tsc.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850
  1. #include <linux/kernel.h>
  2. #include <linux/sched.h>
  3. #include <linux/init.h>
  4. #include <linux/module.h>
  5. #include <linux/timer.h>
  6. #include <linux/acpi_pmtmr.h>
  7. #include <linux/cpufreq.h>
  8. #include <linux/dmi.h>
  9. #include <linux/delay.h>
  10. #include <linux/clocksource.h>
  11. #include <linux/percpu.h>
  12. #include <asm/hpet.h>
  13. #include <asm/timer.h>
  14. #include <asm/vgtod.h>
  15. #include <asm/time.h>
  16. #include <asm/delay.h>
  17. unsigned int cpu_khz; /* TSC clocks / usec, not used here */
  18. EXPORT_SYMBOL(cpu_khz);
  19. unsigned int tsc_khz;
  20. EXPORT_SYMBOL(tsc_khz);
  21. /*
  22. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  23. */
  24. static int tsc_unstable;
  25. /* native_sched_clock() is called before tsc_init(), so
  26. we must start with the TSC soft disabled to prevent
  27. erroneous rdtsc usage on !cpu_has_tsc processors */
  28. static int tsc_disabled = -1;
  29. /*
  30. * Scheduler clock - returns current time in nanosec units.
  31. */
  32. u64 native_sched_clock(void)
  33. {
  34. u64 this_offset;
  35. /*
  36. * Fall back to jiffies if there's no TSC available:
  37. * ( But note that we still use it if the TSC is marked
  38. * unstable. We do this because unlike Time Of Day,
  39. * the scheduler clock tolerates small errors and it's
  40. * very important for it to be as fast as the platform
  41. * can achive it. )
  42. */
  43. if (unlikely(tsc_disabled)) {
  44. /* No locking but a rare wrong value is not a big deal: */
  45. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  46. }
  47. /* read the Time Stamp Counter: */
  48. rdtscll(this_offset);
  49. /* return the value in ns */
  50. return cycles_2_ns(this_offset);
  51. }
  52. /* We need to define a real function for sched_clock, to override the
  53. weak default version */
  54. #ifdef CONFIG_PARAVIRT
  55. unsigned long long sched_clock(void)
  56. {
  57. return paravirt_sched_clock();
  58. }
  59. #else
  60. unsigned long long
  61. sched_clock(void) __attribute__((alias("native_sched_clock")));
  62. #endif
  63. int check_tsc_unstable(void)
  64. {
  65. return tsc_unstable;
  66. }
  67. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  68. #ifdef CONFIG_X86_TSC
  69. int __init notsc_setup(char *str)
  70. {
  71. printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
  72. "cannot disable TSC completely.\n");
  73. tsc_disabled = 1;
  74. return 1;
  75. }
  76. #else
  77. /*
  78. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  79. * in cpu/common.c
  80. */
  81. int __init notsc_setup(char *str)
  82. {
  83. setup_clear_cpu_cap(X86_FEATURE_TSC);
  84. return 1;
  85. }
  86. #endif
  87. __setup("notsc", notsc_setup);
  88. #define MAX_RETRIES 5
  89. #define SMI_TRESHOLD 50000
  90. /*
  91. * Read TSC and the reference counters. Take care of SMI disturbance
  92. */
  93. static u64 tsc_read_refs(u64 *p, int hpet)
  94. {
  95. u64 t1, t2;
  96. int i;
  97. for (i = 0; i < MAX_RETRIES; i++) {
  98. t1 = get_cycles();
  99. if (hpet)
  100. *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  101. else
  102. *p = acpi_pm_read_early();
  103. t2 = get_cycles();
  104. if ((t2 - t1) < SMI_TRESHOLD)
  105. return t2;
  106. }
  107. return ULLONG_MAX;
  108. }
  109. /*
  110. * Calculate the TSC frequency from HPET reference
  111. */
  112. static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
  113. {
  114. u64 tmp;
  115. if (hpet2 < hpet1)
  116. hpet2 += 0x100000000ULL;
  117. hpet2 -= hpet1;
  118. tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  119. do_div(tmp, 1000000);
  120. do_div(deltatsc, tmp);
  121. return (unsigned long) deltatsc;
  122. }
  123. /*
  124. * Calculate the TSC frequency from PMTimer reference
  125. */
  126. static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
  127. {
  128. u64 tmp;
  129. if (!pm1 && !pm2)
  130. return ULONG_MAX;
  131. if (pm2 < pm1)
  132. pm2 += (u64)ACPI_PM_OVRRUN;
  133. pm2 -= pm1;
  134. tmp = pm2 * 1000000000LL;
  135. do_div(tmp, PMTMR_TICKS_PER_SEC);
  136. do_div(deltatsc, tmp);
  137. return (unsigned long) deltatsc;
  138. }
  139. #define CAL_MS 10
  140. #define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
  141. #define CAL_PIT_LOOPS 1000
  142. #define CAL2_MS 50
  143. #define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
  144. #define CAL2_PIT_LOOPS 5000
  145. /*
  146. * Try to calibrate the TSC against the Programmable
  147. * Interrupt Timer and return the frequency of the TSC
  148. * in kHz.
  149. *
  150. * Return ULONG_MAX on failure to calibrate.
  151. */
  152. static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  153. {
  154. u64 tsc, t1, t2, delta;
  155. unsigned long tscmin, tscmax;
  156. int pitcnt;
  157. /* Set the Gate high, disable speaker */
  158. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  159. /*
  160. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  161. * count mode), binary count. Set the latch register to 50ms
  162. * (LSB then MSB) to begin countdown.
  163. */
  164. outb(0xb0, 0x43);
  165. outb(latch & 0xff, 0x42);
  166. outb(latch >> 8, 0x42);
  167. tsc = t1 = t2 = get_cycles();
  168. pitcnt = 0;
  169. tscmax = 0;
  170. tscmin = ULONG_MAX;
  171. while ((inb(0x61) & 0x20) == 0) {
  172. t2 = get_cycles();
  173. delta = t2 - tsc;
  174. tsc = t2;
  175. if ((unsigned long) delta < tscmin)
  176. tscmin = (unsigned int) delta;
  177. if ((unsigned long) delta > tscmax)
  178. tscmax = (unsigned int) delta;
  179. pitcnt++;
  180. }
  181. /*
  182. * Sanity checks:
  183. *
  184. * If we were not able to read the PIT more than loopmin
  185. * times, then we have been hit by a massive SMI
  186. *
  187. * If the maximum is 10 times larger than the minimum,
  188. * then we got hit by an SMI as well.
  189. */
  190. if (pitcnt < loopmin || tscmax > 10 * tscmin)
  191. return ULONG_MAX;
  192. /* Calculate the PIT value */
  193. delta = t2 - t1;
  194. do_div(delta, ms);
  195. return delta;
  196. }
  197. /*
  198. * This reads the current MSB of the PIT counter, and
  199. * checks if we are running on sufficiently fast and
  200. * non-virtualized hardware.
  201. *
  202. * Our expectations are:
  203. *
  204. * - the PIT is running at roughly 1.19MHz
  205. *
  206. * - each IO is going to take about 1us on real hardware,
  207. * but we allow it to be much faster (by a factor of 10) or
  208. * _slightly_ slower (ie we allow up to a 2us read+counter
  209. * update - anything else implies a unacceptably slow CPU
  210. * or PIT for the fast calibration to work.
  211. *
  212. * - with 256 PIT ticks to read the value, we have 214us to
  213. * see the same MSB (and overhead like doing a single TSC
  214. * read per MSB value etc).
  215. *
  216. * - We're doing 2 reads per loop (LSB, MSB), and we expect
  217. * them each to take about a microsecond on real hardware.
  218. * So we expect a count value of around 100. But we'll be
  219. * generous, and accept anything over 50.
  220. *
  221. * - if the PIT is stuck, and we see *many* more reads, we
  222. * return early (and the next caller of pit_expect_msb()
  223. * then consider it a failure when they don't see the
  224. * next expected value).
  225. *
  226. * These expectations mean that we know that we have seen the
  227. * transition from one expected value to another with a fairly
  228. * high accuracy, and we didn't miss any events. We can thus
  229. * use the TSC value at the transitions to calculate a pretty
  230. * good value for the TSC frequencty.
  231. */
  232. static inline int pit_expect_msb(unsigned char val)
  233. {
  234. int count = 0;
  235. for (count = 0; count < 50000; count++) {
  236. /* Ignore LSB */
  237. inb(0x42);
  238. if (inb(0x42) != val)
  239. break;
  240. }
  241. return count > 50;
  242. }
  243. /*
  244. * How many MSB values do we want to see? We aim for a
  245. * 15ms calibration, which assuming a 2us counter read
  246. * error should give us roughly 150 ppm precision for
  247. * the calibration.
  248. */
  249. #define QUICK_PIT_MS 15
  250. #define QUICK_PIT_ITERATIONS (QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
  251. static unsigned long quick_pit_calibrate(void)
  252. {
  253. /* Set the Gate high, disable speaker */
  254. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  255. /*
  256. * Counter 2, mode 0 (one-shot), binary count
  257. *
  258. * NOTE! Mode 2 decrements by two (and then the
  259. * output is flipped each time, giving the same
  260. * final output frequency as a decrement-by-one),
  261. * so mode 0 is much better when looking at the
  262. * individual counts.
  263. */
  264. outb(0xb0, 0x43);
  265. /* Start at 0xffff */
  266. outb(0xff, 0x42);
  267. outb(0xff, 0x42);
  268. if (pit_expect_msb(0xff)) {
  269. int i;
  270. u64 t1, t2, delta;
  271. unsigned char expect = 0xfe;
  272. t1 = get_cycles();
  273. for (i = 0; i < QUICK_PIT_ITERATIONS; i++, expect--) {
  274. if (!pit_expect_msb(expect))
  275. goto failed;
  276. }
  277. t2 = get_cycles();
  278. /*
  279. * Make sure we can rely on the second TSC timestamp:
  280. */
  281. if (!pit_expect_msb(--expect))
  282. goto failed;
  283. /*
  284. * Ok, if we get here, then we've seen the
  285. * MSB of the PIT decrement QUICK_PIT_ITERATIONS
  286. * times, and each MSB had many hits, so we never
  287. * had any sudden jumps.
  288. *
  289. * As a result, we can depend on there not being
  290. * any odd delays anywhere, and the TSC reads are
  291. * reliable.
  292. *
  293. * kHz = ticks / time-in-seconds / 1000;
  294. * kHz = (t2 - t1) / (QPI * 256 / PIT_TICK_RATE) / 1000
  295. * kHz = ((t2 - t1) * PIT_TICK_RATE) / (QPI * 256 * 1000)
  296. */
  297. delta = (t2 - t1)*PIT_TICK_RATE;
  298. do_div(delta, QUICK_PIT_ITERATIONS*256*1000);
  299. printk("Fast TSC calibration using PIT\n");
  300. return delta;
  301. }
  302. failed:
  303. return 0;
  304. }
  305. /**
  306. * native_calibrate_tsc - calibrate the tsc on boot
  307. */
  308. unsigned long native_calibrate_tsc(void)
  309. {
  310. u64 tsc1, tsc2, delta, ref1, ref2;
  311. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  312. unsigned long flags, latch, ms, fast_calibrate;
  313. int hpet = is_hpet_enabled(), i, loopmin;
  314. local_irq_save(flags);
  315. fast_calibrate = quick_pit_calibrate();
  316. local_irq_restore(flags);
  317. if (fast_calibrate)
  318. return fast_calibrate;
  319. /*
  320. * Run 5 calibration loops to get the lowest frequency value
  321. * (the best estimate). We use two different calibration modes
  322. * here:
  323. *
  324. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  325. * load a timeout of 50ms. We read the time right after we
  326. * started the timer and wait until the PIT count down reaches
  327. * zero. In each wait loop iteration we read the TSC and check
  328. * the delta to the previous read. We keep track of the min
  329. * and max values of that delta. The delta is mostly defined
  330. * by the IO time of the PIT access, so we can detect when a
  331. * SMI/SMM disturbance happend between the two reads. If the
  332. * maximum time is significantly larger than the minimum time,
  333. * then we discard the result and have another try.
  334. *
  335. * 2) Reference counter. If available we use the HPET or the
  336. * PMTIMER as a reference to check the sanity of that value.
  337. * We use separate TSC readouts and check inside of the
  338. * reference read for a SMI/SMM disturbance. We dicard
  339. * disturbed values here as well. We do that around the PIT
  340. * calibration delay loop as we have to wait for a certain
  341. * amount of time anyway.
  342. */
  343. /* Preset PIT loop values */
  344. latch = CAL_LATCH;
  345. ms = CAL_MS;
  346. loopmin = CAL_PIT_LOOPS;
  347. for (i = 0; i < 3; i++) {
  348. unsigned long tsc_pit_khz;
  349. /*
  350. * Read the start value and the reference count of
  351. * hpet/pmtimer when available. Then do the PIT
  352. * calibration, which will take at least 50ms, and
  353. * read the end value.
  354. */
  355. local_irq_save(flags);
  356. tsc1 = tsc_read_refs(&ref1, hpet);
  357. tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
  358. tsc2 = tsc_read_refs(&ref2, hpet);
  359. local_irq_restore(flags);
  360. /* Pick the lowest PIT TSC calibration so far */
  361. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  362. /* hpet or pmtimer available ? */
  363. if (!hpet && !ref1 && !ref2)
  364. continue;
  365. /* Check, whether the sampling was disturbed by an SMI */
  366. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  367. continue;
  368. tsc2 = (tsc2 - tsc1) * 1000000LL;
  369. if (hpet)
  370. tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
  371. else
  372. tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
  373. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  374. /* Check the reference deviation */
  375. delta = ((u64) tsc_pit_min) * 100;
  376. do_div(delta, tsc_ref_min);
  377. /*
  378. * If both calibration results are inside a 10% window
  379. * then we can be sure, that the calibration
  380. * succeeded. We break out of the loop right away. We
  381. * use the reference value, as it is more precise.
  382. */
  383. if (delta >= 90 && delta <= 110) {
  384. printk(KERN_INFO
  385. "TSC: PIT calibration matches %s. %d loops\n",
  386. hpet ? "HPET" : "PMTIMER", i + 1);
  387. return tsc_ref_min;
  388. }
  389. /*
  390. * Check whether PIT failed more than once. This
  391. * happens in virtualized environments. We need to
  392. * give the virtual PC a slightly longer timeframe for
  393. * the HPET/PMTIMER to make the result precise.
  394. */
  395. if (i == 1 && tsc_pit_min == ULONG_MAX) {
  396. latch = CAL2_LATCH;
  397. ms = CAL2_MS;
  398. loopmin = CAL2_PIT_LOOPS;
  399. }
  400. }
  401. /*
  402. * Now check the results.
  403. */
  404. if (tsc_pit_min == ULONG_MAX) {
  405. /* PIT gave no useful value */
  406. printk(KERN_WARNING "TSC: PIT calibration failed due to "
  407. "SMI disturbance.\n");
  408. /* We don't have an alternative source, disable TSC */
  409. if (!hpet && !ref1 && !ref2) {
  410. printk("TSC: No reference (HPET/PMTIMER) available\n");
  411. return 0;
  412. }
  413. /* The alternative source failed as well, disable TSC */
  414. if (tsc_ref_min == ULONG_MAX) {
  415. printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
  416. "failed.\n");
  417. return 0;
  418. }
  419. /* Use the alternative source */
  420. printk(KERN_INFO "TSC: using %s reference calibration\n",
  421. hpet ? "HPET" : "PMTIMER");
  422. return tsc_ref_min;
  423. }
  424. /* We don't have an alternative source, use the PIT calibration value */
  425. if (!hpet && !ref1 && !ref2) {
  426. printk(KERN_INFO "TSC: Using PIT calibration value\n");
  427. return tsc_pit_min;
  428. }
  429. /* The alternative source failed, use the PIT calibration value */
  430. if (tsc_ref_min == ULONG_MAX) {
  431. printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
  432. "Using PIT calibration\n");
  433. return tsc_pit_min;
  434. }
  435. /*
  436. * The calibration values differ too much. In doubt, we use
  437. * the PIT value as we know that there are PMTIMERs around
  438. * running at double speed. At least we let the user know:
  439. */
  440. printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
  441. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  442. printk(KERN_INFO "TSC: Using PIT calibration value\n");
  443. return tsc_pit_min;
  444. }
  445. #ifdef CONFIG_X86_32
  446. /* Only called from the Powernow K7 cpu freq driver */
  447. int recalibrate_cpu_khz(void)
  448. {
  449. #ifndef CONFIG_SMP
  450. unsigned long cpu_khz_old = cpu_khz;
  451. if (cpu_has_tsc) {
  452. tsc_khz = calibrate_tsc();
  453. cpu_khz = tsc_khz;
  454. cpu_data(0).loops_per_jiffy =
  455. cpufreq_scale(cpu_data(0).loops_per_jiffy,
  456. cpu_khz_old, cpu_khz);
  457. return 0;
  458. } else
  459. return -ENODEV;
  460. #else
  461. return -ENODEV;
  462. #endif
  463. }
  464. EXPORT_SYMBOL(recalibrate_cpu_khz);
  465. #endif /* CONFIG_X86_32 */
  466. /* Accelerators for sched_clock()
  467. * convert from cycles(64bits) => nanoseconds (64bits)
  468. * basic equation:
  469. * ns = cycles / (freq / ns_per_sec)
  470. * ns = cycles * (ns_per_sec / freq)
  471. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  472. * ns = cycles * (10^6 / cpu_khz)
  473. *
  474. * Then we use scaling math (suggested by george@mvista.com) to get:
  475. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  476. * ns = cycles * cyc2ns_scale / SC
  477. *
  478. * And since SC is a constant power of two, we can convert the div
  479. * into a shift.
  480. *
  481. * We can use khz divisor instead of mhz to keep a better precision, since
  482. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  483. * (mathieu.desnoyers@polymtl.ca)
  484. *
  485. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  486. */
  487. DEFINE_PER_CPU(unsigned long, cyc2ns);
  488. static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
  489. {
  490. unsigned long long tsc_now, ns_now;
  491. unsigned long flags, *scale;
  492. local_irq_save(flags);
  493. sched_clock_idle_sleep_event();
  494. scale = &per_cpu(cyc2ns, cpu);
  495. rdtscll(tsc_now);
  496. ns_now = __cycles_2_ns(tsc_now);
  497. if (cpu_khz)
  498. *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
  499. sched_clock_idle_wakeup_event(0);
  500. local_irq_restore(flags);
  501. }
  502. #ifdef CONFIG_CPU_FREQ
  503. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  504. * changes.
  505. *
  506. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  507. * not that important because current Opteron setups do not support
  508. * scaling on SMP anyroads.
  509. *
  510. * Should fix up last_tsc too. Currently gettimeofday in the
  511. * first tick after the change will be slightly wrong.
  512. */
  513. static unsigned int ref_freq;
  514. static unsigned long loops_per_jiffy_ref;
  515. static unsigned long tsc_khz_ref;
  516. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  517. void *data)
  518. {
  519. struct cpufreq_freqs *freq = data;
  520. unsigned long *lpj, dummy;
  521. if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
  522. return 0;
  523. lpj = &dummy;
  524. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  525. #ifdef CONFIG_SMP
  526. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  527. #else
  528. lpj = &boot_cpu_data.loops_per_jiffy;
  529. #endif
  530. if (!ref_freq) {
  531. ref_freq = freq->old;
  532. loops_per_jiffy_ref = *lpj;
  533. tsc_khz_ref = tsc_khz;
  534. }
  535. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  536. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  537. (val == CPUFREQ_RESUMECHANGE)) {
  538. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  539. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  540. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  541. mark_tsc_unstable("cpufreq changes");
  542. }
  543. set_cyc2ns_scale(tsc_khz, freq->cpu);
  544. return 0;
  545. }
  546. static struct notifier_block time_cpufreq_notifier_block = {
  547. .notifier_call = time_cpufreq_notifier
  548. };
  549. static int __init cpufreq_tsc(void)
  550. {
  551. if (!cpu_has_tsc)
  552. return 0;
  553. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  554. return 0;
  555. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  556. CPUFREQ_TRANSITION_NOTIFIER);
  557. return 0;
  558. }
  559. core_initcall(cpufreq_tsc);
  560. #endif /* CONFIG_CPU_FREQ */
  561. /* clocksource code */
  562. static struct clocksource clocksource_tsc;
  563. /*
  564. * We compare the TSC to the cycle_last value in the clocksource
  565. * structure to avoid a nasty time-warp. This can be observed in a
  566. * very small window right after one CPU updated cycle_last under
  567. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  568. * is smaller than the cycle_last reference value due to a TSC which
  569. * is slighty behind. This delta is nowhere else observable, but in
  570. * that case it results in a forward time jump in the range of hours
  571. * due to the unsigned delta calculation of the time keeping core
  572. * code, which is necessary to support wrapping clocksources like pm
  573. * timer.
  574. */
  575. static cycle_t read_tsc(void)
  576. {
  577. cycle_t ret = (cycle_t)get_cycles();
  578. return ret >= clocksource_tsc.cycle_last ?
  579. ret : clocksource_tsc.cycle_last;
  580. }
  581. #ifdef CONFIG_X86_64
  582. static cycle_t __vsyscall_fn vread_tsc(void)
  583. {
  584. cycle_t ret = (cycle_t)vget_cycles();
  585. return ret >= __vsyscall_gtod_data.clock.cycle_last ?
  586. ret : __vsyscall_gtod_data.clock.cycle_last;
  587. }
  588. #endif
  589. static struct clocksource clocksource_tsc = {
  590. .name = "tsc",
  591. .rating = 300,
  592. .read = read_tsc,
  593. .mask = CLOCKSOURCE_MASK(64),
  594. .shift = 22,
  595. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  596. CLOCK_SOURCE_MUST_VERIFY,
  597. #ifdef CONFIG_X86_64
  598. .vread = vread_tsc,
  599. #endif
  600. };
  601. void mark_tsc_unstable(char *reason)
  602. {
  603. if (!tsc_unstable) {
  604. tsc_unstable = 1;
  605. printk("Marking TSC unstable due to %s\n", reason);
  606. /* Change only the rating, when not registered */
  607. if (clocksource_tsc.mult)
  608. clocksource_change_rating(&clocksource_tsc, 0);
  609. else
  610. clocksource_tsc.rating = 0;
  611. }
  612. }
  613. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  614. static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
  615. {
  616. printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
  617. d->ident);
  618. tsc_unstable = 1;
  619. return 0;
  620. }
  621. /* List of systems that have known TSC problems */
  622. static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
  623. {
  624. .callback = dmi_mark_tsc_unstable,
  625. .ident = "IBM Thinkpad 380XD",
  626. .matches = {
  627. DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
  628. DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
  629. },
  630. },
  631. {}
  632. };
  633. /*
  634. * Geode_LX - the OLPC CPU has a possibly a very reliable TSC
  635. */
  636. #ifdef CONFIG_MGEODE_LX
  637. /* RTSC counts during suspend */
  638. #define RTSC_SUSP 0x100
  639. static void __init check_geode_tsc_reliable(void)
  640. {
  641. unsigned long res_low, res_high;
  642. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  643. if (res_low & RTSC_SUSP)
  644. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  645. }
  646. #else
  647. static inline void check_geode_tsc_reliable(void) { }
  648. #endif
  649. /*
  650. * Make an educated guess if the TSC is trustworthy and synchronized
  651. * over all CPUs.
  652. */
  653. __cpuinit int unsynchronized_tsc(void)
  654. {
  655. if (!cpu_has_tsc || tsc_unstable)
  656. return 1;
  657. #ifdef CONFIG_SMP
  658. if (apic_is_clustered_box())
  659. return 1;
  660. #endif
  661. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  662. return 0;
  663. /*
  664. * Intel systems are normally all synchronized.
  665. * Exceptions must mark TSC as unstable:
  666. */
  667. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  668. /* assume multi socket systems are not synchronized: */
  669. if (num_possible_cpus() > 1)
  670. tsc_unstable = 1;
  671. }
  672. return tsc_unstable;
  673. }
  674. static void __init init_tsc_clocksource(void)
  675. {
  676. clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
  677. clocksource_tsc.shift);
  678. /* lower the rating if we already know its unstable: */
  679. if (check_tsc_unstable()) {
  680. clocksource_tsc.rating = 0;
  681. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  682. }
  683. clocksource_register(&clocksource_tsc);
  684. }
  685. void __init tsc_init(void)
  686. {
  687. u64 lpj;
  688. int cpu;
  689. if (!cpu_has_tsc)
  690. return;
  691. tsc_khz = calibrate_tsc();
  692. cpu_khz = tsc_khz;
  693. if (!tsc_khz) {
  694. mark_tsc_unstable("could not calculate TSC khz");
  695. return;
  696. }
  697. #ifdef CONFIG_X86_64
  698. if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
  699. (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
  700. cpu_khz = calibrate_cpu();
  701. #endif
  702. lpj = ((u64)tsc_khz * 1000);
  703. do_div(lpj, HZ);
  704. lpj_fine = lpj;
  705. printk("Detected %lu.%03lu MHz processor.\n",
  706. (unsigned long)cpu_khz / 1000,
  707. (unsigned long)cpu_khz % 1000);
  708. /*
  709. * Secondary CPUs do not run through tsc_init(), so set up
  710. * all the scale factors for all CPUs, assuming the same
  711. * speed as the bootup CPU. (cpufreq notifiers will fix this
  712. * up if their speed diverges)
  713. */
  714. for_each_possible_cpu(cpu)
  715. set_cyc2ns_scale(cpu_khz, cpu);
  716. if (tsc_disabled > 0)
  717. return;
  718. /* now allow native_sched_clock() to use rdtsc */
  719. tsc_disabled = 0;
  720. use_tsc_delay();
  721. /* Check and install the TSC clocksource */
  722. dmi_check_system(bad_tsc_dmi_table);
  723. if (unsynchronized_tsc())
  724. mark_tsc_unstable("TSCs unsynchronized");
  725. check_geode_tsc_reliable();
  726. init_tsc_clocksource();
  727. }