);
  1170. ath9k_ps_restore(sc);
  1171. }
  1172. static int ath9k_reg_notifier(struct wiphy *wiphy,
  1173. struct regulatory_request *request)
  1174. {
  1175. struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
  1176. struct ath_wiphy *aphy = hw->priv;
  1177. struct ath_softc *sc = aphy->sc;
  1178. struct ath_regulatory *reg = &sc->sc_ah->regulatory;
  1179. return ath_reg_notifier_apply(wiphy, request, reg);
  1180. }
  1181. static int ath_init(u16 devid, struct ath_softc *sc)
  1182. {
  1183. struct ath_hw *ah = NULL;
  1184. int status;
  1185. int error = 0, i;
  1186. int csz = 0;
  1187. /* XXX: hardware will not be ready until ath_open() being called */
  1188. sc->sc_flags |= SC_OP_INVALID;
  1189. if (ath9k_init_debug(sc) < 0)
  1190. printk(KERN_ERR "Unable to create debugfs files\n");
  1191. spin_lock_init(&sc->wiphy_lock);
  1192. spin_lock_init(&sc->sc_resetlock);
  1193. spin_lock_init(&sc->sc_serial_rw);
  1194. mutex_init(&sc->mutex);
  1195. tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
  1196. tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
  1197. (unsigned long)sc);
  1198. /*
  1199. * Cache line size is used to size and align various
  1200. * structures used to communicate with the hardware.
  1201. */
  1202. ath_read_cachesize(sc, &csz);
  1203. /* XXX assert csz is non-zero */
  1204. sc->cachelsz = csz << 2; /* convert to bytes */
  1205. ah = ath9k_hw_attach(devid, sc, &status);
  1206. if (ah == NULL) {
  1207. DPRINTF(sc, ATH_DBG_FATAL,
  1208. "Unable to attach hardware; HAL status %d\n", status);
  1209. error = -ENXIO;
  1210. goto bad;
  1211. }
  1212. sc->sc_ah = ah;
  1213. /* Get the hardware key cache size. */
  1214. sc->keymax = ah->caps.keycache_size;
  1215. if (sc->keymax > ATH_KEYMAX) {
  1216. DPRINTF(sc, ATH_DBG_ANY,
  1217. "Warning, using only %u entries in %u key cache\n",
  1218. ATH_KEYMAX, sc->keymax);
  1219. sc->keymax = ATH_KEYMAX;
  1220. }
  1221. /*
  1222. * Reset the key cache since some parts do not
  1223. * reset the contents on initial power up.
  1224. */
  1225. for (i = 0; i < sc->keymax; i++)
  1226. ath9k_hw_keyreset(ah, (u16) i);
  1227. if (ath_regd_init(&sc->sc_ah->regulatory, sc->hw->wiphy,
  1228. ath9k_reg_notifier))
  1229. goto bad;
  1230. /* default to MONITOR mode */
  1231. sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
  1232. /* Setup rate tables */
  1233. ath_rate_attach(sc);
  1234. ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
  1235. ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
  1236. /*
  1237. * Allocate hardware transmit queues: one queue for
  1238. * beacon frames and one data queue for each QoS
  1239. * priority. Note that the hal handles reseting
  1240. * these queues at the needed time.
  1241. */
  1242. sc->beacon.beaconq = ath_beaconq_setup(ah);
  1243. if (sc->beacon.beaconq == -1) {
  1244. DPRINTF(sc, ATH_DBG_FATAL,
  1245. "Unable to setup a beacon xmit queue\n");
  1246. error = -EIO;
  1247. goto bad2;
  1248. }
  1249. sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
  1250. if (sc->beacon.cabq == NULL) {
  1251. DPRINTF(sc, ATH_DBG_FATAL,
  1252. "Unable to setup CAB xmit queue\n");
  1253. error = -EIO;
  1254. goto bad2;
  1255. }
  1256. sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
  1257. ath_cabq_update(sc);
  1258. for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
  1259. sc->tx.hwq_map[i] = -1;
  1260. /* Setup data queues */
  1261. /* NB: ensure BK queue is the lowest priority h/w queue */
  1262. if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
  1263. DPRINTF(sc, ATH_DBG_FATAL,
  1264. "Unable to setup xmit queue for BK traffic\n");
  1265. error = -EIO;
  1266. goto bad2;
  1267. }
  1268. if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
  1269. DPRINTF(sc, ATH_DBG_FATAL,
  1270. "Unable to setup xmit queue for BE traffic\n");
  1271. error = -EIO;
  1272. goto bad2;
  1273. }
  1274. if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
  1275. DPRINTF(sc, ATH_DBG_FATAL,
  1276. "Unable to setup xmit queue for VI traffic\n");
  1277. error = -EIO;
  1278. goto bad2;
  1279. }
  1280. if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
  1281. DPRINTF(sc, ATH_DBG_FATAL,
  1282. "Unable to setup xmit queue for VO traffic\n");
  1283. error = -EIO;
  1284. goto bad2;
  1285. }
  1286. /* Initializes the noise floor to a reasonable default value.
  1287. * Later on this will be updated during ANI processing. */
  1288. sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
  1289. setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
  1290. if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
  1291. ATH9K_CIPHER_TKIP, NULL)) {
  1292. /*
  1293. * Whether we should enable h/w TKIP MIC.
  1294. * XXX: if we don't support WME TKIP MIC, then we wouldn't
  1295. * report WMM capable, so it's always safe to turn on
  1296. * TKIP MIC in this case.
  1297. */
  1298. ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
  1299. 0, 1, NULL);
  1300. }
  1301. /*
  1302. * Check whether the separate key cache entries
  1303. * are required to handle both tx+rx MIC keys.
  1304. * With split mic keys the number of stations is limited
  1305. * to 27 otherwise 59.
  1306. */
  1307. if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
  1308. ATH9K_CIPHER_TKIP, NULL)
  1309. && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
  1310. ATH9K_CIPHER_MIC, NULL)
  1311. && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
  1312. 0, NULL))
  1313. sc->splitmic = 1;
  1314. /* turn on mcast key search if possible */
  1315. if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
  1316. (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
  1317. 1, NULL);
  1318. sc->config.txpowlimit = ATH_TXPOWER_MAX;
  1319. /* 11n Capabilities */
  1320. if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  1321. sc->sc_flags |= SC_OP_TXAGGR;
  1322. sc->sc_flags |= SC_OP_RXAGGR;
  1323. }
  1324. sc->tx_chainmask = ah->caps.tx_chainmask;
  1325. sc->rx_chainmask = ah->caps.rx_chainmask;
  1326. ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
  1327. sc->rx.defant = ath9k_hw_getdefantenna(ah);
  1328. if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
  1329. memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
  1330. sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
  1331. /* initialize beacon slots */
  1332. for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
  1333. sc->beacon.bslot[i] = NULL;
  1334. sc->beacon.bslot_aphy[i] = NULL;
  1335. }
  1336. /* setup channels and rates */
  1337. sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
  1338. sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
  1339. sc->rates[IEEE80211_BAND_2GHZ];
  1340. sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
  1341. sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
  1342. ARRAY_SIZE(ath9k_2ghz_chantable);
  1343. if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
  1344. sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
  1345. sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
  1346. sc->rates[IEEE80211_BAND_5GHZ];
  1347. sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
  1348. sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
  1349. ARRAY_SIZE(ath9k_5ghz_chantable);
  1350. }
  1351. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
  1352. ath9k_hw_btcoex_enable(sc->sc_ah);
  1353. return 0;
  1354. bad2:
  1355. /* cleanup tx queues */
  1356. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1357. if (ATH_TXQ_SETUP(sc, i))
  1358. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  1359. bad:
  1360. if (ah)
  1361. ath9k_hw_detach(ah);
  1362. ath9k_exit_debug(sc);
  1363. return error;
  1364. }
  1365. void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
  1366. {
  1367. hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
  1368. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1369. IEEE80211_HW_SIGNAL_DBM |
  1370. IEEE80211_HW_AMPDU_AGGREGATION |
  1371. IEEE80211_HW_SUPPORTS_PS |
  1372. IEEE80211_HW_PS_NULLFUNC_STACK |
  1373. IEEE80211_HW_SPECTRUM_MGMT;
  1374. if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
  1375. hw->flags |= IEEE80211_HW_MFP_CAPABLE;
  1376. hw->wiphy->interface_modes =
  1377. BIT(NL80211_IFTYPE_AP) |
  1378. BIT(NL80211_IFTYPE_STATION) |
  1379. BIT(NL80211_IFTYPE_ADHOC) |
  1380. BIT(NL80211_IFTYPE_MESH_POINT);
  1381. hw->queues = 4;
  1382. hw->max_rates = 4;
  1383. hw->channel_change_time = 5000;
  1384. hw->max_listen_interval = 10;
  1385. hw->max_rate_tries = ATH_11N_TXMAXTRY;
  1386. hw->sta_data_size = sizeof(struct ath_node);
  1387. hw->vif_data_size = sizeof(struct ath_vif);
  1388. hw->rate_control_algorithm = "ath9k_rate_control";
  1389. hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
  1390. &sc->sbands[IEEE80211_BAND_2GHZ];
  1391. if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
  1392. hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
  1393. &sc->sbands[IEEE80211_BAND_5GHZ];
  1394. }
  1395. int ath_attach(u16 devid, struct ath_softc *sc)
  1396. {
  1397. struct ieee80211_hw *hw = sc->hw;
  1398. int error = 0, i;
  1399. struct ath_regulatory *reg;
  1400. DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
  1401. error = ath_init(devid, sc);
  1402. if (error != 0)
  1403. return error;
  1404. reg = &sc->sc_ah->regulatory;
  1405. /* get mac address from hardware and set in mac80211 */
  1406. SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
  1407. ath_set_hw_capab(sc, hw);
  1408. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  1409. setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
  1410. if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
  1411. setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
  1412. }
  1413. /* initialize tx/rx engine */
  1414. error = ath_tx_init(sc, ATH_TXBUF);
  1415. if (error != 0)
  1416. goto error_attach;
  1417. error = ath_rx_init(sc, ATH_RXBUF);
  1418. if (error != 0)
  1419. goto error_attach;
  1420. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1421. /* Initialze h/w Rfkill */
  1422. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1423. INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
  1424. /* Initialize s/w rfkill */
  1425. error = ath_init_sw_rfkill(sc);
  1426. if (error)
  1427. goto error_attach;
  1428. #endif
  1429. INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
  1430. INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
  1431. sc->wiphy_scheduler_int = msecs_to_jiffies(500);
  1432. error = ieee80211_register_hw(hw);
  1433. if (!ath_is_world_regd(reg)) {
  1434. error = regulatory_hint(hw->wiphy, reg->alpha2);
  1435. if (error)
  1436. goto error_attach;
  1437. }
  1438. /* Initialize LED control */
  1439. ath_init_leds(sc);
  1440. return 0;
  1441. error_attach:
  1442. /* cleanup tx queues */
  1443. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1444. if (ATH_TXQ_SETUP(sc, i))
  1445. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  1446. ath9k_hw_detach(sc->sc_ah);
  1447. ath9k_exit_debug(sc);
  1448. return error;
  1449. }
  1450. int ath_reset(struct ath_softc *sc, bool retry_tx)
  1451. {
  1452. struct ath_hw *ah = sc->sc_ah;
  1453. struct ieee80211_hw *hw = sc->hw;
  1454. int r;
  1455. ath9k_hw_set_interrupts(ah, 0);
  1456. ath_drain_all_txq(sc, retry_tx);
  1457. ath_stoprecv(sc);
  1458. ath_flushrecv(sc);
  1459. spin_lock_bh(&sc->sc_resetlock);
  1460. r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
  1461. if (r)
  1462. DPRINTF(sc, ATH_DBG_FATAL,
  1463. "Unable to reset hardware; reset status %u\n", r);
  1464. spin_unlock_bh(&sc->sc_resetlock);
  1465. if (ath_startrecv(sc) != 0)
  1466. DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
  1467. /*
  1468. * We may be doing a reset in response to a request
  1469. * that changes the channel so update any state that
  1470. * might change as a result.
  1471. */
  1472. ath_cache_conf_rate(sc, &hw->conf);
  1473. ath_update_txpow(sc);
  1474. if (sc->sc_flags & SC_OP_BEACONS)
  1475. ath_beacon_config(sc, NULL); /* restart beacons */
  1476. ath9k_hw_set_interrupts(ah, sc->imask);
  1477. if (retry_tx) {
  1478. int i;
  1479. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1480. if (ATH_TXQ_SETUP(sc, i)) {
  1481. spin_lock_bh(&sc->tx.txq[i].axq_lock);
  1482. ath_txq_schedule(sc, &sc->tx.txq[i]);
  1483. spin_unlock_bh(&sc->tx.txq[i].axq_lock);
  1484. }
  1485. }
  1486. }
  1487. return r;
  1488. }
  1489. /*
  1490. * This function will allocate both the DMA descriptor structure, and the
  1491. * buffers it contains. These are used to contain the descriptors used
  1492. * by the system.
  1493. */
  1494. int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
  1495. struct list_head *head, const char *name,
  1496. int nbuf, int ndesc)
  1497. {
  1498. #define DS2PHYS(_dd, _ds) \
  1499. ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
  1500. #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
  1501. #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
  1502. struct ath_desc *ds;
  1503. struct ath_buf *bf;
  1504. int i, bsize, error;
  1505. DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
  1506. name, nbuf, ndesc);
  1507. INIT_LIST_HEAD(head);
  1508. /* ath_desc must be a multiple of DWORDs */
  1509. if ((sizeof(struct ath_desc) % 4) != 0) {
  1510. DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
  1511. ASSERT((sizeof(struct ath_desc) % 4) == 0);
  1512. error = -ENOMEM;
  1513. goto fail;
  1514. }
  1515. dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
  1516. /*
  1517. * Need additional DMA memory because we can't use
  1518. * descriptors that cross the 4K page boundary. Assume
  1519. * one skipped descriptor per 4K page.
  1520. */
  1521. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
  1522. u32 ndesc_skipped =
  1523. ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
  1524. u32 dma_len;
  1525. while (ndesc_skipped) {
  1526. dma_len = ndesc_skipped * sizeof(struct ath_desc);
  1527. dd->dd_desc_len += dma_len;
  1528. ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
  1529. };
  1530. }
  1531. /* allocate descriptors */
  1532. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1533. &dd->dd_desc_paddr, GFP_KERNEL);
  1534. if (dd->dd_desc == NULL) {
  1535. error = -ENOMEM;
  1536. goto fail;
  1537. }
  1538. ds = dd->dd_desc;
  1539. DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
  1540. name, ds, (u32) dd->dd_desc_len,
  1541. ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
  1542. /* allocate buffers */
  1543. bsize = sizeof(struct ath_buf) * nbuf;
  1544. bf = kzalloc(bsize, GFP_KERNEL);
  1545. if (bf == NULL) {
  1546. error = -ENOMEM;
  1547. goto fail2;
  1548. }
  1549. dd->dd_bufptr = bf;
  1550. for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
  1551. bf->bf_desc = ds;
  1552. bf->bf_daddr = DS2PHYS(dd, ds);
  1553. if (!(sc->sc_ah->caps.hw_caps &
  1554. ATH9K_HW_CAP_4KB_SPLITTRANS)) {
  1555. /*
  1556. * Skip descriptor addresses which can cause 4KB
  1557. * boundary crossing (addr + length) with a 32 dword
  1558. * descriptor fetch.
  1559. */
  1560. while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
  1561. ASSERT((caddr_t) bf->bf_desc <
  1562. ((caddr_t) dd->dd_desc +
  1563. dd->dd_desc_len));
  1564. ds += ndesc;
  1565. bf->bf_desc = ds;
  1566. bf->bf_daddr = DS2PHYS(dd, ds);
  1567. }
  1568. }
  1569. list_add_tail(&bf->list, head);
  1570. }
  1571. return 0;
  1572. fail2:
  1573. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1574. dd->dd_desc_paddr);
  1575. fail:
  1576. memset(dd, 0, sizeof(*dd));
  1577. return error;
  1578. #undef ATH_DESC_4KB_BOUND_CHECK
  1579. #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
  1580. #undef DS2PHYS
  1581. }
  1582. void ath_descdma_cleanup(struct ath_softc *sc,
  1583. struct ath_descdma *dd,
  1584. struct list_head *head)
  1585. {
  1586. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1587. dd->dd_desc_paddr);
  1588. INIT_LIST_HEAD(head);
  1589. kfree(dd->dd_bufptr);
  1590. memset(dd, 0, sizeof(*dd));
  1591. }
  1592. int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
  1593. {
  1594. int qnum;
  1595. switch (queue) {
  1596. case 0:
  1597. qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
  1598. break;
  1599. case 1:
  1600. qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
  1601. break;
  1602. case 2:
  1603. qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
  1604. break;
  1605. case 3:
  1606. qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
  1607. break;
  1608. default:
  1609. qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
  1610. break;
  1611. }
  1612. return qnum;
  1613. }
  1614. int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
  1615. {
  1616. int qnum;
  1617. switch (queue) {
  1618. case ATH9K_WME_AC_VO:
  1619. qnum = 0;
  1620. break;
  1621. case ATH9K_WME_AC_VI:
  1622. qnum = 1;
  1623. break;
  1624. case ATH9K_WME_AC_BE:
  1625. qnum = 2;
  1626. break;
  1627. case ATH9K_WME_AC_BK:
  1628. qnum = 3;
  1629. break;
  1630. default:
  1631. qnum = -1;
  1632. break;
  1633. }
  1634. return qnum;
  1635. }
  1636. /* XXX: Remove me once we don't depend on ath9k_channel for all
  1637. * this redundant data */
  1638. void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
  1639. struct ath9k_channel *ichan)
  1640. {
  1641. struct ieee80211_channel *chan = hw->conf.channel;
  1642. struct ieee80211_conf *conf = &hw->conf;
  1643. ichan->channel = chan->center_freq;
  1644. ichan->chan = chan;
  1645. if (chan->band == IEEE80211_BAND_2GHZ) {
  1646. ichan->chanmode = CHANNEL_G;
  1647. ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
  1648. } else {
  1649. ichan->chanmode = CHANNEL_A;
  1650. ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
  1651. }
  1652. sc->tx_chan_width = ATH9K_HT_MACMODE_20;
  1653. if (conf_is_ht(conf)) {
  1654. if (conf_is_ht40(conf))
  1655. sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
  1656. ichan->chanmode = ath_get_extchanmode(sc, chan,
  1657. conf->channel_type);
  1658. }
  1659. }
  1660. /**********************/
  1661. /* mac80211 callbacks */
  1662. /**********************/
  1663. static int ath9k_start(struct ieee80211_hw *hw)
  1664. {
  1665. struct ath_wiphy *aphy = hw->priv;
  1666. struct ath_softc *sc = aphy->sc;
  1667. struct ieee80211_channel *curchan = hw->conf.channel;
  1668. struct ath9k_channel *init_channel;
  1669. int r, pos;
  1670. DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
  1671. "initial channel: %d MHz\n", curchan->center_freq);
  1672. mutex_lock(&sc->mutex);
  1673. if (ath9k_wiphy_started(sc)) {
  1674. if (sc->chan_idx == curchan->hw_value) {
  1675. /*
  1676. * Already on the operational channel, the new wiphy
  1677. * can be marked active.
  1678. */
  1679. aphy->state = ATH_WIPHY_ACTIVE;
  1680. ieee80211_wake_queues(hw);
  1681. } else {
  1682. /*
  1683. * Another wiphy is on another channel, start the new
  1684. * wiphy in paused state.
  1685. */
  1686. aphy->state = ATH_WIPHY_PAUSED;
  1687. ieee80211_stop_queues(hw);
  1688. }
  1689. mutex_unlock(&sc->mutex);
  1690. return 0;
  1691. }
  1692. aphy->state = ATH_WIPHY_ACTIVE;
  1693. /* setup initial channel */
  1694. pos = curchan->hw_value;
  1695. sc->chan_idx = pos;
  1696. init_channel = &sc->sc_ah->channels[pos];
  1697. ath9k_update_ichannel(sc, hw, init_channel);
  1698. /* Reset SERDES registers */
  1699. ath9k_hw_configpcipowersave(sc->sc_ah, 0);
  1700. /*
  1701. * The basic interface to setting the hardware in a good
  1702. * state is ``reset''. On return the hardware is known to
  1703. * be powered up and with interrupts disabled. This must
  1704. * be followed by initialization of the appropriate bits
  1705. * and then setup of the interrupt mask.
  1706. */
  1707. spin_lock_bh(&sc->sc_resetlock);
  1708. r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
  1709. if (r) {
  1710. DPRINTF(sc, ATH_DBG_FATAL,
  1711. "Unable to reset hardware; reset status %u "
  1712. "(freq %u MHz)\n", r,
  1713. curchan->center_freq);
  1714. spin_unlock_bh(&sc->sc_resetlock);
  1715. goto mutex_unlock;
  1716. }
  1717. spin_unlock_bh(&sc->sc_resetlock);
  1718. /*
  1719. * This is needed only to setup initial state
  1720. * but it's best done after a reset.
  1721. */
  1722. ath_update_txpow(sc);
  1723. /*
  1724. * Setup the hardware after reset:
  1725. * The receive engine is set going.
  1726. * Frame transmit is handled entirely
  1727. * in the frame output path; there's nothing to do
  1728. * here except setup the interrupt mask.
  1729. */
  1730. if (ath_startrecv(sc) != 0) {
  1731. DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
  1732. r = -EIO;
  1733. goto mutex_unlock;
  1734. }
  1735. /* Setup our intr mask. */
  1736. sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
  1737. | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
  1738. | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
  1739. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
  1740. sc->imask |= ATH9K_INT_GTT;
  1741. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  1742. sc->imask |= ATH9K_INT_CST;
  1743. ath_cache_conf_rate(sc, &hw->conf);
  1744. sc->sc_flags &= ~SC_OP_INVALID;
  1745. /* Disable BMISS interrupt when we're not associated */
  1746. sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
  1747. ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
  1748. ieee80211_wake_queues(hw);
  1749. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1750. r = ath_start_rfkill_poll(sc);
  1751. #endif
  1752. mutex_unlock:
  1753. mutex_unlock(&sc->mutex);
  1754. return r;
  1755. }
  1756. static int ath9k_tx(struct ieee80211_hw *hw,
  1757. struct sk_buff *skb)
  1758. {
  1759. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1760. struct ath_wiphy *aphy = hw->priv;
  1761. struct ath_softc *sc = aphy->sc;
  1762. struct ath_tx_control txctl;
  1763. int hdrlen, padsize;
  1764. if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
  1765. printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
  1766. "%d\n", wiphy_name(hw->wiphy), aphy->state);
  1767. goto exit;
  1768. }
  1769. memset(&txctl, 0, sizeof(struct ath_tx_control));
  1770. /*
  1771. * As a temporary workaround, assign seq# here; this will likely need
  1772. * to be cleaned up to work better with Beacon transmission and virtual
  1773. * BSSes.
  1774. */
  1775. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1776. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1777. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1778. sc->tx.seq_no += 0x10;
  1779. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1780. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1781. }
  1782. /* Add the padding after the header if this is not already done */
  1783. hdrlen = ieee80211_get_hdrlen_from_skb(skb);
  1784. if (hdrlen & 3) {
  1785. padsize = hdrlen % 4;
  1786. if (skb_headroom(skb) < padsize)
  1787. return -1;
  1788. skb_push(skb, padsize);
  1789. memmove(skb->data, skb->data + padsize, hdrlen);
  1790. }
  1791. /* Check if a tx queue is available */
  1792. txctl.txq = ath_test_get_txq(sc, skb);
  1793. if (!txctl.txq)
  1794. goto exit;
  1795. DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
  1796. if (ath_tx_start(hw, skb, &txctl) != 0) {
  1797. DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
  1798. goto exit;
  1799. }
  1800. return 0;
  1801. exit:
  1802. dev_kfree_skb_any(skb);
  1803. return 0;
  1804. }
  1805. static void ath9k_stop(struct ieee80211_hw *hw)
  1806. {
  1807. struct ath_wiphy *aphy = hw->priv;
  1808. struct ath_softc *sc = aphy->sc;
  1809. aphy->state = ATH_WIPHY_INACTIVE;
  1810. if (sc->sc_flags & SC_OP_INVALID) {
  1811. DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
  1812. return;
  1813. }
  1814. mutex_lock(&sc->mutex);
  1815. ieee80211_stop_queues(hw);
  1816. if (ath9k_wiphy_started(sc)) {
  1817. mutex_unlock(&sc->mutex);
  1818. return; /* another wiphy still in use */
  1819. }
  1820. /* make sure h/w will not generate any interrupt
  1821. * before setting the invalid flag. */
  1822. ath9k_hw_set_interrupts(sc->sc_ah, 0);
  1823. if (!(sc->sc_flags & SC_OP_INVALID)) {
  1824. ath_drain_all_txq(sc, false);
  1825. ath_stoprecv(sc);
  1826. ath9k_hw_phy_disable(sc->sc_ah);
  1827. } else
  1828. sc->rx.rxlink = NULL;
  1829. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1830. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1831. cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
  1832. #endif
  1833. /* disable HAL and put h/w to sleep */
  1834. ath9k_hw_disable(sc->sc_ah);
  1835. ath9k_hw_configpcipowersave(sc->sc_ah, 1);
  1836. sc->sc_flags |= SC_OP_INVALID;
  1837. mutex_unlock(&sc->mutex);
  1838. DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
  1839. }
  1840. static int ath9k_add_interface(struct ieee80211_hw *hw,
  1841. struct ieee80211_if_init_conf *conf)
  1842. {
  1843. struct ath_wiphy *aphy = hw->priv;
  1844. struct ath_softc *sc = aphy->sc;
  1845. struct ath_vif *avp = (void *)conf->vif->drv_priv;
  1846. enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
  1847. int ret = 0;
  1848. mutex_lock(&sc->mutex);
  1849. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
  1850. sc->nvifs > 0) {
  1851. ret = -ENOBUFS;
  1852. goto out;
  1853. }
  1854. switch (conf->type) {
  1855. case NL80211_IFTYPE_STATION:
  1856. ic_opmode = NL80211_IFTYPE_STATION;
  1857. break;
  1858. case NL80211_IFTYPE_ADHOC:
  1859. case NL80211_IFTYPE_AP:
  1860. case NL80211_IFTYPE_MESH_POINT:
  1861. if (sc->nbcnvifs >= ATH_BCBUF) {
  1862. ret = -ENOBUFS;
  1863. goto out;
  1864. }
  1865. ic_opmode = conf->type;
  1866. break;
  1867. default:
  1868. DPRINTF(sc, ATH_DBG_FATAL,
  1869. "Interface type %d not yet supported\n", conf->type);
  1870. ret = -EOPNOTSUPP;
  1871. goto out;
  1872. }
  1873. DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
  1874. /* Set the VIF opmode */
  1875. avp->av_opmode = ic_opmode;
  1876. avp->av_bslot = -1;
  1877. sc->nvifs++;
  1878. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
  1879. ath9k_set_bssid_mask(hw);
  1880. if (sc->nvifs > 1)
  1881. goto out; /* skip global settings for secondary vif */
  1882. if (ic_opmode == NL80211_IFTYPE_AP) {
  1883. ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
  1884. sc->sc_flags |= SC_OP_TSF_RESET;
  1885. }
  1886. /* Set the device opmode */
  1887. sc->sc_ah->opmode = ic_opmode;
  1888. /*
  1889. * Enable MIB interrupts when there are hardware phy counters.
  1890. * Note we only do this (at the moment) for station mode.
  1891. */
  1892. if ((conf->type == NL80211_IFTYPE_STATION) ||
  1893. (conf->type == NL80211_IFTYPE_ADHOC) ||
  1894. (conf->type == NL80211_IFTYPE_MESH_POINT)) {
  1895. if (ath9k_hw_phycounters(sc->sc_ah))
  1896. sc->imask |= ATH9K_INT_MIB;
  1897. sc->imask |= ATH9K_INT_TSFOOR;
  1898. }
  1899. ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
  1900. if (conf->type == NL80211_IFTYPE_AP)
  1901. ath_start_ani(sc);
  1902. out:
  1903. mutex_unlock(&sc->mutex);
  1904. return ret;
  1905. }
  1906. static void ath9k_remove_interface(struct ieee80211_hw *hw,
  1907. struct ieee80211_if_init_conf *conf)
  1908. {
  1909. struct ath_wiphy *aphy = hw->priv;
  1910. struct ath_softc *sc = aphy->sc;
  1911. struct ath_vif *avp = (void *)conf->vif->drv_priv;
  1912. int i;
  1913. DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
  1914. mutex_lock(&sc->mutex);
  1915. /* Stop ANI */
  1916. del_timer_sync(&sc->ani.timer);
  1917. /* Reclaim beacon resources */
  1918. if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
  1919. (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
  1920. (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
  1921. ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
  1922. ath_beacon_return(sc, avp);
  1923. }
  1924. sc->sc_flags &= ~SC_OP_BEACONS;
  1925. for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
  1926. if (sc->beacon.bslot[i] == conf->vif) {
  1927. printk(KERN_DEBUG "%s: vif had allocated beacon "
  1928. "slot\n", __func__);
  1929. sc->beacon.bslot[i] = NULL;
  1930. sc->beacon.bslot_aphy[i] = NULL;
  1931. }
  1932. }
  1933. sc->nvifs--;
  1934. mutex_unlock(&sc->mutex);
  1935. }
  1936. static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
  1937. {
  1938. struct ath_wiphy *aphy = hw->priv;
  1939. struct ath_softc *sc = aphy->sc;
  1940. struct ieee80211_conf *conf = &hw->conf;
  1941. struct ath_hw *ah = sc->sc_ah;
  1942. mutex_lock(&sc->mutex);
  1943. if (changed & IEEE80211_CONF_CHANGE_PS) {
  1944. if (conf->flags & IEEE80211_CONF_PS) {
  1945. if (!(ah->caps.hw_caps &
  1946. ATH9K_HW_CAP_AUTOSLEEP)) {
  1947. if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
  1948. sc->imask |= ATH9K_INT_TIM_TIMER;
  1949. ath9k_hw_set_interrupts(sc->sc_ah,
  1950. sc->imask);
  1951. }
  1952. ath9k_hw_setrxabort(sc->sc_ah, 1);
  1953. }
  1954. ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
  1955. } else {
  1956. ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
  1957. if (!(ah->caps.hw_caps &
  1958. ATH9K_HW_CAP_AUTOSLEEP)) {
  1959. ath9k_hw_setrxabort(sc->sc_ah, 0);
  1960. sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON;
  1961. if (sc->imask & ATH9K_INT_TIM_TIMER) {
  1962. sc->imask &= ~ATH9K_INT_TIM_TIMER;
  1963. ath9k_hw_set_interrupts(sc->sc_ah,
  1964. sc->imask);
  1965. }
  1966. }
  1967. }
  1968. }
  1969. if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
  1970. struct ieee80211_channel *curchan = hw->conf.channel;
  1971. int pos = curchan->hw_value;
  1972. aphy->chan_idx = pos;
  1973. aphy->chan_is_ht = conf_is_ht(conf);
  1974. if (aphy->state == ATH_WIPHY_SCAN ||
  1975. aphy->state == ATH_WIPHY_ACTIVE)
  1976. ath9k_wiphy_pause_all_forced(sc, aphy);
  1977. else {
  1978. /*
  1979. * Do not change operational channel based on a paused
  1980. * wiphy changes.
  1981. */
  1982. goto skip_chan_change;
  1983. }
  1984. DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
  1985. curchan->center_freq);
  1986. /* XXX: remove me eventualy */
  1987. ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
  1988. ath_update_chainmask(sc, conf_is_ht(conf));
  1989. if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
  1990. DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
  1991. mutex_unlock(&sc->mutex);
  1992. return -EINVAL;
  1993. }
  1994. }
  1995. skip_chan_change:
  1996. if (changed & IEEE80211_CONF_CHANGE_POWER)
  1997. sc->config.txpowlimit = 2 * conf->power_level;
  1998. /*
  1999. * The HW TSF has to be reset when the beacon interval changes.
  2000. * We set the flag here, and ath_beacon_config_ap() would take this
  2001. * into account when it gets called through the subsequent
  2002. * config_interface() call - with IFCC_BEACON in the changed field.
  2003. */
  2004. if (changed & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
  2005. sc->sc_flags |= SC_OP_TSF_RESET;
  2006. mutex_unlock(&sc->mutex);
  2007. return 0;
  2008. }
  2009. static int ath9k_config_interface(struct ieee80211_hw *hw,
  2010. struct ieee80211_vif *vif,
  2011. struct ieee80211_if_conf *conf)
  2012. {
  2013. struct ath_wiphy *aphy = hw->priv;
  2014. struct ath_softc *sc = aphy->sc;
  2015. struct ath_hw *ah = sc->sc_ah;
  2016. struct ath_vif *avp = (void *)vif->drv_priv;
  2017. u32 rfilt = 0;
  2018. int error, i;
  2019. mutex_lock(&sc->mutex);
  2020. /* TODO: Need to decide which hw opmode to use for multi-interface
  2021. * cases */
  2022. if (vif->type == NL80211_IFTYPE_AP &&
  2023. ah->opmode != NL80211_IFTYPE_AP) {
  2024. ah->opmode = NL80211_IFTYPE_STATION;
  2025. ath9k_hw_setopmode(ah);
  2026. memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
  2027. sc->curaid = 0;
  2028. ath9k_hw_write_associd(sc);
  2029. /* Request full reset to get hw opmode changed properly */
  2030. sc->sc_flags |= SC_OP_FULL_RESET;
  2031. }
  2032. if ((conf->changed & IEEE80211_IFCC_BSSID) &&
  2033. !is_zero_ether_addr(conf->bssid)) {
  2034. switch (vif->type) {
  2035. case NL80211_IFTYPE_STATION:
  2036. case NL80211_IFTYPE_ADHOC:
  2037. case NL80211_IFTYPE_MESH_POINT:
  2038. /* Set BSSID */
  2039. memcpy(sc->curbssid, conf->bssid, ETH_ALEN);
  2040. memcpy(avp->bssid, conf->bssid, ETH_ALEN);
  2041. sc->curaid = 0;
  2042. ath9k_hw_write_associd(sc);
  2043. /* Set aggregation protection mode parameters */
  2044. sc->config.ath_aggr_prot = 0;
  2045. DPRINTF(sc, ATH_DBG_CONFIG,
  2046. "RX filter 0x%x bssid %pM aid 0x%x\n",
  2047. rfilt, sc->curbssid, sc->curaid);
  2048. /* need to reconfigure the beacon */
  2049. sc->sc_flags &= ~SC_OP_BEACONS ;
  2050. break;
  2051. default:
  2052. break;
  2053. }
  2054. }
  2055. if ((vif->type == NL80211_IFTYPE_ADHOC) ||
  2056. (vif->type == NL80211_IFTYPE_AP) ||
  2057. (vif->type == NL80211_IFTYPE_MESH_POINT)) {
  2058. if ((conf->changed & IEEE80211_IFCC_BEACON) ||
  2059. (conf->changed & IEEE80211_IFCC_BEACON_ENABLED &&
  2060. conf->enable_beacon)) {
  2061. /*
  2062. * Allocate and setup the beacon frame.
  2063. *
  2064. * Stop any previous beacon DMA. This may be
  2065. * necessary, for example, when an ibss merge
  2066. * causes reconfiguration; we may be called
  2067. * with beacon transmission active.
  2068. */
  2069. ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
  2070. error = ath_beacon_alloc(aphy, vif);
  2071. if (error != 0) {
  2072. mutex_unlock(&sc->mutex);
  2073. return error;
  2074. }
  2075. ath_beacon_config(sc, vif);
  2076. }
  2077. }
  2078. /* Check for WLAN_CAPABILITY_PRIVACY ? */
  2079. if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
  2080. for (i = 0; i < IEEE80211_WEP_NKID; i++)
  2081. if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
  2082. ath9k_hw_keysetmac(sc->sc_ah,
  2083. (u16)i,
  2084. sc->curbssid);
  2085. }
  2086. /* Only legacy IBSS for now */
  2087. if (vif->type == NL80211_IFTYPE_ADHOC)
  2088. ath_update_chainmask(sc, 0);
  2089. mutex_unlock(&sc->mutex);
  2090. return 0;
  2091. }
  2092. #define SUPPORTED_FILTERS \
  2093. (FIF_PROMISC_IN_BSS | \
  2094. FIF_ALLMULTI | \
  2095. FIF_CONTROL | \
  2096. FIF_OTHER_BSS | \
  2097. FIF_BCN_PRBRESP_PROMISC | \
  2098. FIF_FCSFAIL)
  2099. /* FIXME: sc->sc_full_reset ? */
  2100. static void ath9k_configure_filter(struct ieee80211_hw *hw,
  2101. unsigned int changed_flags,
  2102. unsigned int *total_flags,
  2103. int mc_count,
  2104. struct dev_mc_list *mclist)
  2105. {
  2106. struct ath_wiphy *aphy = hw->priv;
  2107. struct ath_softc *sc = aphy->sc;
  2108. u32 rfilt;
  2109. changed_flags &= SUPPORTED_FILTERS;
  2110. *total_flags &= SUPPORTED_FILTERS;
  2111. sc->rx.rxfilter = *total_flags;
  2112. rfilt = ath_calcrxfilter(sc);
  2113. ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
  2114. DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
  2115. }
  2116. static void ath9k_sta_notify(struct ieee80211_hw *hw,
  2117. struct ieee80211_vif *vif,
  2118. enum sta_notify_cmd cmd,
  2119. struct ieee80211_sta *sta)
  2120. {
  2121. struct ath_wiphy *aphy = hw->priv;
  2122. struct ath_softc *sc = aphy->sc;
  2123. switch (cmd) {
  2124. case STA_NOTIFY_ADD:
  2125. ath_node_attach(sc, sta);
  2126. break;
  2127. case STA_NOTIFY_REMOVE:
  2128. ath_node_detach(sc, sta);
  2129. break;
  2130. default:
  2131. break;
  2132. }
  2133. }
  2134. static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
  2135. const struct ieee80211_tx_queue_params *params)
  2136. {
  2137. struct ath_wiphy *aphy = hw->priv;
  2138. struct ath_softc *sc = aphy->sc;
  2139. struct ath9k_tx_queue_info qi;
  2140. int ret = 0, qnum;
  2141. if (queue >= WME_NUM_AC)
  2142. return 0;
  2143. mutex_lock(&sc->mutex);
  2144. memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
  2145. qi.tqi_aifs = params->aifs;
  2146. qi.tqi_cwmin = params->cw_min;
  2147. qi.tqi_cwmax = params->cw_max;
  2148. qi.tqi_burstTime = params->txop;
  2149. qnum = ath_get_hal_qnum(queue, sc);
  2150. DPRINTF(sc, ATH_DBG_CONFIG,
  2151. "Configure tx [queue/halq] [%d/%d], "
  2152. "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
  2153. queue, qnum, params->aifs, params->cw_min,
  2154. params->cw_max, params->txop);
  2155. ret = ath_txq_update(sc, qnum, &qi);
  2156. if (ret)
  2157. DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
  2158. mutex_unlock(&sc->mutex);
  2159. return ret;
  2160. }
  2161. static int ath9k_set_key(struct ieee80211_hw *hw,
  2162. enum set_key_cmd cmd,
  2163. struct ieee80211_vif *vif,
  2164. struct ieee80211_sta *sta,
  2165. struct ieee80211_key_conf *key)
  2166. {
  2167. struct ath_wiphy *aphy = hw->priv;
  2168. struct ath_softc *sc = aphy->sc;
  2169. int ret = 0;
  2170. if (modparam_nohwcrypt)
  2171. return -ENOSPC;
  2172. mutex_lock(&sc->mutex);
  2173. ath9k_ps_wakeup(sc);
  2174. DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
  2175. switch (cmd) {
  2176. case SET_KEY:
  2177. ret = ath_key_config(sc, vif, sta, key);
  2178. if (ret >= 0) {
  2179. key->hw_key_idx = ret;
  2180. /* push IV and Michael MIC generation to stack */
  2181. key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
  2182. if (key->alg == ALG_TKIP)
  2183. key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
  2184. if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
  2185. key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
  2186. ret = 0;
  2187. }
  2188. break;
  2189. case DISABLE_KEY:
  2190. ath_key_delete(sc, key);
  2191. break;
  2192. default:
  2193. ret = -EINVAL;
  2194. }
  2195. ath9k_ps_restore(sc);
  2196. mutex_unlock(&sc->mutex);
  2197. return ret;
  2198. }
  2199. static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
  2200. struct ieee80211_vif *vif,
  2201. struct ieee80211_bss_conf *bss_conf,
  2202. u32 changed)
  2203. {
  2204. struct ath_wiphy *aphy = hw->priv;
  2205. struct ath_softc *sc = aphy->sc;
  2206. mutex_lock(&sc->mutex);
  2207. if (changed & BSS_CHANGED_ERP_PREAMBLE) {
  2208. DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
  2209. bss_conf->use_short_preamble);
  2210. if (bss_conf->use_short_preamble)
  2211. sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
  2212. else
  2213. sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
  2214. }
  2215. if (changed & BSS_CHANGED_ERP_CTS_PROT) {
  2216. DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
  2217. bss_conf->use_cts_prot);
  2218. if (bss_conf->use_cts_prot &&
  2219. hw->conf.channel->band != IEEE80211_BAND_5GHZ)
  2220. sc->sc_flags |= SC_OP_PROTECT_ENABLE;
  2221. else
  2222. sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
  2223. }
  2224. if (changed & BSS_CHANGED_ASSOC) {
  2225. DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
  2226. bss_conf->assoc);
  2227. ath9k_bss_assoc_info(sc, vif, bss_conf);
  2228. }
  2229. mutex_unlock(&sc->mutex);
  2230. }
  2231. static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
  2232. {
  2233. u64 tsf;
  2234. struct ath_wiphy *aphy = hw->priv;
  2235. struct ath_softc *sc = aphy->sc;
  2236. mutex_lock(&sc->mutex);
  2237. tsf = ath9k_hw_gettsf64(sc->sc_ah);
  2238. mutex_unlock(&sc->mutex);
  2239. return tsf;
  2240. }
  2241. static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
  2242. {
  2243. struct ath_wiphy *aphy = hw->priv;
  2244. struct ath_softc *sc = aphy->sc;
  2245. mutex_lock(&sc->mutex);
  2246. ath9k_hw_settsf64(sc->sc_ah, tsf);
  2247. mutex_unlock(&sc->mutex);
  2248. }
  2249. static void ath9k_reset_tsf(struct ieee80211_hw *hw)
  2250. {
  2251. struct ath_wiphy *aphy = hw->priv;
  2252. struct ath_softc *sc = aphy->sc;
  2253. mutex_lock(&sc->mutex);
  2254. ath9k_hw_reset_tsf(sc->sc_ah);
  2255. mutex_unlock(&sc->mutex);
  2256. }
  2257. static int ath9k_ampdu_action(struct ieee80211_hw *hw,
  2258. enum ieee80211_ampdu_mlme_action action,
  2259. struct ieee80211_sta *sta,
  2260. u16 tid, u16 *ssn)
  2261. {
  2262. struct ath_wiphy *aphy = hw->priv;
  2263. struct ath_softc *sc = aphy->sc;
  2264. int ret = 0;
  2265. switch (action) {
  2266. case IEEE80211_AMPDU_RX_START:
  2267. if (!(sc->sc_flags & SC_OP_RXAGGR))
  2268. ret = -ENOTSUPP;
  2269. break;
  2270. case IEEE80211_AMPDU_RX_STOP:
  2271. break;
  2272. case IEEE80211_AMPDU_TX_START:
  2273. ret = ath_tx_aggr_start(sc, sta, tid, ssn);
  2274. if (ret < 0)
  2275. DPRINTF(sc, ATH_DBG_FATAL,
  2276. "Unable to start TX aggregation\n");
  2277. else
  2278. ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
  2279. break;
  2280. case IEEE80211_AMPDU_TX_STOP:
  2281. ret = ath_tx_aggr_stop(sc, sta, tid);
  2282. if (ret < 0)
  2283. DPRINTF(sc, ATH_DBG_FATAL,
  2284. "Unable to stop TX aggregation\n");
  2285. ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
  2286. break;
  2287. case IEEE80211_AMPDU_TX_OPERATIONAL:
  2288. ath_tx_aggr_resume(sc, sta, tid);
  2289. break;
  2290. default:
  2291. DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
  2292. }
  2293. return ret;
  2294. }
  2295. static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
  2296. {
  2297. struct ath_wiphy *aphy = hw->priv;
  2298. struct ath_softc *sc = aphy->sc;
  2299. if (ath9k_wiphy_scanning(sc)) {
  2300. printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
  2301. "same time\n");
  2302. /*
  2303. * Do not allow the concurrent scanning state for now. This
  2304. * could be improved with scanning control moved into ath9k.
  2305. */
  2306. return;
  2307. }
  2308. aphy->state = ATH_WIPHY_SCAN;
  2309. ath9k_wiphy_pause_all_forced(sc, aphy);
  2310. mutex_lock(&sc->mutex);
  2311. sc->sc_flags |= SC_OP_SCANNING;
  2312. mutex_unlock(&sc->mutex);
  2313. }
  2314. static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
  2315. {
  2316. struct ath_wiphy *aphy = hw->priv;
  2317. struct ath_softc *sc = aphy->sc;
  2318. mutex_lock(&sc->mutex);
  2319. aphy->state = ATH_WIPHY_ACTIVE;
  2320. sc->sc_flags &= ~SC_OP_SCANNING;
  2321. sc->sc_flags |= SC_OP_FULL_RESET;
  2322. mutex_unlock(&sc->mutex);
  2323. }
  2324. struct ieee80211_ops ath9k_ops = {
  2325. .tx = ath9k_tx,
  2326. .start = ath9k_start,
  2327. .stop = ath9k_stop,
  2328. .add_interface = ath9k_add_interface,
  2329. .remove_interface = ath9k_remove_interface,
  2330. .config = ath9k_config,
  2331. .config_interface = ath9k_config_interface,
  2332. .configure_filter = ath9k_configure_filter,
  2333. .sta_notify = ath9k_sta_notify,
  2334. .conf_tx = ath9k_conf_tx,
  2335. .bss_info_changed = ath9k_bss_info_changed,
  2336. .set_key = ath9k_set_key,
  2337. .get_tsf = ath9k_get_tsf,
  2338. .set_tsf = ath9k_set_tsf,
  2339. .reset_tsf = ath9k_reset_tsf,
  2340. .ampdu_action = ath9k_ampdu_action,
  2341. .sw_scan_start = ath9k_sw_scan_start,
  2342. .sw_scan_complete = ath9k_sw_scan_complete,
  2343. };
  2344. static struct {
  2345. u32 version;
  2346. const char * name;
  2347. } ath_mac_bb_names[] = {
  2348. { AR_SREV_VERSION_5416_PCI, "5416" },
  2349. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2350. { AR_SREV_VERSION_9100, "9100" },
  2351. { AR_SREV_VERSION_9160, "9160" },
  2352. { AR_SREV_VERSION_9280, "9280" },
  2353. { AR_SREV_VERSION_9285, "9285" }
  2354. };
  2355. static struct {
  2356. u16 version;
  2357. const char * name;
  2358. } ath_rf_names[] = {
  2359. { 0, "5133" },
  2360. { AR_RAD5133_SREV_MAJOR, "5133" },
  2361. { AR_RAD5122_SREV_MAJOR, "5122" },
  2362. { AR_RAD2133_SREV_MAJOR, "2133" },
  2363. { AR_RAD2122_SREV_MAJOR, "2122" }
  2364. };
  2365. /*
  2366. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2367. */
  2368. const char *
  2369. ath_mac_bb_name(u32 mac_bb_version)
  2370. {
  2371. int i;
  2372. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2373. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2374. return ath_mac_bb_names[i].name;
  2375. }
  2376. }
  2377. return "????";
  2378. }
  2379. /*
  2380. * Return the RF name. "????" is returned if the RF is unknown.
  2381. */
  2382. const char *
  2383. ath_rf_name(u16 rf_version)
  2384. {
  2385. int i;
  2386. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2387. if (ath_rf_names[i].version == rf_version) {
  2388. return ath_rf_names[i].name;
  2389. }
  2390. }
  2391. return "????";
  2392. }
  2393. static int __init ath9k_init(void)
  2394. {
  2395. int error;
  2396. /* Register rate control algorithm */
  2397. error = ath_rate_control_register();
  2398. if (error != 0) {
  2399. printk(KERN_ERR
  2400. "ath9k: Unable to register rate control "
  2401. "algorithm: %d\n",
  2402. error);
  2403. goto err_out;
  2404. }
  2405. error = ath9k_debug_create_root();
  2406. if (error) {
  2407. printk(KERN_ERR
  2408. "ath9k: Unable to create debugfs root: %d\n",
  2409. error);
  2410. goto err_rate_unregister;
  2411. }
  2412. error = ath_pci_init();
  2413. if (error < 0) {
  2414. printk(KERN_ERR
  2415. "ath9k: No PCI devices found, driver not installed.\n");
  2416. error = -ENODEV;
  2417. goto err_remove_root;
  2418. }
  2419. error = ath_ahb_init();
  2420. if (error < 0) {
  2421. error = -ENODEV;
  2422. goto err_pci_exit;
  2423. }
  2424. return 0;
  2425. err_pci_exit:
  2426. ath_pci_exit();
  2427. err_remove_root:
  2428. ath9k_debug_remove_root();
  2429. err_rate_unregister:
  2430. ath_rate_control_unregister();
  2431. err_out:
  2432. return error;
  2433. }
  2434. module_init(ath9k_init);
  2435. static void __exit ath9k_exit(void)
  2436. {
  2437. ath_ahb_exit();
  2438. ath_pci_exit();
  2439. ath9k_debug_remove_root();
  2440. ath_rate_control_unregister();
  2441. printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
  2442. }
  2443. module_exit(ath9k_exit);