hw.c 104 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <asm/unaligned.h>
  18. #include "hw.h"
  19. #include "rc.h"
  20. #include "initvals.h"
  21. #define ATH9K_CLOCK_RATE_CCK 22
  22. #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
  23. #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
  24. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  25. static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan);
  26. static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
  27. struct ar5416_eeprom_def *pEepData,
  28. u32 reg, u32 value);
  29. MODULE_AUTHOR("Atheros Communications");
  30. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  31. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  32. MODULE_LICENSE("Dual BSD/GPL");
  33. static int __init ath9k_init(void)
  34. {
  35. return 0;
  36. }
  37. module_init(ath9k_init);
  38. static void __exit ath9k_exit(void)
  39. {
  40. return;
  41. }
  42. module_exit(ath9k_exit);
  43. /********************/
  44. /* Helper Functions */
  45. /********************/
  46. static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
  47. {
  48. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  49. if (!ah->curchan) /* should really check for CCK instead */
  50. return clks / ATH9K_CLOCK_RATE_CCK;
  51. if (conf->channel->band == IEEE80211_BAND_2GHZ)
  52. return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
  53. return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
  54. }
  55. static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
  56. {
  57. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  58. if (conf_is_ht40(conf))
  59. return ath9k_hw_mac_usec(ah, clks) / 2;
  60. else
  61. return ath9k_hw_mac_usec(ah, clks);
  62. }
  63. static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
  64. {
  65. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  66. if (!ah->curchan) /* should really check for CCK instead */
  67. return usecs *ATH9K_CLOCK_RATE_CCK;
  68. if (conf->channel->band == IEEE80211_BAND_2GHZ)
  69. return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
  70. return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
  71. }
  72. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  73. {
  74. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  75. if (conf_is_ht40(conf))
  76. return ath9k_hw_mac_clks(ah, usecs) * 2;
  77. else
  78. return ath9k_hw_mac_clks(ah, usecs);
  79. }
  80. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  81. {
  82. int i;
  83. BUG_ON(timeout < AH_TIME_QUANTUM);
  84. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  85. if ((REG_READ(ah, reg) & mask) == val)
  86. return true;
  87. udelay(AH_TIME_QUANTUM);
  88. }
  89. ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
  90. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  91. timeout, reg, REG_READ(ah, reg), mask, val);
  92. return false;
  93. }
  94. EXPORT_SYMBOL(ath9k_hw_wait);
  95. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  96. {
  97. u32 retval;
  98. int i;
  99. for (i = 0, retval = 0; i < n; i++) {
  100. retval = (retval << 1) | (val & 1);
  101. val >>= 1;
  102. }
  103. return retval;
  104. }
  105. bool ath9k_get_channel_edges(struct ath_hw *ah,
  106. u16 flags, u16 *low,
  107. u16 *high)
  108. {
  109. struct ath9k_hw_capabilities *pCap = &ah->caps;
  110. if (flags & CHANNEL_5GHZ) {
  111. *low = pCap->low_5ghz_chan;
  112. *high = pCap->high_5ghz_chan;
  113. return true;
  114. }
  115. if ((flags & CHANNEL_2GHZ)) {
  116. *low = pCap->low_2ghz_chan;
  117. *high = pCap->high_2ghz_chan;
  118. return true;
  119. }
  120. return false;
  121. }
  122. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  123. u8 phy, int kbps,
  124. u32 frameLen, u16 rateix,
  125. bool shortPreamble)
  126. {
  127. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  128. if (kbps == 0)
  129. return 0;
  130. switch (phy) {
  131. case WLAN_RC_PHY_CCK:
  132. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  133. if (shortPreamble)
  134. phyTime >>= 1;
  135. numBits = frameLen << 3;
  136. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  137. break;
  138. case WLAN_RC_PHY_OFDM:
  139. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  140. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  141. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  142. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  143. txTime = OFDM_SIFS_TIME_QUARTER
  144. + OFDM_PREAMBLE_TIME_QUARTER
  145. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  146. } else if (ah->curchan &&
  147. IS_CHAN_HALF_RATE(ah->curchan)) {
  148. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  149. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  150. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  151. txTime = OFDM_SIFS_TIME_HALF +
  152. OFDM_PREAMBLE_TIME_HALF
  153. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  154. } else {
  155. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  156. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  157. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  158. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  159. + (numSymbols * OFDM_SYMBOL_TIME);
  160. }
  161. break;
  162. default:
  163. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  164. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  165. txTime = 0;
  166. break;
  167. }
  168. return txTime;
  169. }
  170. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  171. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  172. struct ath9k_channel *chan,
  173. struct chan_centers *centers)
  174. {
  175. int8_t extoff;
  176. if (!IS_CHAN_HT40(chan)) {
  177. centers->ctl_center = centers->ext_center =
  178. centers->synth_center = chan->channel;
  179. return;
  180. }
  181. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  182. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  183. centers->synth_center =
  184. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  185. extoff = 1;
  186. } else {
  187. centers->synth_center =
  188. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  189. extoff = -1;
  190. }
  191. centers->ctl_center =
  192. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  193. /* 25 MHz spacing is supported by hw but not on upper layers */
  194. centers->ext_center =
  195. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  196. }
  197. /******************/
  198. /* Chip Revisions */
  199. /******************/
  200. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  201. {
  202. u32 val;
  203. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  204. if (val == 0xFF) {
  205. val = REG_READ(ah, AR_SREV);
  206. ah->hw_version.macVersion =
  207. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  208. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  209. ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  210. } else {
  211. if (!AR_SREV_9100(ah))
  212. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  213. ah->hw_version.macRev = val & AR_SREV_REVISION;
  214. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  215. ah->is_pciexpress = true;
  216. }
  217. }
  218. static int ath9k_hw_get_radiorev(struct ath_hw *ah)
  219. {
  220. u32 val;
  221. int i;
  222. REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
  223. for (i = 0; i < 8; i++)
  224. REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
  225. val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
  226. val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
  227. return ath9k_hw_reverse_bits(val, 8);
  228. }
  229. /************************************/
  230. /* HW Attach, Detach, Init Routines */
  231. /************************************/
  232. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  233. {
  234. if (AR_SREV_9100(ah))
  235. return;
  236. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  237. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  238. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  239. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  240. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  241. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  242. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  243. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  244. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  245. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  246. }
  247. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  248. {
  249. struct ath_common *common = ath9k_hw_common(ah);
  250. u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
  251. u32 regHold[2];
  252. u32 patternData[4] = { 0x55555555,
  253. 0xaaaaaaaa,
  254. 0x66666666,
  255. 0x99999999 };
  256. int i, j;
  257. for (i = 0; i < 2; i++) {
  258. u32 addr = regAddr[i];
  259. u32 wrData, rdData;
  260. regHold[i] = REG_READ(ah, addr);
  261. for (j = 0; j < 0x100; j++) {
  262. wrData = (j << 16) | j;
  263. REG_WRITE(ah, addr, wrData);
  264. rdData = REG_READ(ah, addr);
  265. if (rdData != wrData) {
  266. ath_print(common, ATH_DBG_FATAL,
  267. "address test failed "
  268. "addr: 0x%08x - wr:0x%08x != "
  269. "rd:0x%08x\n",
  270. addr, wrData, rdData);
  271. return false;
  272. }
  273. }
  274. for (j = 0; j < 4; j++) {
  275. wrData = patternData[j];
  276. REG_WRITE(ah, addr, wrData);
  277. rdData = REG_READ(ah, addr);
  278. if (wrData != rdData) {
  279. ath_print(common, ATH_DBG_FATAL,
  280. "address test failed "
  281. "addr: 0x%08x - wr:0x%08x != "
  282. "rd:0x%08x\n",
  283. addr, wrData, rdData);
  284. return false;
  285. }
  286. }
  287. REG_WRITE(ah, regAddr[i], regHold[i]);
  288. }
  289. udelay(100);
  290. return true;
  291. }
  292. static void ath9k_hw_init_config(struct ath_hw *ah)
  293. {
  294. int i;
  295. ah->config.dma_beacon_response_time = 2;
  296. ah->config.sw_beacon_response_time = 10;
  297. ah->config.additional_swba_backoff = 0;
  298. ah->config.ack_6mb = 0x0;
  299. ah->config.cwm_ignore_extcca = 0;
  300. ah->config.pcie_powersave_enable = 0;
  301. ah->config.pcie_clock_req = 0;
  302. ah->config.pcie_waen = 0;
  303. ah->config.analog_shiftreg = 1;
  304. ah->config.ht_enable = 1;
  305. ah->config.ofdm_trig_low = 200;
  306. ah->config.ofdm_trig_high = 500;
  307. ah->config.cck_trig_high = 200;
  308. ah->config.cck_trig_low = 100;
  309. ah->config.enable_ani = 1;
  310. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  311. ah->config.spurchans[i][0] = AR_NO_SPUR;
  312. ah->config.spurchans[i][1] = AR_NO_SPUR;
  313. }
  314. ah->config.intr_mitigation = true;
  315. /*
  316. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  317. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  318. * This means we use it for all AR5416 devices, and the few
  319. * minor PCI AR9280 devices out there.
  320. *
  321. * Serialization is required because these devices do not handle
  322. * well the case of two concurrent reads/writes due to the latency
  323. * involved. During one read/write another read/write can be issued
  324. * on another CPU while the previous read/write may still be working
  325. * on our hardware, if we hit this case the hardware poops in a loop.
  326. * We prevent this by serializing reads and writes.
  327. *
  328. * This issue is not present on PCI-Express devices or pre-AR5416
  329. * devices (legacy, 802.11abg).
  330. */
  331. if (num_possible_cpus() > 1)
  332. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  333. }
  334. EXPORT_SYMBOL(ath9k_hw_init);
  335. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  336. {
  337. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  338. regulatory->country_code = CTRY_DEFAULT;
  339. regulatory->power_limit = MAX_RATE_POWER;
  340. regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
  341. ah->hw_version.magic = AR5416_MAGIC;
  342. ah->hw_version.subvendorid = 0;
  343. ah->ah_flags = 0;
  344. if (ah->hw_version.devid == AR5416_AR9100_DEVID)
  345. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  346. if (!AR_SREV_9100(ah))
  347. ah->ah_flags = AH_USE_EEPROM;
  348. ah->atim_window = 0;
  349. ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
  350. ah->beacon_interval = 100;
  351. ah->enable_32kHz_clock = DONT_USE_32KHZ;
  352. ah->slottime = (u32) -1;
  353. ah->acktimeout = (u32) -1;
  354. ah->ctstimeout = (u32) -1;
  355. ah->globaltxtimeout = (u32) -1;
  356. ah->power_mode = ATH9K_PM_UNDEFINED;
  357. }
  358. static int ath9k_hw_rf_claim(struct ath_hw *ah)
  359. {
  360. u32 val;
  361. REG_WRITE(ah, AR_PHY(0), 0x00000007);
  362. val = ath9k_hw_get_radiorev(ah);
  363. switch (val & AR_RADIO_SREV_MAJOR) {
  364. case 0:
  365. val = AR_RAD5133_SREV_MAJOR;
  366. break;
  367. case AR_RAD5133_SREV_MAJOR:
  368. case AR_RAD5122_SREV_MAJOR:
  369. case AR_RAD2133_SREV_MAJOR:
  370. case AR_RAD2122_SREV_MAJOR:
  371. break;
  372. default:
  373. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  374. "Radio Chip Rev 0x%02X not supported\n",
  375. val & AR_RADIO_SREV_MAJOR);
  376. return -EOPNOTSUPP;
  377. }
  378. ah->hw_version.analog5GhzRev = val;
  379. return 0;
  380. }
  381. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  382. {
  383. struct ath_common *common = ath9k_hw_common(ah);
  384. u32 sum;
  385. int i;
  386. u16 eeval;
  387. sum = 0;
  388. for (i = 0; i < 3; i++) {
  389. eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
  390. sum += eeval;
  391. common->macaddr[2 * i] = eeval >> 8;
  392. common->macaddr[2 * i + 1] = eeval & 0xff;
  393. }
  394. if (sum == 0 || sum == 0xffff * 3)
  395. return -EADDRNOTAVAIL;
  396. return 0;
  397. }
  398. static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
  399. {
  400. u32 rxgain_type;
  401. if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
  402. rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
  403. if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
  404. INIT_INI_ARRAY(&ah->iniModesRxGain,
  405. ar9280Modes_backoff_13db_rxgain_9280_2,
  406. ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
  407. else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
  408. INIT_INI_ARRAY(&ah->iniModesRxGain,
  409. ar9280Modes_backoff_23db_rxgain_9280_2,
  410. ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
  411. else
  412. INIT_INI_ARRAY(&ah->iniModesRxGain,
  413. ar9280Modes_original_rxgain_9280_2,
  414. ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
  415. } else {
  416. INIT_INI_ARRAY(&ah->iniModesRxGain,
  417. ar9280Modes_original_rxgain_9280_2,
  418. ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
  419. }
  420. }
  421. static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
  422. {
  423. u32 txgain_type;
  424. if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
  425. txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
  426. if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
  427. INIT_INI_ARRAY(&ah->iniModesTxGain,
  428. ar9280Modes_high_power_tx_gain_9280_2,
  429. ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
  430. else
  431. INIT_INI_ARRAY(&ah->iniModesTxGain,
  432. ar9280Modes_original_tx_gain_9280_2,
  433. ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
  434. } else {
  435. INIT_INI_ARRAY(&ah->iniModesTxGain,
  436. ar9280Modes_original_tx_gain_9280_2,
  437. ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
  438. }
  439. }
  440. static int ath9k_hw_post_init(struct ath_hw *ah)
  441. {
  442. int ecode;
  443. if (!ath9k_hw_chip_test(ah))
  444. return -ENODEV;
  445. ecode = ath9k_hw_rf_claim(ah);
  446. if (ecode != 0)
  447. return ecode;
  448. ecode = ath9k_hw_eeprom_init(ah);
  449. if (ecode != 0)
  450. return ecode;
  451. ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
  452. "Eeprom VER: %d, REV: %d\n",
  453. ah->eep_ops->get_eeprom_ver(ah),
  454. ah->eep_ops->get_eeprom_rev(ah));
  455. if (!AR_SREV_9280_10_OR_LATER(ah)) {
  456. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  457. if (ecode) {
  458. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  459. "Failed allocating banks for "
  460. "external radio\n");
  461. return ecode;
  462. }
  463. }
  464. if (!AR_SREV_9100(ah)) {
  465. ath9k_hw_ani_setup(ah);
  466. ath9k_hw_ani_init(ah);
  467. }
  468. return 0;
  469. }
  470. static bool ath9k_hw_devid_supported(u16 devid)
  471. {
  472. switch (devid) {
  473. case AR5416_DEVID_PCI:
  474. case AR5416_DEVID_PCIE:
  475. case AR5416_AR9100_DEVID:
  476. case AR9160_DEVID_PCI:
  477. case AR9280_DEVID_PCI:
  478. case AR9280_DEVID_PCIE:
  479. case AR9285_DEVID_PCIE:
  480. case AR5416_DEVID_AR9287_PCI:
  481. case AR5416_DEVID_AR9287_PCIE:
  482. case AR9271_USB:
  483. return true;
  484. default:
  485. break;
  486. }
  487. return false;
  488. }
  489. static bool ath9k_hw_macversion_supported(u32 macversion)
  490. {
  491. switch (macversion) {
  492. case AR_SREV_VERSION_5416_PCI:
  493. case AR_SREV_VERSION_5416_PCIE:
  494. case AR_SREV_VERSION_9160:
  495. case AR_SREV_VERSION_9100:
  496. case AR_SREV_VERSION_9280:
  497. case AR_SREV_VERSION_9285:
  498. case AR_SREV_VERSION_9287:
  499. case AR_SREV_VERSION_9271:
  500. return true;
  501. default:
  502. break;
  503. }
  504. return false;
  505. }
  506. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  507. {
  508. if (AR_SREV_9160_10_OR_LATER(ah)) {
  509. if (AR_SREV_9280_10_OR_LATER(ah)) {
  510. ah->iq_caldata.calData = &iq_cal_single_sample;
  511. ah->adcgain_caldata.calData =
  512. &adc_gain_cal_single_sample;
  513. ah->adcdc_caldata.calData =
  514. &adc_dc_cal_single_sample;
  515. ah->adcdc_calinitdata.calData =
  516. &adc_init_dc_cal;
  517. } else {
  518. ah->iq_caldata.calData = &iq_cal_multi_sample;
  519. ah->adcgain_caldata.calData =
  520. &adc_gain_cal_multi_sample;
  521. ah->adcdc_caldata.calData =
  522. &adc_dc_cal_multi_sample;
  523. ah->adcdc_calinitdata.calData =
  524. &adc_init_dc_cal;
  525. }
  526. ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
  527. }
  528. }
  529. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  530. {
  531. if (AR_SREV_9271(ah)) {
  532. INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
  533. ARRAY_SIZE(ar9271Modes_9271), 6);
  534. INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
  535. ARRAY_SIZE(ar9271Common_9271), 2);
  536. INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
  537. ar9271Modes_9271_1_0_only,
  538. ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
  539. return;
  540. }
  541. if (AR_SREV_9287_11_OR_LATER(ah)) {
  542. INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
  543. ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
  544. INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
  545. ARRAY_SIZE(ar9287Common_9287_1_1), 2);
  546. if (ah->config.pcie_clock_req)
  547. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  548. ar9287PciePhy_clkreq_off_L1_9287_1_1,
  549. ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
  550. else
  551. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  552. ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
  553. ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
  554. 2);
  555. } else if (AR_SREV_9287_10_OR_LATER(ah)) {
  556. INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
  557. ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
  558. INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
  559. ARRAY_SIZE(ar9287Common_9287_1_0), 2);
  560. if (ah->config.pcie_clock_req)
  561. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  562. ar9287PciePhy_clkreq_off_L1_9287_1_0,
  563. ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
  564. else
  565. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  566. ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
  567. ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
  568. 2);
  569. } else if (AR_SREV_9285_12_OR_LATER(ah)) {
  570. INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
  571. ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
  572. INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
  573. ARRAY_SIZE(ar9285Common_9285_1_2), 2);
  574. if (ah->config.pcie_clock_req) {
  575. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  576. ar9285PciePhy_clkreq_off_L1_9285_1_2,
  577. ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
  578. } else {
  579. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  580. ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
  581. ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
  582. 2);
  583. }
  584. } else if (AR_SREV_9285_10_OR_LATER(ah)) {
  585. INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
  586. ARRAY_SIZE(ar9285Modes_9285), 6);
  587. INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
  588. ARRAY_SIZE(ar9285Common_9285), 2);
  589. if (ah->config.pcie_clock_req) {
  590. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  591. ar9285PciePhy_clkreq_off_L1_9285,
  592. ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
  593. } else {
  594. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  595. ar9285PciePhy_clkreq_always_on_L1_9285,
  596. ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
  597. }
  598. } else if (AR_SREV_9280_20_OR_LATER(ah)) {
  599. INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
  600. ARRAY_SIZE(ar9280Modes_9280_2), 6);
  601. INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
  602. ARRAY_SIZE(ar9280Common_9280_2), 2);
  603. if (ah->config.pcie_clock_req) {
  604. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  605. ar9280PciePhy_clkreq_off_L1_9280,
  606. ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
  607. } else {
  608. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  609. ar9280PciePhy_clkreq_always_on_L1_9280,
  610. ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
  611. }
  612. INIT_INI_ARRAY(&ah->iniModesAdditional,
  613. ar9280Modes_fast_clock_9280_2,
  614. ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
  615. } else if (AR_SREV_9280_10_OR_LATER(ah)) {
  616. INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
  617. ARRAY_SIZE(ar9280Modes_9280), 6);
  618. INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
  619. ARRAY_SIZE(ar9280Common_9280), 2);
  620. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  621. INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
  622. ARRAY_SIZE(ar5416Modes_9160), 6);
  623. INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
  624. ARRAY_SIZE(ar5416Common_9160), 2);
  625. INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
  626. ARRAY_SIZE(ar5416Bank0_9160), 2);
  627. INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
  628. ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
  629. INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
  630. ARRAY_SIZE(ar5416Bank1_9160), 2);
  631. INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
  632. ARRAY_SIZE(ar5416Bank2_9160), 2);
  633. INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
  634. ARRAY_SIZE(ar5416Bank3_9160), 3);
  635. INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
  636. ARRAY_SIZE(ar5416Bank6_9160), 3);
  637. INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
  638. ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
  639. INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
  640. ARRAY_SIZE(ar5416Bank7_9160), 2);
  641. if (AR_SREV_9160_11(ah)) {
  642. INIT_INI_ARRAY(&ah->iniAddac,
  643. ar5416Addac_91601_1,
  644. ARRAY_SIZE(ar5416Addac_91601_1), 2);
  645. } else {
  646. INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
  647. ARRAY_SIZE(ar5416Addac_9160), 2);
  648. }
  649. } else if (AR_SREV_9100_OR_LATER(ah)) {
  650. INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
  651. ARRAY_SIZE(ar5416Modes_9100), 6);
  652. INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
  653. ARRAY_SIZE(ar5416Common_9100), 2);
  654. INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
  655. ARRAY_SIZE(ar5416Bank0_9100), 2);
  656. INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
  657. ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
  658. INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
  659. ARRAY_SIZE(ar5416Bank1_9100), 2);
  660. INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
  661. ARRAY_SIZE(ar5416Bank2_9100), 2);
  662. INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
  663. ARRAY_SIZE(ar5416Bank3_9100), 3);
  664. INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
  665. ARRAY_SIZE(ar5416Bank6_9100), 3);
  666. INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
  667. ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
  668. INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
  669. ARRAY_SIZE(ar5416Bank7_9100), 2);
  670. INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
  671. ARRAY_SIZE(ar5416Addac_9100), 2);
  672. } else {
  673. INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
  674. ARRAY_SIZE(ar5416Modes), 6);
  675. INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
  676. ARRAY_SIZE(ar5416Common), 2);
  677. INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
  678. ARRAY_SIZE(ar5416Bank0), 2);
  679. INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
  680. ARRAY_SIZE(ar5416BB_RfGain), 3);
  681. INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
  682. ARRAY_SIZE(ar5416Bank1), 2);
  683. INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
  684. ARRAY_SIZE(ar5416Bank2), 2);
  685. INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
  686. ARRAY_SIZE(ar5416Bank3), 3);
  687. INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
  688. ARRAY_SIZE(ar5416Bank6), 3);
  689. INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
  690. ARRAY_SIZE(ar5416Bank6TPC), 3);
  691. INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
  692. ARRAY_SIZE(ar5416Bank7), 2);
  693. INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
  694. ARRAY_SIZE(ar5416Addac), 2);
  695. }
  696. }
  697. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  698. {
  699. if (AR_SREV_9287_11_OR_LATER(ah))
  700. INIT_INI_ARRAY(&ah->iniModesRxGain,
  701. ar9287Modes_rx_gain_9287_1_1,
  702. ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
  703. else if (AR_SREV_9287_10(ah))
  704. INIT_INI_ARRAY(&ah->iniModesRxGain,
  705. ar9287Modes_rx_gain_9287_1_0,
  706. ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
  707. else if (AR_SREV_9280_20(ah))
  708. ath9k_hw_init_rxgain_ini(ah);
  709. if (AR_SREV_9287_11_OR_LATER(ah)) {
  710. INIT_INI_ARRAY(&ah->iniModesTxGain,
  711. ar9287Modes_tx_gain_9287_1_1,
  712. ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
  713. } else if (AR_SREV_9287_10(ah)) {
  714. INIT_INI_ARRAY(&ah->iniModesTxGain,
  715. ar9287Modes_tx_gain_9287_1_0,
  716. ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
  717. } else if (AR_SREV_9280_20(ah)) {
  718. ath9k_hw_init_txgain_ini(ah);
  719. } else if (AR_SREV_9285_12_OR_LATER(ah)) {
  720. u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
  721. /* txgain table */
  722. if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
  723. INIT_INI_ARRAY(&ah->iniModesTxGain,
  724. ar9285Modes_high_power_tx_gain_9285_1_2,
  725. ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
  726. } else {
  727. INIT_INI_ARRAY(&ah->iniModesTxGain,
  728. ar9285Modes_original_tx_gain_9285_1_2,
  729. ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
  730. }
  731. }
  732. }
  733. static void ath9k_hw_init_11a_eeprom_fix(struct ath_hw *ah)
  734. {
  735. u32 i, j;
  736. if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
  737. test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
  738. /* EEPROM Fixup */
  739. for (i = 0; i < ah->iniModes.ia_rows; i++) {
  740. u32 reg = INI_RA(&ah->iniModes, i, 0);
  741. for (j = 1; j < ah->iniModes.ia_columns; j++) {
  742. u32 val = INI_RA(&ah->iniModes, i, j);
  743. INI_RA(&ah->iniModes, i, j) =
  744. ath9k_hw_ini_fixup(ah,
  745. &ah->eeprom.def,
  746. reg, val);
  747. }
  748. }
  749. }
  750. }
  751. int ath9k_hw_init(struct ath_hw *ah)
  752. {
  753. struct ath_common *common = ath9k_hw_common(ah);
  754. int r = 0;
  755. if (!ath9k_hw_devid_supported(ah->hw_version.devid)) {
  756. ath_print(common, ATH_DBG_FATAL,
  757. "Unsupported device ID: 0x%0x\n",
  758. ah->hw_version.devid);
  759. return -EOPNOTSUPP;
  760. }
  761. ath9k_hw_init_defaults(ah);
  762. ath9k_hw_init_config(ah);
  763. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  764. ath_print(common, ATH_DBG_FATAL,
  765. "Couldn't reset chip\n");
  766. return -EIO;
  767. }
  768. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  769. ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
  770. return -EIO;
  771. }
  772. if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  773. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  774. (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
  775. ah->config.serialize_regmode =
  776. SER_REG_MODE_ON;
  777. } else {
  778. ah->config.serialize_regmode =
  779. SER_REG_MODE_OFF;
  780. }
  781. }
  782. ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
  783. ah->config.serialize_regmode);
  784. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  785. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  786. else
  787. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  788. if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
  789. ath_print(common, ATH_DBG_FATAL,
  790. "Mac Chip Rev 0x%02x.%x is not supported by "
  791. "this driver\n", ah->hw_version.macVersion,
  792. ah->hw_version.macRev);
  793. return -EOPNOTSUPP;
  794. }
  795. if (AR_SREV_9100(ah)) {
  796. ah->iq_caldata.calData = &iq_cal_multi_sample;
  797. ah->supp_cals = IQ_MISMATCH_CAL;
  798. ah->is_pciexpress = false;
  799. }
  800. if (AR_SREV_9271(ah))
  801. ah->is_pciexpress = false;
  802. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  803. ath9k_hw_init_cal_settings(ah);
  804. ah->ani_function = ATH9K_ANI_ALL;
  805. if (AR_SREV_9280_10_OR_LATER(ah)) {
  806. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  807. ah->ath9k_hw_rf_set_freq = &ath9k_hw_ar9280_set_channel;
  808. ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_9280_spur_mitigate;
  809. } else {
  810. ah->ath9k_hw_rf_set_freq = &ath9k_hw_set_channel;
  811. ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_spur_mitigate;
  812. }
  813. ath9k_hw_init_mode_regs(ah);
  814. if (ah->is_pciexpress)
  815. ath9k_hw_configpcipowersave(ah, 0, 0);
  816. else
  817. ath9k_hw_disablepcie(ah);
  818. /* Support for Japan ch.14 (2484) spread */
  819. if (AR_SREV_9287_11_OR_LATER(ah)) {
  820. INIT_INI_ARRAY(&ah->iniCckfirNormal,
  821. ar9287Common_normal_cck_fir_coeff_92871_1,
  822. ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
  823. INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
  824. ar9287Common_japan_2484_cck_fir_coeff_92871_1,
  825. ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
  826. }
  827. r = ath9k_hw_post_init(ah);
  828. if (r)
  829. return r;
  830. ath9k_hw_init_mode_gain_regs(ah);
  831. r = ath9k_hw_fill_cap_info(ah);
  832. if (r)
  833. return r;
  834. ath9k_hw_init_11a_eeprom_fix(ah);
  835. r = ath9k_hw_init_macaddr(ah);
  836. if (r) {
  837. ath_print(common, ATH_DBG_FATAL,
  838. "Failed to initialize MAC address\n");
  839. return r;
  840. }
  841. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  842. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  843. else
  844. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  845. ath9k_init_nfcal_hist_buffer(ah);
  846. common->state = ATH_HW_INITIALIZED;
  847. return 0;
  848. }
  849. static void ath9k_hw_init_bb(struct ath_hw *ah,
  850. struct ath9k_channel *chan)
  851. {
  852. u32 synthDelay;
  853. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  854. if (IS_CHAN_B(chan))
  855. synthDelay = (4 * synthDelay) / 22;
  856. else
  857. synthDelay /= 10;
  858. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  859. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  860. }
  861. static void ath9k_hw_init_qos(struct ath_hw *ah)
  862. {
  863. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  864. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  865. REG_WRITE(ah, AR_QOS_NO_ACK,
  866. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  867. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  868. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  869. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  870. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  871. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  872. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  873. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  874. }
  875. static void ath9k_hw_change_target_baud(struct ath_hw *ah, u32 freq, u32 baud)
  876. {
  877. u32 lcr;
  878. u32 baud_divider = freq * 1000 * 1000 / 16 / baud;
  879. lcr = REG_READ(ah , 0x5100c);
  880. lcr |= 0x80;
  881. REG_WRITE(ah, 0x5100c, lcr);
  882. REG_WRITE(ah, 0x51004, (baud_divider >> 8));
  883. REG_WRITE(ah, 0x51000, (baud_divider & 0xff));
  884. lcr &= ~0x80;
  885. REG_WRITE(ah, 0x5100c, lcr);
  886. }
  887. static void ath9k_hw_init_pll(struct ath_hw *ah,
  888. struct ath9k_channel *chan)
  889. {
  890. u32 pll;
  891. if (AR_SREV_9100(ah)) {
  892. if (chan && IS_CHAN_5GHZ(chan))
  893. pll = 0x1450;
  894. else
  895. pll = 0x1458;
  896. } else {
  897. if (AR_SREV_9280_10_OR_LATER(ah)) {
  898. pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
  899. if (chan && IS_CHAN_HALF_RATE(chan))
  900. pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
  901. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  902. pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
  903. if (chan && IS_CHAN_5GHZ(chan)) {
  904. pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
  905. if (AR_SREV_9280_20(ah)) {
  906. if (((chan->channel % 20) == 0)
  907. || ((chan->channel % 10) == 0))
  908. pll = 0x2850;
  909. else
  910. pll = 0x142c;
  911. }
  912. } else {
  913. pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
  914. }
  915. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  916. pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
  917. if (chan && IS_CHAN_HALF_RATE(chan))
  918. pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
  919. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  920. pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
  921. if (chan && IS_CHAN_5GHZ(chan))
  922. pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
  923. else
  924. pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
  925. } else {
  926. pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
  927. if (chan && IS_CHAN_HALF_RATE(chan))
  928. pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
  929. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  930. pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
  931. if (chan && IS_CHAN_5GHZ(chan))
  932. pll |= SM(0xa, AR_RTC_PLL_DIV);
  933. else
  934. pll |= SM(0xb, AR_RTC_PLL_DIV);
  935. }
  936. }
  937. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  938. /* Switch the core clock for ar9271 to 117Mhz */
  939. if (AR_SREV_9271(ah)) {
  940. if ((pll == 0x142c) || (pll == 0x2850) ) {
  941. udelay(500);
  942. /* set CLKOBS to output AHB clock */
  943. REG_WRITE(ah, 0x7020, 0xe);
  944. /*
  945. * 0x304: 117Mhz, ahb_ratio: 1x1
  946. * 0x306: 40Mhz, ahb_ratio: 1x1
  947. */
  948. REG_WRITE(ah, 0x50040, 0x304);
  949. /*
  950. * makes adjustments for the baud dividor to keep the
  951. * targetted baud rate based on the used core clock.
  952. */
  953. ath9k_hw_change_target_baud(ah, AR9271_CORE_CLOCK,
  954. AR9271_TARGET_BAUD_RATE);
  955. }
  956. }
  957. udelay(RTC_PLL_SETTLE_DELAY);
  958. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  959. }
  960. static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
  961. {
  962. int rx_chainmask, tx_chainmask;
  963. rx_chainmask = ah->rxchainmask;
  964. tx_chainmask = ah->txchainmask;
  965. switch (rx_chainmask) {
  966. case 0x5:
  967. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  968. AR_PHY_SWAP_ALT_CHAIN);
  969. case 0x3:
  970. if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
  971. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
  972. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
  973. break;
  974. }
  975. case 0x1:
  976. case 0x2:
  977. case 0x7:
  978. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
  979. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
  980. break;
  981. default:
  982. break;
  983. }
  984. REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
  985. if (tx_chainmask == 0x5) {
  986. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  987. AR_PHY_SWAP_ALT_CHAIN);
  988. }
  989. if (AR_SREV_9100(ah))
  990. REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
  991. REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
  992. }
  993. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  994. enum nl80211_iftype opmode)
  995. {
  996. ah->mask_reg = AR_IMR_TXERR |
  997. AR_IMR_TXURN |
  998. AR_IMR_RXERR |
  999. AR_IMR_RXORN |
  1000. AR_IMR_BCNMISC;
  1001. if (ah->config.intr_mitigation)
  1002. ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  1003. else
  1004. ah->mask_reg |= AR_IMR_RXOK;
  1005. ah->mask_reg |= AR_IMR_TXOK;
  1006. if (opmode == NL80211_IFTYPE_AP)
  1007. ah->mask_reg |= AR_IMR_MIB;
  1008. REG_WRITE(ah, AR_IMR, ah->mask_reg);
  1009. REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
  1010. if (!AR_SREV_9100(ah)) {
  1011. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  1012. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
  1013. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  1014. }
  1015. }
  1016. static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  1017. {
  1018. if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
  1019. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  1020. "bad ack timeout %u\n", us);
  1021. ah->acktimeout = (u32) -1;
  1022. return false;
  1023. } else {
  1024. REG_RMW_FIELD(ah, AR_TIME_OUT,
  1025. AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
  1026. ah->acktimeout = us;
  1027. return true;
  1028. }
  1029. }
  1030. static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  1031. {
  1032. if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
  1033. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  1034. "bad cts timeout %u\n", us);
  1035. ah->ctstimeout = (u32) -1;
  1036. return false;
  1037. } else {
  1038. REG_RMW_FIELD(ah, AR_TIME_OUT,
  1039. AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
  1040. ah->ctstimeout = us;
  1041. return true;
  1042. }
  1043. }
  1044. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  1045. {
  1046. if (tu > 0xFFFF) {
  1047. ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
  1048. "bad global tx timeout %u\n", tu);
  1049. ah->globaltxtimeout = (u32) -1;
  1050. return false;
  1051. } else {
  1052. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  1053. ah->globaltxtimeout = tu;
  1054. return true;
  1055. }
  1056. }
  1057. static void ath9k_hw_init_user_settings(struct ath_hw *ah)
  1058. {
  1059. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
  1060. ah->misc_mode);
  1061. if (ah->misc_mode != 0)
  1062. REG_WRITE(ah, AR_PCU_MISC,
  1063. REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
  1064. if (ah->slottime != (u32) -1)
  1065. ath9k_hw_setslottime(ah, ah->slottime);
  1066. if (ah->acktimeout != (u32) -1)
  1067. ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
  1068. if (ah->ctstimeout != (u32) -1)
  1069. ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
  1070. if (ah->globaltxtimeout != (u32) -1)
  1071. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  1072. }
  1073. void ath9k_hw_detach(struct ath_hw *ah)
  1074. {
  1075. struct ath_common *common = ath9k_hw_common(ah);
  1076. if (common->state <= ATH_HW_INITIALIZED)
  1077. goto free_hw;
  1078. if (!AR_SREV_9100(ah))
  1079. ath9k_hw_ani_disable(ah);
  1080. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  1081. free_hw:
  1082. if (!AR_SREV_9280_10_OR_LATER(ah))
  1083. ath9k_hw_rf_free_ext_banks(ah);
  1084. kfree(ah);
  1085. ah = NULL;
  1086. }
  1087. EXPORT_SYMBOL(ath9k_hw_detach);
  1088. /*******/
  1089. /* INI */
  1090. /*******/
  1091. static void ath9k_hw_override_ini(struct ath_hw *ah,
  1092. struct ath9k_channel *chan)
  1093. {
  1094. u32 val;
  1095. if (AR_SREV_9271(ah)) {
  1096. /*
  1097. * Enable spectral scan to solution for issues with stuck
  1098. * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
  1099. * AR9271 1.1
  1100. */
  1101. if (AR_SREV_9271_10(ah)) {
  1102. val = REG_READ(ah, AR_PHY_SPECTRAL_SCAN) |
  1103. AR_PHY_SPECTRAL_SCAN_ENABLE;
  1104. REG_WRITE(ah, AR_PHY_SPECTRAL_SCAN, val);
  1105. }
  1106. else if (AR_SREV_9271_11(ah))
  1107. /*
  1108. * change AR_PHY_RF_CTL3 setting to fix MAC issue
  1109. * present on AR9271 1.1
  1110. */
  1111. REG_WRITE(ah, AR_PHY_RF_CTL3, 0x3a020001);
  1112. return;
  1113. }
  1114. /*
  1115. * Set the RX_ABORT and RX_DIS and clear if off only after
  1116. * RXE is set for MAC. This prevents frames with corrupted
  1117. * descriptor status.
  1118. */
  1119. REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
  1120. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1121. val = REG_READ(ah, AR_PCU_MISC_MODE2) &
  1122. (~AR_PCU_MISC_MODE2_HWWAR1);
  1123. if (AR_SREV_9287_10_OR_LATER(ah))
  1124. val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
  1125. REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
  1126. }
  1127. if (!AR_SREV_5416_20_OR_LATER(ah) ||
  1128. AR_SREV_9280_10_OR_LATER(ah))
  1129. return;
  1130. /*
  1131. * Disable BB clock gating
  1132. * Necessary to avoid issues on AR5416 2.0
  1133. */
  1134. REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
  1135. }
  1136. static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
  1137. struct ar5416_eeprom_def *pEepData,
  1138. u32 reg, u32 value)
  1139. {
  1140. struct base_eep_header *pBase = &(pEepData->baseEepHeader);
  1141. struct ath_common *common = ath9k_hw_common(ah);
  1142. switch (ah->hw_version.devid) {
  1143. case AR9280_DEVID_PCI:
  1144. if (reg == 0x7894) {
  1145. ath_print(common, ATH_DBG_EEPROM,
  1146. "ini VAL: %x EEPROM: %x\n", value,
  1147. (pBase->version & 0xff));
  1148. if ((pBase->version & 0xff) > 0x0a) {
  1149. ath_print(common, ATH_DBG_EEPROM,
  1150. "PWDCLKIND: %d\n",
  1151. pBase->pwdclkind);
  1152. value &= ~AR_AN_TOP2_PWDCLKIND;
  1153. value |= AR_AN_TOP2_PWDCLKIND &
  1154. (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
  1155. } else {
  1156. ath_print(common, ATH_DBG_EEPROM,
  1157. "PWDCLKIND Earlier Rev\n");
  1158. }
  1159. ath_print(common, ATH_DBG_EEPROM,
  1160. "final ini VAL: %x\n", value);
  1161. }
  1162. break;
  1163. }
  1164. return value;
  1165. }
  1166. static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
  1167. struct ar5416_eeprom_def *pEepData,
  1168. u32 reg, u32 value)
  1169. {
  1170. if (ah->eep_map == EEP_MAP_4KBITS)
  1171. return value;
  1172. else
  1173. return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
  1174. }
  1175. static void ath9k_olc_init(struct ath_hw *ah)
  1176. {
  1177. u32 i;
  1178. if (OLC_FOR_AR9287_10_LATER) {
  1179. REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
  1180. AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
  1181. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
  1182. AR9287_AN_TXPC0_TXPCMODE,
  1183. AR9287_AN_TXPC0_TXPCMODE_S,
  1184. AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
  1185. udelay(100);
  1186. } else {
  1187. for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
  1188. ah->originalGain[i] =
  1189. MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
  1190. AR_PHY_TX_GAIN);
  1191. ah->PDADCdelta = 0;
  1192. }
  1193. }
  1194. static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
  1195. struct ath9k_channel *chan)
  1196. {
  1197. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  1198. if (IS_CHAN_B(chan))
  1199. ctl |= CTL_11B;
  1200. else if (IS_CHAN_G(chan))
  1201. ctl |= CTL_11G;
  1202. else
  1203. ctl |= CTL_11A;
  1204. return ctl;
  1205. }
  1206. static int ath9k_hw_process_ini(struct ath_hw *ah,
  1207. struct ath9k_channel *chan)
  1208. {
  1209. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1210. int i, regWrites = 0;
  1211. struct ieee80211_channel *channel = chan->chan;
  1212. u32 modesIndex, freqIndex;
  1213. switch (chan->chanmode) {
  1214. case CHANNEL_A:
  1215. case CHANNEL_A_HT20:
  1216. modesIndex = 1;
  1217. freqIndex = 1;
  1218. break;
  1219. case CHANNEL_A_HT40PLUS:
  1220. case CHANNEL_A_HT40MINUS:
  1221. modesIndex = 2;
  1222. freqIndex = 1;
  1223. break;
  1224. case CHANNEL_G:
  1225. case CHANNEL_G_HT20:
  1226. case CHANNEL_B:
  1227. modesIndex = 4;
  1228. freqIndex = 2;
  1229. break;
  1230. case CHANNEL_G_HT40PLUS:
  1231. case CHANNEL_G_HT40MINUS:
  1232. modesIndex = 3;
  1233. freqIndex = 2;
  1234. break;
  1235. default:
  1236. return -EINVAL;
  1237. }
  1238. REG_WRITE(ah, AR_PHY(0), 0x00000007);
  1239. REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
  1240. ah->eep_ops->set_addac(ah, chan);
  1241. if (AR_SREV_5416_22_OR_LATER(ah)) {
  1242. REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
  1243. } else {
  1244. struct ar5416IniArray temp;
  1245. u32 addacSize =
  1246. sizeof(u32) * ah->iniAddac.ia_rows *
  1247. ah->iniAddac.ia_columns;
  1248. memcpy(ah->addac5416_21,
  1249. ah->iniAddac.ia_array, addacSize);
  1250. (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
  1251. temp.ia_array = ah->addac5416_21;
  1252. temp.ia_columns = ah->iniAddac.ia_columns;
  1253. temp.ia_rows = ah->iniAddac.ia_rows;
  1254. REG_WRITE_ARRAY(&temp, 1, regWrites);
  1255. }
  1256. REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
  1257. for (i = 0; i < ah->iniModes.ia_rows; i++) {
  1258. u32 reg = INI_RA(&ah->iniModes, i, 0);
  1259. u32 val = INI_RA(&ah->iniModes, i, modesIndex);
  1260. REG_WRITE(ah, reg, val);
  1261. if (reg >= 0x7800 && reg < 0x78a0
  1262. && ah->config.analog_shiftreg) {
  1263. udelay(100);
  1264. }
  1265. DO_DELAY(regWrites);
  1266. }
  1267. if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
  1268. REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
  1269. if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
  1270. AR_SREV_9287_10_OR_LATER(ah))
  1271. REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
  1272. for (i = 0; i < ah->iniCommon.ia_rows; i++) {
  1273. u32 reg = INI_RA(&ah->iniCommon, i, 0);
  1274. u32 val = INI_RA(&ah->iniCommon, i, 1);
  1275. REG_WRITE(ah, reg, val);
  1276. if (reg >= 0x7800 && reg < 0x78a0
  1277. && ah->config.analog_shiftreg) {
  1278. udelay(100);
  1279. }
  1280. DO_DELAY(regWrites);
  1281. }
  1282. ath9k_hw_write_regs(ah, freqIndex, regWrites);
  1283. if (AR_SREV_9271_10(ah))
  1284. REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
  1285. modesIndex, regWrites);
  1286. if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
  1287. REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
  1288. regWrites);
  1289. }
  1290. ath9k_hw_override_ini(ah, chan);
  1291. ath9k_hw_set_regs(ah, chan);
  1292. ath9k_hw_init_chain_masks(ah);
  1293. if (OLC_FOR_AR9280_20_LATER)
  1294. ath9k_olc_init(ah);
  1295. ah->eep_ops->set_txpower(ah, chan,
  1296. ath9k_regd_get_ctl(regulatory, chan),
  1297. channel->max_antenna_gain * 2,
  1298. channel->max_power * 2,
  1299. min((u32) MAX_RATE_POWER,
  1300. (u32) regulatory->power_limit));
  1301. if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
  1302. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  1303. "ar5416SetRfRegs failed\n");
  1304. return -EIO;
  1305. }
  1306. return 0;
  1307. }
  1308. /****************************************/
  1309. /* Reset and Channel Switching Routines */
  1310. /****************************************/
  1311. static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
  1312. {
  1313. u32 rfMode = 0;
  1314. if (chan == NULL)
  1315. return;
  1316. rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
  1317. ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
  1318. if (!AR_SREV_9280_10_OR_LATER(ah))
  1319. rfMode |= (IS_CHAN_5GHZ(chan)) ?
  1320. AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
  1321. if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
  1322. rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
  1323. REG_WRITE(ah, AR_PHY_MODE, rfMode);
  1324. }
  1325. static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
  1326. {
  1327. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
  1328. }
  1329. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  1330. {
  1331. u32 regval;
  1332. /*
  1333. * set AHB_MODE not to do cacheline prefetches
  1334. */
  1335. regval = REG_READ(ah, AR_AHB_MODE);
  1336. REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
  1337. /*
  1338. * let mac dma reads be in 128 byte chunks
  1339. */
  1340. regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
  1341. REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
  1342. /*
  1343. * Restore TX Trigger Level to its pre-reset value.
  1344. * The initial value depends on whether aggregation is enabled, and is
  1345. * adjusted whenever underruns are detected.
  1346. */
  1347. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  1348. /*
  1349. * let mac dma writes be in 128 byte chunks
  1350. */
  1351. regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
  1352. REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
  1353. /*
  1354. * Setup receive FIFO threshold to hold off TX activities
  1355. */
  1356. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  1357. /*
  1358. * reduce the number of usable entries in PCU TXBUF to avoid
  1359. * wrap around issues.
  1360. */
  1361. if (AR_SREV_9285(ah)) {
  1362. /* For AR9285 the number of Fifos are reduced to half.
  1363. * So set the usable tx buf size also to half to
  1364. * avoid data/delimiter underruns
  1365. */
  1366. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1367. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  1368. } else if (!AR_SREV_9271(ah)) {
  1369. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1370. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  1371. }
  1372. }
  1373. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  1374. {
  1375. u32 val;
  1376. val = REG_READ(ah, AR_STA_ID1);
  1377. val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
  1378. switch (opmode) {
  1379. case NL80211_IFTYPE_AP:
  1380. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
  1381. | AR_STA_ID1_KSRCH_MODE);
  1382. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1383. break;
  1384. case NL80211_IFTYPE_ADHOC:
  1385. case NL80211_IFTYPE_MESH_POINT:
  1386. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
  1387. | AR_STA_ID1_KSRCH_MODE);
  1388. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1389. break;
  1390. case NL80211_IFTYPE_STATION:
  1391. case NL80211_IFTYPE_MONITOR:
  1392. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
  1393. break;
  1394. }
  1395. }
  1396. static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
  1397. u32 coef_scaled,
  1398. u32 *coef_mantissa,
  1399. u32 *coef_exponent)
  1400. {
  1401. u32 coef_exp, coef_man;
  1402. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  1403. if ((coef_scaled >> coef_exp) & 0x1)
  1404. break;
  1405. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1406. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1407. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1408. *coef_exponent = coef_exp - 16;
  1409. }
  1410. static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
  1411. struct ath9k_channel *chan)
  1412. {
  1413. u32 coef_scaled, ds_coef_exp, ds_coef_man;
  1414. u32 clockMhzScaled = 0x64000000;
  1415. struct chan_centers centers;
  1416. if (IS_CHAN_HALF_RATE(chan))
  1417. clockMhzScaled = clockMhzScaled >> 1;
  1418. else if (IS_CHAN_QUARTER_RATE(chan))
  1419. clockMhzScaled = clockMhzScaled >> 2;
  1420. ath9k_hw_get_channel_centers(ah, chan, &centers);
  1421. coef_scaled = clockMhzScaled / centers.synth_center;
  1422. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  1423. &ds_coef_exp);
  1424. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  1425. AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
  1426. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  1427. AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
  1428. coef_scaled = (9 * coef_scaled) / 10;
  1429. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  1430. &ds_coef_exp);
  1431. REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  1432. AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
  1433. REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  1434. AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
  1435. }
  1436. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  1437. {
  1438. u32 rst_flags;
  1439. u32 tmpReg;
  1440. if (AR_SREV_9100(ah)) {
  1441. u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
  1442. val &= ~AR_RTC_DERIVED_CLK_PERIOD;
  1443. val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
  1444. REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
  1445. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  1446. }
  1447. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1448. AR_RTC_FORCE_WAKE_ON_INT);
  1449. if (AR_SREV_9100(ah)) {
  1450. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1451. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1452. } else {
  1453. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1454. if (tmpReg &
  1455. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  1456. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  1457. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1458. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1459. } else {
  1460. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1461. }
  1462. rst_flags = AR_RTC_RC_MAC_WARM;
  1463. if (type == ATH9K_RESET_COLD)
  1464. rst_flags |= AR_RTC_RC_MAC_COLD;
  1465. }
  1466. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  1467. udelay(50);
  1468. REG_WRITE(ah, AR_RTC_RC, 0);
  1469. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  1470. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  1471. "RTC stuck in MAC reset\n");
  1472. return false;
  1473. }
  1474. if (!AR_SREV_9100(ah))
  1475. REG_WRITE(ah, AR_RC, 0);
  1476. if (AR_SREV_9100(ah))
  1477. udelay(50);
  1478. return true;
  1479. }
  1480. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  1481. {
  1482. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1483. AR_RTC_FORCE_WAKE_ON_INT);
  1484. if (!AR_SREV_9100(ah))
  1485. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1486. REG_WRITE(ah, AR_RTC_RESET, 0);
  1487. udelay(2);
  1488. if (!AR_SREV_9100(ah))
  1489. REG_WRITE(ah, AR_RC, 0);
  1490. REG_WRITE(ah, AR_RTC_RESET, 1);
  1491. if (!ath9k_hw_wait(ah,
  1492. AR_RTC_STATUS,
  1493. AR_RTC_STATUS_M,
  1494. AR_RTC_STATUS_ON,
  1495. AH_WAIT_TIMEOUT)) {
  1496. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  1497. "RTC not waking up\n");
  1498. return false;
  1499. }
  1500. ath9k_hw_read_revisions(ah);
  1501. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1502. }
  1503. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  1504. {
  1505. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1506. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1507. switch (type) {
  1508. case ATH9K_RESET_POWER_ON:
  1509. return ath9k_hw_set_reset_power_on(ah);
  1510. case ATH9K_RESET_WARM:
  1511. case ATH9K_RESET_COLD:
  1512. return ath9k_hw_set_reset(ah, type);
  1513. default:
  1514. return false;
  1515. }
  1516. }
  1517. static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan)
  1518. {
  1519. u32 phymode;
  1520. u32 enableDacFifo = 0;
  1521. if (AR_SREV_9285_10_OR_LATER(ah))
  1522. enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
  1523. AR_PHY_FC_ENABLE_DAC_FIFO);
  1524. phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
  1525. | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
  1526. if (IS_CHAN_HT40(chan)) {
  1527. phymode |= AR_PHY_FC_DYN2040_EN;
  1528. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  1529. (chan->chanmode == CHANNEL_G_HT40PLUS))
  1530. phymode |= AR_PHY_FC_DYN2040_PRI_CH;
  1531. }
  1532. REG_WRITE(ah, AR_PHY_TURBO, phymode);
  1533. ath9k_hw_set11nmac2040(ah);
  1534. REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
  1535. REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
  1536. }
  1537. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  1538. struct ath9k_channel *chan)
  1539. {
  1540. if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
  1541. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
  1542. return false;
  1543. } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  1544. return false;
  1545. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1546. return false;
  1547. ah->chip_fullsleep = false;
  1548. ath9k_hw_init_pll(ah, chan);
  1549. ath9k_hw_set_rfmode(ah, chan);
  1550. return true;
  1551. }
  1552. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  1553. struct ath9k_channel *chan)
  1554. {
  1555. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1556. struct ath_common *common = ath9k_hw_common(ah);
  1557. struct ieee80211_channel *channel = chan->chan;
  1558. u32 synthDelay, qnum;
  1559. int r;
  1560. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1561. if (ath9k_hw_numtxpending(ah, qnum)) {
  1562. ath_print(common, ATH_DBG_QUEUE,
  1563. "Transmit frames pending on "
  1564. "queue %d\n", qnum);
  1565. return false;
  1566. }
  1567. }
  1568. REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
  1569. if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
  1570. AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
  1571. ath_print(common, ATH_DBG_FATAL,
  1572. "Could not kill baseband RX\n");
  1573. return false;
  1574. }
  1575. ath9k_hw_set_regs(ah, chan);
  1576. r = ah->ath9k_hw_rf_set_freq(ah, chan);
  1577. if (r) {
  1578. ath_print(common, ATH_DBG_FATAL,
  1579. "Failed to set channel\n");
  1580. return false;
  1581. }
  1582. ah->eep_ops->set_txpower(ah, chan,
  1583. ath9k_regd_get_ctl(regulatory, chan),
  1584. channel->max_antenna_gain * 2,
  1585. channel->max_power * 2,
  1586. min((u32) MAX_RATE_POWER,
  1587. (u32) regulatory->power_limit));
  1588. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  1589. if (IS_CHAN_B(chan))
  1590. synthDelay = (4 * synthDelay) / 22;
  1591. else
  1592. synthDelay /= 10;
  1593. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  1594. REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
  1595. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1596. ath9k_hw_set_delta_slope(ah, chan);
  1597. ah->ath9k_hw_spur_mitigate_freq(ah, chan);
  1598. if (!chan->oneTimeCalsDone)
  1599. chan->oneTimeCalsDone = true;
  1600. return true;
  1601. }
  1602. static void ath9k_enable_rfkill(struct ath_hw *ah)
  1603. {
  1604. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
  1605. AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
  1606. REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
  1607. AR_GPIO_INPUT_MUX2_RFSILENT);
  1608. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1609. REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
  1610. }
  1611. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1612. bool bChannelChange)
  1613. {
  1614. struct ath_common *common = ath9k_hw_common(ah);
  1615. u32 saveLedState;
  1616. struct ath9k_channel *curchan = ah->curchan;
  1617. u32 saveDefAntenna;
  1618. u32 macStaId1;
  1619. u64 tsf = 0;
  1620. int i, rx_chainmask, r;
  1621. ah->txchainmask = common->tx_chainmask;
  1622. ah->rxchainmask = common->rx_chainmask;
  1623. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1624. return -EIO;
  1625. if (curchan && !ah->chip_fullsleep)
  1626. ath9k_hw_getnf(ah, curchan);
  1627. if (bChannelChange &&
  1628. (ah->chip_fullsleep != true) &&
  1629. (ah->curchan != NULL) &&
  1630. (chan->channel != ah->curchan->channel) &&
  1631. ((chan->channelFlags & CHANNEL_ALL) ==
  1632. (ah->curchan->channelFlags & CHANNEL_ALL)) &&
  1633. !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
  1634. IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
  1635. if (ath9k_hw_channel_change(ah, chan)) {
  1636. ath9k_hw_loadnf(ah, ah->curchan);
  1637. ath9k_hw_start_nfcal(ah);
  1638. return 0;
  1639. }
  1640. }
  1641. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1642. if (saveDefAntenna == 0)
  1643. saveDefAntenna = 1;
  1644. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1645. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1646. if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
  1647. tsf = ath9k_hw_gettsf64(ah);
  1648. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1649. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1650. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1651. ath9k_hw_mark_phy_inactive(ah);
  1652. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1653. REG_WRITE(ah,
  1654. AR9271_RESET_POWER_DOWN_CONTROL,
  1655. AR9271_RADIO_RF_RST);
  1656. udelay(50);
  1657. }
  1658. if (!ath9k_hw_chip_reset(ah, chan)) {
  1659. ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
  1660. return -EINVAL;
  1661. }
  1662. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1663. ah->htc_reset_init = false;
  1664. REG_WRITE(ah,
  1665. AR9271_RESET_POWER_DOWN_CONTROL,
  1666. AR9271_GATE_MAC_CTL);
  1667. udelay(50);
  1668. }
  1669. /* Restore TSF */
  1670. if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
  1671. ath9k_hw_settsf64(ah, tsf);
  1672. if (AR_SREV_9280_10_OR_LATER(ah))
  1673. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1674. if (AR_SREV_9287_12_OR_LATER(ah)) {
  1675. /* Enable ASYNC FIFO */
  1676. REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
  1677. AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
  1678. REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
  1679. REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
  1680. AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
  1681. REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
  1682. AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
  1683. }
  1684. r = ath9k_hw_process_ini(ah, chan);
  1685. if (r)
  1686. return r;
  1687. /* Setup MFP options for CCMP */
  1688. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1689. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1690. * frames when constructing CCMP AAD. */
  1691. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1692. 0xc7ff);
  1693. ah->sw_mgmt_crypto = false;
  1694. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1695. /* Disable hardware crypto for management frames */
  1696. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1697. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1698. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1699. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1700. ah->sw_mgmt_crypto = true;
  1701. } else
  1702. ah->sw_mgmt_crypto = true;
  1703. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1704. ath9k_hw_set_delta_slope(ah, chan);
  1705. ah->ath9k_hw_spur_mitigate_freq(ah, chan);
  1706. ah->eep_ops->set_board_values(ah, chan);
  1707. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1708. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1709. | macStaId1
  1710. | AR_STA_ID1_RTS_USE_DEF
  1711. | (ah->config.
  1712. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1713. | ah->sta_id1_defaults);
  1714. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1715. ath_hw_setbssidmask(common);
  1716. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1717. ath9k_hw_write_associd(ah);
  1718. REG_WRITE(ah, AR_ISR, ~0);
  1719. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1720. r = ah->ath9k_hw_rf_set_freq(ah, chan);
  1721. if (r)
  1722. return r;
  1723. for (i = 0; i < AR_NUM_DCU; i++)
  1724. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1725. ah->intr_txqs = 0;
  1726. for (i = 0; i < ah->caps.total_queues; i++)
  1727. ath9k_hw_resettxqueue(ah, i);
  1728. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1729. ath9k_hw_init_qos(ah);
  1730. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1731. ath9k_enable_rfkill(ah);
  1732. ath9k_hw_init_user_settings(ah);
  1733. if (AR_SREV_9287_12_OR_LATER(ah)) {
  1734. REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
  1735. AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
  1736. REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
  1737. AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
  1738. REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
  1739. AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
  1740. REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
  1741. REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
  1742. REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
  1743. AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
  1744. REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
  1745. AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
  1746. }
  1747. if (AR_SREV_9287_12_OR_LATER(ah)) {
  1748. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1749. AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
  1750. }
  1751. REG_WRITE(ah, AR_STA_ID1,
  1752. REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
  1753. ath9k_hw_set_dma(ah);
  1754. REG_WRITE(ah, AR_OBS, 8);
  1755. if (ah->config.intr_mitigation) {
  1756. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1757. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1758. }
  1759. ath9k_hw_init_bb(ah, chan);
  1760. if (!ath9k_hw_init_cal(ah, chan))
  1761. return -EIO;
  1762. rx_chainmask = ah->rxchainmask;
  1763. if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
  1764. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
  1765. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
  1766. }
  1767. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1768. /*
  1769. * For big endian systems turn on swapping for descriptors
  1770. */
  1771. if (AR_SREV_9100(ah)) {
  1772. u32 mask;
  1773. mask = REG_READ(ah, AR_CFG);
  1774. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1775. ath_print(common, ATH_DBG_RESET,
  1776. "CFG Byte Swap Set 0x%x\n", mask);
  1777. } else {
  1778. mask =
  1779. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1780. REG_WRITE(ah, AR_CFG, mask);
  1781. ath_print(common, ATH_DBG_RESET,
  1782. "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
  1783. }
  1784. } else {
  1785. /* Configure AR9271 target WLAN */
  1786. if (AR_SREV_9271(ah))
  1787. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1788. #ifdef __BIG_ENDIAN
  1789. else
  1790. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1791. #endif
  1792. }
  1793. if (ah->btcoex_hw.enabled)
  1794. ath9k_hw_btcoex_enable(ah);
  1795. return 0;
  1796. }
  1797. EXPORT_SYMBOL(ath9k_hw_reset);
  1798. /************************/
  1799. /* Key Cache Management */
  1800. /************************/
  1801. bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
  1802. {
  1803. u32 keyType;
  1804. if (entry >= ah->caps.keycache_size) {
  1805. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  1806. "keychache entry %u out of range\n", entry);
  1807. return false;
  1808. }
  1809. keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
  1810. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
  1811. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
  1812. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
  1813. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
  1814. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
  1815. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
  1816. REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
  1817. REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
  1818. if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
  1819. u16 micentry = entry + 64;
  1820. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
  1821. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
  1822. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
  1823. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
  1824. }
  1825. return true;
  1826. }
  1827. EXPORT_SYMBOL(ath9k_hw_keyreset);
  1828. bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
  1829. {
  1830. u32 macHi, macLo;
  1831. if (entry >= ah->caps.keycache_size) {
  1832. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  1833. "keychache entry %u out of range\n", entry);
  1834. return false;
  1835. }
  1836. if (mac != NULL) {
  1837. macHi = (mac[5] << 8) | mac[4];
  1838. macLo = (mac[3] << 24) |
  1839. (mac[2] << 16) |
  1840. (mac[1] << 8) |
  1841. mac[0];
  1842. macLo >>= 1;
  1843. macLo |= (macHi & 1) << 31;
  1844. macHi >>= 1;
  1845. } else {
  1846. macLo = macHi = 0;
  1847. }
  1848. REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
  1849. REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
  1850. return true;
  1851. }
  1852. EXPORT_SYMBOL(ath9k_hw_keysetmac);
  1853. bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
  1854. const struct ath9k_keyval *k,
  1855. const u8 *mac)
  1856. {
  1857. const struct ath9k_hw_capabilities *pCap = &ah->caps;
  1858. struct ath_common *common = ath9k_hw_common(ah);
  1859. u32 key0, key1, key2, key3, key4;
  1860. u32 keyType;
  1861. if (entry >= pCap->keycache_size) {
  1862. ath_print(common, ATH_DBG_FATAL,
  1863. "keycache entry %u out of range\n", entry);
  1864. return false;
  1865. }
  1866. switch (k->kv_type) {
  1867. case ATH9K_CIPHER_AES_OCB:
  1868. keyType = AR_KEYTABLE_TYPE_AES;
  1869. break;
  1870. case ATH9K_CIPHER_AES_CCM:
  1871. if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
  1872. ath_print(common, ATH_DBG_ANY,
  1873. "AES-CCM not supported by mac rev 0x%x\n",
  1874. ah->hw_version.macRev);
  1875. return false;
  1876. }
  1877. keyType = AR_KEYTABLE_TYPE_CCM;
  1878. break;
  1879. case ATH9K_CIPHER_TKIP:
  1880. keyType = AR_KEYTABLE_TYPE_TKIP;
  1881. if (ATH9K_IS_MIC_ENABLED(ah)
  1882. && entry + 64 >= pCap->keycache_size) {
  1883. ath_print(common, ATH_DBG_ANY,
  1884. "entry %u inappropriate for TKIP\n", entry);
  1885. return false;
  1886. }
  1887. break;
  1888. case ATH9K_CIPHER_WEP:
  1889. if (k->kv_len < WLAN_KEY_LEN_WEP40) {
  1890. ath_print(common, ATH_DBG_ANY,
  1891. "WEP key length %u too small\n", k->kv_len);
  1892. return false;
  1893. }
  1894. if (k->kv_len <= WLAN_KEY_LEN_WEP40)
  1895. keyType = AR_KEYTABLE_TYPE_40;
  1896. else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
  1897. keyType = AR_KEYTABLE_TYPE_104;
  1898. else
  1899. keyType = AR_KEYTABLE_TYPE_128;
  1900. break;
  1901. case ATH9K_CIPHER_CLR:
  1902. keyType = AR_KEYTABLE_TYPE_CLR;
  1903. break;
  1904. default:
  1905. ath_print(common, ATH_DBG_FATAL,
  1906. "cipher %u not supported\n", k->kv_type);
  1907. return false;
  1908. }
  1909. key0 = get_unaligned_le32(k->kv_val + 0);
  1910. key1 = get_unaligned_le16(k->kv_val + 4);
  1911. key2 = get_unaligned_le32(k->kv_val + 6);
  1912. key3 = get_unaligned_le16(k->kv_val + 10);
  1913. key4 = get_unaligned_le32(k->kv_val + 12);
  1914. if (k->kv_len <= WLAN_KEY_LEN_WEP104)
  1915. key4 &= 0xff;
  1916. /*
  1917. * Note: Key cache registers access special memory area that requires
  1918. * two 32-bit writes to actually update the values in the internal
  1919. * memory. Consequently, the exact order and pairs used here must be
  1920. * maintained.
  1921. */
  1922. if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
  1923. u16 micentry = entry + 64;
  1924. /*
  1925. * Write inverted key[47:0] first to avoid Michael MIC errors
  1926. * on frames that could be sent or received at the same time.
  1927. * The correct key will be written in the end once everything
  1928. * else is ready.
  1929. */
  1930. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
  1931. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
  1932. /* Write key[95:48] */
  1933. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  1934. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  1935. /* Write key[127:96] and key type */
  1936. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  1937. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  1938. /* Write MAC address for the entry */
  1939. (void) ath9k_hw_keysetmac(ah, entry, mac);
  1940. if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
  1941. /*
  1942. * TKIP uses two key cache entries:
  1943. * Michael MIC TX/RX keys in the same key cache entry
  1944. * (idx = main index + 64):
  1945. * key0 [31:0] = RX key [31:0]
  1946. * key1 [15:0] = TX key [31:16]
  1947. * key1 [31:16] = reserved
  1948. * key2 [31:0] = RX key [63:32]
  1949. * key3 [15:0] = TX key [15:0]
  1950. * key3 [31:16] = reserved
  1951. * key4 [31:0] = TX key [63:32]
  1952. */
  1953. u32 mic0, mic1, mic2, mic3, mic4;
  1954. mic0 = get_unaligned_le32(k->kv_mic + 0);
  1955. mic2 = get_unaligned_le32(k->kv_mic + 4);
  1956. mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
  1957. mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
  1958. mic4 = get_unaligned_le32(k->kv_txmic + 4);
  1959. /* Write RX[31:0] and TX[31:16] */
  1960. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  1961. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
  1962. /* Write RX[63:32] and TX[15:0] */
  1963. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  1964. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
  1965. /* Write TX[63:32] and keyType(reserved) */
  1966. REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
  1967. REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  1968. AR_KEYTABLE_TYPE_CLR);
  1969. } else {
  1970. /*
  1971. * TKIP uses four key cache entries (two for group
  1972. * keys):
  1973. * Michael MIC TX/RX keys are in different key cache
  1974. * entries (idx = main index + 64 for TX and
  1975. * main index + 32 + 96 for RX):
  1976. * key0 [31:0] = TX/RX MIC key [31:0]
  1977. * key1 [31:0] = reserved
  1978. * key2 [31:0] = TX/RX MIC key [63:32]
  1979. * key3 [31:0] = reserved
  1980. * key4 [31:0] = reserved
  1981. *
  1982. * Upper layer code will call this function separately
  1983. * for TX and RX keys when these registers offsets are
  1984. * used.
  1985. */
  1986. u32 mic0, mic2;
  1987. mic0 = get_unaligned_le32(k->kv_mic + 0);
  1988. mic2 = get_unaligned_le32(k->kv_mic + 4);
  1989. /* Write MIC key[31:0] */
  1990. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  1991. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
  1992. /* Write MIC key[63:32] */
  1993. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  1994. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
  1995. /* Write TX[63:32] and keyType(reserved) */
  1996. REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
  1997. REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  1998. AR_KEYTABLE_TYPE_CLR);
  1999. }
  2000. /* MAC address registers are reserved for the MIC entry */
  2001. REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
  2002. REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
  2003. /*
  2004. * Write the correct (un-inverted) key[47:0] last to enable
  2005. * TKIP now that all other registers are set with correct
  2006. * values.
  2007. */
  2008. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  2009. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  2010. } else {
  2011. /* Write key[47:0] */
  2012. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  2013. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  2014. /* Write key[95:48] */
  2015. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  2016. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  2017. /* Write key[127:96] and key type */
  2018. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  2019. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  2020. /* Write MAC address for the entry */
  2021. (void) ath9k_hw_keysetmac(ah, entry, mac);
  2022. }
  2023. return true;
  2024. }
  2025. EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
  2026. bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
  2027. {
  2028. if (entry < ah->caps.keycache_size) {
  2029. u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
  2030. if (val & AR_KEYTABLE_VALID)
  2031. return true;
  2032. }
  2033. return false;
  2034. }
  2035. EXPORT_SYMBOL(ath9k_hw_keyisvalid);
  2036. /******************************/
  2037. /* Power Management (Chipset) */
  2038. /******************************/
  2039. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  2040. {
  2041. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2042. if (setChip) {
  2043. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  2044. AR_RTC_FORCE_WAKE_EN);
  2045. if (!AR_SREV_9100(ah))
  2046. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  2047. if(!AR_SREV_5416(ah))
  2048. REG_CLR_BIT(ah, (AR_RTC_RESET),
  2049. AR_RTC_RESET_EN);
  2050. }
  2051. }
  2052. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  2053. {
  2054. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2055. if (setChip) {
  2056. struct ath9k_hw_capabilities *pCap = &ah->caps;
  2057. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  2058. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  2059. AR_RTC_FORCE_WAKE_ON_INT);
  2060. } else {
  2061. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  2062. AR_RTC_FORCE_WAKE_EN);
  2063. }
  2064. }
  2065. }
  2066. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  2067. {
  2068. u32 val;
  2069. int i;
  2070. if (setChip) {
  2071. if ((REG_READ(ah, AR_RTC_STATUS) &
  2072. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  2073. if (ath9k_hw_set_reset_reg(ah,
  2074. ATH9K_RESET_POWER_ON) != true) {
  2075. return false;
  2076. }
  2077. ath9k_hw_init_pll(ah, NULL);
  2078. }
  2079. if (AR_SREV_9100(ah))
  2080. REG_SET_BIT(ah, AR_RTC_RESET,
  2081. AR_RTC_RESET_EN);
  2082. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  2083. AR_RTC_FORCE_WAKE_EN);
  2084. udelay(50);
  2085. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  2086. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  2087. if (val == AR_RTC_STATUS_ON)
  2088. break;
  2089. udelay(50);
  2090. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  2091. AR_RTC_FORCE_WAKE_EN);
  2092. }
  2093. if (i == 0) {
  2094. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  2095. "Failed to wakeup in %uus\n",
  2096. POWER_UP_TIME / 20);
  2097. return false;
  2098. }
  2099. }
  2100. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2101. return true;
  2102. }
  2103. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  2104. {
  2105. struct ath_common *common = ath9k_hw_common(ah);
  2106. int status = true, setChip = true;
  2107. static const char *modes[] = {
  2108. "AWAKE",
  2109. "FULL-SLEEP",
  2110. "NETWORK SLEEP",
  2111. "UNDEFINED"
  2112. };
  2113. if (ah->power_mode == mode)
  2114. return status;
  2115. ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
  2116. modes[ah->power_mode], modes[mode]);
  2117. switch (mode) {
  2118. case ATH9K_PM_AWAKE:
  2119. status = ath9k_hw_set_power_awake(ah, setChip);
  2120. break;
  2121. case ATH9K_PM_FULL_SLEEP:
  2122. ath9k_set_power_sleep(ah, setChip);
  2123. ah->chip_fullsleep = true;
  2124. break;
  2125. case ATH9K_PM_NETWORK_SLEEP:
  2126. ath9k_set_power_network_sleep(ah, setChip);
  2127. break;
  2128. default:
  2129. ath_print(common, ATH_DBG_FATAL,
  2130. "Unknown power mode %u\n", mode);
  2131. return false;
  2132. }
  2133. ah->power_mode = mode;
  2134. return status;
  2135. }
  2136. EXPORT_SYMBOL(ath9k_hw_setpower);
  2137. /*
  2138. * Helper for ASPM support.
  2139. *
  2140. * Disable PLL when in L0s as well as receiver clock when in L1.
  2141. * This power saving option must be enabled through the SerDes.
  2142. *
  2143. * Programming the SerDes must go through the same 288 bit serial shift
  2144. * register as the other analog registers. Hence the 9 writes.
  2145. */
  2146. void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
  2147. {
  2148. u8 i;
  2149. u32 val;
  2150. if (ah->is_pciexpress != true)
  2151. return;
  2152. /* Do not touch SerDes registers */
  2153. if (ah->config.pcie_powersave_enable == 2)
  2154. return;
  2155. /* Nothing to do on restore for 11N */
  2156. if (!restore) {
  2157. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2158. /*
  2159. * AR9280 2.0 or later chips use SerDes values from the
  2160. * initvals.h initialized depending on chipset during
  2161. * ath9k_hw_init()
  2162. */
  2163. for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
  2164. REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
  2165. INI_RA(&ah->iniPcieSerdes, i, 1));
  2166. }
  2167. } else if (AR_SREV_9280(ah) &&
  2168. (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
  2169. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
  2170. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  2171. /* RX shut off when elecidle is asserted */
  2172. REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
  2173. REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
  2174. REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
  2175. /* Shut off CLKREQ active in L1 */
  2176. if (ah->config.pcie_clock_req)
  2177. REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
  2178. else
  2179. REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
  2180. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  2181. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  2182. REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
  2183. /* Load the new settings */
  2184. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  2185. } else {
  2186. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  2187. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  2188. /* RX shut off when elecidle is asserted */
  2189. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
  2190. REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
  2191. REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
  2192. /*
  2193. * Ignore ah->ah_config.pcie_clock_req setting for
  2194. * pre-AR9280 11n
  2195. */
  2196. REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
  2197. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  2198. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  2199. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
  2200. /* Load the new settings */
  2201. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  2202. }
  2203. udelay(1000);
  2204. /* set bit 19 to allow forcing of pcie core into L1 state */
  2205. REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
  2206. /* Several PCIe massages to ensure proper behaviour */
  2207. if (ah->config.pcie_waen) {
  2208. val = ah->config.pcie_waen;
  2209. if (!power_off)
  2210. val &= (~AR_WA_D3_L1_DISABLE);
  2211. } else {
  2212. if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
  2213. AR_SREV_9287(ah)) {
  2214. val = AR9285_WA_DEFAULT;
  2215. if (!power_off)
  2216. val &= (~AR_WA_D3_L1_DISABLE);
  2217. } else if (AR_SREV_9280(ah)) {
  2218. /*
  2219. * On AR9280 chips bit 22 of 0x4004 needs to be
  2220. * set otherwise card may disappear.
  2221. */
  2222. val = AR9280_WA_DEFAULT;
  2223. if (!power_off)
  2224. val &= (~AR_WA_D3_L1_DISABLE);
  2225. } else
  2226. val = AR_WA_DEFAULT;
  2227. }
  2228. REG_WRITE(ah, AR_WA, val);
  2229. }
  2230. if (power_off) {
  2231. /*
  2232. * Set PCIe workaround bits
  2233. * bit 14 in WA register (disable L1) should only
  2234. * be set when device enters D3 and be cleared
  2235. * when device comes back to D0.
  2236. */
  2237. if (ah->config.pcie_waen) {
  2238. if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
  2239. REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
  2240. } else {
  2241. if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
  2242. AR_SREV_9287(ah)) &&
  2243. (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
  2244. (AR_SREV_9280(ah) &&
  2245. (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
  2246. REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
  2247. }
  2248. }
  2249. }
  2250. }
  2251. EXPORT_SYMBOL(ath9k_hw_configpcipowersave);
  2252. /**********************/
  2253. /* Interrupt Handling */
  2254. /**********************/
  2255. bool ath9k_hw_intrpend(struct ath_hw *ah)
  2256. {
  2257. u32 host_isr;
  2258. if (AR_SREV_9100(ah))
  2259. return true;
  2260. host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
  2261. if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
  2262. return true;
  2263. host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  2264. if ((host_isr & AR_INTR_SYNC_DEFAULT)
  2265. && (host_isr != AR_INTR_SPURIOUS))
  2266. return true;
  2267. return false;
  2268. }
  2269. EXPORT_SYMBOL(ath9k_hw_intrpend);
  2270. bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
  2271. {
  2272. u32 isr = 0;
  2273. u32 mask2 = 0;
  2274. struct ath9k_hw_capabilities *pCap = &ah->caps;
  2275. u32 sync_cause = 0;
  2276. bool fatal_int = false;
  2277. struct ath_common *common = ath9k_hw_common(ah);
  2278. if (!AR_SREV_9100(ah)) {
  2279. if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
  2280. if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
  2281. == AR_RTC_STATUS_ON) {
  2282. isr = REG_READ(ah, AR_ISR);
  2283. }
  2284. }
  2285. sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
  2286. AR_INTR_SYNC_DEFAULT;
  2287. *masked = 0;
  2288. if (!isr && !sync_cause)
  2289. return false;
  2290. } else {
  2291. *masked = 0;
  2292. isr = REG_READ(ah, AR_ISR);
  2293. }
  2294. if (isr) {
  2295. if (isr & AR_ISR_BCNMISC) {
  2296. u32 isr2;
  2297. isr2 = REG_READ(ah, AR_ISR_S2);
  2298. if (isr2 & AR_ISR_S2_TIM)
  2299. mask2 |= ATH9K_INT_TIM;
  2300. if (isr2 & AR_ISR_S2_DTIM)
  2301. mask2 |= ATH9K_INT_DTIM;
  2302. if (isr2 & AR_ISR_S2_DTIMSYNC)
  2303. mask2 |= ATH9K_INT_DTIMSYNC;
  2304. if (isr2 & (AR_ISR_S2_CABEND))
  2305. mask2 |= ATH9K_INT_CABEND;
  2306. if (isr2 & AR_ISR_S2_GTT)
  2307. mask2 |= ATH9K_INT_GTT;
  2308. if (isr2 & AR_ISR_S2_CST)
  2309. mask2 |= ATH9K_INT_CST;
  2310. if (isr2 & AR_ISR_S2_TSFOOR)
  2311. mask2 |= ATH9K_INT_TSFOOR;
  2312. }
  2313. isr = REG_READ(ah, AR_ISR_RAC);
  2314. if (isr == 0xffffffff) {
  2315. *masked = 0;
  2316. return false;
  2317. }
  2318. *masked = isr & ATH9K_INT_COMMON;
  2319. if (ah->config.intr_mitigation) {
  2320. if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
  2321. *masked |= ATH9K_INT_RX;
  2322. }
  2323. if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
  2324. *masked |= ATH9K_INT_RX;
  2325. if (isr &
  2326. (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
  2327. AR_ISR_TXEOL)) {
  2328. u32 s0_s, s1_s;
  2329. *masked |= ATH9K_INT_TX;
  2330. s0_s = REG_READ(ah, AR_ISR_S0_S);
  2331. ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
  2332. ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
  2333. s1_s = REG_READ(ah, AR_ISR_S1_S);
  2334. ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
  2335. ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
  2336. }
  2337. if (isr & AR_ISR_RXORN) {
  2338. ath_print(common, ATH_DBG_INTERRUPT,
  2339. "receive FIFO overrun interrupt\n");
  2340. }
  2341. if (!AR_SREV_9100(ah)) {
  2342. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  2343. u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
  2344. if (isr5 & AR_ISR_S5_TIM_TIMER)
  2345. *masked |= ATH9K_INT_TIM_TIMER;
  2346. }
  2347. }
  2348. *masked |= mask2;
  2349. }
  2350. if (AR_SREV_9100(ah))
  2351. return true;
  2352. if (isr & AR_ISR_GENTMR) {
  2353. u32 s5_s;
  2354. s5_s = REG_READ(ah, AR_ISR_S5_S);
  2355. if (isr & AR_ISR_GENTMR) {
  2356. ah->intr_gen_timer_trigger =
  2357. MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
  2358. ah->intr_gen_timer_thresh =
  2359. MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
  2360. if (ah->intr_gen_timer_trigger)
  2361. *masked |= ATH9K_INT_GENTIMER;
  2362. }
  2363. }
  2364. if (sync_cause) {
  2365. fatal_int =
  2366. (sync_cause &
  2367. (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
  2368. ? true : false;
  2369. if (fatal_int) {
  2370. if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
  2371. ath_print(common, ATH_DBG_ANY,
  2372. "received PCI FATAL interrupt\n");
  2373. }
  2374. if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
  2375. ath_print(common, ATH_DBG_ANY,
  2376. "received PCI PERR interrupt\n");
  2377. }
  2378. *masked |= ATH9K_INT_FATAL;
  2379. }
  2380. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
  2381. ath_print(common, ATH_DBG_INTERRUPT,
  2382. "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
  2383. REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
  2384. REG_WRITE(ah, AR_RC, 0);
  2385. *masked |= ATH9K_INT_FATAL;
  2386. }
  2387. if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
  2388. ath_print(common, ATH_DBG_INTERRUPT,
  2389. "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
  2390. }
  2391. REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
  2392. (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
  2393. }
  2394. return true;
  2395. }
  2396. EXPORT_SYMBOL(ath9k_hw_getisr);
  2397. enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
  2398. {
  2399. u32 omask = ah->mask_reg;
  2400. u32 mask, mask2;
  2401. struct ath9k_hw_capabilities *pCap = &ah->caps;
  2402. struct ath_common *common = ath9k_hw_common(ah);
  2403. ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
  2404. if (omask & ATH9K_INT_GLOBAL) {
  2405. ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
  2406. REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
  2407. (void) REG_READ(ah, AR_IER);
  2408. if (!AR_SREV_9100(ah)) {
  2409. REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
  2410. (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
  2411. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  2412. (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
  2413. }
  2414. }
  2415. mask = ints & ATH9K_INT_COMMON;
  2416. mask2 = 0;
  2417. if (ints & ATH9K_INT_TX) {
  2418. if (ah->txok_interrupt_mask)
  2419. mask |= AR_IMR_TXOK;
  2420. if (ah->txdesc_interrupt_mask)
  2421. mask |= AR_IMR_TXDESC;
  2422. if (ah->txerr_interrupt_mask)
  2423. mask |= AR_IMR_TXERR;
  2424. if (ah->txeol_interrupt_mask)
  2425. mask |= AR_IMR_TXEOL;
  2426. }
  2427. if (ints & ATH9K_INT_RX) {
  2428. mask |= AR_IMR_RXERR;
  2429. if (ah->config.intr_mitigation)
  2430. mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
  2431. else
  2432. mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
  2433. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
  2434. mask |= AR_IMR_GENTMR;
  2435. }
  2436. if (ints & (ATH9K_INT_BMISC)) {
  2437. mask |= AR_IMR_BCNMISC;
  2438. if (ints & ATH9K_INT_TIM)
  2439. mask2 |= AR_IMR_S2_TIM;
  2440. if (ints & ATH9K_INT_DTIM)
  2441. mask2 |= AR_IMR_S2_DTIM;
  2442. if (ints & ATH9K_INT_DTIMSYNC)
  2443. mask2 |= AR_IMR_S2_DTIMSYNC;
  2444. if (ints & ATH9K_INT_CABEND)
  2445. mask2 |= AR_IMR_S2_CABEND;
  2446. if (ints & ATH9K_INT_TSFOOR)
  2447. mask2 |= AR_IMR_S2_TSFOOR;
  2448. }
  2449. if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
  2450. mask |= AR_IMR_BCNMISC;
  2451. if (ints & ATH9K_INT_GTT)
  2452. mask2 |= AR_IMR_S2_GTT;
  2453. if (ints & ATH9K_INT_CST)
  2454. mask2 |= AR_IMR_S2_CST;
  2455. }
  2456. ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
  2457. REG_WRITE(ah, AR_IMR, mask);
  2458. mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
  2459. AR_IMR_S2_DTIM |
  2460. AR_IMR_S2_DTIMSYNC |
  2461. AR_IMR_S2_CABEND |
  2462. AR_IMR_S2_CABTO |
  2463. AR_IMR_S2_TSFOOR |
  2464. AR_IMR_S2_GTT | AR_IMR_S2_CST);
  2465. REG_WRITE(ah, AR_IMR_S2, mask | mask2);
  2466. ah->mask_reg = ints;
  2467. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  2468. if (ints & ATH9K_INT_TIM_TIMER)
  2469. REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
  2470. else
  2471. REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
  2472. }
  2473. if (ints & ATH9K_INT_GLOBAL) {
  2474. ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
  2475. REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
  2476. if (!AR_SREV_9100(ah)) {
  2477. REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
  2478. AR_INTR_MAC_IRQ);
  2479. REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
  2480. REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
  2481. AR_INTR_SYNC_DEFAULT);
  2482. REG_WRITE(ah, AR_INTR_SYNC_MASK,
  2483. AR_INTR_SYNC_DEFAULT);
  2484. }
  2485. ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
  2486. REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
  2487. }
  2488. return omask;
  2489. }
  2490. EXPORT_SYMBOL(ath9k_hw_set_interrupts);
  2491. /*******************/
  2492. /* Beacon Handling */
  2493. /*******************/
  2494. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  2495. {
  2496. int flags = 0;
  2497. ah->beacon_interval = beacon_period;
  2498. switch (ah->opmode) {
  2499. case NL80211_IFTYPE_STATION:
  2500. case NL80211_IFTYPE_MONITOR:
  2501. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  2502. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
  2503. REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
  2504. flags |= AR_TBTT_TIMER_EN;
  2505. break;
  2506. case NL80211_IFTYPE_ADHOC:
  2507. case NL80211_IFTYPE_MESH_POINT:
  2508. REG_SET_BIT(ah, AR_TXCFG,
  2509. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  2510. REG_WRITE(ah, AR_NEXT_NDP_TIMER,
  2511. TU_TO_USEC(next_beacon +
  2512. (ah->atim_window ? ah->
  2513. atim_window : 1)));
  2514. flags |= AR_NDP_TIMER_EN;
  2515. case NL80211_IFTYPE_AP:
  2516. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  2517. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
  2518. TU_TO_USEC(next_beacon -
  2519. ah->config.
  2520. dma_beacon_response_time));
  2521. REG_WRITE(ah, AR_NEXT_SWBA,
  2522. TU_TO_USEC(next_beacon -
  2523. ah->config.
  2524. sw_beacon_response_time));
  2525. flags |=
  2526. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  2527. break;
  2528. default:
  2529. ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
  2530. "%s: unsupported opmode: %d\n",
  2531. __func__, ah->opmode);
  2532. return;
  2533. break;
  2534. }
  2535. REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  2536. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  2537. REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
  2538. REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
  2539. beacon_period &= ~ATH9K_BEACON_ENA;
  2540. if (beacon_period & ATH9K_BEACON_RESET_TSF) {
  2541. ath9k_hw_reset_tsf(ah);
  2542. }
  2543. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  2544. }
  2545. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  2546. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  2547. const struct ath9k_beacon_state *bs)
  2548. {
  2549. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  2550. struct ath9k_hw_capabilities *pCap = &ah->caps;
  2551. struct ath_common *common = ath9k_hw_common(ah);
  2552. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  2553. REG_WRITE(ah, AR_BEACON_PERIOD,
  2554. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  2555. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  2556. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  2557. REG_RMW_FIELD(ah, AR_RSSI_THR,
  2558. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  2559. beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
  2560. if (bs->bs_sleepduration > beaconintval)
  2561. beaconintval = bs->bs_sleepduration;
  2562. dtimperiod = bs->bs_dtimperiod;
  2563. if (bs->bs_sleepduration > dtimperiod)
  2564. dtimperiod = bs->bs_sleepduration;
  2565. if (beaconintval == dtimperiod)
  2566. nextTbtt = bs->bs_nextdtim;
  2567. else
  2568. nextTbtt = bs->bs_nexttbtt;
  2569. ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  2570. ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
  2571. ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
  2572. ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
  2573. REG_WRITE(ah, AR_NEXT_DTIM,
  2574. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  2575. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  2576. REG_WRITE(ah, AR_SLEEP1,
  2577. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  2578. | AR_SLEEP1_ASSUME_DTIM);
  2579. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  2580. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  2581. else
  2582. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  2583. REG_WRITE(ah, AR_SLEEP2,
  2584. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  2585. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  2586. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  2587. REG_SET_BIT(ah, AR_TIMER_MODE,
  2588. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  2589. AR_DTIM_TIMER_EN);
  2590. /* TSF Out of Range Threshold */
  2591. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  2592. }
  2593. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  2594. /*******************/
  2595. /* HW Capabilities */
  2596. /*******************/
  2597. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  2598. {
  2599. struct ath9k_hw_capabilities *pCap = &ah->caps;
  2600. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  2601. struct ath_common *common = ath9k_hw_common(ah);
  2602. struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
  2603. u16 capField = 0, eeval;
  2604. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  2605. regulatory->current_rd = eeval;
  2606. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
  2607. if (AR_SREV_9285_10_OR_LATER(ah))
  2608. eeval |= AR9285_RDEXT_DEFAULT;
  2609. regulatory->current_rd_ext = eeval;
  2610. capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
  2611. if (ah->opmode != NL80211_IFTYPE_AP &&
  2612. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  2613. if (regulatory->current_rd == 0x64 ||
  2614. regulatory->current_rd == 0x65)
  2615. regulatory->current_rd += 5;
  2616. else if (regulatory->current_rd == 0x41)
  2617. regulatory->current_rd = 0x43;
  2618. ath_print(common, ATH_DBG_REGULATORY,
  2619. "regdomain mapped to 0x%x\n", regulatory->current_rd);
  2620. }
  2621. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  2622. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  2623. ath_print(common, ATH_DBG_FATAL,
  2624. "no band has been marked as supported in EEPROM.\n");
  2625. return -EINVAL;
  2626. }
  2627. bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
  2628. if (eeval & AR5416_OPFLAGS_11A) {
  2629. set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
  2630. if (ah->config.ht_enable) {
  2631. if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
  2632. set_bit(ATH9K_MODE_11NA_HT20,
  2633. pCap->wireless_modes);
  2634. if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
  2635. set_bit(ATH9K_MODE_11NA_HT40PLUS,
  2636. pCap->wireless_modes);
  2637. set_bit(ATH9K_MODE_11NA_HT40MINUS,
  2638. pCap->wireless_modes);
  2639. }
  2640. }
  2641. }
  2642. if (eeval & AR5416_OPFLAGS_11G) {
  2643. set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
  2644. if (ah->config.ht_enable) {
  2645. if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
  2646. set_bit(ATH9K_MODE_11NG_HT20,
  2647. pCap->wireless_modes);
  2648. if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
  2649. set_bit(ATH9K_MODE_11NG_HT40PLUS,
  2650. pCap->wireless_modes);
  2651. set_bit(ATH9K_MODE_11NG_HT40MINUS,
  2652. pCap->wireless_modes);
  2653. }
  2654. }
  2655. }
  2656. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  2657. /*
  2658. * For AR9271 we will temporarilly uses the rx chainmax as read from
  2659. * the EEPROM.
  2660. */
  2661. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  2662. !(eeval & AR5416_OPFLAGS_11A) &&
  2663. !(AR_SREV_9271(ah)))
  2664. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  2665. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  2666. else
  2667. /* Use rx_chainmask from EEPROM. */
  2668. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  2669. if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
  2670. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  2671. pCap->low_2ghz_chan = 2312;
  2672. pCap->high_2ghz_chan = 2732;
  2673. pCap->low_5ghz_chan = 4920;
  2674. pCap->high_5ghz_chan = 6100;
  2675. pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
  2676. pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
  2677. pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
  2678. pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
  2679. pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
  2680. pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
  2681. if (ah->config.ht_enable)
  2682. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  2683. else
  2684. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  2685. pCap->hw_caps |= ATH9K_HW_CAP_GTT;
  2686. pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
  2687. pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
  2688. pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
  2689. if (capField & AR_EEPROM_EEPCAP_MAXQCU)
  2690. pCap->total_queues =
  2691. MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
  2692. else
  2693. pCap->total_queues = ATH9K_NUM_TX_QUEUES;
  2694. if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
  2695. pCap->keycache_size =
  2696. 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
  2697. else
  2698. pCap->keycache_size = AR_KEYTABLE_SIZE;
  2699. pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
  2700. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  2701. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
  2702. else
  2703. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
  2704. if (AR_SREV_9285_10_OR_LATER(ah))
  2705. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  2706. else if (AR_SREV_9280_10_OR_LATER(ah))
  2707. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  2708. else
  2709. pCap->num_gpio_pins = AR_NUM_GPIO;
  2710. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  2711. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  2712. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  2713. } else {
  2714. pCap->rts_aggr_limit = (8 * 1024);
  2715. }
  2716. pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
  2717. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  2718. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  2719. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  2720. ah->rfkill_gpio =
  2721. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  2722. ah->rfkill_polarity =
  2723. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  2724. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  2725. }
  2726. #endif
  2727. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  2728. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  2729. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  2730. else
  2731. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  2732. if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
  2733. pCap->reg_cap =
  2734. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  2735. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
  2736. AR_EEPROM_EEREGCAP_EN_KK_U2 |
  2737. AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
  2738. } else {
  2739. pCap->reg_cap =
  2740. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  2741. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
  2742. }
  2743. /* Advertise midband for AR5416 with FCC midband set in eeprom */
  2744. if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
  2745. AR_SREV_5416(ah))
  2746. pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
  2747. pCap->num_antcfg_5ghz =
  2748. ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
  2749. pCap->num_antcfg_2ghz =
  2750. ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
  2751. if (AR_SREV_9280_10_OR_LATER(ah) &&
  2752. ath9k_hw_btcoex_supported(ah)) {
  2753. btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
  2754. btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
  2755. if (AR_SREV_9285(ah)) {
  2756. btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
  2757. btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
  2758. } else {
  2759. btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
  2760. }
  2761. } else {
  2762. btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
  2763. }
  2764. return 0;
  2765. }
  2766. bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
  2767. u32 capability, u32 *result)
  2768. {
  2769. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  2770. switch (type) {
  2771. case ATH9K_CAP_CIPHER:
  2772. switch (capability) {
  2773. case ATH9K_CIPHER_AES_CCM:
  2774. case ATH9K_CIPHER_AES_OCB:
  2775. case ATH9K_CIPHER_TKIP:
  2776. case ATH9K_CIPHER_WEP:
  2777. case ATH9K_CIPHER_MIC:
  2778. case ATH9K_CIPHER_CLR:
  2779. return true;
  2780. default:
  2781. return false;
  2782. }
  2783. case ATH9K_CAP_TKIP_MIC:
  2784. switch (capability) {
  2785. case 0:
  2786. return true;
  2787. case 1:
  2788. return (ah->sta_id1_defaults &
  2789. AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
  2790. false;
  2791. }
  2792. case ATH9K_CAP_TKIP_SPLIT:
  2793. return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
  2794. false : true;
  2795. case ATH9K_CAP_DIVERSITY:
  2796. return (REG_READ(ah, AR_PHY_CCK_DETECT) &
  2797. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
  2798. true : false;
  2799. case ATH9K_CAP_MCAST_KEYSRCH:
  2800. switch (capability) {
  2801. case 0:
  2802. return true;
  2803. case 1:
  2804. if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
  2805. return false;
  2806. } else {
  2807. return (ah->sta_id1_defaults &
  2808. AR_STA_ID1_MCAST_KSRCH) ? true :
  2809. false;
  2810. }
  2811. }
  2812. return false;
  2813. case ATH9K_CAP_TXPOW:
  2814. switch (capability) {
  2815. case 0:
  2816. return 0;
  2817. case 1:
  2818. *result = regulatory->power_limit;
  2819. return 0;
  2820. case 2:
  2821. *result = regulatory->max_power_level;
  2822. return 0;
  2823. case 3:
  2824. *result = regulatory->tp_scale;
  2825. return 0;
  2826. }
  2827. return false;
  2828. case ATH9K_CAP_DS:
  2829. return (AR_SREV_9280_20_OR_LATER(ah) &&
  2830. (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
  2831. ? false : true;
  2832. default:
  2833. return false;
  2834. }
  2835. }
  2836. EXPORT_SYMBOL(ath9k_hw_getcapability);
  2837. bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
  2838. u32 capability, u32 setting, int *status)
  2839. {
  2840. u32 v;
  2841. switch (type) {
  2842. case ATH9K_CAP_TKIP_MIC:
  2843. if (setting)
  2844. ah->sta_id1_defaults |=
  2845. AR_STA_ID1_CRPT_MIC_ENABLE;
  2846. else
  2847. ah->sta_id1_defaults &=
  2848. ~AR_STA_ID1_CRPT_MIC_ENABLE;
  2849. return true;
  2850. case ATH9K_CAP_DIVERSITY:
  2851. v = REG_READ(ah, AR_PHY_CCK_DETECT);
  2852. if (setting)
  2853. v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  2854. else
  2855. v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  2856. REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
  2857. return true;
  2858. case ATH9K_CAP_MCAST_KEYSRCH:
  2859. if (setting)
  2860. ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
  2861. else
  2862. ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
  2863. return true;
  2864. default:
  2865. return false;
  2866. }
  2867. }
  2868. EXPORT_SYMBOL(ath9k_hw_setcapability);
  2869. /****************************/
  2870. /* GPIO / RFKILL / Antennae */
  2871. /****************************/
  2872. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  2873. u32 gpio, u32 type)
  2874. {
  2875. int addr;
  2876. u32 gpio_shift, tmp;
  2877. if (gpio > 11)
  2878. addr = AR_GPIO_OUTPUT_MUX3;
  2879. else if (gpio > 5)
  2880. addr = AR_GPIO_OUTPUT_MUX2;
  2881. else
  2882. addr = AR_GPIO_OUTPUT_MUX1;
  2883. gpio_shift = (gpio % 6) * 5;
  2884. if (AR_SREV_9280_20_OR_LATER(ah)
  2885. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  2886. REG_RMW(ah, addr, (type << gpio_shift),
  2887. (0x1f << gpio_shift));
  2888. } else {
  2889. tmp = REG_READ(ah, addr);
  2890. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  2891. tmp &= ~(0x1f << gpio_shift);
  2892. tmp |= (type << gpio_shift);
  2893. REG_WRITE(ah, addr, tmp);
  2894. }
  2895. }
  2896. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  2897. {
  2898. u32 gpio_shift;
  2899. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  2900. gpio_shift = gpio << 1;
  2901. REG_RMW(ah,
  2902. AR_GPIO_OE_OUT,
  2903. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  2904. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2905. }
  2906. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  2907. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  2908. {
  2909. #define MS_REG_READ(x, y) \
  2910. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  2911. if (gpio >= ah->caps.num_gpio_pins)
  2912. return 0xffffffff;
  2913. if (AR_SREV_9287_10_OR_LATER(ah))
  2914. return MS_REG_READ(AR9287, gpio) != 0;
  2915. else if (AR_SREV_9285_10_OR_LATER(ah))
  2916. return MS_REG_READ(AR9285, gpio) != 0;
  2917. else if (AR_SREV_9280_10_OR_LATER(ah))
  2918. return MS_REG_READ(AR928X, gpio) != 0;
  2919. else
  2920. return MS_REG_READ(AR, gpio) != 0;
  2921. }
  2922. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  2923. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  2924. u32 ah_signal_type)
  2925. {
  2926. u32 gpio_shift;
  2927. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  2928. gpio_shift = 2 * gpio;
  2929. REG_RMW(ah,
  2930. AR_GPIO_OE_OUT,
  2931. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  2932. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2933. }
  2934. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  2935. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  2936. {
  2937. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  2938. AR_GPIO_BIT(gpio));
  2939. }
  2940. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  2941. u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
  2942. {
  2943. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  2944. }
  2945. EXPORT_SYMBOL(ath9k_hw_getdefantenna);
  2946. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  2947. {
  2948. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  2949. }
  2950. EXPORT_SYMBOL(ath9k_hw_setantenna);
  2951. /*********************/
  2952. /* General Operation */
  2953. /*********************/
  2954. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  2955. {
  2956. u32 bits = REG_READ(ah, AR_RX_FILTER);
  2957. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  2958. if (phybits & AR_PHY_ERR_RADAR)
  2959. bits |= ATH9K_RX_FILTER_PHYRADAR;
  2960. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  2961. bits |= ATH9K_RX_FILTER_PHYERR;
  2962. return bits;
  2963. }
  2964. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  2965. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  2966. {
  2967. u32 phybits;
  2968. REG_WRITE(ah, AR_RX_FILTER, bits);
  2969. phybits = 0;
  2970. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  2971. phybits |= AR_PHY_ERR_RADAR;
  2972. if (bits & ATH9K_RX_FILTER_PHYERR)
  2973. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  2974. REG_WRITE(ah, AR_PHY_ERR, phybits);
  2975. if (phybits)
  2976. REG_WRITE(ah, AR_RXCFG,
  2977. REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
  2978. else
  2979. REG_WRITE(ah, AR_RXCFG,
  2980. REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
  2981. }
  2982. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  2983. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  2984. {
  2985. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  2986. return false;
  2987. ath9k_hw_init_pll(ah, NULL);
  2988. return true;
  2989. }
  2990. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  2991. bool ath9k_hw_disable(struct ath_hw *ah)
  2992. {
  2993. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  2994. return false;
  2995. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  2996. return false;
  2997. ath9k_hw_init_pll(ah, NULL);
  2998. return true;
  2999. }
  3000. EXPORT_SYMBOL(ath9k_hw_disable);
  3001. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
  3002. {
  3003. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  3004. struct ath9k_channel *chan = ah->curchan;
  3005. struct ieee80211_channel *channel = chan->chan;
  3006. regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
  3007. ah->eep_ops->set_txpower(ah, chan,
  3008. ath9k_regd_get_ctl(regulatory, chan),
  3009. channel->max_antenna_gain * 2,
  3010. channel->max_power * 2,
  3011. min((u32) MAX_RATE_POWER,
  3012. (u32) regulatory->power_limit));
  3013. }
  3014. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  3015. void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
  3016. {
  3017. memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
  3018. }
  3019. EXPORT_SYMBOL(ath9k_hw_setmac);
  3020. void ath9k_hw_setopmode(struct ath_hw *ah)
  3021. {
  3022. ath9k_hw_set_operating_mode(ah, ah->opmode);
  3023. }
  3024. EXPORT_SYMBOL(ath9k_hw_setopmode);
  3025. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  3026. {
  3027. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  3028. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  3029. }
  3030. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  3031. void ath9k_hw_write_associd(struct ath_hw *ah)
  3032. {
  3033. struct ath_common *common = ath9k_hw_common(ah);
  3034. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  3035. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  3036. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  3037. }
  3038. EXPORT_SYMBOL(ath9k_hw_write_associd);
  3039. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  3040. {
  3041. u64 tsf;
  3042. tsf = REG_READ(ah, AR_TSF_U32);
  3043. tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
  3044. return tsf;
  3045. }
  3046. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  3047. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  3048. {
  3049. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  3050. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  3051. }
  3052. EXPORT_SYMBOL(ath9k_hw_settsf64);
  3053. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  3054. {
  3055. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  3056. AH_TSF_WRITE_TIMEOUT))
  3057. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  3058. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  3059. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  3060. }
  3061. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  3062. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  3063. {
  3064. if (setting)
  3065. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  3066. else
  3067. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  3068. }
  3069. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  3070. /*
  3071. * Extend 15-bit time stamp from rx descriptor to
  3072. * a full 64-bit TSF using the current h/w TSF.
  3073. */
  3074. u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
  3075. {
  3076. u64 tsf;
  3077. tsf = ath9k_hw_gettsf64(ah);
  3078. if ((tsf & 0x7fff) < rstamp)
  3079. tsf -= 0x8000;
  3080. return (tsf & ~0x7fff) | rstamp;
  3081. }
  3082. EXPORT_SYMBOL(ath9k_hw_extend_tsf);
  3083. bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  3084. {
  3085. if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
  3086. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  3087. "bad slot time %u\n", us);
  3088. ah->slottime = (u32) -1;
  3089. return false;
  3090. } else {
  3091. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
  3092. ah->slottime = us;
  3093. return true;
  3094. }
  3095. }
  3096. EXPORT_SYMBOL(ath9k_hw_setslottime);
  3097. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  3098. {
  3099. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  3100. u32 macmode;
  3101. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  3102. macmode = AR_2040_JOINED_RX_CLEAR;
  3103. else
  3104. macmode = 0;
  3105. REG_WRITE(ah, AR_2040_MODE, macmode);
  3106. }
  3107. /* HW Generic timers configuration */
  3108. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  3109. {
  3110. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  3111. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  3112. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  3113. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  3114. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  3115. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  3116. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  3117. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  3118. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  3119. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  3120. AR_NDP2_TIMER_MODE, 0x0002},
  3121. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  3122. AR_NDP2_TIMER_MODE, 0x0004},
  3123. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  3124. AR_NDP2_TIMER_MODE, 0x0008},
  3125. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  3126. AR_NDP2_TIMER_MODE, 0x0010},
  3127. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  3128. AR_NDP2_TIMER_MODE, 0x0020},
  3129. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  3130. AR_NDP2_TIMER_MODE, 0x0040},
  3131. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  3132. AR_NDP2_TIMER_MODE, 0x0080}
  3133. };
  3134. /* HW generic timer primitives */
  3135. /* compute and clear index of rightmost 1 */
  3136. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  3137. {
  3138. u32 b;
  3139. b = *mask;
  3140. b &= (0-b);
  3141. *mask &= ~b;
  3142. b *= debruijn32;
  3143. b >>= 27;
  3144. return timer_table->gen_timer_index[b];
  3145. }
  3146. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  3147. {
  3148. return REG_READ(ah, AR_TSF_L32);
  3149. }
  3150. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  3151. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  3152. void (*trigger)(void *),
  3153. void (*overflow)(void *),
  3154. void *arg,
  3155. u8 timer_index)
  3156. {
  3157. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  3158. struct ath_gen_timer *timer;
  3159. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  3160. if (timer == NULL) {
  3161. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  3162. "Failed to allocate memory"
  3163. "for hw timer[%d]\n", timer_index);
  3164. return NULL;
  3165. }
  3166. /* allocate a hardware generic timer slot */
  3167. timer_table->timers[timer_index] = timer;
  3168. timer->index = timer_index;
  3169. timer->trigger = trigger;
  3170. timer->overflow = overflow;
  3171. timer->arg = arg;
  3172. return timer;
  3173. }
  3174. EXPORT_SYMBOL(ath_gen_timer_alloc);
  3175. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  3176. struct ath_gen_timer *timer,
  3177. u32 timer_next,
  3178. u32 timer_period)
  3179. {
  3180. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  3181. u32 tsf;
  3182. BUG_ON(!timer_period);
  3183. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  3184. tsf = ath9k_hw_gettsf32(ah);
  3185. ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
  3186. "curent tsf %x period %x"
  3187. "timer_next %x\n", tsf, timer_period, timer_next);
  3188. /*
  3189. * Pull timer_next forward if the current TSF already passed it
  3190. * because of software latency
  3191. */
  3192. if (timer_next < tsf)
  3193. timer_next = tsf + timer_period;
  3194. /*
  3195. * Program generic timer registers
  3196. */
  3197. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  3198. timer_next);
  3199. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  3200. timer_period);
  3201. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  3202. gen_tmr_configuration[timer->index].mode_mask);
  3203. /* Enable both trigger and thresh interrupt masks */
  3204. REG_SET_BIT(ah, AR_IMR_S5,
  3205. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  3206. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  3207. }
  3208. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  3209. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  3210. {
  3211. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  3212. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  3213. (timer->index >= ATH_MAX_GEN_TIMER)) {
  3214. return;
  3215. }
  3216. /* Clear generic timer enable bits. */
  3217. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  3218. gen_tmr_configuration[timer->index].mode_mask);
  3219. /* Disable both trigger and thresh interrupt masks */
  3220. REG_CLR_BIT(ah, AR_IMR_S5,
  3221. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  3222. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  3223. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  3224. }
  3225. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  3226. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  3227. {
  3228. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  3229. /* free the hardware generic timer slot */
  3230. timer_table->timers[timer->index] = NULL;
  3231. kfree(timer);
  3232. }
  3233. EXPORT_SYMBOL(ath_gen_timer_free);
  3234. /*
  3235. * Generic Timer Interrupts handling
  3236. */
  3237. void ath_gen_timer_isr(struct ath_hw *ah)
  3238. {
  3239. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  3240. struct ath_gen_timer *timer;
  3241. struct ath_common *common = ath9k_hw_common(ah);
  3242. u32 trigger_mask, thresh_mask, index;
  3243. /* get hardware generic timer interrupt status */
  3244. trigger_mask = ah->intr_gen_timer_trigger;
  3245. thresh_mask = ah->intr_gen_timer_thresh;
  3246. trigger_mask &= timer_table->timer_mask.val;
  3247. thresh_mask &= timer_table->timer_mask.val;
  3248. trigger_mask &= ~thresh_mask;
  3249. while (thresh_mask) {
  3250. index = rightmost_index(timer_table, &thresh_mask);
  3251. timer = timer_table->timers[index];
  3252. BUG_ON(!timer);
  3253. ath_print(common, ATH_DBG_HWTIMER,
  3254. "TSF overflow for Gen timer %d\n", index);
  3255. timer->overflow(timer->arg);
  3256. }
  3257. while (trigger_mask) {
  3258. index = rightmost_index(timer_table, &trigger_mask);
  3259. timer = timer_table->timers[index];
  3260. BUG_ON(!timer);
  3261. ath_print(common, ATH_DBG_HWTIMER,
  3262. "Gen timer[%d] trigger\n", index);
  3263. timer->trigger(timer->arg);
  3264. }
  3265. }
  3266. EXPORT_SYMBOL(ath_gen_timer_isr);
  3267. static struct {
  3268. u32 version;
  3269. const char * name;
  3270. } ath_mac_bb_names[] = {
  3271. /* Devices with external radios */
  3272. { AR_SREV_VERSION_5416_PCI, "5416" },
  3273. { AR_SREV_VERSION_5416_PCIE, "5418" },
  3274. { AR_SREV_VERSION_9100, "9100" },
  3275. { AR_SREV_VERSION_9160, "9160" },
  3276. /* Single-chip solutions */
  3277. { AR_SREV_VERSION_9280, "9280" },
  3278. { AR_SREV_VERSION_9285, "9285" },
  3279. { AR_SREV_VERSION_9287, "9287" },
  3280. { AR_SREV_VERSION_9271, "9271" },
  3281. };
  3282. /* For devices with external radios */
  3283. static struct {
  3284. u16 version;
  3285. const char * name;
  3286. } ath_rf_names[] = {
  3287. { 0, "5133" },
  3288. { AR_RAD5133_SREV_MAJOR, "5133" },
  3289. { AR_RAD5122_SREV_MAJOR, "5122" },
  3290. { AR_RAD2133_SREV_MAJOR, "2133" },
  3291. { AR_RAD2122_SREV_MAJOR, "2122" }
  3292. };
  3293. /*
  3294. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  3295. */
  3296. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  3297. {
  3298. int i;
  3299. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  3300. if (ath_mac_bb_names[i].version == mac_bb_version) {
  3301. return ath_mac_bb_names[i].name;
  3302. }
  3303. }
  3304. return "????";
  3305. }
  3306. /*
  3307. * Return the RF name. "????" is returned if the RF is unknown.
  3308. * Used for devices with external radios.
  3309. */
  3310. static const char *ath9k_hw_rf_name(u16 rf_version)
  3311. {
  3312. int i;
  3313. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  3314. if (ath_rf_names[i].version == rf_version) {
  3315. return ath_rf_names[i].name;
  3316. }
  3317. }
  3318. return "????";
  3319. }
  3320. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  3321. {
  3322. int used;
  3323. /* chipsets >= AR9280 are single-chip */
  3324. if (AR_SREV_9280_10_OR_LATER(ah)) {
  3325. used = snprintf(hw_name, len,
  3326. "Atheros AR%s Rev:%x",
  3327. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  3328. ah->hw_version.macRev);
  3329. }
  3330. else {
  3331. used = snprintf(hw_name, len,
  3332. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  3333. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  3334. ah->hw_version.macRev,
  3335. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  3336. AR_RADIO_SREV_MAJOR)),
  3337. ah->hw_version.phyRev);
  3338. }
  3339. hw_name[used] = '\0';
  3340. }
  3341. EXPORT_SYMBOL(ath9k_hw_name);