sched_fair.c 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. /*
  25. * Targeted preemption latency for CPU-bound tasks:
  26. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  27. *
  28. * NOTE: this latency value is not the same as the concept of
  29. * 'timeslice length' - timeslices in CFS are of variable length
  30. * and have no persistent notion like in traditional, time-slice
  31. * based scheduling concepts.
  32. *
  33. * (to see the precise effective timeslice length of your workload,
  34. * run vmstat and monitor the context-switches (cs) field)
  35. */
  36. unsigned int sysctl_sched_latency = 6000000ULL;
  37. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  38. /*
  39. * The initial- and re-scaling of tunables is configurable
  40. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  41. *
  42. * Options are:
  43. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  44. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  45. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  46. */
  47. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  48. = SCHED_TUNABLESCALING_LOG;
  49. /*
  50. * Minimal preemption granularity for CPU-bound tasks:
  51. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  52. */
  53. unsigned int sysctl_sched_min_granularity = 750000ULL;
  54. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  55. /*
  56. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  57. */
  58. static unsigned int sched_nr_latency = 8;
  59. /*
  60. * After fork, child runs first. If set to 0 (default) then
  61. * parent will (try to) run first.
  62. */
  63. unsigned int sysctl_sched_child_runs_first __read_mostly;
  64. /*
  65. * sys_sched_yield() compat mode
  66. *
  67. * This option switches the agressive yield implementation of the
  68. * old scheduler back on.
  69. */
  70. unsigned int __read_mostly sysctl_sched_compat_yield;
  71. /*
  72. * SCHED_OTHER wake-up granularity.
  73. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  74. *
  75. * This option delays the preemption effects of decoupled workloads
  76. * and reduces their over-scheduling. Synchronous workloads will still
  77. * have immediate wakeup/sleep latencies.
  78. */
  79. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  80. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  81. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  82. /*
  83. * The exponential sliding window over which load is averaged for shares
  84. * distribution.
  85. * (default: 10msec)
  86. */
  87. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  88. static const struct sched_class fair_sched_class;
  89. /**************************************************************
  90. * CFS operations on generic schedulable entities:
  91. */
  92. #ifdef CONFIG_FAIR_GROUP_SCHED
  93. /* cpu runqueue to which this cfs_rq is attached */
  94. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  95. {
  96. return cfs_rq->rq;
  97. }
  98. /* An entity is a task if it doesn't "own" a runqueue */
  99. #define entity_is_task(se) (!se->my_q)
  100. static inline struct task_struct *task_of(struct sched_entity *se)
  101. {
  102. #ifdef CONFIG_SCHED_DEBUG
  103. WARN_ON_ONCE(!entity_is_task(se));
  104. #endif
  105. return container_of(se, struct task_struct, se);
  106. }
  107. /* Walk up scheduling entities hierarchy */
  108. #define for_each_sched_entity(se) \
  109. for (; se; se = se->parent)
  110. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  111. {
  112. return p->se.cfs_rq;
  113. }
  114. /* runqueue on which this entity is (to be) queued */
  115. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  116. {
  117. return se->cfs_rq;
  118. }
  119. /* runqueue "owned" by this group */
  120. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  121. {
  122. return grp->my_q;
  123. }
  124. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  125. * another cpu ('this_cpu')
  126. */
  127. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  128. {
  129. return cfs_rq->tg->cfs_rq[this_cpu];
  130. }
  131. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  132. {
  133. if (!cfs_rq->on_list) {
  134. /*
  135. * Ensure we either appear before our parent (if already
  136. * enqueued) or force our parent to appear after us when it is
  137. * enqueued. The fact that we always enqueue bottom-up
  138. * reduces this to two cases.
  139. */
  140. if (cfs_rq->tg->parent &&
  141. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  142. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  143. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  144. } else {
  145. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  146. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  147. }
  148. cfs_rq->on_list = 1;
  149. }
  150. }
  151. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  152. {
  153. if (cfs_rq->on_list) {
  154. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  155. cfs_rq->on_list = 0;
  156. }
  157. }
  158. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  159. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  160. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  161. /* Do the two (enqueued) entities belong to the same group ? */
  162. static inline int
  163. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  164. {
  165. if (se->cfs_rq == pse->cfs_rq)
  166. return 1;
  167. return 0;
  168. }
  169. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  170. {
  171. return se->parent;
  172. }
  173. /* return depth at which a sched entity is present in the hierarchy */
  174. static inline int depth_se(struct sched_entity *se)
  175. {
  176. int depth = 0;
  177. for_each_sched_entity(se)
  178. depth++;
  179. return depth;
  180. }
  181. static void
  182. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  183. {
  184. int se_depth, pse_depth;
  185. /*
  186. * preemption test can be made between sibling entities who are in the
  187. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  188. * both tasks until we find their ancestors who are siblings of common
  189. * parent.
  190. */
  191. /* First walk up until both entities are at same depth */
  192. se_depth = depth_se(*se);
  193. pse_depth = depth_se(*pse);
  194. while (se_depth > pse_depth) {
  195. se_depth--;
  196. *se = parent_entity(*se);
  197. }
  198. while (pse_depth > se_depth) {
  199. pse_depth--;
  200. *pse = parent_entity(*pse);
  201. }
  202. while (!is_same_group(*se, *pse)) {
  203. *se = parent_entity(*se);
  204. *pse = parent_entity(*pse);
  205. }
  206. }
  207. #else /* !CONFIG_FAIR_GROUP_SCHED */
  208. static inline struct task_struct *task_of(struct sched_entity *se)
  209. {
  210. return container_of(se, struct task_struct, se);
  211. }
  212. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  213. {
  214. return container_of(cfs_rq, struct rq, cfs);
  215. }
  216. #define entity_is_task(se) 1
  217. #define for_each_sched_entity(se) \
  218. for (; se; se = NULL)
  219. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  220. {
  221. return &task_rq(p)->cfs;
  222. }
  223. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  224. {
  225. struct task_struct *p = task_of(se);
  226. struct rq *rq = task_rq(p);
  227. return &rq->cfs;
  228. }
  229. /* runqueue "owned" by this group */
  230. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  231. {
  232. return NULL;
  233. }
  234. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  235. {
  236. return &cpu_rq(this_cpu)->cfs;
  237. }
  238. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  239. {
  240. }
  241. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  242. {
  243. }
  244. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  245. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  246. static inline int
  247. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  248. {
  249. return 1;
  250. }
  251. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  252. {
  253. return NULL;
  254. }
  255. static inline void
  256. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  257. {
  258. }
  259. #endif /* CONFIG_FAIR_GROUP_SCHED */
  260. /**************************************************************
  261. * Scheduling class tree data structure manipulation methods:
  262. */
  263. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  264. {
  265. s64 delta = (s64)(vruntime - min_vruntime);
  266. if (delta > 0)
  267. min_vruntime = vruntime;
  268. return min_vruntime;
  269. }
  270. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  271. {
  272. s64 delta = (s64)(vruntime - min_vruntime);
  273. if (delta < 0)
  274. min_vruntime = vruntime;
  275. return min_vruntime;
  276. }
  277. static inline int entity_before(struct sched_entity *a,
  278. struct sched_entity *b)
  279. {
  280. return (s64)(a->vruntime - b->vruntime) < 0;
  281. }
  282. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  283. {
  284. return se->vruntime - cfs_rq->min_vruntime;
  285. }
  286. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  287. {
  288. u64 vruntime = cfs_rq->min_vruntime;
  289. if (cfs_rq->curr)
  290. vruntime = cfs_rq->curr->vruntime;
  291. if (cfs_rq->rb_leftmost) {
  292. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  293. struct sched_entity,
  294. run_node);
  295. if (!cfs_rq->curr)
  296. vruntime = se->vruntime;
  297. else
  298. vruntime = min_vruntime(vruntime, se->vruntime);
  299. }
  300. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  301. }
  302. /*
  303. * Enqueue an entity into the rb-tree:
  304. */
  305. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  306. {
  307. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  308. struct rb_node *parent = NULL;
  309. struct sched_entity *entry;
  310. s64 key = entity_key(cfs_rq, se);
  311. int leftmost = 1;
  312. /*
  313. * Find the right place in the rbtree:
  314. */
  315. while (*link) {
  316. parent = *link;
  317. entry = rb_entry(parent, struct sched_entity, run_node);
  318. /*
  319. * We dont care about collisions. Nodes with
  320. * the same key stay together.
  321. */
  322. if (key < entity_key(cfs_rq, entry)) {
  323. link = &parent->rb_left;
  324. } else {
  325. link = &parent->rb_right;
  326. leftmost = 0;
  327. }
  328. }
  329. /*
  330. * Maintain a cache of leftmost tree entries (it is frequently
  331. * used):
  332. */
  333. if (leftmost)
  334. cfs_rq->rb_leftmost = &se->run_node;
  335. rb_link_node(&se->run_node, parent, link);
  336. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  337. }
  338. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  339. {
  340. if (cfs_rq->rb_leftmost == &se->run_node) {
  341. struct rb_node *next_node;
  342. next_node = rb_next(&se->run_node);
  343. cfs_rq->rb_leftmost = next_node;
  344. }
  345. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  346. }
  347. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  348. {
  349. struct rb_node *left = cfs_rq->rb_leftmost;
  350. if (!left)
  351. return NULL;
  352. return rb_entry(left, struct sched_entity, run_node);
  353. }
  354. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  355. {
  356. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  357. if (!last)
  358. return NULL;
  359. return rb_entry(last, struct sched_entity, run_node);
  360. }
  361. /**************************************************************
  362. * Scheduling class statistics methods:
  363. */
  364. #ifdef CONFIG_SCHED_DEBUG
  365. int sched_proc_update_handler(struct ctl_table *table, int write,
  366. void __user *buffer, size_t *lenp,
  367. loff_t *ppos)
  368. {
  369. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  370. int factor = get_update_sysctl_factor();
  371. if (ret || !write)
  372. return ret;
  373. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  374. sysctl_sched_min_granularity);
  375. #define WRT_SYSCTL(name) \
  376. (normalized_sysctl_##name = sysctl_##name / (factor))
  377. WRT_SYSCTL(sched_min_granularity);
  378. WRT_SYSCTL(sched_latency);
  379. WRT_SYSCTL(sched_wakeup_granularity);
  380. #undef WRT_SYSCTL
  381. return 0;
  382. }
  383. #endif
  384. /*
  385. * delta /= w
  386. */
  387. static inline unsigned long
  388. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  389. {
  390. if (unlikely(se->load.weight != NICE_0_LOAD))
  391. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  392. return delta;
  393. }
  394. /*
  395. * The idea is to set a period in which each task runs once.
  396. *
  397. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  398. * this period because otherwise the slices get too small.
  399. *
  400. * p = (nr <= nl) ? l : l*nr/nl
  401. */
  402. static u64 __sched_period(unsigned long nr_running)
  403. {
  404. u64 period = sysctl_sched_latency;
  405. unsigned long nr_latency = sched_nr_latency;
  406. if (unlikely(nr_running > nr_latency)) {
  407. period = sysctl_sched_min_granularity;
  408. period *= nr_running;
  409. }
  410. return period;
  411. }
  412. /*
  413. * We calculate the wall-time slice from the period by taking a part
  414. * proportional to the weight.
  415. *
  416. * s = p*P[w/rw]
  417. */
  418. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  419. {
  420. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  421. for_each_sched_entity(se) {
  422. struct load_weight *load;
  423. struct load_weight lw;
  424. cfs_rq = cfs_rq_of(se);
  425. load = &cfs_rq->load;
  426. if (unlikely(!se->on_rq)) {
  427. lw = cfs_rq->load;
  428. update_load_add(&lw, se->load.weight);
  429. load = &lw;
  430. }
  431. slice = calc_delta_mine(slice, se->load.weight, load);
  432. }
  433. return slice;
  434. }
  435. /*
  436. * We calculate the vruntime slice of a to be inserted task
  437. *
  438. * vs = s/w
  439. */
  440. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  441. {
  442. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  443. }
  444. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  445. static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta);
  446. /*
  447. * Update the current task's runtime statistics. Skip current tasks that
  448. * are not in our scheduling class.
  449. */
  450. static inline void
  451. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  452. unsigned long delta_exec)
  453. {
  454. unsigned long delta_exec_weighted;
  455. schedstat_set(curr->statistics.exec_max,
  456. max((u64)delta_exec, curr->statistics.exec_max));
  457. curr->sum_exec_runtime += delta_exec;
  458. schedstat_add(cfs_rq, exec_clock, delta_exec);
  459. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  460. curr->vruntime += delta_exec_weighted;
  461. update_min_vruntime(cfs_rq);
  462. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  463. cfs_rq->load_unacc_exec_time += delta_exec;
  464. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  465. update_cfs_load(cfs_rq, 0);
  466. update_cfs_shares(cfs_rq, 0);
  467. }
  468. #endif
  469. }
  470. static void update_curr(struct cfs_rq *cfs_rq)
  471. {
  472. struct sched_entity *curr = cfs_rq->curr;
  473. u64 now = rq_of(cfs_rq)->clock_task;
  474. unsigned long delta_exec;
  475. if (unlikely(!curr))
  476. return;
  477. /*
  478. * Get the amount of time the current task was running
  479. * since the last time we changed load (this cannot
  480. * overflow on 32 bits):
  481. */
  482. delta_exec = (unsigned long)(now - curr->exec_start);
  483. if (!delta_exec)
  484. return;
  485. __update_curr(cfs_rq, curr, delta_exec);
  486. curr->exec_start = now;
  487. if (entity_is_task(curr)) {
  488. struct task_struct *curtask = task_of(curr);
  489. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  490. cpuacct_charge(curtask, delta_exec);
  491. account_group_exec_runtime(curtask, delta_exec);
  492. }
  493. }
  494. static inline void
  495. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  496. {
  497. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  498. }
  499. /*
  500. * Task is being enqueued - update stats:
  501. */
  502. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  503. {
  504. /*
  505. * Are we enqueueing a waiting task? (for current tasks
  506. * a dequeue/enqueue event is a NOP)
  507. */
  508. if (se != cfs_rq->curr)
  509. update_stats_wait_start(cfs_rq, se);
  510. }
  511. static void
  512. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  513. {
  514. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  515. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  516. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  517. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  518. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  519. #ifdef CONFIG_SCHEDSTATS
  520. if (entity_is_task(se)) {
  521. trace_sched_stat_wait(task_of(se),
  522. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  523. }
  524. #endif
  525. schedstat_set(se->statistics.wait_start, 0);
  526. }
  527. static inline void
  528. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  529. {
  530. /*
  531. * Mark the end of the wait period if dequeueing a
  532. * waiting task:
  533. */
  534. if (se != cfs_rq->curr)
  535. update_stats_wait_end(cfs_rq, se);
  536. }
  537. /*
  538. * We are picking a new current task - update its stats:
  539. */
  540. static inline void
  541. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  542. {
  543. /*
  544. * We are starting a new run period:
  545. */
  546. se->exec_start = rq_of(cfs_rq)->clock_task;
  547. }
  548. /**************************************************
  549. * Scheduling class queueing methods:
  550. */
  551. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  552. static void
  553. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  554. {
  555. cfs_rq->task_weight += weight;
  556. }
  557. #else
  558. static inline void
  559. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  560. {
  561. }
  562. #endif
  563. static void
  564. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  565. {
  566. update_load_add(&cfs_rq->load, se->load.weight);
  567. if (!parent_entity(se))
  568. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  569. if (entity_is_task(se)) {
  570. add_cfs_task_weight(cfs_rq, se->load.weight);
  571. list_add(&se->group_node, &cfs_rq->tasks);
  572. }
  573. cfs_rq->nr_running++;
  574. }
  575. static void
  576. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  577. {
  578. update_load_sub(&cfs_rq->load, se->load.weight);
  579. if (!parent_entity(se))
  580. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  581. if (entity_is_task(se)) {
  582. add_cfs_task_weight(cfs_rq, -se->load.weight);
  583. list_del_init(&se->group_node);
  584. }
  585. cfs_rq->nr_running--;
  586. }
  587. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  588. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  589. int global_update)
  590. {
  591. struct task_group *tg = cfs_rq->tg;
  592. long load_avg;
  593. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  594. load_avg -= cfs_rq->load_contribution;
  595. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  596. atomic_add(load_avg, &tg->load_weight);
  597. cfs_rq->load_contribution += load_avg;
  598. }
  599. }
  600. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  601. {
  602. u64 period = sysctl_sched_shares_window;
  603. u64 now, delta;
  604. unsigned long load = cfs_rq->load.weight;
  605. if (!cfs_rq)
  606. return;
  607. now = rq_of(cfs_rq)->clock;
  608. delta = now - cfs_rq->load_stamp;
  609. /* truncate load history at 4 idle periods */
  610. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  611. now - cfs_rq->load_last > 4 * period) {
  612. cfs_rq->load_period = 0;
  613. cfs_rq->load_avg = 0;
  614. }
  615. cfs_rq->load_stamp = now;
  616. cfs_rq->load_unacc_exec_time = 0;
  617. cfs_rq->load_period += delta;
  618. if (load) {
  619. cfs_rq->load_last = now;
  620. cfs_rq->load_avg += delta * load;
  621. }
  622. /* consider updating load contribution on each fold or truncate */
  623. if (global_update || cfs_rq->load_period > period
  624. || !cfs_rq->load_period)
  625. update_cfs_rq_load_contribution(cfs_rq, global_update);
  626. while (cfs_rq->load_period > period) {
  627. /*
  628. * Inline assembly required to prevent the compiler
  629. * optimising this loop into a divmod call.
  630. * See __iter_div_u64_rem() for another example of this.
  631. */
  632. asm("" : "+rm" (cfs_rq->load_period));
  633. cfs_rq->load_period /= 2;
  634. cfs_rq->load_avg /= 2;
  635. }
  636. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  637. list_del_leaf_cfs_rq(cfs_rq);
  638. }
  639. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  640. unsigned long weight)
  641. {
  642. if (se->on_rq)
  643. account_entity_dequeue(cfs_rq, se);
  644. update_load_set(&se->load, weight);
  645. if (se->on_rq)
  646. account_entity_enqueue(cfs_rq, se);
  647. }
  648. static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
  649. {
  650. struct task_group *tg;
  651. struct sched_entity *se;
  652. long load_weight, load, shares;
  653. if (!cfs_rq)
  654. return;
  655. tg = cfs_rq->tg;
  656. se = tg->se[cpu_of(rq_of(cfs_rq))];
  657. if (!se)
  658. return;
  659. load = cfs_rq->load.weight + weight_delta;
  660. load_weight = atomic_read(&tg->load_weight);
  661. load_weight -= cfs_rq->load_contribution;
  662. load_weight += load;
  663. shares = (tg->shares * load);
  664. if (load_weight)
  665. shares /= load_weight;
  666. if (shares < MIN_SHARES)
  667. shares = MIN_SHARES;
  668. if (shares > tg->shares)
  669. shares = tg->shares;
  670. reweight_entity(cfs_rq_of(se), se, shares);
  671. }
  672. #else /* CONFIG_FAIR_GROUP_SCHED */
  673. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  674. {
  675. }
  676. static inline void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
  677. {
  678. }
  679. #endif /* CONFIG_FAIR_GROUP_SCHED */
  680. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  681. {
  682. #ifdef CONFIG_SCHEDSTATS
  683. struct task_struct *tsk = NULL;
  684. if (entity_is_task(se))
  685. tsk = task_of(se);
  686. if (se->statistics.sleep_start) {
  687. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  688. if ((s64)delta < 0)
  689. delta = 0;
  690. if (unlikely(delta > se->statistics.sleep_max))
  691. se->statistics.sleep_max = delta;
  692. se->statistics.sleep_start = 0;
  693. se->statistics.sum_sleep_runtime += delta;
  694. if (tsk) {
  695. account_scheduler_latency(tsk, delta >> 10, 1);
  696. trace_sched_stat_sleep(tsk, delta);
  697. }
  698. }
  699. if (se->statistics.block_start) {
  700. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  701. if ((s64)delta < 0)
  702. delta = 0;
  703. if (unlikely(delta > se->statistics.block_max))
  704. se->statistics.block_max = delta;
  705. se->statistics.block_start = 0;
  706. se->statistics.sum_sleep_runtime += delta;
  707. if (tsk) {
  708. if (tsk->in_iowait) {
  709. se->statistics.iowait_sum += delta;
  710. se->statistics.iowait_count++;
  711. trace_sched_stat_iowait(tsk, delta);
  712. }
  713. /*
  714. * Blocking time is in units of nanosecs, so shift by
  715. * 20 to get a milliseconds-range estimation of the
  716. * amount of time that the task spent sleeping:
  717. */
  718. if (unlikely(prof_on == SLEEP_PROFILING)) {
  719. profile_hits(SLEEP_PROFILING,
  720. (void *)get_wchan(tsk),
  721. delta >> 20);
  722. }
  723. account_scheduler_latency(tsk, delta >> 10, 0);
  724. }
  725. }
  726. #endif
  727. }
  728. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  729. {
  730. #ifdef CONFIG_SCHED_DEBUG
  731. s64 d = se->vruntime - cfs_rq->min_vruntime;
  732. if (d < 0)
  733. d = -d;
  734. if (d > 3*sysctl_sched_latency)
  735. schedstat_inc(cfs_rq, nr_spread_over);
  736. #endif
  737. }
  738. static void
  739. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  740. {
  741. u64 vruntime = cfs_rq->min_vruntime;
  742. /*
  743. * The 'current' period is already promised to the current tasks,
  744. * however the extra weight of the new task will slow them down a
  745. * little, place the new task so that it fits in the slot that
  746. * stays open at the end.
  747. */
  748. if (initial && sched_feat(START_DEBIT))
  749. vruntime += sched_vslice(cfs_rq, se);
  750. /* sleeps up to a single latency don't count. */
  751. if (!initial) {
  752. unsigned long thresh = sysctl_sched_latency;
  753. /*
  754. * Halve their sleep time's effect, to allow
  755. * for a gentler effect of sleepers:
  756. */
  757. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  758. thresh >>= 1;
  759. vruntime -= thresh;
  760. }
  761. /* ensure we never gain time by being placed backwards. */
  762. vruntime = max_vruntime(se->vruntime, vruntime);
  763. se->vruntime = vruntime;
  764. }
  765. static void
  766. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  767. {
  768. /*
  769. * Update the normalized vruntime before updating min_vruntime
  770. * through callig update_curr().
  771. */
  772. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  773. se->vruntime += cfs_rq->min_vruntime;
  774. /*
  775. * Update run-time statistics of the 'current'.
  776. */
  777. update_curr(cfs_rq);
  778. update_cfs_load(cfs_rq, 0);
  779. update_cfs_shares(cfs_rq, se->load.weight);
  780. account_entity_enqueue(cfs_rq, se);
  781. if (flags & ENQUEUE_WAKEUP) {
  782. place_entity(cfs_rq, se, 0);
  783. enqueue_sleeper(cfs_rq, se);
  784. }
  785. update_stats_enqueue(cfs_rq, se);
  786. check_spread(cfs_rq, se);
  787. if (se != cfs_rq->curr)
  788. __enqueue_entity(cfs_rq, se);
  789. se->on_rq = 1;
  790. if (cfs_rq->nr_running == 1)
  791. list_add_leaf_cfs_rq(cfs_rq);
  792. }
  793. static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  794. {
  795. if (!se || cfs_rq->last == se)
  796. cfs_rq->last = NULL;
  797. if (!se || cfs_rq->next == se)
  798. cfs_rq->next = NULL;
  799. }
  800. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  801. {
  802. for_each_sched_entity(se)
  803. __clear_buddies(cfs_rq_of(se), se);
  804. }
  805. static void
  806. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  807. {
  808. /*
  809. * Update run-time statistics of the 'current'.
  810. */
  811. update_curr(cfs_rq);
  812. update_stats_dequeue(cfs_rq, se);
  813. if (flags & DEQUEUE_SLEEP) {
  814. #ifdef CONFIG_SCHEDSTATS
  815. if (entity_is_task(se)) {
  816. struct task_struct *tsk = task_of(se);
  817. if (tsk->state & TASK_INTERRUPTIBLE)
  818. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  819. if (tsk->state & TASK_UNINTERRUPTIBLE)
  820. se->statistics.block_start = rq_of(cfs_rq)->clock;
  821. }
  822. #endif
  823. }
  824. clear_buddies(cfs_rq, se);
  825. if (se != cfs_rq->curr)
  826. __dequeue_entity(cfs_rq, se);
  827. se->on_rq = 0;
  828. update_cfs_load(cfs_rq, 0);
  829. account_entity_dequeue(cfs_rq, se);
  830. update_min_vruntime(cfs_rq);
  831. update_cfs_shares(cfs_rq, 0);
  832. /*
  833. * Normalize the entity after updating the min_vruntime because the
  834. * update can refer to the ->curr item and we need to reflect this
  835. * movement in our normalized position.
  836. */
  837. if (!(flags & DEQUEUE_SLEEP))
  838. se->vruntime -= cfs_rq->min_vruntime;
  839. }
  840. /*
  841. * Preempt the current task with a newly woken task if needed:
  842. */
  843. static void
  844. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  845. {
  846. unsigned long ideal_runtime, delta_exec;
  847. ideal_runtime = sched_slice(cfs_rq, curr);
  848. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  849. if (delta_exec > ideal_runtime) {
  850. resched_task(rq_of(cfs_rq)->curr);
  851. /*
  852. * The current task ran long enough, ensure it doesn't get
  853. * re-elected due to buddy favours.
  854. */
  855. clear_buddies(cfs_rq, curr);
  856. return;
  857. }
  858. /*
  859. * Ensure that a task that missed wakeup preemption by a
  860. * narrow margin doesn't have to wait for a full slice.
  861. * This also mitigates buddy induced latencies under load.
  862. */
  863. if (!sched_feat(WAKEUP_PREEMPT))
  864. return;
  865. if (delta_exec < sysctl_sched_min_granularity)
  866. return;
  867. if (cfs_rq->nr_running > 1) {
  868. struct sched_entity *se = __pick_next_entity(cfs_rq);
  869. s64 delta = curr->vruntime - se->vruntime;
  870. if (delta > ideal_runtime)
  871. resched_task(rq_of(cfs_rq)->curr);
  872. }
  873. }
  874. static void
  875. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  876. {
  877. /* 'current' is not kept within the tree. */
  878. if (se->on_rq) {
  879. /*
  880. * Any task has to be enqueued before it get to execute on
  881. * a CPU. So account for the time it spent waiting on the
  882. * runqueue.
  883. */
  884. update_stats_wait_end(cfs_rq, se);
  885. __dequeue_entity(cfs_rq, se);
  886. }
  887. update_stats_curr_start(cfs_rq, se);
  888. cfs_rq->curr = se;
  889. #ifdef CONFIG_SCHEDSTATS
  890. /*
  891. * Track our maximum slice length, if the CPU's load is at
  892. * least twice that of our own weight (i.e. dont track it
  893. * when there are only lesser-weight tasks around):
  894. */
  895. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  896. se->statistics.slice_max = max(se->statistics.slice_max,
  897. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  898. }
  899. #endif
  900. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  901. }
  902. static int
  903. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  904. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  905. {
  906. struct sched_entity *se = __pick_next_entity(cfs_rq);
  907. struct sched_entity *left = se;
  908. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  909. se = cfs_rq->next;
  910. /*
  911. * Prefer last buddy, try to return the CPU to a preempted task.
  912. */
  913. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  914. se = cfs_rq->last;
  915. clear_buddies(cfs_rq, se);
  916. return se;
  917. }
  918. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  919. {
  920. /*
  921. * If still on the runqueue then deactivate_task()
  922. * was not called and update_curr() has to be done:
  923. */
  924. if (prev->on_rq)
  925. update_curr(cfs_rq);
  926. check_spread(cfs_rq, prev);
  927. if (prev->on_rq) {
  928. update_stats_wait_start(cfs_rq, prev);
  929. /* Put 'current' back into the tree. */
  930. __enqueue_entity(cfs_rq, prev);
  931. }
  932. cfs_rq->curr = NULL;
  933. }
  934. static void
  935. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  936. {
  937. /*
  938. * Update run-time statistics of the 'current'.
  939. */
  940. update_curr(cfs_rq);
  941. #ifdef CONFIG_SCHED_HRTICK
  942. /*
  943. * queued ticks are scheduled to match the slice, so don't bother
  944. * validating it and just reschedule.
  945. */
  946. if (queued) {
  947. resched_task(rq_of(cfs_rq)->curr);
  948. return;
  949. }
  950. /*
  951. * don't let the period tick interfere with the hrtick preemption
  952. */
  953. if (!sched_feat(DOUBLE_TICK) &&
  954. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  955. return;
  956. #endif
  957. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  958. check_preempt_tick(cfs_rq, curr);
  959. }
  960. /**************************************************
  961. * CFS operations on tasks:
  962. */
  963. #ifdef CONFIG_SCHED_HRTICK
  964. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  965. {
  966. struct sched_entity *se = &p->se;
  967. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  968. WARN_ON(task_rq(p) != rq);
  969. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  970. u64 slice = sched_slice(cfs_rq, se);
  971. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  972. s64 delta = slice - ran;
  973. if (delta < 0) {
  974. if (rq->curr == p)
  975. resched_task(p);
  976. return;
  977. }
  978. /*
  979. * Don't schedule slices shorter than 10000ns, that just
  980. * doesn't make sense. Rely on vruntime for fairness.
  981. */
  982. if (rq->curr != p)
  983. delta = max_t(s64, 10000LL, delta);
  984. hrtick_start(rq, delta);
  985. }
  986. }
  987. /*
  988. * called from enqueue/dequeue and updates the hrtick when the
  989. * current task is from our class and nr_running is low enough
  990. * to matter.
  991. */
  992. static void hrtick_update(struct rq *rq)
  993. {
  994. struct task_struct *curr = rq->curr;
  995. if (curr->sched_class != &fair_sched_class)
  996. return;
  997. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  998. hrtick_start_fair(rq, curr);
  999. }
  1000. #else /* !CONFIG_SCHED_HRTICK */
  1001. static inline void
  1002. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1003. {
  1004. }
  1005. static inline void hrtick_update(struct rq *rq)
  1006. {
  1007. }
  1008. #endif
  1009. /*
  1010. * The enqueue_task method is called before nr_running is
  1011. * increased. Here we update the fair scheduling stats and
  1012. * then put the task into the rbtree:
  1013. */
  1014. static void
  1015. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1016. {
  1017. struct cfs_rq *cfs_rq;
  1018. struct sched_entity *se = &p->se;
  1019. for_each_sched_entity(se) {
  1020. if (se->on_rq)
  1021. break;
  1022. cfs_rq = cfs_rq_of(se);
  1023. enqueue_entity(cfs_rq, se, flags);
  1024. flags = ENQUEUE_WAKEUP;
  1025. }
  1026. for_each_sched_entity(se) {
  1027. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1028. update_cfs_load(cfs_rq, 0);
  1029. update_cfs_shares(cfs_rq, 0);
  1030. }
  1031. hrtick_update(rq);
  1032. }
  1033. /*
  1034. * The dequeue_task method is called before nr_running is
  1035. * decreased. We remove the task from the rbtree and
  1036. * update the fair scheduling stats:
  1037. */
  1038. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1039. {
  1040. struct cfs_rq *cfs_rq;
  1041. struct sched_entity *se = &p->se;
  1042. for_each_sched_entity(se) {
  1043. cfs_rq = cfs_rq_of(se);
  1044. dequeue_entity(cfs_rq, se, flags);
  1045. /* Don't dequeue parent if it has other entities besides us */
  1046. if (cfs_rq->load.weight)
  1047. break;
  1048. flags |= DEQUEUE_SLEEP;
  1049. }
  1050. for_each_sched_entity(se) {
  1051. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1052. update_cfs_load(cfs_rq, 0);
  1053. update_cfs_shares(cfs_rq, 0);
  1054. }
  1055. hrtick_update(rq);
  1056. }
  1057. /*
  1058. * sched_yield() support is very simple - we dequeue and enqueue.
  1059. *
  1060. * If compat_yield is turned on then we requeue to the end of the tree.
  1061. */
  1062. static void yield_task_fair(struct rq *rq)
  1063. {
  1064. struct task_struct *curr = rq->curr;
  1065. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1066. struct sched_entity *rightmost, *se = &curr->se;
  1067. /*
  1068. * Are we the only task in the tree?
  1069. */
  1070. if (unlikely(cfs_rq->nr_running == 1))
  1071. return;
  1072. clear_buddies(cfs_rq, se);
  1073. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  1074. update_rq_clock(rq);
  1075. /*
  1076. * Update run-time statistics of the 'current'.
  1077. */
  1078. update_curr(cfs_rq);
  1079. return;
  1080. }
  1081. /*
  1082. * Find the rightmost entry in the rbtree:
  1083. */
  1084. rightmost = __pick_last_entity(cfs_rq);
  1085. /*
  1086. * Already in the rightmost position?
  1087. */
  1088. if (unlikely(!rightmost || entity_before(rightmost, se)))
  1089. return;
  1090. /*
  1091. * Minimally necessary key value to be last in the tree:
  1092. * Upon rescheduling, sched_class::put_prev_task() will place
  1093. * 'current' within the tree based on its new key value.
  1094. */
  1095. se->vruntime = rightmost->vruntime + 1;
  1096. }
  1097. #ifdef CONFIG_SMP
  1098. static void task_waking_fair(struct rq *rq, struct task_struct *p)
  1099. {
  1100. struct sched_entity *se = &p->se;
  1101. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1102. se->vruntime -= cfs_rq->min_vruntime;
  1103. }
  1104. #ifdef CONFIG_FAIR_GROUP_SCHED
  1105. /*
  1106. * effective_load() calculates the load change as seen from the root_task_group
  1107. *
  1108. * Adding load to a group doesn't make a group heavier, but can cause movement
  1109. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1110. * can calculate the shift in shares.
  1111. */
  1112. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  1113. {
  1114. struct sched_entity *se = tg->se[cpu];
  1115. if (!tg->parent)
  1116. return wl;
  1117. for_each_sched_entity(se) {
  1118. long S, rw, s, a, b;
  1119. S = se->my_q->tg->shares;
  1120. s = se->load.weight;
  1121. rw = se->my_q->load.weight;
  1122. a = S*(rw + wl);
  1123. b = S*rw + s*wg;
  1124. wl = s*(a-b);
  1125. if (likely(b))
  1126. wl /= b;
  1127. /*
  1128. * Assume the group is already running and will
  1129. * thus already be accounted for in the weight.
  1130. *
  1131. * That is, moving shares between CPUs, does not
  1132. * alter the group weight.
  1133. */
  1134. wg = 0;
  1135. }
  1136. return wl;
  1137. }
  1138. #else
  1139. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1140. unsigned long wl, unsigned long wg)
  1141. {
  1142. return wl;
  1143. }
  1144. #endif
  1145. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1146. {
  1147. unsigned long this_load, load;
  1148. int idx, this_cpu, prev_cpu;
  1149. unsigned long tl_per_task;
  1150. struct task_group *tg;
  1151. unsigned long weight;
  1152. int balanced;
  1153. idx = sd->wake_idx;
  1154. this_cpu = smp_processor_id();
  1155. prev_cpu = task_cpu(p);
  1156. load = source_load(prev_cpu, idx);
  1157. this_load = target_load(this_cpu, idx);
  1158. /*
  1159. * If sync wakeup then subtract the (maximum possible)
  1160. * effect of the currently running task from the load
  1161. * of the current CPU:
  1162. */
  1163. rcu_read_lock();
  1164. if (sync) {
  1165. tg = task_group(current);
  1166. weight = current->se.load.weight;
  1167. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1168. load += effective_load(tg, prev_cpu, 0, -weight);
  1169. }
  1170. tg = task_group(p);
  1171. weight = p->se.load.weight;
  1172. /*
  1173. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1174. * due to the sync cause above having dropped this_load to 0, we'll
  1175. * always have an imbalance, but there's really nothing you can do
  1176. * about that, so that's good too.
  1177. *
  1178. * Otherwise check if either cpus are near enough in load to allow this
  1179. * task to be woken on this_cpu.
  1180. */
  1181. if (this_load) {
  1182. unsigned long this_eff_load, prev_eff_load;
  1183. this_eff_load = 100;
  1184. this_eff_load *= power_of(prev_cpu);
  1185. this_eff_load *= this_load +
  1186. effective_load(tg, this_cpu, weight, weight);
  1187. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  1188. prev_eff_load *= power_of(this_cpu);
  1189. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  1190. balanced = this_eff_load <= prev_eff_load;
  1191. } else
  1192. balanced = true;
  1193. rcu_read_unlock();
  1194. /*
  1195. * If the currently running task will sleep within
  1196. * a reasonable amount of time then attract this newly
  1197. * woken task:
  1198. */
  1199. if (sync && balanced)
  1200. return 1;
  1201. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  1202. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1203. if (balanced ||
  1204. (this_load <= load &&
  1205. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1206. /*
  1207. * This domain has SD_WAKE_AFFINE and
  1208. * p is cache cold in this domain, and
  1209. * there is no bad imbalance.
  1210. */
  1211. schedstat_inc(sd, ttwu_move_affine);
  1212. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  1213. return 1;
  1214. }
  1215. return 0;
  1216. }
  1217. /*
  1218. * find_idlest_group finds and returns the least busy CPU group within the
  1219. * domain.
  1220. */
  1221. static struct sched_group *
  1222. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1223. int this_cpu, int load_idx)
  1224. {
  1225. struct sched_group *idlest = NULL, *group = sd->groups;
  1226. unsigned long min_load = ULONG_MAX, this_load = 0;
  1227. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1228. do {
  1229. unsigned long load, avg_load;
  1230. int local_group;
  1231. int i;
  1232. /* Skip over this group if it has no CPUs allowed */
  1233. if (!cpumask_intersects(sched_group_cpus(group),
  1234. &p->cpus_allowed))
  1235. continue;
  1236. local_group = cpumask_test_cpu(this_cpu,
  1237. sched_group_cpus(group));
  1238. /* Tally up the load of all CPUs in the group */
  1239. avg_load = 0;
  1240. for_each_cpu(i, sched_group_cpus(group)) {
  1241. /* Bias balancing toward cpus of our domain */
  1242. if (local_group)
  1243. load = source_load(i, load_idx);
  1244. else
  1245. load = target_load(i, load_idx);
  1246. avg_load += load;
  1247. }
  1248. /* Adjust by relative CPU power of the group */
  1249. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1250. if (local_group) {
  1251. this_load = avg_load;
  1252. } else if (avg_load < min_load) {
  1253. min_load = avg_load;
  1254. idlest = group;
  1255. }
  1256. } while (group = group->next, group != sd->groups);
  1257. if (!idlest || 100*this_load < imbalance*min_load)
  1258. return NULL;
  1259. return idlest;
  1260. }
  1261. /*
  1262. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1263. */
  1264. static int
  1265. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1266. {
  1267. unsigned long load, min_load = ULONG_MAX;
  1268. int idlest = -1;
  1269. int i;
  1270. /* Traverse only the allowed CPUs */
  1271. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1272. load = weighted_cpuload(i);
  1273. if (load < min_load || (load == min_load && i == this_cpu)) {
  1274. min_load = load;
  1275. idlest = i;
  1276. }
  1277. }
  1278. return idlest;
  1279. }
  1280. /*
  1281. * Try and locate an idle CPU in the sched_domain.
  1282. */
  1283. static int select_idle_sibling(struct task_struct *p, int target)
  1284. {
  1285. int cpu = smp_processor_id();
  1286. int prev_cpu = task_cpu(p);
  1287. struct sched_domain *sd;
  1288. int i;
  1289. /*
  1290. * If the task is going to be woken-up on this cpu and if it is
  1291. * already idle, then it is the right target.
  1292. */
  1293. if (target == cpu && idle_cpu(cpu))
  1294. return cpu;
  1295. /*
  1296. * If the task is going to be woken-up on the cpu where it previously
  1297. * ran and if it is currently idle, then it the right target.
  1298. */
  1299. if (target == prev_cpu && idle_cpu(prev_cpu))
  1300. return prev_cpu;
  1301. /*
  1302. * Otherwise, iterate the domains and find an elegible idle cpu.
  1303. */
  1304. for_each_domain(target, sd) {
  1305. if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
  1306. break;
  1307. for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
  1308. if (idle_cpu(i)) {
  1309. target = i;
  1310. break;
  1311. }
  1312. }
  1313. /*
  1314. * Lets stop looking for an idle sibling when we reached
  1315. * the domain that spans the current cpu and prev_cpu.
  1316. */
  1317. if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
  1318. cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
  1319. break;
  1320. }
  1321. return target;
  1322. }
  1323. /*
  1324. * sched_balance_self: balance the current task (running on cpu) in domains
  1325. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1326. * SD_BALANCE_EXEC.
  1327. *
  1328. * Balance, ie. select the least loaded group.
  1329. *
  1330. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1331. *
  1332. * preempt must be disabled.
  1333. */
  1334. static int
  1335. select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
  1336. {
  1337. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1338. int cpu = smp_processor_id();
  1339. int prev_cpu = task_cpu(p);
  1340. int new_cpu = cpu;
  1341. int want_affine = 0;
  1342. int want_sd = 1;
  1343. int sync = wake_flags & WF_SYNC;
  1344. if (sd_flag & SD_BALANCE_WAKE) {
  1345. if (cpumask_test_cpu(cpu, &p->cpus_allowed))
  1346. want_affine = 1;
  1347. new_cpu = prev_cpu;
  1348. }
  1349. for_each_domain(cpu, tmp) {
  1350. if (!(tmp->flags & SD_LOAD_BALANCE))
  1351. continue;
  1352. /*
  1353. * If power savings logic is enabled for a domain, see if we
  1354. * are not overloaded, if so, don't balance wider.
  1355. */
  1356. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  1357. unsigned long power = 0;
  1358. unsigned long nr_running = 0;
  1359. unsigned long capacity;
  1360. int i;
  1361. for_each_cpu(i, sched_domain_span(tmp)) {
  1362. power += power_of(i);
  1363. nr_running += cpu_rq(i)->cfs.nr_running;
  1364. }
  1365. capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  1366. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1367. nr_running /= 2;
  1368. if (nr_running < capacity)
  1369. want_sd = 0;
  1370. }
  1371. /*
  1372. * If both cpu and prev_cpu are part of this domain,
  1373. * cpu is a valid SD_WAKE_AFFINE target.
  1374. */
  1375. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  1376. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  1377. affine_sd = tmp;
  1378. want_affine = 0;
  1379. }
  1380. if (!want_sd && !want_affine)
  1381. break;
  1382. if (!(tmp->flags & sd_flag))
  1383. continue;
  1384. if (want_sd)
  1385. sd = tmp;
  1386. }
  1387. if (affine_sd) {
  1388. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  1389. return select_idle_sibling(p, cpu);
  1390. else
  1391. return select_idle_sibling(p, prev_cpu);
  1392. }
  1393. while (sd) {
  1394. int load_idx = sd->forkexec_idx;
  1395. struct sched_group *group;
  1396. int weight;
  1397. if (!(sd->flags & sd_flag)) {
  1398. sd = sd->child;
  1399. continue;
  1400. }
  1401. if (sd_flag & SD_BALANCE_WAKE)
  1402. load_idx = sd->wake_idx;
  1403. group = find_idlest_group(sd, p, cpu, load_idx);
  1404. if (!group) {
  1405. sd = sd->child;
  1406. continue;
  1407. }
  1408. new_cpu = find_idlest_cpu(group, p, cpu);
  1409. if (new_cpu == -1 || new_cpu == cpu) {
  1410. /* Now try balancing at a lower domain level of cpu */
  1411. sd = sd->child;
  1412. continue;
  1413. }
  1414. /* Now try balancing at a lower domain level of new_cpu */
  1415. cpu = new_cpu;
  1416. weight = sd->span_weight;
  1417. sd = NULL;
  1418. for_each_domain(cpu, tmp) {
  1419. if (weight <= tmp->span_weight)
  1420. break;
  1421. if (tmp->flags & sd_flag)
  1422. sd = tmp;
  1423. }
  1424. /* while loop will break here if sd == NULL */
  1425. }
  1426. return new_cpu;
  1427. }
  1428. #endif /* CONFIG_SMP */
  1429. static unsigned long
  1430. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1431. {
  1432. unsigned long gran = sysctl_sched_wakeup_granularity;
  1433. /*
  1434. * Since its curr running now, convert the gran from real-time
  1435. * to virtual-time in his units.
  1436. *
  1437. * By using 'se' instead of 'curr' we penalize light tasks, so
  1438. * they get preempted easier. That is, if 'se' < 'curr' then
  1439. * the resulting gran will be larger, therefore penalizing the
  1440. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1441. * be smaller, again penalizing the lighter task.
  1442. *
  1443. * This is especially important for buddies when the leftmost
  1444. * task is higher priority than the buddy.
  1445. */
  1446. if (unlikely(se->load.weight != NICE_0_LOAD))
  1447. gran = calc_delta_fair(gran, se);
  1448. return gran;
  1449. }
  1450. /*
  1451. * Should 'se' preempt 'curr'.
  1452. *
  1453. * |s1
  1454. * |s2
  1455. * |s3
  1456. * g
  1457. * |<--->|c
  1458. *
  1459. * w(c, s1) = -1
  1460. * w(c, s2) = 0
  1461. * w(c, s3) = 1
  1462. *
  1463. */
  1464. static int
  1465. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1466. {
  1467. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1468. if (vdiff <= 0)
  1469. return -1;
  1470. gran = wakeup_gran(curr, se);
  1471. if (vdiff > gran)
  1472. return 1;
  1473. return 0;
  1474. }
  1475. static void set_last_buddy(struct sched_entity *se)
  1476. {
  1477. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1478. for_each_sched_entity(se)
  1479. cfs_rq_of(se)->last = se;
  1480. }
  1481. }
  1482. static void set_next_buddy(struct sched_entity *se)
  1483. {
  1484. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1485. for_each_sched_entity(se)
  1486. cfs_rq_of(se)->next = se;
  1487. }
  1488. }
  1489. /*
  1490. * Preempt the current task with a newly woken task if needed:
  1491. */
  1492. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1493. {
  1494. struct task_struct *curr = rq->curr;
  1495. struct sched_entity *se = &curr->se, *pse = &p->se;
  1496. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1497. int scale = cfs_rq->nr_running >= sched_nr_latency;
  1498. if (unlikely(se == pse))
  1499. return;
  1500. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
  1501. set_next_buddy(pse);
  1502. /*
  1503. * We can come here with TIF_NEED_RESCHED already set from new task
  1504. * wake up path.
  1505. */
  1506. if (test_tsk_need_resched(curr))
  1507. return;
  1508. /*
  1509. * Batch and idle tasks do not preempt (their preemption is driven by
  1510. * the tick):
  1511. */
  1512. if (unlikely(p->policy != SCHED_NORMAL))
  1513. return;
  1514. /* Idle tasks are by definition preempted by everybody. */
  1515. if (unlikely(curr->policy == SCHED_IDLE))
  1516. goto preempt;
  1517. if (!sched_feat(WAKEUP_PREEMPT))
  1518. return;
  1519. update_curr(cfs_rq);
  1520. find_matching_se(&se, &pse);
  1521. BUG_ON(!pse);
  1522. if (wakeup_preempt_entity(se, pse) == 1)
  1523. goto preempt;
  1524. return;
  1525. preempt:
  1526. resched_task(curr);
  1527. /*
  1528. * Only set the backward buddy when the current task is still
  1529. * on the rq. This can happen when a wakeup gets interleaved
  1530. * with schedule on the ->pre_schedule() or idle_balance()
  1531. * point, either of which can * drop the rq lock.
  1532. *
  1533. * Also, during early boot the idle thread is in the fair class,
  1534. * for obvious reasons its a bad idea to schedule back to it.
  1535. */
  1536. if (unlikely(!se->on_rq || curr == rq->idle))
  1537. return;
  1538. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  1539. set_last_buddy(se);
  1540. }
  1541. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1542. {
  1543. struct task_struct *p;
  1544. struct cfs_rq *cfs_rq = &rq->cfs;
  1545. struct sched_entity *se;
  1546. if (!cfs_rq->nr_running)
  1547. return NULL;
  1548. do {
  1549. se = pick_next_entity(cfs_rq);
  1550. set_next_entity(cfs_rq, se);
  1551. cfs_rq = group_cfs_rq(se);
  1552. } while (cfs_rq);
  1553. p = task_of(se);
  1554. hrtick_start_fair(rq, p);
  1555. return p;
  1556. }
  1557. /*
  1558. * Account for a descheduled task:
  1559. */
  1560. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1561. {
  1562. struct sched_entity *se = &prev->se;
  1563. struct cfs_rq *cfs_rq;
  1564. for_each_sched_entity(se) {
  1565. cfs_rq = cfs_rq_of(se);
  1566. put_prev_entity(cfs_rq, se);
  1567. }
  1568. }
  1569. #ifdef CONFIG_SMP
  1570. /**************************************************
  1571. * Fair scheduling class load-balancing methods:
  1572. */
  1573. /*
  1574. * pull_task - move a task from a remote runqueue to the local runqueue.
  1575. * Both runqueues must be locked.
  1576. */
  1577. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1578. struct rq *this_rq, int this_cpu)
  1579. {
  1580. deactivate_task(src_rq, p, 0);
  1581. set_task_cpu(p, this_cpu);
  1582. activate_task(this_rq, p, 0);
  1583. check_preempt_curr(this_rq, p, 0);
  1584. }
  1585. /*
  1586. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1587. */
  1588. static
  1589. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1590. struct sched_domain *sd, enum cpu_idle_type idle,
  1591. int *all_pinned)
  1592. {
  1593. int tsk_cache_hot = 0;
  1594. /*
  1595. * We do not migrate tasks that are:
  1596. * 1) running (obviously), or
  1597. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1598. * 3) are cache-hot on their current CPU.
  1599. */
  1600. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  1601. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  1602. return 0;
  1603. }
  1604. *all_pinned = 0;
  1605. if (task_running(rq, p)) {
  1606. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  1607. return 0;
  1608. }
  1609. /*
  1610. * Aggressive migration if:
  1611. * 1) task is cache cold, or
  1612. * 2) too many balance attempts have failed.
  1613. */
  1614. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  1615. if (!tsk_cache_hot ||
  1616. sd->nr_balance_failed > sd->cache_nice_tries) {
  1617. #ifdef CONFIG_SCHEDSTATS
  1618. if (tsk_cache_hot) {
  1619. schedstat_inc(sd, lb_hot_gained[idle]);
  1620. schedstat_inc(p, se.statistics.nr_forced_migrations);
  1621. }
  1622. #endif
  1623. return 1;
  1624. }
  1625. if (tsk_cache_hot) {
  1626. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  1627. return 0;
  1628. }
  1629. return 1;
  1630. }
  1631. /*
  1632. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1633. * part of active balancing operations within "domain".
  1634. * Returns 1 if successful and 0 otherwise.
  1635. *
  1636. * Called with both runqueues locked.
  1637. */
  1638. static int
  1639. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1640. struct sched_domain *sd, enum cpu_idle_type idle)
  1641. {
  1642. struct task_struct *p, *n;
  1643. struct cfs_rq *cfs_rq;
  1644. int pinned = 0;
  1645. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  1646. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  1647. if (!can_migrate_task(p, busiest, this_cpu,
  1648. sd, idle, &pinned))
  1649. continue;
  1650. pull_task(busiest, p, this_rq, this_cpu);
  1651. /*
  1652. * Right now, this is only the second place pull_task()
  1653. * is called, so we can safely collect pull_task()
  1654. * stats here rather than inside pull_task().
  1655. */
  1656. schedstat_inc(sd, lb_gained[idle]);
  1657. return 1;
  1658. }
  1659. }
  1660. return 0;
  1661. }
  1662. static unsigned long
  1663. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1664. unsigned long max_load_move, struct sched_domain *sd,
  1665. enum cpu_idle_type idle, int *all_pinned,
  1666. int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
  1667. {
  1668. int loops = 0, pulled = 0, pinned = 0;
  1669. long rem_load_move = max_load_move;
  1670. struct task_struct *p, *n;
  1671. if (max_load_move == 0)
  1672. goto out;
  1673. pinned = 1;
  1674. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  1675. if (loops++ > sysctl_sched_nr_migrate)
  1676. break;
  1677. if ((p->se.load.weight >> 1) > rem_load_move ||
  1678. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
  1679. continue;
  1680. pull_task(busiest, p, this_rq, this_cpu);
  1681. pulled++;
  1682. rem_load_move -= p->se.load.weight;
  1683. #ifdef CONFIG_PREEMPT
  1684. /*
  1685. * NEWIDLE balancing is a source of latency, so preemptible
  1686. * kernels will stop after the first task is pulled to minimize
  1687. * the critical section.
  1688. */
  1689. if (idle == CPU_NEWLY_IDLE)
  1690. break;
  1691. #endif
  1692. /*
  1693. * We only want to steal up to the prescribed amount of
  1694. * weighted load.
  1695. */
  1696. if (rem_load_move <= 0)
  1697. break;
  1698. if (p->prio < *this_best_prio)
  1699. *this_best_prio = p->prio;
  1700. }
  1701. out:
  1702. /*
  1703. * Right now, this is one of only two places pull_task() is called,
  1704. * so we can safely collect pull_task() stats here rather than
  1705. * inside pull_task().
  1706. */
  1707. schedstat_add(sd, lb_gained[idle], pulled);
  1708. if (all_pinned)
  1709. *all_pinned = pinned;
  1710. return max_load_move - rem_load_move;
  1711. }
  1712. #ifdef CONFIG_FAIR_GROUP_SCHED
  1713. /*
  1714. * update tg->load_weight by folding this cpu's load_avg
  1715. */
  1716. static int update_shares_cpu(struct task_group *tg, int cpu)
  1717. {
  1718. struct cfs_rq *cfs_rq;
  1719. unsigned long flags;
  1720. struct rq *rq;
  1721. if (!tg->se[cpu])
  1722. return 0;
  1723. rq = cpu_rq(cpu);
  1724. cfs_rq = tg->cfs_rq[cpu];
  1725. raw_spin_lock_irqsave(&rq->lock, flags);
  1726. update_rq_clock(rq);
  1727. update_cfs_load(cfs_rq, 1);
  1728. /*
  1729. * We need to update shares after updating tg->load_weight in
  1730. * order to adjust the weight of groups with long running tasks.
  1731. */
  1732. update_cfs_shares(cfs_rq, 0);
  1733. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1734. return 0;
  1735. }
  1736. static void update_shares(int cpu)
  1737. {
  1738. struct cfs_rq *cfs_rq;
  1739. struct rq *rq = cpu_rq(cpu);
  1740. rcu_read_lock();
  1741. for_each_leaf_cfs_rq(rq, cfs_rq)
  1742. update_shares_cpu(cfs_rq->tg, cpu);
  1743. rcu_read_unlock();
  1744. }
  1745. static unsigned long
  1746. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1747. unsigned long max_load_move,
  1748. struct sched_domain *sd, enum cpu_idle_type idle,
  1749. int *all_pinned, int *this_best_prio)
  1750. {
  1751. long rem_load_move = max_load_move;
  1752. int busiest_cpu = cpu_of(busiest);
  1753. struct task_group *tg;
  1754. rcu_read_lock();
  1755. update_h_load(busiest_cpu);
  1756. list_for_each_entry_rcu(tg, &task_groups, list) {
  1757. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1758. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1759. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1760. u64 rem_load, moved_load;
  1761. /*
  1762. * empty group
  1763. */
  1764. if (!busiest_cfs_rq->task_weight)
  1765. continue;
  1766. rem_load = (u64)rem_load_move * busiest_weight;
  1767. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1768. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  1769. rem_load, sd, idle, all_pinned, this_best_prio,
  1770. busiest_cfs_rq);
  1771. if (!moved_load)
  1772. continue;
  1773. moved_load *= busiest_h_load;
  1774. moved_load = div_u64(moved_load, busiest_weight + 1);
  1775. rem_load_move -= moved_load;
  1776. if (rem_load_move < 0)
  1777. break;
  1778. }
  1779. rcu_read_unlock();
  1780. return max_load_move - rem_load_move;
  1781. }
  1782. #else
  1783. static inline void update_shares(int cpu)
  1784. {
  1785. }
  1786. static unsigned long
  1787. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1788. unsigned long max_load_move,
  1789. struct sched_domain *sd, enum cpu_idle_type idle,
  1790. int *all_pinned, int *this_best_prio)
  1791. {
  1792. return balance_tasks(this_rq, this_cpu, busiest,
  1793. max_load_move, sd, idle, all_pinned,
  1794. this_best_prio, &busiest->cfs);
  1795. }
  1796. #endif
  1797. /*
  1798. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1799. * this_rq, as part of a balancing operation within domain "sd".
  1800. * Returns 1 if successful and 0 otherwise.
  1801. *
  1802. * Called with both runqueues locked.
  1803. */
  1804. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1805. unsigned long max_load_move,
  1806. struct sched_domain *sd, enum cpu_idle_type idle,
  1807. int *all_pinned)
  1808. {
  1809. unsigned long total_load_moved = 0, load_moved;
  1810. int this_best_prio = this_rq->curr->prio;
  1811. do {
  1812. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  1813. max_load_move - total_load_moved,
  1814. sd, idle, all_pinned, &this_best_prio);
  1815. total_load_moved += load_moved;
  1816. #ifdef CONFIG_PREEMPT
  1817. /*
  1818. * NEWIDLE balancing is a source of latency, so preemptible
  1819. * kernels will stop after the first task is pulled to minimize
  1820. * the critical section.
  1821. */
  1822. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  1823. break;
  1824. if (raw_spin_is_contended(&this_rq->lock) ||
  1825. raw_spin_is_contended(&busiest->lock))
  1826. break;
  1827. #endif
  1828. } while (load_moved && max_load_move > total_load_moved);
  1829. return total_load_moved > 0;
  1830. }
  1831. /********** Helpers for find_busiest_group ************************/
  1832. /*
  1833. * sd_lb_stats - Structure to store the statistics of a sched_domain
  1834. * during load balancing.
  1835. */
  1836. struct sd_lb_stats {
  1837. struct sched_group *busiest; /* Busiest group in this sd */
  1838. struct sched_group *this; /* Local group in this sd */
  1839. unsigned long total_load; /* Total load of all groups in sd */
  1840. unsigned long total_pwr; /* Total power of all groups in sd */
  1841. unsigned long avg_load; /* Average load across all groups in sd */
  1842. /** Statistics of this group */
  1843. unsigned long this_load;
  1844. unsigned long this_load_per_task;
  1845. unsigned long this_nr_running;
  1846. unsigned long this_has_capacity;
  1847. unsigned int this_idle_cpus;
  1848. /* Statistics of the busiest group */
  1849. unsigned int busiest_idle_cpus;
  1850. unsigned long max_load;
  1851. unsigned long busiest_load_per_task;
  1852. unsigned long busiest_nr_running;
  1853. unsigned long busiest_group_capacity;
  1854. unsigned long busiest_has_capacity;
  1855. unsigned int busiest_group_weight;
  1856. int group_imb; /* Is there imbalance in this sd */
  1857. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1858. int power_savings_balance; /* Is powersave balance needed for this sd */
  1859. struct sched_group *group_min; /* Least loaded group in sd */
  1860. struct sched_group *group_leader; /* Group which relieves group_min */
  1861. unsigned long min_load_per_task; /* load_per_task in group_min */
  1862. unsigned long leader_nr_running; /* Nr running of group_leader */
  1863. unsigned long min_nr_running; /* Nr running of group_min */
  1864. #endif
  1865. };
  1866. /*
  1867. * sg_lb_stats - stats of a sched_group required for load_balancing
  1868. */
  1869. struct sg_lb_stats {
  1870. unsigned long avg_load; /*Avg load across the CPUs of the group */
  1871. unsigned long group_load; /* Total load over the CPUs of the group */
  1872. unsigned long sum_nr_running; /* Nr tasks running in the group */
  1873. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  1874. unsigned long group_capacity;
  1875. unsigned long idle_cpus;
  1876. unsigned long group_weight;
  1877. int group_imb; /* Is there an imbalance in the group ? */
  1878. int group_has_capacity; /* Is there extra capacity in the group? */
  1879. };
  1880. /**
  1881. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  1882. * @group: The group whose first cpu is to be returned.
  1883. */
  1884. static inline unsigned int group_first_cpu(struct sched_group *group)
  1885. {
  1886. return cpumask_first(sched_group_cpus(group));
  1887. }
  1888. /**
  1889. * get_sd_load_idx - Obtain the load index for a given sched domain.
  1890. * @sd: The sched_domain whose load_idx is to be obtained.
  1891. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  1892. */
  1893. static inline int get_sd_load_idx(struct sched_domain *sd,
  1894. enum cpu_idle_type idle)
  1895. {
  1896. int load_idx;
  1897. switch (idle) {
  1898. case CPU_NOT_IDLE:
  1899. load_idx = sd->busy_idx;
  1900. break;
  1901. case CPU_NEWLY_IDLE:
  1902. load_idx = sd->newidle_idx;
  1903. break;
  1904. default:
  1905. load_idx = sd->idle_idx;
  1906. break;
  1907. }
  1908. return load_idx;
  1909. }
  1910. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1911. /**
  1912. * init_sd_power_savings_stats - Initialize power savings statistics for
  1913. * the given sched_domain, during load balancing.
  1914. *
  1915. * @sd: Sched domain whose power-savings statistics are to be initialized.
  1916. * @sds: Variable containing the statistics for sd.
  1917. * @idle: Idle status of the CPU at which we're performing load-balancing.
  1918. */
  1919. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  1920. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  1921. {
  1922. /*
  1923. * Busy processors will not participate in power savings
  1924. * balance.
  1925. */
  1926. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  1927. sds->power_savings_balance = 0;
  1928. else {
  1929. sds->power_savings_balance = 1;
  1930. sds->min_nr_running = ULONG_MAX;
  1931. sds->leader_nr_running = 0;
  1932. }
  1933. }
  1934. /**
  1935. * update_sd_power_savings_stats - Update the power saving stats for a
  1936. * sched_domain while performing load balancing.
  1937. *
  1938. * @group: sched_group belonging to the sched_domain under consideration.
  1939. * @sds: Variable containing the statistics of the sched_domain
  1940. * @local_group: Does group contain the CPU for which we're performing
  1941. * load balancing ?
  1942. * @sgs: Variable containing the statistics of the group.
  1943. */
  1944. static inline void update_sd_power_savings_stats(struct sched_group *group,
  1945. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  1946. {
  1947. if (!sds->power_savings_balance)
  1948. return;
  1949. /*
  1950. * If the local group is idle or completely loaded
  1951. * no need to do power savings balance at this domain
  1952. */
  1953. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  1954. !sds->this_nr_running))
  1955. sds->power_savings_balance = 0;
  1956. /*
  1957. * If a group is already running at full capacity or idle,
  1958. * don't include that group in power savings calculations
  1959. */
  1960. if (!sds->power_savings_balance ||
  1961. sgs->sum_nr_running >= sgs->group_capacity ||
  1962. !sgs->sum_nr_running)
  1963. return;
  1964. /*
  1965. * Calculate the group which has the least non-idle load.
  1966. * This is the group from where we need to pick up the load
  1967. * for saving power
  1968. */
  1969. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  1970. (sgs->sum_nr_running == sds->min_nr_running &&
  1971. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  1972. sds->group_min = group;
  1973. sds->min_nr_running = sgs->sum_nr_running;
  1974. sds->min_load_per_task = sgs->sum_weighted_load /
  1975. sgs->sum_nr_running;
  1976. }
  1977. /*
  1978. * Calculate the group which is almost near its
  1979. * capacity but still has some space to pick up some load
  1980. * from other group and save more power
  1981. */
  1982. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  1983. return;
  1984. if (sgs->sum_nr_running > sds->leader_nr_running ||
  1985. (sgs->sum_nr_running == sds->leader_nr_running &&
  1986. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  1987. sds->group_leader = group;
  1988. sds->leader_nr_running = sgs->sum_nr_running;
  1989. }
  1990. }
  1991. /**
  1992. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  1993. * @sds: Variable containing the statistics of the sched_domain
  1994. * under consideration.
  1995. * @this_cpu: Cpu at which we're currently performing load-balancing.
  1996. * @imbalance: Variable to store the imbalance.
  1997. *
  1998. * Description:
  1999. * Check if we have potential to perform some power-savings balance.
  2000. * If yes, set the busiest group to be the least loaded group in the
  2001. * sched_domain, so that it's CPUs can be put to idle.
  2002. *
  2003. * Returns 1 if there is potential to perform power-savings balance.
  2004. * Else returns 0.
  2005. */
  2006. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2007. int this_cpu, unsigned long *imbalance)
  2008. {
  2009. if (!sds->power_savings_balance)
  2010. return 0;
  2011. if (sds->this != sds->group_leader ||
  2012. sds->group_leader == sds->group_min)
  2013. return 0;
  2014. *imbalance = sds->min_load_per_task;
  2015. sds->busiest = sds->group_min;
  2016. return 1;
  2017. }
  2018. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2019. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2020. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2021. {
  2022. return;
  2023. }
  2024. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2025. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2026. {
  2027. return;
  2028. }
  2029. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2030. int this_cpu, unsigned long *imbalance)
  2031. {
  2032. return 0;
  2033. }
  2034. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2035. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  2036. {
  2037. return SCHED_LOAD_SCALE;
  2038. }
  2039. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  2040. {
  2041. return default_scale_freq_power(sd, cpu);
  2042. }
  2043. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  2044. {
  2045. unsigned long weight = sd->span_weight;
  2046. unsigned long smt_gain = sd->smt_gain;
  2047. smt_gain /= weight;
  2048. return smt_gain;
  2049. }
  2050. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  2051. {
  2052. return default_scale_smt_power(sd, cpu);
  2053. }
  2054. unsigned long scale_rt_power(int cpu)
  2055. {
  2056. struct rq *rq = cpu_rq(cpu);
  2057. u64 total, available;
  2058. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  2059. if (unlikely(total < rq->rt_avg)) {
  2060. /* Ensures that power won't end up being negative */
  2061. available = 0;
  2062. } else {
  2063. available = total - rq->rt_avg;
  2064. }
  2065. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  2066. total = SCHED_LOAD_SCALE;
  2067. total >>= SCHED_LOAD_SHIFT;
  2068. return div_u64(available, total);
  2069. }
  2070. static void update_cpu_power(struct sched_domain *sd, int cpu)
  2071. {
  2072. unsigned long weight = sd->span_weight;
  2073. unsigned long power = SCHED_LOAD_SCALE;
  2074. struct sched_group *sdg = sd->groups;
  2075. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  2076. if (sched_feat(ARCH_POWER))
  2077. power *= arch_scale_smt_power(sd, cpu);
  2078. else
  2079. power *= default_scale_smt_power(sd, cpu);
  2080. power >>= SCHED_LOAD_SHIFT;
  2081. }
  2082. sdg->cpu_power_orig = power;
  2083. if (sched_feat(ARCH_POWER))
  2084. power *= arch_scale_freq_power(sd, cpu);
  2085. else
  2086. power *= default_scale_freq_power(sd, cpu);
  2087. power >>= SCHED_LOAD_SHIFT;
  2088. power *= scale_rt_power(cpu);
  2089. power >>= SCHED_LOAD_SHIFT;
  2090. if (!power)
  2091. power = 1;
  2092. cpu_rq(cpu)->cpu_power = power;
  2093. sdg->cpu_power = power;
  2094. }
  2095. static void update_group_power(struct sched_domain *sd, int cpu)
  2096. {
  2097. struct sched_domain *child = sd->child;
  2098. struct sched_group *group, *sdg = sd->groups;
  2099. unsigned long power;
  2100. if (!child) {
  2101. update_cpu_power(sd, cpu);
  2102. return;
  2103. }
  2104. power = 0;
  2105. group = child->groups;
  2106. do {
  2107. power += group->cpu_power;
  2108. group = group->next;
  2109. } while (group != child->groups);
  2110. sdg->cpu_power = power;
  2111. }
  2112. /*
  2113. * Try and fix up capacity for tiny siblings, this is needed when
  2114. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  2115. * which on its own isn't powerful enough.
  2116. *
  2117. * See update_sd_pick_busiest() and check_asym_packing().
  2118. */
  2119. static inline int
  2120. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  2121. {
  2122. /*
  2123. * Only siblings can have significantly less than SCHED_LOAD_SCALE
  2124. */
  2125. if (sd->level != SD_LV_SIBLING)
  2126. return 0;
  2127. /*
  2128. * If ~90% of the cpu_power is still there, we're good.
  2129. */
  2130. if (group->cpu_power * 32 > group->cpu_power_orig * 29)
  2131. return 1;
  2132. return 0;
  2133. }
  2134. /**
  2135. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2136. * @sd: The sched_domain whose statistics are to be updated.
  2137. * @group: sched_group whose statistics are to be updated.
  2138. * @this_cpu: Cpu for which load balance is currently performed.
  2139. * @idle: Idle status of this_cpu
  2140. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2141. * @sd_idle: Idle status of the sched_domain containing group.
  2142. * @local_group: Does group contain this_cpu.
  2143. * @cpus: Set of cpus considered for load balancing.
  2144. * @balance: Should we balance.
  2145. * @sgs: variable to hold the statistics for this group.
  2146. */
  2147. static inline void update_sg_lb_stats(struct sched_domain *sd,
  2148. struct sched_group *group, int this_cpu,
  2149. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  2150. int local_group, const struct cpumask *cpus,
  2151. int *balance, struct sg_lb_stats *sgs)
  2152. {
  2153. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  2154. int i;
  2155. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2156. unsigned long avg_load_per_task = 0;
  2157. if (local_group)
  2158. balance_cpu = group_first_cpu(group);
  2159. /* Tally up the load of all CPUs in the group */
  2160. max_cpu_load = 0;
  2161. min_cpu_load = ~0UL;
  2162. max_nr_running = 0;
  2163. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2164. struct rq *rq = cpu_rq(i);
  2165. if (*sd_idle && rq->nr_running)
  2166. *sd_idle = 0;
  2167. /* Bias balancing toward cpus of our domain */
  2168. if (local_group) {
  2169. if (idle_cpu(i) && !first_idle_cpu) {
  2170. first_idle_cpu = 1;
  2171. balance_cpu = i;
  2172. }
  2173. load = target_load(i, load_idx);
  2174. } else {
  2175. load = source_load(i, load_idx);
  2176. if (load > max_cpu_load) {
  2177. max_cpu_load = load;
  2178. max_nr_running = rq->nr_running;
  2179. }
  2180. if (min_cpu_load > load)
  2181. min_cpu_load = load;
  2182. }
  2183. sgs->group_load += load;
  2184. sgs->sum_nr_running += rq->nr_running;
  2185. sgs->sum_weighted_load += weighted_cpuload(i);
  2186. if (idle_cpu(i))
  2187. sgs->idle_cpus++;
  2188. }
  2189. /*
  2190. * First idle cpu or the first cpu(busiest) in this sched group
  2191. * is eligible for doing load balancing at this and above
  2192. * domains. In the newly idle case, we will allow all the cpu's
  2193. * to do the newly idle load balance.
  2194. */
  2195. if (idle != CPU_NEWLY_IDLE && local_group) {
  2196. if (balance_cpu != this_cpu) {
  2197. *balance = 0;
  2198. return;
  2199. }
  2200. update_group_power(sd, this_cpu);
  2201. }
  2202. /* Adjust by relative CPU power of the group */
  2203. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  2204. /*
  2205. * Consider the group unbalanced when the imbalance is larger
  2206. * than the average weight of two tasks.
  2207. *
  2208. * APZ: with cgroup the avg task weight can vary wildly and
  2209. * might not be a suitable number - should we keep a
  2210. * normalized nr_running number somewhere that negates
  2211. * the hierarchy?
  2212. */
  2213. if (sgs->sum_nr_running)
  2214. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  2215. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
  2216. sgs->group_imb = 1;
  2217. sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  2218. if (!sgs->group_capacity)
  2219. sgs->group_capacity = fix_small_capacity(sd, group);
  2220. sgs->group_weight = group->group_weight;
  2221. if (sgs->group_capacity > sgs->sum_nr_running)
  2222. sgs->group_has_capacity = 1;
  2223. }
  2224. /**
  2225. * update_sd_pick_busiest - return 1 on busiest group
  2226. * @sd: sched_domain whose statistics are to be checked
  2227. * @sds: sched_domain statistics
  2228. * @sg: sched_group candidate to be checked for being the busiest
  2229. * @sgs: sched_group statistics
  2230. * @this_cpu: the current cpu
  2231. *
  2232. * Determine if @sg is a busier group than the previously selected
  2233. * busiest group.
  2234. */
  2235. static bool update_sd_pick_busiest(struct sched_domain *sd,
  2236. struct sd_lb_stats *sds,
  2237. struct sched_group *sg,
  2238. struct sg_lb_stats *sgs,
  2239. int this_cpu)
  2240. {
  2241. if (sgs->avg_load <= sds->max_load)
  2242. return false;
  2243. if (sgs->sum_nr_running > sgs->group_capacity)
  2244. return true;
  2245. if (sgs->group_imb)
  2246. return true;
  2247. /*
  2248. * ASYM_PACKING needs to move all the work to the lowest
  2249. * numbered CPUs in the group, therefore mark all groups
  2250. * higher than ourself as busy.
  2251. */
  2252. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  2253. this_cpu < group_first_cpu(sg)) {
  2254. if (!sds->busiest)
  2255. return true;
  2256. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  2257. return true;
  2258. }
  2259. return false;
  2260. }
  2261. /**
  2262. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2263. * @sd: sched_domain whose statistics are to be updated.
  2264. * @this_cpu: Cpu for which load balance is currently performed.
  2265. * @idle: Idle status of this_cpu
  2266. * @sd_idle: Idle status of the sched_domain containing sg.
  2267. * @cpus: Set of cpus considered for load balancing.
  2268. * @balance: Should we balance.
  2269. * @sds: variable to hold the statistics for this sched_domain.
  2270. */
  2271. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  2272. enum cpu_idle_type idle, int *sd_idle,
  2273. const struct cpumask *cpus, int *balance,
  2274. struct sd_lb_stats *sds)
  2275. {
  2276. struct sched_domain *child = sd->child;
  2277. struct sched_group *sg = sd->groups;
  2278. struct sg_lb_stats sgs;
  2279. int load_idx, prefer_sibling = 0;
  2280. if (child && child->flags & SD_PREFER_SIBLING)
  2281. prefer_sibling = 1;
  2282. init_sd_power_savings_stats(sd, sds, idle);
  2283. load_idx = get_sd_load_idx(sd, idle);
  2284. do {
  2285. int local_group;
  2286. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  2287. memset(&sgs, 0, sizeof(sgs));
  2288. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
  2289. local_group, cpus, balance, &sgs);
  2290. if (local_group && !(*balance))
  2291. return;
  2292. sds->total_load += sgs.group_load;
  2293. sds->total_pwr += sg->cpu_power;
  2294. /*
  2295. * In case the child domain prefers tasks go to siblings
  2296. * first, lower the sg capacity to one so that we'll try
  2297. * and move all the excess tasks away. We lower the capacity
  2298. * of a group only if the local group has the capacity to fit
  2299. * these excess tasks, i.e. nr_running < group_capacity. The
  2300. * extra check prevents the case where you always pull from the
  2301. * heaviest group when it is already under-utilized (possible
  2302. * with a large weight task outweighs the tasks on the system).
  2303. */
  2304. if (prefer_sibling && !local_group && sds->this_has_capacity)
  2305. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  2306. if (local_group) {
  2307. sds->this_load = sgs.avg_load;
  2308. sds->this = sg;
  2309. sds->this_nr_running = sgs.sum_nr_running;
  2310. sds->this_load_per_task = sgs.sum_weighted_load;
  2311. sds->this_has_capacity = sgs.group_has_capacity;
  2312. sds->this_idle_cpus = sgs.idle_cpus;
  2313. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  2314. sds->max_load = sgs.avg_load;
  2315. sds->busiest = sg;
  2316. sds->busiest_nr_running = sgs.sum_nr_running;
  2317. sds->busiest_idle_cpus = sgs.idle_cpus;
  2318. sds->busiest_group_capacity = sgs.group_capacity;
  2319. sds->busiest_load_per_task = sgs.sum_weighted_load;
  2320. sds->busiest_has_capacity = sgs.group_has_capacity;
  2321. sds->busiest_group_weight = sgs.group_weight;
  2322. sds->group_imb = sgs.group_imb;
  2323. }
  2324. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  2325. sg = sg->next;
  2326. } while (sg != sd->groups);
  2327. }
  2328. int __weak arch_sd_sibling_asym_packing(void)
  2329. {
  2330. return 0*SD_ASYM_PACKING;
  2331. }
  2332. /**
  2333. * check_asym_packing - Check to see if the group is packed into the
  2334. * sched doman.
  2335. *
  2336. * This is primarily intended to used at the sibling level. Some
  2337. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  2338. * case of POWER7, it can move to lower SMT modes only when higher
  2339. * threads are idle. When in lower SMT modes, the threads will
  2340. * perform better since they share less core resources. Hence when we
  2341. * have idle threads, we want them to be the higher ones.
  2342. *
  2343. * This packing function is run on idle threads. It checks to see if
  2344. * the busiest CPU in this domain (core in the P7 case) has a higher
  2345. * CPU number than the packing function is being run on. Here we are
  2346. * assuming lower CPU number will be equivalent to lower a SMT thread
  2347. * number.
  2348. *
  2349. * Returns 1 when packing is required and a task should be moved to
  2350. * this CPU. The amount of the imbalance is returned in *imbalance.
  2351. *
  2352. * @sd: The sched_domain whose packing is to be checked.
  2353. * @sds: Statistics of the sched_domain which is to be packed
  2354. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2355. * @imbalance: returns amount of imbalanced due to packing.
  2356. */
  2357. static int check_asym_packing(struct sched_domain *sd,
  2358. struct sd_lb_stats *sds,
  2359. int this_cpu, unsigned long *imbalance)
  2360. {
  2361. int busiest_cpu;
  2362. if (!(sd->flags & SD_ASYM_PACKING))
  2363. return 0;
  2364. if (!sds->busiest)
  2365. return 0;
  2366. busiest_cpu = group_first_cpu(sds->busiest);
  2367. if (this_cpu > busiest_cpu)
  2368. return 0;
  2369. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
  2370. SCHED_LOAD_SCALE);
  2371. return 1;
  2372. }
  2373. /**
  2374. * fix_small_imbalance - Calculate the minor imbalance that exists
  2375. * amongst the groups of a sched_domain, during
  2376. * load balancing.
  2377. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  2378. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2379. * @imbalance: Variable to store the imbalance.
  2380. */
  2381. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  2382. int this_cpu, unsigned long *imbalance)
  2383. {
  2384. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  2385. unsigned int imbn = 2;
  2386. unsigned long scaled_busy_load_per_task;
  2387. if (sds->this_nr_running) {
  2388. sds->this_load_per_task /= sds->this_nr_running;
  2389. if (sds->busiest_load_per_task >
  2390. sds->this_load_per_task)
  2391. imbn = 1;
  2392. } else
  2393. sds->this_load_per_task =
  2394. cpu_avg_load_per_task(this_cpu);
  2395. scaled_busy_load_per_task = sds->busiest_load_per_task
  2396. * SCHED_LOAD_SCALE;
  2397. scaled_busy_load_per_task /= sds->busiest->cpu_power;
  2398. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  2399. (scaled_busy_load_per_task * imbn)) {
  2400. *imbalance = sds->busiest_load_per_task;
  2401. return;
  2402. }
  2403. /*
  2404. * OK, we don't have enough imbalance to justify moving tasks,
  2405. * however we may be able to increase total CPU power used by
  2406. * moving them.
  2407. */
  2408. pwr_now += sds->busiest->cpu_power *
  2409. min(sds->busiest_load_per_task, sds->max_load);
  2410. pwr_now += sds->this->cpu_power *
  2411. min(sds->this_load_per_task, sds->this_load);
  2412. pwr_now /= SCHED_LOAD_SCALE;
  2413. /* Amount of load we'd subtract */
  2414. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2415. sds->busiest->cpu_power;
  2416. if (sds->max_load > tmp)
  2417. pwr_move += sds->busiest->cpu_power *
  2418. min(sds->busiest_load_per_task, sds->max_load - tmp);
  2419. /* Amount of load we'd add */
  2420. if (sds->max_load * sds->busiest->cpu_power <
  2421. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  2422. tmp = (sds->max_load * sds->busiest->cpu_power) /
  2423. sds->this->cpu_power;
  2424. else
  2425. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2426. sds->this->cpu_power;
  2427. pwr_move += sds->this->cpu_power *
  2428. min(sds->this_load_per_task, sds->this_load + tmp);
  2429. pwr_move /= SCHED_LOAD_SCALE;
  2430. /* Move if we gain throughput */
  2431. if (pwr_move > pwr_now)
  2432. *imbalance = sds->busiest_load_per_task;
  2433. }
  2434. /**
  2435. * calculate_imbalance - Calculate the amount of imbalance present within the
  2436. * groups of a given sched_domain during load balance.
  2437. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  2438. * @this_cpu: Cpu for which currently load balance is being performed.
  2439. * @imbalance: The variable to store the imbalance.
  2440. */
  2441. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  2442. unsigned long *imbalance)
  2443. {
  2444. unsigned long max_pull, load_above_capacity = ~0UL;
  2445. sds->busiest_load_per_task /= sds->busiest_nr_running;
  2446. if (sds->group_imb) {
  2447. sds->busiest_load_per_task =
  2448. min(sds->busiest_load_per_task, sds->avg_load);
  2449. }
  2450. /*
  2451. * In the presence of smp nice balancing, certain scenarios can have
  2452. * max load less than avg load(as we skip the groups at or below
  2453. * its cpu_power, while calculating max_load..)
  2454. */
  2455. if (sds->max_load < sds->avg_load) {
  2456. *imbalance = 0;
  2457. return fix_small_imbalance(sds, this_cpu, imbalance);
  2458. }
  2459. if (!sds->group_imb) {
  2460. /*
  2461. * Don't want to pull so many tasks that a group would go idle.
  2462. */
  2463. load_above_capacity = (sds->busiest_nr_running -
  2464. sds->busiest_group_capacity);
  2465. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
  2466. load_above_capacity /= sds->busiest->cpu_power;
  2467. }
  2468. /*
  2469. * We're trying to get all the cpus to the average_load, so we don't
  2470. * want to push ourselves above the average load, nor do we wish to
  2471. * reduce the max loaded cpu below the average load. At the same time,
  2472. * we also don't want to reduce the group load below the group capacity
  2473. * (so that we can implement power-savings policies etc). Thus we look
  2474. * for the minimum possible imbalance.
  2475. * Be careful of negative numbers as they'll appear as very large values
  2476. * with unsigned longs.
  2477. */
  2478. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  2479. /* How much load to actually move to equalise the imbalance */
  2480. *imbalance = min(max_pull * sds->busiest->cpu_power,
  2481. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  2482. / SCHED_LOAD_SCALE;
  2483. /*
  2484. * if *imbalance is less than the average load per runnable task
  2485. * there is no gaurantee that any tasks will be moved so we'll have
  2486. * a think about bumping its value to force at least one task to be
  2487. * moved
  2488. */
  2489. if (*imbalance < sds->busiest_load_per_task)
  2490. return fix_small_imbalance(sds, this_cpu, imbalance);
  2491. }
  2492. /******* find_busiest_group() helpers end here *********************/
  2493. /**
  2494. * find_busiest_group - Returns the busiest group within the sched_domain
  2495. * if there is an imbalance. If there isn't an imbalance, and
  2496. * the user has opted for power-savings, it returns a group whose
  2497. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  2498. * such a group exists.
  2499. *
  2500. * Also calculates the amount of weighted load which should be moved
  2501. * to restore balance.
  2502. *
  2503. * @sd: The sched_domain whose busiest group is to be returned.
  2504. * @this_cpu: The cpu for which load balancing is currently being performed.
  2505. * @imbalance: Variable which stores amount of weighted load which should
  2506. * be moved to restore balance/put a group to idle.
  2507. * @idle: The idle status of this_cpu.
  2508. * @sd_idle: The idleness of sd
  2509. * @cpus: The set of CPUs under consideration for load-balancing.
  2510. * @balance: Pointer to a variable indicating if this_cpu
  2511. * is the appropriate cpu to perform load balancing at this_level.
  2512. *
  2513. * Returns: - the busiest group if imbalance exists.
  2514. * - If no imbalance and user has opted for power-savings balance,
  2515. * return the least loaded group whose CPUs can be
  2516. * put to idle by rebalancing its tasks onto our group.
  2517. */
  2518. static struct sched_group *
  2519. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2520. unsigned long *imbalance, enum cpu_idle_type idle,
  2521. int *sd_idle, const struct cpumask *cpus, int *balance)
  2522. {
  2523. struct sd_lb_stats sds;
  2524. memset(&sds, 0, sizeof(sds));
  2525. /*
  2526. * Compute the various statistics relavent for load balancing at
  2527. * this level.
  2528. */
  2529. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  2530. balance, &sds);
  2531. /* Cases where imbalance does not exist from POV of this_cpu */
  2532. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  2533. * at this level.
  2534. * 2) There is no busy sibling group to pull from.
  2535. * 3) This group is the busiest group.
  2536. * 4) This group is more busy than the avg busieness at this
  2537. * sched_domain.
  2538. * 5) The imbalance is within the specified limit.
  2539. *
  2540. * Note: when doing newidle balance, if the local group has excess
  2541. * capacity (i.e. nr_running < group_capacity) and the busiest group
  2542. * does not have any capacity, we force a load balance to pull tasks
  2543. * to the local group. In this case, we skip past checks 3, 4 and 5.
  2544. */
  2545. if (!(*balance))
  2546. goto ret;
  2547. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  2548. check_asym_packing(sd, &sds, this_cpu, imbalance))
  2549. return sds.busiest;
  2550. if (!sds.busiest || sds.busiest_nr_running == 0)
  2551. goto out_balanced;
  2552. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  2553. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  2554. !sds.busiest_has_capacity)
  2555. goto force_balance;
  2556. if (sds.this_load >= sds.max_load)
  2557. goto out_balanced;
  2558. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  2559. if (sds.this_load >= sds.avg_load)
  2560. goto out_balanced;
  2561. /*
  2562. * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
  2563. * And to check for busy balance use !idle_cpu instead of
  2564. * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
  2565. * even when they are idle.
  2566. */
  2567. if (idle == CPU_NEWLY_IDLE || !idle_cpu(this_cpu)) {
  2568. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  2569. goto out_balanced;
  2570. } else {
  2571. /*
  2572. * This cpu is idle. If the busiest group load doesn't
  2573. * have more tasks than the number of available cpu's and
  2574. * there is no imbalance between this and busiest group
  2575. * wrt to idle cpu's, it is balanced.
  2576. */
  2577. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  2578. sds.busiest_nr_running <= sds.busiest_group_weight)
  2579. goto out_balanced;
  2580. }
  2581. force_balance:
  2582. /* Looks like there is an imbalance. Compute it */
  2583. calculate_imbalance(&sds, this_cpu, imbalance);
  2584. return sds.busiest;
  2585. out_balanced:
  2586. /*
  2587. * There is no obvious imbalance. But check if we can do some balancing
  2588. * to save power.
  2589. */
  2590. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  2591. return sds.busiest;
  2592. ret:
  2593. *imbalance = 0;
  2594. return NULL;
  2595. }
  2596. /*
  2597. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2598. */
  2599. static struct rq *
  2600. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  2601. enum cpu_idle_type idle, unsigned long imbalance,
  2602. const struct cpumask *cpus)
  2603. {
  2604. struct rq *busiest = NULL, *rq;
  2605. unsigned long max_load = 0;
  2606. int i;
  2607. for_each_cpu(i, sched_group_cpus(group)) {
  2608. unsigned long power = power_of(i);
  2609. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  2610. unsigned long wl;
  2611. if (!capacity)
  2612. capacity = fix_small_capacity(sd, group);
  2613. if (!cpumask_test_cpu(i, cpus))
  2614. continue;
  2615. rq = cpu_rq(i);
  2616. wl = weighted_cpuload(i);
  2617. /*
  2618. * When comparing with imbalance, use weighted_cpuload()
  2619. * which is not scaled with the cpu power.
  2620. */
  2621. if (capacity && rq->nr_running == 1 && wl > imbalance)
  2622. continue;
  2623. /*
  2624. * For the load comparisons with the other cpu's, consider
  2625. * the weighted_cpuload() scaled with the cpu power, so that
  2626. * the load can be moved away from the cpu that is potentially
  2627. * running at a lower capacity.
  2628. */
  2629. wl = (wl * SCHED_LOAD_SCALE) / power;
  2630. if (wl > max_load) {
  2631. max_load = wl;
  2632. busiest = rq;
  2633. }
  2634. }
  2635. return busiest;
  2636. }
  2637. /*
  2638. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2639. * so long as it is large enough.
  2640. */
  2641. #define MAX_PINNED_INTERVAL 512
  2642. /* Working cpumask for load_balance and load_balance_newidle. */
  2643. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  2644. static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
  2645. int busiest_cpu, int this_cpu)
  2646. {
  2647. if (idle == CPU_NEWLY_IDLE) {
  2648. /*
  2649. * ASYM_PACKING needs to force migrate tasks from busy but
  2650. * higher numbered CPUs in order to pack all tasks in the
  2651. * lowest numbered CPUs.
  2652. */
  2653. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  2654. return 1;
  2655. /*
  2656. * The only task running in a non-idle cpu can be moved to this
  2657. * cpu in an attempt to completely freeup the other CPU
  2658. * package.
  2659. *
  2660. * The package power saving logic comes from
  2661. * find_busiest_group(). If there are no imbalance, then
  2662. * f_b_g() will return NULL. However when sched_mc={1,2} then
  2663. * f_b_g() will select a group from which a running task may be
  2664. * pulled to this cpu in order to make the other package idle.
  2665. * If there is no opportunity to make a package idle and if
  2666. * there are no imbalance, then f_b_g() will return NULL and no
  2667. * action will be taken in load_balance_newidle().
  2668. *
  2669. * Under normal task pull operation due to imbalance, there
  2670. * will be more than one task in the source run queue and
  2671. * move_tasks() will succeed. ld_moved will be true and this
  2672. * active balance code will not be triggered.
  2673. */
  2674. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2675. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2676. return 0;
  2677. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  2678. return 0;
  2679. }
  2680. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  2681. }
  2682. static int active_load_balance_cpu_stop(void *data);
  2683. /*
  2684. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2685. * tasks if there is an imbalance.
  2686. */
  2687. static int load_balance(int this_cpu, struct rq *this_rq,
  2688. struct sched_domain *sd, enum cpu_idle_type idle,
  2689. int *balance)
  2690. {
  2691. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2692. struct sched_group *group;
  2693. unsigned long imbalance;
  2694. struct rq *busiest;
  2695. unsigned long flags;
  2696. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  2697. cpumask_copy(cpus, cpu_active_mask);
  2698. /*
  2699. * When power savings policy is enabled for the parent domain, idle
  2700. * sibling can pick up load irrespective of busy siblings. In this case,
  2701. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2702. * portraying it as CPU_NOT_IDLE.
  2703. */
  2704. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2705. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2706. sd_idle = 1;
  2707. schedstat_inc(sd, lb_count[idle]);
  2708. redo:
  2709. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2710. cpus, balance);
  2711. if (*balance == 0)
  2712. goto out_balanced;
  2713. if (!group) {
  2714. schedstat_inc(sd, lb_nobusyg[idle]);
  2715. goto out_balanced;
  2716. }
  2717. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  2718. if (!busiest) {
  2719. schedstat_inc(sd, lb_nobusyq[idle]);
  2720. goto out_balanced;
  2721. }
  2722. BUG_ON(busiest == this_rq);
  2723. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2724. ld_moved = 0;
  2725. if (busiest->nr_running > 1) {
  2726. /*
  2727. * Attempt to move tasks. If find_busiest_group has found
  2728. * an imbalance but busiest->nr_running <= 1, the group is
  2729. * still unbalanced. ld_moved simply stays zero, so it is
  2730. * correctly treated as an imbalance.
  2731. */
  2732. local_irq_save(flags);
  2733. double_rq_lock(this_rq, busiest);
  2734. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2735. imbalance, sd, idle, &all_pinned);
  2736. double_rq_unlock(this_rq, busiest);
  2737. local_irq_restore(flags);
  2738. /*
  2739. * some other cpu did the load balance for us.
  2740. */
  2741. if (ld_moved && this_cpu != smp_processor_id())
  2742. resched_cpu(this_cpu);
  2743. /* All tasks on this runqueue were pinned by CPU affinity */
  2744. if (unlikely(all_pinned)) {
  2745. cpumask_clear_cpu(cpu_of(busiest), cpus);
  2746. if (!cpumask_empty(cpus))
  2747. goto redo;
  2748. goto out_balanced;
  2749. }
  2750. }
  2751. if (!ld_moved) {
  2752. schedstat_inc(sd, lb_failed[idle]);
  2753. /*
  2754. * Increment the failure counter only on periodic balance.
  2755. * We do not want newidle balance, which can be very
  2756. * frequent, pollute the failure counter causing
  2757. * excessive cache_hot migrations and active balances.
  2758. */
  2759. if (idle != CPU_NEWLY_IDLE)
  2760. sd->nr_balance_failed++;
  2761. if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
  2762. this_cpu)) {
  2763. raw_spin_lock_irqsave(&busiest->lock, flags);
  2764. /* don't kick the active_load_balance_cpu_stop,
  2765. * if the curr task on busiest cpu can't be
  2766. * moved to this_cpu
  2767. */
  2768. if (!cpumask_test_cpu(this_cpu,
  2769. &busiest->curr->cpus_allowed)) {
  2770. raw_spin_unlock_irqrestore(&busiest->lock,
  2771. flags);
  2772. all_pinned = 1;
  2773. goto out_one_pinned;
  2774. }
  2775. /*
  2776. * ->active_balance synchronizes accesses to
  2777. * ->active_balance_work. Once set, it's cleared
  2778. * only after active load balance is finished.
  2779. */
  2780. if (!busiest->active_balance) {
  2781. busiest->active_balance = 1;
  2782. busiest->push_cpu = this_cpu;
  2783. active_balance = 1;
  2784. }
  2785. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  2786. if (active_balance)
  2787. stop_one_cpu_nowait(cpu_of(busiest),
  2788. active_load_balance_cpu_stop, busiest,
  2789. &busiest->active_balance_work);
  2790. /*
  2791. * We've kicked active balancing, reset the failure
  2792. * counter.
  2793. */
  2794. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2795. }
  2796. } else
  2797. sd->nr_balance_failed = 0;
  2798. if (likely(!active_balance)) {
  2799. /* We were unbalanced, so reset the balancing interval */
  2800. sd->balance_interval = sd->min_interval;
  2801. } else {
  2802. /*
  2803. * If we've begun active balancing, start to back off. This
  2804. * case may not be covered by the all_pinned logic if there
  2805. * is only 1 task on the busy runqueue (because we don't call
  2806. * move_tasks).
  2807. */
  2808. if (sd->balance_interval < sd->max_interval)
  2809. sd->balance_interval *= 2;
  2810. }
  2811. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2812. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2813. ld_moved = -1;
  2814. goto out;
  2815. out_balanced:
  2816. schedstat_inc(sd, lb_balanced[idle]);
  2817. sd->nr_balance_failed = 0;
  2818. out_one_pinned:
  2819. /* tune up the balancing interval */
  2820. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2821. (sd->balance_interval < sd->max_interval))
  2822. sd->balance_interval *= 2;
  2823. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2824. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2825. ld_moved = -1;
  2826. else
  2827. ld_moved = 0;
  2828. out:
  2829. return ld_moved;
  2830. }
  2831. /*
  2832. * idle_balance is called by schedule() if this_cpu is about to become
  2833. * idle. Attempts to pull tasks from other CPUs.
  2834. */
  2835. static void idle_balance(int this_cpu, struct rq *this_rq)
  2836. {
  2837. struct sched_domain *sd;
  2838. int pulled_task = 0;
  2839. unsigned long next_balance = jiffies + HZ;
  2840. this_rq->idle_stamp = this_rq->clock;
  2841. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  2842. return;
  2843. /*
  2844. * Drop the rq->lock, but keep IRQ/preempt disabled.
  2845. */
  2846. raw_spin_unlock(&this_rq->lock);
  2847. update_shares(this_cpu);
  2848. for_each_domain(this_cpu, sd) {
  2849. unsigned long interval;
  2850. int balance = 1;
  2851. if (!(sd->flags & SD_LOAD_BALANCE))
  2852. continue;
  2853. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2854. /* If we've pulled tasks over stop searching: */
  2855. pulled_task = load_balance(this_cpu, this_rq,
  2856. sd, CPU_NEWLY_IDLE, &balance);
  2857. }
  2858. interval = msecs_to_jiffies(sd->balance_interval);
  2859. if (time_after(next_balance, sd->last_balance + interval))
  2860. next_balance = sd->last_balance + interval;
  2861. if (pulled_task) {
  2862. this_rq->idle_stamp = 0;
  2863. break;
  2864. }
  2865. }
  2866. raw_spin_lock(&this_rq->lock);
  2867. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2868. /*
  2869. * We are going idle. next_balance may be set based on
  2870. * a busy processor. So reset next_balance.
  2871. */
  2872. this_rq->next_balance = next_balance;
  2873. }
  2874. }
  2875. /*
  2876. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  2877. * running tasks off the busiest CPU onto idle CPUs. It requires at
  2878. * least 1 task to be running on each physical CPU where possible, and
  2879. * avoids physical / logical imbalances.
  2880. */
  2881. static int active_load_balance_cpu_stop(void *data)
  2882. {
  2883. struct rq *busiest_rq = data;
  2884. int busiest_cpu = cpu_of(busiest_rq);
  2885. int target_cpu = busiest_rq->push_cpu;
  2886. struct rq *target_rq = cpu_rq(target_cpu);
  2887. struct sched_domain *sd;
  2888. raw_spin_lock_irq(&busiest_rq->lock);
  2889. /* make sure the requested cpu hasn't gone down in the meantime */
  2890. if (unlikely(busiest_cpu != smp_processor_id() ||
  2891. !busiest_rq->active_balance))
  2892. goto out_unlock;
  2893. /* Is there any task to move? */
  2894. if (busiest_rq->nr_running <= 1)
  2895. goto out_unlock;
  2896. /*
  2897. * This condition is "impossible", if it occurs
  2898. * we need to fix it. Originally reported by
  2899. * Bjorn Helgaas on a 128-cpu setup.
  2900. */
  2901. BUG_ON(busiest_rq == target_rq);
  2902. /* move a task from busiest_rq to target_rq */
  2903. double_lock_balance(busiest_rq, target_rq);
  2904. /* Search for an sd spanning us and the target CPU. */
  2905. for_each_domain(target_cpu, sd) {
  2906. if ((sd->flags & SD_LOAD_BALANCE) &&
  2907. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  2908. break;
  2909. }
  2910. if (likely(sd)) {
  2911. schedstat_inc(sd, alb_count);
  2912. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2913. sd, CPU_IDLE))
  2914. schedstat_inc(sd, alb_pushed);
  2915. else
  2916. schedstat_inc(sd, alb_failed);
  2917. }
  2918. double_unlock_balance(busiest_rq, target_rq);
  2919. out_unlock:
  2920. busiest_rq->active_balance = 0;
  2921. raw_spin_unlock_irq(&busiest_rq->lock);
  2922. return 0;
  2923. }
  2924. #ifdef CONFIG_NO_HZ
  2925. static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
  2926. static void trigger_sched_softirq(void *data)
  2927. {
  2928. raise_softirq_irqoff(SCHED_SOFTIRQ);
  2929. }
  2930. static inline void init_sched_softirq_csd(struct call_single_data *csd)
  2931. {
  2932. csd->func = trigger_sched_softirq;
  2933. csd->info = NULL;
  2934. csd->flags = 0;
  2935. csd->priv = 0;
  2936. }
  2937. /*
  2938. * idle load balancing details
  2939. * - One of the idle CPUs nominates itself as idle load_balancer, while
  2940. * entering idle.
  2941. * - This idle load balancer CPU will also go into tickless mode when
  2942. * it is idle, just like all other idle CPUs
  2943. * - When one of the busy CPUs notice that there may be an idle rebalancing
  2944. * needed, they will kick the idle load balancer, which then does idle
  2945. * load balancing for all the idle CPUs.
  2946. */
  2947. static struct {
  2948. atomic_t load_balancer;
  2949. atomic_t first_pick_cpu;
  2950. atomic_t second_pick_cpu;
  2951. cpumask_var_t idle_cpus_mask;
  2952. cpumask_var_t grp_idle_mask;
  2953. unsigned long next_balance; /* in jiffy units */
  2954. } nohz ____cacheline_aligned;
  2955. int get_nohz_load_balancer(void)
  2956. {
  2957. return atomic_read(&nohz.load_balancer);
  2958. }
  2959. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2960. /**
  2961. * lowest_flag_domain - Return lowest sched_domain containing flag.
  2962. * @cpu: The cpu whose lowest level of sched domain is to
  2963. * be returned.
  2964. * @flag: The flag to check for the lowest sched_domain
  2965. * for the given cpu.
  2966. *
  2967. * Returns the lowest sched_domain of a cpu which contains the given flag.
  2968. */
  2969. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  2970. {
  2971. struct sched_domain *sd;
  2972. for_each_domain(cpu, sd)
  2973. if (sd && (sd->flags & flag))
  2974. break;
  2975. return sd;
  2976. }
  2977. /**
  2978. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  2979. * @cpu: The cpu whose domains we're iterating over.
  2980. * @sd: variable holding the value of the power_savings_sd
  2981. * for cpu.
  2982. * @flag: The flag to filter the sched_domains to be iterated.
  2983. *
  2984. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  2985. * set, starting from the lowest sched_domain to the highest.
  2986. */
  2987. #define for_each_flag_domain(cpu, sd, flag) \
  2988. for (sd = lowest_flag_domain(cpu, flag); \
  2989. (sd && (sd->flags & flag)); sd = sd->parent)
  2990. /**
  2991. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  2992. * @ilb_group: group to be checked for semi-idleness
  2993. *
  2994. * Returns: 1 if the group is semi-idle. 0 otherwise.
  2995. *
  2996. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  2997. * and atleast one non-idle CPU. This helper function checks if the given
  2998. * sched_group is semi-idle or not.
  2999. */
  3000. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3001. {
  3002. cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
  3003. sched_group_cpus(ilb_group));
  3004. /*
  3005. * A sched_group is semi-idle when it has atleast one busy cpu
  3006. * and atleast one idle cpu.
  3007. */
  3008. if (cpumask_empty(nohz.grp_idle_mask))
  3009. return 0;
  3010. if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
  3011. return 0;
  3012. return 1;
  3013. }
  3014. /**
  3015. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3016. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3017. *
  3018. * Returns: Returns the id of the idle load balancer if it exists,
  3019. * Else, returns >= nr_cpu_ids.
  3020. *
  3021. * This algorithm picks the idle load balancer such that it belongs to a
  3022. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3023. * completely idle packages/cores just for the purpose of idle load balancing
  3024. * when there are other idle cpu's which are better suited for that job.
  3025. */
  3026. static int find_new_ilb(int cpu)
  3027. {
  3028. struct sched_domain *sd;
  3029. struct sched_group *ilb_group;
  3030. /*
  3031. * Have idle load balancer selection from semi-idle packages only
  3032. * when power-aware load balancing is enabled
  3033. */
  3034. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3035. goto out_done;
  3036. /*
  3037. * Optimize for the case when we have no idle CPUs or only one
  3038. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3039. */
  3040. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  3041. goto out_done;
  3042. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3043. ilb_group = sd->groups;
  3044. do {
  3045. if (is_semi_idle_group(ilb_group))
  3046. return cpumask_first(nohz.grp_idle_mask);
  3047. ilb_group = ilb_group->next;
  3048. } while (ilb_group != sd->groups);
  3049. }
  3050. out_done:
  3051. return nr_cpu_ids;
  3052. }
  3053. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3054. static inline int find_new_ilb(int call_cpu)
  3055. {
  3056. return nr_cpu_ids;
  3057. }
  3058. #endif
  3059. /*
  3060. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  3061. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  3062. * CPU (if there is one).
  3063. */
  3064. static void nohz_balancer_kick(int cpu)
  3065. {
  3066. int ilb_cpu;
  3067. nohz.next_balance++;
  3068. ilb_cpu = get_nohz_load_balancer();
  3069. if (ilb_cpu >= nr_cpu_ids) {
  3070. ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
  3071. if (ilb_cpu >= nr_cpu_ids)
  3072. return;
  3073. }
  3074. if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
  3075. struct call_single_data *cp;
  3076. cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
  3077. cp = &per_cpu(remote_sched_softirq_cb, cpu);
  3078. __smp_call_function_single(ilb_cpu, cp, 0);
  3079. }
  3080. return;
  3081. }
  3082. /*
  3083. * This routine will try to nominate the ilb (idle load balancing)
  3084. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3085. * load balancing on behalf of all those cpus.
  3086. *
  3087. * When the ilb owner becomes busy, we will not have new ilb owner until some
  3088. * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
  3089. * idle load balancing by kicking one of the idle CPUs.
  3090. *
  3091. * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
  3092. * ilb owner CPU in future (when there is a need for idle load balancing on
  3093. * behalf of all idle CPUs).
  3094. */
  3095. void select_nohz_load_balancer(int stop_tick)
  3096. {
  3097. int cpu = smp_processor_id();
  3098. if (stop_tick) {
  3099. if (!cpu_active(cpu)) {
  3100. if (atomic_read(&nohz.load_balancer) != cpu)
  3101. return;
  3102. /*
  3103. * If we are going offline and still the leader,
  3104. * give up!
  3105. */
  3106. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3107. nr_cpu_ids) != cpu)
  3108. BUG();
  3109. return;
  3110. }
  3111. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  3112. if (atomic_read(&nohz.first_pick_cpu) == cpu)
  3113. atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
  3114. if (atomic_read(&nohz.second_pick_cpu) == cpu)
  3115. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3116. if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
  3117. int new_ilb;
  3118. /* make me the ilb owner */
  3119. if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
  3120. cpu) != nr_cpu_ids)
  3121. return;
  3122. /*
  3123. * Check to see if there is a more power-efficient
  3124. * ilb.
  3125. */
  3126. new_ilb = find_new_ilb(cpu);
  3127. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3128. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  3129. resched_cpu(new_ilb);
  3130. return;
  3131. }
  3132. return;
  3133. }
  3134. } else {
  3135. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  3136. return;
  3137. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  3138. if (atomic_read(&nohz.load_balancer) == cpu)
  3139. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3140. nr_cpu_ids) != cpu)
  3141. BUG();
  3142. }
  3143. return;
  3144. }
  3145. #endif
  3146. static DEFINE_SPINLOCK(balancing);
  3147. /*
  3148. * It checks each scheduling domain to see if it is due to be balanced,
  3149. * and initiates a balancing operation if so.
  3150. *
  3151. * Balancing parameters are set up in arch_init_sched_domains.
  3152. */
  3153. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3154. {
  3155. int balance = 1;
  3156. struct rq *rq = cpu_rq(cpu);
  3157. unsigned long interval;
  3158. struct sched_domain *sd;
  3159. /* Earliest time when we have to do rebalance again */
  3160. unsigned long next_balance = jiffies + 60*HZ;
  3161. int update_next_balance = 0;
  3162. int need_serialize;
  3163. update_shares(cpu);
  3164. for_each_domain(cpu, sd) {
  3165. if (!(sd->flags & SD_LOAD_BALANCE))
  3166. continue;
  3167. interval = sd->balance_interval;
  3168. if (idle != CPU_IDLE)
  3169. interval *= sd->busy_factor;
  3170. /* scale ms to jiffies */
  3171. interval = msecs_to_jiffies(interval);
  3172. if (unlikely(!interval))
  3173. interval = 1;
  3174. if (interval > HZ*NR_CPUS/10)
  3175. interval = HZ*NR_CPUS/10;
  3176. need_serialize = sd->flags & SD_SERIALIZE;
  3177. if (need_serialize) {
  3178. if (!spin_trylock(&balancing))
  3179. goto out;
  3180. }
  3181. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3182. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3183. /*
  3184. * We've pulled tasks over so either we're no
  3185. * longer idle, or one of our SMT siblings is
  3186. * not idle.
  3187. */
  3188. idle = CPU_NOT_IDLE;
  3189. }
  3190. sd->last_balance = jiffies;
  3191. }
  3192. if (need_serialize)
  3193. spin_unlock(&balancing);
  3194. out:
  3195. if (time_after(next_balance, sd->last_balance + interval)) {
  3196. next_balance = sd->last_balance + interval;
  3197. update_next_balance = 1;
  3198. }
  3199. /*
  3200. * Stop the load balance at this level. There is another
  3201. * CPU in our sched group which is doing load balancing more
  3202. * actively.
  3203. */
  3204. if (!balance)
  3205. break;
  3206. }
  3207. /*
  3208. * next_balance will be updated only when there is a need.
  3209. * When the cpu is attached to null domain for ex, it will not be
  3210. * updated.
  3211. */
  3212. if (likely(update_next_balance))
  3213. rq->next_balance = next_balance;
  3214. }
  3215. #ifdef CONFIG_NO_HZ
  3216. /*
  3217. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3218. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3219. */
  3220. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3221. {
  3222. struct rq *this_rq = cpu_rq(this_cpu);
  3223. struct rq *rq;
  3224. int balance_cpu;
  3225. if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
  3226. return;
  3227. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  3228. if (balance_cpu == this_cpu)
  3229. continue;
  3230. /*
  3231. * If this cpu gets work to do, stop the load balancing
  3232. * work being done for other cpus. Next load
  3233. * balancing owner will pick it up.
  3234. */
  3235. if (need_resched()) {
  3236. this_rq->nohz_balance_kick = 0;
  3237. break;
  3238. }
  3239. raw_spin_lock_irq(&this_rq->lock);
  3240. update_rq_clock(this_rq);
  3241. update_cpu_load(this_rq);
  3242. raw_spin_unlock_irq(&this_rq->lock);
  3243. rebalance_domains(balance_cpu, CPU_IDLE);
  3244. rq = cpu_rq(balance_cpu);
  3245. if (time_after(this_rq->next_balance, rq->next_balance))
  3246. this_rq->next_balance = rq->next_balance;
  3247. }
  3248. nohz.next_balance = this_rq->next_balance;
  3249. this_rq->nohz_balance_kick = 0;
  3250. }
  3251. /*
  3252. * Current heuristic for kicking the idle load balancer
  3253. * - first_pick_cpu is the one of the busy CPUs. It will kick
  3254. * idle load balancer when it has more than one process active. This
  3255. * eliminates the need for idle load balancing altogether when we have
  3256. * only one running process in the system (common case).
  3257. * - If there are more than one busy CPU, idle load balancer may have
  3258. * to run for active_load_balance to happen (i.e., two busy CPUs are
  3259. * SMT or core siblings and can run better if they move to different
  3260. * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
  3261. * which will kick idle load balancer as soon as it has any load.
  3262. */
  3263. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  3264. {
  3265. unsigned long now = jiffies;
  3266. int ret;
  3267. int first_pick_cpu, second_pick_cpu;
  3268. if (time_before(now, nohz.next_balance))
  3269. return 0;
  3270. if (rq->idle_at_tick)
  3271. return 0;
  3272. first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
  3273. second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
  3274. if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
  3275. second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
  3276. return 0;
  3277. ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
  3278. if (ret == nr_cpu_ids || ret == cpu) {
  3279. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3280. if (rq->nr_running > 1)
  3281. return 1;
  3282. } else {
  3283. ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
  3284. if (ret == nr_cpu_ids || ret == cpu) {
  3285. if (rq->nr_running)
  3286. return 1;
  3287. }
  3288. }
  3289. return 0;
  3290. }
  3291. #else
  3292. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  3293. #endif
  3294. /*
  3295. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3296. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  3297. */
  3298. static void run_rebalance_domains(struct softirq_action *h)
  3299. {
  3300. int this_cpu = smp_processor_id();
  3301. struct rq *this_rq = cpu_rq(this_cpu);
  3302. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3303. CPU_IDLE : CPU_NOT_IDLE;
  3304. rebalance_domains(this_cpu, idle);
  3305. /*
  3306. * If this cpu has a pending nohz_balance_kick, then do the
  3307. * balancing on behalf of the other idle cpus whose ticks are
  3308. * stopped.
  3309. */
  3310. nohz_idle_balance(this_cpu, idle);
  3311. }
  3312. static inline int on_null_domain(int cpu)
  3313. {
  3314. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  3315. }
  3316. /*
  3317. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3318. */
  3319. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3320. {
  3321. /* Don't need to rebalance while attached to NULL domain */
  3322. if (time_after_eq(jiffies, rq->next_balance) &&
  3323. likely(!on_null_domain(cpu)))
  3324. raise_softirq(SCHED_SOFTIRQ);
  3325. #ifdef CONFIG_NO_HZ
  3326. else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  3327. nohz_balancer_kick(cpu);
  3328. #endif
  3329. }
  3330. static void rq_online_fair(struct rq *rq)
  3331. {
  3332. update_sysctl();
  3333. }
  3334. static void rq_offline_fair(struct rq *rq)
  3335. {
  3336. update_sysctl();
  3337. }
  3338. #else /* CONFIG_SMP */
  3339. /*
  3340. * on UP we do not need to balance between CPUs:
  3341. */
  3342. static inline void idle_balance(int cpu, struct rq *rq)
  3343. {
  3344. }
  3345. #endif /* CONFIG_SMP */
  3346. /*
  3347. * scheduler tick hitting a task of our scheduling class:
  3348. */
  3349. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  3350. {
  3351. struct cfs_rq *cfs_rq;
  3352. struct sched_entity *se = &curr->se;
  3353. for_each_sched_entity(se) {
  3354. cfs_rq = cfs_rq_of(se);
  3355. entity_tick(cfs_rq, se, queued);
  3356. }
  3357. }
  3358. /*
  3359. * called on fork with the child task as argument from the parent's context
  3360. * - child not yet on the tasklist
  3361. * - preemption disabled
  3362. */
  3363. static void task_fork_fair(struct task_struct *p)
  3364. {
  3365. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  3366. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  3367. int this_cpu = smp_processor_id();
  3368. struct rq *rq = this_rq();
  3369. unsigned long flags;
  3370. raw_spin_lock_irqsave(&rq->lock, flags);
  3371. update_rq_clock(rq);
  3372. if (unlikely(task_cpu(p) != this_cpu)) {
  3373. rcu_read_lock();
  3374. __set_task_cpu(p, this_cpu);
  3375. rcu_read_unlock();
  3376. }
  3377. update_curr(cfs_rq);
  3378. if (curr)
  3379. se->vruntime = curr->vruntime;
  3380. place_entity(cfs_rq, se, 1);
  3381. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  3382. /*
  3383. * Upon rescheduling, sched_class::put_prev_task() will place
  3384. * 'current' within the tree based on its new key value.
  3385. */
  3386. swap(curr->vruntime, se->vruntime);
  3387. resched_task(rq->curr);
  3388. }
  3389. se->vruntime -= cfs_rq->min_vruntime;
  3390. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3391. }
  3392. /*
  3393. * Priority of the task has changed. Check to see if we preempt
  3394. * the current task.
  3395. */
  3396. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  3397. int oldprio, int running)
  3398. {
  3399. /*
  3400. * Reschedule if we are currently running on this runqueue and
  3401. * our priority decreased, or if we are not currently running on
  3402. * this runqueue and our priority is higher than the current's
  3403. */
  3404. if (running) {
  3405. if (p->prio > oldprio)
  3406. resched_task(rq->curr);
  3407. } else
  3408. check_preempt_curr(rq, p, 0);
  3409. }
  3410. /*
  3411. * We switched to the sched_fair class.
  3412. */
  3413. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  3414. int running)
  3415. {
  3416. /*
  3417. * We were most likely switched from sched_rt, so
  3418. * kick off the schedule if running, otherwise just see
  3419. * if we can still preempt the current task.
  3420. */
  3421. if (running)
  3422. resched_task(rq->curr);
  3423. else
  3424. check_preempt_curr(rq, p, 0);
  3425. }
  3426. /* Account for a task changing its policy or group.
  3427. *
  3428. * This routine is mostly called to set cfs_rq->curr field when a task
  3429. * migrates between groups/classes.
  3430. */
  3431. static void set_curr_task_fair(struct rq *rq)
  3432. {
  3433. struct sched_entity *se = &rq->curr->se;
  3434. for_each_sched_entity(se)
  3435. set_next_entity(cfs_rq_of(se), se);
  3436. }
  3437. #ifdef CONFIG_FAIR_GROUP_SCHED
  3438. static void task_move_group_fair(struct task_struct *p, int on_rq)
  3439. {
  3440. /*
  3441. * If the task was not on the rq at the time of this cgroup movement
  3442. * it must have been asleep, sleeping tasks keep their ->vruntime
  3443. * absolute on their old rq until wakeup (needed for the fair sleeper
  3444. * bonus in place_entity()).
  3445. *
  3446. * If it was on the rq, we've just 'preempted' it, which does convert
  3447. * ->vruntime to a relative base.
  3448. *
  3449. * Make sure both cases convert their relative position when migrating
  3450. * to another cgroup's rq. This does somewhat interfere with the
  3451. * fair sleeper stuff for the first placement, but who cares.
  3452. */
  3453. if (!on_rq)
  3454. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  3455. set_task_rq(p, task_cpu(p));
  3456. if (!on_rq)
  3457. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  3458. }
  3459. #endif
  3460. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  3461. {
  3462. struct sched_entity *se = &task->se;
  3463. unsigned int rr_interval = 0;
  3464. /*
  3465. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  3466. * idle runqueue:
  3467. */
  3468. if (rq->cfs.load.weight)
  3469. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  3470. return rr_interval;
  3471. }
  3472. /*
  3473. * All the scheduling class methods:
  3474. */
  3475. static const struct sched_class fair_sched_class = {
  3476. .next = &idle_sched_class,
  3477. .enqueue_task = enqueue_task_fair,
  3478. .dequeue_task = dequeue_task_fair,
  3479. .yield_task = yield_task_fair,
  3480. .check_preempt_curr = check_preempt_wakeup,
  3481. .pick_next_task = pick_next_task_fair,
  3482. .put_prev_task = put_prev_task_fair,
  3483. #ifdef CONFIG_SMP
  3484. .select_task_rq = select_task_rq_fair,
  3485. .rq_online = rq_online_fair,
  3486. .rq_offline = rq_offline_fair,
  3487. .task_waking = task_waking_fair,
  3488. #endif
  3489. .set_curr_task = set_curr_task_fair,
  3490. .task_tick = task_tick_fair,
  3491. .task_fork = task_fork_fair,
  3492. .prio_changed = prio_changed_fair,
  3493. .switched_to = switched_to_fair,
  3494. .get_rr_interval = get_rr_interval_fair,
  3495. #ifdef CONFIG_FAIR_GROUP_SCHED
  3496. .task_move_group = task_move_group_fair,
  3497. #endif
  3498. };
  3499. #ifdef CONFIG_SCHED_DEBUG
  3500. static void print_cfs_stats(struct seq_file *m, int cpu)
  3501. {
  3502. struct cfs_rq *cfs_rq;
  3503. rcu_read_lock();
  3504. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  3505. print_cfs_rq(m, cpu, cfs_rq);
  3506. rcu_read_unlock();
  3507. }
  3508. #endif