xfs_inode.c 137 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_imap.h"
  26. #include "xfs_trans.h"
  27. #include "xfs_trans_priv.h"
  28. #include "xfs_sb.h"
  29. #include "xfs_ag.h"
  30. #include "xfs_dir2.h"
  31. #include "xfs_dmapi.h"
  32. #include "xfs_mount.h"
  33. #include "xfs_bmap_btree.h"
  34. #include "xfs_alloc_btree.h"
  35. #include "xfs_ialloc_btree.h"
  36. #include "xfs_dir2_sf.h"
  37. #include "xfs_attr_sf.h"
  38. #include "xfs_dinode.h"
  39. #include "xfs_inode.h"
  40. #include "xfs_buf_item.h"
  41. #include "xfs_inode_item.h"
  42. #include "xfs_btree.h"
  43. #include "xfs_alloc.h"
  44. #include "xfs_ialloc.h"
  45. #include "xfs_bmap.h"
  46. #include "xfs_rw.h"
  47. #include "xfs_error.h"
  48. #include "xfs_utils.h"
  49. #include "xfs_dir2_trace.h"
  50. #include "xfs_quota.h"
  51. #include "xfs_acl.h"
  52. #include "xfs_filestream.h"
  53. #include "xfs_vnodeops.h"
  54. kmem_zone_t *xfs_ifork_zone;
  55. kmem_zone_t *xfs_inode_zone;
  56. kmem_zone_t *xfs_icluster_zone;
  57. /*
  58. * Used in xfs_itruncate(). This is the maximum number of extents
  59. * freed from a file in a single transaction.
  60. */
  61. #define XFS_ITRUNC_MAX_EXTENTS 2
  62. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  63. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  64. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  65. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  66. #ifdef DEBUG
  67. /*
  68. * Make sure that the extents in the given memory buffer
  69. * are valid.
  70. */
  71. STATIC void
  72. xfs_validate_extents(
  73. xfs_ifork_t *ifp,
  74. int nrecs,
  75. xfs_exntfmt_t fmt)
  76. {
  77. xfs_bmbt_irec_t irec;
  78. xfs_bmbt_rec_host_t rec;
  79. int i;
  80. for (i = 0; i < nrecs; i++) {
  81. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  82. rec.l0 = get_unaligned(&ep->l0);
  83. rec.l1 = get_unaligned(&ep->l1);
  84. xfs_bmbt_get_all(&rec, &irec);
  85. if (fmt == XFS_EXTFMT_NOSTATE)
  86. ASSERT(irec.br_state == XFS_EXT_NORM);
  87. }
  88. }
  89. #else /* DEBUG */
  90. #define xfs_validate_extents(ifp, nrecs, fmt)
  91. #endif /* DEBUG */
  92. /*
  93. * Check that none of the inode's in the buffer have a next
  94. * unlinked field of 0.
  95. */
  96. #if defined(DEBUG)
  97. void
  98. xfs_inobp_check(
  99. xfs_mount_t *mp,
  100. xfs_buf_t *bp)
  101. {
  102. int i;
  103. int j;
  104. xfs_dinode_t *dip;
  105. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  106. for (i = 0; i < j; i++) {
  107. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  108. i * mp->m_sb.sb_inodesize);
  109. if (!dip->di_next_unlinked) {
  110. xfs_fs_cmn_err(CE_ALERT, mp,
  111. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  112. bp);
  113. ASSERT(dip->di_next_unlinked);
  114. }
  115. }
  116. }
  117. #endif
  118. /*
  119. * This routine is called to map an inode number within a file
  120. * system to the buffer containing the on-disk version of the
  121. * inode. It returns a pointer to the buffer containing the
  122. * on-disk inode in the bpp parameter, and in the dip parameter
  123. * it returns a pointer to the on-disk inode within that buffer.
  124. *
  125. * If a non-zero error is returned, then the contents of bpp and
  126. * dipp are undefined.
  127. *
  128. * Use xfs_imap() to determine the size and location of the
  129. * buffer to read from disk.
  130. */
  131. STATIC int
  132. xfs_inotobp(
  133. xfs_mount_t *mp,
  134. xfs_trans_t *tp,
  135. xfs_ino_t ino,
  136. xfs_dinode_t **dipp,
  137. xfs_buf_t **bpp,
  138. int *offset)
  139. {
  140. int di_ok;
  141. xfs_imap_t imap;
  142. xfs_buf_t *bp;
  143. int error;
  144. xfs_dinode_t *dip;
  145. /*
  146. * Call the space management code to find the location of the
  147. * inode on disk.
  148. */
  149. imap.im_blkno = 0;
  150. error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
  151. if (error != 0) {
  152. cmn_err(CE_WARN,
  153. "xfs_inotobp: xfs_imap() returned an "
  154. "error %d on %s. Returning error.", error, mp->m_fsname);
  155. return error;
  156. }
  157. /*
  158. * If the inode number maps to a block outside the bounds of the
  159. * file system then return NULL rather than calling read_buf
  160. * and panicing when we get an error from the driver.
  161. */
  162. if ((imap.im_blkno + imap.im_len) >
  163. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  164. cmn_err(CE_WARN,
  165. "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
  166. "of the file system %s. Returning EINVAL.",
  167. (unsigned long long)imap.im_blkno,
  168. imap.im_len, mp->m_fsname);
  169. return XFS_ERROR(EINVAL);
  170. }
  171. /*
  172. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  173. * default to just a read_buf() call.
  174. */
  175. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  176. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  177. if (error) {
  178. cmn_err(CE_WARN,
  179. "xfs_inotobp: xfs_trans_read_buf() returned an "
  180. "error %d on %s. Returning error.", error, mp->m_fsname);
  181. return error;
  182. }
  183. dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
  184. di_ok =
  185. be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
  186. XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
  187. if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
  188. XFS_RANDOM_ITOBP_INOTOBP))) {
  189. XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
  190. xfs_trans_brelse(tp, bp);
  191. cmn_err(CE_WARN,
  192. "xfs_inotobp: XFS_TEST_ERROR() returned an "
  193. "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
  194. return XFS_ERROR(EFSCORRUPTED);
  195. }
  196. xfs_inobp_check(mp, bp);
  197. /*
  198. * Set *dipp to point to the on-disk inode in the buffer.
  199. */
  200. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  201. *bpp = bp;
  202. *offset = imap.im_boffset;
  203. return 0;
  204. }
  205. /*
  206. * This routine is called to map an inode to the buffer containing
  207. * the on-disk version of the inode. It returns a pointer to the
  208. * buffer containing the on-disk inode in the bpp parameter, and in
  209. * the dip parameter it returns a pointer to the on-disk inode within
  210. * that buffer.
  211. *
  212. * If a non-zero error is returned, then the contents of bpp and
  213. * dipp are undefined.
  214. *
  215. * If the inode is new and has not yet been initialized, use xfs_imap()
  216. * to determine the size and location of the buffer to read from disk.
  217. * If the inode has already been mapped to its buffer and read in once,
  218. * then use the mapping information stored in the inode rather than
  219. * calling xfs_imap(). This allows us to avoid the overhead of looking
  220. * at the inode btree for small block file systems (see xfs_dilocate()).
  221. * We can tell whether the inode has been mapped in before by comparing
  222. * its disk block address to 0. Only uninitialized inodes will have
  223. * 0 for the disk block address.
  224. */
  225. int
  226. xfs_itobp(
  227. xfs_mount_t *mp,
  228. xfs_trans_t *tp,
  229. xfs_inode_t *ip,
  230. xfs_dinode_t **dipp,
  231. xfs_buf_t **bpp,
  232. xfs_daddr_t bno,
  233. uint imap_flags)
  234. {
  235. xfs_imap_t imap;
  236. xfs_buf_t *bp;
  237. int error;
  238. int i;
  239. int ni;
  240. if (ip->i_blkno == (xfs_daddr_t)0) {
  241. /*
  242. * Call the space management code to find the location of the
  243. * inode on disk.
  244. */
  245. imap.im_blkno = bno;
  246. if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
  247. XFS_IMAP_LOOKUP | imap_flags)))
  248. return error;
  249. /*
  250. * If the inode number maps to a block outside the bounds
  251. * of the file system then return NULL rather than calling
  252. * read_buf and panicing when we get an error from the
  253. * driver.
  254. */
  255. if ((imap.im_blkno + imap.im_len) >
  256. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  257. #ifdef DEBUG
  258. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  259. "(imap.im_blkno (0x%llx) "
  260. "+ imap.im_len (0x%llx)) > "
  261. " XFS_FSB_TO_BB(mp, "
  262. "mp->m_sb.sb_dblocks) (0x%llx)",
  263. (unsigned long long) imap.im_blkno,
  264. (unsigned long long) imap.im_len,
  265. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  266. #endif /* DEBUG */
  267. return XFS_ERROR(EINVAL);
  268. }
  269. /*
  270. * Fill in the fields in the inode that will be used to
  271. * map the inode to its buffer from now on.
  272. */
  273. ip->i_blkno = imap.im_blkno;
  274. ip->i_len = imap.im_len;
  275. ip->i_boffset = imap.im_boffset;
  276. } else {
  277. /*
  278. * We've already mapped the inode once, so just use the
  279. * mapping that we saved the first time.
  280. */
  281. imap.im_blkno = ip->i_blkno;
  282. imap.im_len = ip->i_len;
  283. imap.im_boffset = ip->i_boffset;
  284. }
  285. ASSERT(bno == 0 || bno == imap.im_blkno);
  286. /*
  287. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  288. * default to just a read_buf() call.
  289. */
  290. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  291. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  292. if (error) {
  293. #ifdef DEBUG
  294. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  295. "xfs_trans_read_buf() returned error %d, "
  296. "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
  297. error, (unsigned long long) imap.im_blkno,
  298. (unsigned long long) imap.im_len);
  299. #endif /* DEBUG */
  300. return error;
  301. }
  302. /*
  303. * Validate the magic number and version of every inode in the buffer
  304. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  305. * No validation is done here in userspace (xfs_repair).
  306. */
  307. #if !defined(__KERNEL__)
  308. ni = 0;
  309. #elif defined(DEBUG)
  310. ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
  311. #else /* usual case */
  312. ni = 1;
  313. #endif
  314. for (i = 0; i < ni; i++) {
  315. int di_ok;
  316. xfs_dinode_t *dip;
  317. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  318. (i << mp->m_sb.sb_inodelog));
  319. di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
  320. XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
  321. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  322. XFS_ERRTAG_ITOBP_INOTOBP,
  323. XFS_RANDOM_ITOBP_INOTOBP))) {
  324. if (imap_flags & XFS_IMAP_BULKSTAT) {
  325. xfs_trans_brelse(tp, bp);
  326. return XFS_ERROR(EINVAL);
  327. }
  328. #ifdef DEBUG
  329. cmn_err(CE_ALERT,
  330. "Device %s - bad inode magic/vsn "
  331. "daddr %lld #%d (magic=%x)",
  332. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  333. (unsigned long long)imap.im_blkno, i,
  334. be16_to_cpu(dip->di_core.di_magic));
  335. #endif
  336. XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
  337. mp, dip);
  338. xfs_trans_brelse(tp, bp);
  339. return XFS_ERROR(EFSCORRUPTED);
  340. }
  341. }
  342. xfs_inobp_check(mp, bp);
  343. /*
  344. * Mark the buffer as an inode buffer now that it looks good
  345. */
  346. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  347. /*
  348. * Set *dipp to point to the on-disk inode in the buffer.
  349. */
  350. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  351. *bpp = bp;
  352. return 0;
  353. }
  354. /*
  355. * Move inode type and inode format specific information from the
  356. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  357. * this means set if_rdev to the proper value. For files, directories,
  358. * and symlinks this means to bring in the in-line data or extent
  359. * pointers. For a file in B-tree format, only the root is immediately
  360. * brought in-core. The rest will be in-lined in if_extents when it
  361. * is first referenced (see xfs_iread_extents()).
  362. */
  363. STATIC int
  364. xfs_iformat(
  365. xfs_inode_t *ip,
  366. xfs_dinode_t *dip)
  367. {
  368. xfs_attr_shortform_t *atp;
  369. int size;
  370. int error;
  371. xfs_fsize_t di_size;
  372. ip->i_df.if_ext_max =
  373. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  374. error = 0;
  375. if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
  376. be16_to_cpu(dip->di_core.di_anextents) >
  377. be64_to_cpu(dip->di_core.di_nblocks))) {
  378. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  379. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  380. (unsigned long long)ip->i_ino,
  381. (int)(be32_to_cpu(dip->di_core.di_nextents) +
  382. be16_to_cpu(dip->di_core.di_anextents)),
  383. (unsigned long long)
  384. be64_to_cpu(dip->di_core.di_nblocks));
  385. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  386. ip->i_mount, dip);
  387. return XFS_ERROR(EFSCORRUPTED);
  388. }
  389. if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  390. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  391. "corrupt dinode %Lu, forkoff = 0x%x.",
  392. (unsigned long long)ip->i_ino,
  393. dip->di_core.di_forkoff);
  394. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  395. ip->i_mount, dip);
  396. return XFS_ERROR(EFSCORRUPTED);
  397. }
  398. switch (ip->i_d.di_mode & S_IFMT) {
  399. case S_IFIFO:
  400. case S_IFCHR:
  401. case S_IFBLK:
  402. case S_IFSOCK:
  403. if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
  404. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  405. ip->i_mount, dip);
  406. return XFS_ERROR(EFSCORRUPTED);
  407. }
  408. ip->i_d.di_size = 0;
  409. ip->i_size = 0;
  410. ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
  411. break;
  412. case S_IFREG:
  413. case S_IFLNK:
  414. case S_IFDIR:
  415. switch (dip->di_core.di_format) {
  416. case XFS_DINODE_FMT_LOCAL:
  417. /*
  418. * no local regular files yet
  419. */
  420. if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
  421. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  422. "corrupt inode %Lu "
  423. "(local format for regular file).",
  424. (unsigned long long) ip->i_ino);
  425. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  426. XFS_ERRLEVEL_LOW,
  427. ip->i_mount, dip);
  428. return XFS_ERROR(EFSCORRUPTED);
  429. }
  430. di_size = be64_to_cpu(dip->di_core.di_size);
  431. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  432. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  433. "corrupt inode %Lu "
  434. "(bad size %Ld for local inode).",
  435. (unsigned long long) ip->i_ino,
  436. (long long) di_size);
  437. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  438. XFS_ERRLEVEL_LOW,
  439. ip->i_mount, dip);
  440. return XFS_ERROR(EFSCORRUPTED);
  441. }
  442. size = (int)di_size;
  443. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  444. break;
  445. case XFS_DINODE_FMT_EXTENTS:
  446. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  447. break;
  448. case XFS_DINODE_FMT_BTREE:
  449. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  450. break;
  451. default:
  452. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  453. ip->i_mount);
  454. return XFS_ERROR(EFSCORRUPTED);
  455. }
  456. break;
  457. default:
  458. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  459. return XFS_ERROR(EFSCORRUPTED);
  460. }
  461. if (error) {
  462. return error;
  463. }
  464. if (!XFS_DFORK_Q(dip))
  465. return 0;
  466. ASSERT(ip->i_afp == NULL);
  467. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  468. ip->i_afp->if_ext_max =
  469. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  470. switch (dip->di_core.di_aformat) {
  471. case XFS_DINODE_FMT_LOCAL:
  472. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  473. size = be16_to_cpu(atp->hdr.totsize);
  474. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  475. break;
  476. case XFS_DINODE_FMT_EXTENTS:
  477. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  478. break;
  479. case XFS_DINODE_FMT_BTREE:
  480. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  481. break;
  482. default:
  483. error = XFS_ERROR(EFSCORRUPTED);
  484. break;
  485. }
  486. if (error) {
  487. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  488. ip->i_afp = NULL;
  489. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  490. }
  491. return error;
  492. }
  493. /*
  494. * The file is in-lined in the on-disk inode.
  495. * If it fits into if_inline_data, then copy
  496. * it there, otherwise allocate a buffer for it
  497. * and copy the data there. Either way, set
  498. * if_data to point at the data.
  499. * If we allocate a buffer for the data, make
  500. * sure that its size is a multiple of 4 and
  501. * record the real size in i_real_bytes.
  502. */
  503. STATIC int
  504. xfs_iformat_local(
  505. xfs_inode_t *ip,
  506. xfs_dinode_t *dip,
  507. int whichfork,
  508. int size)
  509. {
  510. xfs_ifork_t *ifp;
  511. int real_size;
  512. /*
  513. * If the size is unreasonable, then something
  514. * is wrong and we just bail out rather than crash in
  515. * kmem_alloc() or memcpy() below.
  516. */
  517. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  518. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  519. "corrupt inode %Lu "
  520. "(bad size %d for local fork, size = %d).",
  521. (unsigned long long) ip->i_ino, size,
  522. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  523. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  524. ip->i_mount, dip);
  525. return XFS_ERROR(EFSCORRUPTED);
  526. }
  527. ifp = XFS_IFORK_PTR(ip, whichfork);
  528. real_size = 0;
  529. if (size == 0)
  530. ifp->if_u1.if_data = NULL;
  531. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  532. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  533. else {
  534. real_size = roundup(size, 4);
  535. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  536. }
  537. ifp->if_bytes = size;
  538. ifp->if_real_bytes = real_size;
  539. if (size)
  540. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  541. ifp->if_flags &= ~XFS_IFEXTENTS;
  542. ifp->if_flags |= XFS_IFINLINE;
  543. return 0;
  544. }
  545. /*
  546. * The file consists of a set of extents all
  547. * of which fit into the on-disk inode.
  548. * If there are few enough extents to fit into
  549. * the if_inline_ext, then copy them there.
  550. * Otherwise allocate a buffer for them and copy
  551. * them into it. Either way, set if_extents
  552. * to point at the extents.
  553. */
  554. STATIC int
  555. xfs_iformat_extents(
  556. xfs_inode_t *ip,
  557. xfs_dinode_t *dip,
  558. int whichfork)
  559. {
  560. xfs_bmbt_rec_t *dp;
  561. xfs_ifork_t *ifp;
  562. int nex;
  563. int size;
  564. int i;
  565. ifp = XFS_IFORK_PTR(ip, whichfork);
  566. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  567. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  568. /*
  569. * If the number of extents is unreasonable, then something
  570. * is wrong and we just bail out rather than crash in
  571. * kmem_alloc() or memcpy() below.
  572. */
  573. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  574. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  575. "corrupt inode %Lu ((a)extents = %d).",
  576. (unsigned long long) ip->i_ino, nex);
  577. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  578. ip->i_mount, dip);
  579. return XFS_ERROR(EFSCORRUPTED);
  580. }
  581. ifp->if_real_bytes = 0;
  582. if (nex == 0)
  583. ifp->if_u1.if_extents = NULL;
  584. else if (nex <= XFS_INLINE_EXTS)
  585. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  586. else
  587. xfs_iext_add(ifp, 0, nex);
  588. ifp->if_bytes = size;
  589. if (size) {
  590. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  591. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  592. for (i = 0; i < nex; i++, dp++) {
  593. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  594. ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
  595. ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
  596. }
  597. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  598. if (whichfork != XFS_DATA_FORK ||
  599. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  600. if (unlikely(xfs_check_nostate_extents(
  601. ifp, 0, nex))) {
  602. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  603. XFS_ERRLEVEL_LOW,
  604. ip->i_mount);
  605. return XFS_ERROR(EFSCORRUPTED);
  606. }
  607. }
  608. ifp->if_flags |= XFS_IFEXTENTS;
  609. return 0;
  610. }
  611. /*
  612. * The file has too many extents to fit into
  613. * the inode, so they are in B-tree format.
  614. * Allocate a buffer for the root of the B-tree
  615. * and copy the root into it. The i_extents
  616. * field will remain NULL until all of the
  617. * extents are read in (when they are needed).
  618. */
  619. STATIC int
  620. xfs_iformat_btree(
  621. xfs_inode_t *ip,
  622. xfs_dinode_t *dip,
  623. int whichfork)
  624. {
  625. xfs_bmdr_block_t *dfp;
  626. xfs_ifork_t *ifp;
  627. /* REFERENCED */
  628. int nrecs;
  629. int size;
  630. ifp = XFS_IFORK_PTR(ip, whichfork);
  631. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  632. size = XFS_BMAP_BROOT_SPACE(dfp);
  633. nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
  634. /*
  635. * blow out if -- fork has less extents than can fit in
  636. * fork (fork shouldn't be a btree format), root btree
  637. * block has more records than can fit into the fork,
  638. * or the number of extents is greater than the number of
  639. * blocks.
  640. */
  641. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  642. || XFS_BMDR_SPACE_CALC(nrecs) >
  643. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  644. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  645. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  646. "corrupt inode %Lu (btree).",
  647. (unsigned long long) ip->i_ino);
  648. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  649. ip->i_mount);
  650. return XFS_ERROR(EFSCORRUPTED);
  651. }
  652. ifp->if_broot_bytes = size;
  653. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  654. ASSERT(ifp->if_broot != NULL);
  655. /*
  656. * Copy and convert from the on-disk structure
  657. * to the in-memory structure.
  658. */
  659. xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  660. ifp->if_broot, size);
  661. ifp->if_flags &= ~XFS_IFEXTENTS;
  662. ifp->if_flags |= XFS_IFBROOT;
  663. return 0;
  664. }
  665. void
  666. xfs_dinode_from_disk(
  667. xfs_icdinode_t *to,
  668. xfs_dinode_core_t *from)
  669. {
  670. to->di_magic = be16_to_cpu(from->di_magic);
  671. to->di_mode = be16_to_cpu(from->di_mode);
  672. to->di_version = from ->di_version;
  673. to->di_format = from->di_format;
  674. to->di_onlink = be16_to_cpu(from->di_onlink);
  675. to->di_uid = be32_to_cpu(from->di_uid);
  676. to->di_gid = be32_to_cpu(from->di_gid);
  677. to->di_nlink = be32_to_cpu(from->di_nlink);
  678. to->di_projid = be16_to_cpu(from->di_projid);
  679. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  680. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  681. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  682. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  683. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  684. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  685. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  686. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  687. to->di_size = be64_to_cpu(from->di_size);
  688. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  689. to->di_extsize = be32_to_cpu(from->di_extsize);
  690. to->di_nextents = be32_to_cpu(from->di_nextents);
  691. to->di_anextents = be16_to_cpu(from->di_anextents);
  692. to->di_forkoff = from->di_forkoff;
  693. to->di_aformat = from->di_aformat;
  694. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  695. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  696. to->di_flags = be16_to_cpu(from->di_flags);
  697. to->di_gen = be32_to_cpu(from->di_gen);
  698. }
  699. void
  700. xfs_dinode_to_disk(
  701. xfs_dinode_core_t *to,
  702. xfs_icdinode_t *from)
  703. {
  704. to->di_magic = cpu_to_be16(from->di_magic);
  705. to->di_mode = cpu_to_be16(from->di_mode);
  706. to->di_version = from ->di_version;
  707. to->di_format = from->di_format;
  708. to->di_onlink = cpu_to_be16(from->di_onlink);
  709. to->di_uid = cpu_to_be32(from->di_uid);
  710. to->di_gid = cpu_to_be32(from->di_gid);
  711. to->di_nlink = cpu_to_be32(from->di_nlink);
  712. to->di_projid = cpu_to_be16(from->di_projid);
  713. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  714. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  715. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  716. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  717. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  718. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  719. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  720. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  721. to->di_size = cpu_to_be64(from->di_size);
  722. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  723. to->di_extsize = cpu_to_be32(from->di_extsize);
  724. to->di_nextents = cpu_to_be32(from->di_nextents);
  725. to->di_anextents = cpu_to_be16(from->di_anextents);
  726. to->di_forkoff = from->di_forkoff;
  727. to->di_aformat = from->di_aformat;
  728. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  729. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  730. to->di_flags = cpu_to_be16(from->di_flags);
  731. to->di_gen = cpu_to_be32(from->di_gen);
  732. }
  733. STATIC uint
  734. _xfs_dic2xflags(
  735. __uint16_t di_flags)
  736. {
  737. uint flags = 0;
  738. if (di_flags & XFS_DIFLAG_ANY) {
  739. if (di_flags & XFS_DIFLAG_REALTIME)
  740. flags |= XFS_XFLAG_REALTIME;
  741. if (di_flags & XFS_DIFLAG_PREALLOC)
  742. flags |= XFS_XFLAG_PREALLOC;
  743. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  744. flags |= XFS_XFLAG_IMMUTABLE;
  745. if (di_flags & XFS_DIFLAG_APPEND)
  746. flags |= XFS_XFLAG_APPEND;
  747. if (di_flags & XFS_DIFLAG_SYNC)
  748. flags |= XFS_XFLAG_SYNC;
  749. if (di_flags & XFS_DIFLAG_NOATIME)
  750. flags |= XFS_XFLAG_NOATIME;
  751. if (di_flags & XFS_DIFLAG_NODUMP)
  752. flags |= XFS_XFLAG_NODUMP;
  753. if (di_flags & XFS_DIFLAG_RTINHERIT)
  754. flags |= XFS_XFLAG_RTINHERIT;
  755. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  756. flags |= XFS_XFLAG_PROJINHERIT;
  757. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  758. flags |= XFS_XFLAG_NOSYMLINKS;
  759. if (di_flags & XFS_DIFLAG_EXTSIZE)
  760. flags |= XFS_XFLAG_EXTSIZE;
  761. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  762. flags |= XFS_XFLAG_EXTSZINHERIT;
  763. if (di_flags & XFS_DIFLAG_NODEFRAG)
  764. flags |= XFS_XFLAG_NODEFRAG;
  765. if (di_flags & XFS_DIFLAG_FILESTREAM)
  766. flags |= XFS_XFLAG_FILESTREAM;
  767. }
  768. return flags;
  769. }
  770. uint
  771. xfs_ip2xflags(
  772. xfs_inode_t *ip)
  773. {
  774. xfs_icdinode_t *dic = &ip->i_d;
  775. return _xfs_dic2xflags(dic->di_flags) |
  776. (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
  777. }
  778. uint
  779. xfs_dic2xflags(
  780. xfs_dinode_core_t *dic)
  781. {
  782. return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
  783. (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
  784. }
  785. /*
  786. * Given a mount structure and an inode number, return a pointer
  787. * to a newly allocated in-core inode corresponding to the given
  788. * inode number.
  789. *
  790. * Initialize the inode's attributes and extent pointers if it
  791. * already has them (it will not if the inode has no links).
  792. */
  793. int
  794. xfs_iread(
  795. xfs_mount_t *mp,
  796. xfs_trans_t *tp,
  797. xfs_ino_t ino,
  798. xfs_inode_t **ipp,
  799. xfs_daddr_t bno,
  800. uint imap_flags)
  801. {
  802. xfs_buf_t *bp;
  803. xfs_dinode_t *dip;
  804. xfs_inode_t *ip;
  805. int error;
  806. ASSERT(xfs_inode_zone != NULL);
  807. ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
  808. ip->i_ino = ino;
  809. ip->i_mount = mp;
  810. atomic_set(&ip->i_iocount, 0);
  811. spin_lock_init(&ip->i_flags_lock);
  812. /*
  813. * Get pointer's to the on-disk inode and the buffer containing it.
  814. * If the inode number refers to a block outside the file system
  815. * then xfs_itobp() will return NULL. In this case we should
  816. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  817. * know that this is a new incore inode.
  818. */
  819. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
  820. if (error) {
  821. kmem_zone_free(xfs_inode_zone, ip);
  822. return error;
  823. }
  824. /*
  825. * Initialize inode's trace buffers.
  826. * Do this before xfs_iformat in case it adds entries.
  827. */
  828. #ifdef XFS_INODE_TRACE
  829. ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_SLEEP);
  830. #endif
  831. #ifdef XFS_BMAP_TRACE
  832. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
  833. #endif
  834. #ifdef XFS_BMBT_TRACE
  835. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
  836. #endif
  837. #ifdef XFS_RW_TRACE
  838. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
  839. #endif
  840. #ifdef XFS_ILOCK_TRACE
  841. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
  842. #endif
  843. #ifdef XFS_DIR2_TRACE
  844. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
  845. #endif
  846. /*
  847. * If we got something that isn't an inode it means someone
  848. * (nfs or dmi) has a stale handle.
  849. */
  850. if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
  851. kmem_zone_free(xfs_inode_zone, ip);
  852. xfs_trans_brelse(tp, bp);
  853. #ifdef DEBUG
  854. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  855. "dip->di_core.di_magic (0x%x) != "
  856. "XFS_DINODE_MAGIC (0x%x)",
  857. be16_to_cpu(dip->di_core.di_magic),
  858. XFS_DINODE_MAGIC);
  859. #endif /* DEBUG */
  860. return XFS_ERROR(EINVAL);
  861. }
  862. /*
  863. * If the on-disk inode is already linked to a directory
  864. * entry, copy all of the inode into the in-core inode.
  865. * xfs_iformat() handles copying in the inode format
  866. * specific information.
  867. * Otherwise, just get the truly permanent information.
  868. */
  869. if (dip->di_core.di_mode) {
  870. xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
  871. error = xfs_iformat(ip, dip);
  872. if (error) {
  873. kmem_zone_free(xfs_inode_zone, ip);
  874. xfs_trans_brelse(tp, bp);
  875. #ifdef DEBUG
  876. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  877. "xfs_iformat() returned error %d",
  878. error);
  879. #endif /* DEBUG */
  880. return error;
  881. }
  882. } else {
  883. ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
  884. ip->i_d.di_version = dip->di_core.di_version;
  885. ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
  886. ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
  887. /*
  888. * Make sure to pull in the mode here as well in
  889. * case the inode is released without being used.
  890. * This ensures that xfs_inactive() will see that
  891. * the inode is already free and not try to mess
  892. * with the uninitialized part of it.
  893. */
  894. ip->i_d.di_mode = 0;
  895. /*
  896. * Initialize the per-fork minima and maxima for a new
  897. * inode here. xfs_iformat will do it for old inodes.
  898. */
  899. ip->i_df.if_ext_max =
  900. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  901. }
  902. INIT_LIST_HEAD(&ip->i_reclaim);
  903. /*
  904. * The inode format changed when we moved the link count and
  905. * made it 32 bits long. If this is an old format inode,
  906. * convert it in memory to look like a new one. If it gets
  907. * flushed to disk we will convert back before flushing or
  908. * logging it. We zero out the new projid field and the old link
  909. * count field. We'll handle clearing the pad field (the remains
  910. * of the old uuid field) when we actually convert the inode to
  911. * the new format. We don't change the version number so that we
  912. * can distinguish this from a real new format inode.
  913. */
  914. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  915. ip->i_d.di_nlink = ip->i_d.di_onlink;
  916. ip->i_d.di_onlink = 0;
  917. ip->i_d.di_projid = 0;
  918. }
  919. ip->i_delayed_blks = 0;
  920. ip->i_size = ip->i_d.di_size;
  921. /*
  922. * Mark the buffer containing the inode as something to keep
  923. * around for a while. This helps to keep recently accessed
  924. * meta-data in-core longer.
  925. */
  926. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  927. /*
  928. * Use xfs_trans_brelse() to release the buffer containing the
  929. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  930. * in xfs_itobp() above. If tp is NULL, this is just a normal
  931. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  932. * will only release the buffer if it is not dirty within the
  933. * transaction. It will be OK to release the buffer in this case,
  934. * because inodes on disk are never destroyed and we will be
  935. * locking the new in-core inode before putting it in the hash
  936. * table where other processes can find it. Thus we don't have
  937. * to worry about the inode being changed just because we released
  938. * the buffer.
  939. */
  940. xfs_trans_brelse(tp, bp);
  941. *ipp = ip;
  942. return 0;
  943. }
  944. /*
  945. * Read in extents from a btree-format inode.
  946. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  947. */
  948. int
  949. xfs_iread_extents(
  950. xfs_trans_t *tp,
  951. xfs_inode_t *ip,
  952. int whichfork)
  953. {
  954. int error;
  955. xfs_ifork_t *ifp;
  956. xfs_extnum_t nextents;
  957. size_t size;
  958. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  959. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  960. ip->i_mount);
  961. return XFS_ERROR(EFSCORRUPTED);
  962. }
  963. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  964. size = nextents * sizeof(xfs_bmbt_rec_t);
  965. ifp = XFS_IFORK_PTR(ip, whichfork);
  966. /*
  967. * We know that the size is valid (it's checked in iformat_btree)
  968. */
  969. ifp->if_lastex = NULLEXTNUM;
  970. ifp->if_bytes = ifp->if_real_bytes = 0;
  971. ifp->if_flags |= XFS_IFEXTENTS;
  972. xfs_iext_add(ifp, 0, nextents);
  973. error = xfs_bmap_read_extents(tp, ip, whichfork);
  974. if (error) {
  975. xfs_iext_destroy(ifp);
  976. ifp->if_flags &= ~XFS_IFEXTENTS;
  977. return error;
  978. }
  979. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  980. return 0;
  981. }
  982. /*
  983. * Allocate an inode on disk and return a copy of its in-core version.
  984. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  985. * appropriately within the inode. The uid and gid for the inode are
  986. * set according to the contents of the given cred structure.
  987. *
  988. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  989. * has a free inode available, call xfs_iget()
  990. * to obtain the in-core version of the allocated inode. Finally,
  991. * fill in the inode and log its initial contents. In this case,
  992. * ialloc_context would be set to NULL and call_again set to false.
  993. *
  994. * If xfs_dialloc() does not have an available inode,
  995. * it will replenish its supply by doing an allocation. Since we can
  996. * only do one allocation within a transaction without deadlocks, we
  997. * must commit the current transaction before returning the inode itself.
  998. * In this case, therefore, we will set call_again to true and return.
  999. * The caller should then commit the current transaction, start a new
  1000. * transaction, and call xfs_ialloc() again to actually get the inode.
  1001. *
  1002. * To ensure that some other process does not grab the inode that
  1003. * was allocated during the first call to xfs_ialloc(), this routine
  1004. * also returns the [locked] bp pointing to the head of the freelist
  1005. * as ialloc_context. The caller should hold this buffer across
  1006. * the commit and pass it back into this routine on the second call.
  1007. *
  1008. * If we are allocating quota inodes, we do not have a parent inode
  1009. * to attach to or associate with (i.e. pip == NULL) because they
  1010. * are not linked into the directory structure - they are attached
  1011. * directly to the superblock - and so have no parent.
  1012. */
  1013. int
  1014. xfs_ialloc(
  1015. xfs_trans_t *tp,
  1016. xfs_inode_t *pip,
  1017. mode_t mode,
  1018. xfs_nlink_t nlink,
  1019. xfs_dev_t rdev,
  1020. cred_t *cr,
  1021. xfs_prid_t prid,
  1022. int okalloc,
  1023. xfs_buf_t **ialloc_context,
  1024. boolean_t *call_again,
  1025. xfs_inode_t **ipp)
  1026. {
  1027. xfs_ino_t ino;
  1028. xfs_inode_t *ip;
  1029. bhv_vnode_t *vp;
  1030. uint flags;
  1031. int error;
  1032. /*
  1033. * Call the space management code to pick
  1034. * the on-disk inode to be allocated.
  1035. */
  1036. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  1037. ialloc_context, call_again, &ino);
  1038. if (error != 0) {
  1039. return error;
  1040. }
  1041. if (*call_again || ino == NULLFSINO) {
  1042. *ipp = NULL;
  1043. return 0;
  1044. }
  1045. ASSERT(*ialloc_context == NULL);
  1046. /*
  1047. * Get the in-core inode with the lock held exclusively.
  1048. * This is because we're setting fields here we need
  1049. * to prevent others from looking at until we're done.
  1050. */
  1051. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  1052. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  1053. if (error != 0) {
  1054. return error;
  1055. }
  1056. ASSERT(ip != NULL);
  1057. vp = XFS_ITOV(ip);
  1058. ip->i_d.di_mode = (__uint16_t)mode;
  1059. ip->i_d.di_onlink = 0;
  1060. ip->i_d.di_nlink = nlink;
  1061. ASSERT(ip->i_d.di_nlink == nlink);
  1062. ip->i_d.di_uid = current_fsuid(cr);
  1063. ip->i_d.di_gid = current_fsgid(cr);
  1064. ip->i_d.di_projid = prid;
  1065. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1066. /*
  1067. * If the superblock version is up to where we support new format
  1068. * inodes and this is currently an old format inode, then change
  1069. * the inode version number now. This way we only do the conversion
  1070. * here rather than here and in the flush/logging code.
  1071. */
  1072. if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
  1073. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1074. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1075. /*
  1076. * We've already zeroed the old link count, the projid field,
  1077. * and the pad field.
  1078. */
  1079. }
  1080. /*
  1081. * Project ids won't be stored on disk if we are using a version 1 inode.
  1082. */
  1083. if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1084. xfs_bump_ino_vers2(tp, ip);
  1085. if (pip && XFS_INHERIT_GID(pip)) {
  1086. ip->i_d.di_gid = pip->i_d.di_gid;
  1087. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1088. ip->i_d.di_mode |= S_ISGID;
  1089. }
  1090. }
  1091. /*
  1092. * If the group ID of the new file does not match the effective group
  1093. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1094. * (and only if the irix_sgid_inherit compatibility variable is set).
  1095. */
  1096. if ((irix_sgid_inherit) &&
  1097. (ip->i_d.di_mode & S_ISGID) &&
  1098. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1099. ip->i_d.di_mode &= ~S_ISGID;
  1100. }
  1101. ip->i_d.di_size = 0;
  1102. ip->i_size = 0;
  1103. ip->i_d.di_nextents = 0;
  1104. ASSERT(ip->i_d.di_nblocks == 0);
  1105. xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
  1106. /*
  1107. * di_gen will have been taken care of in xfs_iread.
  1108. */
  1109. ip->i_d.di_extsize = 0;
  1110. ip->i_d.di_dmevmask = 0;
  1111. ip->i_d.di_dmstate = 0;
  1112. ip->i_d.di_flags = 0;
  1113. flags = XFS_ILOG_CORE;
  1114. switch (mode & S_IFMT) {
  1115. case S_IFIFO:
  1116. case S_IFCHR:
  1117. case S_IFBLK:
  1118. case S_IFSOCK:
  1119. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1120. ip->i_df.if_u2.if_rdev = rdev;
  1121. ip->i_df.if_flags = 0;
  1122. flags |= XFS_ILOG_DEV;
  1123. break;
  1124. case S_IFREG:
  1125. if (pip && xfs_inode_is_filestream(pip)) {
  1126. error = xfs_filestream_associate(pip, ip);
  1127. if (error < 0)
  1128. return -error;
  1129. if (!error)
  1130. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1131. }
  1132. /* fall through */
  1133. case S_IFDIR:
  1134. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1135. uint di_flags = 0;
  1136. if ((mode & S_IFMT) == S_IFDIR) {
  1137. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1138. di_flags |= XFS_DIFLAG_RTINHERIT;
  1139. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1140. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1141. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1142. }
  1143. } else if ((mode & S_IFMT) == S_IFREG) {
  1144. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1145. di_flags |= XFS_DIFLAG_REALTIME;
  1146. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1147. di_flags |= XFS_DIFLAG_EXTSIZE;
  1148. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1149. }
  1150. }
  1151. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1152. xfs_inherit_noatime)
  1153. di_flags |= XFS_DIFLAG_NOATIME;
  1154. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1155. xfs_inherit_nodump)
  1156. di_flags |= XFS_DIFLAG_NODUMP;
  1157. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1158. xfs_inherit_sync)
  1159. di_flags |= XFS_DIFLAG_SYNC;
  1160. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1161. xfs_inherit_nosymlinks)
  1162. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1163. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1164. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1165. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1166. xfs_inherit_nodefrag)
  1167. di_flags |= XFS_DIFLAG_NODEFRAG;
  1168. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1169. di_flags |= XFS_DIFLAG_FILESTREAM;
  1170. ip->i_d.di_flags |= di_flags;
  1171. }
  1172. /* FALLTHROUGH */
  1173. case S_IFLNK:
  1174. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1175. ip->i_df.if_flags = XFS_IFEXTENTS;
  1176. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1177. ip->i_df.if_u1.if_extents = NULL;
  1178. break;
  1179. default:
  1180. ASSERT(0);
  1181. }
  1182. /*
  1183. * Attribute fork settings for new inode.
  1184. */
  1185. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1186. ip->i_d.di_anextents = 0;
  1187. /*
  1188. * Log the new values stuffed into the inode.
  1189. */
  1190. xfs_trans_log_inode(tp, ip, flags);
  1191. /* now that we have an i_mode we can setup inode ops and unlock */
  1192. xfs_initialize_vnode(tp->t_mountp, vp, ip);
  1193. *ipp = ip;
  1194. return 0;
  1195. }
  1196. /*
  1197. * Check to make sure that there are no blocks allocated to the
  1198. * file beyond the size of the file. We don't check this for
  1199. * files with fixed size extents or real time extents, but we
  1200. * at least do it for regular files.
  1201. */
  1202. #ifdef DEBUG
  1203. void
  1204. xfs_isize_check(
  1205. xfs_mount_t *mp,
  1206. xfs_inode_t *ip,
  1207. xfs_fsize_t isize)
  1208. {
  1209. xfs_fileoff_t map_first;
  1210. int nimaps;
  1211. xfs_bmbt_irec_t imaps[2];
  1212. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1213. return;
  1214. if (XFS_IS_REALTIME_INODE(ip))
  1215. return;
  1216. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1217. return;
  1218. nimaps = 2;
  1219. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1220. /*
  1221. * The filesystem could be shutting down, so bmapi may return
  1222. * an error.
  1223. */
  1224. if (xfs_bmapi(NULL, ip, map_first,
  1225. (XFS_B_TO_FSB(mp,
  1226. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1227. map_first),
  1228. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1229. NULL, NULL))
  1230. return;
  1231. ASSERT(nimaps == 1);
  1232. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1233. }
  1234. #endif /* DEBUG */
  1235. /*
  1236. * Calculate the last possible buffered byte in a file. This must
  1237. * include data that was buffered beyond the EOF by the write code.
  1238. * This also needs to deal with overflowing the xfs_fsize_t type
  1239. * which can happen for sizes near the limit.
  1240. *
  1241. * We also need to take into account any blocks beyond the EOF. It
  1242. * may be the case that they were buffered by a write which failed.
  1243. * In that case the pages will still be in memory, but the inode size
  1244. * will never have been updated.
  1245. */
  1246. xfs_fsize_t
  1247. xfs_file_last_byte(
  1248. xfs_inode_t *ip)
  1249. {
  1250. xfs_mount_t *mp;
  1251. xfs_fsize_t last_byte;
  1252. xfs_fileoff_t last_block;
  1253. xfs_fileoff_t size_last_block;
  1254. int error;
  1255. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
  1256. mp = ip->i_mount;
  1257. /*
  1258. * Only check for blocks beyond the EOF if the extents have
  1259. * been read in. This eliminates the need for the inode lock,
  1260. * and it also saves us from looking when it really isn't
  1261. * necessary.
  1262. */
  1263. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1264. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1265. XFS_DATA_FORK);
  1266. if (error) {
  1267. last_block = 0;
  1268. }
  1269. } else {
  1270. last_block = 0;
  1271. }
  1272. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1273. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1274. last_byte = XFS_FSB_TO_B(mp, last_block);
  1275. if (last_byte < 0) {
  1276. return XFS_MAXIOFFSET(mp);
  1277. }
  1278. last_byte += (1 << mp->m_writeio_log);
  1279. if (last_byte < 0) {
  1280. return XFS_MAXIOFFSET(mp);
  1281. }
  1282. return last_byte;
  1283. }
  1284. #if defined(XFS_RW_TRACE)
  1285. STATIC void
  1286. xfs_itrunc_trace(
  1287. int tag,
  1288. xfs_inode_t *ip,
  1289. int flag,
  1290. xfs_fsize_t new_size,
  1291. xfs_off_t toss_start,
  1292. xfs_off_t toss_finish)
  1293. {
  1294. if (ip->i_rwtrace == NULL) {
  1295. return;
  1296. }
  1297. ktrace_enter(ip->i_rwtrace,
  1298. (void*)((long)tag),
  1299. (void*)ip,
  1300. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1301. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1302. (void*)((long)flag),
  1303. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1304. (void*)(unsigned long)(new_size & 0xffffffff),
  1305. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1306. (void*)(unsigned long)(toss_start & 0xffffffff),
  1307. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1308. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1309. (void*)(unsigned long)current_cpu(),
  1310. (void*)(unsigned long)current_pid(),
  1311. (void*)NULL,
  1312. (void*)NULL,
  1313. (void*)NULL);
  1314. }
  1315. #else
  1316. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1317. #endif
  1318. /*
  1319. * Start the truncation of the file to new_size. The new size
  1320. * must be smaller than the current size. This routine will
  1321. * clear the buffer and page caches of file data in the removed
  1322. * range, and xfs_itruncate_finish() will remove the underlying
  1323. * disk blocks.
  1324. *
  1325. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1326. * must NOT have the inode lock held at all. This is because we're
  1327. * calling into the buffer/page cache code and we can't hold the
  1328. * inode lock when we do so.
  1329. *
  1330. * We need to wait for any direct I/Os in flight to complete before we
  1331. * proceed with the truncate. This is needed to prevent the extents
  1332. * being read or written by the direct I/Os from being removed while the
  1333. * I/O is in flight as there is no other method of synchronising
  1334. * direct I/O with the truncate operation. Also, because we hold
  1335. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1336. * started until the truncate completes and drops the lock. Essentially,
  1337. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1338. * between direct I/Os and the truncate operation.
  1339. *
  1340. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1341. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1342. * in the case that the caller is locking things out of order and
  1343. * may not be able to call xfs_itruncate_finish() with the inode lock
  1344. * held without dropping the I/O lock. If the caller must drop the
  1345. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1346. * must be called again with all the same restrictions as the initial
  1347. * call.
  1348. */
  1349. int
  1350. xfs_itruncate_start(
  1351. xfs_inode_t *ip,
  1352. uint flags,
  1353. xfs_fsize_t new_size)
  1354. {
  1355. xfs_fsize_t last_byte;
  1356. xfs_off_t toss_start;
  1357. xfs_mount_t *mp;
  1358. bhv_vnode_t *vp;
  1359. int error = 0;
  1360. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1361. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1362. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1363. (flags == XFS_ITRUNC_MAYBE));
  1364. mp = ip->i_mount;
  1365. vp = XFS_ITOV(ip);
  1366. /* wait for the completion of any pending DIOs */
  1367. if (new_size < ip->i_size)
  1368. vn_iowait(ip);
  1369. /*
  1370. * Call toss_pages or flushinval_pages to get rid of pages
  1371. * overlapping the region being removed. We have to use
  1372. * the less efficient flushinval_pages in the case that the
  1373. * caller may not be able to finish the truncate without
  1374. * dropping the inode's I/O lock. Make sure
  1375. * to catch any pages brought in by buffers overlapping
  1376. * the EOF by searching out beyond the isize by our
  1377. * block size. We round new_size up to a block boundary
  1378. * so that we don't toss things on the same block as
  1379. * new_size but before it.
  1380. *
  1381. * Before calling toss_page or flushinval_pages, make sure to
  1382. * call remapf() over the same region if the file is mapped.
  1383. * This frees up mapped file references to the pages in the
  1384. * given range and for the flushinval_pages case it ensures
  1385. * that we get the latest mapped changes flushed out.
  1386. */
  1387. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1388. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1389. if (toss_start < 0) {
  1390. /*
  1391. * The place to start tossing is beyond our maximum
  1392. * file size, so there is no way that the data extended
  1393. * out there.
  1394. */
  1395. return 0;
  1396. }
  1397. last_byte = xfs_file_last_byte(ip);
  1398. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1399. last_byte);
  1400. if (last_byte > toss_start) {
  1401. if (flags & XFS_ITRUNC_DEFINITE) {
  1402. xfs_tosspages(ip, toss_start,
  1403. -1, FI_REMAPF_LOCKED);
  1404. } else {
  1405. error = xfs_flushinval_pages(ip, toss_start,
  1406. -1, FI_REMAPF_LOCKED);
  1407. }
  1408. }
  1409. #ifdef DEBUG
  1410. if (new_size == 0) {
  1411. ASSERT(VN_CACHED(vp) == 0);
  1412. }
  1413. #endif
  1414. return error;
  1415. }
  1416. /*
  1417. * Shrink the file to the given new_size. The new
  1418. * size must be smaller than the current size.
  1419. * This will free up the underlying blocks
  1420. * in the removed range after a call to xfs_itruncate_start()
  1421. * or xfs_atruncate_start().
  1422. *
  1423. * The transaction passed to this routine must have made
  1424. * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
  1425. * This routine may commit the given transaction and
  1426. * start new ones, so make sure everything involved in
  1427. * the transaction is tidy before calling here.
  1428. * Some transaction will be returned to the caller to be
  1429. * committed. The incoming transaction must already include
  1430. * the inode, and both inode locks must be held exclusively.
  1431. * The inode must also be "held" within the transaction. On
  1432. * return the inode will be "held" within the returned transaction.
  1433. * This routine does NOT require any disk space to be reserved
  1434. * for it within the transaction.
  1435. *
  1436. * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
  1437. * and it indicates the fork which is to be truncated. For the
  1438. * attribute fork we only support truncation to size 0.
  1439. *
  1440. * We use the sync parameter to indicate whether or not the first
  1441. * transaction we perform might have to be synchronous. For the attr fork,
  1442. * it needs to be so if the unlink of the inode is not yet known to be
  1443. * permanent in the log. This keeps us from freeing and reusing the
  1444. * blocks of the attribute fork before the unlink of the inode becomes
  1445. * permanent.
  1446. *
  1447. * For the data fork, we normally have to run synchronously if we're
  1448. * being called out of the inactive path or we're being called
  1449. * out of the create path where we're truncating an existing file.
  1450. * Either way, the truncate needs to be sync so blocks don't reappear
  1451. * in the file with altered data in case of a crash. wsync filesystems
  1452. * can run the first case async because anything that shrinks the inode
  1453. * has to run sync so by the time we're called here from inactive, the
  1454. * inode size is permanently set to 0.
  1455. *
  1456. * Calls from the truncate path always need to be sync unless we're
  1457. * in a wsync filesystem and the file has already been unlinked.
  1458. *
  1459. * The caller is responsible for correctly setting the sync parameter.
  1460. * It gets too hard for us to guess here which path we're being called
  1461. * out of just based on inode state.
  1462. */
  1463. int
  1464. xfs_itruncate_finish(
  1465. xfs_trans_t **tp,
  1466. xfs_inode_t *ip,
  1467. xfs_fsize_t new_size,
  1468. int fork,
  1469. int sync)
  1470. {
  1471. xfs_fsblock_t first_block;
  1472. xfs_fileoff_t first_unmap_block;
  1473. xfs_fileoff_t last_block;
  1474. xfs_filblks_t unmap_len=0;
  1475. xfs_mount_t *mp;
  1476. xfs_trans_t *ntp;
  1477. int done;
  1478. int committed;
  1479. xfs_bmap_free_t free_list;
  1480. int error;
  1481. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1482. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
  1483. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1484. ASSERT(*tp != NULL);
  1485. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1486. ASSERT(ip->i_transp == *tp);
  1487. ASSERT(ip->i_itemp != NULL);
  1488. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1489. ntp = *tp;
  1490. mp = (ntp)->t_mountp;
  1491. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1492. /*
  1493. * We only support truncating the entire attribute fork.
  1494. */
  1495. if (fork == XFS_ATTR_FORK) {
  1496. new_size = 0LL;
  1497. }
  1498. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1499. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1500. /*
  1501. * The first thing we do is set the size to new_size permanently
  1502. * on disk. This way we don't have to worry about anyone ever
  1503. * being able to look at the data being freed even in the face
  1504. * of a crash. What we're getting around here is the case where
  1505. * we free a block, it is allocated to another file, it is written
  1506. * to, and then we crash. If the new data gets written to the
  1507. * file but the log buffers containing the free and reallocation
  1508. * don't, then we'd end up with garbage in the blocks being freed.
  1509. * As long as we make the new_size permanent before actually
  1510. * freeing any blocks it doesn't matter if they get writtten to.
  1511. *
  1512. * The callers must signal into us whether or not the size
  1513. * setting here must be synchronous. There are a few cases
  1514. * where it doesn't have to be synchronous. Those cases
  1515. * occur if the file is unlinked and we know the unlink is
  1516. * permanent or if the blocks being truncated are guaranteed
  1517. * to be beyond the inode eof (regardless of the link count)
  1518. * and the eof value is permanent. Both of these cases occur
  1519. * only on wsync-mounted filesystems. In those cases, we're
  1520. * guaranteed that no user will ever see the data in the blocks
  1521. * that are being truncated so the truncate can run async.
  1522. * In the free beyond eof case, the file may wind up with
  1523. * more blocks allocated to it than it needs if we crash
  1524. * and that won't get fixed until the next time the file
  1525. * is re-opened and closed but that's ok as that shouldn't
  1526. * be too many blocks.
  1527. *
  1528. * However, we can't just make all wsync xactions run async
  1529. * because there's one call out of the create path that needs
  1530. * to run sync where it's truncating an existing file to size
  1531. * 0 whose size is > 0.
  1532. *
  1533. * It's probably possible to come up with a test in this
  1534. * routine that would correctly distinguish all the above
  1535. * cases from the values of the function parameters and the
  1536. * inode state but for sanity's sake, I've decided to let the
  1537. * layers above just tell us. It's simpler to correctly figure
  1538. * out in the layer above exactly under what conditions we
  1539. * can run async and I think it's easier for others read and
  1540. * follow the logic in case something has to be changed.
  1541. * cscope is your friend -- rcc.
  1542. *
  1543. * The attribute fork is much simpler.
  1544. *
  1545. * For the attribute fork we allow the caller to tell us whether
  1546. * the unlink of the inode that led to this call is yet permanent
  1547. * in the on disk log. If it is not and we will be freeing extents
  1548. * in this inode then we make the first transaction synchronous
  1549. * to make sure that the unlink is permanent by the time we free
  1550. * the blocks.
  1551. */
  1552. if (fork == XFS_DATA_FORK) {
  1553. if (ip->i_d.di_nextents > 0) {
  1554. /*
  1555. * If we are not changing the file size then do
  1556. * not update the on-disk file size - we may be
  1557. * called from xfs_inactive_free_eofblocks(). If we
  1558. * update the on-disk file size and then the system
  1559. * crashes before the contents of the file are
  1560. * flushed to disk then the files may be full of
  1561. * holes (ie NULL files bug).
  1562. */
  1563. if (ip->i_size != new_size) {
  1564. ip->i_d.di_size = new_size;
  1565. ip->i_size = new_size;
  1566. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1567. }
  1568. }
  1569. } else if (sync) {
  1570. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1571. if (ip->i_d.di_anextents > 0)
  1572. xfs_trans_set_sync(ntp);
  1573. }
  1574. ASSERT(fork == XFS_DATA_FORK ||
  1575. (fork == XFS_ATTR_FORK &&
  1576. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1577. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1578. /*
  1579. * Since it is possible for space to become allocated beyond
  1580. * the end of the file (in a crash where the space is allocated
  1581. * but the inode size is not yet updated), simply remove any
  1582. * blocks which show up between the new EOF and the maximum
  1583. * possible file size. If the first block to be removed is
  1584. * beyond the maximum file size (ie it is the same as last_block),
  1585. * then there is nothing to do.
  1586. */
  1587. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1588. ASSERT(first_unmap_block <= last_block);
  1589. done = 0;
  1590. if (last_block == first_unmap_block) {
  1591. done = 1;
  1592. } else {
  1593. unmap_len = last_block - first_unmap_block + 1;
  1594. }
  1595. while (!done) {
  1596. /*
  1597. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1598. * will tell us whether it freed the entire range or
  1599. * not. If this is a synchronous mount (wsync),
  1600. * then we can tell bunmapi to keep all the
  1601. * transactions asynchronous since the unlink
  1602. * transaction that made this inode inactive has
  1603. * already hit the disk. There's no danger of
  1604. * the freed blocks being reused, there being a
  1605. * crash, and the reused blocks suddenly reappearing
  1606. * in this file with garbage in them once recovery
  1607. * runs.
  1608. */
  1609. XFS_BMAP_INIT(&free_list, &first_block);
  1610. error = xfs_bunmapi(ntp, ip,
  1611. first_unmap_block, unmap_len,
  1612. XFS_BMAPI_AFLAG(fork) |
  1613. (sync ? 0 : XFS_BMAPI_ASYNC),
  1614. XFS_ITRUNC_MAX_EXTENTS,
  1615. &first_block, &free_list,
  1616. NULL, &done);
  1617. if (error) {
  1618. /*
  1619. * If the bunmapi call encounters an error,
  1620. * return to the caller where the transaction
  1621. * can be properly aborted. We just need to
  1622. * make sure we're not holding any resources
  1623. * that we were not when we came in.
  1624. */
  1625. xfs_bmap_cancel(&free_list);
  1626. return error;
  1627. }
  1628. /*
  1629. * Duplicate the transaction that has the permanent
  1630. * reservation and commit the old transaction.
  1631. */
  1632. error = xfs_bmap_finish(tp, &free_list, &committed);
  1633. ntp = *tp;
  1634. if (error) {
  1635. /*
  1636. * If the bmap finish call encounters an error,
  1637. * return to the caller where the transaction
  1638. * can be properly aborted. We just need to
  1639. * make sure we're not holding any resources
  1640. * that we were not when we came in.
  1641. *
  1642. * Aborting from this point might lose some
  1643. * blocks in the file system, but oh well.
  1644. */
  1645. xfs_bmap_cancel(&free_list);
  1646. if (committed) {
  1647. /*
  1648. * If the passed in transaction committed
  1649. * in xfs_bmap_finish(), then we want to
  1650. * add the inode to this one before returning.
  1651. * This keeps things simple for the higher
  1652. * level code, because it always knows that
  1653. * the inode is locked and held in the
  1654. * transaction that returns to it whether
  1655. * errors occur or not. We don't mark the
  1656. * inode dirty so that this transaction can
  1657. * be easily aborted if possible.
  1658. */
  1659. xfs_trans_ijoin(ntp, ip,
  1660. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1661. xfs_trans_ihold(ntp, ip);
  1662. }
  1663. return error;
  1664. }
  1665. if (committed) {
  1666. /*
  1667. * The first xact was committed,
  1668. * so add the inode to the new one.
  1669. * Mark it dirty so it will be logged
  1670. * and moved forward in the log as
  1671. * part of every commit.
  1672. */
  1673. xfs_trans_ijoin(ntp, ip,
  1674. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1675. xfs_trans_ihold(ntp, ip);
  1676. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1677. }
  1678. ntp = xfs_trans_dup(ntp);
  1679. (void) xfs_trans_commit(*tp, 0);
  1680. *tp = ntp;
  1681. error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
  1682. XFS_TRANS_PERM_LOG_RES,
  1683. XFS_ITRUNCATE_LOG_COUNT);
  1684. /*
  1685. * Add the inode being truncated to the next chained
  1686. * transaction.
  1687. */
  1688. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1689. xfs_trans_ihold(ntp, ip);
  1690. if (error)
  1691. return (error);
  1692. }
  1693. /*
  1694. * Only update the size in the case of the data fork, but
  1695. * always re-log the inode so that our permanent transaction
  1696. * can keep on rolling it forward in the log.
  1697. */
  1698. if (fork == XFS_DATA_FORK) {
  1699. xfs_isize_check(mp, ip, new_size);
  1700. /*
  1701. * If we are not changing the file size then do
  1702. * not update the on-disk file size - we may be
  1703. * called from xfs_inactive_free_eofblocks(). If we
  1704. * update the on-disk file size and then the system
  1705. * crashes before the contents of the file are
  1706. * flushed to disk then the files may be full of
  1707. * holes (ie NULL files bug).
  1708. */
  1709. if (ip->i_size != new_size) {
  1710. ip->i_d.di_size = new_size;
  1711. ip->i_size = new_size;
  1712. }
  1713. }
  1714. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1715. ASSERT((new_size != 0) ||
  1716. (fork == XFS_ATTR_FORK) ||
  1717. (ip->i_delayed_blks == 0));
  1718. ASSERT((new_size != 0) ||
  1719. (fork == XFS_ATTR_FORK) ||
  1720. (ip->i_d.di_nextents == 0));
  1721. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1722. return 0;
  1723. }
  1724. /*
  1725. * xfs_igrow_start
  1726. *
  1727. * Do the first part of growing a file: zero any data in the last
  1728. * block that is beyond the old EOF. We need to do this before
  1729. * the inode is joined to the transaction to modify the i_size.
  1730. * That way we can drop the inode lock and call into the buffer
  1731. * cache to get the buffer mapping the EOF.
  1732. */
  1733. int
  1734. xfs_igrow_start(
  1735. xfs_inode_t *ip,
  1736. xfs_fsize_t new_size,
  1737. cred_t *credp)
  1738. {
  1739. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1740. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1741. ASSERT(new_size > ip->i_size);
  1742. /*
  1743. * Zero any pages that may have been created by
  1744. * xfs_write_file() beyond the end of the file
  1745. * and any blocks between the old and new file sizes.
  1746. */
  1747. return xfs_zero_eof(ip, new_size, ip->i_size);
  1748. }
  1749. /*
  1750. * xfs_igrow_finish
  1751. *
  1752. * This routine is called to extend the size of a file.
  1753. * The inode must have both the iolock and the ilock locked
  1754. * for update and it must be a part of the current transaction.
  1755. * The xfs_igrow_start() function must have been called previously.
  1756. * If the change_flag is not zero, the inode change timestamp will
  1757. * be updated.
  1758. */
  1759. void
  1760. xfs_igrow_finish(
  1761. xfs_trans_t *tp,
  1762. xfs_inode_t *ip,
  1763. xfs_fsize_t new_size,
  1764. int change_flag)
  1765. {
  1766. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1767. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1768. ASSERT(ip->i_transp == tp);
  1769. ASSERT(new_size > ip->i_size);
  1770. /*
  1771. * Update the file size. Update the inode change timestamp
  1772. * if change_flag set.
  1773. */
  1774. ip->i_d.di_size = new_size;
  1775. ip->i_size = new_size;
  1776. if (change_flag)
  1777. xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
  1778. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1779. }
  1780. /*
  1781. * This is called when the inode's link count goes to 0.
  1782. * We place the on-disk inode on a list in the AGI. It
  1783. * will be pulled from this list when the inode is freed.
  1784. */
  1785. int
  1786. xfs_iunlink(
  1787. xfs_trans_t *tp,
  1788. xfs_inode_t *ip)
  1789. {
  1790. xfs_mount_t *mp;
  1791. xfs_agi_t *agi;
  1792. xfs_dinode_t *dip;
  1793. xfs_buf_t *agibp;
  1794. xfs_buf_t *ibp;
  1795. xfs_agnumber_t agno;
  1796. xfs_daddr_t agdaddr;
  1797. xfs_agino_t agino;
  1798. short bucket_index;
  1799. int offset;
  1800. int error;
  1801. int agi_ok;
  1802. ASSERT(ip->i_d.di_nlink == 0);
  1803. ASSERT(ip->i_d.di_mode != 0);
  1804. ASSERT(ip->i_transp == tp);
  1805. mp = tp->t_mountp;
  1806. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1807. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1808. /*
  1809. * Get the agi buffer first. It ensures lock ordering
  1810. * on the list.
  1811. */
  1812. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1813. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1814. if (error)
  1815. return error;
  1816. /*
  1817. * Validate the magic number of the agi block.
  1818. */
  1819. agi = XFS_BUF_TO_AGI(agibp);
  1820. agi_ok =
  1821. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1822. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1823. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1824. XFS_RANDOM_IUNLINK))) {
  1825. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1826. xfs_trans_brelse(tp, agibp);
  1827. return XFS_ERROR(EFSCORRUPTED);
  1828. }
  1829. /*
  1830. * Get the index into the agi hash table for the
  1831. * list this inode will go on.
  1832. */
  1833. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1834. ASSERT(agino != 0);
  1835. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1836. ASSERT(agi->agi_unlinked[bucket_index]);
  1837. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1838. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1839. /*
  1840. * There is already another inode in the bucket we need
  1841. * to add ourselves to. Add us at the front of the list.
  1842. * Here we put the head pointer into our next pointer,
  1843. * and then we fall through to point the head at us.
  1844. */
  1845. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1846. if (error)
  1847. return error;
  1848. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1849. /* both on-disk, don't endian flip twice */
  1850. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1851. offset = ip->i_boffset +
  1852. offsetof(xfs_dinode_t, di_next_unlinked);
  1853. xfs_trans_inode_buf(tp, ibp);
  1854. xfs_trans_log_buf(tp, ibp, offset,
  1855. (offset + sizeof(xfs_agino_t) - 1));
  1856. xfs_inobp_check(mp, ibp);
  1857. }
  1858. /*
  1859. * Point the bucket head pointer at the inode being inserted.
  1860. */
  1861. ASSERT(agino != 0);
  1862. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1863. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1864. (sizeof(xfs_agino_t) * bucket_index);
  1865. xfs_trans_log_buf(tp, agibp, offset,
  1866. (offset + sizeof(xfs_agino_t) - 1));
  1867. return 0;
  1868. }
  1869. /*
  1870. * Pull the on-disk inode from the AGI unlinked list.
  1871. */
  1872. STATIC int
  1873. xfs_iunlink_remove(
  1874. xfs_trans_t *tp,
  1875. xfs_inode_t *ip)
  1876. {
  1877. xfs_ino_t next_ino;
  1878. xfs_mount_t *mp;
  1879. xfs_agi_t *agi;
  1880. xfs_dinode_t *dip;
  1881. xfs_buf_t *agibp;
  1882. xfs_buf_t *ibp;
  1883. xfs_agnumber_t agno;
  1884. xfs_daddr_t agdaddr;
  1885. xfs_agino_t agino;
  1886. xfs_agino_t next_agino;
  1887. xfs_buf_t *last_ibp;
  1888. xfs_dinode_t *last_dip = NULL;
  1889. short bucket_index;
  1890. int offset, last_offset = 0;
  1891. int error;
  1892. int agi_ok;
  1893. /*
  1894. * First pull the on-disk inode from the AGI unlinked list.
  1895. */
  1896. mp = tp->t_mountp;
  1897. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1898. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1899. /*
  1900. * Get the agi buffer first. It ensures lock ordering
  1901. * on the list.
  1902. */
  1903. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1904. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1905. if (error) {
  1906. cmn_err(CE_WARN,
  1907. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1908. error, mp->m_fsname);
  1909. return error;
  1910. }
  1911. /*
  1912. * Validate the magic number of the agi block.
  1913. */
  1914. agi = XFS_BUF_TO_AGI(agibp);
  1915. agi_ok =
  1916. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1917. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1918. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1919. XFS_RANDOM_IUNLINK_REMOVE))) {
  1920. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1921. mp, agi);
  1922. xfs_trans_brelse(tp, agibp);
  1923. cmn_err(CE_WARN,
  1924. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1925. mp->m_fsname);
  1926. return XFS_ERROR(EFSCORRUPTED);
  1927. }
  1928. /*
  1929. * Get the index into the agi hash table for the
  1930. * list this inode will go on.
  1931. */
  1932. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1933. ASSERT(agino != 0);
  1934. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1935. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1936. ASSERT(agi->agi_unlinked[bucket_index]);
  1937. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1938. /*
  1939. * We're at the head of the list. Get the inode's
  1940. * on-disk buffer to see if there is anyone after us
  1941. * on the list. Only modify our next pointer if it
  1942. * is not already NULLAGINO. This saves us the overhead
  1943. * of dealing with the buffer when there is no need to
  1944. * change it.
  1945. */
  1946. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1947. if (error) {
  1948. cmn_err(CE_WARN,
  1949. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1950. error, mp->m_fsname);
  1951. return error;
  1952. }
  1953. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1954. ASSERT(next_agino != 0);
  1955. if (next_agino != NULLAGINO) {
  1956. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1957. offset = ip->i_boffset +
  1958. offsetof(xfs_dinode_t, di_next_unlinked);
  1959. xfs_trans_inode_buf(tp, ibp);
  1960. xfs_trans_log_buf(tp, ibp, offset,
  1961. (offset + sizeof(xfs_agino_t) - 1));
  1962. xfs_inobp_check(mp, ibp);
  1963. } else {
  1964. xfs_trans_brelse(tp, ibp);
  1965. }
  1966. /*
  1967. * Point the bucket head pointer at the next inode.
  1968. */
  1969. ASSERT(next_agino != 0);
  1970. ASSERT(next_agino != agino);
  1971. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1972. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1973. (sizeof(xfs_agino_t) * bucket_index);
  1974. xfs_trans_log_buf(tp, agibp, offset,
  1975. (offset + sizeof(xfs_agino_t) - 1));
  1976. } else {
  1977. /*
  1978. * We need to search the list for the inode being freed.
  1979. */
  1980. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1981. last_ibp = NULL;
  1982. while (next_agino != agino) {
  1983. /*
  1984. * If the last inode wasn't the one pointing to
  1985. * us, then release its buffer since we're not
  1986. * going to do anything with it.
  1987. */
  1988. if (last_ibp != NULL) {
  1989. xfs_trans_brelse(tp, last_ibp);
  1990. }
  1991. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1992. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1993. &last_ibp, &last_offset);
  1994. if (error) {
  1995. cmn_err(CE_WARN,
  1996. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1997. error, mp->m_fsname);
  1998. return error;
  1999. }
  2000. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  2001. ASSERT(next_agino != NULLAGINO);
  2002. ASSERT(next_agino != 0);
  2003. }
  2004. /*
  2005. * Now last_ibp points to the buffer previous to us on
  2006. * the unlinked list. Pull us from the list.
  2007. */
  2008. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  2009. if (error) {
  2010. cmn_err(CE_WARN,
  2011. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  2012. error, mp->m_fsname);
  2013. return error;
  2014. }
  2015. next_agino = be32_to_cpu(dip->di_next_unlinked);
  2016. ASSERT(next_agino != 0);
  2017. ASSERT(next_agino != agino);
  2018. if (next_agino != NULLAGINO) {
  2019. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  2020. offset = ip->i_boffset +
  2021. offsetof(xfs_dinode_t, di_next_unlinked);
  2022. xfs_trans_inode_buf(tp, ibp);
  2023. xfs_trans_log_buf(tp, ibp, offset,
  2024. (offset + sizeof(xfs_agino_t) - 1));
  2025. xfs_inobp_check(mp, ibp);
  2026. } else {
  2027. xfs_trans_brelse(tp, ibp);
  2028. }
  2029. /*
  2030. * Point the previous inode on the list to the next inode.
  2031. */
  2032. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  2033. ASSERT(next_agino != 0);
  2034. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  2035. xfs_trans_inode_buf(tp, last_ibp);
  2036. xfs_trans_log_buf(tp, last_ibp, offset,
  2037. (offset + sizeof(xfs_agino_t) - 1));
  2038. xfs_inobp_check(mp, last_ibp);
  2039. }
  2040. return 0;
  2041. }
  2042. STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
  2043. {
  2044. return (((ip->i_itemp == NULL) ||
  2045. !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2046. (ip->i_update_core == 0));
  2047. }
  2048. STATIC void
  2049. xfs_ifree_cluster(
  2050. xfs_inode_t *free_ip,
  2051. xfs_trans_t *tp,
  2052. xfs_ino_t inum)
  2053. {
  2054. xfs_mount_t *mp = free_ip->i_mount;
  2055. int blks_per_cluster;
  2056. int nbufs;
  2057. int ninodes;
  2058. int i, j, found, pre_flushed;
  2059. xfs_daddr_t blkno;
  2060. xfs_buf_t *bp;
  2061. xfs_inode_t *ip, **ip_found;
  2062. xfs_inode_log_item_t *iip;
  2063. xfs_log_item_t *lip;
  2064. xfs_perag_t *pag = xfs_get_perag(mp, inum);
  2065. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  2066. blks_per_cluster = 1;
  2067. ninodes = mp->m_sb.sb_inopblock;
  2068. nbufs = XFS_IALLOC_BLOCKS(mp);
  2069. } else {
  2070. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  2071. mp->m_sb.sb_blocksize;
  2072. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  2073. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  2074. }
  2075. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  2076. for (j = 0; j < nbufs; j++, inum += ninodes) {
  2077. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  2078. XFS_INO_TO_AGBNO(mp, inum));
  2079. /*
  2080. * Look for each inode in memory and attempt to lock it,
  2081. * we can be racing with flush and tail pushing here.
  2082. * any inode we get the locks on, add to an array of
  2083. * inode items to process later.
  2084. *
  2085. * The get the buffer lock, we could beat a flush
  2086. * or tail pushing thread to the lock here, in which
  2087. * case they will go looking for the inode buffer
  2088. * and fail, we need some other form of interlock
  2089. * here.
  2090. */
  2091. found = 0;
  2092. for (i = 0; i < ninodes; i++) {
  2093. read_lock(&pag->pag_ici_lock);
  2094. ip = radix_tree_lookup(&pag->pag_ici_root,
  2095. XFS_INO_TO_AGINO(mp, (inum + i)));
  2096. /* Inode not in memory or we found it already,
  2097. * nothing to do
  2098. */
  2099. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  2100. read_unlock(&pag->pag_ici_lock);
  2101. continue;
  2102. }
  2103. if (xfs_inode_clean(ip)) {
  2104. read_unlock(&pag->pag_ici_lock);
  2105. continue;
  2106. }
  2107. /* If we can get the locks then add it to the
  2108. * list, otherwise by the time we get the bp lock
  2109. * below it will already be attached to the
  2110. * inode buffer.
  2111. */
  2112. /* This inode will already be locked - by us, lets
  2113. * keep it that way.
  2114. */
  2115. if (ip == free_ip) {
  2116. if (xfs_iflock_nowait(ip)) {
  2117. xfs_iflags_set(ip, XFS_ISTALE);
  2118. if (xfs_inode_clean(ip)) {
  2119. xfs_ifunlock(ip);
  2120. } else {
  2121. ip_found[found++] = ip;
  2122. }
  2123. }
  2124. read_unlock(&pag->pag_ici_lock);
  2125. continue;
  2126. }
  2127. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  2128. if (xfs_iflock_nowait(ip)) {
  2129. xfs_iflags_set(ip, XFS_ISTALE);
  2130. if (xfs_inode_clean(ip)) {
  2131. xfs_ifunlock(ip);
  2132. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2133. } else {
  2134. ip_found[found++] = ip;
  2135. }
  2136. } else {
  2137. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2138. }
  2139. }
  2140. read_unlock(&pag->pag_ici_lock);
  2141. }
  2142. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2143. mp->m_bsize * blks_per_cluster,
  2144. XFS_BUF_LOCK);
  2145. pre_flushed = 0;
  2146. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2147. while (lip) {
  2148. if (lip->li_type == XFS_LI_INODE) {
  2149. iip = (xfs_inode_log_item_t *)lip;
  2150. ASSERT(iip->ili_logged == 1);
  2151. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2152. spin_lock(&mp->m_ail_lock);
  2153. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2154. spin_unlock(&mp->m_ail_lock);
  2155. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  2156. pre_flushed++;
  2157. }
  2158. lip = lip->li_bio_list;
  2159. }
  2160. for (i = 0; i < found; i++) {
  2161. ip = ip_found[i];
  2162. iip = ip->i_itemp;
  2163. if (!iip) {
  2164. ip->i_update_core = 0;
  2165. xfs_ifunlock(ip);
  2166. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2167. continue;
  2168. }
  2169. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2170. iip->ili_format.ilf_fields = 0;
  2171. iip->ili_logged = 1;
  2172. spin_lock(&mp->m_ail_lock);
  2173. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2174. spin_unlock(&mp->m_ail_lock);
  2175. xfs_buf_attach_iodone(bp,
  2176. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2177. xfs_istale_done, (xfs_log_item_t *)iip);
  2178. if (ip != free_ip) {
  2179. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2180. }
  2181. }
  2182. if (found || pre_flushed)
  2183. xfs_trans_stale_inode_buf(tp, bp);
  2184. xfs_trans_binval(tp, bp);
  2185. }
  2186. kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
  2187. xfs_put_perag(mp, pag);
  2188. }
  2189. /*
  2190. * This is called to return an inode to the inode free list.
  2191. * The inode should already be truncated to 0 length and have
  2192. * no pages associated with it. This routine also assumes that
  2193. * the inode is already a part of the transaction.
  2194. *
  2195. * The on-disk copy of the inode will have been added to the list
  2196. * of unlinked inodes in the AGI. We need to remove the inode from
  2197. * that list atomically with respect to freeing it here.
  2198. */
  2199. int
  2200. xfs_ifree(
  2201. xfs_trans_t *tp,
  2202. xfs_inode_t *ip,
  2203. xfs_bmap_free_t *flist)
  2204. {
  2205. int error;
  2206. int delete;
  2207. xfs_ino_t first_ino;
  2208. xfs_dinode_t *dip;
  2209. xfs_buf_t *ibp;
  2210. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2211. ASSERT(ip->i_transp == tp);
  2212. ASSERT(ip->i_d.di_nlink == 0);
  2213. ASSERT(ip->i_d.di_nextents == 0);
  2214. ASSERT(ip->i_d.di_anextents == 0);
  2215. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  2216. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2217. ASSERT(ip->i_d.di_nblocks == 0);
  2218. /*
  2219. * Pull the on-disk inode from the AGI unlinked list.
  2220. */
  2221. error = xfs_iunlink_remove(tp, ip);
  2222. if (error != 0) {
  2223. return error;
  2224. }
  2225. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2226. if (error != 0) {
  2227. return error;
  2228. }
  2229. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2230. ip->i_d.di_flags = 0;
  2231. ip->i_d.di_dmevmask = 0;
  2232. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2233. ip->i_df.if_ext_max =
  2234. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2235. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2236. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2237. /*
  2238. * Bump the generation count so no one will be confused
  2239. * by reincarnations of this inode.
  2240. */
  2241. ip->i_d.di_gen++;
  2242. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2243. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0);
  2244. if (error)
  2245. return error;
  2246. /*
  2247. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  2248. * from picking up this inode when it is reclaimed (its incore state
  2249. * initialzed but not flushed to disk yet). The in-core di_mode is
  2250. * already cleared and a corresponding transaction logged.
  2251. * The hack here just synchronizes the in-core to on-disk
  2252. * di_mode value in advance before the actual inode sync to disk.
  2253. * This is OK because the inode is already unlinked and would never
  2254. * change its di_mode again for this inode generation.
  2255. * This is a temporary hack that would require a proper fix
  2256. * in the future.
  2257. */
  2258. dip->di_core.di_mode = 0;
  2259. if (delete) {
  2260. xfs_ifree_cluster(ip, tp, first_ino);
  2261. }
  2262. return 0;
  2263. }
  2264. /*
  2265. * Reallocate the space for if_broot based on the number of records
  2266. * being added or deleted as indicated in rec_diff. Move the records
  2267. * and pointers in if_broot to fit the new size. When shrinking this
  2268. * will eliminate holes between the records and pointers created by
  2269. * the caller. When growing this will create holes to be filled in
  2270. * by the caller.
  2271. *
  2272. * The caller must not request to add more records than would fit in
  2273. * the on-disk inode root. If the if_broot is currently NULL, then
  2274. * if we adding records one will be allocated. The caller must also
  2275. * not request that the number of records go below zero, although
  2276. * it can go to zero.
  2277. *
  2278. * ip -- the inode whose if_broot area is changing
  2279. * ext_diff -- the change in the number of records, positive or negative,
  2280. * requested for the if_broot array.
  2281. */
  2282. void
  2283. xfs_iroot_realloc(
  2284. xfs_inode_t *ip,
  2285. int rec_diff,
  2286. int whichfork)
  2287. {
  2288. int cur_max;
  2289. xfs_ifork_t *ifp;
  2290. xfs_bmbt_block_t *new_broot;
  2291. int new_max;
  2292. size_t new_size;
  2293. char *np;
  2294. char *op;
  2295. /*
  2296. * Handle the degenerate case quietly.
  2297. */
  2298. if (rec_diff == 0) {
  2299. return;
  2300. }
  2301. ifp = XFS_IFORK_PTR(ip, whichfork);
  2302. if (rec_diff > 0) {
  2303. /*
  2304. * If there wasn't any memory allocated before, just
  2305. * allocate it now and get out.
  2306. */
  2307. if (ifp->if_broot_bytes == 0) {
  2308. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2309. ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
  2310. KM_SLEEP);
  2311. ifp->if_broot_bytes = (int)new_size;
  2312. return;
  2313. }
  2314. /*
  2315. * If there is already an existing if_broot, then we need
  2316. * to realloc() it and shift the pointers to their new
  2317. * location. The records don't change location because
  2318. * they are kept butted up against the btree block header.
  2319. */
  2320. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2321. new_max = cur_max + rec_diff;
  2322. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2323. ifp->if_broot = (xfs_bmbt_block_t *)
  2324. kmem_realloc(ifp->if_broot,
  2325. new_size,
  2326. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2327. KM_SLEEP);
  2328. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2329. ifp->if_broot_bytes);
  2330. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2331. (int)new_size);
  2332. ifp->if_broot_bytes = (int)new_size;
  2333. ASSERT(ifp->if_broot_bytes <=
  2334. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2335. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2336. return;
  2337. }
  2338. /*
  2339. * rec_diff is less than 0. In this case, we are shrinking the
  2340. * if_broot buffer. It must already exist. If we go to zero
  2341. * records, just get rid of the root and clear the status bit.
  2342. */
  2343. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2344. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2345. new_max = cur_max + rec_diff;
  2346. ASSERT(new_max >= 0);
  2347. if (new_max > 0)
  2348. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2349. else
  2350. new_size = 0;
  2351. if (new_size > 0) {
  2352. new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
  2353. /*
  2354. * First copy over the btree block header.
  2355. */
  2356. memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
  2357. } else {
  2358. new_broot = NULL;
  2359. ifp->if_flags &= ~XFS_IFBROOT;
  2360. }
  2361. /*
  2362. * Only copy the records and pointers if there are any.
  2363. */
  2364. if (new_max > 0) {
  2365. /*
  2366. * First copy the records.
  2367. */
  2368. op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
  2369. ifp->if_broot_bytes);
  2370. np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
  2371. (int)new_size);
  2372. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2373. /*
  2374. * Then copy the pointers.
  2375. */
  2376. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2377. ifp->if_broot_bytes);
  2378. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
  2379. (int)new_size);
  2380. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2381. }
  2382. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2383. ifp->if_broot = new_broot;
  2384. ifp->if_broot_bytes = (int)new_size;
  2385. ASSERT(ifp->if_broot_bytes <=
  2386. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2387. return;
  2388. }
  2389. /*
  2390. * This is called when the amount of space needed for if_data
  2391. * is increased or decreased. The change in size is indicated by
  2392. * the number of bytes that need to be added or deleted in the
  2393. * byte_diff parameter.
  2394. *
  2395. * If the amount of space needed has decreased below the size of the
  2396. * inline buffer, then switch to using the inline buffer. Otherwise,
  2397. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2398. * to what is needed.
  2399. *
  2400. * ip -- the inode whose if_data area is changing
  2401. * byte_diff -- the change in the number of bytes, positive or negative,
  2402. * requested for the if_data array.
  2403. */
  2404. void
  2405. xfs_idata_realloc(
  2406. xfs_inode_t *ip,
  2407. int byte_diff,
  2408. int whichfork)
  2409. {
  2410. xfs_ifork_t *ifp;
  2411. int new_size;
  2412. int real_size;
  2413. if (byte_diff == 0) {
  2414. return;
  2415. }
  2416. ifp = XFS_IFORK_PTR(ip, whichfork);
  2417. new_size = (int)ifp->if_bytes + byte_diff;
  2418. ASSERT(new_size >= 0);
  2419. if (new_size == 0) {
  2420. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2421. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2422. }
  2423. ifp->if_u1.if_data = NULL;
  2424. real_size = 0;
  2425. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2426. /*
  2427. * If the valid extents/data can fit in if_inline_ext/data,
  2428. * copy them from the malloc'd vector and free it.
  2429. */
  2430. if (ifp->if_u1.if_data == NULL) {
  2431. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2432. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2433. ASSERT(ifp->if_real_bytes != 0);
  2434. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2435. new_size);
  2436. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2437. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2438. }
  2439. real_size = 0;
  2440. } else {
  2441. /*
  2442. * Stuck with malloc/realloc.
  2443. * For inline data, the underlying buffer must be
  2444. * a multiple of 4 bytes in size so that it can be
  2445. * logged and stay on word boundaries. We enforce
  2446. * that here.
  2447. */
  2448. real_size = roundup(new_size, 4);
  2449. if (ifp->if_u1.if_data == NULL) {
  2450. ASSERT(ifp->if_real_bytes == 0);
  2451. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2452. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2453. /*
  2454. * Only do the realloc if the underlying size
  2455. * is really changing.
  2456. */
  2457. if (ifp->if_real_bytes != real_size) {
  2458. ifp->if_u1.if_data =
  2459. kmem_realloc(ifp->if_u1.if_data,
  2460. real_size,
  2461. ifp->if_real_bytes,
  2462. KM_SLEEP);
  2463. }
  2464. } else {
  2465. ASSERT(ifp->if_real_bytes == 0);
  2466. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2467. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2468. ifp->if_bytes);
  2469. }
  2470. }
  2471. ifp->if_real_bytes = real_size;
  2472. ifp->if_bytes = new_size;
  2473. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2474. }
  2475. /*
  2476. * Map inode to disk block and offset.
  2477. *
  2478. * mp -- the mount point structure for the current file system
  2479. * tp -- the current transaction
  2480. * ino -- the inode number of the inode to be located
  2481. * imap -- this structure is filled in with the information necessary
  2482. * to retrieve the given inode from disk
  2483. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2484. * lookups in the inode btree were OK or not
  2485. */
  2486. int
  2487. xfs_imap(
  2488. xfs_mount_t *mp,
  2489. xfs_trans_t *tp,
  2490. xfs_ino_t ino,
  2491. xfs_imap_t *imap,
  2492. uint flags)
  2493. {
  2494. xfs_fsblock_t fsbno;
  2495. int len;
  2496. int off;
  2497. int error;
  2498. fsbno = imap->im_blkno ?
  2499. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2500. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2501. if (error != 0) {
  2502. return error;
  2503. }
  2504. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2505. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2506. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2507. imap->im_ioffset = (ushort)off;
  2508. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2509. return 0;
  2510. }
  2511. void
  2512. xfs_idestroy_fork(
  2513. xfs_inode_t *ip,
  2514. int whichfork)
  2515. {
  2516. xfs_ifork_t *ifp;
  2517. ifp = XFS_IFORK_PTR(ip, whichfork);
  2518. if (ifp->if_broot != NULL) {
  2519. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2520. ifp->if_broot = NULL;
  2521. }
  2522. /*
  2523. * If the format is local, then we can't have an extents
  2524. * array so just look for an inline data array. If we're
  2525. * not local then we may or may not have an extents list,
  2526. * so check and free it up if we do.
  2527. */
  2528. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2529. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2530. (ifp->if_u1.if_data != NULL)) {
  2531. ASSERT(ifp->if_real_bytes != 0);
  2532. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2533. ifp->if_u1.if_data = NULL;
  2534. ifp->if_real_bytes = 0;
  2535. }
  2536. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2537. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2538. ((ifp->if_u1.if_extents != NULL) &&
  2539. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2540. ASSERT(ifp->if_real_bytes != 0);
  2541. xfs_iext_destroy(ifp);
  2542. }
  2543. ASSERT(ifp->if_u1.if_extents == NULL ||
  2544. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2545. ASSERT(ifp->if_real_bytes == 0);
  2546. if (whichfork == XFS_ATTR_FORK) {
  2547. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2548. ip->i_afp = NULL;
  2549. }
  2550. }
  2551. /*
  2552. * This is called free all the memory associated with an inode.
  2553. * It must free the inode itself and any buffers allocated for
  2554. * if_extents/if_data and if_broot. It must also free the lock
  2555. * associated with the inode.
  2556. */
  2557. void
  2558. xfs_idestroy(
  2559. xfs_inode_t *ip)
  2560. {
  2561. switch (ip->i_d.di_mode & S_IFMT) {
  2562. case S_IFREG:
  2563. case S_IFDIR:
  2564. case S_IFLNK:
  2565. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2566. break;
  2567. }
  2568. if (ip->i_afp)
  2569. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2570. mrfree(&ip->i_lock);
  2571. mrfree(&ip->i_iolock);
  2572. freesema(&ip->i_flock);
  2573. #ifdef XFS_INODE_TRACE
  2574. ktrace_free(ip->i_trace);
  2575. #endif
  2576. #ifdef XFS_BMAP_TRACE
  2577. ktrace_free(ip->i_xtrace);
  2578. #endif
  2579. #ifdef XFS_BMBT_TRACE
  2580. ktrace_free(ip->i_btrace);
  2581. #endif
  2582. #ifdef XFS_RW_TRACE
  2583. ktrace_free(ip->i_rwtrace);
  2584. #endif
  2585. #ifdef XFS_ILOCK_TRACE
  2586. ktrace_free(ip->i_lock_trace);
  2587. #endif
  2588. #ifdef XFS_DIR2_TRACE
  2589. ktrace_free(ip->i_dir_trace);
  2590. #endif
  2591. if (ip->i_itemp) {
  2592. /*
  2593. * Only if we are shutting down the fs will we see an
  2594. * inode still in the AIL. If it is there, we should remove
  2595. * it to prevent a use-after-free from occurring.
  2596. */
  2597. xfs_mount_t *mp = ip->i_mount;
  2598. xfs_log_item_t *lip = &ip->i_itemp->ili_item;
  2599. ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
  2600. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2601. if (lip->li_flags & XFS_LI_IN_AIL) {
  2602. spin_lock(&mp->m_ail_lock);
  2603. if (lip->li_flags & XFS_LI_IN_AIL)
  2604. xfs_trans_delete_ail(mp, lip);
  2605. else
  2606. spin_unlock(&mp->m_ail_lock);
  2607. }
  2608. xfs_inode_item_destroy(ip);
  2609. }
  2610. kmem_zone_free(xfs_inode_zone, ip);
  2611. }
  2612. /*
  2613. * Increment the pin count of the given buffer.
  2614. * This value is protected by ipinlock spinlock in the mount structure.
  2615. */
  2616. void
  2617. xfs_ipin(
  2618. xfs_inode_t *ip)
  2619. {
  2620. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2621. atomic_inc(&ip->i_pincount);
  2622. }
  2623. /*
  2624. * Decrement the pin count of the given inode, and wake up
  2625. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2626. * inode must have been previously pinned with a call to xfs_ipin().
  2627. */
  2628. void
  2629. xfs_iunpin(
  2630. xfs_inode_t *ip)
  2631. {
  2632. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2633. if (atomic_dec_and_test(&ip->i_pincount))
  2634. wake_up(&ip->i_ipin_wait);
  2635. }
  2636. /*
  2637. * This is called to wait for the given inode to be unpinned.
  2638. * It will sleep until this happens. The caller must have the
  2639. * inode locked in at least shared mode so that the buffer cannot
  2640. * be subsequently pinned once someone is waiting for it to be
  2641. * unpinned.
  2642. */
  2643. STATIC void
  2644. xfs_iunpin_wait(
  2645. xfs_inode_t *ip)
  2646. {
  2647. xfs_inode_log_item_t *iip;
  2648. xfs_lsn_t lsn;
  2649. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
  2650. if (atomic_read(&ip->i_pincount) == 0) {
  2651. return;
  2652. }
  2653. iip = ip->i_itemp;
  2654. if (iip && iip->ili_last_lsn) {
  2655. lsn = iip->ili_last_lsn;
  2656. } else {
  2657. lsn = (xfs_lsn_t)0;
  2658. }
  2659. /*
  2660. * Give the log a push so we don't wait here too long.
  2661. */
  2662. xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
  2663. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2664. }
  2665. /*
  2666. * xfs_iextents_copy()
  2667. *
  2668. * This is called to copy the REAL extents (as opposed to the delayed
  2669. * allocation extents) from the inode into the given buffer. It
  2670. * returns the number of bytes copied into the buffer.
  2671. *
  2672. * If there are no delayed allocation extents, then we can just
  2673. * memcpy() the extents into the buffer. Otherwise, we need to
  2674. * examine each extent in turn and skip those which are delayed.
  2675. */
  2676. int
  2677. xfs_iextents_copy(
  2678. xfs_inode_t *ip,
  2679. xfs_bmbt_rec_t *dp,
  2680. int whichfork)
  2681. {
  2682. int copied;
  2683. int i;
  2684. xfs_ifork_t *ifp;
  2685. int nrecs;
  2686. xfs_fsblock_t start_block;
  2687. ifp = XFS_IFORK_PTR(ip, whichfork);
  2688. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2689. ASSERT(ifp->if_bytes > 0);
  2690. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2691. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2692. ASSERT(nrecs > 0);
  2693. /*
  2694. * There are some delayed allocation extents in the
  2695. * inode, so copy the extents one at a time and skip
  2696. * the delayed ones. There must be at least one
  2697. * non-delayed extent.
  2698. */
  2699. copied = 0;
  2700. for (i = 0; i < nrecs; i++) {
  2701. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2702. start_block = xfs_bmbt_get_startblock(ep);
  2703. if (ISNULLSTARTBLOCK(start_block)) {
  2704. /*
  2705. * It's a delayed allocation extent, so skip it.
  2706. */
  2707. continue;
  2708. }
  2709. /* Translate to on disk format */
  2710. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2711. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2712. dp++;
  2713. copied++;
  2714. }
  2715. ASSERT(copied != 0);
  2716. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2717. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2718. }
  2719. /*
  2720. * Each of the following cases stores data into the same region
  2721. * of the on-disk inode, so only one of them can be valid at
  2722. * any given time. While it is possible to have conflicting formats
  2723. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2724. * in EXTENTS format, this can only happen when the fork has
  2725. * changed formats after being modified but before being flushed.
  2726. * In these cases, the format always takes precedence, because the
  2727. * format indicates the current state of the fork.
  2728. */
  2729. /*ARGSUSED*/
  2730. STATIC int
  2731. xfs_iflush_fork(
  2732. xfs_inode_t *ip,
  2733. xfs_dinode_t *dip,
  2734. xfs_inode_log_item_t *iip,
  2735. int whichfork,
  2736. xfs_buf_t *bp)
  2737. {
  2738. char *cp;
  2739. xfs_ifork_t *ifp;
  2740. xfs_mount_t *mp;
  2741. #ifdef XFS_TRANS_DEBUG
  2742. int first;
  2743. #endif
  2744. static const short brootflag[2] =
  2745. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2746. static const short dataflag[2] =
  2747. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2748. static const short extflag[2] =
  2749. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2750. if (iip == NULL)
  2751. return 0;
  2752. ifp = XFS_IFORK_PTR(ip, whichfork);
  2753. /*
  2754. * This can happen if we gave up in iformat in an error path,
  2755. * for the attribute fork.
  2756. */
  2757. if (ifp == NULL) {
  2758. ASSERT(whichfork == XFS_ATTR_FORK);
  2759. return 0;
  2760. }
  2761. cp = XFS_DFORK_PTR(dip, whichfork);
  2762. mp = ip->i_mount;
  2763. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2764. case XFS_DINODE_FMT_LOCAL:
  2765. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2766. (ifp->if_bytes > 0)) {
  2767. ASSERT(ifp->if_u1.if_data != NULL);
  2768. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2769. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2770. }
  2771. break;
  2772. case XFS_DINODE_FMT_EXTENTS:
  2773. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2774. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2775. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2776. (ifp->if_bytes == 0));
  2777. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2778. (ifp->if_bytes > 0));
  2779. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2780. (ifp->if_bytes > 0)) {
  2781. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2782. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2783. whichfork);
  2784. }
  2785. break;
  2786. case XFS_DINODE_FMT_BTREE:
  2787. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2788. (ifp->if_broot_bytes > 0)) {
  2789. ASSERT(ifp->if_broot != NULL);
  2790. ASSERT(ifp->if_broot_bytes <=
  2791. (XFS_IFORK_SIZE(ip, whichfork) +
  2792. XFS_BROOT_SIZE_ADJ));
  2793. xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
  2794. (xfs_bmdr_block_t *)cp,
  2795. XFS_DFORK_SIZE(dip, mp, whichfork));
  2796. }
  2797. break;
  2798. case XFS_DINODE_FMT_DEV:
  2799. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2800. ASSERT(whichfork == XFS_DATA_FORK);
  2801. dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
  2802. }
  2803. break;
  2804. case XFS_DINODE_FMT_UUID:
  2805. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2806. ASSERT(whichfork == XFS_DATA_FORK);
  2807. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2808. sizeof(uuid_t));
  2809. }
  2810. break;
  2811. default:
  2812. ASSERT(0);
  2813. break;
  2814. }
  2815. return 0;
  2816. }
  2817. /*
  2818. * xfs_iflush() will write a modified inode's changes out to the
  2819. * inode's on disk home. The caller must have the inode lock held
  2820. * in at least shared mode and the inode flush semaphore must be
  2821. * held as well. The inode lock will still be held upon return from
  2822. * the call and the caller is free to unlock it.
  2823. * The inode flush lock will be unlocked when the inode reaches the disk.
  2824. * The flags indicate how the inode's buffer should be written out.
  2825. */
  2826. int
  2827. xfs_iflush(
  2828. xfs_inode_t *ip,
  2829. uint flags)
  2830. {
  2831. xfs_inode_log_item_t *iip;
  2832. xfs_buf_t *bp;
  2833. xfs_dinode_t *dip;
  2834. xfs_mount_t *mp;
  2835. int error;
  2836. /* REFERENCED */
  2837. xfs_inode_t *iq;
  2838. int clcount; /* count of inodes clustered */
  2839. int bufwasdelwri;
  2840. struct hlist_node *entry;
  2841. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2842. XFS_STATS_INC(xs_iflush_count);
  2843. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2844. ASSERT(issemalocked(&(ip->i_flock)));
  2845. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2846. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2847. iip = ip->i_itemp;
  2848. mp = ip->i_mount;
  2849. /*
  2850. * If the inode isn't dirty, then just release the inode
  2851. * flush lock and do nothing.
  2852. */
  2853. if ((ip->i_update_core == 0) &&
  2854. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2855. ASSERT((iip != NULL) ?
  2856. !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
  2857. xfs_ifunlock(ip);
  2858. return 0;
  2859. }
  2860. /*
  2861. * We can't flush the inode until it is unpinned, so
  2862. * wait for it. We know noone new can pin it, because
  2863. * we are holding the inode lock shared and you need
  2864. * to hold it exclusively to pin the inode.
  2865. */
  2866. xfs_iunpin_wait(ip);
  2867. /*
  2868. * This may have been unpinned because the filesystem is shutting
  2869. * down forcibly. If that's the case we must not write this inode
  2870. * to disk, because the log record didn't make it to disk!
  2871. */
  2872. if (XFS_FORCED_SHUTDOWN(mp)) {
  2873. ip->i_update_core = 0;
  2874. if (iip)
  2875. iip->ili_format.ilf_fields = 0;
  2876. xfs_ifunlock(ip);
  2877. return XFS_ERROR(EIO);
  2878. }
  2879. /*
  2880. * Get the buffer containing the on-disk inode.
  2881. */
  2882. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
  2883. if (error) {
  2884. xfs_ifunlock(ip);
  2885. return error;
  2886. }
  2887. /*
  2888. * Decide how buffer will be flushed out. This is done before
  2889. * the call to xfs_iflush_int because this field is zeroed by it.
  2890. */
  2891. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2892. /*
  2893. * Flush out the inode buffer according to the directions
  2894. * of the caller. In the cases where the caller has given
  2895. * us a choice choose the non-delwri case. This is because
  2896. * the inode is in the AIL and we need to get it out soon.
  2897. */
  2898. switch (flags) {
  2899. case XFS_IFLUSH_SYNC:
  2900. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2901. flags = 0;
  2902. break;
  2903. case XFS_IFLUSH_ASYNC:
  2904. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2905. flags = INT_ASYNC;
  2906. break;
  2907. case XFS_IFLUSH_DELWRI:
  2908. flags = INT_DELWRI;
  2909. break;
  2910. default:
  2911. ASSERT(0);
  2912. flags = 0;
  2913. break;
  2914. }
  2915. } else {
  2916. switch (flags) {
  2917. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2918. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2919. case XFS_IFLUSH_DELWRI:
  2920. flags = INT_DELWRI;
  2921. break;
  2922. case XFS_IFLUSH_ASYNC:
  2923. flags = INT_ASYNC;
  2924. break;
  2925. case XFS_IFLUSH_SYNC:
  2926. flags = 0;
  2927. break;
  2928. default:
  2929. ASSERT(0);
  2930. flags = 0;
  2931. break;
  2932. }
  2933. }
  2934. /*
  2935. * First flush out the inode that xfs_iflush was called with.
  2936. */
  2937. error = xfs_iflush_int(ip, bp);
  2938. if (error) {
  2939. goto corrupt_out;
  2940. }
  2941. /*
  2942. * inode clustering:
  2943. * see if other inodes can be gathered into this write
  2944. */
  2945. spin_lock(&ip->i_cluster->icl_lock);
  2946. ip->i_cluster->icl_buf = bp;
  2947. clcount = 0;
  2948. hlist_for_each_entry(iq, entry, &ip->i_cluster->icl_inodes, i_cnode) {
  2949. if (iq == ip)
  2950. continue;
  2951. /*
  2952. * Do an un-protected check to see if the inode is dirty and
  2953. * is a candidate for flushing. These checks will be repeated
  2954. * later after the appropriate locks are acquired.
  2955. */
  2956. iip = iq->i_itemp;
  2957. if ((iq->i_update_core == 0) &&
  2958. ((iip == NULL) ||
  2959. !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2960. xfs_ipincount(iq) == 0) {
  2961. continue;
  2962. }
  2963. /*
  2964. * Try to get locks. If any are unavailable,
  2965. * then this inode cannot be flushed and is skipped.
  2966. */
  2967. /* get inode locks (just i_lock) */
  2968. if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
  2969. /* get inode flush lock */
  2970. if (xfs_iflock_nowait(iq)) {
  2971. /* check if pinned */
  2972. if (xfs_ipincount(iq) == 0) {
  2973. /* arriving here means that
  2974. * this inode can be flushed.
  2975. * first re-check that it's
  2976. * dirty
  2977. */
  2978. iip = iq->i_itemp;
  2979. if ((iq->i_update_core != 0)||
  2980. ((iip != NULL) &&
  2981. (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2982. clcount++;
  2983. error = xfs_iflush_int(iq, bp);
  2984. if (error) {
  2985. xfs_iunlock(iq,
  2986. XFS_ILOCK_SHARED);
  2987. goto cluster_corrupt_out;
  2988. }
  2989. } else {
  2990. xfs_ifunlock(iq);
  2991. }
  2992. } else {
  2993. xfs_ifunlock(iq);
  2994. }
  2995. }
  2996. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2997. }
  2998. }
  2999. spin_unlock(&ip->i_cluster->icl_lock);
  3000. if (clcount) {
  3001. XFS_STATS_INC(xs_icluster_flushcnt);
  3002. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  3003. }
  3004. /*
  3005. * If the buffer is pinned then push on the log so we won't
  3006. * get stuck waiting in the write for too long.
  3007. */
  3008. if (XFS_BUF_ISPINNED(bp)){
  3009. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  3010. }
  3011. if (flags & INT_DELWRI) {
  3012. xfs_bdwrite(mp, bp);
  3013. } else if (flags & INT_ASYNC) {
  3014. xfs_bawrite(mp, bp);
  3015. } else {
  3016. error = xfs_bwrite(mp, bp);
  3017. }
  3018. return error;
  3019. corrupt_out:
  3020. xfs_buf_relse(bp);
  3021. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3022. xfs_iflush_abort(ip);
  3023. /*
  3024. * Unlocks the flush lock
  3025. */
  3026. return XFS_ERROR(EFSCORRUPTED);
  3027. cluster_corrupt_out:
  3028. /* Corruption detected in the clustering loop. Invalidate the
  3029. * inode buffer and shut down the filesystem.
  3030. */
  3031. spin_unlock(&ip->i_cluster->icl_lock);
  3032. /*
  3033. * Clean up the buffer. If it was B_DELWRI, just release it --
  3034. * brelse can handle it with no problems. If not, shut down the
  3035. * filesystem before releasing the buffer.
  3036. */
  3037. if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
  3038. xfs_buf_relse(bp);
  3039. }
  3040. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3041. if(!bufwasdelwri) {
  3042. /*
  3043. * Just like incore_relse: if we have b_iodone functions,
  3044. * mark the buffer as an error and call them. Otherwise
  3045. * mark it as stale and brelse.
  3046. */
  3047. if (XFS_BUF_IODONE_FUNC(bp)) {
  3048. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  3049. XFS_BUF_UNDONE(bp);
  3050. XFS_BUF_STALE(bp);
  3051. XFS_BUF_SHUT(bp);
  3052. XFS_BUF_ERROR(bp,EIO);
  3053. xfs_biodone(bp);
  3054. } else {
  3055. XFS_BUF_STALE(bp);
  3056. xfs_buf_relse(bp);
  3057. }
  3058. }
  3059. xfs_iflush_abort(iq);
  3060. /*
  3061. * Unlocks the flush lock
  3062. */
  3063. return XFS_ERROR(EFSCORRUPTED);
  3064. }
  3065. STATIC int
  3066. xfs_iflush_int(
  3067. xfs_inode_t *ip,
  3068. xfs_buf_t *bp)
  3069. {
  3070. xfs_inode_log_item_t *iip;
  3071. xfs_dinode_t *dip;
  3072. xfs_mount_t *mp;
  3073. #ifdef XFS_TRANS_DEBUG
  3074. int first;
  3075. #endif
  3076. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  3077. ASSERT(issemalocked(&(ip->i_flock)));
  3078. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3079. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  3080. iip = ip->i_itemp;
  3081. mp = ip->i_mount;
  3082. /*
  3083. * If the inode isn't dirty, then just release the inode
  3084. * flush lock and do nothing.
  3085. */
  3086. if ((ip->i_update_core == 0) &&
  3087. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  3088. xfs_ifunlock(ip);
  3089. return 0;
  3090. }
  3091. /* set *dip = inode's place in the buffer */
  3092. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3093. /*
  3094. * Clear i_update_core before copying out the data.
  3095. * This is for coordination with our timestamp updates
  3096. * that don't hold the inode lock. They will always
  3097. * update the timestamps BEFORE setting i_update_core,
  3098. * so if we clear i_update_core after they set it we
  3099. * are guaranteed to see their updates to the timestamps.
  3100. * I believe that this depends on strongly ordered memory
  3101. * semantics, but we have that. We use the SYNCHRONIZE
  3102. * macro to make sure that the compiler does not reorder
  3103. * the i_update_core access below the data copy below.
  3104. */
  3105. ip->i_update_core = 0;
  3106. SYNCHRONIZE();
  3107. /*
  3108. * Make sure to get the latest atime from the Linux inode.
  3109. */
  3110. xfs_synchronize_atime(ip);
  3111. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
  3112. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3113. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3114. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3115. ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
  3116. goto corrupt_out;
  3117. }
  3118. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3119. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3120. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3121. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3122. ip->i_ino, ip, ip->i_d.di_magic);
  3123. goto corrupt_out;
  3124. }
  3125. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3126. if (XFS_TEST_ERROR(
  3127. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3128. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3129. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3130. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3131. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3132. ip->i_ino, ip);
  3133. goto corrupt_out;
  3134. }
  3135. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3136. if (XFS_TEST_ERROR(
  3137. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3138. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3139. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3140. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3141. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3142. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3143. ip->i_ino, ip);
  3144. goto corrupt_out;
  3145. }
  3146. }
  3147. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3148. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3149. XFS_RANDOM_IFLUSH_5)) {
  3150. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3151. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3152. ip->i_ino,
  3153. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3154. ip->i_d.di_nblocks,
  3155. ip);
  3156. goto corrupt_out;
  3157. }
  3158. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3159. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3160. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3161. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3162. ip->i_ino, ip->i_d.di_forkoff, ip);
  3163. goto corrupt_out;
  3164. }
  3165. /*
  3166. * bump the flush iteration count, used to detect flushes which
  3167. * postdate a log record during recovery.
  3168. */
  3169. ip->i_d.di_flushiter++;
  3170. /*
  3171. * Copy the dirty parts of the inode into the on-disk
  3172. * inode. We always copy out the core of the inode,
  3173. * because if the inode is dirty at all the core must
  3174. * be.
  3175. */
  3176. xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
  3177. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3178. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3179. ip->i_d.di_flushiter = 0;
  3180. /*
  3181. * If this is really an old format inode and the superblock version
  3182. * has not been updated to support only new format inodes, then
  3183. * convert back to the old inode format. If the superblock version
  3184. * has been updated, then make the conversion permanent.
  3185. */
  3186. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3187. XFS_SB_VERSION_HASNLINK(&mp->m_sb));
  3188. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3189. if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
  3190. /*
  3191. * Convert it back.
  3192. */
  3193. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3194. dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  3195. } else {
  3196. /*
  3197. * The superblock version has already been bumped,
  3198. * so just make the conversion to the new inode
  3199. * format permanent.
  3200. */
  3201. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3202. dip->di_core.di_version = XFS_DINODE_VERSION_2;
  3203. ip->i_d.di_onlink = 0;
  3204. dip->di_core.di_onlink = 0;
  3205. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3206. memset(&(dip->di_core.di_pad[0]), 0,
  3207. sizeof(dip->di_core.di_pad));
  3208. ASSERT(ip->i_d.di_projid == 0);
  3209. }
  3210. }
  3211. if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
  3212. goto corrupt_out;
  3213. }
  3214. if (XFS_IFORK_Q(ip)) {
  3215. /*
  3216. * The only error from xfs_iflush_fork is on the data fork.
  3217. */
  3218. (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3219. }
  3220. xfs_inobp_check(mp, bp);
  3221. /*
  3222. * We've recorded everything logged in the inode, so we'd
  3223. * like to clear the ilf_fields bits so we don't log and
  3224. * flush things unnecessarily. However, we can't stop
  3225. * logging all this information until the data we've copied
  3226. * into the disk buffer is written to disk. If we did we might
  3227. * overwrite the copy of the inode in the log with all the
  3228. * data after re-logging only part of it, and in the face of
  3229. * a crash we wouldn't have all the data we need to recover.
  3230. *
  3231. * What we do is move the bits to the ili_last_fields field.
  3232. * When logging the inode, these bits are moved back to the
  3233. * ilf_fields field. In the xfs_iflush_done() routine we
  3234. * clear ili_last_fields, since we know that the information
  3235. * those bits represent is permanently on disk. As long as
  3236. * the flush completes before the inode is logged again, then
  3237. * both ilf_fields and ili_last_fields will be cleared.
  3238. *
  3239. * We can play with the ilf_fields bits here, because the inode
  3240. * lock must be held exclusively in order to set bits there
  3241. * and the flush lock protects the ili_last_fields bits.
  3242. * Set ili_logged so the flush done
  3243. * routine can tell whether or not to look in the AIL.
  3244. * Also, store the current LSN of the inode so that we can tell
  3245. * whether the item has moved in the AIL from xfs_iflush_done().
  3246. * In order to read the lsn we need the AIL lock, because
  3247. * it is a 64 bit value that cannot be read atomically.
  3248. */
  3249. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3250. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3251. iip->ili_format.ilf_fields = 0;
  3252. iip->ili_logged = 1;
  3253. ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
  3254. spin_lock(&mp->m_ail_lock);
  3255. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  3256. spin_unlock(&mp->m_ail_lock);
  3257. /*
  3258. * Attach the function xfs_iflush_done to the inode's
  3259. * buffer. This will remove the inode from the AIL
  3260. * and unlock the inode's flush lock when the inode is
  3261. * completely written to disk.
  3262. */
  3263. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3264. xfs_iflush_done, (xfs_log_item_t *)iip);
  3265. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3266. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3267. } else {
  3268. /*
  3269. * We're flushing an inode which is not in the AIL and has
  3270. * not been logged but has i_update_core set. For this
  3271. * case we can use a B_DELWRI flush and immediately drop
  3272. * the inode flush lock because we can avoid the whole
  3273. * AIL state thing. It's OK to drop the flush lock now,
  3274. * because we've already locked the buffer and to do anything
  3275. * you really need both.
  3276. */
  3277. if (iip != NULL) {
  3278. ASSERT(iip->ili_logged == 0);
  3279. ASSERT(iip->ili_last_fields == 0);
  3280. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3281. }
  3282. xfs_ifunlock(ip);
  3283. }
  3284. return 0;
  3285. corrupt_out:
  3286. return XFS_ERROR(EFSCORRUPTED);
  3287. }
  3288. /*
  3289. * Flush all inactive inodes in mp.
  3290. */
  3291. void
  3292. xfs_iflush_all(
  3293. xfs_mount_t *mp)
  3294. {
  3295. xfs_inode_t *ip;
  3296. bhv_vnode_t *vp;
  3297. again:
  3298. XFS_MOUNT_ILOCK(mp);
  3299. ip = mp->m_inodes;
  3300. if (ip == NULL)
  3301. goto out;
  3302. do {
  3303. /* Make sure we skip markers inserted by sync */
  3304. if (ip->i_mount == NULL) {
  3305. ip = ip->i_mnext;
  3306. continue;
  3307. }
  3308. vp = XFS_ITOV_NULL(ip);
  3309. if (!vp) {
  3310. XFS_MOUNT_IUNLOCK(mp);
  3311. xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
  3312. goto again;
  3313. }
  3314. ASSERT(vn_count(vp) == 0);
  3315. ip = ip->i_mnext;
  3316. } while (ip != mp->m_inodes);
  3317. out:
  3318. XFS_MOUNT_IUNLOCK(mp);
  3319. }
  3320. /*
  3321. * xfs_iaccess: check accessibility of inode for mode.
  3322. */
  3323. int
  3324. xfs_iaccess(
  3325. xfs_inode_t *ip,
  3326. mode_t mode,
  3327. cred_t *cr)
  3328. {
  3329. int error;
  3330. mode_t orgmode = mode;
  3331. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  3332. if (mode & S_IWUSR) {
  3333. umode_t imode = inode->i_mode;
  3334. if (IS_RDONLY(inode) &&
  3335. (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
  3336. return XFS_ERROR(EROFS);
  3337. if (IS_IMMUTABLE(inode))
  3338. return XFS_ERROR(EACCES);
  3339. }
  3340. /*
  3341. * If there's an Access Control List it's used instead of
  3342. * the mode bits.
  3343. */
  3344. if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
  3345. return error ? XFS_ERROR(error) : 0;
  3346. if (current_fsuid(cr) != ip->i_d.di_uid) {
  3347. mode >>= 3;
  3348. if (!in_group_p((gid_t)ip->i_d.di_gid))
  3349. mode >>= 3;
  3350. }
  3351. /*
  3352. * If the DACs are ok we don't need any capability check.
  3353. */
  3354. if ((ip->i_d.di_mode & mode) == mode)
  3355. return 0;
  3356. /*
  3357. * Read/write DACs are always overridable.
  3358. * Executable DACs are overridable if at least one exec bit is set.
  3359. */
  3360. if (!(orgmode & S_IXUSR) ||
  3361. (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
  3362. if (capable_cred(cr, CAP_DAC_OVERRIDE))
  3363. return 0;
  3364. if ((orgmode == S_IRUSR) ||
  3365. (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
  3366. if (capable_cred(cr, CAP_DAC_READ_SEARCH))
  3367. return 0;
  3368. #ifdef NOISE
  3369. cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
  3370. #endif /* NOISE */
  3371. return XFS_ERROR(EACCES);
  3372. }
  3373. return XFS_ERROR(EACCES);
  3374. }
  3375. #ifdef XFS_ILOCK_TRACE
  3376. ktrace_t *xfs_ilock_trace_buf;
  3377. void
  3378. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3379. {
  3380. ktrace_enter(ip->i_lock_trace,
  3381. (void *)ip,
  3382. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3383. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3384. (void *)ra, /* caller of ilock */
  3385. (void *)(unsigned long)current_cpu(),
  3386. (void *)(unsigned long)current_pid(),
  3387. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3388. }
  3389. #endif
  3390. /*
  3391. * Return a pointer to the extent record at file index idx.
  3392. */
  3393. xfs_bmbt_rec_host_t *
  3394. xfs_iext_get_ext(
  3395. xfs_ifork_t *ifp, /* inode fork pointer */
  3396. xfs_extnum_t idx) /* index of target extent */
  3397. {
  3398. ASSERT(idx >= 0);
  3399. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3400. return ifp->if_u1.if_ext_irec->er_extbuf;
  3401. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3402. xfs_ext_irec_t *erp; /* irec pointer */
  3403. int erp_idx = 0; /* irec index */
  3404. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3405. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3406. return &erp->er_extbuf[page_idx];
  3407. } else if (ifp->if_bytes) {
  3408. return &ifp->if_u1.if_extents[idx];
  3409. } else {
  3410. return NULL;
  3411. }
  3412. }
  3413. /*
  3414. * Insert new item(s) into the extent records for incore inode
  3415. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3416. */
  3417. void
  3418. xfs_iext_insert(
  3419. xfs_ifork_t *ifp, /* inode fork pointer */
  3420. xfs_extnum_t idx, /* starting index of new items */
  3421. xfs_extnum_t count, /* number of inserted items */
  3422. xfs_bmbt_irec_t *new) /* items to insert */
  3423. {
  3424. xfs_extnum_t i; /* extent record index */
  3425. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3426. xfs_iext_add(ifp, idx, count);
  3427. for (i = idx; i < idx + count; i++, new++)
  3428. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  3429. }
  3430. /*
  3431. * This is called when the amount of space required for incore file
  3432. * extents needs to be increased. The ext_diff parameter stores the
  3433. * number of new extents being added and the idx parameter contains
  3434. * the extent index where the new extents will be added. If the new
  3435. * extents are being appended, then we just need to (re)allocate and
  3436. * initialize the space. Otherwise, if the new extents are being
  3437. * inserted into the middle of the existing entries, a bit more work
  3438. * is required to make room for the new extents to be inserted. The
  3439. * caller is responsible for filling in the new extent entries upon
  3440. * return.
  3441. */
  3442. void
  3443. xfs_iext_add(
  3444. xfs_ifork_t *ifp, /* inode fork pointer */
  3445. xfs_extnum_t idx, /* index to begin adding exts */
  3446. int ext_diff) /* number of extents to add */
  3447. {
  3448. int byte_diff; /* new bytes being added */
  3449. int new_size; /* size of extents after adding */
  3450. xfs_extnum_t nextents; /* number of extents in file */
  3451. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3452. ASSERT((idx >= 0) && (idx <= nextents));
  3453. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3454. new_size = ifp->if_bytes + byte_diff;
  3455. /*
  3456. * If the new number of extents (nextents + ext_diff)
  3457. * fits inside the inode, then continue to use the inline
  3458. * extent buffer.
  3459. */
  3460. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3461. if (idx < nextents) {
  3462. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3463. &ifp->if_u2.if_inline_ext[idx],
  3464. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3465. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3466. }
  3467. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3468. ifp->if_real_bytes = 0;
  3469. ifp->if_lastex = nextents + ext_diff;
  3470. }
  3471. /*
  3472. * Otherwise use a linear (direct) extent list.
  3473. * If the extents are currently inside the inode,
  3474. * xfs_iext_realloc_direct will switch us from
  3475. * inline to direct extent allocation mode.
  3476. */
  3477. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3478. xfs_iext_realloc_direct(ifp, new_size);
  3479. if (idx < nextents) {
  3480. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3481. &ifp->if_u1.if_extents[idx],
  3482. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3483. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3484. }
  3485. }
  3486. /* Indirection array */
  3487. else {
  3488. xfs_ext_irec_t *erp;
  3489. int erp_idx = 0;
  3490. int page_idx = idx;
  3491. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3492. if (ifp->if_flags & XFS_IFEXTIREC) {
  3493. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3494. } else {
  3495. xfs_iext_irec_init(ifp);
  3496. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3497. erp = ifp->if_u1.if_ext_irec;
  3498. }
  3499. /* Extents fit in target extent page */
  3500. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3501. if (page_idx < erp->er_extcount) {
  3502. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3503. &erp->er_extbuf[page_idx],
  3504. (erp->er_extcount - page_idx) *
  3505. sizeof(xfs_bmbt_rec_t));
  3506. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3507. }
  3508. erp->er_extcount += ext_diff;
  3509. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3510. }
  3511. /* Insert a new extent page */
  3512. else if (erp) {
  3513. xfs_iext_add_indirect_multi(ifp,
  3514. erp_idx, page_idx, ext_diff);
  3515. }
  3516. /*
  3517. * If extent(s) are being appended to the last page in
  3518. * the indirection array and the new extent(s) don't fit
  3519. * in the page, then erp is NULL and erp_idx is set to
  3520. * the next index needed in the indirection array.
  3521. */
  3522. else {
  3523. int count = ext_diff;
  3524. while (count) {
  3525. erp = xfs_iext_irec_new(ifp, erp_idx);
  3526. erp->er_extcount = count;
  3527. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3528. if (count) {
  3529. erp_idx++;
  3530. }
  3531. }
  3532. }
  3533. }
  3534. ifp->if_bytes = new_size;
  3535. }
  3536. /*
  3537. * This is called when incore extents are being added to the indirection
  3538. * array and the new extents do not fit in the target extent list. The
  3539. * erp_idx parameter contains the irec index for the target extent list
  3540. * in the indirection array, and the idx parameter contains the extent
  3541. * index within the list. The number of extents being added is stored
  3542. * in the count parameter.
  3543. *
  3544. * |-------| |-------|
  3545. * | | | | idx - number of extents before idx
  3546. * | idx | | count |
  3547. * | | | | count - number of extents being inserted at idx
  3548. * |-------| |-------|
  3549. * | count | | nex2 | nex2 - number of extents after idx + count
  3550. * |-------| |-------|
  3551. */
  3552. void
  3553. xfs_iext_add_indirect_multi(
  3554. xfs_ifork_t *ifp, /* inode fork pointer */
  3555. int erp_idx, /* target extent irec index */
  3556. xfs_extnum_t idx, /* index within target list */
  3557. int count) /* new extents being added */
  3558. {
  3559. int byte_diff; /* new bytes being added */
  3560. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3561. xfs_extnum_t ext_diff; /* number of extents to add */
  3562. xfs_extnum_t ext_cnt; /* new extents still needed */
  3563. xfs_extnum_t nex2; /* extents after idx + count */
  3564. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3565. int nlists; /* number of irec's (lists) */
  3566. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3567. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3568. nex2 = erp->er_extcount - idx;
  3569. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3570. /*
  3571. * Save second part of target extent list
  3572. * (all extents past */
  3573. if (nex2) {
  3574. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3575. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
  3576. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3577. erp->er_extcount -= nex2;
  3578. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3579. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3580. }
  3581. /*
  3582. * Add the new extents to the end of the target
  3583. * list, then allocate new irec record(s) and
  3584. * extent buffer(s) as needed to store the rest
  3585. * of the new extents.
  3586. */
  3587. ext_cnt = count;
  3588. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3589. if (ext_diff) {
  3590. erp->er_extcount += ext_diff;
  3591. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3592. ext_cnt -= ext_diff;
  3593. }
  3594. while (ext_cnt) {
  3595. erp_idx++;
  3596. erp = xfs_iext_irec_new(ifp, erp_idx);
  3597. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3598. erp->er_extcount = ext_diff;
  3599. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3600. ext_cnt -= ext_diff;
  3601. }
  3602. /* Add nex2 extents back to indirection array */
  3603. if (nex2) {
  3604. xfs_extnum_t ext_avail;
  3605. int i;
  3606. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3607. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3608. i = 0;
  3609. /*
  3610. * If nex2 extents fit in the current page, append
  3611. * nex2_ep after the new extents.
  3612. */
  3613. if (nex2 <= ext_avail) {
  3614. i = erp->er_extcount;
  3615. }
  3616. /*
  3617. * Otherwise, check if space is available in the
  3618. * next page.
  3619. */
  3620. else if ((erp_idx < nlists - 1) &&
  3621. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3622. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3623. erp_idx++;
  3624. erp++;
  3625. /* Create a hole for nex2 extents */
  3626. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3627. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3628. }
  3629. /*
  3630. * Final choice, create a new extent page for
  3631. * nex2 extents.
  3632. */
  3633. else {
  3634. erp_idx++;
  3635. erp = xfs_iext_irec_new(ifp, erp_idx);
  3636. }
  3637. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3638. kmem_free(nex2_ep, byte_diff);
  3639. erp->er_extcount += nex2;
  3640. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3641. }
  3642. }
  3643. /*
  3644. * This is called when the amount of space required for incore file
  3645. * extents needs to be decreased. The ext_diff parameter stores the
  3646. * number of extents to be removed and the idx parameter contains
  3647. * the extent index where the extents will be removed from.
  3648. *
  3649. * If the amount of space needed has decreased below the linear
  3650. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3651. * extent array. Otherwise, use kmem_realloc() to adjust the
  3652. * size to what is needed.
  3653. */
  3654. void
  3655. xfs_iext_remove(
  3656. xfs_ifork_t *ifp, /* inode fork pointer */
  3657. xfs_extnum_t idx, /* index to begin removing exts */
  3658. int ext_diff) /* number of extents to remove */
  3659. {
  3660. xfs_extnum_t nextents; /* number of extents in file */
  3661. int new_size; /* size of extents after removal */
  3662. ASSERT(ext_diff > 0);
  3663. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3664. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3665. if (new_size == 0) {
  3666. xfs_iext_destroy(ifp);
  3667. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3668. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3669. } else if (ifp->if_real_bytes) {
  3670. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3671. } else {
  3672. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3673. }
  3674. ifp->if_bytes = new_size;
  3675. }
  3676. /*
  3677. * This removes ext_diff extents from the inline buffer, beginning
  3678. * at extent index idx.
  3679. */
  3680. void
  3681. xfs_iext_remove_inline(
  3682. xfs_ifork_t *ifp, /* inode fork pointer */
  3683. xfs_extnum_t idx, /* index to begin removing exts */
  3684. int ext_diff) /* number of extents to remove */
  3685. {
  3686. int nextents; /* number of extents in file */
  3687. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3688. ASSERT(idx < XFS_INLINE_EXTS);
  3689. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3690. ASSERT(((nextents - ext_diff) > 0) &&
  3691. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3692. if (idx + ext_diff < nextents) {
  3693. memmove(&ifp->if_u2.if_inline_ext[idx],
  3694. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3695. (nextents - (idx + ext_diff)) *
  3696. sizeof(xfs_bmbt_rec_t));
  3697. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3698. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3699. } else {
  3700. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3701. ext_diff * sizeof(xfs_bmbt_rec_t));
  3702. }
  3703. }
  3704. /*
  3705. * This removes ext_diff extents from a linear (direct) extent list,
  3706. * beginning at extent index idx. If the extents are being removed
  3707. * from the end of the list (ie. truncate) then we just need to re-
  3708. * allocate the list to remove the extra space. Otherwise, if the
  3709. * extents are being removed from the middle of the existing extent
  3710. * entries, then we first need to move the extent records beginning
  3711. * at idx + ext_diff up in the list to overwrite the records being
  3712. * removed, then remove the extra space via kmem_realloc.
  3713. */
  3714. void
  3715. xfs_iext_remove_direct(
  3716. xfs_ifork_t *ifp, /* inode fork pointer */
  3717. xfs_extnum_t idx, /* index to begin removing exts */
  3718. int ext_diff) /* number of extents to remove */
  3719. {
  3720. xfs_extnum_t nextents; /* number of extents in file */
  3721. int new_size; /* size of extents after removal */
  3722. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3723. new_size = ifp->if_bytes -
  3724. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3725. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3726. if (new_size == 0) {
  3727. xfs_iext_destroy(ifp);
  3728. return;
  3729. }
  3730. /* Move extents up in the list (if needed) */
  3731. if (idx + ext_diff < nextents) {
  3732. memmove(&ifp->if_u1.if_extents[idx],
  3733. &ifp->if_u1.if_extents[idx + ext_diff],
  3734. (nextents - (idx + ext_diff)) *
  3735. sizeof(xfs_bmbt_rec_t));
  3736. }
  3737. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3738. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3739. /*
  3740. * Reallocate the direct extent list. If the extents
  3741. * will fit inside the inode then xfs_iext_realloc_direct
  3742. * will switch from direct to inline extent allocation
  3743. * mode for us.
  3744. */
  3745. xfs_iext_realloc_direct(ifp, new_size);
  3746. ifp->if_bytes = new_size;
  3747. }
  3748. /*
  3749. * This is called when incore extents are being removed from the
  3750. * indirection array and the extents being removed span multiple extent
  3751. * buffers. The idx parameter contains the file extent index where we
  3752. * want to begin removing extents, and the count parameter contains
  3753. * how many extents need to be removed.
  3754. *
  3755. * |-------| |-------|
  3756. * | nex1 | | | nex1 - number of extents before idx
  3757. * |-------| | count |
  3758. * | | | | count - number of extents being removed at idx
  3759. * | count | |-------|
  3760. * | | | nex2 | nex2 - number of extents after idx + count
  3761. * |-------| |-------|
  3762. */
  3763. void
  3764. xfs_iext_remove_indirect(
  3765. xfs_ifork_t *ifp, /* inode fork pointer */
  3766. xfs_extnum_t idx, /* index to begin removing extents */
  3767. int count) /* number of extents to remove */
  3768. {
  3769. xfs_ext_irec_t *erp; /* indirection array pointer */
  3770. int erp_idx = 0; /* indirection array index */
  3771. xfs_extnum_t ext_cnt; /* extents left to remove */
  3772. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3773. xfs_extnum_t nex1; /* number of extents before idx */
  3774. xfs_extnum_t nex2; /* extents after idx + count */
  3775. int nlists; /* entries in indirection array */
  3776. int page_idx = idx; /* index in target extent list */
  3777. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3778. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3779. ASSERT(erp != NULL);
  3780. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3781. nex1 = page_idx;
  3782. ext_cnt = count;
  3783. while (ext_cnt) {
  3784. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3785. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3786. /*
  3787. * Check for deletion of entire list;
  3788. * xfs_iext_irec_remove() updates extent offsets.
  3789. */
  3790. if (ext_diff == erp->er_extcount) {
  3791. xfs_iext_irec_remove(ifp, erp_idx);
  3792. ext_cnt -= ext_diff;
  3793. nex1 = 0;
  3794. if (ext_cnt) {
  3795. ASSERT(erp_idx < ifp->if_real_bytes /
  3796. XFS_IEXT_BUFSZ);
  3797. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3798. nex1 = 0;
  3799. continue;
  3800. } else {
  3801. break;
  3802. }
  3803. }
  3804. /* Move extents up (if needed) */
  3805. if (nex2) {
  3806. memmove(&erp->er_extbuf[nex1],
  3807. &erp->er_extbuf[nex1 + ext_diff],
  3808. nex2 * sizeof(xfs_bmbt_rec_t));
  3809. }
  3810. /* Zero out rest of page */
  3811. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3812. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3813. /* Update remaining counters */
  3814. erp->er_extcount -= ext_diff;
  3815. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3816. ext_cnt -= ext_diff;
  3817. nex1 = 0;
  3818. erp_idx++;
  3819. erp++;
  3820. }
  3821. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3822. xfs_iext_irec_compact(ifp);
  3823. }
  3824. /*
  3825. * Create, destroy, or resize a linear (direct) block of extents.
  3826. */
  3827. void
  3828. xfs_iext_realloc_direct(
  3829. xfs_ifork_t *ifp, /* inode fork pointer */
  3830. int new_size) /* new size of extents */
  3831. {
  3832. int rnew_size; /* real new size of extents */
  3833. rnew_size = new_size;
  3834. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3835. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3836. (new_size != ifp->if_real_bytes)));
  3837. /* Free extent records */
  3838. if (new_size == 0) {
  3839. xfs_iext_destroy(ifp);
  3840. }
  3841. /* Resize direct extent list and zero any new bytes */
  3842. else if (ifp->if_real_bytes) {
  3843. /* Check if extents will fit inside the inode */
  3844. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3845. xfs_iext_direct_to_inline(ifp, new_size /
  3846. (uint)sizeof(xfs_bmbt_rec_t));
  3847. ifp->if_bytes = new_size;
  3848. return;
  3849. }
  3850. if (!is_power_of_2(new_size)){
  3851. rnew_size = roundup_pow_of_two(new_size);
  3852. }
  3853. if (rnew_size != ifp->if_real_bytes) {
  3854. ifp->if_u1.if_extents =
  3855. kmem_realloc(ifp->if_u1.if_extents,
  3856. rnew_size,
  3857. ifp->if_real_bytes,
  3858. KM_SLEEP);
  3859. }
  3860. if (rnew_size > ifp->if_real_bytes) {
  3861. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3862. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3863. rnew_size - ifp->if_real_bytes);
  3864. }
  3865. }
  3866. /*
  3867. * Switch from the inline extent buffer to a direct
  3868. * extent list. Be sure to include the inline extent
  3869. * bytes in new_size.
  3870. */
  3871. else {
  3872. new_size += ifp->if_bytes;
  3873. if (!is_power_of_2(new_size)) {
  3874. rnew_size = roundup_pow_of_two(new_size);
  3875. }
  3876. xfs_iext_inline_to_direct(ifp, rnew_size);
  3877. }
  3878. ifp->if_real_bytes = rnew_size;
  3879. ifp->if_bytes = new_size;
  3880. }
  3881. /*
  3882. * Switch from linear (direct) extent records to inline buffer.
  3883. */
  3884. void
  3885. xfs_iext_direct_to_inline(
  3886. xfs_ifork_t *ifp, /* inode fork pointer */
  3887. xfs_extnum_t nextents) /* number of extents in file */
  3888. {
  3889. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3890. ASSERT(nextents <= XFS_INLINE_EXTS);
  3891. /*
  3892. * The inline buffer was zeroed when we switched
  3893. * from inline to direct extent allocation mode,
  3894. * so we don't need to clear it here.
  3895. */
  3896. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3897. nextents * sizeof(xfs_bmbt_rec_t));
  3898. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3899. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3900. ifp->if_real_bytes = 0;
  3901. }
  3902. /*
  3903. * Switch from inline buffer to linear (direct) extent records.
  3904. * new_size should already be rounded up to the next power of 2
  3905. * by the caller (when appropriate), so use new_size as it is.
  3906. * However, since new_size may be rounded up, we can't update
  3907. * if_bytes here. It is the caller's responsibility to update
  3908. * if_bytes upon return.
  3909. */
  3910. void
  3911. xfs_iext_inline_to_direct(
  3912. xfs_ifork_t *ifp, /* inode fork pointer */
  3913. int new_size) /* number of extents in file */
  3914. {
  3915. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
  3916. memset(ifp->if_u1.if_extents, 0, new_size);
  3917. if (ifp->if_bytes) {
  3918. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3919. ifp->if_bytes);
  3920. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3921. sizeof(xfs_bmbt_rec_t));
  3922. }
  3923. ifp->if_real_bytes = new_size;
  3924. }
  3925. /*
  3926. * Resize an extent indirection array to new_size bytes.
  3927. */
  3928. void
  3929. xfs_iext_realloc_indirect(
  3930. xfs_ifork_t *ifp, /* inode fork pointer */
  3931. int new_size) /* new indirection array size */
  3932. {
  3933. int nlists; /* number of irec's (ex lists) */
  3934. int size; /* current indirection array size */
  3935. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3936. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3937. size = nlists * sizeof(xfs_ext_irec_t);
  3938. ASSERT(ifp->if_real_bytes);
  3939. ASSERT((new_size >= 0) && (new_size != size));
  3940. if (new_size == 0) {
  3941. xfs_iext_destroy(ifp);
  3942. } else {
  3943. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3944. kmem_realloc(ifp->if_u1.if_ext_irec,
  3945. new_size, size, KM_SLEEP);
  3946. }
  3947. }
  3948. /*
  3949. * Switch from indirection array to linear (direct) extent allocations.
  3950. */
  3951. void
  3952. xfs_iext_indirect_to_direct(
  3953. xfs_ifork_t *ifp) /* inode fork pointer */
  3954. {
  3955. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3956. xfs_extnum_t nextents; /* number of extents in file */
  3957. int size; /* size of file extents */
  3958. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3959. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3960. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3961. size = nextents * sizeof(xfs_bmbt_rec_t);
  3962. xfs_iext_irec_compact_full(ifp);
  3963. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3964. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3965. kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
  3966. ifp->if_flags &= ~XFS_IFEXTIREC;
  3967. ifp->if_u1.if_extents = ep;
  3968. ifp->if_bytes = size;
  3969. if (nextents < XFS_LINEAR_EXTS) {
  3970. xfs_iext_realloc_direct(ifp, size);
  3971. }
  3972. }
  3973. /*
  3974. * Free incore file extents.
  3975. */
  3976. void
  3977. xfs_iext_destroy(
  3978. xfs_ifork_t *ifp) /* inode fork pointer */
  3979. {
  3980. if (ifp->if_flags & XFS_IFEXTIREC) {
  3981. int erp_idx;
  3982. int nlists;
  3983. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3984. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3985. xfs_iext_irec_remove(ifp, erp_idx);
  3986. }
  3987. ifp->if_flags &= ~XFS_IFEXTIREC;
  3988. } else if (ifp->if_real_bytes) {
  3989. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3990. } else if (ifp->if_bytes) {
  3991. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3992. sizeof(xfs_bmbt_rec_t));
  3993. }
  3994. ifp->if_u1.if_extents = NULL;
  3995. ifp->if_real_bytes = 0;
  3996. ifp->if_bytes = 0;
  3997. }
  3998. /*
  3999. * Return a pointer to the extent record for file system block bno.
  4000. */
  4001. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  4002. xfs_iext_bno_to_ext(
  4003. xfs_ifork_t *ifp, /* inode fork pointer */
  4004. xfs_fileoff_t bno, /* block number to search for */
  4005. xfs_extnum_t *idxp) /* index of target extent */
  4006. {
  4007. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  4008. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  4009. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  4010. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4011. int high; /* upper boundary in search */
  4012. xfs_extnum_t idx = 0; /* index of target extent */
  4013. int low; /* lower boundary in search */
  4014. xfs_extnum_t nextents; /* number of file extents */
  4015. xfs_fileoff_t startoff = 0; /* start offset of extent */
  4016. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4017. if (nextents == 0) {
  4018. *idxp = 0;
  4019. return NULL;
  4020. }
  4021. low = 0;
  4022. if (ifp->if_flags & XFS_IFEXTIREC) {
  4023. /* Find target extent list */
  4024. int erp_idx = 0;
  4025. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  4026. base = erp->er_extbuf;
  4027. high = erp->er_extcount - 1;
  4028. } else {
  4029. base = ifp->if_u1.if_extents;
  4030. high = nextents - 1;
  4031. }
  4032. /* Binary search extent records */
  4033. while (low <= high) {
  4034. idx = (low + high) >> 1;
  4035. ep = base + idx;
  4036. startoff = xfs_bmbt_get_startoff(ep);
  4037. blockcount = xfs_bmbt_get_blockcount(ep);
  4038. if (bno < startoff) {
  4039. high = idx - 1;
  4040. } else if (bno >= startoff + blockcount) {
  4041. low = idx + 1;
  4042. } else {
  4043. /* Convert back to file-based extent index */
  4044. if (ifp->if_flags & XFS_IFEXTIREC) {
  4045. idx += erp->er_extoff;
  4046. }
  4047. *idxp = idx;
  4048. return ep;
  4049. }
  4050. }
  4051. /* Convert back to file-based extent index */
  4052. if (ifp->if_flags & XFS_IFEXTIREC) {
  4053. idx += erp->er_extoff;
  4054. }
  4055. if (bno >= startoff + blockcount) {
  4056. if (++idx == nextents) {
  4057. ep = NULL;
  4058. } else {
  4059. ep = xfs_iext_get_ext(ifp, idx);
  4060. }
  4061. }
  4062. *idxp = idx;
  4063. return ep;
  4064. }
  4065. /*
  4066. * Return a pointer to the indirection array entry containing the
  4067. * extent record for filesystem block bno. Store the index of the
  4068. * target irec in *erp_idxp.
  4069. */
  4070. xfs_ext_irec_t * /* pointer to found extent record */
  4071. xfs_iext_bno_to_irec(
  4072. xfs_ifork_t *ifp, /* inode fork pointer */
  4073. xfs_fileoff_t bno, /* block number to search for */
  4074. int *erp_idxp) /* irec index of target ext list */
  4075. {
  4076. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4077. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  4078. int erp_idx; /* indirection array index */
  4079. int nlists; /* number of extent irec's (lists) */
  4080. int high; /* binary search upper limit */
  4081. int low; /* binary search lower limit */
  4082. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4083. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4084. erp_idx = 0;
  4085. low = 0;
  4086. high = nlists - 1;
  4087. while (low <= high) {
  4088. erp_idx = (low + high) >> 1;
  4089. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4090. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  4091. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  4092. high = erp_idx - 1;
  4093. } else if (erp_next && bno >=
  4094. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  4095. low = erp_idx + 1;
  4096. } else {
  4097. break;
  4098. }
  4099. }
  4100. *erp_idxp = erp_idx;
  4101. return erp;
  4102. }
  4103. /*
  4104. * Return a pointer to the indirection array entry containing the
  4105. * extent record at file extent index *idxp. Store the index of the
  4106. * target irec in *erp_idxp and store the page index of the target
  4107. * extent record in *idxp.
  4108. */
  4109. xfs_ext_irec_t *
  4110. xfs_iext_idx_to_irec(
  4111. xfs_ifork_t *ifp, /* inode fork pointer */
  4112. xfs_extnum_t *idxp, /* extent index (file -> page) */
  4113. int *erp_idxp, /* pointer to target irec */
  4114. int realloc) /* new bytes were just added */
  4115. {
  4116. xfs_ext_irec_t *prev; /* pointer to previous irec */
  4117. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  4118. int erp_idx; /* indirection array index */
  4119. int nlists; /* number of irec's (ex lists) */
  4120. int high; /* binary search upper limit */
  4121. int low; /* binary search lower limit */
  4122. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  4123. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4124. ASSERT(page_idx >= 0 && page_idx <=
  4125. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  4126. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4127. erp_idx = 0;
  4128. low = 0;
  4129. high = nlists - 1;
  4130. /* Binary search extent irec's */
  4131. while (low <= high) {
  4132. erp_idx = (low + high) >> 1;
  4133. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4134. prev = erp_idx > 0 ? erp - 1 : NULL;
  4135. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  4136. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  4137. high = erp_idx - 1;
  4138. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  4139. (page_idx == erp->er_extoff + erp->er_extcount &&
  4140. !realloc)) {
  4141. low = erp_idx + 1;
  4142. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  4143. erp->er_extcount == XFS_LINEAR_EXTS) {
  4144. ASSERT(realloc);
  4145. page_idx = 0;
  4146. erp_idx++;
  4147. erp = erp_idx < nlists ? erp + 1 : NULL;
  4148. break;
  4149. } else {
  4150. page_idx -= erp->er_extoff;
  4151. break;
  4152. }
  4153. }
  4154. *idxp = page_idx;
  4155. *erp_idxp = erp_idx;
  4156. return(erp);
  4157. }
  4158. /*
  4159. * Allocate and initialize an indirection array once the space needed
  4160. * for incore extents increases above XFS_IEXT_BUFSZ.
  4161. */
  4162. void
  4163. xfs_iext_irec_init(
  4164. xfs_ifork_t *ifp) /* inode fork pointer */
  4165. {
  4166. xfs_ext_irec_t *erp; /* indirection array pointer */
  4167. xfs_extnum_t nextents; /* number of extents in file */
  4168. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4169. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4170. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4171. erp = (xfs_ext_irec_t *)
  4172. kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
  4173. if (nextents == 0) {
  4174. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4175. } else if (!ifp->if_real_bytes) {
  4176. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4177. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4178. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4179. }
  4180. erp->er_extbuf = ifp->if_u1.if_extents;
  4181. erp->er_extcount = nextents;
  4182. erp->er_extoff = 0;
  4183. ifp->if_flags |= XFS_IFEXTIREC;
  4184. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4185. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4186. ifp->if_u1.if_ext_irec = erp;
  4187. return;
  4188. }
  4189. /*
  4190. * Allocate and initialize a new entry in the indirection array.
  4191. */
  4192. xfs_ext_irec_t *
  4193. xfs_iext_irec_new(
  4194. xfs_ifork_t *ifp, /* inode fork pointer */
  4195. int erp_idx) /* index for new irec */
  4196. {
  4197. xfs_ext_irec_t *erp; /* indirection array pointer */
  4198. int i; /* loop counter */
  4199. int nlists; /* number of irec's (ex lists) */
  4200. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4201. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4202. /* Resize indirection array */
  4203. xfs_iext_realloc_indirect(ifp, ++nlists *
  4204. sizeof(xfs_ext_irec_t));
  4205. /*
  4206. * Move records down in the array so the
  4207. * new page can use erp_idx.
  4208. */
  4209. erp = ifp->if_u1.if_ext_irec;
  4210. for (i = nlists - 1; i > erp_idx; i--) {
  4211. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4212. }
  4213. ASSERT(i == erp_idx);
  4214. /* Initialize new extent record */
  4215. erp = ifp->if_u1.if_ext_irec;
  4216. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4217. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4218. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4219. erp[erp_idx].er_extcount = 0;
  4220. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4221. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4222. return (&erp[erp_idx]);
  4223. }
  4224. /*
  4225. * Remove a record from the indirection array.
  4226. */
  4227. void
  4228. xfs_iext_irec_remove(
  4229. xfs_ifork_t *ifp, /* inode fork pointer */
  4230. int erp_idx) /* irec index to remove */
  4231. {
  4232. xfs_ext_irec_t *erp; /* indirection array pointer */
  4233. int i; /* loop counter */
  4234. int nlists; /* number of irec's (ex lists) */
  4235. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4236. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4237. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4238. if (erp->er_extbuf) {
  4239. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4240. -erp->er_extcount);
  4241. kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
  4242. }
  4243. /* Compact extent records */
  4244. erp = ifp->if_u1.if_ext_irec;
  4245. for (i = erp_idx; i < nlists - 1; i++) {
  4246. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4247. }
  4248. /*
  4249. * Manually free the last extent record from the indirection
  4250. * array. A call to xfs_iext_realloc_indirect() with a size
  4251. * of zero would result in a call to xfs_iext_destroy() which
  4252. * would in turn call this function again, creating a nasty
  4253. * infinite loop.
  4254. */
  4255. if (--nlists) {
  4256. xfs_iext_realloc_indirect(ifp,
  4257. nlists * sizeof(xfs_ext_irec_t));
  4258. } else {
  4259. kmem_free(ifp->if_u1.if_ext_irec,
  4260. sizeof(xfs_ext_irec_t));
  4261. }
  4262. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4263. }
  4264. /*
  4265. * This is called to clean up large amounts of unused memory allocated
  4266. * by the indirection array. Before compacting anything though, verify
  4267. * that the indirection array is still needed and switch back to the
  4268. * linear extent list (or even the inline buffer) if possible. The
  4269. * compaction policy is as follows:
  4270. *
  4271. * Full Compaction: Extents fit into a single page (or inline buffer)
  4272. * Full Compaction: Extents occupy less than 10% of allocated space
  4273. * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
  4274. * No Compaction: Extents occupy at least 50% of allocated space
  4275. */
  4276. void
  4277. xfs_iext_irec_compact(
  4278. xfs_ifork_t *ifp) /* inode fork pointer */
  4279. {
  4280. xfs_extnum_t nextents; /* number of extents in file */
  4281. int nlists; /* number of irec's (ex lists) */
  4282. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4283. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4284. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4285. if (nextents == 0) {
  4286. xfs_iext_destroy(ifp);
  4287. } else if (nextents <= XFS_INLINE_EXTS) {
  4288. xfs_iext_indirect_to_direct(ifp);
  4289. xfs_iext_direct_to_inline(ifp, nextents);
  4290. } else if (nextents <= XFS_LINEAR_EXTS) {
  4291. xfs_iext_indirect_to_direct(ifp);
  4292. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
  4293. xfs_iext_irec_compact_full(ifp);
  4294. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4295. xfs_iext_irec_compact_pages(ifp);
  4296. }
  4297. }
  4298. /*
  4299. * Combine extents from neighboring extent pages.
  4300. */
  4301. void
  4302. xfs_iext_irec_compact_pages(
  4303. xfs_ifork_t *ifp) /* inode fork pointer */
  4304. {
  4305. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4306. int erp_idx = 0; /* indirection array index */
  4307. int nlists; /* number of irec's (ex lists) */
  4308. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4309. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4310. while (erp_idx < nlists - 1) {
  4311. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4312. erp_next = erp + 1;
  4313. if (erp_next->er_extcount <=
  4314. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4315. memmove(&erp->er_extbuf[erp->er_extcount],
  4316. erp_next->er_extbuf, erp_next->er_extcount *
  4317. sizeof(xfs_bmbt_rec_t));
  4318. erp->er_extcount += erp_next->er_extcount;
  4319. /*
  4320. * Free page before removing extent record
  4321. * so er_extoffs don't get modified in
  4322. * xfs_iext_irec_remove.
  4323. */
  4324. kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
  4325. erp_next->er_extbuf = NULL;
  4326. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4327. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4328. } else {
  4329. erp_idx++;
  4330. }
  4331. }
  4332. }
  4333. /*
  4334. * Fully compact the extent records managed by the indirection array.
  4335. */
  4336. void
  4337. xfs_iext_irec_compact_full(
  4338. xfs_ifork_t *ifp) /* inode fork pointer */
  4339. {
  4340. xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
  4341. xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
  4342. int erp_idx = 0; /* extent irec index */
  4343. int ext_avail; /* empty entries in ex list */
  4344. int ext_diff; /* number of exts to add */
  4345. int nlists; /* number of irec's (ex lists) */
  4346. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4347. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4348. erp = ifp->if_u1.if_ext_irec;
  4349. ep = &erp->er_extbuf[erp->er_extcount];
  4350. erp_next = erp + 1;
  4351. ep_next = erp_next->er_extbuf;
  4352. while (erp_idx < nlists - 1) {
  4353. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  4354. ext_diff = MIN(ext_avail, erp_next->er_extcount);
  4355. memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
  4356. erp->er_extcount += ext_diff;
  4357. erp_next->er_extcount -= ext_diff;
  4358. /* Remove next page */
  4359. if (erp_next->er_extcount == 0) {
  4360. /*
  4361. * Free page before removing extent record
  4362. * so er_extoffs don't get modified in
  4363. * xfs_iext_irec_remove.
  4364. */
  4365. kmem_free(erp_next->er_extbuf,
  4366. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4367. erp_next->er_extbuf = NULL;
  4368. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4369. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4370. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4371. /* Update next page */
  4372. } else {
  4373. /* Move rest of page up to become next new page */
  4374. memmove(erp_next->er_extbuf, ep_next,
  4375. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4376. ep_next = erp_next->er_extbuf;
  4377. memset(&ep_next[erp_next->er_extcount], 0,
  4378. (XFS_LINEAR_EXTS - erp_next->er_extcount) *
  4379. sizeof(xfs_bmbt_rec_t));
  4380. }
  4381. if (erp->er_extcount == XFS_LINEAR_EXTS) {
  4382. erp_idx++;
  4383. if (erp_idx < nlists)
  4384. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4385. else
  4386. break;
  4387. }
  4388. ep = &erp->er_extbuf[erp->er_extcount];
  4389. erp_next = erp + 1;
  4390. ep_next = erp_next->er_extbuf;
  4391. }
  4392. }
  4393. /*
  4394. * This is called to update the er_extoff field in the indirection
  4395. * array when extents have been added or removed from one of the
  4396. * extent lists. erp_idx contains the irec index to begin updating
  4397. * at and ext_diff contains the number of extents that were added
  4398. * or removed.
  4399. */
  4400. void
  4401. xfs_iext_irec_update_extoffs(
  4402. xfs_ifork_t *ifp, /* inode fork pointer */
  4403. int erp_idx, /* irec index to update */
  4404. int ext_diff) /* number of new extents */
  4405. {
  4406. int i; /* loop counter */
  4407. int nlists; /* number of irec's (ex lists */
  4408. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4409. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4410. for (i = erp_idx; i < nlists; i++) {
  4411. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4412. }
  4413. }