efi.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302
  1. /*
  2. * Extensible Firmware Interface
  3. *
  4. * Based on Extensible Firmware Interface Specification version 0.9
  5. * April 30, 1999
  6. *
  7. * Copyright (C) 1999 VA Linux Systems
  8. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  9. * Copyright (C) 1999-2003 Hewlett-Packard Co.
  10. * David Mosberger-Tang <davidm@hpl.hp.com>
  11. * Stephane Eranian <eranian@hpl.hp.com>
  12. * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
  13. * Bjorn Helgaas <bjorn.helgaas@hp.com>
  14. *
  15. * All EFI Runtime Services are not implemented yet as EFI only
  16. * supports physical mode addressing on SoftSDV. This is to be fixed
  17. * in a future version. --drummond 1999-07-20
  18. *
  19. * Implemented EFI runtime services and virtual mode calls. --davidm
  20. *
  21. * Goutham Rao: <goutham.rao@intel.com>
  22. * Skip non-WB memory and ignore empty memory ranges.
  23. */
  24. #include <linux/module.h>
  25. #include <linux/bootmem.h>
  26. #include <linux/kernel.h>
  27. #include <linux/init.h>
  28. #include <linux/types.h>
  29. #include <linux/time.h>
  30. #include <linux/efi.h>
  31. #include <linux/kexec.h>
  32. #include <linux/mm.h>
  33. #include <asm/io.h>
  34. #include <asm/kregs.h>
  35. #include <asm/meminit.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/processor.h>
  38. #include <asm/mca.h>
  39. #define EFI_DEBUG 0
  40. extern efi_status_t efi_call_phys (void *, ...);
  41. struct efi efi;
  42. EXPORT_SYMBOL(efi);
  43. static efi_runtime_services_t *runtime;
  44. static unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
  45. #define efi_call_virt(f, args...) (*(f))(args)
  46. #define STUB_GET_TIME(prefix, adjust_arg) \
  47. static efi_status_t \
  48. prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
  49. { \
  50. struct ia64_fpreg fr[6]; \
  51. efi_time_cap_t *atc = NULL; \
  52. efi_status_t ret; \
  53. \
  54. if (tc) \
  55. atc = adjust_arg(tc); \
  56. ia64_save_scratch_fpregs(fr); \
  57. ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \
  58. adjust_arg(tm), atc); \
  59. ia64_load_scratch_fpregs(fr); \
  60. return ret; \
  61. }
  62. #define STUB_SET_TIME(prefix, adjust_arg) \
  63. static efi_status_t \
  64. prefix##_set_time (efi_time_t *tm) \
  65. { \
  66. struct ia64_fpreg fr[6]; \
  67. efi_status_t ret; \
  68. \
  69. ia64_save_scratch_fpregs(fr); \
  70. ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \
  71. adjust_arg(tm)); \
  72. ia64_load_scratch_fpregs(fr); \
  73. return ret; \
  74. }
  75. #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
  76. static efi_status_t \
  77. prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \
  78. efi_time_t *tm) \
  79. { \
  80. struct ia64_fpreg fr[6]; \
  81. efi_status_t ret; \
  82. \
  83. ia64_save_scratch_fpregs(fr); \
  84. ret = efi_call_##prefix( \
  85. (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
  86. adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
  87. ia64_load_scratch_fpregs(fr); \
  88. return ret; \
  89. }
  90. #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
  91. static efi_status_t \
  92. prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
  93. { \
  94. struct ia64_fpreg fr[6]; \
  95. efi_time_t *atm = NULL; \
  96. efi_status_t ret; \
  97. \
  98. if (tm) \
  99. atm = adjust_arg(tm); \
  100. ia64_save_scratch_fpregs(fr); \
  101. ret = efi_call_##prefix( \
  102. (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
  103. enabled, atm); \
  104. ia64_load_scratch_fpregs(fr); \
  105. return ret; \
  106. }
  107. #define STUB_GET_VARIABLE(prefix, adjust_arg) \
  108. static efi_status_t \
  109. prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
  110. unsigned long *data_size, void *data) \
  111. { \
  112. struct ia64_fpreg fr[6]; \
  113. u32 *aattr = NULL; \
  114. efi_status_t ret; \
  115. \
  116. if (attr) \
  117. aattr = adjust_arg(attr); \
  118. ia64_save_scratch_fpregs(fr); \
  119. ret = efi_call_##prefix( \
  120. (efi_get_variable_t *) __va(runtime->get_variable), \
  121. adjust_arg(name), adjust_arg(vendor), aattr, \
  122. adjust_arg(data_size), adjust_arg(data)); \
  123. ia64_load_scratch_fpregs(fr); \
  124. return ret; \
  125. }
  126. #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
  127. static efi_status_t \
  128. prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \
  129. efi_guid_t *vendor) \
  130. { \
  131. struct ia64_fpreg fr[6]; \
  132. efi_status_t ret; \
  133. \
  134. ia64_save_scratch_fpregs(fr); \
  135. ret = efi_call_##prefix( \
  136. (efi_get_next_variable_t *) __va(runtime->get_next_variable), \
  137. adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
  138. ia64_load_scratch_fpregs(fr); \
  139. return ret; \
  140. }
  141. #define STUB_SET_VARIABLE(prefix, adjust_arg) \
  142. static efi_status_t \
  143. prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \
  144. unsigned long attr, unsigned long data_size, \
  145. void *data) \
  146. { \
  147. struct ia64_fpreg fr[6]; \
  148. efi_status_t ret; \
  149. \
  150. ia64_save_scratch_fpregs(fr); \
  151. ret = efi_call_##prefix( \
  152. (efi_set_variable_t *) __va(runtime->set_variable), \
  153. adjust_arg(name), adjust_arg(vendor), attr, data_size, \
  154. adjust_arg(data)); \
  155. ia64_load_scratch_fpregs(fr); \
  156. return ret; \
  157. }
  158. #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
  159. static efi_status_t \
  160. prefix##_get_next_high_mono_count (u32 *count) \
  161. { \
  162. struct ia64_fpreg fr[6]; \
  163. efi_status_t ret; \
  164. \
  165. ia64_save_scratch_fpregs(fr); \
  166. ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
  167. __va(runtime->get_next_high_mono_count), \
  168. adjust_arg(count)); \
  169. ia64_load_scratch_fpregs(fr); \
  170. return ret; \
  171. }
  172. #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
  173. static void \
  174. prefix##_reset_system (int reset_type, efi_status_t status, \
  175. unsigned long data_size, efi_char16_t *data) \
  176. { \
  177. struct ia64_fpreg fr[6]; \
  178. efi_char16_t *adata = NULL; \
  179. \
  180. if (data) \
  181. adata = adjust_arg(data); \
  182. \
  183. ia64_save_scratch_fpregs(fr); \
  184. efi_call_##prefix( \
  185. (efi_reset_system_t *) __va(runtime->reset_system), \
  186. reset_type, status, data_size, adata); \
  187. /* should not return, but just in case... */ \
  188. ia64_load_scratch_fpregs(fr); \
  189. }
  190. #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
  191. STUB_GET_TIME(phys, phys_ptr)
  192. STUB_SET_TIME(phys, phys_ptr)
  193. STUB_GET_WAKEUP_TIME(phys, phys_ptr)
  194. STUB_SET_WAKEUP_TIME(phys, phys_ptr)
  195. STUB_GET_VARIABLE(phys, phys_ptr)
  196. STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
  197. STUB_SET_VARIABLE(phys, phys_ptr)
  198. STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
  199. STUB_RESET_SYSTEM(phys, phys_ptr)
  200. #define id(arg) arg
  201. STUB_GET_TIME(virt, id)
  202. STUB_SET_TIME(virt, id)
  203. STUB_GET_WAKEUP_TIME(virt, id)
  204. STUB_SET_WAKEUP_TIME(virt, id)
  205. STUB_GET_VARIABLE(virt, id)
  206. STUB_GET_NEXT_VARIABLE(virt, id)
  207. STUB_SET_VARIABLE(virt, id)
  208. STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
  209. STUB_RESET_SYSTEM(virt, id)
  210. void
  211. efi_gettimeofday (struct timespec *ts)
  212. {
  213. efi_time_t tm;
  214. if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
  215. memset(ts, 0, sizeof(*ts));
  216. return;
  217. }
  218. ts->tv_sec = mktime(tm.year, tm.month, tm.day,
  219. tm.hour, tm.minute, tm.second);
  220. ts->tv_nsec = tm.nanosecond;
  221. }
  222. static int
  223. is_memory_available (efi_memory_desc_t *md)
  224. {
  225. if (!(md->attribute & EFI_MEMORY_WB))
  226. return 0;
  227. switch (md->type) {
  228. case EFI_LOADER_CODE:
  229. case EFI_LOADER_DATA:
  230. case EFI_BOOT_SERVICES_CODE:
  231. case EFI_BOOT_SERVICES_DATA:
  232. case EFI_CONVENTIONAL_MEMORY:
  233. return 1;
  234. }
  235. return 0;
  236. }
  237. typedef struct kern_memdesc {
  238. u64 attribute;
  239. u64 start;
  240. u64 num_pages;
  241. } kern_memdesc_t;
  242. static kern_memdesc_t *kern_memmap;
  243. #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
  244. static inline u64
  245. kmd_end(kern_memdesc_t *kmd)
  246. {
  247. return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
  248. }
  249. static inline u64
  250. efi_md_end(efi_memory_desc_t *md)
  251. {
  252. return (md->phys_addr + efi_md_size(md));
  253. }
  254. static inline int
  255. efi_wb(efi_memory_desc_t *md)
  256. {
  257. return (md->attribute & EFI_MEMORY_WB);
  258. }
  259. static inline int
  260. efi_uc(efi_memory_desc_t *md)
  261. {
  262. return (md->attribute & EFI_MEMORY_UC);
  263. }
  264. static void
  265. walk (efi_freemem_callback_t callback, void *arg, u64 attr)
  266. {
  267. kern_memdesc_t *k;
  268. u64 start, end, voff;
  269. voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
  270. for (k = kern_memmap; k->start != ~0UL; k++) {
  271. if (k->attribute != attr)
  272. continue;
  273. start = PAGE_ALIGN(k->start);
  274. end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
  275. if (start < end)
  276. if ((*callback)(start + voff, end + voff, arg) < 0)
  277. return;
  278. }
  279. }
  280. /*
  281. * Walk the EFI memory map and call CALLBACK once for each EFI memory
  282. * descriptor that has memory that is available for OS use.
  283. */
  284. void
  285. efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
  286. {
  287. walk(callback, arg, EFI_MEMORY_WB);
  288. }
  289. /*
  290. * Walk the EFI memory map and call CALLBACK once for each EFI memory
  291. * descriptor that has memory that is available for uncached allocator.
  292. */
  293. void
  294. efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
  295. {
  296. walk(callback, arg, EFI_MEMORY_UC);
  297. }
  298. /*
  299. * Look for the PAL_CODE region reported by EFI and map it using an
  300. * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
  301. * Abstraction Layer chapter 11 in ADAG
  302. */
  303. void *
  304. efi_get_pal_addr (void)
  305. {
  306. void *efi_map_start, *efi_map_end, *p;
  307. efi_memory_desc_t *md;
  308. u64 efi_desc_size;
  309. int pal_code_count = 0;
  310. u64 vaddr, mask;
  311. efi_map_start = __va(ia64_boot_param->efi_memmap);
  312. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  313. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  314. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  315. md = p;
  316. if (md->type != EFI_PAL_CODE)
  317. continue;
  318. if (++pal_code_count > 1) {
  319. printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
  320. "dropped @ %lx\n", md->phys_addr);
  321. continue;
  322. }
  323. /*
  324. * The only ITLB entry in region 7 that is used is the one
  325. * installed by __start(). That entry covers a 64MB range.
  326. */
  327. mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
  328. vaddr = PAGE_OFFSET + md->phys_addr;
  329. /*
  330. * We must check that the PAL mapping won't overlap with the
  331. * kernel mapping.
  332. *
  333. * PAL code is guaranteed to be aligned on a power of 2 between
  334. * 4k and 256KB and that only one ITR is needed to map it. This
  335. * implies that the PAL code is always aligned on its size,
  336. * i.e., the closest matching page size supported by the TLB.
  337. * Therefore PAL code is guaranteed never to cross a 64MB unless
  338. * it is bigger than 64MB (very unlikely!). So for now the
  339. * following test is enough to determine whether or not we need
  340. * a dedicated ITR for the PAL code.
  341. */
  342. if ((vaddr & mask) == (KERNEL_START & mask)) {
  343. printk(KERN_INFO "%s: no need to install ITR for "
  344. "PAL code\n", __FUNCTION__);
  345. continue;
  346. }
  347. if (efi_md_size(md) > IA64_GRANULE_SIZE)
  348. panic("Whoa! PAL code size bigger than a granule!");
  349. #if EFI_DEBUG
  350. mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
  351. printk(KERN_INFO "CPU %d: mapping PAL code "
  352. "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
  353. smp_processor_id(), md->phys_addr,
  354. md->phys_addr + efi_md_size(md),
  355. vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
  356. #endif
  357. return __va(md->phys_addr);
  358. }
  359. printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
  360. __FUNCTION__);
  361. return NULL;
  362. }
  363. void
  364. efi_map_pal_code (void)
  365. {
  366. void *pal_vaddr = efi_get_pal_addr ();
  367. u64 psr;
  368. if (!pal_vaddr)
  369. return;
  370. /*
  371. * Cannot write to CRx with PSR.ic=1
  372. */
  373. psr = ia64_clear_ic();
  374. ia64_itr(0x1, IA64_TR_PALCODE,
  375. GRANULEROUNDDOWN((unsigned long) pal_vaddr),
  376. pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
  377. IA64_GRANULE_SHIFT);
  378. ia64_set_psr(psr); /* restore psr */
  379. ia64_srlz_i();
  380. }
  381. void __init
  382. efi_init (void)
  383. {
  384. void *efi_map_start, *efi_map_end;
  385. efi_config_table_t *config_tables;
  386. efi_char16_t *c16;
  387. u64 efi_desc_size;
  388. char *cp, vendor[100] = "unknown";
  389. int i;
  390. /*
  391. * It's too early to be able to use the standard kernel command line
  392. * support...
  393. */
  394. for (cp = boot_command_line; *cp; ) {
  395. if (memcmp(cp, "mem=", 4) == 0) {
  396. mem_limit = memparse(cp + 4, &cp);
  397. } else if (memcmp(cp, "max_addr=", 9) == 0) {
  398. max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
  399. } else if (memcmp(cp, "min_addr=", 9) == 0) {
  400. min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
  401. } else {
  402. while (*cp != ' ' && *cp)
  403. ++cp;
  404. while (*cp == ' ')
  405. ++cp;
  406. }
  407. }
  408. if (min_addr != 0UL)
  409. printk(KERN_INFO "Ignoring memory below %luMB\n",
  410. min_addr >> 20);
  411. if (max_addr != ~0UL)
  412. printk(KERN_INFO "Ignoring memory above %luMB\n",
  413. max_addr >> 20);
  414. efi.systab = __va(ia64_boot_param->efi_systab);
  415. /*
  416. * Verify the EFI Table
  417. */
  418. if (efi.systab == NULL)
  419. panic("Whoa! Can't find EFI system table.\n");
  420. if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
  421. panic("Whoa! EFI system table signature incorrect\n");
  422. if ((efi.systab->hdr.revision >> 16) == 0)
  423. printk(KERN_WARNING "Warning: EFI system table version "
  424. "%d.%02d, expected 1.00 or greater\n",
  425. efi.systab->hdr.revision >> 16,
  426. efi.systab->hdr.revision & 0xffff);
  427. config_tables = __va(efi.systab->tables);
  428. /* Show what we know for posterity */
  429. c16 = __va(efi.systab->fw_vendor);
  430. if (c16) {
  431. for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
  432. vendor[i] = *c16++;
  433. vendor[i] = '\0';
  434. }
  435. printk(KERN_INFO "EFI v%u.%.02u by %s:",
  436. efi.systab->hdr.revision >> 16,
  437. efi.systab->hdr.revision & 0xffff, vendor);
  438. efi.mps = EFI_INVALID_TABLE_ADDR;
  439. efi.acpi = EFI_INVALID_TABLE_ADDR;
  440. efi.acpi20 = EFI_INVALID_TABLE_ADDR;
  441. efi.smbios = EFI_INVALID_TABLE_ADDR;
  442. efi.sal_systab = EFI_INVALID_TABLE_ADDR;
  443. efi.boot_info = EFI_INVALID_TABLE_ADDR;
  444. efi.hcdp = EFI_INVALID_TABLE_ADDR;
  445. efi.uga = EFI_INVALID_TABLE_ADDR;
  446. for (i = 0; i < (int) efi.systab->nr_tables; i++) {
  447. if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
  448. efi.mps = config_tables[i].table;
  449. printk(" MPS=0x%lx", config_tables[i].table);
  450. } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
  451. efi.acpi20 = config_tables[i].table;
  452. printk(" ACPI 2.0=0x%lx", config_tables[i].table);
  453. } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
  454. efi.acpi = config_tables[i].table;
  455. printk(" ACPI=0x%lx", config_tables[i].table);
  456. } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
  457. efi.smbios = config_tables[i].table;
  458. printk(" SMBIOS=0x%lx", config_tables[i].table);
  459. } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
  460. efi.sal_systab = config_tables[i].table;
  461. printk(" SALsystab=0x%lx", config_tables[i].table);
  462. } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
  463. efi.hcdp = config_tables[i].table;
  464. printk(" HCDP=0x%lx", config_tables[i].table);
  465. }
  466. }
  467. printk("\n");
  468. runtime = __va(efi.systab->runtime);
  469. efi.get_time = phys_get_time;
  470. efi.set_time = phys_set_time;
  471. efi.get_wakeup_time = phys_get_wakeup_time;
  472. efi.set_wakeup_time = phys_set_wakeup_time;
  473. efi.get_variable = phys_get_variable;
  474. efi.get_next_variable = phys_get_next_variable;
  475. efi.set_variable = phys_set_variable;
  476. efi.get_next_high_mono_count = phys_get_next_high_mono_count;
  477. efi.reset_system = phys_reset_system;
  478. efi_map_start = __va(ia64_boot_param->efi_memmap);
  479. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  480. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  481. #if EFI_DEBUG
  482. /* print EFI memory map: */
  483. {
  484. efi_memory_desc_t *md;
  485. void *p;
  486. for (i = 0, p = efi_map_start; p < efi_map_end;
  487. ++i, p += efi_desc_size)
  488. {
  489. md = p;
  490. printk("mem%02u: type=%u, attr=0x%lx, "
  491. "range=[0x%016lx-0x%016lx) (%luMB)\n",
  492. i, md->type, md->attribute, md->phys_addr,
  493. md->phys_addr + efi_md_size(md),
  494. md->num_pages >> (20 - EFI_PAGE_SHIFT));
  495. }
  496. }
  497. #endif
  498. efi_map_pal_code();
  499. efi_enter_virtual_mode();
  500. }
  501. void
  502. efi_enter_virtual_mode (void)
  503. {
  504. void *efi_map_start, *efi_map_end, *p;
  505. efi_memory_desc_t *md;
  506. efi_status_t status;
  507. u64 efi_desc_size;
  508. efi_map_start = __va(ia64_boot_param->efi_memmap);
  509. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  510. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  511. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  512. md = p;
  513. if (md->attribute & EFI_MEMORY_RUNTIME) {
  514. /*
  515. * Some descriptors have multiple bits set, so the
  516. * order of the tests is relevant.
  517. */
  518. if (md->attribute & EFI_MEMORY_WB) {
  519. md->virt_addr = (u64) __va(md->phys_addr);
  520. } else if (md->attribute & EFI_MEMORY_UC) {
  521. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  522. } else if (md->attribute & EFI_MEMORY_WC) {
  523. #if 0
  524. md->virt_addr = ia64_remap(md->phys_addr,
  525. (_PAGE_A |
  526. _PAGE_P |
  527. _PAGE_D |
  528. _PAGE_MA_WC |
  529. _PAGE_PL_0 |
  530. _PAGE_AR_RW));
  531. #else
  532. printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
  533. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  534. #endif
  535. } else if (md->attribute & EFI_MEMORY_WT) {
  536. #if 0
  537. md->virt_addr = ia64_remap(md->phys_addr,
  538. (_PAGE_A |
  539. _PAGE_P |
  540. _PAGE_D |
  541. _PAGE_MA_WT |
  542. _PAGE_PL_0 |
  543. _PAGE_AR_RW));
  544. #else
  545. printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
  546. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  547. #endif
  548. }
  549. }
  550. }
  551. status = efi_call_phys(__va(runtime->set_virtual_address_map),
  552. ia64_boot_param->efi_memmap_size,
  553. efi_desc_size,
  554. ia64_boot_param->efi_memdesc_version,
  555. ia64_boot_param->efi_memmap);
  556. if (status != EFI_SUCCESS) {
  557. printk(KERN_WARNING "warning: unable to switch EFI into "
  558. "virtual mode (status=%lu)\n", status);
  559. return;
  560. }
  561. /*
  562. * Now that EFI is in virtual mode, we call the EFI functions more
  563. * efficiently:
  564. */
  565. efi.get_time = virt_get_time;
  566. efi.set_time = virt_set_time;
  567. efi.get_wakeup_time = virt_get_wakeup_time;
  568. efi.set_wakeup_time = virt_set_wakeup_time;
  569. efi.get_variable = virt_get_variable;
  570. efi.get_next_variable = virt_get_next_variable;
  571. efi.set_variable = virt_set_variable;
  572. efi.get_next_high_mono_count = virt_get_next_high_mono_count;
  573. efi.reset_system = virt_reset_system;
  574. }
  575. /*
  576. * Walk the EFI memory map looking for the I/O port range. There can only be
  577. * one entry of this type, other I/O port ranges should be described via ACPI.
  578. */
  579. u64
  580. efi_get_iobase (void)
  581. {
  582. void *efi_map_start, *efi_map_end, *p;
  583. efi_memory_desc_t *md;
  584. u64 efi_desc_size;
  585. efi_map_start = __va(ia64_boot_param->efi_memmap);
  586. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  587. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  588. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  589. md = p;
  590. if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
  591. if (md->attribute & EFI_MEMORY_UC)
  592. return md->phys_addr;
  593. }
  594. }
  595. return 0;
  596. }
  597. static struct kern_memdesc *
  598. kern_memory_descriptor (unsigned long phys_addr)
  599. {
  600. struct kern_memdesc *md;
  601. for (md = kern_memmap; md->start != ~0UL; md++) {
  602. if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
  603. return md;
  604. }
  605. return NULL;
  606. }
  607. static efi_memory_desc_t *
  608. efi_memory_descriptor (unsigned long phys_addr)
  609. {
  610. void *efi_map_start, *efi_map_end, *p;
  611. efi_memory_desc_t *md;
  612. u64 efi_desc_size;
  613. efi_map_start = __va(ia64_boot_param->efi_memmap);
  614. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  615. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  616. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  617. md = p;
  618. if (phys_addr - md->phys_addr < efi_md_size(md))
  619. return md;
  620. }
  621. return NULL;
  622. }
  623. static int
  624. efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
  625. {
  626. void *efi_map_start, *efi_map_end, *p;
  627. efi_memory_desc_t *md;
  628. u64 efi_desc_size;
  629. unsigned long end;
  630. efi_map_start = __va(ia64_boot_param->efi_memmap);
  631. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  632. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  633. end = phys_addr + size;
  634. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  635. md = p;
  636. if (md->phys_addr < end && efi_md_end(md) > phys_addr)
  637. return 1;
  638. }
  639. return 0;
  640. }
  641. u32
  642. efi_mem_type (unsigned long phys_addr)
  643. {
  644. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  645. if (md)
  646. return md->type;
  647. return 0;
  648. }
  649. u64
  650. efi_mem_attributes (unsigned long phys_addr)
  651. {
  652. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  653. if (md)
  654. return md->attribute;
  655. return 0;
  656. }
  657. EXPORT_SYMBOL(efi_mem_attributes);
  658. u64
  659. efi_mem_attribute (unsigned long phys_addr, unsigned long size)
  660. {
  661. unsigned long end = phys_addr + size;
  662. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  663. u64 attr;
  664. if (!md)
  665. return 0;
  666. /*
  667. * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
  668. * the kernel that firmware needs this region mapped.
  669. */
  670. attr = md->attribute & ~EFI_MEMORY_RUNTIME;
  671. do {
  672. unsigned long md_end = efi_md_end(md);
  673. if (end <= md_end)
  674. return attr;
  675. md = efi_memory_descriptor(md_end);
  676. if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
  677. return 0;
  678. } while (md);
  679. return 0; /* never reached */
  680. }
  681. u64
  682. kern_mem_attribute (unsigned long phys_addr, unsigned long size)
  683. {
  684. unsigned long end = phys_addr + size;
  685. struct kern_memdesc *md;
  686. u64 attr;
  687. /*
  688. * This is a hack for ioremap calls before we set up kern_memmap.
  689. * Maybe we should do efi_memmap_init() earlier instead.
  690. */
  691. if (!kern_memmap) {
  692. attr = efi_mem_attribute(phys_addr, size);
  693. if (attr & EFI_MEMORY_WB)
  694. return EFI_MEMORY_WB;
  695. return 0;
  696. }
  697. md = kern_memory_descriptor(phys_addr);
  698. if (!md)
  699. return 0;
  700. attr = md->attribute;
  701. do {
  702. unsigned long md_end = kmd_end(md);
  703. if (end <= md_end)
  704. return attr;
  705. md = kern_memory_descriptor(md_end);
  706. if (!md || md->attribute != attr)
  707. return 0;
  708. } while (md);
  709. return 0; /* never reached */
  710. }
  711. EXPORT_SYMBOL(kern_mem_attribute);
  712. int
  713. valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
  714. {
  715. u64 attr;
  716. /*
  717. * /dev/mem reads and writes use copy_to_user(), which implicitly
  718. * uses a granule-sized kernel identity mapping. It's really
  719. * only safe to do this for regions in kern_memmap. For more
  720. * details, see Documentation/ia64/aliasing.txt.
  721. */
  722. attr = kern_mem_attribute(phys_addr, size);
  723. if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
  724. return 1;
  725. return 0;
  726. }
  727. int
  728. valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
  729. {
  730. unsigned long phys_addr = pfn << PAGE_SHIFT;
  731. u64 attr;
  732. attr = efi_mem_attribute(phys_addr, size);
  733. /*
  734. * /dev/mem mmap uses normal user pages, so we don't need the entire
  735. * granule, but the entire region we're mapping must support the same
  736. * attribute.
  737. */
  738. if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
  739. return 1;
  740. /*
  741. * Intel firmware doesn't tell us about all the MMIO regions, so
  742. * in general we have to allow mmap requests. But if EFI *does*
  743. * tell us about anything inside this region, we should deny it.
  744. * The user can always map a smaller region to avoid the overlap.
  745. */
  746. if (efi_memmap_intersects(phys_addr, size))
  747. return 0;
  748. return 1;
  749. }
  750. pgprot_t
  751. phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
  752. pgprot_t vma_prot)
  753. {
  754. unsigned long phys_addr = pfn << PAGE_SHIFT;
  755. u64 attr;
  756. /*
  757. * For /dev/mem mmap, we use user mappings, but if the region is
  758. * in kern_memmap (and hence may be covered by a kernel mapping),
  759. * we must use the same attribute as the kernel mapping.
  760. */
  761. attr = kern_mem_attribute(phys_addr, size);
  762. if (attr & EFI_MEMORY_WB)
  763. return pgprot_cacheable(vma_prot);
  764. else if (attr & EFI_MEMORY_UC)
  765. return pgprot_noncached(vma_prot);
  766. /*
  767. * Some chipsets don't support UC access to memory. If
  768. * WB is supported, we prefer that.
  769. */
  770. if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
  771. return pgprot_cacheable(vma_prot);
  772. return pgprot_noncached(vma_prot);
  773. }
  774. int __init
  775. efi_uart_console_only(void)
  776. {
  777. efi_status_t status;
  778. char *s, name[] = "ConOut";
  779. efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
  780. efi_char16_t *utf16, name_utf16[32];
  781. unsigned char data[1024];
  782. unsigned long size = sizeof(data);
  783. struct efi_generic_dev_path *hdr, *end_addr;
  784. int uart = 0;
  785. /* Convert to UTF-16 */
  786. utf16 = name_utf16;
  787. s = name;
  788. while (*s)
  789. *utf16++ = *s++ & 0x7f;
  790. *utf16 = 0;
  791. status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
  792. if (status != EFI_SUCCESS) {
  793. printk(KERN_ERR "No EFI %s variable?\n", name);
  794. return 0;
  795. }
  796. hdr = (struct efi_generic_dev_path *) data;
  797. end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
  798. while (hdr < end_addr) {
  799. if (hdr->type == EFI_DEV_MSG &&
  800. hdr->sub_type == EFI_DEV_MSG_UART)
  801. uart = 1;
  802. else if (hdr->type == EFI_DEV_END_PATH ||
  803. hdr->type == EFI_DEV_END_PATH2) {
  804. if (!uart)
  805. return 0;
  806. if (hdr->sub_type == EFI_DEV_END_ENTIRE)
  807. return 1;
  808. uart = 0;
  809. }
  810. hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
  811. }
  812. printk(KERN_ERR "Malformed %s value\n", name);
  813. return 0;
  814. }
  815. /*
  816. * Look for the first granule aligned memory descriptor memory
  817. * that is big enough to hold EFI memory map. Make sure this
  818. * descriptor is atleast granule sized so it does not get trimmed
  819. */
  820. struct kern_memdesc *
  821. find_memmap_space (void)
  822. {
  823. u64 contig_low=0, contig_high=0;
  824. u64 as = 0, ae;
  825. void *efi_map_start, *efi_map_end, *p, *q;
  826. efi_memory_desc_t *md, *pmd = NULL, *check_md;
  827. u64 space_needed, efi_desc_size;
  828. unsigned long total_mem = 0;
  829. efi_map_start = __va(ia64_boot_param->efi_memmap);
  830. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  831. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  832. /*
  833. * Worst case: we need 3 kernel descriptors for each efi descriptor
  834. * (if every entry has a WB part in the middle, and UC head and tail),
  835. * plus one for the end marker.
  836. */
  837. space_needed = sizeof(kern_memdesc_t) *
  838. (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
  839. for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
  840. md = p;
  841. if (!efi_wb(md)) {
  842. continue;
  843. }
  844. if (pmd == NULL || !efi_wb(pmd) ||
  845. efi_md_end(pmd) != md->phys_addr) {
  846. contig_low = GRANULEROUNDUP(md->phys_addr);
  847. contig_high = efi_md_end(md);
  848. for (q = p + efi_desc_size; q < efi_map_end;
  849. q += efi_desc_size) {
  850. check_md = q;
  851. if (!efi_wb(check_md))
  852. break;
  853. if (contig_high != check_md->phys_addr)
  854. break;
  855. contig_high = efi_md_end(check_md);
  856. }
  857. contig_high = GRANULEROUNDDOWN(contig_high);
  858. }
  859. if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
  860. continue;
  861. /* Round ends inward to granule boundaries */
  862. as = max(contig_low, md->phys_addr);
  863. ae = min(contig_high, efi_md_end(md));
  864. /* keep within max_addr= and min_addr= command line arg */
  865. as = max(as, min_addr);
  866. ae = min(ae, max_addr);
  867. if (ae <= as)
  868. continue;
  869. /* avoid going over mem= command line arg */
  870. if (total_mem + (ae - as) > mem_limit)
  871. ae -= total_mem + (ae - as) - mem_limit;
  872. if (ae <= as)
  873. continue;
  874. if (ae - as > space_needed)
  875. break;
  876. }
  877. if (p >= efi_map_end)
  878. panic("Can't allocate space for kernel memory descriptors");
  879. return __va(as);
  880. }
  881. /*
  882. * Walk the EFI memory map and gather all memory available for kernel
  883. * to use. We can allocate partial granules only if the unavailable
  884. * parts exist, and are WB.
  885. */
  886. unsigned long
  887. efi_memmap_init(unsigned long *s, unsigned long *e)
  888. {
  889. struct kern_memdesc *k, *prev = NULL;
  890. u64 contig_low=0, contig_high=0;
  891. u64 as, ae, lim;
  892. void *efi_map_start, *efi_map_end, *p, *q;
  893. efi_memory_desc_t *md, *pmd = NULL, *check_md;
  894. u64 efi_desc_size;
  895. unsigned long total_mem = 0;
  896. k = kern_memmap = find_memmap_space();
  897. efi_map_start = __va(ia64_boot_param->efi_memmap);
  898. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  899. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  900. for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
  901. md = p;
  902. if (!efi_wb(md)) {
  903. if (efi_uc(md) &&
  904. (md->type == EFI_CONVENTIONAL_MEMORY ||
  905. md->type == EFI_BOOT_SERVICES_DATA)) {
  906. k->attribute = EFI_MEMORY_UC;
  907. k->start = md->phys_addr;
  908. k->num_pages = md->num_pages;
  909. k++;
  910. }
  911. continue;
  912. }
  913. if (pmd == NULL || !efi_wb(pmd) ||
  914. efi_md_end(pmd) != md->phys_addr) {
  915. contig_low = GRANULEROUNDUP(md->phys_addr);
  916. contig_high = efi_md_end(md);
  917. for (q = p + efi_desc_size; q < efi_map_end;
  918. q += efi_desc_size) {
  919. check_md = q;
  920. if (!efi_wb(check_md))
  921. break;
  922. if (contig_high != check_md->phys_addr)
  923. break;
  924. contig_high = efi_md_end(check_md);
  925. }
  926. contig_high = GRANULEROUNDDOWN(contig_high);
  927. }
  928. if (!is_memory_available(md))
  929. continue;
  930. #ifdef CONFIG_CRASH_DUMP
  931. /* saved_max_pfn should ignore max_addr= command line arg */
  932. if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
  933. saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
  934. #endif
  935. /*
  936. * Round ends inward to granule boundaries
  937. * Give trimmings to uncached allocator
  938. */
  939. if (md->phys_addr < contig_low) {
  940. lim = min(efi_md_end(md), contig_low);
  941. if (efi_uc(md)) {
  942. if (k > kern_memmap &&
  943. (k-1)->attribute == EFI_MEMORY_UC &&
  944. kmd_end(k-1) == md->phys_addr) {
  945. (k-1)->num_pages +=
  946. (lim - md->phys_addr)
  947. >> EFI_PAGE_SHIFT;
  948. } else {
  949. k->attribute = EFI_MEMORY_UC;
  950. k->start = md->phys_addr;
  951. k->num_pages = (lim - md->phys_addr)
  952. >> EFI_PAGE_SHIFT;
  953. k++;
  954. }
  955. }
  956. as = contig_low;
  957. } else
  958. as = md->phys_addr;
  959. if (efi_md_end(md) > contig_high) {
  960. lim = max(md->phys_addr, contig_high);
  961. if (efi_uc(md)) {
  962. if (lim == md->phys_addr && k > kern_memmap &&
  963. (k-1)->attribute == EFI_MEMORY_UC &&
  964. kmd_end(k-1) == md->phys_addr) {
  965. (k-1)->num_pages += md->num_pages;
  966. } else {
  967. k->attribute = EFI_MEMORY_UC;
  968. k->start = lim;
  969. k->num_pages = (efi_md_end(md) - lim)
  970. >> EFI_PAGE_SHIFT;
  971. k++;
  972. }
  973. }
  974. ae = contig_high;
  975. } else
  976. ae = efi_md_end(md);
  977. /* keep within max_addr= and min_addr= command line arg */
  978. as = max(as, min_addr);
  979. ae = min(ae, max_addr);
  980. if (ae <= as)
  981. continue;
  982. /* avoid going over mem= command line arg */
  983. if (total_mem + (ae - as) > mem_limit)
  984. ae -= total_mem + (ae - as) - mem_limit;
  985. if (ae <= as)
  986. continue;
  987. if (prev && kmd_end(prev) == md->phys_addr) {
  988. prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
  989. total_mem += ae - as;
  990. continue;
  991. }
  992. k->attribute = EFI_MEMORY_WB;
  993. k->start = as;
  994. k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
  995. total_mem += ae - as;
  996. prev = k++;
  997. }
  998. k->start = ~0L; /* end-marker */
  999. /* reserve the memory we are using for kern_memmap */
  1000. *s = (u64)kern_memmap;
  1001. *e = (u64)++k;
  1002. return total_mem;
  1003. }
  1004. void
  1005. efi_initialize_iomem_resources(struct resource *code_resource,
  1006. struct resource *data_resource,
  1007. struct resource *bss_resource)
  1008. {
  1009. struct resource *res;
  1010. void *efi_map_start, *efi_map_end, *p;
  1011. efi_memory_desc_t *md;
  1012. u64 efi_desc_size;
  1013. char *name;
  1014. unsigned long flags;
  1015. efi_map_start = __va(ia64_boot_param->efi_memmap);
  1016. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  1017. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  1018. res = NULL;
  1019. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  1020. md = p;
  1021. if (md->num_pages == 0) /* should not happen */
  1022. continue;
  1023. flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  1024. switch (md->type) {
  1025. case EFI_MEMORY_MAPPED_IO:
  1026. case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
  1027. continue;
  1028. case EFI_LOADER_CODE:
  1029. case EFI_LOADER_DATA:
  1030. case EFI_BOOT_SERVICES_DATA:
  1031. case EFI_BOOT_SERVICES_CODE:
  1032. case EFI_CONVENTIONAL_MEMORY:
  1033. if (md->attribute & EFI_MEMORY_WP) {
  1034. name = "System ROM";
  1035. flags |= IORESOURCE_READONLY;
  1036. } else {
  1037. name = "System RAM";
  1038. }
  1039. break;
  1040. case EFI_ACPI_MEMORY_NVS:
  1041. name = "ACPI Non-volatile Storage";
  1042. break;
  1043. case EFI_UNUSABLE_MEMORY:
  1044. name = "reserved";
  1045. flags |= IORESOURCE_DISABLED;
  1046. break;
  1047. case EFI_RESERVED_TYPE:
  1048. case EFI_RUNTIME_SERVICES_CODE:
  1049. case EFI_RUNTIME_SERVICES_DATA:
  1050. case EFI_ACPI_RECLAIM_MEMORY:
  1051. default:
  1052. name = "reserved";
  1053. break;
  1054. }
  1055. if ((res = kzalloc(sizeof(struct resource),
  1056. GFP_KERNEL)) == NULL) {
  1057. printk(KERN_ERR
  1058. "failed to allocate resource for iomem\n");
  1059. return;
  1060. }
  1061. res->name = name;
  1062. res->start = md->phys_addr;
  1063. res->end = md->phys_addr + efi_md_size(md) - 1;
  1064. res->flags = flags;
  1065. if (insert_resource(&iomem_resource, res) < 0)
  1066. kfree(res);
  1067. else {
  1068. /*
  1069. * We don't know which region contains
  1070. * kernel data so we try it repeatedly and
  1071. * let the resource manager test it.
  1072. */
  1073. insert_resource(res, code_resource);
  1074. insert_resource(res, data_resource);
  1075. insert_resource(res, bss_resource);
  1076. #ifdef CONFIG_KEXEC
  1077. insert_resource(res, &efi_memmap_res);
  1078. insert_resource(res, &boot_param_res);
  1079. if (crashk_res.end > crashk_res.start)
  1080. insert_resource(res, &crashk_res);
  1081. #endif
  1082. }
  1083. }
  1084. }
  1085. #ifdef CONFIG_KEXEC
  1086. /* find a block of memory aligned to 64M exclude reserved regions
  1087. rsvd_regions are sorted
  1088. */
  1089. unsigned long __init
  1090. kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
  1091. {
  1092. int i;
  1093. u64 start, end;
  1094. u64 alignment = 1UL << _PAGE_SIZE_64M;
  1095. void *efi_map_start, *efi_map_end, *p;
  1096. efi_memory_desc_t *md;
  1097. u64 efi_desc_size;
  1098. efi_map_start = __va(ia64_boot_param->efi_memmap);
  1099. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  1100. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  1101. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  1102. md = p;
  1103. if (!efi_wb(md))
  1104. continue;
  1105. start = ALIGN(md->phys_addr, alignment);
  1106. end = efi_md_end(md);
  1107. for (i = 0; i < n; i++) {
  1108. if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
  1109. if (__pa(r[i].start) > start + size)
  1110. return start;
  1111. start = ALIGN(__pa(r[i].end), alignment);
  1112. if (i < n-1 &&
  1113. __pa(r[i+1].start) < start + size)
  1114. continue;
  1115. else
  1116. break;
  1117. }
  1118. }
  1119. if (end > start + size)
  1120. return start;
  1121. }
  1122. printk(KERN_WARNING
  1123. "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
  1124. return ~0UL;
  1125. }
  1126. #endif
  1127. #ifdef CONFIG_PROC_VMCORE
  1128. /* locate the size find a the descriptor at a certain address */
  1129. unsigned long __init
  1130. vmcore_find_descriptor_size (unsigned long address)
  1131. {
  1132. void *efi_map_start, *efi_map_end, *p;
  1133. efi_memory_desc_t *md;
  1134. u64 efi_desc_size;
  1135. unsigned long ret = 0;
  1136. efi_map_start = __va(ia64_boot_param->efi_memmap);
  1137. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  1138. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  1139. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  1140. md = p;
  1141. if (efi_wb(md) && md->type == EFI_LOADER_DATA
  1142. && md->phys_addr == address) {
  1143. ret = efi_md_size(md);
  1144. break;
  1145. }
  1146. }
  1147. if (ret == 0)
  1148. printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
  1149. return ret;
  1150. }
  1151. #endif