sata_mv.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892
  1. /*
  2. * sata_mv.c - Marvell SATA support
  3. *
  4. * Copyright 2008-2009: Marvell Corporation, all rights reserved.
  5. * Copyright 2005: EMC Corporation, all rights reserved.
  6. * Copyright 2005 Red Hat, Inc. All rights reserved.
  7. *
  8. * Originally written by Brett Russ.
  9. * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
  10. *
  11. * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License as published by
  15. * the Free Software Foundation; version 2 of the License.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  25. *
  26. */
  27. /*
  28. * sata_mv TODO list:
  29. *
  30. * --> More errata workarounds for PCI-X.
  31. *
  32. * --> Complete a full errata audit for all chipsets to identify others.
  33. *
  34. * --> Develop a low-power-consumption strategy, and implement it.
  35. *
  36. * --> [Experiment, low priority] Investigate interrupt coalescing.
  37. * Quite often, especially with PCI Message Signalled Interrupts (MSI),
  38. * the overhead reduced by interrupt mitigation is quite often not
  39. * worth the latency cost.
  40. *
  41. * --> [Experiment, Marvell value added] Is it possible to use target
  42. * mode to cross-connect two Linux boxes with Marvell cards? If so,
  43. * creating LibATA target mode support would be very interesting.
  44. *
  45. * Target mode, for those without docs, is the ability to directly
  46. * connect two SATA ports.
  47. */
  48. #include <linux/kernel.h>
  49. #include <linux/module.h>
  50. #include <linux/pci.h>
  51. #include <linux/init.h>
  52. #include <linux/blkdev.h>
  53. #include <linux/delay.h>
  54. #include <linux/interrupt.h>
  55. #include <linux/dmapool.h>
  56. #include <linux/dma-mapping.h>
  57. #include <linux/device.h>
  58. #include <linux/platform_device.h>
  59. #include <linux/ata_platform.h>
  60. #include <linux/mbus.h>
  61. #include <linux/bitops.h>
  62. #include <scsi/scsi_host.h>
  63. #include <scsi/scsi_cmnd.h>
  64. #include <scsi/scsi_device.h>
  65. #include <linux/libata.h>
  66. #define DRV_NAME "sata_mv"
  67. #define DRV_VERSION "1.26"
  68. /*
  69. * module options
  70. */
  71. static int msi;
  72. #ifdef CONFIG_PCI
  73. module_param(msi, int, S_IRUGO);
  74. MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
  75. #endif
  76. enum {
  77. /* BAR's are enumerated in terms of pci_resource_start() terms */
  78. MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
  79. MV_IO_BAR = 2, /* offset 0x18: IO space */
  80. MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
  81. MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
  82. MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
  83. MV_PCI_REG_BASE = 0,
  84. MV_SATAHC0_REG_BASE = 0x20000,
  85. MV_FLASH_CTL_OFS = 0x1046c,
  86. MV_GPIO_PORT_CTL_OFS = 0x104f0,
  87. MV_RESET_CFG_OFS = 0x180d8,
  88. MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  89. MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  90. MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
  91. MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
  92. MV_MAX_Q_DEPTH = 32,
  93. MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
  94. /* CRQB needs alignment on a 1KB boundary. Size == 1KB
  95. * CRPB needs alignment on a 256B boundary. Size == 256B
  96. * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
  97. */
  98. MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
  99. MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
  100. MV_MAX_SG_CT = 256,
  101. MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
  102. /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
  103. MV_PORT_HC_SHIFT = 2,
  104. MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
  105. /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
  106. MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
  107. /* Host Flags */
  108. MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
  109. MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
  110. ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING,
  111. MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
  112. MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
  113. ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
  114. MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
  115. CRQB_FLAG_READ = (1 << 0),
  116. CRQB_TAG_SHIFT = 1,
  117. CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
  118. CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
  119. CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
  120. CRQB_CMD_ADDR_SHIFT = 8,
  121. CRQB_CMD_CS = (0x2 << 11),
  122. CRQB_CMD_LAST = (1 << 15),
  123. CRPB_FLAG_STATUS_SHIFT = 8,
  124. CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
  125. CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
  126. EPRD_FLAG_END_OF_TBL = (1 << 31),
  127. /* PCI interface registers */
  128. PCI_COMMAND_OFS = 0xc00,
  129. PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
  130. PCI_MAIN_CMD_STS_OFS = 0xd30,
  131. STOP_PCI_MASTER = (1 << 2),
  132. PCI_MASTER_EMPTY = (1 << 3),
  133. GLOB_SFT_RST = (1 << 4),
  134. MV_PCI_MODE_OFS = 0xd00,
  135. MV_PCI_MODE_MASK = 0x30,
  136. MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
  137. MV_PCI_DISC_TIMER = 0xd04,
  138. MV_PCI_MSI_TRIGGER = 0xc38,
  139. MV_PCI_SERR_MASK = 0xc28,
  140. MV_PCI_XBAR_TMOUT_OFS = 0x1d04,
  141. MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
  142. MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
  143. MV_PCI_ERR_ATTRIBUTE = 0x1d48,
  144. MV_PCI_ERR_COMMAND = 0x1d50,
  145. PCI_IRQ_CAUSE_OFS = 0x1d58,
  146. PCI_IRQ_MASK_OFS = 0x1d5c,
  147. PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
  148. PCIE_IRQ_CAUSE_OFS = 0x1900,
  149. PCIE_IRQ_MASK_OFS = 0x1910,
  150. PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
  151. /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
  152. PCI_HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
  153. PCI_HC_MAIN_IRQ_MASK_OFS = 0x1d64,
  154. SOC_HC_MAIN_IRQ_CAUSE_OFS = 0x20020,
  155. SOC_HC_MAIN_IRQ_MASK_OFS = 0x20024,
  156. ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
  157. DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
  158. HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
  159. HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
  160. PCI_ERR = (1 << 18),
  161. TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
  162. TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
  163. PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
  164. PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
  165. ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
  166. GPIO_INT = (1 << 22),
  167. SELF_INT = (1 << 23),
  168. TWSI_INT = (1 << 24),
  169. HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
  170. HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
  171. HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
  172. /* SATAHC registers */
  173. HC_CFG_OFS = 0,
  174. HC_IRQ_CAUSE_OFS = 0x14,
  175. DMA_IRQ = (1 << 0), /* shift by port # */
  176. HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
  177. DEV_IRQ = (1 << 8), /* shift by port # */
  178. /* Shadow block registers */
  179. SHD_BLK_OFS = 0x100,
  180. SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
  181. /* SATA registers */
  182. SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
  183. SATA_ACTIVE_OFS = 0x350,
  184. SATA_FIS_IRQ_CAUSE_OFS = 0x364,
  185. SATA_FIS_IRQ_AN = (1 << 9), /* async notification */
  186. LTMODE_OFS = 0x30c,
  187. LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
  188. PHY_MODE3 = 0x310,
  189. PHY_MODE4 = 0x314,
  190. PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
  191. PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
  192. PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
  193. PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
  194. PHY_MODE2 = 0x330,
  195. SATA_IFCTL_OFS = 0x344,
  196. SATA_TESTCTL_OFS = 0x348,
  197. SATA_IFSTAT_OFS = 0x34c,
  198. VENDOR_UNIQUE_FIS_OFS = 0x35c,
  199. FISCFG_OFS = 0x360,
  200. FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
  201. FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
  202. MV5_PHY_MODE = 0x74,
  203. MV5_LTMODE_OFS = 0x30,
  204. MV5_PHY_CTL_OFS = 0x0C,
  205. SATA_INTERFACE_CFG_OFS = 0x050,
  206. MV_M2_PREAMP_MASK = 0x7e0,
  207. /* Port registers */
  208. EDMA_CFG_OFS = 0,
  209. EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
  210. EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
  211. EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
  212. EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
  213. EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
  214. EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
  215. EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
  216. EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
  217. EDMA_ERR_IRQ_MASK_OFS = 0xc,
  218. EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
  219. EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
  220. EDMA_ERR_DEV = (1 << 2), /* device error */
  221. EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
  222. EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
  223. EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
  224. EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
  225. EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
  226. EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
  227. EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
  228. EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
  229. EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
  230. EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
  231. EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
  232. EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
  233. EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
  234. EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
  235. EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
  236. EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
  237. EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
  238. EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
  239. EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
  240. EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
  241. EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
  242. EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
  243. EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
  244. EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
  245. EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
  246. EDMA_ERR_OVERRUN_5 = (1 << 5),
  247. EDMA_ERR_UNDERRUN_5 = (1 << 6),
  248. EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
  249. EDMA_ERR_LNK_CTRL_RX_1 |
  250. EDMA_ERR_LNK_CTRL_RX_3 |
  251. EDMA_ERR_LNK_CTRL_TX,
  252. EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
  253. EDMA_ERR_PRD_PAR |
  254. EDMA_ERR_DEV_DCON |
  255. EDMA_ERR_DEV_CON |
  256. EDMA_ERR_SERR |
  257. EDMA_ERR_SELF_DIS |
  258. EDMA_ERR_CRQB_PAR |
  259. EDMA_ERR_CRPB_PAR |
  260. EDMA_ERR_INTRL_PAR |
  261. EDMA_ERR_IORDY |
  262. EDMA_ERR_LNK_CTRL_RX_2 |
  263. EDMA_ERR_LNK_DATA_RX |
  264. EDMA_ERR_LNK_DATA_TX |
  265. EDMA_ERR_TRANS_PROTO,
  266. EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
  267. EDMA_ERR_PRD_PAR |
  268. EDMA_ERR_DEV_DCON |
  269. EDMA_ERR_DEV_CON |
  270. EDMA_ERR_OVERRUN_5 |
  271. EDMA_ERR_UNDERRUN_5 |
  272. EDMA_ERR_SELF_DIS_5 |
  273. EDMA_ERR_CRQB_PAR |
  274. EDMA_ERR_CRPB_PAR |
  275. EDMA_ERR_INTRL_PAR |
  276. EDMA_ERR_IORDY,
  277. EDMA_REQ_Q_BASE_HI_OFS = 0x10,
  278. EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
  279. EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
  280. EDMA_REQ_Q_PTR_SHIFT = 5,
  281. EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
  282. EDMA_RSP_Q_IN_PTR_OFS = 0x20,
  283. EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
  284. EDMA_RSP_Q_PTR_SHIFT = 3,
  285. EDMA_CMD_OFS = 0x28, /* EDMA command register */
  286. EDMA_EN = (1 << 0), /* enable EDMA */
  287. EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
  288. EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
  289. EDMA_STATUS_OFS = 0x30, /* EDMA engine status */
  290. EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
  291. EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
  292. EDMA_IORDY_TMOUT_OFS = 0x34,
  293. EDMA_ARB_CFG_OFS = 0x38,
  294. EDMA_HALTCOND_OFS = 0x60, /* GenIIe halt conditions */
  295. EDMA_UNKNOWN_RSVD_OFS = 0x6C, /* GenIIe unknown/reserved */
  296. BMDMA_CMD_OFS = 0x224, /* bmdma command register */
  297. BMDMA_STATUS_OFS = 0x228, /* bmdma status register */
  298. BMDMA_PRD_LOW_OFS = 0x22c, /* bmdma PRD addr 31:0 */
  299. BMDMA_PRD_HIGH_OFS = 0x230, /* bmdma PRD addr 63:32 */
  300. /* Host private flags (hp_flags) */
  301. MV_HP_FLAG_MSI = (1 << 0),
  302. MV_HP_ERRATA_50XXB0 = (1 << 1),
  303. MV_HP_ERRATA_50XXB2 = (1 << 2),
  304. MV_HP_ERRATA_60X1B2 = (1 << 3),
  305. MV_HP_ERRATA_60X1C0 = (1 << 4),
  306. MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
  307. MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
  308. MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
  309. MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
  310. MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
  311. MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
  312. /* Port private flags (pp_flags) */
  313. MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
  314. MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
  315. MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
  316. MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
  317. MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
  318. };
  319. #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
  320. #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
  321. #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
  322. #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
  323. #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
  324. #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
  325. #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
  326. enum {
  327. /* DMA boundary 0xffff is required by the s/g splitting
  328. * we need on /length/ in mv_fill-sg().
  329. */
  330. MV_DMA_BOUNDARY = 0xffffU,
  331. /* mask of register bits containing lower 32 bits
  332. * of EDMA request queue DMA address
  333. */
  334. EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
  335. /* ditto, for response queue */
  336. EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
  337. };
  338. enum chip_type {
  339. chip_504x,
  340. chip_508x,
  341. chip_5080,
  342. chip_604x,
  343. chip_608x,
  344. chip_6042,
  345. chip_7042,
  346. chip_soc,
  347. };
  348. /* Command ReQuest Block: 32B */
  349. struct mv_crqb {
  350. __le32 sg_addr;
  351. __le32 sg_addr_hi;
  352. __le16 ctrl_flags;
  353. __le16 ata_cmd[11];
  354. };
  355. struct mv_crqb_iie {
  356. __le32 addr;
  357. __le32 addr_hi;
  358. __le32 flags;
  359. __le32 len;
  360. __le32 ata_cmd[4];
  361. };
  362. /* Command ResPonse Block: 8B */
  363. struct mv_crpb {
  364. __le16 id;
  365. __le16 flags;
  366. __le32 tmstmp;
  367. };
  368. /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
  369. struct mv_sg {
  370. __le32 addr;
  371. __le32 flags_size;
  372. __le32 addr_hi;
  373. __le32 reserved;
  374. };
  375. /*
  376. * We keep a local cache of a few frequently accessed port
  377. * registers here, to avoid having to read them (very slow)
  378. * when switching between EDMA and non-EDMA modes.
  379. */
  380. struct mv_cached_regs {
  381. u32 fiscfg;
  382. u32 ltmode;
  383. u32 haltcond;
  384. u32 unknown_rsvd;
  385. };
  386. struct mv_port_priv {
  387. struct mv_crqb *crqb;
  388. dma_addr_t crqb_dma;
  389. struct mv_crpb *crpb;
  390. dma_addr_t crpb_dma;
  391. struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
  392. dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
  393. unsigned int req_idx;
  394. unsigned int resp_idx;
  395. u32 pp_flags;
  396. struct mv_cached_regs cached;
  397. unsigned int delayed_eh_pmp_map;
  398. };
  399. struct mv_port_signal {
  400. u32 amps;
  401. u32 pre;
  402. };
  403. struct mv_host_priv {
  404. u32 hp_flags;
  405. u32 main_irq_mask;
  406. struct mv_port_signal signal[8];
  407. const struct mv_hw_ops *ops;
  408. int n_ports;
  409. void __iomem *base;
  410. void __iomem *main_irq_cause_addr;
  411. void __iomem *main_irq_mask_addr;
  412. u32 irq_cause_ofs;
  413. u32 irq_mask_ofs;
  414. u32 unmask_all_irqs;
  415. /*
  416. * These consistent DMA memory pools give us guaranteed
  417. * alignment for hardware-accessed data structures,
  418. * and less memory waste in accomplishing the alignment.
  419. */
  420. struct dma_pool *crqb_pool;
  421. struct dma_pool *crpb_pool;
  422. struct dma_pool *sg_tbl_pool;
  423. };
  424. struct mv_hw_ops {
  425. void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
  426. unsigned int port);
  427. void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
  428. void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
  429. void __iomem *mmio);
  430. int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
  431. unsigned int n_hc);
  432. void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
  433. void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
  434. };
  435. static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
  436. static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
  437. static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
  438. static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
  439. static int mv_port_start(struct ata_port *ap);
  440. static void mv_port_stop(struct ata_port *ap);
  441. static int mv_qc_defer(struct ata_queued_cmd *qc);
  442. static void mv_qc_prep(struct ata_queued_cmd *qc);
  443. static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
  444. static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
  445. static int mv_hardreset(struct ata_link *link, unsigned int *class,
  446. unsigned long deadline);
  447. static void mv_eh_freeze(struct ata_port *ap);
  448. static void mv_eh_thaw(struct ata_port *ap);
  449. static void mv6_dev_config(struct ata_device *dev);
  450. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  451. unsigned int port);
  452. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  453. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  454. void __iomem *mmio);
  455. static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  456. unsigned int n_hc);
  457. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  458. static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
  459. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  460. unsigned int port);
  461. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  462. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  463. void __iomem *mmio);
  464. static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  465. unsigned int n_hc);
  466. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  467. static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
  468. void __iomem *mmio);
  469. static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
  470. void __iomem *mmio);
  471. static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
  472. void __iomem *mmio, unsigned int n_hc);
  473. static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
  474. void __iomem *mmio);
  475. static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
  476. static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
  477. static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
  478. unsigned int port_no);
  479. static int mv_stop_edma(struct ata_port *ap);
  480. static int mv_stop_edma_engine(void __iomem *port_mmio);
  481. static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
  482. static void mv_pmp_select(struct ata_port *ap, int pmp);
  483. static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
  484. unsigned long deadline);
  485. static int mv_softreset(struct ata_link *link, unsigned int *class,
  486. unsigned long deadline);
  487. static void mv_pmp_error_handler(struct ata_port *ap);
  488. static void mv_process_crpb_entries(struct ata_port *ap,
  489. struct mv_port_priv *pp);
  490. static void mv_sff_irq_clear(struct ata_port *ap);
  491. static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
  492. static void mv_bmdma_setup(struct ata_queued_cmd *qc);
  493. static void mv_bmdma_start(struct ata_queued_cmd *qc);
  494. static void mv_bmdma_stop(struct ata_queued_cmd *qc);
  495. static u8 mv_bmdma_status(struct ata_port *ap);
  496. static u8 mv_sff_check_status(struct ata_port *ap);
  497. /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
  498. * because we have to allow room for worst case splitting of
  499. * PRDs for 64K boundaries in mv_fill_sg().
  500. */
  501. static struct scsi_host_template mv5_sht = {
  502. ATA_BASE_SHT(DRV_NAME),
  503. .sg_tablesize = MV_MAX_SG_CT / 2,
  504. .dma_boundary = MV_DMA_BOUNDARY,
  505. };
  506. static struct scsi_host_template mv6_sht = {
  507. ATA_NCQ_SHT(DRV_NAME),
  508. .can_queue = MV_MAX_Q_DEPTH - 1,
  509. .sg_tablesize = MV_MAX_SG_CT / 2,
  510. .dma_boundary = MV_DMA_BOUNDARY,
  511. };
  512. static struct ata_port_operations mv5_ops = {
  513. .inherits = &ata_sff_port_ops,
  514. .qc_defer = mv_qc_defer,
  515. .qc_prep = mv_qc_prep,
  516. .qc_issue = mv_qc_issue,
  517. .freeze = mv_eh_freeze,
  518. .thaw = mv_eh_thaw,
  519. .hardreset = mv_hardreset,
  520. .error_handler = ata_std_error_handler, /* avoid SFF EH */
  521. .post_internal_cmd = ATA_OP_NULL,
  522. .scr_read = mv5_scr_read,
  523. .scr_write = mv5_scr_write,
  524. .port_start = mv_port_start,
  525. .port_stop = mv_port_stop,
  526. };
  527. static struct ata_port_operations mv6_ops = {
  528. .inherits = &mv5_ops,
  529. .dev_config = mv6_dev_config,
  530. .scr_read = mv_scr_read,
  531. .scr_write = mv_scr_write,
  532. .pmp_hardreset = mv_pmp_hardreset,
  533. .pmp_softreset = mv_softreset,
  534. .softreset = mv_softreset,
  535. .error_handler = mv_pmp_error_handler,
  536. .sff_check_status = mv_sff_check_status,
  537. .sff_irq_clear = mv_sff_irq_clear,
  538. .check_atapi_dma = mv_check_atapi_dma,
  539. .bmdma_setup = mv_bmdma_setup,
  540. .bmdma_start = mv_bmdma_start,
  541. .bmdma_stop = mv_bmdma_stop,
  542. .bmdma_status = mv_bmdma_status,
  543. };
  544. static struct ata_port_operations mv_iie_ops = {
  545. .inherits = &mv6_ops,
  546. .dev_config = ATA_OP_NULL,
  547. .qc_prep = mv_qc_prep_iie,
  548. };
  549. static const struct ata_port_info mv_port_info[] = {
  550. { /* chip_504x */
  551. .flags = MV_GEN_I_FLAGS,
  552. .pio_mask = 0x1f, /* pio0-4 */
  553. .udma_mask = ATA_UDMA6,
  554. .port_ops = &mv5_ops,
  555. },
  556. { /* chip_508x */
  557. .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
  558. .pio_mask = 0x1f, /* pio0-4 */
  559. .udma_mask = ATA_UDMA6,
  560. .port_ops = &mv5_ops,
  561. },
  562. { /* chip_5080 */
  563. .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
  564. .pio_mask = 0x1f, /* pio0-4 */
  565. .udma_mask = ATA_UDMA6,
  566. .port_ops = &mv5_ops,
  567. },
  568. { /* chip_604x */
  569. .flags = MV_GEN_II_FLAGS,
  570. .pio_mask = 0x1f, /* pio0-4 */
  571. .udma_mask = ATA_UDMA6,
  572. .port_ops = &mv6_ops,
  573. },
  574. { /* chip_608x */
  575. .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
  576. .pio_mask = 0x1f, /* pio0-4 */
  577. .udma_mask = ATA_UDMA6,
  578. .port_ops = &mv6_ops,
  579. },
  580. { /* chip_6042 */
  581. .flags = MV_GEN_IIE_FLAGS,
  582. .pio_mask = 0x1f, /* pio0-4 */
  583. .udma_mask = ATA_UDMA6,
  584. .port_ops = &mv_iie_ops,
  585. },
  586. { /* chip_7042 */
  587. .flags = MV_GEN_IIE_FLAGS,
  588. .pio_mask = 0x1f, /* pio0-4 */
  589. .udma_mask = ATA_UDMA6,
  590. .port_ops = &mv_iie_ops,
  591. },
  592. { /* chip_soc */
  593. .flags = MV_GEN_IIE_FLAGS,
  594. .pio_mask = 0x1f, /* pio0-4 */
  595. .udma_mask = ATA_UDMA6,
  596. .port_ops = &mv_iie_ops,
  597. },
  598. };
  599. static const struct pci_device_id mv_pci_tbl[] = {
  600. { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
  601. { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
  602. { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
  603. { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
  604. /* RocketRAID 1720/174x have different identifiers */
  605. { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
  606. { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
  607. { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
  608. { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
  609. { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
  610. { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
  611. { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
  612. { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
  613. { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
  614. /* Adaptec 1430SA */
  615. { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
  616. /* Marvell 7042 support */
  617. { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
  618. /* Highpoint RocketRAID PCIe series */
  619. { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
  620. { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
  621. { } /* terminate list */
  622. };
  623. static const struct mv_hw_ops mv5xxx_ops = {
  624. .phy_errata = mv5_phy_errata,
  625. .enable_leds = mv5_enable_leds,
  626. .read_preamp = mv5_read_preamp,
  627. .reset_hc = mv5_reset_hc,
  628. .reset_flash = mv5_reset_flash,
  629. .reset_bus = mv5_reset_bus,
  630. };
  631. static const struct mv_hw_ops mv6xxx_ops = {
  632. .phy_errata = mv6_phy_errata,
  633. .enable_leds = mv6_enable_leds,
  634. .read_preamp = mv6_read_preamp,
  635. .reset_hc = mv6_reset_hc,
  636. .reset_flash = mv6_reset_flash,
  637. .reset_bus = mv_reset_pci_bus,
  638. };
  639. static const struct mv_hw_ops mv_soc_ops = {
  640. .phy_errata = mv6_phy_errata,
  641. .enable_leds = mv_soc_enable_leds,
  642. .read_preamp = mv_soc_read_preamp,
  643. .reset_hc = mv_soc_reset_hc,
  644. .reset_flash = mv_soc_reset_flash,
  645. .reset_bus = mv_soc_reset_bus,
  646. };
  647. /*
  648. * Functions
  649. */
  650. static inline void writelfl(unsigned long data, void __iomem *addr)
  651. {
  652. writel(data, addr);
  653. (void) readl(addr); /* flush to avoid PCI posted write */
  654. }
  655. static inline unsigned int mv_hc_from_port(unsigned int port)
  656. {
  657. return port >> MV_PORT_HC_SHIFT;
  658. }
  659. static inline unsigned int mv_hardport_from_port(unsigned int port)
  660. {
  661. return port & MV_PORT_MASK;
  662. }
  663. /*
  664. * Consolidate some rather tricky bit shift calculations.
  665. * This is hot-path stuff, so not a function.
  666. * Simple code, with two return values, so macro rather than inline.
  667. *
  668. * port is the sole input, in range 0..7.
  669. * shift is one output, for use with main_irq_cause / main_irq_mask registers.
  670. * hardport is the other output, in range 0..3.
  671. *
  672. * Note that port and hardport may be the same variable in some cases.
  673. */
  674. #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
  675. { \
  676. shift = mv_hc_from_port(port) * HC_SHIFT; \
  677. hardport = mv_hardport_from_port(port); \
  678. shift += hardport * 2; \
  679. }
  680. static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
  681. {
  682. return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
  683. }
  684. static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
  685. unsigned int port)
  686. {
  687. return mv_hc_base(base, mv_hc_from_port(port));
  688. }
  689. static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
  690. {
  691. return mv_hc_base_from_port(base, port) +
  692. MV_SATAHC_ARBTR_REG_SZ +
  693. (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
  694. }
  695. static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
  696. {
  697. void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
  698. unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
  699. return hc_mmio + ofs;
  700. }
  701. static inline void __iomem *mv_host_base(struct ata_host *host)
  702. {
  703. struct mv_host_priv *hpriv = host->private_data;
  704. return hpriv->base;
  705. }
  706. static inline void __iomem *mv_ap_base(struct ata_port *ap)
  707. {
  708. return mv_port_base(mv_host_base(ap->host), ap->port_no);
  709. }
  710. static inline int mv_get_hc_count(unsigned long port_flags)
  711. {
  712. return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
  713. }
  714. /**
  715. * mv_save_cached_regs - (re-)initialize cached port registers
  716. * @ap: the port whose registers we are caching
  717. *
  718. * Initialize the local cache of port registers,
  719. * so that reading them over and over again can
  720. * be avoided on the hotter paths of this driver.
  721. * This saves a few microseconds each time we switch
  722. * to/from EDMA mode to perform (eg.) a drive cache flush.
  723. */
  724. static void mv_save_cached_regs(struct ata_port *ap)
  725. {
  726. void __iomem *port_mmio = mv_ap_base(ap);
  727. struct mv_port_priv *pp = ap->private_data;
  728. pp->cached.fiscfg = readl(port_mmio + FISCFG_OFS);
  729. pp->cached.ltmode = readl(port_mmio + LTMODE_OFS);
  730. pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND_OFS);
  731. pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD_OFS);
  732. }
  733. /**
  734. * mv_write_cached_reg - write to a cached port register
  735. * @addr: hardware address of the register
  736. * @old: pointer to cached value of the register
  737. * @new: new value for the register
  738. *
  739. * Write a new value to a cached register,
  740. * but only if the value is different from before.
  741. */
  742. static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
  743. {
  744. if (new != *old) {
  745. *old = new;
  746. writel(new, addr);
  747. }
  748. }
  749. static void mv_set_edma_ptrs(void __iomem *port_mmio,
  750. struct mv_host_priv *hpriv,
  751. struct mv_port_priv *pp)
  752. {
  753. u32 index;
  754. /*
  755. * initialize request queue
  756. */
  757. pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
  758. index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
  759. WARN_ON(pp->crqb_dma & 0x3ff);
  760. writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
  761. writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
  762. port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
  763. writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
  764. /*
  765. * initialize response queue
  766. */
  767. pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
  768. index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
  769. WARN_ON(pp->crpb_dma & 0xff);
  770. writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
  771. writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
  772. writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
  773. port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
  774. }
  775. static void mv_set_main_irq_mask(struct ata_host *host,
  776. u32 disable_bits, u32 enable_bits)
  777. {
  778. struct mv_host_priv *hpriv = host->private_data;
  779. u32 old_mask, new_mask;
  780. old_mask = hpriv->main_irq_mask;
  781. new_mask = (old_mask & ~disable_bits) | enable_bits;
  782. if (new_mask != old_mask) {
  783. hpriv->main_irq_mask = new_mask;
  784. writelfl(new_mask, hpriv->main_irq_mask_addr);
  785. }
  786. }
  787. static void mv_enable_port_irqs(struct ata_port *ap,
  788. unsigned int port_bits)
  789. {
  790. unsigned int shift, hardport, port = ap->port_no;
  791. u32 disable_bits, enable_bits;
  792. MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
  793. disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
  794. enable_bits = port_bits << shift;
  795. mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
  796. }
  797. static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
  798. void __iomem *port_mmio,
  799. unsigned int port_irqs)
  800. {
  801. struct mv_host_priv *hpriv = ap->host->private_data;
  802. int hardport = mv_hardport_from_port(ap->port_no);
  803. void __iomem *hc_mmio = mv_hc_base_from_port(
  804. mv_host_base(ap->host), ap->port_no);
  805. u32 hc_irq_cause;
  806. /* clear EDMA event indicators, if any */
  807. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  808. /* clear pending irq events */
  809. hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
  810. writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
  811. /* clear FIS IRQ Cause */
  812. if (IS_GEN_IIE(hpriv))
  813. writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
  814. mv_enable_port_irqs(ap, port_irqs);
  815. }
  816. /**
  817. * mv_start_edma - Enable eDMA engine
  818. * @base: port base address
  819. * @pp: port private data
  820. *
  821. * Verify the local cache of the eDMA state is accurate with a
  822. * WARN_ON.
  823. *
  824. * LOCKING:
  825. * Inherited from caller.
  826. */
  827. static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
  828. struct mv_port_priv *pp, u8 protocol)
  829. {
  830. int want_ncq = (protocol == ATA_PROT_NCQ);
  831. if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
  832. int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
  833. if (want_ncq != using_ncq)
  834. mv_stop_edma(ap);
  835. }
  836. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
  837. struct mv_host_priv *hpriv = ap->host->private_data;
  838. mv_edma_cfg(ap, want_ncq, 1);
  839. mv_set_edma_ptrs(port_mmio, hpriv, pp);
  840. mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
  841. writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
  842. pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
  843. }
  844. }
  845. static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
  846. {
  847. void __iomem *port_mmio = mv_ap_base(ap);
  848. const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
  849. const int per_loop = 5, timeout = (15 * 1000 / per_loop);
  850. int i;
  851. /*
  852. * Wait for the EDMA engine to finish transactions in progress.
  853. * No idea what a good "timeout" value might be, but measurements
  854. * indicate that it often requires hundreds of microseconds
  855. * with two drives in-use. So we use the 15msec value above
  856. * as a rough guess at what even more drives might require.
  857. */
  858. for (i = 0; i < timeout; ++i) {
  859. u32 edma_stat = readl(port_mmio + EDMA_STATUS_OFS);
  860. if ((edma_stat & empty_idle) == empty_idle)
  861. break;
  862. udelay(per_loop);
  863. }
  864. /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
  865. }
  866. /**
  867. * mv_stop_edma_engine - Disable eDMA engine
  868. * @port_mmio: io base address
  869. *
  870. * LOCKING:
  871. * Inherited from caller.
  872. */
  873. static int mv_stop_edma_engine(void __iomem *port_mmio)
  874. {
  875. int i;
  876. /* Disable eDMA. The disable bit auto clears. */
  877. writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
  878. /* Wait for the chip to confirm eDMA is off. */
  879. for (i = 10000; i > 0; i--) {
  880. u32 reg = readl(port_mmio + EDMA_CMD_OFS);
  881. if (!(reg & EDMA_EN))
  882. return 0;
  883. udelay(10);
  884. }
  885. return -EIO;
  886. }
  887. static int mv_stop_edma(struct ata_port *ap)
  888. {
  889. void __iomem *port_mmio = mv_ap_base(ap);
  890. struct mv_port_priv *pp = ap->private_data;
  891. int err = 0;
  892. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
  893. return 0;
  894. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  895. mv_wait_for_edma_empty_idle(ap);
  896. if (mv_stop_edma_engine(port_mmio)) {
  897. ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
  898. err = -EIO;
  899. }
  900. mv_edma_cfg(ap, 0, 0);
  901. return err;
  902. }
  903. #ifdef ATA_DEBUG
  904. static void mv_dump_mem(void __iomem *start, unsigned bytes)
  905. {
  906. int b, w;
  907. for (b = 0; b < bytes; ) {
  908. DPRINTK("%p: ", start + b);
  909. for (w = 0; b < bytes && w < 4; w++) {
  910. printk("%08x ", readl(start + b));
  911. b += sizeof(u32);
  912. }
  913. printk("\n");
  914. }
  915. }
  916. #endif
  917. static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
  918. {
  919. #ifdef ATA_DEBUG
  920. int b, w;
  921. u32 dw;
  922. for (b = 0; b < bytes; ) {
  923. DPRINTK("%02x: ", b);
  924. for (w = 0; b < bytes && w < 4; w++) {
  925. (void) pci_read_config_dword(pdev, b, &dw);
  926. printk("%08x ", dw);
  927. b += sizeof(u32);
  928. }
  929. printk("\n");
  930. }
  931. #endif
  932. }
  933. static void mv_dump_all_regs(void __iomem *mmio_base, int port,
  934. struct pci_dev *pdev)
  935. {
  936. #ifdef ATA_DEBUG
  937. void __iomem *hc_base = mv_hc_base(mmio_base,
  938. port >> MV_PORT_HC_SHIFT);
  939. void __iomem *port_base;
  940. int start_port, num_ports, p, start_hc, num_hcs, hc;
  941. if (0 > port) {
  942. start_hc = start_port = 0;
  943. num_ports = 8; /* shld be benign for 4 port devs */
  944. num_hcs = 2;
  945. } else {
  946. start_hc = port >> MV_PORT_HC_SHIFT;
  947. start_port = port;
  948. num_ports = num_hcs = 1;
  949. }
  950. DPRINTK("All registers for port(s) %u-%u:\n", start_port,
  951. num_ports > 1 ? num_ports - 1 : start_port);
  952. if (NULL != pdev) {
  953. DPRINTK("PCI config space regs:\n");
  954. mv_dump_pci_cfg(pdev, 0x68);
  955. }
  956. DPRINTK("PCI regs:\n");
  957. mv_dump_mem(mmio_base+0xc00, 0x3c);
  958. mv_dump_mem(mmio_base+0xd00, 0x34);
  959. mv_dump_mem(mmio_base+0xf00, 0x4);
  960. mv_dump_mem(mmio_base+0x1d00, 0x6c);
  961. for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
  962. hc_base = mv_hc_base(mmio_base, hc);
  963. DPRINTK("HC regs (HC %i):\n", hc);
  964. mv_dump_mem(hc_base, 0x1c);
  965. }
  966. for (p = start_port; p < start_port + num_ports; p++) {
  967. port_base = mv_port_base(mmio_base, p);
  968. DPRINTK("EDMA regs (port %i):\n", p);
  969. mv_dump_mem(port_base, 0x54);
  970. DPRINTK("SATA regs (port %i):\n", p);
  971. mv_dump_mem(port_base+0x300, 0x60);
  972. }
  973. #endif
  974. }
  975. static unsigned int mv_scr_offset(unsigned int sc_reg_in)
  976. {
  977. unsigned int ofs;
  978. switch (sc_reg_in) {
  979. case SCR_STATUS:
  980. case SCR_CONTROL:
  981. case SCR_ERROR:
  982. ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
  983. break;
  984. case SCR_ACTIVE:
  985. ofs = SATA_ACTIVE_OFS; /* active is not with the others */
  986. break;
  987. default:
  988. ofs = 0xffffffffU;
  989. break;
  990. }
  991. return ofs;
  992. }
  993. static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
  994. {
  995. unsigned int ofs = mv_scr_offset(sc_reg_in);
  996. if (ofs != 0xffffffffU) {
  997. *val = readl(mv_ap_base(link->ap) + ofs);
  998. return 0;
  999. } else
  1000. return -EINVAL;
  1001. }
  1002. static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
  1003. {
  1004. unsigned int ofs = mv_scr_offset(sc_reg_in);
  1005. if (ofs != 0xffffffffU) {
  1006. writelfl(val, mv_ap_base(link->ap) + ofs);
  1007. return 0;
  1008. } else
  1009. return -EINVAL;
  1010. }
  1011. static void mv6_dev_config(struct ata_device *adev)
  1012. {
  1013. /*
  1014. * Deal with Gen-II ("mv6") hardware quirks/restrictions:
  1015. *
  1016. * Gen-II does not support NCQ over a port multiplier
  1017. * (no FIS-based switching).
  1018. */
  1019. if (adev->flags & ATA_DFLAG_NCQ) {
  1020. if (sata_pmp_attached(adev->link->ap)) {
  1021. adev->flags &= ~ATA_DFLAG_NCQ;
  1022. ata_dev_printk(adev, KERN_INFO,
  1023. "NCQ disabled for command-based switching\n");
  1024. }
  1025. }
  1026. }
  1027. static int mv_qc_defer(struct ata_queued_cmd *qc)
  1028. {
  1029. struct ata_link *link = qc->dev->link;
  1030. struct ata_port *ap = link->ap;
  1031. struct mv_port_priv *pp = ap->private_data;
  1032. /*
  1033. * Don't allow new commands if we're in a delayed EH state
  1034. * for NCQ and/or FIS-based switching.
  1035. */
  1036. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
  1037. return ATA_DEFER_PORT;
  1038. /*
  1039. * If the port is completely idle, then allow the new qc.
  1040. */
  1041. if (ap->nr_active_links == 0)
  1042. return 0;
  1043. /*
  1044. * The port is operating in host queuing mode (EDMA) with NCQ
  1045. * enabled, allow multiple NCQ commands. EDMA also allows
  1046. * queueing multiple DMA commands but libata core currently
  1047. * doesn't allow it.
  1048. */
  1049. if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
  1050. (pp->pp_flags & MV_PP_FLAG_NCQ_EN) && ata_is_ncq(qc->tf.protocol))
  1051. return 0;
  1052. return ATA_DEFER_PORT;
  1053. }
  1054. static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
  1055. {
  1056. struct mv_port_priv *pp = ap->private_data;
  1057. void __iomem *port_mmio;
  1058. u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
  1059. u32 ltmode, *old_ltmode = &pp->cached.ltmode;
  1060. u32 haltcond, *old_haltcond = &pp->cached.haltcond;
  1061. ltmode = *old_ltmode & ~LTMODE_BIT8;
  1062. haltcond = *old_haltcond | EDMA_ERR_DEV;
  1063. if (want_fbs) {
  1064. fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
  1065. ltmode = *old_ltmode | LTMODE_BIT8;
  1066. if (want_ncq)
  1067. haltcond &= ~EDMA_ERR_DEV;
  1068. else
  1069. fiscfg |= FISCFG_WAIT_DEV_ERR;
  1070. } else {
  1071. fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
  1072. }
  1073. port_mmio = mv_ap_base(ap);
  1074. mv_write_cached_reg(port_mmio + FISCFG_OFS, old_fiscfg, fiscfg);
  1075. mv_write_cached_reg(port_mmio + LTMODE_OFS, old_ltmode, ltmode);
  1076. mv_write_cached_reg(port_mmio + EDMA_HALTCOND_OFS, old_haltcond, haltcond);
  1077. }
  1078. static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
  1079. {
  1080. struct mv_host_priv *hpriv = ap->host->private_data;
  1081. u32 old, new;
  1082. /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
  1083. old = readl(hpriv->base + MV_GPIO_PORT_CTL_OFS);
  1084. if (want_ncq)
  1085. new = old | (1 << 22);
  1086. else
  1087. new = old & ~(1 << 22);
  1088. if (new != old)
  1089. writel(new, hpriv->base + MV_GPIO_PORT_CTL_OFS);
  1090. }
  1091. /**
  1092. * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
  1093. * @ap: Port being initialized
  1094. *
  1095. * There are two DMA modes on these chips: basic DMA, and EDMA.
  1096. *
  1097. * Bit-0 of the "EDMA RESERVED" register enables/disables use
  1098. * of basic DMA on the GEN_IIE versions of the chips.
  1099. *
  1100. * This bit survives EDMA resets, and must be set for basic DMA
  1101. * to function, and should be cleared when EDMA is active.
  1102. */
  1103. static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
  1104. {
  1105. struct mv_port_priv *pp = ap->private_data;
  1106. u32 new, *old = &pp->cached.unknown_rsvd;
  1107. if (enable_bmdma)
  1108. new = *old | 1;
  1109. else
  1110. new = *old & ~1;
  1111. mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD_OFS, old, new);
  1112. }
  1113. static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
  1114. {
  1115. u32 cfg;
  1116. struct mv_port_priv *pp = ap->private_data;
  1117. struct mv_host_priv *hpriv = ap->host->private_data;
  1118. void __iomem *port_mmio = mv_ap_base(ap);
  1119. /* set up non-NCQ EDMA configuration */
  1120. cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
  1121. pp->pp_flags &=
  1122. ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
  1123. if (IS_GEN_I(hpriv))
  1124. cfg |= (1 << 8); /* enab config burst size mask */
  1125. else if (IS_GEN_II(hpriv)) {
  1126. cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
  1127. mv_60x1_errata_sata25(ap, want_ncq);
  1128. } else if (IS_GEN_IIE(hpriv)) {
  1129. int want_fbs = sata_pmp_attached(ap);
  1130. /*
  1131. * Possible future enhancement:
  1132. *
  1133. * The chip can use FBS with non-NCQ, if we allow it,
  1134. * But first we need to have the error handling in place
  1135. * for this mode (datasheet section 7.3.15.4.2.3).
  1136. * So disallow non-NCQ FBS for now.
  1137. */
  1138. want_fbs &= want_ncq;
  1139. mv_config_fbs(ap, want_ncq, want_fbs);
  1140. if (want_fbs) {
  1141. pp->pp_flags |= MV_PP_FLAG_FBS_EN;
  1142. cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
  1143. }
  1144. cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
  1145. if (want_edma) {
  1146. cfg |= (1 << 22); /* enab 4-entry host queue cache */
  1147. if (!IS_SOC(hpriv))
  1148. cfg |= (1 << 18); /* enab early completion */
  1149. }
  1150. if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
  1151. cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
  1152. mv_bmdma_enable_iie(ap, !want_edma);
  1153. }
  1154. if (want_ncq) {
  1155. cfg |= EDMA_CFG_NCQ;
  1156. pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
  1157. }
  1158. writelfl(cfg, port_mmio + EDMA_CFG_OFS);
  1159. }
  1160. static void mv_port_free_dma_mem(struct ata_port *ap)
  1161. {
  1162. struct mv_host_priv *hpriv = ap->host->private_data;
  1163. struct mv_port_priv *pp = ap->private_data;
  1164. int tag;
  1165. if (pp->crqb) {
  1166. dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
  1167. pp->crqb = NULL;
  1168. }
  1169. if (pp->crpb) {
  1170. dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
  1171. pp->crpb = NULL;
  1172. }
  1173. /*
  1174. * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
  1175. * For later hardware, we have one unique sg_tbl per NCQ tag.
  1176. */
  1177. for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
  1178. if (pp->sg_tbl[tag]) {
  1179. if (tag == 0 || !IS_GEN_I(hpriv))
  1180. dma_pool_free(hpriv->sg_tbl_pool,
  1181. pp->sg_tbl[tag],
  1182. pp->sg_tbl_dma[tag]);
  1183. pp->sg_tbl[tag] = NULL;
  1184. }
  1185. }
  1186. }
  1187. /**
  1188. * mv_port_start - Port specific init/start routine.
  1189. * @ap: ATA channel to manipulate
  1190. *
  1191. * Allocate and point to DMA memory, init port private memory,
  1192. * zero indices.
  1193. *
  1194. * LOCKING:
  1195. * Inherited from caller.
  1196. */
  1197. static int mv_port_start(struct ata_port *ap)
  1198. {
  1199. struct device *dev = ap->host->dev;
  1200. struct mv_host_priv *hpriv = ap->host->private_data;
  1201. struct mv_port_priv *pp;
  1202. int tag;
  1203. pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
  1204. if (!pp)
  1205. return -ENOMEM;
  1206. ap->private_data = pp;
  1207. pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
  1208. if (!pp->crqb)
  1209. return -ENOMEM;
  1210. memset(pp->crqb, 0, MV_CRQB_Q_SZ);
  1211. pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
  1212. if (!pp->crpb)
  1213. goto out_port_free_dma_mem;
  1214. memset(pp->crpb, 0, MV_CRPB_Q_SZ);
  1215. /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
  1216. if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
  1217. ap->flags |= ATA_FLAG_AN;
  1218. /*
  1219. * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
  1220. * For later hardware, we need one unique sg_tbl per NCQ tag.
  1221. */
  1222. for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
  1223. if (tag == 0 || !IS_GEN_I(hpriv)) {
  1224. pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
  1225. GFP_KERNEL, &pp->sg_tbl_dma[tag]);
  1226. if (!pp->sg_tbl[tag])
  1227. goto out_port_free_dma_mem;
  1228. } else {
  1229. pp->sg_tbl[tag] = pp->sg_tbl[0];
  1230. pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
  1231. }
  1232. }
  1233. mv_save_cached_regs(ap);
  1234. mv_edma_cfg(ap, 0, 0);
  1235. return 0;
  1236. out_port_free_dma_mem:
  1237. mv_port_free_dma_mem(ap);
  1238. return -ENOMEM;
  1239. }
  1240. /**
  1241. * mv_port_stop - Port specific cleanup/stop routine.
  1242. * @ap: ATA channel to manipulate
  1243. *
  1244. * Stop DMA, cleanup port memory.
  1245. *
  1246. * LOCKING:
  1247. * This routine uses the host lock to protect the DMA stop.
  1248. */
  1249. static void mv_port_stop(struct ata_port *ap)
  1250. {
  1251. mv_stop_edma(ap);
  1252. mv_enable_port_irqs(ap, 0);
  1253. mv_port_free_dma_mem(ap);
  1254. }
  1255. /**
  1256. * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
  1257. * @qc: queued command whose SG list to source from
  1258. *
  1259. * Populate the SG list and mark the last entry.
  1260. *
  1261. * LOCKING:
  1262. * Inherited from caller.
  1263. */
  1264. static void mv_fill_sg(struct ata_queued_cmd *qc)
  1265. {
  1266. struct mv_port_priv *pp = qc->ap->private_data;
  1267. struct scatterlist *sg;
  1268. struct mv_sg *mv_sg, *last_sg = NULL;
  1269. unsigned int si;
  1270. mv_sg = pp->sg_tbl[qc->tag];
  1271. for_each_sg(qc->sg, sg, qc->n_elem, si) {
  1272. dma_addr_t addr = sg_dma_address(sg);
  1273. u32 sg_len = sg_dma_len(sg);
  1274. while (sg_len) {
  1275. u32 offset = addr & 0xffff;
  1276. u32 len = sg_len;
  1277. if (offset + len > 0x10000)
  1278. len = 0x10000 - offset;
  1279. mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
  1280. mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
  1281. mv_sg->flags_size = cpu_to_le32(len & 0xffff);
  1282. mv_sg->reserved = 0;
  1283. sg_len -= len;
  1284. addr += len;
  1285. last_sg = mv_sg;
  1286. mv_sg++;
  1287. }
  1288. }
  1289. if (likely(last_sg))
  1290. last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
  1291. mb(); /* ensure data structure is visible to the chipset */
  1292. }
  1293. static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
  1294. {
  1295. u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
  1296. (last ? CRQB_CMD_LAST : 0);
  1297. *cmdw = cpu_to_le16(tmp);
  1298. }
  1299. /**
  1300. * mv_sff_irq_clear - Clear hardware interrupt after DMA.
  1301. * @ap: Port associated with this ATA transaction.
  1302. *
  1303. * We need this only for ATAPI bmdma transactions,
  1304. * as otherwise we experience spurious interrupts
  1305. * after libata-sff handles the bmdma interrupts.
  1306. */
  1307. static void mv_sff_irq_clear(struct ata_port *ap)
  1308. {
  1309. mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
  1310. }
  1311. /**
  1312. * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
  1313. * @qc: queued command to check for chipset/DMA compatibility.
  1314. *
  1315. * The bmdma engines cannot handle speculative data sizes
  1316. * (bytecount under/over flow). So only allow DMA for
  1317. * data transfer commands with known data sizes.
  1318. *
  1319. * LOCKING:
  1320. * Inherited from caller.
  1321. */
  1322. static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
  1323. {
  1324. struct scsi_cmnd *scmd = qc->scsicmd;
  1325. if (scmd) {
  1326. switch (scmd->cmnd[0]) {
  1327. case READ_6:
  1328. case READ_10:
  1329. case READ_12:
  1330. case WRITE_6:
  1331. case WRITE_10:
  1332. case WRITE_12:
  1333. case GPCMD_READ_CD:
  1334. case GPCMD_SEND_DVD_STRUCTURE:
  1335. case GPCMD_SEND_CUE_SHEET:
  1336. return 0; /* DMA is safe */
  1337. }
  1338. }
  1339. return -EOPNOTSUPP; /* use PIO instead */
  1340. }
  1341. /**
  1342. * mv_bmdma_setup - Set up BMDMA transaction
  1343. * @qc: queued command to prepare DMA for.
  1344. *
  1345. * LOCKING:
  1346. * Inherited from caller.
  1347. */
  1348. static void mv_bmdma_setup(struct ata_queued_cmd *qc)
  1349. {
  1350. struct ata_port *ap = qc->ap;
  1351. void __iomem *port_mmio = mv_ap_base(ap);
  1352. struct mv_port_priv *pp = ap->private_data;
  1353. mv_fill_sg(qc);
  1354. /* clear all DMA cmd bits */
  1355. writel(0, port_mmio + BMDMA_CMD_OFS);
  1356. /* load PRD table addr. */
  1357. writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
  1358. port_mmio + BMDMA_PRD_HIGH_OFS);
  1359. writelfl(pp->sg_tbl_dma[qc->tag],
  1360. port_mmio + BMDMA_PRD_LOW_OFS);
  1361. /* issue r/w command */
  1362. ap->ops->sff_exec_command(ap, &qc->tf);
  1363. }
  1364. /**
  1365. * mv_bmdma_start - Start a BMDMA transaction
  1366. * @qc: queued command to start DMA on.
  1367. *
  1368. * LOCKING:
  1369. * Inherited from caller.
  1370. */
  1371. static void mv_bmdma_start(struct ata_queued_cmd *qc)
  1372. {
  1373. struct ata_port *ap = qc->ap;
  1374. void __iomem *port_mmio = mv_ap_base(ap);
  1375. unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
  1376. u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
  1377. /* start host DMA transaction */
  1378. writelfl(cmd, port_mmio + BMDMA_CMD_OFS);
  1379. }
  1380. /**
  1381. * mv_bmdma_stop - Stop BMDMA transfer
  1382. * @qc: queued command to stop DMA on.
  1383. *
  1384. * Clears the ATA_DMA_START flag in the bmdma control register
  1385. *
  1386. * LOCKING:
  1387. * Inherited from caller.
  1388. */
  1389. static void mv_bmdma_stop(struct ata_queued_cmd *qc)
  1390. {
  1391. struct ata_port *ap = qc->ap;
  1392. void __iomem *port_mmio = mv_ap_base(ap);
  1393. u32 cmd;
  1394. /* clear start/stop bit */
  1395. cmd = readl(port_mmio + BMDMA_CMD_OFS);
  1396. cmd &= ~ATA_DMA_START;
  1397. writelfl(cmd, port_mmio + BMDMA_CMD_OFS);
  1398. /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
  1399. ata_sff_dma_pause(ap);
  1400. }
  1401. /**
  1402. * mv_bmdma_status - Read BMDMA status
  1403. * @ap: port for which to retrieve DMA status.
  1404. *
  1405. * Read and return equivalent of the sff BMDMA status register.
  1406. *
  1407. * LOCKING:
  1408. * Inherited from caller.
  1409. */
  1410. static u8 mv_bmdma_status(struct ata_port *ap)
  1411. {
  1412. void __iomem *port_mmio = mv_ap_base(ap);
  1413. u32 reg, status;
  1414. /*
  1415. * Other bits are valid only if ATA_DMA_ACTIVE==0,
  1416. * and the ATA_DMA_INTR bit doesn't exist.
  1417. */
  1418. reg = readl(port_mmio + BMDMA_STATUS_OFS);
  1419. if (reg & ATA_DMA_ACTIVE)
  1420. status = ATA_DMA_ACTIVE;
  1421. else
  1422. status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
  1423. return status;
  1424. }
  1425. /**
  1426. * mv_qc_prep - Host specific command preparation.
  1427. * @qc: queued command to prepare
  1428. *
  1429. * This routine simply redirects to the general purpose routine
  1430. * if command is not DMA. Else, it handles prep of the CRQB
  1431. * (command request block), does some sanity checking, and calls
  1432. * the SG load routine.
  1433. *
  1434. * LOCKING:
  1435. * Inherited from caller.
  1436. */
  1437. static void mv_qc_prep(struct ata_queued_cmd *qc)
  1438. {
  1439. struct ata_port *ap = qc->ap;
  1440. struct mv_port_priv *pp = ap->private_data;
  1441. __le16 *cw;
  1442. struct ata_taskfile *tf;
  1443. u16 flags = 0;
  1444. unsigned in_index;
  1445. if ((qc->tf.protocol != ATA_PROT_DMA) &&
  1446. (qc->tf.protocol != ATA_PROT_NCQ))
  1447. return;
  1448. /* Fill in command request block
  1449. */
  1450. if (!(qc->tf.flags & ATA_TFLAG_WRITE))
  1451. flags |= CRQB_FLAG_READ;
  1452. WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
  1453. flags |= qc->tag << CRQB_TAG_SHIFT;
  1454. flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
  1455. /* get current queue index from software */
  1456. in_index = pp->req_idx;
  1457. pp->crqb[in_index].sg_addr =
  1458. cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
  1459. pp->crqb[in_index].sg_addr_hi =
  1460. cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
  1461. pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
  1462. cw = &pp->crqb[in_index].ata_cmd[0];
  1463. tf = &qc->tf;
  1464. /* Sadly, the CRQB cannot accomodate all registers--there are
  1465. * only 11 bytes...so we must pick and choose required
  1466. * registers based on the command. So, we drop feature and
  1467. * hob_feature for [RW] DMA commands, but they are needed for
  1468. * NCQ. NCQ will drop hob_nsect, which is not needed there
  1469. * (nsect is used only for the tag; feat/hob_feat hold true nsect).
  1470. */
  1471. switch (tf->command) {
  1472. case ATA_CMD_READ:
  1473. case ATA_CMD_READ_EXT:
  1474. case ATA_CMD_WRITE:
  1475. case ATA_CMD_WRITE_EXT:
  1476. case ATA_CMD_WRITE_FUA_EXT:
  1477. mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
  1478. break;
  1479. case ATA_CMD_FPDMA_READ:
  1480. case ATA_CMD_FPDMA_WRITE:
  1481. mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
  1482. mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
  1483. break;
  1484. default:
  1485. /* The only other commands EDMA supports in non-queued and
  1486. * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
  1487. * of which are defined/used by Linux. If we get here, this
  1488. * driver needs work.
  1489. *
  1490. * FIXME: modify libata to give qc_prep a return value and
  1491. * return error here.
  1492. */
  1493. BUG_ON(tf->command);
  1494. break;
  1495. }
  1496. mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
  1497. mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
  1498. mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
  1499. mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
  1500. mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
  1501. mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
  1502. mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
  1503. mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
  1504. mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
  1505. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  1506. return;
  1507. mv_fill_sg(qc);
  1508. }
  1509. /**
  1510. * mv_qc_prep_iie - Host specific command preparation.
  1511. * @qc: queued command to prepare
  1512. *
  1513. * This routine simply redirects to the general purpose routine
  1514. * if command is not DMA. Else, it handles prep of the CRQB
  1515. * (command request block), does some sanity checking, and calls
  1516. * the SG load routine.
  1517. *
  1518. * LOCKING:
  1519. * Inherited from caller.
  1520. */
  1521. static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
  1522. {
  1523. struct ata_port *ap = qc->ap;
  1524. struct mv_port_priv *pp = ap->private_data;
  1525. struct mv_crqb_iie *crqb;
  1526. struct ata_taskfile *tf;
  1527. unsigned in_index;
  1528. u32 flags = 0;
  1529. if ((qc->tf.protocol != ATA_PROT_DMA) &&
  1530. (qc->tf.protocol != ATA_PROT_NCQ))
  1531. return;
  1532. /* Fill in Gen IIE command request block */
  1533. if (!(qc->tf.flags & ATA_TFLAG_WRITE))
  1534. flags |= CRQB_FLAG_READ;
  1535. WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
  1536. flags |= qc->tag << CRQB_TAG_SHIFT;
  1537. flags |= qc->tag << CRQB_HOSTQ_SHIFT;
  1538. flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
  1539. /* get current queue index from software */
  1540. in_index = pp->req_idx;
  1541. crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
  1542. crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
  1543. crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
  1544. crqb->flags = cpu_to_le32(flags);
  1545. tf = &qc->tf;
  1546. crqb->ata_cmd[0] = cpu_to_le32(
  1547. (tf->command << 16) |
  1548. (tf->feature << 24)
  1549. );
  1550. crqb->ata_cmd[1] = cpu_to_le32(
  1551. (tf->lbal << 0) |
  1552. (tf->lbam << 8) |
  1553. (tf->lbah << 16) |
  1554. (tf->device << 24)
  1555. );
  1556. crqb->ata_cmd[2] = cpu_to_le32(
  1557. (tf->hob_lbal << 0) |
  1558. (tf->hob_lbam << 8) |
  1559. (tf->hob_lbah << 16) |
  1560. (tf->hob_feature << 24)
  1561. );
  1562. crqb->ata_cmd[3] = cpu_to_le32(
  1563. (tf->nsect << 0) |
  1564. (tf->hob_nsect << 8)
  1565. );
  1566. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  1567. return;
  1568. mv_fill_sg(qc);
  1569. }
  1570. /**
  1571. * mv_sff_check_status - fetch device status, if valid
  1572. * @ap: ATA port to fetch status from
  1573. *
  1574. * When using command issue via mv_qc_issue_fis(),
  1575. * the initial ATA_BUSY state does not show up in the
  1576. * ATA status (shadow) register. This can confuse libata!
  1577. *
  1578. * So we have a hook here to fake ATA_BUSY for that situation,
  1579. * until the first time a BUSY, DRQ, or ERR bit is seen.
  1580. *
  1581. * The rest of the time, it simply returns the ATA status register.
  1582. */
  1583. static u8 mv_sff_check_status(struct ata_port *ap)
  1584. {
  1585. u8 stat = ioread8(ap->ioaddr.status_addr);
  1586. struct mv_port_priv *pp = ap->private_data;
  1587. if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
  1588. if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
  1589. pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
  1590. else
  1591. stat = ATA_BUSY;
  1592. }
  1593. return stat;
  1594. }
  1595. /**
  1596. * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
  1597. * @fis: fis to be sent
  1598. * @nwords: number of 32-bit words in the fis
  1599. */
  1600. static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
  1601. {
  1602. void __iomem *port_mmio = mv_ap_base(ap);
  1603. u32 ifctl, old_ifctl, ifstat;
  1604. int i, timeout = 200, final_word = nwords - 1;
  1605. /* Initiate FIS transmission mode */
  1606. old_ifctl = readl(port_mmio + SATA_IFCTL_OFS);
  1607. ifctl = 0x100 | (old_ifctl & 0xf);
  1608. writelfl(ifctl, port_mmio + SATA_IFCTL_OFS);
  1609. /* Send all words of the FIS except for the final word */
  1610. for (i = 0; i < final_word; ++i)
  1611. writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS_OFS);
  1612. /* Flag end-of-transmission, and then send the final word */
  1613. writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL_OFS);
  1614. writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS_OFS);
  1615. /*
  1616. * Wait for FIS transmission to complete.
  1617. * This typically takes just a single iteration.
  1618. */
  1619. do {
  1620. ifstat = readl(port_mmio + SATA_IFSTAT_OFS);
  1621. } while (!(ifstat & 0x1000) && --timeout);
  1622. /* Restore original port configuration */
  1623. writelfl(old_ifctl, port_mmio + SATA_IFCTL_OFS);
  1624. /* See if it worked */
  1625. if ((ifstat & 0x3000) != 0x1000) {
  1626. ata_port_printk(ap, KERN_WARNING,
  1627. "%s transmission error, ifstat=%08x\n",
  1628. __func__, ifstat);
  1629. return AC_ERR_OTHER;
  1630. }
  1631. return 0;
  1632. }
  1633. /**
  1634. * mv_qc_issue_fis - Issue a command directly as a FIS
  1635. * @qc: queued command to start
  1636. *
  1637. * Note that the ATA shadow registers are not updated
  1638. * after command issue, so the device will appear "READY"
  1639. * if polled, even while it is BUSY processing the command.
  1640. *
  1641. * So we use a status hook to fake ATA_BUSY until the drive changes state.
  1642. *
  1643. * Note: we don't get updated shadow regs on *completion*
  1644. * of non-data commands. So avoid sending them via this function,
  1645. * as they will appear to have completed immediately.
  1646. *
  1647. * GEN_IIE has special registers that we could get the result tf from,
  1648. * but earlier chipsets do not. For now, we ignore those registers.
  1649. */
  1650. static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
  1651. {
  1652. struct ata_port *ap = qc->ap;
  1653. struct mv_port_priv *pp = ap->private_data;
  1654. struct ata_link *link = qc->dev->link;
  1655. u32 fis[5];
  1656. int err = 0;
  1657. ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
  1658. err = mv_send_fis(ap, fis, sizeof(fis) / sizeof(fis[0]));
  1659. if (err)
  1660. return err;
  1661. switch (qc->tf.protocol) {
  1662. case ATAPI_PROT_PIO:
  1663. pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
  1664. /* fall through */
  1665. case ATAPI_PROT_NODATA:
  1666. ap->hsm_task_state = HSM_ST_FIRST;
  1667. break;
  1668. case ATA_PROT_PIO:
  1669. pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
  1670. if (qc->tf.flags & ATA_TFLAG_WRITE)
  1671. ap->hsm_task_state = HSM_ST_FIRST;
  1672. else
  1673. ap->hsm_task_state = HSM_ST;
  1674. break;
  1675. default:
  1676. ap->hsm_task_state = HSM_ST_LAST;
  1677. break;
  1678. }
  1679. if (qc->tf.flags & ATA_TFLAG_POLLING)
  1680. ata_pio_queue_task(ap, qc, 0);
  1681. return 0;
  1682. }
  1683. /**
  1684. * mv_qc_issue - Initiate a command to the host
  1685. * @qc: queued command to start
  1686. *
  1687. * This routine simply redirects to the general purpose routine
  1688. * if command is not DMA. Else, it sanity checks our local
  1689. * caches of the request producer/consumer indices then enables
  1690. * DMA and bumps the request producer index.
  1691. *
  1692. * LOCKING:
  1693. * Inherited from caller.
  1694. */
  1695. static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
  1696. {
  1697. static int limit_warnings = 10;
  1698. struct ata_port *ap = qc->ap;
  1699. void __iomem *port_mmio = mv_ap_base(ap);
  1700. struct mv_port_priv *pp = ap->private_data;
  1701. u32 in_index;
  1702. unsigned int port_irqs;
  1703. pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
  1704. switch (qc->tf.protocol) {
  1705. case ATA_PROT_DMA:
  1706. case ATA_PROT_NCQ:
  1707. mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
  1708. pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
  1709. in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
  1710. /* Write the request in pointer to kick the EDMA to life */
  1711. writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
  1712. port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
  1713. return 0;
  1714. case ATA_PROT_PIO:
  1715. /*
  1716. * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
  1717. *
  1718. * Someday, we might implement special polling workarounds
  1719. * for these, but it all seems rather unnecessary since we
  1720. * normally use only DMA for commands which transfer more
  1721. * than a single block of data.
  1722. *
  1723. * Much of the time, this could just work regardless.
  1724. * So for now, just log the incident, and allow the attempt.
  1725. */
  1726. if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
  1727. --limit_warnings;
  1728. ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
  1729. ": attempting PIO w/multiple DRQ: "
  1730. "this may fail due to h/w errata\n");
  1731. }
  1732. /* drop through */
  1733. case ATA_PROT_NODATA:
  1734. case ATAPI_PROT_PIO:
  1735. case ATAPI_PROT_NODATA:
  1736. if (ap->flags & ATA_FLAG_PIO_POLLING)
  1737. qc->tf.flags |= ATA_TFLAG_POLLING;
  1738. break;
  1739. }
  1740. if (qc->tf.flags & ATA_TFLAG_POLLING)
  1741. port_irqs = ERR_IRQ; /* mask device interrupt when polling */
  1742. else
  1743. port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
  1744. /*
  1745. * We're about to send a non-EDMA capable command to the
  1746. * port. Turn off EDMA so there won't be problems accessing
  1747. * shadow block, etc registers.
  1748. */
  1749. mv_stop_edma(ap);
  1750. mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
  1751. mv_pmp_select(ap, qc->dev->link->pmp);
  1752. if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
  1753. struct mv_host_priv *hpriv = ap->host->private_data;
  1754. /*
  1755. * Workaround for 88SX60x1 FEr SATA#25 (part 2).
  1756. *
  1757. * After any NCQ error, the READ_LOG_EXT command
  1758. * from libata-eh *must* use mv_qc_issue_fis().
  1759. * Otherwise it might fail, due to chip errata.
  1760. *
  1761. * Rather than special-case it, we'll just *always*
  1762. * use this method here for READ_LOG_EXT, making for
  1763. * easier testing.
  1764. */
  1765. if (IS_GEN_II(hpriv))
  1766. return mv_qc_issue_fis(qc);
  1767. }
  1768. return ata_sff_qc_issue(qc);
  1769. }
  1770. static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
  1771. {
  1772. struct mv_port_priv *pp = ap->private_data;
  1773. struct ata_queued_cmd *qc;
  1774. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
  1775. return NULL;
  1776. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  1777. if (qc) {
  1778. if (qc->tf.flags & ATA_TFLAG_POLLING)
  1779. qc = NULL;
  1780. else if (!(qc->flags & ATA_QCFLAG_ACTIVE))
  1781. qc = NULL;
  1782. }
  1783. return qc;
  1784. }
  1785. static void mv_pmp_error_handler(struct ata_port *ap)
  1786. {
  1787. unsigned int pmp, pmp_map;
  1788. struct mv_port_priv *pp = ap->private_data;
  1789. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
  1790. /*
  1791. * Perform NCQ error analysis on failed PMPs
  1792. * before we freeze the port entirely.
  1793. *
  1794. * The failed PMPs are marked earlier by mv_pmp_eh_prep().
  1795. */
  1796. pmp_map = pp->delayed_eh_pmp_map;
  1797. pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
  1798. for (pmp = 0; pmp_map != 0; pmp++) {
  1799. unsigned int this_pmp = (1 << pmp);
  1800. if (pmp_map & this_pmp) {
  1801. struct ata_link *link = &ap->pmp_link[pmp];
  1802. pmp_map &= ~this_pmp;
  1803. ata_eh_analyze_ncq_error(link);
  1804. }
  1805. }
  1806. ata_port_freeze(ap);
  1807. }
  1808. sata_pmp_error_handler(ap);
  1809. }
  1810. static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
  1811. {
  1812. void __iomem *port_mmio = mv_ap_base(ap);
  1813. return readl(port_mmio + SATA_TESTCTL_OFS) >> 16;
  1814. }
  1815. static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
  1816. {
  1817. struct ata_eh_info *ehi;
  1818. unsigned int pmp;
  1819. /*
  1820. * Initialize EH info for PMPs which saw device errors
  1821. */
  1822. ehi = &ap->link.eh_info;
  1823. for (pmp = 0; pmp_map != 0; pmp++) {
  1824. unsigned int this_pmp = (1 << pmp);
  1825. if (pmp_map & this_pmp) {
  1826. struct ata_link *link = &ap->pmp_link[pmp];
  1827. pmp_map &= ~this_pmp;
  1828. ehi = &link->eh_info;
  1829. ata_ehi_clear_desc(ehi);
  1830. ata_ehi_push_desc(ehi, "dev err");
  1831. ehi->err_mask |= AC_ERR_DEV;
  1832. ehi->action |= ATA_EH_RESET;
  1833. ata_link_abort(link);
  1834. }
  1835. }
  1836. }
  1837. static int mv_req_q_empty(struct ata_port *ap)
  1838. {
  1839. void __iomem *port_mmio = mv_ap_base(ap);
  1840. u32 in_ptr, out_ptr;
  1841. in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS)
  1842. >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  1843. out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
  1844. >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  1845. return (in_ptr == out_ptr); /* 1 == queue_is_empty */
  1846. }
  1847. static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
  1848. {
  1849. struct mv_port_priv *pp = ap->private_data;
  1850. int failed_links;
  1851. unsigned int old_map, new_map;
  1852. /*
  1853. * Device error during FBS+NCQ operation:
  1854. *
  1855. * Set a port flag to prevent further I/O being enqueued.
  1856. * Leave the EDMA running to drain outstanding commands from this port.
  1857. * Perform the post-mortem/EH only when all responses are complete.
  1858. * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
  1859. */
  1860. if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
  1861. pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
  1862. pp->delayed_eh_pmp_map = 0;
  1863. }
  1864. old_map = pp->delayed_eh_pmp_map;
  1865. new_map = old_map | mv_get_err_pmp_map(ap);
  1866. if (old_map != new_map) {
  1867. pp->delayed_eh_pmp_map = new_map;
  1868. mv_pmp_eh_prep(ap, new_map & ~old_map);
  1869. }
  1870. failed_links = hweight16(new_map);
  1871. ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
  1872. "failed_links=%d nr_active_links=%d\n",
  1873. __func__, pp->delayed_eh_pmp_map,
  1874. ap->qc_active, failed_links,
  1875. ap->nr_active_links);
  1876. if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
  1877. mv_process_crpb_entries(ap, pp);
  1878. mv_stop_edma(ap);
  1879. mv_eh_freeze(ap);
  1880. ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
  1881. return 1; /* handled */
  1882. }
  1883. ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
  1884. return 1; /* handled */
  1885. }
  1886. static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
  1887. {
  1888. /*
  1889. * Possible future enhancement:
  1890. *
  1891. * FBS+non-NCQ operation is not yet implemented.
  1892. * See related notes in mv_edma_cfg().
  1893. *
  1894. * Device error during FBS+non-NCQ operation:
  1895. *
  1896. * We need to snapshot the shadow registers for each failed command.
  1897. * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
  1898. */
  1899. return 0; /* not handled */
  1900. }
  1901. static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
  1902. {
  1903. struct mv_port_priv *pp = ap->private_data;
  1904. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
  1905. return 0; /* EDMA was not active: not handled */
  1906. if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
  1907. return 0; /* FBS was not active: not handled */
  1908. if (!(edma_err_cause & EDMA_ERR_DEV))
  1909. return 0; /* non DEV error: not handled */
  1910. edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
  1911. if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
  1912. return 0; /* other problems: not handled */
  1913. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
  1914. /*
  1915. * EDMA should NOT have self-disabled for this case.
  1916. * If it did, then something is wrong elsewhere,
  1917. * and we cannot handle it here.
  1918. */
  1919. if (edma_err_cause & EDMA_ERR_SELF_DIS) {
  1920. ata_port_printk(ap, KERN_WARNING,
  1921. "%s: err_cause=0x%x pp_flags=0x%x\n",
  1922. __func__, edma_err_cause, pp->pp_flags);
  1923. return 0; /* not handled */
  1924. }
  1925. return mv_handle_fbs_ncq_dev_err(ap);
  1926. } else {
  1927. /*
  1928. * EDMA should have self-disabled for this case.
  1929. * If it did not, then something is wrong elsewhere,
  1930. * and we cannot handle it here.
  1931. */
  1932. if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
  1933. ata_port_printk(ap, KERN_WARNING,
  1934. "%s: err_cause=0x%x pp_flags=0x%x\n",
  1935. __func__, edma_err_cause, pp->pp_flags);
  1936. return 0; /* not handled */
  1937. }
  1938. return mv_handle_fbs_non_ncq_dev_err(ap);
  1939. }
  1940. return 0; /* not handled */
  1941. }
  1942. static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
  1943. {
  1944. struct ata_eh_info *ehi = &ap->link.eh_info;
  1945. char *when = "idle";
  1946. ata_ehi_clear_desc(ehi);
  1947. if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
  1948. when = "disabled";
  1949. } else if (edma_was_enabled) {
  1950. when = "EDMA enabled";
  1951. } else {
  1952. struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
  1953. if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
  1954. when = "polling";
  1955. }
  1956. ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
  1957. ehi->err_mask |= AC_ERR_OTHER;
  1958. ehi->action |= ATA_EH_RESET;
  1959. ata_port_freeze(ap);
  1960. }
  1961. /**
  1962. * mv_err_intr - Handle error interrupts on the port
  1963. * @ap: ATA channel to manipulate
  1964. *
  1965. * Most cases require a full reset of the chip's state machine,
  1966. * which also performs a COMRESET.
  1967. * Also, if the port disabled DMA, update our cached copy to match.
  1968. *
  1969. * LOCKING:
  1970. * Inherited from caller.
  1971. */
  1972. static void mv_err_intr(struct ata_port *ap)
  1973. {
  1974. void __iomem *port_mmio = mv_ap_base(ap);
  1975. u32 edma_err_cause, eh_freeze_mask, serr = 0;
  1976. u32 fis_cause = 0;
  1977. struct mv_port_priv *pp = ap->private_data;
  1978. struct mv_host_priv *hpriv = ap->host->private_data;
  1979. unsigned int action = 0, err_mask = 0;
  1980. struct ata_eh_info *ehi = &ap->link.eh_info;
  1981. struct ata_queued_cmd *qc;
  1982. int abort = 0;
  1983. /*
  1984. * Read and clear the SError and err_cause bits.
  1985. * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
  1986. * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
  1987. */
  1988. sata_scr_read(&ap->link, SCR_ERROR, &serr);
  1989. sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
  1990. edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  1991. if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
  1992. fis_cause = readl(port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
  1993. writelfl(~fis_cause, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
  1994. }
  1995. writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  1996. if (edma_err_cause & EDMA_ERR_DEV) {
  1997. /*
  1998. * Device errors during FIS-based switching operation
  1999. * require special handling.
  2000. */
  2001. if (mv_handle_dev_err(ap, edma_err_cause))
  2002. return;
  2003. }
  2004. qc = mv_get_active_qc(ap);
  2005. ata_ehi_clear_desc(ehi);
  2006. ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
  2007. edma_err_cause, pp->pp_flags);
  2008. if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
  2009. ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
  2010. if (fis_cause & SATA_FIS_IRQ_AN) {
  2011. u32 ec = edma_err_cause &
  2012. ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
  2013. sata_async_notification(ap);
  2014. if (!ec)
  2015. return; /* Just an AN; no need for the nukes */
  2016. ata_ehi_push_desc(ehi, "SDB notify");
  2017. }
  2018. }
  2019. /*
  2020. * All generations share these EDMA error cause bits:
  2021. */
  2022. if (edma_err_cause & EDMA_ERR_DEV) {
  2023. err_mask |= AC_ERR_DEV;
  2024. action |= ATA_EH_RESET;
  2025. ata_ehi_push_desc(ehi, "dev error");
  2026. }
  2027. if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
  2028. EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
  2029. EDMA_ERR_INTRL_PAR)) {
  2030. err_mask |= AC_ERR_ATA_BUS;
  2031. action |= ATA_EH_RESET;
  2032. ata_ehi_push_desc(ehi, "parity error");
  2033. }
  2034. if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
  2035. ata_ehi_hotplugged(ehi);
  2036. ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
  2037. "dev disconnect" : "dev connect");
  2038. action |= ATA_EH_RESET;
  2039. }
  2040. /*
  2041. * Gen-I has a different SELF_DIS bit,
  2042. * different FREEZE bits, and no SERR bit:
  2043. */
  2044. if (IS_GEN_I(hpriv)) {
  2045. eh_freeze_mask = EDMA_EH_FREEZE_5;
  2046. if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
  2047. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  2048. ata_ehi_push_desc(ehi, "EDMA self-disable");
  2049. }
  2050. } else {
  2051. eh_freeze_mask = EDMA_EH_FREEZE;
  2052. if (edma_err_cause & EDMA_ERR_SELF_DIS) {
  2053. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  2054. ata_ehi_push_desc(ehi, "EDMA self-disable");
  2055. }
  2056. if (edma_err_cause & EDMA_ERR_SERR) {
  2057. ata_ehi_push_desc(ehi, "SError=%08x", serr);
  2058. err_mask |= AC_ERR_ATA_BUS;
  2059. action |= ATA_EH_RESET;
  2060. }
  2061. }
  2062. if (!err_mask) {
  2063. err_mask = AC_ERR_OTHER;
  2064. action |= ATA_EH_RESET;
  2065. }
  2066. ehi->serror |= serr;
  2067. ehi->action |= action;
  2068. if (qc)
  2069. qc->err_mask |= err_mask;
  2070. else
  2071. ehi->err_mask |= err_mask;
  2072. if (err_mask == AC_ERR_DEV) {
  2073. /*
  2074. * Cannot do ata_port_freeze() here,
  2075. * because it would kill PIO access,
  2076. * which is needed for further diagnosis.
  2077. */
  2078. mv_eh_freeze(ap);
  2079. abort = 1;
  2080. } else if (edma_err_cause & eh_freeze_mask) {
  2081. /*
  2082. * Note to self: ata_port_freeze() calls ata_port_abort()
  2083. */
  2084. ata_port_freeze(ap);
  2085. } else {
  2086. abort = 1;
  2087. }
  2088. if (abort) {
  2089. if (qc)
  2090. ata_link_abort(qc->dev->link);
  2091. else
  2092. ata_port_abort(ap);
  2093. }
  2094. }
  2095. static void mv_process_crpb_response(struct ata_port *ap,
  2096. struct mv_crpb *response, unsigned int tag, int ncq_enabled)
  2097. {
  2098. struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
  2099. if (qc) {
  2100. u8 ata_status;
  2101. u16 edma_status = le16_to_cpu(response->flags);
  2102. /*
  2103. * edma_status from a response queue entry:
  2104. * LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
  2105. * MSB is saved ATA status from command completion.
  2106. */
  2107. if (!ncq_enabled) {
  2108. u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
  2109. if (err_cause) {
  2110. /*
  2111. * Error will be seen/handled by mv_err_intr().
  2112. * So do nothing at all here.
  2113. */
  2114. return;
  2115. }
  2116. }
  2117. ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
  2118. if (!ac_err_mask(ata_status))
  2119. ata_qc_complete(qc);
  2120. /* else: leave it for mv_err_intr() */
  2121. } else {
  2122. ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
  2123. __func__, tag);
  2124. }
  2125. }
  2126. static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
  2127. {
  2128. void __iomem *port_mmio = mv_ap_base(ap);
  2129. struct mv_host_priv *hpriv = ap->host->private_data;
  2130. u32 in_index;
  2131. bool work_done = false;
  2132. int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
  2133. /* Get the hardware queue position index */
  2134. in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
  2135. >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  2136. /* Process new responses from since the last time we looked */
  2137. while (in_index != pp->resp_idx) {
  2138. unsigned int tag;
  2139. struct mv_crpb *response = &pp->crpb[pp->resp_idx];
  2140. pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
  2141. if (IS_GEN_I(hpriv)) {
  2142. /* 50xx: no NCQ, only one command active at a time */
  2143. tag = ap->link.active_tag;
  2144. } else {
  2145. /* Gen II/IIE: get command tag from CRPB entry */
  2146. tag = le16_to_cpu(response->id) & 0x1f;
  2147. }
  2148. mv_process_crpb_response(ap, response, tag, ncq_enabled);
  2149. work_done = true;
  2150. }
  2151. /* Update the software queue position index in hardware */
  2152. if (work_done)
  2153. writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
  2154. (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
  2155. port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
  2156. }
  2157. static void mv_port_intr(struct ata_port *ap, u32 port_cause)
  2158. {
  2159. struct mv_port_priv *pp;
  2160. int edma_was_enabled;
  2161. if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
  2162. mv_unexpected_intr(ap, 0);
  2163. return;
  2164. }
  2165. /*
  2166. * Grab a snapshot of the EDMA_EN flag setting,
  2167. * so that we have a consistent view for this port,
  2168. * even if something we call of our routines changes it.
  2169. */
  2170. pp = ap->private_data;
  2171. edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
  2172. /*
  2173. * Process completed CRPB response(s) before other events.
  2174. */
  2175. if (edma_was_enabled && (port_cause & DONE_IRQ)) {
  2176. mv_process_crpb_entries(ap, pp);
  2177. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
  2178. mv_handle_fbs_ncq_dev_err(ap);
  2179. }
  2180. /*
  2181. * Handle chip-reported errors, or continue on to handle PIO.
  2182. */
  2183. if (unlikely(port_cause & ERR_IRQ)) {
  2184. mv_err_intr(ap);
  2185. } else if (!edma_was_enabled) {
  2186. struct ata_queued_cmd *qc = mv_get_active_qc(ap);
  2187. if (qc)
  2188. ata_sff_host_intr(ap, qc);
  2189. else
  2190. mv_unexpected_intr(ap, edma_was_enabled);
  2191. }
  2192. }
  2193. /**
  2194. * mv_host_intr - Handle all interrupts on the given host controller
  2195. * @host: host specific structure
  2196. * @main_irq_cause: Main interrupt cause register for the chip.
  2197. *
  2198. * LOCKING:
  2199. * Inherited from caller.
  2200. */
  2201. static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
  2202. {
  2203. struct mv_host_priv *hpriv = host->private_data;
  2204. void __iomem *mmio = hpriv->base, *hc_mmio;
  2205. unsigned int handled = 0, port;
  2206. for (port = 0; port < hpriv->n_ports; port++) {
  2207. struct ata_port *ap = host->ports[port];
  2208. unsigned int p, shift, hardport, port_cause;
  2209. MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
  2210. /*
  2211. * Each hc within the host has its own hc_irq_cause register,
  2212. * where the interrupting ports bits get ack'd.
  2213. */
  2214. if (hardport == 0) { /* first port on this hc ? */
  2215. u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
  2216. u32 port_mask, ack_irqs;
  2217. /*
  2218. * Skip this entire hc if nothing pending for any ports
  2219. */
  2220. if (!hc_cause) {
  2221. port += MV_PORTS_PER_HC - 1;
  2222. continue;
  2223. }
  2224. /*
  2225. * We don't need/want to read the hc_irq_cause register,
  2226. * because doing so hurts performance, and
  2227. * main_irq_cause already gives us everything we need.
  2228. *
  2229. * But we do have to *write* to the hc_irq_cause to ack
  2230. * the ports that we are handling this time through.
  2231. *
  2232. * This requires that we create a bitmap for those
  2233. * ports which interrupted us, and use that bitmap
  2234. * to ack (only) those ports via hc_irq_cause.
  2235. */
  2236. ack_irqs = 0;
  2237. for (p = 0; p < MV_PORTS_PER_HC; ++p) {
  2238. if ((port + p) >= hpriv->n_ports)
  2239. break;
  2240. port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
  2241. if (hc_cause & port_mask)
  2242. ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
  2243. }
  2244. hc_mmio = mv_hc_base_from_port(mmio, port);
  2245. writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE_OFS);
  2246. handled = 1;
  2247. }
  2248. /*
  2249. * Handle interrupts signalled for this port:
  2250. */
  2251. port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
  2252. if (port_cause)
  2253. mv_port_intr(ap, port_cause);
  2254. }
  2255. return handled;
  2256. }
  2257. static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
  2258. {
  2259. struct mv_host_priv *hpriv = host->private_data;
  2260. struct ata_port *ap;
  2261. struct ata_queued_cmd *qc;
  2262. struct ata_eh_info *ehi;
  2263. unsigned int i, err_mask, printed = 0;
  2264. u32 err_cause;
  2265. err_cause = readl(mmio + hpriv->irq_cause_ofs);
  2266. dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
  2267. err_cause);
  2268. DPRINTK("All regs @ PCI error\n");
  2269. mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
  2270. writelfl(0, mmio + hpriv->irq_cause_ofs);
  2271. for (i = 0; i < host->n_ports; i++) {
  2272. ap = host->ports[i];
  2273. if (!ata_link_offline(&ap->link)) {
  2274. ehi = &ap->link.eh_info;
  2275. ata_ehi_clear_desc(ehi);
  2276. if (!printed++)
  2277. ata_ehi_push_desc(ehi,
  2278. "PCI err cause 0x%08x", err_cause);
  2279. err_mask = AC_ERR_HOST_BUS;
  2280. ehi->action = ATA_EH_RESET;
  2281. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  2282. if (qc)
  2283. qc->err_mask |= err_mask;
  2284. else
  2285. ehi->err_mask |= err_mask;
  2286. ata_port_freeze(ap);
  2287. }
  2288. }
  2289. return 1; /* handled */
  2290. }
  2291. /**
  2292. * mv_interrupt - Main interrupt event handler
  2293. * @irq: unused
  2294. * @dev_instance: private data; in this case the host structure
  2295. *
  2296. * Read the read only register to determine if any host
  2297. * controllers have pending interrupts. If so, call lower level
  2298. * routine to handle. Also check for PCI errors which are only
  2299. * reported here.
  2300. *
  2301. * LOCKING:
  2302. * This routine holds the host lock while processing pending
  2303. * interrupts.
  2304. */
  2305. static irqreturn_t mv_interrupt(int irq, void *dev_instance)
  2306. {
  2307. struct ata_host *host = dev_instance;
  2308. struct mv_host_priv *hpriv = host->private_data;
  2309. unsigned int handled = 0;
  2310. int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
  2311. u32 main_irq_cause, pending_irqs;
  2312. spin_lock(&host->lock);
  2313. /* for MSI: block new interrupts while in here */
  2314. if (using_msi)
  2315. writel(0, hpriv->main_irq_mask_addr);
  2316. main_irq_cause = readl(hpriv->main_irq_cause_addr);
  2317. pending_irqs = main_irq_cause & hpriv->main_irq_mask;
  2318. /*
  2319. * Deal with cases where we either have nothing pending, or have read
  2320. * a bogus register value which can indicate HW removal or PCI fault.
  2321. */
  2322. if (pending_irqs && main_irq_cause != 0xffffffffU) {
  2323. if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
  2324. handled = mv_pci_error(host, hpriv->base);
  2325. else
  2326. handled = mv_host_intr(host, pending_irqs);
  2327. }
  2328. /* for MSI: unmask; interrupt cause bits will retrigger now */
  2329. if (using_msi)
  2330. writel(hpriv->main_irq_mask, hpriv->main_irq_mask_addr);
  2331. spin_unlock(&host->lock);
  2332. return IRQ_RETVAL(handled);
  2333. }
  2334. static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
  2335. {
  2336. unsigned int ofs;
  2337. switch (sc_reg_in) {
  2338. case SCR_STATUS:
  2339. case SCR_ERROR:
  2340. case SCR_CONTROL:
  2341. ofs = sc_reg_in * sizeof(u32);
  2342. break;
  2343. default:
  2344. ofs = 0xffffffffU;
  2345. break;
  2346. }
  2347. return ofs;
  2348. }
  2349. static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
  2350. {
  2351. struct mv_host_priv *hpriv = link->ap->host->private_data;
  2352. void __iomem *mmio = hpriv->base;
  2353. void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
  2354. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  2355. if (ofs != 0xffffffffU) {
  2356. *val = readl(addr + ofs);
  2357. return 0;
  2358. } else
  2359. return -EINVAL;
  2360. }
  2361. static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
  2362. {
  2363. struct mv_host_priv *hpriv = link->ap->host->private_data;
  2364. void __iomem *mmio = hpriv->base;
  2365. void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
  2366. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  2367. if (ofs != 0xffffffffU) {
  2368. writelfl(val, addr + ofs);
  2369. return 0;
  2370. } else
  2371. return -EINVAL;
  2372. }
  2373. static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
  2374. {
  2375. struct pci_dev *pdev = to_pci_dev(host->dev);
  2376. int early_5080;
  2377. early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
  2378. if (!early_5080) {
  2379. u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2380. tmp |= (1 << 0);
  2381. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2382. }
  2383. mv_reset_pci_bus(host, mmio);
  2384. }
  2385. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  2386. {
  2387. writel(0x0fcfffff, mmio + MV_FLASH_CTL_OFS);
  2388. }
  2389. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  2390. void __iomem *mmio)
  2391. {
  2392. void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
  2393. u32 tmp;
  2394. tmp = readl(phy_mmio + MV5_PHY_MODE);
  2395. hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
  2396. hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
  2397. }
  2398. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  2399. {
  2400. u32 tmp;
  2401. writel(0, mmio + MV_GPIO_PORT_CTL_OFS);
  2402. /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
  2403. tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2404. tmp |= ~(1 << 0);
  2405. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2406. }
  2407. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  2408. unsigned int port)
  2409. {
  2410. void __iomem *phy_mmio = mv5_phy_base(mmio, port);
  2411. const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
  2412. u32 tmp;
  2413. int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
  2414. if (fix_apm_sq) {
  2415. tmp = readl(phy_mmio + MV5_LTMODE_OFS);
  2416. tmp |= (1 << 19);
  2417. writel(tmp, phy_mmio + MV5_LTMODE_OFS);
  2418. tmp = readl(phy_mmio + MV5_PHY_CTL_OFS);
  2419. tmp &= ~0x3;
  2420. tmp |= 0x1;
  2421. writel(tmp, phy_mmio + MV5_PHY_CTL_OFS);
  2422. }
  2423. tmp = readl(phy_mmio + MV5_PHY_MODE);
  2424. tmp &= ~mask;
  2425. tmp |= hpriv->signal[port].pre;
  2426. tmp |= hpriv->signal[port].amps;
  2427. writel(tmp, phy_mmio + MV5_PHY_MODE);
  2428. }
  2429. #undef ZERO
  2430. #define ZERO(reg) writel(0, port_mmio + (reg))
  2431. static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
  2432. unsigned int port)
  2433. {
  2434. void __iomem *port_mmio = mv_port_base(mmio, port);
  2435. mv_reset_channel(hpriv, mmio, port);
  2436. ZERO(0x028); /* command */
  2437. writel(0x11f, port_mmio + EDMA_CFG_OFS);
  2438. ZERO(0x004); /* timer */
  2439. ZERO(0x008); /* irq err cause */
  2440. ZERO(0x00c); /* irq err mask */
  2441. ZERO(0x010); /* rq bah */
  2442. ZERO(0x014); /* rq inp */
  2443. ZERO(0x018); /* rq outp */
  2444. ZERO(0x01c); /* respq bah */
  2445. ZERO(0x024); /* respq outp */
  2446. ZERO(0x020); /* respq inp */
  2447. ZERO(0x02c); /* test control */
  2448. writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
  2449. }
  2450. #undef ZERO
  2451. #define ZERO(reg) writel(0, hc_mmio + (reg))
  2452. static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2453. unsigned int hc)
  2454. {
  2455. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  2456. u32 tmp;
  2457. ZERO(0x00c);
  2458. ZERO(0x010);
  2459. ZERO(0x014);
  2460. ZERO(0x018);
  2461. tmp = readl(hc_mmio + 0x20);
  2462. tmp &= 0x1c1c1c1c;
  2463. tmp |= 0x03030303;
  2464. writel(tmp, hc_mmio + 0x20);
  2465. }
  2466. #undef ZERO
  2467. static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2468. unsigned int n_hc)
  2469. {
  2470. unsigned int hc, port;
  2471. for (hc = 0; hc < n_hc; hc++) {
  2472. for (port = 0; port < MV_PORTS_PER_HC; port++)
  2473. mv5_reset_hc_port(hpriv, mmio,
  2474. (hc * MV_PORTS_PER_HC) + port);
  2475. mv5_reset_one_hc(hpriv, mmio, hc);
  2476. }
  2477. return 0;
  2478. }
  2479. #undef ZERO
  2480. #define ZERO(reg) writel(0, mmio + (reg))
  2481. static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
  2482. {
  2483. struct mv_host_priv *hpriv = host->private_data;
  2484. u32 tmp;
  2485. tmp = readl(mmio + MV_PCI_MODE_OFS);
  2486. tmp &= 0xff00ffff;
  2487. writel(tmp, mmio + MV_PCI_MODE_OFS);
  2488. ZERO(MV_PCI_DISC_TIMER);
  2489. ZERO(MV_PCI_MSI_TRIGGER);
  2490. writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT_OFS);
  2491. ZERO(MV_PCI_SERR_MASK);
  2492. ZERO(hpriv->irq_cause_ofs);
  2493. ZERO(hpriv->irq_mask_ofs);
  2494. ZERO(MV_PCI_ERR_LOW_ADDRESS);
  2495. ZERO(MV_PCI_ERR_HIGH_ADDRESS);
  2496. ZERO(MV_PCI_ERR_ATTRIBUTE);
  2497. ZERO(MV_PCI_ERR_COMMAND);
  2498. }
  2499. #undef ZERO
  2500. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  2501. {
  2502. u32 tmp;
  2503. mv5_reset_flash(hpriv, mmio);
  2504. tmp = readl(mmio + MV_GPIO_PORT_CTL_OFS);
  2505. tmp &= 0x3;
  2506. tmp |= (1 << 5) | (1 << 6);
  2507. writel(tmp, mmio + MV_GPIO_PORT_CTL_OFS);
  2508. }
  2509. /**
  2510. * mv6_reset_hc - Perform the 6xxx global soft reset
  2511. * @mmio: base address of the HBA
  2512. *
  2513. * This routine only applies to 6xxx parts.
  2514. *
  2515. * LOCKING:
  2516. * Inherited from caller.
  2517. */
  2518. static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2519. unsigned int n_hc)
  2520. {
  2521. void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
  2522. int i, rc = 0;
  2523. u32 t;
  2524. /* Following procedure defined in PCI "main command and status
  2525. * register" table.
  2526. */
  2527. t = readl(reg);
  2528. writel(t | STOP_PCI_MASTER, reg);
  2529. for (i = 0; i < 1000; i++) {
  2530. udelay(1);
  2531. t = readl(reg);
  2532. if (PCI_MASTER_EMPTY & t)
  2533. break;
  2534. }
  2535. if (!(PCI_MASTER_EMPTY & t)) {
  2536. printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
  2537. rc = 1;
  2538. goto done;
  2539. }
  2540. /* set reset */
  2541. i = 5;
  2542. do {
  2543. writel(t | GLOB_SFT_RST, reg);
  2544. t = readl(reg);
  2545. udelay(1);
  2546. } while (!(GLOB_SFT_RST & t) && (i-- > 0));
  2547. if (!(GLOB_SFT_RST & t)) {
  2548. printk(KERN_ERR DRV_NAME ": can't set global reset\n");
  2549. rc = 1;
  2550. goto done;
  2551. }
  2552. /* clear reset and *reenable the PCI master* (not mentioned in spec) */
  2553. i = 5;
  2554. do {
  2555. writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
  2556. t = readl(reg);
  2557. udelay(1);
  2558. } while ((GLOB_SFT_RST & t) && (i-- > 0));
  2559. if (GLOB_SFT_RST & t) {
  2560. printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
  2561. rc = 1;
  2562. }
  2563. done:
  2564. return rc;
  2565. }
  2566. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  2567. void __iomem *mmio)
  2568. {
  2569. void __iomem *port_mmio;
  2570. u32 tmp;
  2571. tmp = readl(mmio + MV_RESET_CFG_OFS);
  2572. if ((tmp & (1 << 0)) == 0) {
  2573. hpriv->signal[idx].amps = 0x7 << 8;
  2574. hpriv->signal[idx].pre = 0x1 << 5;
  2575. return;
  2576. }
  2577. port_mmio = mv_port_base(mmio, idx);
  2578. tmp = readl(port_mmio + PHY_MODE2);
  2579. hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
  2580. hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
  2581. }
  2582. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  2583. {
  2584. writel(0x00000060, mmio + MV_GPIO_PORT_CTL_OFS);
  2585. }
  2586. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  2587. unsigned int port)
  2588. {
  2589. void __iomem *port_mmio = mv_port_base(mmio, port);
  2590. u32 hp_flags = hpriv->hp_flags;
  2591. int fix_phy_mode2 =
  2592. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  2593. int fix_phy_mode4 =
  2594. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  2595. u32 m2, m3;
  2596. if (fix_phy_mode2) {
  2597. m2 = readl(port_mmio + PHY_MODE2);
  2598. m2 &= ~(1 << 16);
  2599. m2 |= (1 << 31);
  2600. writel(m2, port_mmio + PHY_MODE2);
  2601. udelay(200);
  2602. m2 = readl(port_mmio + PHY_MODE2);
  2603. m2 &= ~((1 << 16) | (1 << 31));
  2604. writel(m2, port_mmio + PHY_MODE2);
  2605. udelay(200);
  2606. }
  2607. /*
  2608. * Gen-II/IIe PHY_MODE3 errata RM#2:
  2609. * Achieves better receiver noise performance than the h/w default:
  2610. */
  2611. m3 = readl(port_mmio + PHY_MODE3);
  2612. m3 = (m3 & 0x1f) | (0x5555601 << 5);
  2613. /* Guideline 88F5182 (GL# SATA-S11) */
  2614. if (IS_SOC(hpriv))
  2615. m3 &= ~0x1c;
  2616. if (fix_phy_mode4) {
  2617. u32 m4 = readl(port_mmio + PHY_MODE4);
  2618. /*
  2619. * Enforce reserved-bit restrictions on GenIIe devices only.
  2620. * For earlier chipsets, force only the internal config field
  2621. * (workaround for errata FEr SATA#10 part 1).
  2622. */
  2623. if (IS_GEN_IIE(hpriv))
  2624. m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
  2625. else
  2626. m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
  2627. writel(m4, port_mmio + PHY_MODE4);
  2628. }
  2629. /*
  2630. * Workaround for 60x1-B2 errata SATA#13:
  2631. * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
  2632. * so we must always rewrite PHY_MODE3 after PHY_MODE4.
  2633. */
  2634. writel(m3, port_mmio + PHY_MODE3);
  2635. /* Revert values of pre-emphasis and signal amps to the saved ones */
  2636. m2 = readl(port_mmio + PHY_MODE2);
  2637. m2 &= ~MV_M2_PREAMP_MASK;
  2638. m2 |= hpriv->signal[port].amps;
  2639. m2 |= hpriv->signal[port].pre;
  2640. m2 &= ~(1 << 16);
  2641. /* according to mvSata 3.6.1, some IIE values are fixed */
  2642. if (IS_GEN_IIE(hpriv)) {
  2643. m2 &= ~0xC30FF01F;
  2644. m2 |= 0x0000900F;
  2645. }
  2646. writel(m2, port_mmio + PHY_MODE2);
  2647. }
  2648. /* TODO: use the generic LED interface to configure the SATA Presence */
  2649. /* & Acitivy LEDs on the board */
  2650. static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
  2651. void __iomem *mmio)
  2652. {
  2653. return;
  2654. }
  2655. static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
  2656. void __iomem *mmio)
  2657. {
  2658. void __iomem *port_mmio;
  2659. u32 tmp;
  2660. port_mmio = mv_port_base(mmio, idx);
  2661. tmp = readl(port_mmio + PHY_MODE2);
  2662. hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
  2663. hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
  2664. }
  2665. #undef ZERO
  2666. #define ZERO(reg) writel(0, port_mmio + (reg))
  2667. static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
  2668. void __iomem *mmio, unsigned int port)
  2669. {
  2670. void __iomem *port_mmio = mv_port_base(mmio, port);
  2671. mv_reset_channel(hpriv, mmio, port);
  2672. ZERO(0x028); /* command */
  2673. writel(0x101f, port_mmio + EDMA_CFG_OFS);
  2674. ZERO(0x004); /* timer */
  2675. ZERO(0x008); /* irq err cause */
  2676. ZERO(0x00c); /* irq err mask */
  2677. ZERO(0x010); /* rq bah */
  2678. ZERO(0x014); /* rq inp */
  2679. ZERO(0x018); /* rq outp */
  2680. ZERO(0x01c); /* respq bah */
  2681. ZERO(0x024); /* respq outp */
  2682. ZERO(0x020); /* respq inp */
  2683. ZERO(0x02c); /* test control */
  2684. writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
  2685. }
  2686. #undef ZERO
  2687. #define ZERO(reg) writel(0, hc_mmio + (reg))
  2688. static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
  2689. void __iomem *mmio)
  2690. {
  2691. void __iomem *hc_mmio = mv_hc_base(mmio, 0);
  2692. ZERO(0x00c);
  2693. ZERO(0x010);
  2694. ZERO(0x014);
  2695. }
  2696. #undef ZERO
  2697. static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
  2698. void __iomem *mmio, unsigned int n_hc)
  2699. {
  2700. unsigned int port;
  2701. for (port = 0; port < hpriv->n_ports; port++)
  2702. mv_soc_reset_hc_port(hpriv, mmio, port);
  2703. mv_soc_reset_one_hc(hpriv, mmio);
  2704. return 0;
  2705. }
  2706. static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
  2707. void __iomem *mmio)
  2708. {
  2709. return;
  2710. }
  2711. static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
  2712. {
  2713. return;
  2714. }
  2715. static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
  2716. {
  2717. u32 ifcfg = readl(port_mmio + SATA_INTERFACE_CFG_OFS);
  2718. ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
  2719. if (want_gen2i)
  2720. ifcfg |= (1 << 7); /* enable gen2i speed */
  2721. writelfl(ifcfg, port_mmio + SATA_INTERFACE_CFG_OFS);
  2722. }
  2723. static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
  2724. unsigned int port_no)
  2725. {
  2726. void __iomem *port_mmio = mv_port_base(mmio, port_no);
  2727. /*
  2728. * The datasheet warns against setting EDMA_RESET when EDMA is active
  2729. * (but doesn't say what the problem might be). So we first try
  2730. * to disable the EDMA engine before doing the EDMA_RESET operation.
  2731. */
  2732. mv_stop_edma_engine(port_mmio);
  2733. writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
  2734. if (!IS_GEN_I(hpriv)) {
  2735. /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
  2736. mv_setup_ifcfg(port_mmio, 1);
  2737. }
  2738. /*
  2739. * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
  2740. * link, and physical layers. It resets all SATA interface registers
  2741. * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
  2742. */
  2743. writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
  2744. udelay(25); /* allow reset propagation */
  2745. writelfl(0, port_mmio + EDMA_CMD_OFS);
  2746. hpriv->ops->phy_errata(hpriv, mmio, port_no);
  2747. if (IS_GEN_I(hpriv))
  2748. mdelay(1);
  2749. }
  2750. static void mv_pmp_select(struct ata_port *ap, int pmp)
  2751. {
  2752. if (sata_pmp_supported(ap)) {
  2753. void __iomem *port_mmio = mv_ap_base(ap);
  2754. u32 reg = readl(port_mmio + SATA_IFCTL_OFS);
  2755. int old = reg & 0xf;
  2756. if (old != pmp) {
  2757. reg = (reg & ~0xf) | pmp;
  2758. writelfl(reg, port_mmio + SATA_IFCTL_OFS);
  2759. }
  2760. }
  2761. }
  2762. static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
  2763. unsigned long deadline)
  2764. {
  2765. mv_pmp_select(link->ap, sata_srst_pmp(link));
  2766. return sata_std_hardreset(link, class, deadline);
  2767. }
  2768. static int mv_softreset(struct ata_link *link, unsigned int *class,
  2769. unsigned long deadline)
  2770. {
  2771. mv_pmp_select(link->ap, sata_srst_pmp(link));
  2772. return ata_sff_softreset(link, class, deadline);
  2773. }
  2774. static int mv_hardreset(struct ata_link *link, unsigned int *class,
  2775. unsigned long deadline)
  2776. {
  2777. struct ata_port *ap = link->ap;
  2778. struct mv_host_priv *hpriv = ap->host->private_data;
  2779. struct mv_port_priv *pp = ap->private_data;
  2780. void __iomem *mmio = hpriv->base;
  2781. int rc, attempts = 0, extra = 0;
  2782. u32 sstatus;
  2783. bool online;
  2784. mv_reset_channel(hpriv, mmio, ap->port_no);
  2785. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  2786. pp->pp_flags &=
  2787. ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
  2788. /* Workaround for errata FEr SATA#10 (part 2) */
  2789. do {
  2790. const unsigned long *timing =
  2791. sata_ehc_deb_timing(&link->eh_context);
  2792. rc = sata_link_hardreset(link, timing, deadline + extra,
  2793. &online, NULL);
  2794. rc = online ? -EAGAIN : rc;
  2795. if (rc)
  2796. return rc;
  2797. sata_scr_read(link, SCR_STATUS, &sstatus);
  2798. if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
  2799. /* Force 1.5gb/s link speed and try again */
  2800. mv_setup_ifcfg(mv_ap_base(ap), 0);
  2801. if (time_after(jiffies + HZ, deadline))
  2802. extra = HZ; /* only extend it once, max */
  2803. }
  2804. } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
  2805. mv_save_cached_regs(ap);
  2806. mv_edma_cfg(ap, 0, 0);
  2807. return rc;
  2808. }
  2809. static void mv_eh_freeze(struct ata_port *ap)
  2810. {
  2811. mv_stop_edma(ap);
  2812. mv_enable_port_irqs(ap, 0);
  2813. }
  2814. static void mv_eh_thaw(struct ata_port *ap)
  2815. {
  2816. struct mv_host_priv *hpriv = ap->host->private_data;
  2817. unsigned int port = ap->port_no;
  2818. unsigned int hardport = mv_hardport_from_port(port);
  2819. void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
  2820. void __iomem *port_mmio = mv_ap_base(ap);
  2821. u32 hc_irq_cause;
  2822. /* clear EDMA errors on this port */
  2823. writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  2824. /* clear pending irq events */
  2825. hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
  2826. writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
  2827. mv_enable_port_irqs(ap, ERR_IRQ);
  2828. }
  2829. /**
  2830. * mv_port_init - Perform some early initialization on a single port.
  2831. * @port: libata data structure storing shadow register addresses
  2832. * @port_mmio: base address of the port
  2833. *
  2834. * Initialize shadow register mmio addresses, clear outstanding
  2835. * interrupts on the port, and unmask interrupts for the future
  2836. * start of the port.
  2837. *
  2838. * LOCKING:
  2839. * Inherited from caller.
  2840. */
  2841. static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
  2842. {
  2843. void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
  2844. unsigned serr_ofs;
  2845. /* PIO related setup
  2846. */
  2847. port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
  2848. port->error_addr =
  2849. port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
  2850. port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
  2851. port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
  2852. port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
  2853. port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
  2854. port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
  2855. port->status_addr =
  2856. port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
  2857. /* special case: control/altstatus doesn't have ATA_REG_ address */
  2858. port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
  2859. /* unused: */
  2860. port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
  2861. /* Clear any currently outstanding port interrupt conditions */
  2862. serr_ofs = mv_scr_offset(SCR_ERROR);
  2863. writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
  2864. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  2865. /* unmask all non-transient EDMA error interrupts */
  2866. writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
  2867. VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
  2868. readl(port_mmio + EDMA_CFG_OFS),
  2869. readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
  2870. readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
  2871. }
  2872. static unsigned int mv_in_pcix_mode(struct ata_host *host)
  2873. {
  2874. struct mv_host_priv *hpriv = host->private_data;
  2875. void __iomem *mmio = hpriv->base;
  2876. u32 reg;
  2877. if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
  2878. return 0; /* not PCI-X capable */
  2879. reg = readl(mmio + MV_PCI_MODE_OFS);
  2880. if ((reg & MV_PCI_MODE_MASK) == 0)
  2881. return 0; /* conventional PCI mode */
  2882. return 1; /* chip is in PCI-X mode */
  2883. }
  2884. static int mv_pci_cut_through_okay(struct ata_host *host)
  2885. {
  2886. struct mv_host_priv *hpriv = host->private_data;
  2887. void __iomem *mmio = hpriv->base;
  2888. u32 reg;
  2889. if (!mv_in_pcix_mode(host)) {
  2890. reg = readl(mmio + PCI_COMMAND_OFS);
  2891. if (reg & PCI_COMMAND_MRDTRIG)
  2892. return 0; /* not okay */
  2893. }
  2894. return 1; /* okay */
  2895. }
  2896. static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
  2897. {
  2898. struct pci_dev *pdev = to_pci_dev(host->dev);
  2899. struct mv_host_priv *hpriv = host->private_data;
  2900. u32 hp_flags = hpriv->hp_flags;
  2901. switch (board_idx) {
  2902. case chip_5080:
  2903. hpriv->ops = &mv5xxx_ops;
  2904. hp_flags |= MV_HP_GEN_I;
  2905. switch (pdev->revision) {
  2906. case 0x1:
  2907. hp_flags |= MV_HP_ERRATA_50XXB0;
  2908. break;
  2909. case 0x3:
  2910. hp_flags |= MV_HP_ERRATA_50XXB2;
  2911. break;
  2912. default:
  2913. dev_printk(KERN_WARNING, &pdev->dev,
  2914. "Applying 50XXB2 workarounds to unknown rev\n");
  2915. hp_flags |= MV_HP_ERRATA_50XXB2;
  2916. break;
  2917. }
  2918. break;
  2919. case chip_504x:
  2920. case chip_508x:
  2921. hpriv->ops = &mv5xxx_ops;
  2922. hp_flags |= MV_HP_GEN_I;
  2923. switch (pdev->revision) {
  2924. case 0x0:
  2925. hp_flags |= MV_HP_ERRATA_50XXB0;
  2926. break;
  2927. case 0x3:
  2928. hp_flags |= MV_HP_ERRATA_50XXB2;
  2929. break;
  2930. default:
  2931. dev_printk(KERN_WARNING, &pdev->dev,
  2932. "Applying B2 workarounds to unknown rev\n");
  2933. hp_flags |= MV_HP_ERRATA_50XXB2;
  2934. break;
  2935. }
  2936. break;
  2937. case chip_604x:
  2938. case chip_608x:
  2939. hpriv->ops = &mv6xxx_ops;
  2940. hp_flags |= MV_HP_GEN_II;
  2941. switch (pdev->revision) {
  2942. case 0x7:
  2943. hp_flags |= MV_HP_ERRATA_60X1B2;
  2944. break;
  2945. case 0x9:
  2946. hp_flags |= MV_HP_ERRATA_60X1C0;
  2947. break;
  2948. default:
  2949. dev_printk(KERN_WARNING, &pdev->dev,
  2950. "Applying B2 workarounds to unknown rev\n");
  2951. hp_flags |= MV_HP_ERRATA_60X1B2;
  2952. break;
  2953. }
  2954. break;
  2955. case chip_7042:
  2956. hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
  2957. if (pdev->vendor == PCI_VENDOR_ID_TTI &&
  2958. (pdev->device == 0x2300 || pdev->device == 0x2310))
  2959. {
  2960. /*
  2961. * Highpoint RocketRAID PCIe 23xx series cards:
  2962. *
  2963. * Unconfigured drives are treated as "Legacy"
  2964. * by the BIOS, and it overwrites sector 8 with
  2965. * a "Lgcy" metadata block prior to Linux boot.
  2966. *
  2967. * Configured drives (RAID or JBOD) leave sector 8
  2968. * alone, but instead overwrite a high numbered
  2969. * sector for the RAID metadata. This sector can
  2970. * be determined exactly, by truncating the physical
  2971. * drive capacity to a nice even GB value.
  2972. *
  2973. * RAID metadata is at: (dev->n_sectors & ~0xfffff)
  2974. *
  2975. * Warn the user, lest they think we're just buggy.
  2976. */
  2977. printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
  2978. " BIOS CORRUPTS DATA on all attached drives,"
  2979. " regardless of if/how they are configured."
  2980. " BEWARE!\n");
  2981. printk(KERN_WARNING DRV_NAME ": For data safety, do not"
  2982. " use sectors 8-9 on \"Legacy\" drives,"
  2983. " and avoid the final two gigabytes on"
  2984. " all RocketRAID BIOS initialized drives.\n");
  2985. }
  2986. /* drop through */
  2987. case chip_6042:
  2988. hpriv->ops = &mv6xxx_ops;
  2989. hp_flags |= MV_HP_GEN_IIE;
  2990. if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
  2991. hp_flags |= MV_HP_CUT_THROUGH;
  2992. switch (pdev->revision) {
  2993. case 0x2: /* Rev.B0: the first/only public release */
  2994. hp_flags |= MV_HP_ERRATA_60X1C0;
  2995. break;
  2996. default:
  2997. dev_printk(KERN_WARNING, &pdev->dev,
  2998. "Applying 60X1C0 workarounds to unknown rev\n");
  2999. hp_flags |= MV_HP_ERRATA_60X1C0;
  3000. break;
  3001. }
  3002. break;
  3003. case chip_soc:
  3004. hpriv->ops = &mv_soc_ops;
  3005. hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
  3006. MV_HP_ERRATA_60X1C0;
  3007. break;
  3008. default:
  3009. dev_printk(KERN_ERR, host->dev,
  3010. "BUG: invalid board index %u\n", board_idx);
  3011. return 1;
  3012. }
  3013. hpriv->hp_flags = hp_flags;
  3014. if (hp_flags & MV_HP_PCIE) {
  3015. hpriv->irq_cause_ofs = PCIE_IRQ_CAUSE_OFS;
  3016. hpriv->irq_mask_ofs = PCIE_IRQ_MASK_OFS;
  3017. hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
  3018. } else {
  3019. hpriv->irq_cause_ofs = PCI_IRQ_CAUSE_OFS;
  3020. hpriv->irq_mask_ofs = PCI_IRQ_MASK_OFS;
  3021. hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
  3022. }
  3023. return 0;
  3024. }
  3025. /**
  3026. * mv_init_host - Perform some early initialization of the host.
  3027. * @host: ATA host to initialize
  3028. * @board_idx: controller index
  3029. *
  3030. * If possible, do an early global reset of the host. Then do
  3031. * our port init and clear/unmask all/relevant host interrupts.
  3032. *
  3033. * LOCKING:
  3034. * Inherited from caller.
  3035. */
  3036. static int mv_init_host(struct ata_host *host, unsigned int board_idx)
  3037. {
  3038. int rc = 0, n_hc, port, hc;
  3039. struct mv_host_priv *hpriv = host->private_data;
  3040. void __iomem *mmio = hpriv->base;
  3041. rc = mv_chip_id(host, board_idx);
  3042. if (rc)
  3043. goto done;
  3044. if (IS_SOC(hpriv)) {
  3045. hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE_OFS;
  3046. hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK_OFS;
  3047. } else {
  3048. hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE_OFS;
  3049. hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK_OFS;
  3050. }
  3051. /* initialize shadow irq mask with register's value */
  3052. hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
  3053. /* global interrupt mask: 0 == mask everything */
  3054. mv_set_main_irq_mask(host, ~0, 0);
  3055. n_hc = mv_get_hc_count(host->ports[0]->flags);
  3056. for (port = 0; port < host->n_ports; port++)
  3057. hpriv->ops->read_preamp(hpriv, port, mmio);
  3058. rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
  3059. if (rc)
  3060. goto done;
  3061. hpriv->ops->reset_flash(hpriv, mmio);
  3062. hpriv->ops->reset_bus(host, mmio);
  3063. hpriv->ops->enable_leds(hpriv, mmio);
  3064. for (port = 0; port < host->n_ports; port++) {
  3065. struct ata_port *ap = host->ports[port];
  3066. void __iomem *port_mmio = mv_port_base(mmio, port);
  3067. mv_port_init(&ap->ioaddr, port_mmio);
  3068. #ifdef CONFIG_PCI
  3069. if (!IS_SOC(hpriv)) {
  3070. unsigned int offset = port_mmio - mmio;
  3071. ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
  3072. ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
  3073. }
  3074. #endif
  3075. }
  3076. for (hc = 0; hc < n_hc; hc++) {
  3077. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  3078. VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
  3079. "(before clear)=0x%08x\n", hc,
  3080. readl(hc_mmio + HC_CFG_OFS),
  3081. readl(hc_mmio + HC_IRQ_CAUSE_OFS));
  3082. /* Clear any currently outstanding hc interrupt conditions */
  3083. writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
  3084. }
  3085. /* Clear any currently outstanding host interrupt conditions */
  3086. writelfl(0, mmio + hpriv->irq_cause_ofs);
  3087. /* and unmask interrupt generation for host regs */
  3088. writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
  3089. /*
  3090. * enable only global host interrupts for now.
  3091. * The per-port interrupts get done later as ports are set up.
  3092. */
  3093. mv_set_main_irq_mask(host, 0, PCI_ERR);
  3094. done:
  3095. return rc;
  3096. }
  3097. static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
  3098. {
  3099. hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
  3100. MV_CRQB_Q_SZ, 0);
  3101. if (!hpriv->crqb_pool)
  3102. return -ENOMEM;
  3103. hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
  3104. MV_CRPB_Q_SZ, 0);
  3105. if (!hpriv->crpb_pool)
  3106. return -ENOMEM;
  3107. hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
  3108. MV_SG_TBL_SZ, 0);
  3109. if (!hpriv->sg_tbl_pool)
  3110. return -ENOMEM;
  3111. return 0;
  3112. }
  3113. static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
  3114. struct mbus_dram_target_info *dram)
  3115. {
  3116. int i;
  3117. for (i = 0; i < 4; i++) {
  3118. writel(0, hpriv->base + WINDOW_CTRL(i));
  3119. writel(0, hpriv->base + WINDOW_BASE(i));
  3120. }
  3121. for (i = 0; i < dram->num_cs; i++) {
  3122. struct mbus_dram_window *cs = dram->cs + i;
  3123. writel(((cs->size - 1) & 0xffff0000) |
  3124. (cs->mbus_attr << 8) |
  3125. (dram->mbus_dram_target_id << 4) | 1,
  3126. hpriv->base + WINDOW_CTRL(i));
  3127. writel(cs->base, hpriv->base + WINDOW_BASE(i));
  3128. }
  3129. }
  3130. /**
  3131. * mv_platform_probe - handle a positive probe of an soc Marvell
  3132. * host
  3133. * @pdev: platform device found
  3134. *
  3135. * LOCKING:
  3136. * Inherited from caller.
  3137. */
  3138. static int mv_platform_probe(struct platform_device *pdev)
  3139. {
  3140. static int printed_version;
  3141. const struct mv_sata_platform_data *mv_platform_data;
  3142. const struct ata_port_info *ppi[] =
  3143. { &mv_port_info[chip_soc], NULL };
  3144. struct ata_host *host;
  3145. struct mv_host_priv *hpriv;
  3146. struct resource *res;
  3147. int n_ports, rc;
  3148. if (!printed_version++)
  3149. dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
  3150. /*
  3151. * Simple resource validation ..
  3152. */
  3153. if (unlikely(pdev->num_resources != 2)) {
  3154. dev_err(&pdev->dev, "invalid number of resources\n");
  3155. return -EINVAL;
  3156. }
  3157. /*
  3158. * Get the register base first
  3159. */
  3160. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  3161. if (res == NULL)
  3162. return -EINVAL;
  3163. /* allocate host */
  3164. mv_platform_data = pdev->dev.platform_data;
  3165. n_ports = mv_platform_data->n_ports;
  3166. host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
  3167. hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
  3168. if (!host || !hpriv)
  3169. return -ENOMEM;
  3170. host->private_data = hpriv;
  3171. hpriv->n_ports = n_ports;
  3172. host->iomap = NULL;
  3173. hpriv->base = devm_ioremap(&pdev->dev, res->start,
  3174. res->end - res->start + 1);
  3175. hpriv->base -= MV_SATAHC0_REG_BASE;
  3176. /*
  3177. * (Re-)program MBUS remapping windows if we are asked to.
  3178. */
  3179. if (mv_platform_data->dram != NULL)
  3180. mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
  3181. rc = mv_create_dma_pools(hpriv, &pdev->dev);
  3182. if (rc)
  3183. return rc;
  3184. /* initialize adapter */
  3185. rc = mv_init_host(host, chip_soc);
  3186. if (rc)
  3187. return rc;
  3188. dev_printk(KERN_INFO, &pdev->dev,
  3189. "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
  3190. host->n_ports);
  3191. return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
  3192. IRQF_SHARED, &mv6_sht);
  3193. }
  3194. /*
  3195. *
  3196. * mv_platform_remove - unplug a platform interface
  3197. * @pdev: platform device
  3198. *
  3199. * A platform bus SATA device has been unplugged. Perform the needed
  3200. * cleanup. Also called on module unload for any active devices.
  3201. */
  3202. static int __devexit mv_platform_remove(struct platform_device *pdev)
  3203. {
  3204. struct device *dev = &pdev->dev;
  3205. struct ata_host *host = dev_get_drvdata(dev);
  3206. ata_host_detach(host);
  3207. return 0;
  3208. }
  3209. static struct platform_driver mv_platform_driver = {
  3210. .probe = mv_platform_probe,
  3211. .remove = __devexit_p(mv_platform_remove),
  3212. .driver = {
  3213. .name = DRV_NAME,
  3214. .owner = THIS_MODULE,
  3215. },
  3216. };
  3217. #ifdef CONFIG_PCI
  3218. static int mv_pci_init_one(struct pci_dev *pdev,
  3219. const struct pci_device_id *ent);
  3220. static struct pci_driver mv_pci_driver = {
  3221. .name = DRV_NAME,
  3222. .id_table = mv_pci_tbl,
  3223. .probe = mv_pci_init_one,
  3224. .remove = ata_pci_remove_one,
  3225. };
  3226. /* move to PCI layer or libata core? */
  3227. static int pci_go_64(struct pci_dev *pdev)
  3228. {
  3229. int rc;
  3230. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3231. rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3232. if (rc) {
  3233. rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3234. if (rc) {
  3235. dev_printk(KERN_ERR, &pdev->dev,
  3236. "64-bit DMA enable failed\n");
  3237. return rc;
  3238. }
  3239. }
  3240. } else {
  3241. rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  3242. if (rc) {
  3243. dev_printk(KERN_ERR, &pdev->dev,
  3244. "32-bit DMA enable failed\n");
  3245. return rc;
  3246. }
  3247. rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3248. if (rc) {
  3249. dev_printk(KERN_ERR, &pdev->dev,
  3250. "32-bit consistent DMA enable failed\n");
  3251. return rc;
  3252. }
  3253. }
  3254. return rc;
  3255. }
  3256. /**
  3257. * mv_print_info - Dump key info to kernel log for perusal.
  3258. * @host: ATA host to print info about
  3259. *
  3260. * FIXME: complete this.
  3261. *
  3262. * LOCKING:
  3263. * Inherited from caller.
  3264. */
  3265. static void mv_print_info(struct ata_host *host)
  3266. {
  3267. struct pci_dev *pdev = to_pci_dev(host->dev);
  3268. struct mv_host_priv *hpriv = host->private_data;
  3269. u8 scc;
  3270. const char *scc_s, *gen;
  3271. /* Use this to determine the HW stepping of the chip so we know
  3272. * what errata to workaround
  3273. */
  3274. pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
  3275. if (scc == 0)
  3276. scc_s = "SCSI";
  3277. else if (scc == 0x01)
  3278. scc_s = "RAID";
  3279. else
  3280. scc_s = "?";
  3281. if (IS_GEN_I(hpriv))
  3282. gen = "I";
  3283. else if (IS_GEN_II(hpriv))
  3284. gen = "II";
  3285. else if (IS_GEN_IIE(hpriv))
  3286. gen = "IIE";
  3287. else
  3288. gen = "?";
  3289. dev_printk(KERN_INFO, &pdev->dev,
  3290. "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
  3291. gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
  3292. scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
  3293. }
  3294. /**
  3295. * mv_pci_init_one - handle a positive probe of a PCI Marvell host
  3296. * @pdev: PCI device found
  3297. * @ent: PCI device ID entry for the matched host
  3298. *
  3299. * LOCKING:
  3300. * Inherited from caller.
  3301. */
  3302. static int mv_pci_init_one(struct pci_dev *pdev,
  3303. const struct pci_device_id *ent)
  3304. {
  3305. static int printed_version;
  3306. unsigned int board_idx = (unsigned int)ent->driver_data;
  3307. const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
  3308. struct ata_host *host;
  3309. struct mv_host_priv *hpriv;
  3310. int n_ports, rc;
  3311. if (!printed_version++)
  3312. dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
  3313. /* allocate host */
  3314. n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
  3315. host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
  3316. hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
  3317. if (!host || !hpriv)
  3318. return -ENOMEM;
  3319. host->private_data = hpriv;
  3320. hpriv->n_ports = n_ports;
  3321. /* acquire resources */
  3322. rc = pcim_enable_device(pdev);
  3323. if (rc)
  3324. return rc;
  3325. rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
  3326. if (rc == -EBUSY)
  3327. pcim_pin_device(pdev);
  3328. if (rc)
  3329. return rc;
  3330. host->iomap = pcim_iomap_table(pdev);
  3331. hpriv->base = host->iomap[MV_PRIMARY_BAR];
  3332. rc = pci_go_64(pdev);
  3333. if (rc)
  3334. return rc;
  3335. rc = mv_create_dma_pools(hpriv, &pdev->dev);
  3336. if (rc)
  3337. return rc;
  3338. /* initialize adapter */
  3339. rc = mv_init_host(host, board_idx);
  3340. if (rc)
  3341. return rc;
  3342. /* Enable message-switched interrupts, if requested */
  3343. if (msi && pci_enable_msi(pdev) == 0)
  3344. hpriv->hp_flags |= MV_HP_FLAG_MSI;
  3345. mv_dump_pci_cfg(pdev, 0x68);
  3346. mv_print_info(host);
  3347. pci_set_master(pdev);
  3348. pci_try_set_mwi(pdev);
  3349. return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
  3350. IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
  3351. }
  3352. #endif
  3353. static int mv_platform_probe(struct platform_device *pdev);
  3354. static int __devexit mv_platform_remove(struct platform_device *pdev);
  3355. static int __init mv_init(void)
  3356. {
  3357. int rc = -ENODEV;
  3358. #ifdef CONFIG_PCI
  3359. rc = pci_register_driver(&mv_pci_driver);
  3360. if (rc < 0)
  3361. return rc;
  3362. #endif
  3363. rc = platform_driver_register(&mv_platform_driver);
  3364. #ifdef CONFIG_PCI
  3365. if (rc < 0)
  3366. pci_unregister_driver(&mv_pci_driver);
  3367. #endif
  3368. return rc;
  3369. }
  3370. static void __exit mv_exit(void)
  3371. {
  3372. #ifdef CONFIG_PCI
  3373. pci_unregister_driver(&mv_pci_driver);
  3374. #endif
  3375. platform_driver_unregister(&mv_platform_driver);
  3376. }
  3377. MODULE_AUTHOR("Brett Russ");
  3378. MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
  3379. MODULE_LICENSE("GPL");
  3380. MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
  3381. MODULE_VERSION(DRV_VERSION);
  3382. MODULE_ALIAS("platform:" DRV_NAME);
  3383. module_init(mv_init);
  3384. module_exit(mv_exit);