sched.c 220 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/stop_machine.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include <asm/mutex.h>
  77. #include "sched_cpupri.h"
  78. #include "workqueue_sched.h"
  79. #include "sched_autogroup.h"
  80. #define CREATE_TRACE_POINTS
  81. #include <trace/events/sched.h>
  82. /*
  83. * Convert user-nice values [ -20 ... 0 ... 19 ]
  84. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  85. * and back.
  86. */
  87. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  88. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  89. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  90. /*
  91. * 'User priority' is the nice value converted to something we
  92. * can work with better when scaling various scheduler parameters,
  93. * it's a [ 0 ... 39 ] range.
  94. */
  95. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  96. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  97. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  98. /*
  99. * Helpers for converting nanosecond timing to jiffy resolution
  100. */
  101. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  102. #define NICE_0_LOAD SCHED_LOAD_SCALE
  103. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  104. /*
  105. * These are the 'tuning knobs' of the scheduler:
  106. *
  107. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  108. * Timeslices get refilled after they expire.
  109. */
  110. #define DEF_TIMESLICE (100 * HZ / 1000)
  111. /*
  112. * single value that denotes runtime == period, ie unlimited time.
  113. */
  114. #define RUNTIME_INF ((u64)~0ULL)
  115. static inline int rt_policy(int policy)
  116. {
  117. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  118. return 1;
  119. return 0;
  120. }
  121. static inline int task_has_rt_policy(struct task_struct *p)
  122. {
  123. return rt_policy(p->policy);
  124. }
  125. /*
  126. * This is the priority-queue data structure of the RT scheduling class:
  127. */
  128. struct rt_prio_array {
  129. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  130. struct list_head queue[MAX_RT_PRIO];
  131. };
  132. struct rt_bandwidth {
  133. /* nests inside the rq lock: */
  134. raw_spinlock_t rt_runtime_lock;
  135. ktime_t rt_period;
  136. u64 rt_runtime;
  137. struct hrtimer rt_period_timer;
  138. };
  139. static struct rt_bandwidth def_rt_bandwidth;
  140. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  141. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  142. {
  143. struct rt_bandwidth *rt_b =
  144. container_of(timer, struct rt_bandwidth, rt_period_timer);
  145. ktime_t now;
  146. int overrun;
  147. int idle = 0;
  148. for (;;) {
  149. now = hrtimer_cb_get_time(timer);
  150. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  151. if (!overrun)
  152. break;
  153. idle = do_sched_rt_period_timer(rt_b, overrun);
  154. }
  155. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  156. }
  157. static
  158. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  159. {
  160. rt_b->rt_period = ns_to_ktime(period);
  161. rt_b->rt_runtime = runtime;
  162. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  163. hrtimer_init(&rt_b->rt_period_timer,
  164. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  165. rt_b->rt_period_timer.function = sched_rt_period_timer;
  166. }
  167. static inline int rt_bandwidth_enabled(void)
  168. {
  169. return sysctl_sched_rt_runtime >= 0;
  170. }
  171. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  172. {
  173. ktime_t now;
  174. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  175. return;
  176. if (hrtimer_active(&rt_b->rt_period_timer))
  177. return;
  178. raw_spin_lock(&rt_b->rt_runtime_lock);
  179. for (;;) {
  180. unsigned long delta;
  181. ktime_t soft, hard;
  182. if (hrtimer_active(&rt_b->rt_period_timer))
  183. break;
  184. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  185. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  186. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  187. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  188. delta = ktime_to_ns(ktime_sub(hard, soft));
  189. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  190. HRTIMER_MODE_ABS_PINNED, 0);
  191. }
  192. raw_spin_unlock(&rt_b->rt_runtime_lock);
  193. }
  194. #ifdef CONFIG_RT_GROUP_SCHED
  195. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  196. {
  197. hrtimer_cancel(&rt_b->rt_period_timer);
  198. }
  199. #endif
  200. /*
  201. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  202. * detach_destroy_domains and partition_sched_domains.
  203. */
  204. static DEFINE_MUTEX(sched_domains_mutex);
  205. #ifdef CONFIG_CGROUP_SCHED
  206. #include <linux/cgroup.h>
  207. struct cfs_rq;
  208. static LIST_HEAD(task_groups);
  209. /* task group related information */
  210. struct task_group {
  211. struct cgroup_subsys_state css;
  212. #ifdef CONFIG_FAIR_GROUP_SCHED
  213. /* schedulable entities of this group on each cpu */
  214. struct sched_entity **se;
  215. /* runqueue "owned" by this group on each cpu */
  216. struct cfs_rq **cfs_rq;
  217. unsigned long shares;
  218. atomic_t load_weight;
  219. #endif
  220. #ifdef CONFIG_RT_GROUP_SCHED
  221. struct sched_rt_entity **rt_se;
  222. struct rt_rq **rt_rq;
  223. struct rt_bandwidth rt_bandwidth;
  224. #endif
  225. struct rcu_head rcu;
  226. struct list_head list;
  227. struct task_group *parent;
  228. struct list_head siblings;
  229. struct list_head children;
  230. #ifdef CONFIG_SCHED_AUTOGROUP
  231. struct autogroup *autogroup;
  232. #endif
  233. };
  234. #define root_task_group init_task_group
  235. /* task_group_lock serializes the addition/removal of task groups */
  236. static DEFINE_SPINLOCK(task_group_lock);
  237. #ifdef CONFIG_FAIR_GROUP_SCHED
  238. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  239. /*
  240. * A weight of 0 or 1 can cause arithmetics problems.
  241. * A weight of a cfs_rq is the sum of weights of which entities
  242. * are queued on this cfs_rq, so a weight of a entity should not be
  243. * too large, so as the shares value of a task group.
  244. * (The default weight is 1024 - so there's no practical
  245. * limitation from this.)
  246. */
  247. #define MIN_SHARES 2
  248. #define MAX_SHARES (1UL << 18)
  249. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  250. #endif
  251. /* Default task group.
  252. * Every task in system belong to this group at bootup.
  253. */
  254. struct task_group init_task_group;
  255. #endif /* CONFIG_CGROUP_SCHED */
  256. /* CFS-related fields in a runqueue */
  257. struct cfs_rq {
  258. struct load_weight load;
  259. unsigned long nr_running;
  260. u64 exec_clock;
  261. u64 min_vruntime;
  262. struct rb_root tasks_timeline;
  263. struct rb_node *rb_leftmost;
  264. struct list_head tasks;
  265. struct list_head *balance_iterator;
  266. /*
  267. * 'curr' points to currently running entity on this cfs_rq.
  268. * It is set to NULL otherwise (i.e when none are currently running).
  269. */
  270. struct sched_entity *curr, *next, *last;
  271. unsigned int nr_spread_over;
  272. #ifdef CONFIG_FAIR_GROUP_SCHED
  273. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  274. /*
  275. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  276. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  277. * (like users, containers etc.)
  278. *
  279. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  280. * list is used during load balance.
  281. */
  282. int on_list;
  283. struct list_head leaf_cfs_rq_list;
  284. struct task_group *tg; /* group that "owns" this runqueue */
  285. #ifdef CONFIG_SMP
  286. /*
  287. * the part of load.weight contributed by tasks
  288. */
  289. unsigned long task_weight;
  290. /*
  291. * h_load = weight * f(tg)
  292. *
  293. * Where f(tg) is the recursive weight fraction assigned to
  294. * this group.
  295. */
  296. unsigned long h_load;
  297. /*
  298. * Maintaining per-cpu shares distribution for group scheduling
  299. *
  300. * load_stamp is the last time we updated the load average
  301. * load_last is the last time we updated the load average and saw load
  302. * load_unacc_exec_time is currently unaccounted execution time
  303. */
  304. u64 load_avg;
  305. u64 load_period;
  306. u64 load_stamp, load_last, load_unacc_exec_time;
  307. unsigned long load_contribution;
  308. #endif
  309. #endif
  310. };
  311. /* Real-Time classes' related field in a runqueue: */
  312. struct rt_rq {
  313. struct rt_prio_array active;
  314. unsigned long rt_nr_running;
  315. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  316. struct {
  317. int curr; /* highest queued rt task prio */
  318. #ifdef CONFIG_SMP
  319. int next; /* next highest */
  320. #endif
  321. } highest_prio;
  322. #endif
  323. #ifdef CONFIG_SMP
  324. unsigned long rt_nr_migratory;
  325. unsigned long rt_nr_total;
  326. int overloaded;
  327. struct plist_head pushable_tasks;
  328. #endif
  329. int rt_throttled;
  330. u64 rt_time;
  331. u64 rt_runtime;
  332. /* Nests inside the rq lock: */
  333. raw_spinlock_t rt_runtime_lock;
  334. #ifdef CONFIG_RT_GROUP_SCHED
  335. unsigned long rt_nr_boosted;
  336. struct rq *rq;
  337. struct list_head leaf_rt_rq_list;
  338. struct task_group *tg;
  339. #endif
  340. };
  341. #ifdef CONFIG_SMP
  342. /*
  343. * We add the notion of a root-domain which will be used to define per-domain
  344. * variables. Each exclusive cpuset essentially defines an island domain by
  345. * fully partitioning the member cpus from any other cpuset. Whenever a new
  346. * exclusive cpuset is created, we also create and attach a new root-domain
  347. * object.
  348. *
  349. */
  350. struct root_domain {
  351. atomic_t refcount;
  352. cpumask_var_t span;
  353. cpumask_var_t online;
  354. /*
  355. * The "RT overload" flag: it gets set if a CPU has more than
  356. * one runnable RT task.
  357. */
  358. cpumask_var_t rto_mask;
  359. atomic_t rto_count;
  360. struct cpupri cpupri;
  361. };
  362. /*
  363. * By default the system creates a single root-domain with all cpus as
  364. * members (mimicking the global state we have today).
  365. */
  366. static struct root_domain def_root_domain;
  367. #endif /* CONFIG_SMP */
  368. /*
  369. * This is the main, per-CPU runqueue data structure.
  370. *
  371. * Locking rule: those places that want to lock multiple runqueues
  372. * (such as the load balancing or the thread migration code), lock
  373. * acquire operations must be ordered by ascending &runqueue.
  374. */
  375. struct rq {
  376. /* runqueue lock: */
  377. raw_spinlock_t lock;
  378. /*
  379. * nr_running and cpu_load should be in the same cacheline because
  380. * remote CPUs use both these fields when doing load calculation.
  381. */
  382. unsigned long nr_running;
  383. #define CPU_LOAD_IDX_MAX 5
  384. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  385. unsigned long last_load_update_tick;
  386. #ifdef CONFIG_NO_HZ
  387. u64 nohz_stamp;
  388. unsigned char nohz_balance_kick;
  389. #endif
  390. unsigned int skip_clock_update;
  391. /* capture load from *all* tasks on this cpu: */
  392. struct load_weight load;
  393. unsigned long nr_load_updates;
  394. u64 nr_switches;
  395. struct cfs_rq cfs;
  396. struct rt_rq rt;
  397. #ifdef CONFIG_FAIR_GROUP_SCHED
  398. /* list of leaf cfs_rq on this cpu: */
  399. struct list_head leaf_cfs_rq_list;
  400. #endif
  401. #ifdef CONFIG_RT_GROUP_SCHED
  402. struct list_head leaf_rt_rq_list;
  403. #endif
  404. /*
  405. * This is part of a global counter where only the total sum
  406. * over all CPUs matters. A task can increase this counter on
  407. * one CPU and if it got migrated afterwards it may decrease
  408. * it on another CPU. Always updated under the runqueue lock:
  409. */
  410. unsigned long nr_uninterruptible;
  411. struct task_struct *curr, *idle, *stop;
  412. unsigned long next_balance;
  413. struct mm_struct *prev_mm;
  414. u64 clock;
  415. u64 clock_task;
  416. atomic_t nr_iowait;
  417. #ifdef CONFIG_SMP
  418. struct root_domain *rd;
  419. struct sched_domain *sd;
  420. unsigned long cpu_power;
  421. unsigned char idle_at_tick;
  422. /* For active balancing */
  423. int post_schedule;
  424. int active_balance;
  425. int push_cpu;
  426. struct cpu_stop_work active_balance_work;
  427. /* cpu of this runqueue: */
  428. int cpu;
  429. int online;
  430. unsigned long avg_load_per_task;
  431. u64 rt_avg;
  432. u64 age_stamp;
  433. u64 idle_stamp;
  434. u64 avg_idle;
  435. #endif
  436. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  437. u64 prev_irq_time;
  438. #endif
  439. /* calc_load related fields */
  440. unsigned long calc_load_update;
  441. long calc_load_active;
  442. #ifdef CONFIG_SCHED_HRTICK
  443. #ifdef CONFIG_SMP
  444. int hrtick_csd_pending;
  445. struct call_single_data hrtick_csd;
  446. #endif
  447. struct hrtimer hrtick_timer;
  448. #endif
  449. #ifdef CONFIG_SCHEDSTATS
  450. /* latency stats */
  451. struct sched_info rq_sched_info;
  452. unsigned long long rq_cpu_time;
  453. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  454. /* sys_sched_yield() stats */
  455. unsigned int yld_count;
  456. /* schedule() stats */
  457. unsigned int sched_switch;
  458. unsigned int sched_count;
  459. unsigned int sched_goidle;
  460. /* try_to_wake_up() stats */
  461. unsigned int ttwu_count;
  462. unsigned int ttwu_local;
  463. /* BKL stats */
  464. unsigned int bkl_count;
  465. #endif
  466. };
  467. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  468. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  469. static inline int cpu_of(struct rq *rq)
  470. {
  471. #ifdef CONFIG_SMP
  472. return rq->cpu;
  473. #else
  474. return 0;
  475. #endif
  476. }
  477. #define rcu_dereference_check_sched_domain(p) \
  478. rcu_dereference_check((p), \
  479. rcu_read_lock_sched_held() || \
  480. lockdep_is_held(&sched_domains_mutex))
  481. /*
  482. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  483. * See detach_destroy_domains: synchronize_sched for details.
  484. *
  485. * The domain tree of any CPU may only be accessed from within
  486. * preempt-disabled sections.
  487. */
  488. #define for_each_domain(cpu, __sd) \
  489. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  490. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  491. #define this_rq() (&__get_cpu_var(runqueues))
  492. #define task_rq(p) cpu_rq(task_cpu(p))
  493. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  494. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  495. #ifdef CONFIG_CGROUP_SCHED
  496. /*
  497. * Return the group to which this tasks belongs.
  498. *
  499. * We use task_subsys_state_check() and extend the RCU verification
  500. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  501. * holds that lock for each task it moves into the cgroup. Therefore
  502. * by holding that lock, we pin the task to the current cgroup.
  503. */
  504. static inline struct task_group *task_group(struct task_struct *p)
  505. {
  506. struct task_group *tg;
  507. struct cgroup_subsys_state *css;
  508. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  509. lockdep_is_held(&task_rq(p)->lock));
  510. tg = container_of(css, struct task_group, css);
  511. return autogroup_task_group(p, tg);
  512. }
  513. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  514. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  515. {
  516. #ifdef CONFIG_FAIR_GROUP_SCHED
  517. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  518. p->se.parent = task_group(p)->se[cpu];
  519. #endif
  520. #ifdef CONFIG_RT_GROUP_SCHED
  521. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  522. p->rt.parent = task_group(p)->rt_se[cpu];
  523. #endif
  524. }
  525. #else /* CONFIG_CGROUP_SCHED */
  526. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  527. static inline struct task_group *task_group(struct task_struct *p)
  528. {
  529. return NULL;
  530. }
  531. #endif /* CONFIG_CGROUP_SCHED */
  532. static u64 irq_time_cpu(int cpu);
  533. static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time);
  534. inline void update_rq_clock(struct rq *rq)
  535. {
  536. if (!rq->skip_clock_update) {
  537. int cpu = cpu_of(rq);
  538. u64 irq_time;
  539. rq->clock = sched_clock_cpu(cpu);
  540. irq_time = irq_time_cpu(cpu);
  541. if (rq->clock - irq_time > rq->clock_task)
  542. rq->clock_task = rq->clock - irq_time;
  543. sched_irq_time_avg_update(rq, irq_time);
  544. }
  545. }
  546. /*
  547. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  548. */
  549. #ifdef CONFIG_SCHED_DEBUG
  550. # define const_debug __read_mostly
  551. #else
  552. # define const_debug static const
  553. #endif
  554. /**
  555. * runqueue_is_locked
  556. * @cpu: the processor in question.
  557. *
  558. * Returns true if the current cpu runqueue is locked.
  559. * This interface allows printk to be called with the runqueue lock
  560. * held and know whether or not it is OK to wake up the klogd.
  561. */
  562. int runqueue_is_locked(int cpu)
  563. {
  564. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  565. }
  566. /*
  567. * Debugging: various feature bits
  568. */
  569. #define SCHED_FEAT(name, enabled) \
  570. __SCHED_FEAT_##name ,
  571. enum {
  572. #include "sched_features.h"
  573. };
  574. #undef SCHED_FEAT
  575. #define SCHED_FEAT(name, enabled) \
  576. (1UL << __SCHED_FEAT_##name) * enabled |
  577. const_debug unsigned int sysctl_sched_features =
  578. #include "sched_features.h"
  579. 0;
  580. #undef SCHED_FEAT
  581. #ifdef CONFIG_SCHED_DEBUG
  582. #define SCHED_FEAT(name, enabled) \
  583. #name ,
  584. static __read_mostly char *sched_feat_names[] = {
  585. #include "sched_features.h"
  586. NULL
  587. };
  588. #undef SCHED_FEAT
  589. static int sched_feat_show(struct seq_file *m, void *v)
  590. {
  591. int i;
  592. for (i = 0; sched_feat_names[i]; i++) {
  593. if (!(sysctl_sched_features & (1UL << i)))
  594. seq_puts(m, "NO_");
  595. seq_printf(m, "%s ", sched_feat_names[i]);
  596. }
  597. seq_puts(m, "\n");
  598. return 0;
  599. }
  600. static ssize_t
  601. sched_feat_write(struct file *filp, const char __user *ubuf,
  602. size_t cnt, loff_t *ppos)
  603. {
  604. char buf[64];
  605. char *cmp;
  606. int neg = 0;
  607. int i;
  608. if (cnt > 63)
  609. cnt = 63;
  610. if (copy_from_user(&buf, ubuf, cnt))
  611. return -EFAULT;
  612. buf[cnt] = 0;
  613. cmp = strstrip(buf);
  614. if (strncmp(buf, "NO_", 3) == 0) {
  615. neg = 1;
  616. cmp += 3;
  617. }
  618. for (i = 0; sched_feat_names[i]; i++) {
  619. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  620. if (neg)
  621. sysctl_sched_features &= ~(1UL << i);
  622. else
  623. sysctl_sched_features |= (1UL << i);
  624. break;
  625. }
  626. }
  627. if (!sched_feat_names[i])
  628. return -EINVAL;
  629. *ppos += cnt;
  630. return cnt;
  631. }
  632. static int sched_feat_open(struct inode *inode, struct file *filp)
  633. {
  634. return single_open(filp, sched_feat_show, NULL);
  635. }
  636. static const struct file_operations sched_feat_fops = {
  637. .open = sched_feat_open,
  638. .write = sched_feat_write,
  639. .read = seq_read,
  640. .llseek = seq_lseek,
  641. .release = single_release,
  642. };
  643. static __init int sched_init_debug(void)
  644. {
  645. debugfs_create_file("sched_features", 0644, NULL, NULL,
  646. &sched_feat_fops);
  647. return 0;
  648. }
  649. late_initcall(sched_init_debug);
  650. #endif
  651. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  652. /*
  653. * Number of tasks to iterate in a single balance run.
  654. * Limited because this is done with IRQs disabled.
  655. */
  656. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  657. /*
  658. * period over which we average the RT time consumption, measured
  659. * in ms.
  660. *
  661. * default: 1s
  662. */
  663. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  664. /*
  665. * period over which we measure -rt task cpu usage in us.
  666. * default: 1s
  667. */
  668. unsigned int sysctl_sched_rt_period = 1000000;
  669. static __read_mostly int scheduler_running;
  670. /*
  671. * part of the period that we allow rt tasks to run in us.
  672. * default: 0.95s
  673. */
  674. int sysctl_sched_rt_runtime = 950000;
  675. static inline u64 global_rt_period(void)
  676. {
  677. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  678. }
  679. static inline u64 global_rt_runtime(void)
  680. {
  681. if (sysctl_sched_rt_runtime < 0)
  682. return RUNTIME_INF;
  683. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  684. }
  685. #ifndef prepare_arch_switch
  686. # define prepare_arch_switch(next) do { } while (0)
  687. #endif
  688. #ifndef finish_arch_switch
  689. # define finish_arch_switch(prev) do { } while (0)
  690. #endif
  691. static inline int task_current(struct rq *rq, struct task_struct *p)
  692. {
  693. return rq->curr == p;
  694. }
  695. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  696. static inline int task_running(struct rq *rq, struct task_struct *p)
  697. {
  698. return task_current(rq, p);
  699. }
  700. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  701. {
  702. }
  703. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  704. {
  705. #ifdef CONFIG_DEBUG_SPINLOCK
  706. /* this is a valid case when another task releases the spinlock */
  707. rq->lock.owner = current;
  708. #endif
  709. /*
  710. * If we are tracking spinlock dependencies then we have to
  711. * fix up the runqueue lock - which gets 'carried over' from
  712. * prev into current:
  713. */
  714. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  715. raw_spin_unlock_irq(&rq->lock);
  716. }
  717. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  718. static inline int task_running(struct rq *rq, struct task_struct *p)
  719. {
  720. #ifdef CONFIG_SMP
  721. return p->oncpu;
  722. #else
  723. return task_current(rq, p);
  724. #endif
  725. }
  726. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  727. {
  728. #ifdef CONFIG_SMP
  729. /*
  730. * We can optimise this out completely for !SMP, because the
  731. * SMP rebalancing from interrupt is the only thing that cares
  732. * here.
  733. */
  734. next->oncpu = 1;
  735. #endif
  736. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  737. raw_spin_unlock_irq(&rq->lock);
  738. #else
  739. raw_spin_unlock(&rq->lock);
  740. #endif
  741. }
  742. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  743. {
  744. #ifdef CONFIG_SMP
  745. /*
  746. * After ->oncpu is cleared, the task can be moved to a different CPU.
  747. * We must ensure this doesn't happen until the switch is completely
  748. * finished.
  749. */
  750. smp_wmb();
  751. prev->oncpu = 0;
  752. #endif
  753. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  754. local_irq_enable();
  755. #endif
  756. }
  757. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  758. /*
  759. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  760. * against ttwu().
  761. */
  762. static inline int task_is_waking(struct task_struct *p)
  763. {
  764. return unlikely(p->state == TASK_WAKING);
  765. }
  766. /*
  767. * __task_rq_lock - lock the runqueue a given task resides on.
  768. * Must be called interrupts disabled.
  769. */
  770. static inline struct rq *__task_rq_lock(struct task_struct *p)
  771. __acquires(rq->lock)
  772. {
  773. struct rq *rq;
  774. for (;;) {
  775. rq = task_rq(p);
  776. raw_spin_lock(&rq->lock);
  777. if (likely(rq == task_rq(p)))
  778. return rq;
  779. raw_spin_unlock(&rq->lock);
  780. }
  781. }
  782. /*
  783. * task_rq_lock - lock the runqueue a given task resides on and disable
  784. * interrupts. Note the ordering: we can safely lookup the task_rq without
  785. * explicitly disabling preemption.
  786. */
  787. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  788. __acquires(rq->lock)
  789. {
  790. struct rq *rq;
  791. for (;;) {
  792. local_irq_save(*flags);
  793. rq = task_rq(p);
  794. raw_spin_lock(&rq->lock);
  795. if (likely(rq == task_rq(p)))
  796. return rq;
  797. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  798. }
  799. }
  800. static void __task_rq_unlock(struct rq *rq)
  801. __releases(rq->lock)
  802. {
  803. raw_spin_unlock(&rq->lock);
  804. }
  805. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  806. __releases(rq->lock)
  807. {
  808. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  809. }
  810. /*
  811. * this_rq_lock - lock this runqueue and disable interrupts.
  812. */
  813. static struct rq *this_rq_lock(void)
  814. __acquires(rq->lock)
  815. {
  816. struct rq *rq;
  817. local_irq_disable();
  818. rq = this_rq();
  819. raw_spin_lock(&rq->lock);
  820. return rq;
  821. }
  822. #ifdef CONFIG_SCHED_HRTICK
  823. /*
  824. * Use HR-timers to deliver accurate preemption points.
  825. *
  826. * Its all a bit involved since we cannot program an hrt while holding the
  827. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  828. * reschedule event.
  829. *
  830. * When we get rescheduled we reprogram the hrtick_timer outside of the
  831. * rq->lock.
  832. */
  833. /*
  834. * Use hrtick when:
  835. * - enabled by features
  836. * - hrtimer is actually high res
  837. */
  838. static inline int hrtick_enabled(struct rq *rq)
  839. {
  840. if (!sched_feat(HRTICK))
  841. return 0;
  842. if (!cpu_active(cpu_of(rq)))
  843. return 0;
  844. return hrtimer_is_hres_active(&rq->hrtick_timer);
  845. }
  846. static void hrtick_clear(struct rq *rq)
  847. {
  848. if (hrtimer_active(&rq->hrtick_timer))
  849. hrtimer_cancel(&rq->hrtick_timer);
  850. }
  851. /*
  852. * High-resolution timer tick.
  853. * Runs from hardirq context with interrupts disabled.
  854. */
  855. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  856. {
  857. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  858. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  859. raw_spin_lock(&rq->lock);
  860. update_rq_clock(rq);
  861. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  862. raw_spin_unlock(&rq->lock);
  863. return HRTIMER_NORESTART;
  864. }
  865. #ifdef CONFIG_SMP
  866. /*
  867. * called from hardirq (IPI) context
  868. */
  869. static void __hrtick_start(void *arg)
  870. {
  871. struct rq *rq = arg;
  872. raw_spin_lock(&rq->lock);
  873. hrtimer_restart(&rq->hrtick_timer);
  874. rq->hrtick_csd_pending = 0;
  875. raw_spin_unlock(&rq->lock);
  876. }
  877. /*
  878. * Called to set the hrtick timer state.
  879. *
  880. * called with rq->lock held and irqs disabled
  881. */
  882. static void hrtick_start(struct rq *rq, u64 delay)
  883. {
  884. struct hrtimer *timer = &rq->hrtick_timer;
  885. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  886. hrtimer_set_expires(timer, time);
  887. if (rq == this_rq()) {
  888. hrtimer_restart(timer);
  889. } else if (!rq->hrtick_csd_pending) {
  890. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  891. rq->hrtick_csd_pending = 1;
  892. }
  893. }
  894. static int
  895. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  896. {
  897. int cpu = (int)(long)hcpu;
  898. switch (action) {
  899. case CPU_UP_CANCELED:
  900. case CPU_UP_CANCELED_FROZEN:
  901. case CPU_DOWN_PREPARE:
  902. case CPU_DOWN_PREPARE_FROZEN:
  903. case CPU_DEAD:
  904. case CPU_DEAD_FROZEN:
  905. hrtick_clear(cpu_rq(cpu));
  906. return NOTIFY_OK;
  907. }
  908. return NOTIFY_DONE;
  909. }
  910. static __init void init_hrtick(void)
  911. {
  912. hotcpu_notifier(hotplug_hrtick, 0);
  913. }
  914. #else
  915. /*
  916. * Called to set the hrtick timer state.
  917. *
  918. * called with rq->lock held and irqs disabled
  919. */
  920. static void hrtick_start(struct rq *rq, u64 delay)
  921. {
  922. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  923. HRTIMER_MODE_REL_PINNED, 0);
  924. }
  925. static inline void init_hrtick(void)
  926. {
  927. }
  928. #endif /* CONFIG_SMP */
  929. static void init_rq_hrtick(struct rq *rq)
  930. {
  931. #ifdef CONFIG_SMP
  932. rq->hrtick_csd_pending = 0;
  933. rq->hrtick_csd.flags = 0;
  934. rq->hrtick_csd.func = __hrtick_start;
  935. rq->hrtick_csd.info = rq;
  936. #endif
  937. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  938. rq->hrtick_timer.function = hrtick;
  939. }
  940. #else /* CONFIG_SCHED_HRTICK */
  941. static inline void hrtick_clear(struct rq *rq)
  942. {
  943. }
  944. static inline void init_rq_hrtick(struct rq *rq)
  945. {
  946. }
  947. static inline void init_hrtick(void)
  948. {
  949. }
  950. #endif /* CONFIG_SCHED_HRTICK */
  951. /*
  952. * resched_task - mark a task 'to be rescheduled now'.
  953. *
  954. * On UP this means the setting of the need_resched flag, on SMP it
  955. * might also involve a cross-CPU call to trigger the scheduler on
  956. * the target CPU.
  957. */
  958. #ifdef CONFIG_SMP
  959. #ifndef tsk_is_polling
  960. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  961. #endif
  962. static void resched_task(struct task_struct *p)
  963. {
  964. int cpu;
  965. assert_raw_spin_locked(&task_rq(p)->lock);
  966. if (test_tsk_need_resched(p))
  967. return;
  968. set_tsk_need_resched(p);
  969. cpu = task_cpu(p);
  970. if (cpu == smp_processor_id())
  971. return;
  972. /* NEED_RESCHED must be visible before we test polling */
  973. smp_mb();
  974. if (!tsk_is_polling(p))
  975. smp_send_reschedule(cpu);
  976. }
  977. static void resched_cpu(int cpu)
  978. {
  979. struct rq *rq = cpu_rq(cpu);
  980. unsigned long flags;
  981. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  982. return;
  983. resched_task(cpu_curr(cpu));
  984. raw_spin_unlock_irqrestore(&rq->lock, flags);
  985. }
  986. #ifdef CONFIG_NO_HZ
  987. /*
  988. * In the semi idle case, use the nearest busy cpu for migrating timers
  989. * from an idle cpu. This is good for power-savings.
  990. *
  991. * We don't do similar optimization for completely idle system, as
  992. * selecting an idle cpu will add more delays to the timers than intended
  993. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  994. */
  995. int get_nohz_timer_target(void)
  996. {
  997. int cpu = smp_processor_id();
  998. int i;
  999. struct sched_domain *sd;
  1000. for_each_domain(cpu, sd) {
  1001. for_each_cpu(i, sched_domain_span(sd))
  1002. if (!idle_cpu(i))
  1003. return i;
  1004. }
  1005. return cpu;
  1006. }
  1007. /*
  1008. * When add_timer_on() enqueues a timer into the timer wheel of an
  1009. * idle CPU then this timer might expire before the next timer event
  1010. * which is scheduled to wake up that CPU. In case of a completely
  1011. * idle system the next event might even be infinite time into the
  1012. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1013. * leaves the inner idle loop so the newly added timer is taken into
  1014. * account when the CPU goes back to idle and evaluates the timer
  1015. * wheel for the next timer event.
  1016. */
  1017. void wake_up_idle_cpu(int cpu)
  1018. {
  1019. struct rq *rq = cpu_rq(cpu);
  1020. if (cpu == smp_processor_id())
  1021. return;
  1022. /*
  1023. * This is safe, as this function is called with the timer
  1024. * wheel base lock of (cpu) held. When the CPU is on the way
  1025. * to idle and has not yet set rq->curr to idle then it will
  1026. * be serialized on the timer wheel base lock and take the new
  1027. * timer into account automatically.
  1028. */
  1029. if (rq->curr != rq->idle)
  1030. return;
  1031. /*
  1032. * We can set TIF_RESCHED on the idle task of the other CPU
  1033. * lockless. The worst case is that the other CPU runs the
  1034. * idle task through an additional NOOP schedule()
  1035. */
  1036. set_tsk_need_resched(rq->idle);
  1037. /* NEED_RESCHED must be visible before we test polling */
  1038. smp_mb();
  1039. if (!tsk_is_polling(rq->idle))
  1040. smp_send_reschedule(cpu);
  1041. }
  1042. #endif /* CONFIG_NO_HZ */
  1043. static u64 sched_avg_period(void)
  1044. {
  1045. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1046. }
  1047. static void sched_avg_update(struct rq *rq)
  1048. {
  1049. s64 period = sched_avg_period();
  1050. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1051. /*
  1052. * Inline assembly required to prevent the compiler
  1053. * optimising this loop into a divmod call.
  1054. * See __iter_div_u64_rem() for another example of this.
  1055. */
  1056. asm("" : "+rm" (rq->age_stamp));
  1057. rq->age_stamp += period;
  1058. rq->rt_avg /= 2;
  1059. }
  1060. }
  1061. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1062. {
  1063. rq->rt_avg += rt_delta;
  1064. sched_avg_update(rq);
  1065. }
  1066. #else /* !CONFIG_SMP */
  1067. static void resched_task(struct task_struct *p)
  1068. {
  1069. assert_raw_spin_locked(&task_rq(p)->lock);
  1070. set_tsk_need_resched(p);
  1071. }
  1072. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1073. {
  1074. }
  1075. static void sched_avg_update(struct rq *rq)
  1076. {
  1077. }
  1078. #endif /* CONFIG_SMP */
  1079. #if BITS_PER_LONG == 32
  1080. # define WMULT_CONST (~0UL)
  1081. #else
  1082. # define WMULT_CONST (1UL << 32)
  1083. #endif
  1084. #define WMULT_SHIFT 32
  1085. /*
  1086. * Shift right and round:
  1087. */
  1088. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1089. /*
  1090. * delta *= weight / lw
  1091. */
  1092. static unsigned long
  1093. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1094. struct load_weight *lw)
  1095. {
  1096. u64 tmp;
  1097. if (!lw->inv_weight) {
  1098. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1099. lw->inv_weight = 1;
  1100. else
  1101. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1102. / (lw->weight+1);
  1103. }
  1104. tmp = (u64)delta_exec * weight;
  1105. /*
  1106. * Check whether we'd overflow the 64-bit multiplication:
  1107. */
  1108. if (unlikely(tmp > WMULT_CONST))
  1109. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1110. WMULT_SHIFT/2);
  1111. else
  1112. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1113. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1114. }
  1115. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1116. {
  1117. lw->weight += inc;
  1118. lw->inv_weight = 0;
  1119. }
  1120. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1121. {
  1122. lw->weight -= dec;
  1123. lw->inv_weight = 0;
  1124. }
  1125. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1126. {
  1127. lw->weight = w;
  1128. lw->inv_weight = 0;
  1129. }
  1130. /*
  1131. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1132. * of tasks with abnormal "nice" values across CPUs the contribution that
  1133. * each task makes to its run queue's load is weighted according to its
  1134. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1135. * scaled version of the new time slice allocation that they receive on time
  1136. * slice expiry etc.
  1137. */
  1138. #define WEIGHT_IDLEPRIO 3
  1139. #define WMULT_IDLEPRIO 1431655765
  1140. /*
  1141. * Nice levels are multiplicative, with a gentle 10% change for every
  1142. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1143. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1144. * that remained on nice 0.
  1145. *
  1146. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1147. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1148. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1149. * If a task goes up by ~10% and another task goes down by ~10% then
  1150. * the relative distance between them is ~25%.)
  1151. */
  1152. static const int prio_to_weight[40] = {
  1153. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1154. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1155. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1156. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1157. /* 0 */ 1024, 820, 655, 526, 423,
  1158. /* 5 */ 335, 272, 215, 172, 137,
  1159. /* 10 */ 110, 87, 70, 56, 45,
  1160. /* 15 */ 36, 29, 23, 18, 15,
  1161. };
  1162. /*
  1163. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1164. *
  1165. * In cases where the weight does not change often, we can use the
  1166. * precalculated inverse to speed up arithmetics by turning divisions
  1167. * into multiplications:
  1168. */
  1169. static const u32 prio_to_wmult[40] = {
  1170. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1171. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1172. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1173. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1174. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1175. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1176. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1177. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1178. };
  1179. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1180. enum cpuacct_stat_index {
  1181. CPUACCT_STAT_USER, /* ... user mode */
  1182. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1183. CPUACCT_STAT_NSTATS,
  1184. };
  1185. #ifdef CONFIG_CGROUP_CPUACCT
  1186. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1187. static void cpuacct_update_stats(struct task_struct *tsk,
  1188. enum cpuacct_stat_index idx, cputime_t val);
  1189. #else
  1190. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1191. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1192. enum cpuacct_stat_index idx, cputime_t val) {}
  1193. #endif
  1194. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1195. {
  1196. update_load_add(&rq->load, load);
  1197. }
  1198. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1199. {
  1200. update_load_sub(&rq->load, load);
  1201. }
  1202. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1203. typedef int (*tg_visitor)(struct task_group *, void *);
  1204. /*
  1205. * Iterate the full tree, calling @down when first entering a node and @up when
  1206. * leaving it for the final time.
  1207. */
  1208. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1209. {
  1210. struct task_group *parent, *child;
  1211. int ret;
  1212. rcu_read_lock();
  1213. parent = &root_task_group;
  1214. down:
  1215. ret = (*down)(parent, data);
  1216. if (ret)
  1217. goto out_unlock;
  1218. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1219. parent = child;
  1220. goto down;
  1221. up:
  1222. continue;
  1223. }
  1224. ret = (*up)(parent, data);
  1225. if (ret)
  1226. goto out_unlock;
  1227. child = parent;
  1228. parent = parent->parent;
  1229. if (parent)
  1230. goto up;
  1231. out_unlock:
  1232. rcu_read_unlock();
  1233. return ret;
  1234. }
  1235. static int tg_nop(struct task_group *tg, void *data)
  1236. {
  1237. return 0;
  1238. }
  1239. #endif
  1240. #ifdef CONFIG_SMP
  1241. /* Used instead of source_load when we know the type == 0 */
  1242. static unsigned long weighted_cpuload(const int cpu)
  1243. {
  1244. return cpu_rq(cpu)->load.weight;
  1245. }
  1246. /*
  1247. * Return a low guess at the load of a migration-source cpu weighted
  1248. * according to the scheduling class and "nice" value.
  1249. *
  1250. * We want to under-estimate the load of migration sources, to
  1251. * balance conservatively.
  1252. */
  1253. static unsigned long source_load(int cpu, int type)
  1254. {
  1255. struct rq *rq = cpu_rq(cpu);
  1256. unsigned long total = weighted_cpuload(cpu);
  1257. if (type == 0 || !sched_feat(LB_BIAS))
  1258. return total;
  1259. return min(rq->cpu_load[type-1], total);
  1260. }
  1261. /*
  1262. * Return a high guess at the load of a migration-target cpu weighted
  1263. * according to the scheduling class and "nice" value.
  1264. */
  1265. static unsigned long target_load(int cpu, int type)
  1266. {
  1267. struct rq *rq = cpu_rq(cpu);
  1268. unsigned long total = weighted_cpuload(cpu);
  1269. if (type == 0 || !sched_feat(LB_BIAS))
  1270. return total;
  1271. return max(rq->cpu_load[type-1], total);
  1272. }
  1273. static unsigned long power_of(int cpu)
  1274. {
  1275. return cpu_rq(cpu)->cpu_power;
  1276. }
  1277. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1278. static unsigned long cpu_avg_load_per_task(int cpu)
  1279. {
  1280. struct rq *rq = cpu_rq(cpu);
  1281. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1282. if (nr_running)
  1283. rq->avg_load_per_task = rq->load.weight / nr_running;
  1284. else
  1285. rq->avg_load_per_task = 0;
  1286. return rq->avg_load_per_task;
  1287. }
  1288. #ifdef CONFIG_FAIR_GROUP_SCHED
  1289. /*
  1290. * Compute the cpu's hierarchical load factor for each task group.
  1291. * This needs to be done in a top-down fashion because the load of a child
  1292. * group is a fraction of its parents load.
  1293. */
  1294. static int tg_load_down(struct task_group *tg, void *data)
  1295. {
  1296. unsigned long load;
  1297. long cpu = (long)data;
  1298. if (!tg->parent) {
  1299. load = cpu_rq(cpu)->load.weight;
  1300. } else {
  1301. load = tg->parent->cfs_rq[cpu]->h_load;
  1302. load *= tg->se[cpu]->load.weight;
  1303. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1304. }
  1305. tg->cfs_rq[cpu]->h_load = load;
  1306. return 0;
  1307. }
  1308. static void update_h_load(long cpu)
  1309. {
  1310. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1311. }
  1312. #endif
  1313. #ifdef CONFIG_PREEMPT
  1314. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1315. /*
  1316. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1317. * way at the expense of forcing extra atomic operations in all
  1318. * invocations. This assures that the double_lock is acquired using the
  1319. * same underlying policy as the spinlock_t on this architecture, which
  1320. * reduces latency compared to the unfair variant below. However, it
  1321. * also adds more overhead and therefore may reduce throughput.
  1322. */
  1323. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1324. __releases(this_rq->lock)
  1325. __acquires(busiest->lock)
  1326. __acquires(this_rq->lock)
  1327. {
  1328. raw_spin_unlock(&this_rq->lock);
  1329. double_rq_lock(this_rq, busiest);
  1330. return 1;
  1331. }
  1332. #else
  1333. /*
  1334. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1335. * latency by eliminating extra atomic operations when the locks are
  1336. * already in proper order on entry. This favors lower cpu-ids and will
  1337. * grant the double lock to lower cpus over higher ids under contention,
  1338. * regardless of entry order into the function.
  1339. */
  1340. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1341. __releases(this_rq->lock)
  1342. __acquires(busiest->lock)
  1343. __acquires(this_rq->lock)
  1344. {
  1345. int ret = 0;
  1346. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1347. if (busiest < this_rq) {
  1348. raw_spin_unlock(&this_rq->lock);
  1349. raw_spin_lock(&busiest->lock);
  1350. raw_spin_lock_nested(&this_rq->lock,
  1351. SINGLE_DEPTH_NESTING);
  1352. ret = 1;
  1353. } else
  1354. raw_spin_lock_nested(&busiest->lock,
  1355. SINGLE_DEPTH_NESTING);
  1356. }
  1357. return ret;
  1358. }
  1359. #endif /* CONFIG_PREEMPT */
  1360. /*
  1361. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1362. */
  1363. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1364. {
  1365. if (unlikely(!irqs_disabled())) {
  1366. /* printk() doesn't work good under rq->lock */
  1367. raw_spin_unlock(&this_rq->lock);
  1368. BUG_ON(1);
  1369. }
  1370. return _double_lock_balance(this_rq, busiest);
  1371. }
  1372. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1373. __releases(busiest->lock)
  1374. {
  1375. raw_spin_unlock(&busiest->lock);
  1376. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1377. }
  1378. /*
  1379. * double_rq_lock - safely lock two runqueues
  1380. *
  1381. * Note this does not disable interrupts like task_rq_lock,
  1382. * you need to do so manually before calling.
  1383. */
  1384. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1385. __acquires(rq1->lock)
  1386. __acquires(rq2->lock)
  1387. {
  1388. BUG_ON(!irqs_disabled());
  1389. if (rq1 == rq2) {
  1390. raw_spin_lock(&rq1->lock);
  1391. __acquire(rq2->lock); /* Fake it out ;) */
  1392. } else {
  1393. if (rq1 < rq2) {
  1394. raw_spin_lock(&rq1->lock);
  1395. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1396. } else {
  1397. raw_spin_lock(&rq2->lock);
  1398. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1399. }
  1400. }
  1401. }
  1402. /*
  1403. * double_rq_unlock - safely unlock two runqueues
  1404. *
  1405. * Note this does not restore interrupts like task_rq_unlock,
  1406. * you need to do so manually after calling.
  1407. */
  1408. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1409. __releases(rq1->lock)
  1410. __releases(rq2->lock)
  1411. {
  1412. raw_spin_unlock(&rq1->lock);
  1413. if (rq1 != rq2)
  1414. raw_spin_unlock(&rq2->lock);
  1415. else
  1416. __release(rq2->lock);
  1417. }
  1418. #endif
  1419. static void calc_load_account_idle(struct rq *this_rq);
  1420. static void update_sysctl(void);
  1421. static int get_update_sysctl_factor(void);
  1422. static void update_cpu_load(struct rq *this_rq);
  1423. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1424. {
  1425. set_task_rq(p, cpu);
  1426. #ifdef CONFIG_SMP
  1427. /*
  1428. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1429. * successfuly executed on another CPU. We must ensure that updates of
  1430. * per-task data have been completed by this moment.
  1431. */
  1432. smp_wmb();
  1433. task_thread_info(p)->cpu = cpu;
  1434. #endif
  1435. }
  1436. static const struct sched_class rt_sched_class;
  1437. #define sched_class_highest (&stop_sched_class)
  1438. #define for_each_class(class) \
  1439. for (class = sched_class_highest; class; class = class->next)
  1440. #include "sched_stats.h"
  1441. static void inc_nr_running(struct rq *rq)
  1442. {
  1443. rq->nr_running++;
  1444. }
  1445. static void dec_nr_running(struct rq *rq)
  1446. {
  1447. rq->nr_running--;
  1448. }
  1449. static void set_load_weight(struct task_struct *p)
  1450. {
  1451. /*
  1452. * SCHED_IDLE tasks get minimal weight:
  1453. */
  1454. if (p->policy == SCHED_IDLE) {
  1455. p->se.load.weight = WEIGHT_IDLEPRIO;
  1456. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1457. return;
  1458. }
  1459. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1460. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1461. }
  1462. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1463. {
  1464. update_rq_clock(rq);
  1465. sched_info_queued(p);
  1466. p->sched_class->enqueue_task(rq, p, flags);
  1467. p->se.on_rq = 1;
  1468. }
  1469. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1470. {
  1471. update_rq_clock(rq);
  1472. sched_info_dequeued(p);
  1473. p->sched_class->dequeue_task(rq, p, flags);
  1474. p->se.on_rq = 0;
  1475. }
  1476. /*
  1477. * activate_task - move a task to the runqueue.
  1478. */
  1479. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1480. {
  1481. if (task_contributes_to_load(p))
  1482. rq->nr_uninterruptible--;
  1483. enqueue_task(rq, p, flags);
  1484. inc_nr_running(rq);
  1485. }
  1486. /*
  1487. * deactivate_task - remove a task from the runqueue.
  1488. */
  1489. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1490. {
  1491. if (task_contributes_to_load(p))
  1492. rq->nr_uninterruptible++;
  1493. dequeue_task(rq, p, flags);
  1494. dec_nr_running(rq);
  1495. }
  1496. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1497. /*
  1498. * There are no locks covering percpu hardirq/softirq time.
  1499. * They are only modified in account_system_vtime, on corresponding CPU
  1500. * with interrupts disabled. So, writes are safe.
  1501. * They are read and saved off onto struct rq in update_rq_clock().
  1502. * This may result in other CPU reading this CPU's irq time and can
  1503. * race with irq/account_system_vtime on this CPU. We would either get old
  1504. * or new value (or semi updated value on 32 bit) with a side effect of
  1505. * accounting a slice of irq time to wrong task when irq is in progress
  1506. * while we read rq->clock. That is a worthy compromise in place of having
  1507. * locks on each irq in account_system_time.
  1508. */
  1509. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1510. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1511. static DEFINE_PER_CPU(u64, irq_start_time);
  1512. static int sched_clock_irqtime;
  1513. void enable_sched_clock_irqtime(void)
  1514. {
  1515. sched_clock_irqtime = 1;
  1516. }
  1517. void disable_sched_clock_irqtime(void)
  1518. {
  1519. sched_clock_irqtime = 0;
  1520. }
  1521. static u64 irq_time_cpu(int cpu)
  1522. {
  1523. if (!sched_clock_irqtime)
  1524. return 0;
  1525. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1526. }
  1527. void account_system_vtime(struct task_struct *curr)
  1528. {
  1529. unsigned long flags;
  1530. int cpu;
  1531. u64 now, delta;
  1532. if (!sched_clock_irqtime)
  1533. return;
  1534. local_irq_save(flags);
  1535. cpu = smp_processor_id();
  1536. now = sched_clock_cpu(cpu);
  1537. delta = now - per_cpu(irq_start_time, cpu);
  1538. per_cpu(irq_start_time, cpu) = now;
  1539. /*
  1540. * We do not account for softirq time from ksoftirqd here.
  1541. * We want to continue accounting softirq time to ksoftirqd thread
  1542. * in that case, so as not to confuse scheduler with a special task
  1543. * that do not consume any time, but still wants to run.
  1544. */
  1545. if (hardirq_count())
  1546. per_cpu(cpu_hardirq_time, cpu) += delta;
  1547. else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
  1548. per_cpu(cpu_softirq_time, cpu) += delta;
  1549. local_irq_restore(flags);
  1550. }
  1551. EXPORT_SYMBOL_GPL(account_system_vtime);
  1552. static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time)
  1553. {
  1554. if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) {
  1555. u64 delta_irq = curr_irq_time - rq->prev_irq_time;
  1556. rq->prev_irq_time = curr_irq_time;
  1557. sched_rt_avg_update(rq, delta_irq);
  1558. }
  1559. }
  1560. #else
  1561. static u64 irq_time_cpu(int cpu)
  1562. {
  1563. return 0;
  1564. }
  1565. static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { }
  1566. #endif
  1567. #include "sched_idletask.c"
  1568. #include "sched_fair.c"
  1569. #include "sched_rt.c"
  1570. #include "sched_autogroup.c"
  1571. #include "sched_stoptask.c"
  1572. #ifdef CONFIG_SCHED_DEBUG
  1573. # include "sched_debug.c"
  1574. #endif
  1575. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1576. {
  1577. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1578. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1579. if (stop) {
  1580. /*
  1581. * Make it appear like a SCHED_FIFO task, its something
  1582. * userspace knows about and won't get confused about.
  1583. *
  1584. * Also, it will make PI more or less work without too
  1585. * much confusion -- but then, stop work should not
  1586. * rely on PI working anyway.
  1587. */
  1588. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1589. stop->sched_class = &stop_sched_class;
  1590. }
  1591. cpu_rq(cpu)->stop = stop;
  1592. if (old_stop) {
  1593. /*
  1594. * Reset it back to a normal scheduling class so that
  1595. * it can die in pieces.
  1596. */
  1597. old_stop->sched_class = &rt_sched_class;
  1598. }
  1599. }
  1600. /*
  1601. * __normal_prio - return the priority that is based on the static prio
  1602. */
  1603. static inline int __normal_prio(struct task_struct *p)
  1604. {
  1605. return p->static_prio;
  1606. }
  1607. /*
  1608. * Calculate the expected normal priority: i.e. priority
  1609. * without taking RT-inheritance into account. Might be
  1610. * boosted by interactivity modifiers. Changes upon fork,
  1611. * setprio syscalls, and whenever the interactivity
  1612. * estimator recalculates.
  1613. */
  1614. static inline int normal_prio(struct task_struct *p)
  1615. {
  1616. int prio;
  1617. if (task_has_rt_policy(p))
  1618. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1619. else
  1620. prio = __normal_prio(p);
  1621. return prio;
  1622. }
  1623. /*
  1624. * Calculate the current priority, i.e. the priority
  1625. * taken into account by the scheduler. This value might
  1626. * be boosted by RT tasks, or might be boosted by
  1627. * interactivity modifiers. Will be RT if the task got
  1628. * RT-boosted. If not then it returns p->normal_prio.
  1629. */
  1630. static int effective_prio(struct task_struct *p)
  1631. {
  1632. p->normal_prio = normal_prio(p);
  1633. /*
  1634. * If we are RT tasks or we were boosted to RT priority,
  1635. * keep the priority unchanged. Otherwise, update priority
  1636. * to the normal priority:
  1637. */
  1638. if (!rt_prio(p->prio))
  1639. return p->normal_prio;
  1640. return p->prio;
  1641. }
  1642. /**
  1643. * task_curr - is this task currently executing on a CPU?
  1644. * @p: the task in question.
  1645. */
  1646. inline int task_curr(const struct task_struct *p)
  1647. {
  1648. return cpu_curr(task_cpu(p)) == p;
  1649. }
  1650. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1651. const struct sched_class *prev_class,
  1652. int oldprio, int running)
  1653. {
  1654. if (prev_class != p->sched_class) {
  1655. if (prev_class->switched_from)
  1656. prev_class->switched_from(rq, p, running);
  1657. p->sched_class->switched_to(rq, p, running);
  1658. } else
  1659. p->sched_class->prio_changed(rq, p, oldprio, running);
  1660. }
  1661. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1662. {
  1663. const struct sched_class *class;
  1664. if (p->sched_class == rq->curr->sched_class) {
  1665. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1666. } else {
  1667. for_each_class(class) {
  1668. if (class == rq->curr->sched_class)
  1669. break;
  1670. if (class == p->sched_class) {
  1671. resched_task(rq->curr);
  1672. break;
  1673. }
  1674. }
  1675. }
  1676. /*
  1677. * A queue event has occurred, and we're going to schedule. In
  1678. * this case, we can save a useless back to back clock update.
  1679. */
  1680. if (test_tsk_need_resched(rq->curr))
  1681. rq->skip_clock_update = 1;
  1682. }
  1683. #ifdef CONFIG_SMP
  1684. /*
  1685. * Is this task likely cache-hot:
  1686. */
  1687. static int
  1688. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1689. {
  1690. s64 delta;
  1691. if (p->sched_class != &fair_sched_class)
  1692. return 0;
  1693. if (unlikely(p->policy == SCHED_IDLE))
  1694. return 0;
  1695. /*
  1696. * Buddy candidates are cache hot:
  1697. */
  1698. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1699. (&p->se == cfs_rq_of(&p->se)->next ||
  1700. &p->se == cfs_rq_of(&p->se)->last))
  1701. return 1;
  1702. if (sysctl_sched_migration_cost == -1)
  1703. return 1;
  1704. if (sysctl_sched_migration_cost == 0)
  1705. return 0;
  1706. delta = now - p->se.exec_start;
  1707. return delta < (s64)sysctl_sched_migration_cost;
  1708. }
  1709. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1710. {
  1711. #ifdef CONFIG_SCHED_DEBUG
  1712. /*
  1713. * We should never call set_task_cpu() on a blocked task,
  1714. * ttwu() will sort out the placement.
  1715. */
  1716. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1717. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1718. #endif
  1719. trace_sched_migrate_task(p, new_cpu);
  1720. if (task_cpu(p) != new_cpu) {
  1721. p->se.nr_migrations++;
  1722. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1723. }
  1724. __set_task_cpu(p, new_cpu);
  1725. }
  1726. struct migration_arg {
  1727. struct task_struct *task;
  1728. int dest_cpu;
  1729. };
  1730. static int migration_cpu_stop(void *data);
  1731. /*
  1732. * The task's runqueue lock must be held.
  1733. * Returns true if you have to wait for migration thread.
  1734. */
  1735. static bool migrate_task(struct task_struct *p, struct rq *rq)
  1736. {
  1737. /*
  1738. * If the task is not on a runqueue (and not running), then
  1739. * the next wake-up will properly place the task.
  1740. */
  1741. return p->se.on_rq || task_running(rq, p);
  1742. }
  1743. /*
  1744. * wait_task_inactive - wait for a thread to unschedule.
  1745. *
  1746. * If @match_state is nonzero, it's the @p->state value just checked and
  1747. * not expected to change. If it changes, i.e. @p might have woken up,
  1748. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1749. * we return a positive number (its total switch count). If a second call
  1750. * a short while later returns the same number, the caller can be sure that
  1751. * @p has remained unscheduled the whole time.
  1752. *
  1753. * The caller must ensure that the task *will* unschedule sometime soon,
  1754. * else this function might spin for a *long* time. This function can't
  1755. * be called with interrupts off, or it may introduce deadlock with
  1756. * smp_call_function() if an IPI is sent by the same process we are
  1757. * waiting to become inactive.
  1758. */
  1759. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1760. {
  1761. unsigned long flags;
  1762. int running, on_rq;
  1763. unsigned long ncsw;
  1764. struct rq *rq;
  1765. for (;;) {
  1766. /*
  1767. * We do the initial early heuristics without holding
  1768. * any task-queue locks at all. We'll only try to get
  1769. * the runqueue lock when things look like they will
  1770. * work out!
  1771. */
  1772. rq = task_rq(p);
  1773. /*
  1774. * If the task is actively running on another CPU
  1775. * still, just relax and busy-wait without holding
  1776. * any locks.
  1777. *
  1778. * NOTE! Since we don't hold any locks, it's not
  1779. * even sure that "rq" stays as the right runqueue!
  1780. * But we don't care, since "task_running()" will
  1781. * return false if the runqueue has changed and p
  1782. * is actually now running somewhere else!
  1783. */
  1784. while (task_running(rq, p)) {
  1785. if (match_state && unlikely(p->state != match_state))
  1786. return 0;
  1787. cpu_relax();
  1788. }
  1789. /*
  1790. * Ok, time to look more closely! We need the rq
  1791. * lock now, to be *sure*. If we're wrong, we'll
  1792. * just go back and repeat.
  1793. */
  1794. rq = task_rq_lock(p, &flags);
  1795. trace_sched_wait_task(p);
  1796. running = task_running(rq, p);
  1797. on_rq = p->se.on_rq;
  1798. ncsw = 0;
  1799. if (!match_state || p->state == match_state)
  1800. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1801. task_rq_unlock(rq, &flags);
  1802. /*
  1803. * If it changed from the expected state, bail out now.
  1804. */
  1805. if (unlikely(!ncsw))
  1806. break;
  1807. /*
  1808. * Was it really running after all now that we
  1809. * checked with the proper locks actually held?
  1810. *
  1811. * Oops. Go back and try again..
  1812. */
  1813. if (unlikely(running)) {
  1814. cpu_relax();
  1815. continue;
  1816. }
  1817. /*
  1818. * It's not enough that it's not actively running,
  1819. * it must be off the runqueue _entirely_, and not
  1820. * preempted!
  1821. *
  1822. * So if it was still runnable (but just not actively
  1823. * running right now), it's preempted, and we should
  1824. * yield - it could be a while.
  1825. */
  1826. if (unlikely(on_rq)) {
  1827. schedule_timeout_uninterruptible(1);
  1828. continue;
  1829. }
  1830. /*
  1831. * Ahh, all good. It wasn't running, and it wasn't
  1832. * runnable, which means that it will never become
  1833. * running in the future either. We're all done!
  1834. */
  1835. break;
  1836. }
  1837. return ncsw;
  1838. }
  1839. /***
  1840. * kick_process - kick a running thread to enter/exit the kernel
  1841. * @p: the to-be-kicked thread
  1842. *
  1843. * Cause a process which is running on another CPU to enter
  1844. * kernel-mode, without any delay. (to get signals handled.)
  1845. *
  1846. * NOTE: this function doesnt have to take the runqueue lock,
  1847. * because all it wants to ensure is that the remote task enters
  1848. * the kernel. If the IPI races and the task has been migrated
  1849. * to another CPU then no harm is done and the purpose has been
  1850. * achieved as well.
  1851. */
  1852. void kick_process(struct task_struct *p)
  1853. {
  1854. int cpu;
  1855. preempt_disable();
  1856. cpu = task_cpu(p);
  1857. if ((cpu != smp_processor_id()) && task_curr(p))
  1858. smp_send_reschedule(cpu);
  1859. preempt_enable();
  1860. }
  1861. EXPORT_SYMBOL_GPL(kick_process);
  1862. #endif /* CONFIG_SMP */
  1863. /**
  1864. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1865. * @p: the task to evaluate
  1866. * @func: the function to be called
  1867. * @info: the function call argument
  1868. *
  1869. * Calls the function @func when the task is currently running. This might
  1870. * be on the current CPU, which just calls the function directly
  1871. */
  1872. void task_oncpu_function_call(struct task_struct *p,
  1873. void (*func) (void *info), void *info)
  1874. {
  1875. int cpu;
  1876. preempt_disable();
  1877. cpu = task_cpu(p);
  1878. if (task_curr(p))
  1879. smp_call_function_single(cpu, func, info, 1);
  1880. preempt_enable();
  1881. }
  1882. #ifdef CONFIG_SMP
  1883. /*
  1884. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1885. */
  1886. static int select_fallback_rq(int cpu, struct task_struct *p)
  1887. {
  1888. int dest_cpu;
  1889. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1890. /* Look for allowed, online CPU in same node. */
  1891. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1892. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1893. return dest_cpu;
  1894. /* Any allowed, online CPU? */
  1895. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1896. if (dest_cpu < nr_cpu_ids)
  1897. return dest_cpu;
  1898. /* No more Mr. Nice Guy. */
  1899. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1900. /*
  1901. * Don't tell them about moving exiting tasks or
  1902. * kernel threads (both mm NULL), since they never
  1903. * leave kernel.
  1904. */
  1905. if (p->mm && printk_ratelimit()) {
  1906. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  1907. task_pid_nr(p), p->comm, cpu);
  1908. }
  1909. return dest_cpu;
  1910. }
  1911. /*
  1912. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  1913. */
  1914. static inline
  1915. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  1916. {
  1917. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  1918. /*
  1919. * In order not to call set_task_cpu() on a blocking task we need
  1920. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1921. * cpu.
  1922. *
  1923. * Since this is common to all placement strategies, this lives here.
  1924. *
  1925. * [ this allows ->select_task() to simply return task_cpu(p) and
  1926. * not worry about this generic constraint ]
  1927. */
  1928. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1929. !cpu_online(cpu)))
  1930. cpu = select_fallback_rq(task_cpu(p), p);
  1931. return cpu;
  1932. }
  1933. static void update_avg(u64 *avg, u64 sample)
  1934. {
  1935. s64 diff = sample - *avg;
  1936. *avg += diff >> 3;
  1937. }
  1938. #endif
  1939. static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
  1940. bool is_sync, bool is_migrate, bool is_local,
  1941. unsigned long en_flags)
  1942. {
  1943. schedstat_inc(p, se.statistics.nr_wakeups);
  1944. if (is_sync)
  1945. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1946. if (is_migrate)
  1947. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1948. if (is_local)
  1949. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1950. else
  1951. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1952. activate_task(rq, p, en_flags);
  1953. }
  1954. static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
  1955. int wake_flags, bool success)
  1956. {
  1957. trace_sched_wakeup(p, success);
  1958. check_preempt_curr(rq, p, wake_flags);
  1959. p->state = TASK_RUNNING;
  1960. #ifdef CONFIG_SMP
  1961. if (p->sched_class->task_woken)
  1962. p->sched_class->task_woken(rq, p);
  1963. if (unlikely(rq->idle_stamp)) {
  1964. u64 delta = rq->clock - rq->idle_stamp;
  1965. u64 max = 2*sysctl_sched_migration_cost;
  1966. if (delta > max)
  1967. rq->avg_idle = max;
  1968. else
  1969. update_avg(&rq->avg_idle, delta);
  1970. rq->idle_stamp = 0;
  1971. }
  1972. #endif
  1973. /* if a worker is waking up, notify workqueue */
  1974. if ((p->flags & PF_WQ_WORKER) && success)
  1975. wq_worker_waking_up(p, cpu_of(rq));
  1976. }
  1977. /**
  1978. * try_to_wake_up - wake up a thread
  1979. * @p: the thread to be awakened
  1980. * @state: the mask of task states that can be woken
  1981. * @wake_flags: wake modifier flags (WF_*)
  1982. *
  1983. * Put it on the run-queue if it's not already there. The "current"
  1984. * thread is always on the run-queue (except when the actual
  1985. * re-schedule is in progress), and as such you're allowed to do
  1986. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1987. * runnable without the overhead of this.
  1988. *
  1989. * Returns %true if @p was woken up, %false if it was already running
  1990. * or @state didn't match @p's state.
  1991. */
  1992. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1993. int wake_flags)
  1994. {
  1995. int cpu, orig_cpu, this_cpu, success = 0;
  1996. unsigned long flags;
  1997. unsigned long en_flags = ENQUEUE_WAKEUP;
  1998. struct rq *rq;
  1999. this_cpu = get_cpu();
  2000. smp_wmb();
  2001. rq = task_rq_lock(p, &flags);
  2002. if (!(p->state & state))
  2003. goto out;
  2004. if (p->se.on_rq)
  2005. goto out_running;
  2006. cpu = task_cpu(p);
  2007. orig_cpu = cpu;
  2008. #ifdef CONFIG_SMP
  2009. if (unlikely(task_running(rq, p)))
  2010. goto out_activate;
  2011. /*
  2012. * In order to handle concurrent wakeups and release the rq->lock
  2013. * we put the task in TASK_WAKING state.
  2014. *
  2015. * First fix up the nr_uninterruptible count:
  2016. */
  2017. if (task_contributes_to_load(p)) {
  2018. if (likely(cpu_online(orig_cpu)))
  2019. rq->nr_uninterruptible--;
  2020. else
  2021. this_rq()->nr_uninterruptible--;
  2022. }
  2023. p->state = TASK_WAKING;
  2024. if (p->sched_class->task_waking) {
  2025. p->sched_class->task_waking(rq, p);
  2026. en_flags |= ENQUEUE_WAKING;
  2027. }
  2028. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2029. if (cpu != orig_cpu)
  2030. set_task_cpu(p, cpu);
  2031. __task_rq_unlock(rq);
  2032. rq = cpu_rq(cpu);
  2033. raw_spin_lock(&rq->lock);
  2034. /*
  2035. * We migrated the task without holding either rq->lock, however
  2036. * since the task is not on the task list itself, nobody else
  2037. * will try and migrate the task, hence the rq should match the
  2038. * cpu we just moved it to.
  2039. */
  2040. WARN_ON(task_cpu(p) != cpu);
  2041. WARN_ON(p->state != TASK_WAKING);
  2042. #ifdef CONFIG_SCHEDSTATS
  2043. schedstat_inc(rq, ttwu_count);
  2044. if (cpu == this_cpu)
  2045. schedstat_inc(rq, ttwu_local);
  2046. else {
  2047. struct sched_domain *sd;
  2048. for_each_domain(this_cpu, sd) {
  2049. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2050. schedstat_inc(sd, ttwu_wake_remote);
  2051. break;
  2052. }
  2053. }
  2054. }
  2055. #endif /* CONFIG_SCHEDSTATS */
  2056. out_activate:
  2057. #endif /* CONFIG_SMP */
  2058. ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
  2059. cpu == this_cpu, en_flags);
  2060. success = 1;
  2061. out_running:
  2062. ttwu_post_activation(p, rq, wake_flags, success);
  2063. out:
  2064. task_rq_unlock(rq, &flags);
  2065. put_cpu();
  2066. return success;
  2067. }
  2068. /**
  2069. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2070. * @p: the thread to be awakened
  2071. *
  2072. * Put @p on the run-queue if it's not alredy there. The caller must
  2073. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2074. * the current task. this_rq() stays locked over invocation.
  2075. */
  2076. static void try_to_wake_up_local(struct task_struct *p)
  2077. {
  2078. struct rq *rq = task_rq(p);
  2079. bool success = false;
  2080. BUG_ON(rq != this_rq());
  2081. BUG_ON(p == current);
  2082. lockdep_assert_held(&rq->lock);
  2083. if (!(p->state & TASK_NORMAL))
  2084. return;
  2085. if (!p->se.on_rq) {
  2086. if (likely(!task_running(rq, p))) {
  2087. schedstat_inc(rq, ttwu_count);
  2088. schedstat_inc(rq, ttwu_local);
  2089. }
  2090. ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
  2091. success = true;
  2092. }
  2093. ttwu_post_activation(p, rq, 0, success);
  2094. }
  2095. /**
  2096. * wake_up_process - Wake up a specific process
  2097. * @p: The process to be woken up.
  2098. *
  2099. * Attempt to wake up the nominated process and move it to the set of runnable
  2100. * processes. Returns 1 if the process was woken up, 0 if it was already
  2101. * running.
  2102. *
  2103. * It may be assumed that this function implies a write memory barrier before
  2104. * changing the task state if and only if any tasks are woken up.
  2105. */
  2106. int wake_up_process(struct task_struct *p)
  2107. {
  2108. return try_to_wake_up(p, TASK_ALL, 0);
  2109. }
  2110. EXPORT_SYMBOL(wake_up_process);
  2111. int wake_up_state(struct task_struct *p, unsigned int state)
  2112. {
  2113. return try_to_wake_up(p, state, 0);
  2114. }
  2115. /*
  2116. * Perform scheduler related setup for a newly forked process p.
  2117. * p is forked by current.
  2118. *
  2119. * __sched_fork() is basic setup used by init_idle() too:
  2120. */
  2121. static void __sched_fork(struct task_struct *p)
  2122. {
  2123. p->se.exec_start = 0;
  2124. p->se.sum_exec_runtime = 0;
  2125. p->se.prev_sum_exec_runtime = 0;
  2126. p->se.nr_migrations = 0;
  2127. #ifdef CONFIG_SCHEDSTATS
  2128. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2129. #endif
  2130. INIT_LIST_HEAD(&p->rt.run_list);
  2131. p->se.on_rq = 0;
  2132. INIT_LIST_HEAD(&p->se.group_node);
  2133. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2134. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2135. #endif
  2136. }
  2137. /*
  2138. * fork()/clone()-time setup:
  2139. */
  2140. void sched_fork(struct task_struct *p, int clone_flags)
  2141. {
  2142. int cpu = get_cpu();
  2143. __sched_fork(p);
  2144. /*
  2145. * We mark the process as running here. This guarantees that
  2146. * nobody will actually run it, and a signal or other external
  2147. * event cannot wake it up and insert it on the runqueue either.
  2148. */
  2149. p->state = TASK_RUNNING;
  2150. /*
  2151. * Revert to default priority/policy on fork if requested.
  2152. */
  2153. if (unlikely(p->sched_reset_on_fork)) {
  2154. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2155. p->policy = SCHED_NORMAL;
  2156. p->normal_prio = p->static_prio;
  2157. }
  2158. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2159. p->static_prio = NICE_TO_PRIO(0);
  2160. p->normal_prio = p->static_prio;
  2161. set_load_weight(p);
  2162. }
  2163. /*
  2164. * We don't need the reset flag anymore after the fork. It has
  2165. * fulfilled its duty:
  2166. */
  2167. p->sched_reset_on_fork = 0;
  2168. }
  2169. /*
  2170. * Make sure we do not leak PI boosting priority to the child.
  2171. */
  2172. p->prio = current->normal_prio;
  2173. if (!rt_prio(p->prio))
  2174. p->sched_class = &fair_sched_class;
  2175. if (p->sched_class->task_fork)
  2176. p->sched_class->task_fork(p);
  2177. /*
  2178. * The child is not yet in the pid-hash so no cgroup attach races,
  2179. * and the cgroup is pinned to this child due to cgroup_fork()
  2180. * is ran before sched_fork().
  2181. *
  2182. * Silence PROVE_RCU.
  2183. */
  2184. rcu_read_lock();
  2185. set_task_cpu(p, cpu);
  2186. rcu_read_unlock();
  2187. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2188. if (likely(sched_info_on()))
  2189. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2190. #endif
  2191. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2192. p->oncpu = 0;
  2193. #endif
  2194. #ifdef CONFIG_PREEMPT
  2195. /* Want to start with kernel preemption disabled. */
  2196. task_thread_info(p)->preempt_count = 1;
  2197. #endif
  2198. #ifdef CONFIG_SMP
  2199. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2200. #endif
  2201. put_cpu();
  2202. }
  2203. /*
  2204. * wake_up_new_task - wake up a newly created task for the first time.
  2205. *
  2206. * This function will do some initial scheduler statistics housekeeping
  2207. * that must be done for every newly created context, then puts the task
  2208. * on the runqueue and wakes it.
  2209. */
  2210. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2211. {
  2212. unsigned long flags;
  2213. struct rq *rq;
  2214. int cpu __maybe_unused = get_cpu();
  2215. #ifdef CONFIG_SMP
  2216. rq = task_rq_lock(p, &flags);
  2217. p->state = TASK_WAKING;
  2218. /*
  2219. * Fork balancing, do it here and not earlier because:
  2220. * - cpus_allowed can change in the fork path
  2221. * - any previously selected cpu might disappear through hotplug
  2222. *
  2223. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2224. * without people poking at ->cpus_allowed.
  2225. */
  2226. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2227. set_task_cpu(p, cpu);
  2228. p->state = TASK_RUNNING;
  2229. task_rq_unlock(rq, &flags);
  2230. #endif
  2231. rq = task_rq_lock(p, &flags);
  2232. activate_task(rq, p, 0);
  2233. trace_sched_wakeup_new(p, 1);
  2234. check_preempt_curr(rq, p, WF_FORK);
  2235. #ifdef CONFIG_SMP
  2236. if (p->sched_class->task_woken)
  2237. p->sched_class->task_woken(rq, p);
  2238. #endif
  2239. task_rq_unlock(rq, &flags);
  2240. put_cpu();
  2241. }
  2242. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2243. /**
  2244. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2245. * @notifier: notifier struct to register
  2246. */
  2247. void preempt_notifier_register(struct preempt_notifier *notifier)
  2248. {
  2249. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2250. }
  2251. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2252. /**
  2253. * preempt_notifier_unregister - no longer interested in preemption notifications
  2254. * @notifier: notifier struct to unregister
  2255. *
  2256. * This is safe to call from within a preemption notifier.
  2257. */
  2258. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2259. {
  2260. hlist_del(&notifier->link);
  2261. }
  2262. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2263. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2264. {
  2265. struct preempt_notifier *notifier;
  2266. struct hlist_node *node;
  2267. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2268. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2269. }
  2270. static void
  2271. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2272. struct task_struct *next)
  2273. {
  2274. struct preempt_notifier *notifier;
  2275. struct hlist_node *node;
  2276. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2277. notifier->ops->sched_out(notifier, next);
  2278. }
  2279. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2280. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2281. {
  2282. }
  2283. static void
  2284. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2285. struct task_struct *next)
  2286. {
  2287. }
  2288. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2289. /**
  2290. * prepare_task_switch - prepare to switch tasks
  2291. * @rq: the runqueue preparing to switch
  2292. * @prev: the current task that is being switched out
  2293. * @next: the task we are going to switch to.
  2294. *
  2295. * This is called with the rq lock held and interrupts off. It must
  2296. * be paired with a subsequent finish_task_switch after the context
  2297. * switch.
  2298. *
  2299. * prepare_task_switch sets up locking and calls architecture specific
  2300. * hooks.
  2301. */
  2302. static inline void
  2303. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2304. struct task_struct *next)
  2305. {
  2306. fire_sched_out_preempt_notifiers(prev, next);
  2307. prepare_lock_switch(rq, next);
  2308. prepare_arch_switch(next);
  2309. }
  2310. /**
  2311. * finish_task_switch - clean up after a task-switch
  2312. * @rq: runqueue associated with task-switch
  2313. * @prev: the thread we just switched away from.
  2314. *
  2315. * finish_task_switch must be called after the context switch, paired
  2316. * with a prepare_task_switch call before the context switch.
  2317. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2318. * and do any other architecture-specific cleanup actions.
  2319. *
  2320. * Note that we may have delayed dropping an mm in context_switch(). If
  2321. * so, we finish that here outside of the runqueue lock. (Doing it
  2322. * with the lock held can cause deadlocks; see schedule() for
  2323. * details.)
  2324. */
  2325. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2326. __releases(rq->lock)
  2327. {
  2328. struct mm_struct *mm = rq->prev_mm;
  2329. long prev_state;
  2330. rq->prev_mm = NULL;
  2331. /*
  2332. * A task struct has one reference for the use as "current".
  2333. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2334. * schedule one last time. The schedule call will never return, and
  2335. * the scheduled task must drop that reference.
  2336. * The test for TASK_DEAD must occur while the runqueue locks are
  2337. * still held, otherwise prev could be scheduled on another cpu, die
  2338. * there before we look at prev->state, and then the reference would
  2339. * be dropped twice.
  2340. * Manfred Spraul <manfred@colorfullife.com>
  2341. */
  2342. prev_state = prev->state;
  2343. finish_arch_switch(prev);
  2344. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2345. local_irq_disable();
  2346. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2347. perf_event_task_sched_in(current);
  2348. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2349. local_irq_enable();
  2350. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2351. finish_lock_switch(rq, prev);
  2352. fire_sched_in_preempt_notifiers(current);
  2353. if (mm)
  2354. mmdrop(mm);
  2355. if (unlikely(prev_state == TASK_DEAD)) {
  2356. /*
  2357. * Remove function-return probe instances associated with this
  2358. * task and put them back on the free list.
  2359. */
  2360. kprobe_flush_task(prev);
  2361. put_task_struct(prev);
  2362. }
  2363. }
  2364. #ifdef CONFIG_SMP
  2365. /* assumes rq->lock is held */
  2366. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2367. {
  2368. if (prev->sched_class->pre_schedule)
  2369. prev->sched_class->pre_schedule(rq, prev);
  2370. }
  2371. /* rq->lock is NOT held, but preemption is disabled */
  2372. static inline void post_schedule(struct rq *rq)
  2373. {
  2374. if (rq->post_schedule) {
  2375. unsigned long flags;
  2376. raw_spin_lock_irqsave(&rq->lock, flags);
  2377. if (rq->curr->sched_class->post_schedule)
  2378. rq->curr->sched_class->post_schedule(rq);
  2379. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2380. rq->post_schedule = 0;
  2381. }
  2382. }
  2383. #else
  2384. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2385. {
  2386. }
  2387. static inline void post_schedule(struct rq *rq)
  2388. {
  2389. }
  2390. #endif
  2391. /**
  2392. * schedule_tail - first thing a freshly forked thread must call.
  2393. * @prev: the thread we just switched away from.
  2394. */
  2395. asmlinkage void schedule_tail(struct task_struct *prev)
  2396. __releases(rq->lock)
  2397. {
  2398. struct rq *rq = this_rq();
  2399. finish_task_switch(rq, prev);
  2400. /*
  2401. * FIXME: do we need to worry about rq being invalidated by the
  2402. * task_switch?
  2403. */
  2404. post_schedule(rq);
  2405. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2406. /* In this case, finish_task_switch does not reenable preemption */
  2407. preempt_enable();
  2408. #endif
  2409. if (current->set_child_tid)
  2410. put_user(task_pid_vnr(current), current->set_child_tid);
  2411. }
  2412. /*
  2413. * context_switch - switch to the new MM and the new
  2414. * thread's register state.
  2415. */
  2416. static inline void
  2417. context_switch(struct rq *rq, struct task_struct *prev,
  2418. struct task_struct *next)
  2419. {
  2420. struct mm_struct *mm, *oldmm;
  2421. prepare_task_switch(rq, prev, next);
  2422. trace_sched_switch(prev, next);
  2423. mm = next->mm;
  2424. oldmm = prev->active_mm;
  2425. /*
  2426. * For paravirt, this is coupled with an exit in switch_to to
  2427. * combine the page table reload and the switch backend into
  2428. * one hypercall.
  2429. */
  2430. arch_start_context_switch(prev);
  2431. if (!mm) {
  2432. next->active_mm = oldmm;
  2433. atomic_inc(&oldmm->mm_count);
  2434. enter_lazy_tlb(oldmm, next);
  2435. } else
  2436. switch_mm(oldmm, mm, next);
  2437. if (!prev->mm) {
  2438. prev->active_mm = NULL;
  2439. rq->prev_mm = oldmm;
  2440. }
  2441. /*
  2442. * Since the runqueue lock will be released by the next
  2443. * task (which is an invalid locking op but in the case
  2444. * of the scheduler it's an obvious special-case), so we
  2445. * do an early lockdep release here:
  2446. */
  2447. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2448. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2449. #endif
  2450. /* Here we just switch the register state and the stack. */
  2451. switch_to(prev, next, prev);
  2452. barrier();
  2453. /*
  2454. * this_rq must be evaluated again because prev may have moved
  2455. * CPUs since it called schedule(), thus the 'rq' on its stack
  2456. * frame will be invalid.
  2457. */
  2458. finish_task_switch(this_rq(), prev);
  2459. }
  2460. /*
  2461. * nr_running, nr_uninterruptible and nr_context_switches:
  2462. *
  2463. * externally visible scheduler statistics: current number of runnable
  2464. * threads, current number of uninterruptible-sleeping threads, total
  2465. * number of context switches performed since bootup.
  2466. */
  2467. unsigned long nr_running(void)
  2468. {
  2469. unsigned long i, sum = 0;
  2470. for_each_online_cpu(i)
  2471. sum += cpu_rq(i)->nr_running;
  2472. return sum;
  2473. }
  2474. unsigned long nr_uninterruptible(void)
  2475. {
  2476. unsigned long i, sum = 0;
  2477. for_each_possible_cpu(i)
  2478. sum += cpu_rq(i)->nr_uninterruptible;
  2479. /*
  2480. * Since we read the counters lockless, it might be slightly
  2481. * inaccurate. Do not allow it to go below zero though:
  2482. */
  2483. if (unlikely((long)sum < 0))
  2484. sum = 0;
  2485. return sum;
  2486. }
  2487. unsigned long long nr_context_switches(void)
  2488. {
  2489. int i;
  2490. unsigned long long sum = 0;
  2491. for_each_possible_cpu(i)
  2492. sum += cpu_rq(i)->nr_switches;
  2493. return sum;
  2494. }
  2495. unsigned long nr_iowait(void)
  2496. {
  2497. unsigned long i, sum = 0;
  2498. for_each_possible_cpu(i)
  2499. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2500. return sum;
  2501. }
  2502. unsigned long nr_iowait_cpu(int cpu)
  2503. {
  2504. struct rq *this = cpu_rq(cpu);
  2505. return atomic_read(&this->nr_iowait);
  2506. }
  2507. unsigned long this_cpu_load(void)
  2508. {
  2509. struct rq *this = this_rq();
  2510. return this->cpu_load[0];
  2511. }
  2512. /* Variables and functions for calc_load */
  2513. static atomic_long_t calc_load_tasks;
  2514. static unsigned long calc_load_update;
  2515. unsigned long avenrun[3];
  2516. EXPORT_SYMBOL(avenrun);
  2517. static long calc_load_fold_active(struct rq *this_rq)
  2518. {
  2519. long nr_active, delta = 0;
  2520. nr_active = this_rq->nr_running;
  2521. nr_active += (long) this_rq->nr_uninterruptible;
  2522. if (nr_active != this_rq->calc_load_active) {
  2523. delta = nr_active - this_rq->calc_load_active;
  2524. this_rq->calc_load_active = nr_active;
  2525. }
  2526. return delta;
  2527. }
  2528. #ifdef CONFIG_NO_HZ
  2529. /*
  2530. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2531. *
  2532. * When making the ILB scale, we should try to pull this in as well.
  2533. */
  2534. static atomic_long_t calc_load_tasks_idle;
  2535. static void calc_load_account_idle(struct rq *this_rq)
  2536. {
  2537. long delta;
  2538. delta = calc_load_fold_active(this_rq);
  2539. if (delta)
  2540. atomic_long_add(delta, &calc_load_tasks_idle);
  2541. }
  2542. static long calc_load_fold_idle(void)
  2543. {
  2544. long delta = 0;
  2545. /*
  2546. * Its got a race, we don't care...
  2547. */
  2548. if (atomic_long_read(&calc_load_tasks_idle))
  2549. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2550. return delta;
  2551. }
  2552. #else
  2553. static void calc_load_account_idle(struct rq *this_rq)
  2554. {
  2555. }
  2556. static inline long calc_load_fold_idle(void)
  2557. {
  2558. return 0;
  2559. }
  2560. #endif
  2561. /**
  2562. * get_avenrun - get the load average array
  2563. * @loads: pointer to dest load array
  2564. * @offset: offset to add
  2565. * @shift: shift count to shift the result left
  2566. *
  2567. * These values are estimates at best, so no need for locking.
  2568. */
  2569. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2570. {
  2571. loads[0] = (avenrun[0] + offset) << shift;
  2572. loads[1] = (avenrun[1] + offset) << shift;
  2573. loads[2] = (avenrun[2] + offset) << shift;
  2574. }
  2575. static unsigned long
  2576. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2577. {
  2578. load *= exp;
  2579. load += active * (FIXED_1 - exp);
  2580. return load >> FSHIFT;
  2581. }
  2582. /*
  2583. * calc_load - update the avenrun load estimates 10 ticks after the
  2584. * CPUs have updated calc_load_tasks.
  2585. */
  2586. void calc_global_load(void)
  2587. {
  2588. unsigned long upd = calc_load_update + 10;
  2589. long active;
  2590. if (time_before(jiffies, upd))
  2591. return;
  2592. active = atomic_long_read(&calc_load_tasks);
  2593. active = active > 0 ? active * FIXED_1 : 0;
  2594. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2595. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2596. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2597. calc_load_update += LOAD_FREQ;
  2598. }
  2599. /*
  2600. * Called from update_cpu_load() to periodically update this CPU's
  2601. * active count.
  2602. */
  2603. static void calc_load_account_active(struct rq *this_rq)
  2604. {
  2605. long delta;
  2606. if (time_before(jiffies, this_rq->calc_load_update))
  2607. return;
  2608. delta = calc_load_fold_active(this_rq);
  2609. delta += calc_load_fold_idle();
  2610. if (delta)
  2611. atomic_long_add(delta, &calc_load_tasks);
  2612. this_rq->calc_load_update += LOAD_FREQ;
  2613. }
  2614. /*
  2615. * The exact cpuload at various idx values, calculated at every tick would be
  2616. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2617. *
  2618. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2619. * on nth tick when cpu may be busy, then we have:
  2620. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2621. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2622. *
  2623. * decay_load_missed() below does efficient calculation of
  2624. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2625. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2626. *
  2627. * The calculation is approximated on a 128 point scale.
  2628. * degrade_zero_ticks is the number of ticks after which load at any
  2629. * particular idx is approximated to be zero.
  2630. * degrade_factor is a precomputed table, a row for each load idx.
  2631. * Each column corresponds to degradation factor for a power of two ticks,
  2632. * based on 128 point scale.
  2633. * Example:
  2634. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2635. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2636. *
  2637. * With this power of 2 load factors, we can degrade the load n times
  2638. * by looking at 1 bits in n and doing as many mult/shift instead of
  2639. * n mult/shifts needed by the exact degradation.
  2640. */
  2641. #define DEGRADE_SHIFT 7
  2642. static const unsigned char
  2643. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2644. static const unsigned char
  2645. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2646. {0, 0, 0, 0, 0, 0, 0, 0},
  2647. {64, 32, 8, 0, 0, 0, 0, 0},
  2648. {96, 72, 40, 12, 1, 0, 0},
  2649. {112, 98, 75, 43, 15, 1, 0},
  2650. {120, 112, 98, 76, 45, 16, 2} };
  2651. /*
  2652. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2653. * would be when CPU is idle and so we just decay the old load without
  2654. * adding any new load.
  2655. */
  2656. static unsigned long
  2657. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2658. {
  2659. int j = 0;
  2660. if (!missed_updates)
  2661. return load;
  2662. if (missed_updates >= degrade_zero_ticks[idx])
  2663. return 0;
  2664. if (idx == 1)
  2665. return load >> missed_updates;
  2666. while (missed_updates) {
  2667. if (missed_updates % 2)
  2668. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2669. missed_updates >>= 1;
  2670. j++;
  2671. }
  2672. return load;
  2673. }
  2674. /*
  2675. * Update rq->cpu_load[] statistics. This function is usually called every
  2676. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2677. * every tick. We fix it up based on jiffies.
  2678. */
  2679. static void update_cpu_load(struct rq *this_rq)
  2680. {
  2681. unsigned long this_load = this_rq->load.weight;
  2682. unsigned long curr_jiffies = jiffies;
  2683. unsigned long pending_updates;
  2684. int i, scale;
  2685. this_rq->nr_load_updates++;
  2686. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2687. if (curr_jiffies == this_rq->last_load_update_tick)
  2688. return;
  2689. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2690. this_rq->last_load_update_tick = curr_jiffies;
  2691. /* Update our load: */
  2692. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2693. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2694. unsigned long old_load, new_load;
  2695. /* scale is effectively 1 << i now, and >> i divides by scale */
  2696. old_load = this_rq->cpu_load[i];
  2697. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2698. new_load = this_load;
  2699. /*
  2700. * Round up the averaging division if load is increasing. This
  2701. * prevents us from getting stuck on 9 if the load is 10, for
  2702. * example.
  2703. */
  2704. if (new_load > old_load)
  2705. new_load += scale - 1;
  2706. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2707. }
  2708. sched_avg_update(this_rq);
  2709. }
  2710. static void update_cpu_load_active(struct rq *this_rq)
  2711. {
  2712. update_cpu_load(this_rq);
  2713. calc_load_account_active(this_rq);
  2714. }
  2715. #ifdef CONFIG_SMP
  2716. /*
  2717. * sched_exec - execve() is a valuable balancing opportunity, because at
  2718. * this point the task has the smallest effective memory and cache footprint.
  2719. */
  2720. void sched_exec(void)
  2721. {
  2722. struct task_struct *p = current;
  2723. unsigned long flags;
  2724. struct rq *rq;
  2725. int dest_cpu;
  2726. rq = task_rq_lock(p, &flags);
  2727. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2728. if (dest_cpu == smp_processor_id())
  2729. goto unlock;
  2730. /*
  2731. * select_task_rq() can race against ->cpus_allowed
  2732. */
  2733. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2734. likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
  2735. struct migration_arg arg = { p, dest_cpu };
  2736. task_rq_unlock(rq, &flags);
  2737. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2738. return;
  2739. }
  2740. unlock:
  2741. task_rq_unlock(rq, &flags);
  2742. }
  2743. #endif
  2744. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2745. EXPORT_PER_CPU_SYMBOL(kstat);
  2746. /*
  2747. * Return any ns on the sched_clock that have not yet been accounted in
  2748. * @p in case that task is currently running.
  2749. *
  2750. * Called with task_rq_lock() held on @rq.
  2751. */
  2752. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2753. {
  2754. u64 ns = 0;
  2755. if (task_current(rq, p)) {
  2756. update_rq_clock(rq);
  2757. ns = rq->clock_task - p->se.exec_start;
  2758. if ((s64)ns < 0)
  2759. ns = 0;
  2760. }
  2761. return ns;
  2762. }
  2763. unsigned long long task_delta_exec(struct task_struct *p)
  2764. {
  2765. unsigned long flags;
  2766. struct rq *rq;
  2767. u64 ns = 0;
  2768. rq = task_rq_lock(p, &flags);
  2769. ns = do_task_delta_exec(p, rq);
  2770. task_rq_unlock(rq, &flags);
  2771. return ns;
  2772. }
  2773. /*
  2774. * Return accounted runtime for the task.
  2775. * In case the task is currently running, return the runtime plus current's
  2776. * pending runtime that have not been accounted yet.
  2777. */
  2778. unsigned long long task_sched_runtime(struct task_struct *p)
  2779. {
  2780. unsigned long flags;
  2781. struct rq *rq;
  2782. u64 ns = 0;
  2783. rq = task_rq_lock(p, &flags);
  2784. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2785. task_rq_unlock(rq, &flags);
  2786. return ns;
  2787. }
  2788. /*
  2789. * Return sum_exec_runtime for the thread group.
  2790. * In case the task is currently running, return the sum plus current's
  2791. * pending runtime that have not been accounted yet.
  2792. *
  2793. * Note that the thread group might have other running tasks as well,
  2794. * so the return value not includes other pending runtime that other
  2795. * running tasks might have.
  2796. */
  2797. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2798. {
  2799. struct task_cputime totals;
  2800. unsigned long flags;
  2801. struct rq *rq;
  2802. u64 ns;
  2803. rq = task_rq_lock(p, &flags);
  2804. thread_group_cputime(p, &totals);
  2805. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2806. task_rq_unlock(rq, &flags);
  2807. return ns;
  2808. }
  2809. /*
  2810. * Account user cpu time to a process.
  2811. * @p: the process that the cpu time gets accounted to
  2812. * @cputime: the cpu time spent in user space since the last update
  2813. * @cputime_scaled: cputime scaled by cpu frequency
  2814. */
  2815. void account_user_time(struct task_struct *p, cputime_t cputime,
  2816. cputime_t cputime_scaled)
  2817. {
  2818. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2819. cputime64_t tmp;
  2820. /* Add user time to process. */
  2821. p->utime = cputime_add(p->utime, cputime);
  2822. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2823. account_group_user_time(p, cputime);
  2824. /* Add user time to cpustat. */
  2825. tmp = cputime_to_cputime64(cputime);
  2826. if (TASK_NICE(p) > 0)
  2827. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2828. else
  2829. cpustat->user = cputime64_add(cpustat->user, tmp);
  2830. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2831. /* Account for user time used */
  2832. acct_update_integrals(p);
  2833. }
  2834. /*
  2835. * Account guest cpu time to a process.
  2836. * @p: the process that the cpu time gets accounted to
  2837. * @cputime: the cpu time spent in virtual machine since the last update
  2838. * @cputime_scaled: cputime scaled by cpu frequency
  2839. */
  2840. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2841. cputime_t cputime_scaled)
  2842. {
  2843. cputime64_t tmp;
  2844. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2845. tmp = cputime_to_cputime64(cputime);
  2846. /* Add guest time to process. */
  2847. p->utime = cputime_add(p->utime, cputime);
  2848. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2849. account_group_user_time(p, cputime);
  2850. p->gtime = cputime_add(p->gtime, cputime);
  2851. /* Add guest time to cpustat. */
  2852. if (TASK_NICE(p) > 0) {
  2853. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2854. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2855. } else {
  2856. cpustat->user = cputime64_add(cpustat->user, tmp);
  2857. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2858. }
  2859. }
  2860. /*
  2861. * Account system cpu time to a process.
  2862. * @p: the process that the cpu time gets accounted to
  2863. * @hardirq_offset: the offset to subtract from hardirq_count()
  2864. * @cputime: the cpu time spent in kernel space since the last update
  2865. * @cputime_scaled: cputime scaled by cpu frequency
  2866. */
  2867. void account_system_time(struct task_struct *p, int hardirq_offset,
  2868. cputime_t cputime, cputime_t cputime_scaled)
  2869. {
  2870. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2871. cputime64_t tmp;
  2872. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2873. account_guest_time(p, cputime, cputime_scaled);
  2874. return;
  2875. }
  2876. /* Add system time to process. */
  2877. p->stime = cputime_add(p->stime, cputime);
  2878. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2879. account_group_system_time(p, cputime);
  2880. /* Add system time to cpustat. */
  2881. tmp = cputime_to_cputime64(cputime);
  2882. if (hardirq_count() - hardirq_offset)
  2883. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2884. else if (in_serving_softirq())
  2885. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2886. else
  2887. cpustat->system = cputime64_add(cpustat->system, tmp);
  2888. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2889. /* Account for system time used */
  2890. acct_update_integrals(p);
  2891. }
  2892. /*
  2893. * Account for involuntary wait time.
  2894. * @steal: the cpu time spent in involuntary wait
  2895. */
  2896. void account_steal_time(cputime_t cputime)
  2897. {
  2898. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2899. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2900. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  2901. }
  2902. /*
  2903. * Account for idle time.
  2904. * @cputime: the cpu time spent in idle wait
  2905. */
  2906. void account_idle_time(cputime_t cputime)
  2907. {
  2908. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2909. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2910. struct rq *rq = this_rq();
  2911. if (atomic_read(&rq->nr_iowait) > 0)
  2912. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  2913. else
  2914. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  2915. }
  2916. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2917. /*
  2918. * Account a single tick of cpu time.
  2919. * @p: the process that the cpu time gets accounted to
  2920. * @user_tick: indicates if the tick is a user or a system tick
  2921. */
  2922. void account_process_tick(struct task_struct *p, int user_tick)
  2923. {
  2924. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2925. struct rq *rq = this_rq();
  2926. if (user_tick)
  2927. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2928. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2929. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2930. one_jiffy_scaled);
  2931. else
  2932. account_idle_time(cputime_one_jiffy);
  2933. }
  2934. /*
  2935. * Account multiple ticks of steal time.
  2936. * @p: the process from which the cpu time has been stolen
  2937. * @ticks: number of stolen ticks
  2938. */
  2939. void account_steal_ticks(unsigned long ticks)
  2940. {
  2941. account_steal_time(jiffies_to_cputime(ticks));
  2942. }
  2943. /*
  2944. * Account multiple ticks of idle time.
  2945. * @ticks: number of stolen ticks
  2946. */
  2947. void account_idle_ticks(unsigned long ticks)
  2948. {
  2949. account_idle_time(jiffies_to_cputime(ticks));
  2950. }
  2951. #endif
  2952. /*
  2953. * Use precise platform statistics if available:
  2954. */
  2955. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2956. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2957. {
  2958. *ut = p->utime;
  2959. *st = p->stime;
  2960. }
  2961. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2962. {
  2963. struct task_cputime cputime;
  2964. thread_group_cputime(p, &cputime);
  2965. *ut = cputime.utime;
  2966. *st = cputime.stime;
  2967. }
  2968. #else
  2969. #ifndef nsecs_to_cputime
  2970. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2971. #endif
  2972. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2973. {
  2974. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  2975. /*
  2976. * Use CFS's precise accounting:
  2977. */
  2978. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2979. if (total) {
  2980. u64 temp = rtime;
  2981. temp *= utime;
  2982. do_div(temp, total);
  2983. utime = (cputime_t)temp;
  2984. } else
  2985. utime = rtime;
  2986. /*
  2987. * Compare with previous values, to keep monotonicity:
  2988. */
  2989. p->prev_utime = max(p->prev_utime, utime);
  2990. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  2991. *ut = p->prev_utime;
  2992. *st = p->prev_stime;
  2993. }
  2994. /*
  2995. * Must be called with siglock held.
  2996. */
  2997. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2998. {
  2999. struct signal_struct *sig = p->signal;
  3000. struct task_cputime cputime;
  3001. cputime_t rtime, utime, total;
  3002. thread_group_cputime(p, &cputime);
  3003. total = cputime_add(cputime.utime, cputime.stime);
  3004. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3005. if (total) {
  3006. u64 temp = rtime;
  3007. temp *= cputime.utime;
  3008. do_div(temp, total);
  3009. utime = (cputime_t)temp;
  3010. } else
  3011. utime = rtime;
  3012. sig->prev_utime = max(sig->prev_utime, utime);
  3013. sig->prev_stime = max(sig->prev_stime,
  3014. cputime_sub(rtime, sig->prev_utime));
  3015. *ut = sig->prev_utime;
  3016. *st = sig->prev_stime;
  3017. }
  3018. #endif
  3019. /*
  3020. * This function gets called by the timer code, with HZ frequency.
  3021. * We call it with interrupts disabled.
  3022. *
  3023. * It also gets called by the fork code, when changing the parent's
  3024. * timeslices.
  3025. */
  3026. void scheduler_tick(void)
  3027. {
  3028. int cpu = smp_processor_id();
  3029. struct rq *rq = cpu_rq(cpu);
  3030. struct task_struct *curr = rq->curr;
  3031. sched_clock_tick();
  3032. raw_spin_lock(&rq->lock);
  3033. update_rq_clock(rq);
  3034. update_cpu_load_active(rq);
  3035. curr->sched_class->task_tick(rq, curr, 0);
  3036. raw_spin_unlock(&rq->lock);
  3037. perf_event_task_tick();
  3038. #ifdef CONFIG_SMP
  3039. rq->idle_at_tick = idle_cpu(cpu);
  3040. trigger_load_balance(rq, cpu);
  3041. #endif
  3042. }
  3043. notrace unsigned long get_parent_ip(unsigned long addr)
  3044. {
  3045. if (in_lock_functions(addr)) {
  3046. addr = CALLER_ADDR2;
  3047. if (in_lock_functions(addr))
  3048. addr = CALLER_ADDR3;
  3049. }
  3050. return addr;
  3051. }
  3052. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3053. defined(CONFIG_PREEMPT_TRACER))
  3054. void __kprobes add_preempt_count(int val)
  3055. {
  3056. #ifdef CONFIG_DEBUG_PREEMPT
  3057. /*
  3058. * Underflow?
  3059. */
  3060. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3061. return;
  3062. #endif
  3063. preempt_count() += val;
  3064. #ifdef CONFIG_DEBUG_PREEMPT
  3065. /*
  3066. * Spinlock count overflowing soon?
  3067. */
  3068. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3069. PREEMPT_MASK - 10);
  3070. #endif
  3071. if (preempt_count() == val)
  3072. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3073. }
  3074. EXPORT_SYMBOL(add_preempt_count);
  3075. void __kprobes sub_preempt_count(int val)
  3076. {
  3077. #ifdef CONFIG_DEBUG_PREEMPT
  3078. /*
  3079. * Underflow?
  3080. */
  3081. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3082. return;
  3083. /*
  3084. * Is the spinlock portion underflowing?
  3085. */
  3086. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3087. !(preempt_count() & PREEMPT_MASK)))
  3088. return;
  3089. #endif
  3090. if (preempt_count() == val)
  3091. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3092. preempt_count() -= val;
  3093. }
  3094. EXPORT_SYMBOL(sub_preempt_count);
  3095. #endif
  3096. /*
  3097. * Print scheduling while atomic bug:
  3098. */
  3099. static noinline void __schedule_bug(struct task_struct *prev)
  3100. {
  3101. struct pt_regs *regs = get_irq_regs();
  3102. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3103. prev->comm, prev->pid, preempt_count());
  3104. debug_show_held_locks(prev);
  3105. print_modules();
  3106. if (irqs_disabled())
  3107. print_irqtrace_events(prev);
  3108. if (regs)
  3109. show_regs(regs);
  3110. else
  3111. dump_stack();
  3112. }
  3113. /*
  3114. * Various schedule()-time debugging checks and statistics:
  3115. */
  3116. static inline void schedule_debug(struct task_struct *prev)
  3117. {
  3118. /*
  3119. * Test if we are atomic. Since do_exit() needs to call into
  3120. * schedule() atomically, we ignore that path for now.
  3121. * Otherwise, whine if we are scheduling when we should not be.
  3122. */
  3123. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3124. __schedule_bug(prev);
  3125. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3126. schedstat_inc(this_rq(), sched_count);
  3127. #ifdef CONFIG_SCHEDSTATS
  3128. if (unlikely(prev->lock_depth >= 0)) {
  3129. schedstat_inc(this_rq(), bkl_count);
  3130. schedstat_inc(prev, sched_info.bkl_count);
  3131. }
  3132. #endif
  3133. }
  3134. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3135. {
  3136. if (prev->se.on_rq)
  3137. update_rq_clock(rq);
  3138. rq->skip_clock_update = 0;
  3139. prev->sched_class->put_prev_task(rq, prev);
  3140. }
  3141. /*
  3142. * Pick up the highest-prio task:
  3143. */
  3144. static inline struct task_struct *
  3145. pick_next_task(struct rq *rq)
  3146. {
  3147. const struct sched_class *class;
  3148. struct task_struct *p;
  3149. /*
  3150. * Optimization: we know that if all tasks are in
  3151. * the fair class we can call that function directly:
  3152. */
  3153. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3154. p = fair_sched_class.pick_next_task(rq);
  3155. if (likely(p))
  3156. return p;
  3157. }
  3158. for_each_class(class) {
  3159. p = class->pick_next_task(rq);
  3160. if (p)
  3161. return p;
  3162. }
  3163. BUG(); /* the idle class will always have a runnable task */
  3164. }
  3165. /*
  3166. * schedule() is the main scheduler function.
  3167. */
  3168. asmlinkage void __sched schedule(void)
  3169. {
  3170. struct task_struct *prev, *next;
  3171. unsigned long *switch_count;
  3172. struct rq *rq;
  3173. int cpu;
  3174. need_resched:
  3175. preempt_disable();
  3176. cpu = smp_processor_id();
  3177. rq = cpu_rq(cpu);
  3178. rcu_note_context_switch(cpu);
  3179. prev = rq->curr;
  3180. release_kernel_lock(prev);
  3181. need_resched_nonpreemptible:
  3182. schedule_debug(prev);
  3183. if (sched_feat(HRTICK))
  3184. hrtick_clear(rq);
  3185. raw_spin_lock_irq(&rq->lock);
  3186. clear_tsk_need_resched(prev);
  3187. switch_count = &prev->nivcsw;
  3188. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3189. if (unlikely(signal_pending_state(prev->state, prev))) {
  3190. prev->state = TASK_RUNNING;
  3191. } else {
  3192. /*
  3193. * If a worker is going to sleep, notify and
  3194. * ask workqueue whether it wants to wake up a
  3195. * task to maintain concurrency. If so, wake
  3196. * up the task.
  3197. */
  3198. if (prev->flags & PF_WQ_WORKER) {
  3199. struct task_struct *to_wakeup;
  3200. to_wakeup = wq_worker_sleeping(prev, cpu);
  3201. if (to_wakeup)
  3202. try_to_wake_up_local(to_wakeup);
  3203. }
  3204. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3205. }
  3206. switch_count = &prev->nvcsw;
  3207. }
  3208. pre_schedule(rq, prev);
  3209. if (unlikely(!rq->nr_running))
  3210. idle_balance(cpu, rq);
  3211. put_prev_task(rq, prev);
  3212. next = pick_next_task(rq);
  3213. if (likely(prev != next)) {
  3214. sched_info_switch(prev, next);
  3215. perf_event_task_sched_out(prev, next);
  3216. rq->nr_switches++;
  3217. rq->curr = next;
  3218. ++*switch_count;
  3219. context_switch(rq, prev, next); /* unlocks the rq */
  3220. /*
  3221. * The context switch have flipped the stack from under us
  3222. * and restored the local variables which were saved when
  3223. * this task called schedule() in the past. prev == current
  3224. * is still correct, but it can be moved to another cpu/rq.
  3225. */
  3226. cpu = smp_processor_id();
  3227. rq = cpu_rq(cpu);
  3228. } else
  3229. raw_spin_unlock_irq(&rq->lock);
  3230. post_schedule(rq);
  3231. if (unlikely(reacquire_kernel_lock(prev)))
  3232. goto need_resched_nonpreemptible;
  3233. preempt_enable_no_resched();
  3234. if (need_resched())
  3235. goto need_resched;
  3236. }
  3237. EXPORT_SYMBOL(schedule);
  3238. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3239. /*
  3240. * Look out! "owner" is an entirely speculative pointer
  3241. * access and not reliable.
  3242. */
  3243. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3244. {
  3245. unsigned int cpu;
  3246. struct rq *rq;
  3247. if (!sched_feat(OWNER_SPIN))
  3248. return 0;
  3249. #ifdef CONFIG_DEBUG_PAGEALLOC
  3250. /*
  3251. * Need to access the cpu field knowing that
  3252. * DEBUG_PAGEALLOC could have unmapped it if
  3253. * the mutex owner just released it and exited.
  3254. */
  3255. if (probe_kernel_address(&owner->cpu, cpu))
  3256. return 0;
  3257. #else
  3258. cpu = owner->cpu;
  3259. #endif
  3260. /*
  3261. * Even if the access succeeded (likely case),
  3262. * the cpu field may no longer be valid.
  3263. */
  3264. if (cpu >= nr_cpumask_bits)
  3265. return 0;
  3266. /*
  3267. * We need to validate that we can do a
  3268. * get_cpu() and that we have the percpu area.
  3269. */
  3270. if (!cpu_online(cpu))
  3271. return 0;
  3272. rq = cpu_rq(cpu);
  3273. for (;;) {
  3274. /*
  3275. * Owner changed, break to re-assess state.
  3276. */
  3277. if (lock->owner != owner) {
  3278. /*
  3279. * If the lock has switched to a different owner,
  3280. * we likely have heavy contention. Return 0 to quit
  3281. * optimistic spinning and not contend further:
  3282. */
  3283. if (lock->owner)
  3284. return 0;
  3285. break;
  3286. }
  3287. /*
  3288. * Is that owner really running on that cpu?
  3289. */
  3290. if (task_thread_info(rq->curr) != owner || need_resched())
  3291. return 0;
  3292. arch_mutex_cpu_relax();
  3293. }
  3294. return 1;
  3295. }
  3296. #endif
  3297. #ifdef CONFIG_PREEMPT
  3298. /*
  3299. * this is the entry point to schedule() from in-kernel preemption
  3300. * off of preempt_enable. Kernel preemptions off return from interrupt
  3301. * occur there and call schedule directly.
  3302. */
  3303. asmlinkage void __sched notrace preempt_schedule(void)
  3304. {
  3305. struct thread_info *ti = current_thread_info();
  3306. /*
  3307. * If there is a non-zero preempt_count or interrupts are disabled,
  3308. * we do not want to preempt the current task. Just return..
  3309. */
  3310. if (likely(ti->preempt_count || irqs_disabled()))
  3311. return;
  3312. do {
  3313. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3314. schedule();
  3315. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3316. /*
  3317. * Check again in case we missed a preemption opportunity
  3318. * between schedule and now.
  3319. */
  3320. barrier();
  3321. } while (need_resched());
  3322. }
  3323. EXPORT_SYMBOL(preempt_schedule);
  3324. /*
  3325. * this is the entry point to schedule() from kernel preemption
  3326. * off of irq context.
  3327. * Note, that this is called and return with irqs disabled. This will
  3328. * protect us against recursive calling from irq.
  3329. */
  3330. asmlinkage void __sched preempt_schedule_irq(void)
  3331. {
  3332. struct thread_info *ti = current_thread_info();
  3333. /* Catch callers which need to be fixed */
  3334. BUG_ON(ti->preempt_count || !irqs_disabled());
  3335. do {
  3336. add_preempt_count(PREEMPT_ACTIVE);
  3337. local_irq_enable();
  3338. schedule();
  3339. local_irq_disable();
  3340. sub_preempt_count(PREEMPT_ACTIVE);
  3341. /*
  3342. * Check again in case we missed a preemption opportunity
  3343. * between schedule and now.
  3344. */
  3345. barrier();
  3346. } while (need_resched());
  3347. }
  3348. #endif /* CONFIG_PREEMPT */
  3349. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3350. void *key)
  3351. {
  3352. return try_to_wake_up(curr->private, mode, wake_flags);
  3353. }
  3354. EXPORT_SYMBOL(default_wake_function);
  3355. /*
  3356. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3357. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3358. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3359. *
  3360. * There are circumstances in which we can try to wake a task which has already
  3361. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3362. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3363. */
  3364. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3365. int nr_exclusive, int wake_flags, void *key)
  3366. {
  3367. wait_queue_t *curr, *next;
  3368. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3369. unsigned flags = curr->flags;
  3370. if (curr->func(curr, mode, wake_flags, key) &&
  3371. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3372. break;
  3373. }
  3374. }
  3375. /**
  3376. * __wake_up - wake up threads blocked on a waitqueue.
  3377. * @q: the waitqueue
  3378. * @mode: which threads
  3379. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3380. * @key: is directly passed to the wakeup function
  3381. *
  3382. * It may be assumed that this function implies a write memory barrier before
  3383. * changing the task state if and only if any tasks are woken up.
  3384. */
  3385. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3386. int nr_exclusive, void *key)
  3387. {
  3388. unsigned long flags;
  3389. spin_lock_irqsave(&q->lock, flags);
  3390. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3391. spin_unlock_irqrestore(&q->lock, flags);
  3392. }
  3393. EXPORT_SYMBOL(__wake_up);
  3394. /*
  3395. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3396. */
  3397. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3398. {
  3399. __wake_up_common(q, mode, 1, 0, NULL);
  3400. }
  3401. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3402. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3403. {
  3404. __wake_up_common(q, mode, 1, 0, key);
  3405. }
  3406. /**
  3407. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3408. * @q: the waitqueue
  3409. * @mode: which threads
  3410. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3411. * @key: opaque value to be passed to wakeup targets
  3412. *
  3413. * The sync wakeup differs that the waker knows that it will schedule
  3414. * away soon, so while the target thread will be woken up, it will not
  3415. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3416. * with each other. This can prevent needless bouncing between CPUs.
  3417. *
  3418. * On UP it can prevent extra preemption.
  3419. *
  3420. * It may be assumed that this function implies a write memory barrier before
  3421. * changing the task state if and only if any tasks are woken up.
  3422. */
  3423. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3424. int nr_exclusive, void *key)
  3425. {
  3426. unsigned long flags;
  3427. int wake_flags = WF_SYNC;
  3428. if (unlikely(!q))
  3429. return;
  3430. if (unlikely(!nr_exclusive))
  3431. wake_flags = 0;
  3432. spin_lock_irqsave(&q->lock, flags);
  3433. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3434. spin_unlock_irqrestore(&q->lock, flags);
  3435. }
  3436. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3437. /*
  3438. * __wake_up_sync - see __wake_up_sync_key()
  3439. */
  3440. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3441. {
  3442. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3443. }
  3444. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3445. /**
  3446. * complete: - signals a single thread waiting on this completion
  3447. * @x: holds the state of this particular completion
  3448. *
  3449. * This will wake up a single thread waiting on this completion. Threads will be
  3450. * awakened in the same order in which they were queued.
  3451. *
  3452. * See also complete_all(), wait_for_completion() and related routines.
  3453. *
  3454. * It may be assumed that this function implies a write memory barrier before
  3455. * changing the task state if and only if any tasks are woken up.
  3456. */
  3457. void complete(struct completion *x)
  3458. {
  3459. unsigned long flags;
  3460. spin_lock_irqsave(&x->wait.lock, flags);
  3461. x->done++;
  3462. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3463. spin_unlock_irqrestore(&x->wait.lock, flags);
  3464. }
  3465. EXPORT_SYMBOL(complete);
  3466. /**
  3467. * complete_all: - signals all threads waiting on this completion
  3468. * @x: holds the state of this particular completion
  3469. *
  3470. * This will wake up all threads waiting on this particular completion event.
  3471. *
  3472. * It may be assumed that this function implies a write memory barrier before
  3473. * changing the task state if and only if any tasks are woken up.
  3474. */
  3475. void complete_all(struct completion *x)
  3476. {
  3477. unsigned long flags;
  3478. spin_lock_irqsave(&x->wait.lock, flags);
  3479. x->done += UINT_MAX/2;
  3480. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3481. spin_unlock_irqrestore(&x->wait.lock, flags);
  3482. }
  3483. EXPORT_SYMBOL(complete_all);
  3484. static inline long __sched
  3485. do_wait_for_common(struct completion *x, long timeout, int state)
  3486. {
  3487. if (!x->done) {
  3488. DECLARE_WAITQUEUE(wait, current);
  3489. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3490. do {
  3491. if (signal_pending_state(state, current)) {
  3492. timeout = -ERESTARTSYS;
  3493. break;
  3494. }
  3495. __set_current_state(state);
  3496. spin_unlock_irq(&x->wait.lock);
  3497. timeout = schedule_timeout(timeout);
  3498. spin_lock_irq(&x->wait.lock);
  3499. } while (!x->done && timeout);
  3500. __remove_wait_queue(&x->wait, &wait);
  3501. if (!x->done)
  3502. return timeout;
  3503. }
  3504. x->done--;
  3505. return timeout ?: 1;
  3506. }
  3507. static long __sched
  3508. wait_for_common(struct completion *x, long timeout, int state)
  3509. {
  3510. might_sleep();
  3511. spin_lock_irq(&x->wait.lock);
  3512. timeout = do_wait_for_common(x, timeout, state);
  3513. spin_unlock_irq(&x->wait.lock);
  3514. return timeout;
  3515. }
  3516. /**
  3517. * wait_for_completion: - waits for completion of a task
  3518. * @x: holds the state of this particular completion
  3519. *
  3520. * This waits to be signaled for completion of a specific task. It is NOT
  3521. * interruptible and there is no timeout.
  3522. *
  3523. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3524. * and interrupt capability. Also see complete().
  3525. */
  3526. void __sched wait_for_completion(struct completion *x)
  3527. {
  3528. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3529. }
  3530. EXPORT_SYMBOL(wait_for_completion);
  3531. /**
  3532. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3533. * @x: holds the state of this particular completion
  3534. * @timeout: timeout value in jiffies
  3535. *
  3536. * This waits for either a completion of a specific task to be signaled or for a
  3537. * specified timeout to expire. The timeout is in jiffies. It is not
  3538. * interruptible.
  3539. */
  3540. unsigned long __sched
  3541. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3542. {
  3543. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3544. }
  3545. EXPORT_SYMBOL(wait_for_completion_timeout);
  3546. /**
  3547. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3548. * @x: holds the state of this particular completion
  3549. *
  3550. * This waits for completion of a specific task to be signaled. It is
  3551. * interruptible.
  3552. */
  3553. int __sched wait_for_completion_interruptible(struct completion *x)
  3554. {
  3555. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3556. if (t == -ERESTARTSYS)
  3557. return t;
  3558. return 0;
  3559. }
  3560. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3561. /**
  3562. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3563. * @x: holds the state of this particular completion
  3564. * @timeout: timeout value in jiffies
  3565. *
  3566. * This waits for either a completion of a specific task to be signaled or for a
  3567. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3568. */
  3569. unsigned long __sched
  3570. wait_for_completion_interruptible_timeout(struct completion *x,
  3571. unsigned long timeout)
  3572. {
  3573. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3574. }
  3575. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3576. /**
  3577. * wait_for_completion_killable: - waits for completion of a task (killable)
  3578. * @x: holds the state of this particular completion
  3579. *
  3580. * This waits to be signaled for completion of a specific task. It can be
  3581. * interrupted by a kill signal.
  3582. */
  3583. int __sched wait_for_completion_killable(struct completion *x)
  3584. {
  3585. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3586. if (t == -ERESTARTSYS)
  3587. return t;
  3588. return 0;
  3589. }
  3590. EXPORT_SYMBOL(wait_for_completion_killable);
  3591. /**
  3592. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3593. * @x: holds the state of this particular completion
  3594. * @timeout: timeout value in jiffies
  3595. *
  3596. * This waits for either a completion of a specific task to be
  3597. * signaled or for a specified timeout to expire. It can be
  3598. * interrupted by a kill signal. The timeout is in jiffies.
  3599. */
  3600. unsigned long __sched
  3601. wait_for_completion_killable_timeout(struct completion *x,
  3602. unsigned long timeout)
  3603. {
  3604. return wait_for_common(x, timeout, TASK_KILLABLE);
  3605. }
  3606. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3607. /**
  3608. * try_wait_for_completion - try to decrement a completion without blocking
  3609. * @x: completion structure
  3610. *
  3611. * Returns: 0 if a decrement cannot be done without blocking
  3612. * 1 if a decrement succeeded.
  3613. *
  3614. * If a completion is being used as a counting completion,
  3615. * attempt to decrement the counter without blocking. This
  3616. * enables us to avoid waiting if the resource the completion
  3617. * is protecting is not available.
  3618. */
  3619. bool try_wait_for_completion(struct completion *x)
  3620. {
  3621. unsigned long flags;
  3622. int ret = 1;
  3623. spin_lock_irqsave(&x->wait.lock, flags);
  3624. if (!x->done)
  3625. ret = 0;
  3626. else
  3627. x->done--;
  3628. spin_unlock_irqrestore(&x->wait.lock, flags);
  3629. return ret;
  3630. }
  3631. EXPORT_SYMBOL(try_wait_for_completion);
  3632. /**
  3633. * completion_done - Test to see if a completion has any waiters
  3634. * @x: completion structure
  3635. *
  3636. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3637. * 1 if there are no waiters.
  3638. *
  3639. */
  3640. bool completion_done(struct completion *x)
  3641. {
  3642. unsigned long flags;
  3643. int ret = 1;
  3644. spin_lock_irqsave(&x->wait.lock, flags);
  3645. if (!x->done)
  3646. ret = 0;
  3647. spin_unlock_irqrestore(&x->wait.lock, flags);
  3648. return ret;
  3649. }
  3650. EXPORT_SYMBOL(completion_done);
  3651. static long __sched
  3652. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3653. {
  3654. unsigned long flags;
  3655. wait_queue_t wait;
  3656. init_waitqueue_entry(&wait, current);
  3657. __set_current_state(state);
  3658. spin_lock_irqsave(&q->lock, flags);
  3659. __add_wait_queue(q, &wait);
  3660. spin_unlock(&q->lock);
  3661. timeout = schedule_timeout(timeout);
  3662. spin_lock_irq(&q->lock);
  3663. __remove_wait_queue(q, &wait);
  3664. spin_unlock_irqrestore(&q->lock, flags);
  3665. return timeout;
  3666. }
  3667. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3668. {
  3669. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3670. }
  3671. EXPORT_SYMBOL(interruptible_sleep_on);
  3672. long __sched
  3673. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3674. {
  3675. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3676. }
  3677. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3678. void __sched sleep_on(wait_queue_head_t *q)
  3679. {
  3680. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3681. }
  3682. EXPORT_SYMBOL(sleep_on);
  3683. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3684. {
  3685. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3686. }
  3687. EXPORT_SYMBOL(sleep_on_timeout);
  3688. #ifdef CONFIG_RT_MUTEXES
  3689. /*
  3690. * rt_mutex_setprio - set the current priority of a task
  3691. * @p: task
  3692. * @prio: prio value (kernel-internal form)
  3693. *
  3694. * This function changes the 'effective' priority of a task. It does
  3695. * not touch ->normal_prio like __setscheduler().
  3696. *
  3697. * Used by the rt_mutex code to implement priority inheritance logic.
  3698. */
  3699. void rt_mutex_setprio(struct task_struct *p, int prio)
  3700. {
  3701. unsigned long flags;
  3702. int oldprio, on_rq, running;
  3703. struct rq *rq;
  3704. const struct sched_class *prev_class;
  3705. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3706. rq = task_rq_lock(p, &flags);
  3707. trace_sched_pi_setprio(p, prio);
  3708. oldprio = p->prio;
  3709. prev_class = p->sched_class;
  3710. on_rq = p->se.on_rq;
  3711. running = task_current(rq, p);
  3712. if (on_rq)
  3713. dequeue_task(rq, p, 0);
  3714. if (running)
  3715. p->sched_class->put_prev_task(rq, p);
  3716. if (rt_prio(prio))
  3717. p->sched_class = &rt_sched_class;
  3718. else
  3719. p->sched_class = &fair_sched_class;
  3720. p->prio = prio;
  3721. if (running)
  3722. p->sched_class->set_curr_task(rq);
  3723. if (on_rq) {
  3724. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3725. check_class_changed(rq, p, prev_class, oldprio, running);
  3726. }
  3727. task_rq_unlock(rq, &flags);
  3728. }
  3729. #endif
  3730. void set_user_nice(struct task_struct *p, long nice)
  3731. {
  3732. int old_prio, delta, on_rq;
  3733. unsigned long flags;
  3734. struct rq *rq;
  3735. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3736. return;
  3737. /*
  3738. * We have to be careful, if called from sys_setpriority(),
  3739. * the task might be in the middle of scheduling on another CPU.
  3740. */
  3741. rq = task_rq_lock(p, &flags);
  3742. /*
  3743. * The RT priorities are set via sched_setscheduler(), but we still
  3744. * allow the 'normal' nice value to be set - but as expected
  3745. * it wont have any effect on scheduling until the task is
  3746. * SCHED_FIFO/SCHED_RR:
  3747. */
  3748. if (task_has_rt_policy(p)) {
  3749. p->static_prio = NICE_TO_PRIO(nice);
  3750. goto out_unlock;
  3751. }
  3752. on_rq = p->se.on_rq;
  3753. if (on_rq)
  3754. dequeue_task(rq, p, 0);
  3755. p->static_prio = NICE_TO_PRIO(nice);
  3756. set_load_weight(p);
  3757. old_prio = p->prio;
  3758. p->prio = effective_prio(p);
  3759. delta = p->prio - old_prio;
  3760. if (on_rq) {
  3761. enqueue_task(rq, p, 0);
  3762. /*
  3763. * If the task increased its priority or is running and
  3764. * lowered its priority, then reschedule its CPU:
  3765. */
  3766. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3767. resched_task(rq->curr);
  3768. }
  3769. out_unlock:
  3770. task_rq_unlock(rq, &flags);
  3771. }
  3772. EXPORT_SYMBOL(set_user_nice);
  3773. /*
  3774. * can_nice - check if a task can reduce its nice value
  3775. * @p: task
  3776. * @nice: nice value
  3777. */
  3778. int can_nice(const struct task_struct *p, const int nice)
  3779. {
  3780. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3781. int nice_rlim = 20 - nice;
  3782. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3783. capable(CAP_SYS_NICE));
  3784. }
  3785. #ifdef __ARCH_WANT_SYS_NICE
  3786. /*
  3787. * sys_nice - change the priority of the current process.
  3788. * @increment: priority increment
  3789. *
  3790. * sys_setpriority is a more generic, but much slower function that
  3791. * does similar things.
  3792. */
  3793. SYSCALL_DEFINE1(nice, int, increment)
  3794. {
  3795. long nice, retval;
  3796. /*
  3797. * Setpriority might change our priority at the same moment.
  3798. * We don't have to worry. Conceptually one call occurs first
  3799. * and we have a single winner.
  3800. */
  3801. if (increment < -40)
  3802. increment = -40;
  3803. if (increment > 40)
  3804. increment = 40;
  3805. nice = TASK_NICE(current) + increment;
  3806. if (nice < -20)
  3807. nice = -20;
  3808. if (nice > 19)
  3809. nice = 19;
  3810. if (increment < 0 && !can_nice(current, nice))
  3811. return -EPERM;
  3812. retval = security_task_setnice(current, nice);
  3813. if (retval)
  3814. return retval;
  3815. set_user_nice(current, nice);
  3816. return 0;
  3817. }
  3818. #endif
  3819. /**
  3820. * task_prio - return the priority value of a given task.
  3821. * @p: the task in question.
  3822. *
  3823. * This is the priority value as seen by users in /proc.
  3824. * RT tasks are offset by -200. Normal tasks are centered
  3825. * around 0, value goes from -16 to +15.
  3826. */
  3827. int task_prio(const struct task_struct *p)
  3828. {
  3829. return p->prio - MAX_RT_PRIO;
  3830. }
  3831. /**
  3832. * task_nice - return the nice value of a given task.
  3833. * @p: the task in question.
  3834. */
  3835. int task_nice(const struct task_struct *p)
  3836. {
  3837. return TASK_NICE(p);
  3838. }
  3839. EXPORT_SYMBOL(task_nice);
  3840. /**
  3841. * idle_cpu - is a given cpu idle currently?
  3842. * @cpu: the processor in question.
  3843. */
  3844. int idle_cpu(int cpu)
  3845. {
  3846. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3847. }
  3848. /**
  3849. * idle_task - return the idle task for a given cpu.
  3850. * @cpu: the processor in question.
  3851. */
  3852. struct task_struct *idle_task(int cpu)
  3853. {
  3854. return cpu_rq(cpu)->idle;
  3855. }
  3856. /**
  3857. * find_process_by_pid - find a process with a matching PID value.
  3858. * @pid: the pid in question.
  3859. */
  3860. static struct task_struct *find_process_by_pid(pid_t pid)
  3861. {
  3862. return pid ? find_task_by_vpid(pid) : current;
  3863. }
  3864. /* Actually do priority change: must hold rq lock. */
  3865. static void
  3866. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3867. {
  3868. BUG_ON(p->se.on_rq);
  3869. p->policy = policy;
  3870. p->rt_priority = prio;
  3871. p->normal_prio = normal_prio(p);
  3872. /* we are holding p->pi_lock already */
  3873. p->prio = rt_mutex_getprio(p);
  3874. if (rt_prio(p->prio))
  3875. p->sched_class = &rt_sched_class;
  3876. else
  3877. p->sched_class = &fair_sched_class;
  3878. set_load_weight(p);
  3879. }
  3880. /*
  3881. * check the target process has a UID that matches the current process's
  3882. */
  3883. static bool check_same_owner(struct task_struct *p)
  3884. {
  3885. const struct cred *cred = current_cred(), *pcred;
  3886. bool match;
  3887. rcu_read_lock();
  3888. pcred = __task_cred(p);
  3889. match = (cred->euid == pcred->euid ||
  3890. cred->euid == pcred->uid);
  3891. rcu_read_unlock();
  3892. return match;
  3893. }
  3894. static int __sched_setscheduler(struct task_struct *p, int policy,
  3895. const struct sched_param *param, bool user)
  3896. {
  3897. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3898. unsigned long flags;
  3899. const struct sched_class *prev_class;
  3900. struct rq *rq;
  3901. int reset_on_fork;
  3902. /* may grab non-irq protected spin_locks */
  3903. BUG_ON(in_interrupt());
  3904. recheck:
  3905. /* double check policy once rq lock held */
  3906. if (policy < 0) {
  3907. reset_on_fork = p->sched_reset_on_fork;
  3908. policy = oldpolicy = p->policy;
  3909. } else {
  3910. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3911. policy &= ~SCHED_RESET_ON_FORK;
  3912. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3913. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3914. policy != SCHED_IDLE)
  3915. return -EINVAL;
  3916. }
  3917. /*
  3918. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3919. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3920. * SCHED_BATCH and SCHED_IDLE is 0.
  3921. */
  3922. if (param->sched_priority < 0 ||
  3923. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3924. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3925. return -EINVAL;
  3926. if (rt_policy(policy) != (param->sched_priority != 0))
  3927. return -EINVAL;
  3928. /*
  3929. * Allow unprivileged RT tasks to decrease priority:
  3930. */
  3931. if (user && !capable(CAP_SYS_NICE)) {
  3932. if (rt_policy(policy)) {
  3933. unsigned long rlim_rtprio =
  3934. task_rlimit(p, RLIMIT_RTPRIO);
  3935. /* can't set/change the rt policy */
  3936. if (policy != p->policy && !rlim_rtprio)
  3937. return -EPERM;
  3938. /* can't increase priority */
  3939. if (param->sched_priority > p->rt_priority &&
  3940. param->sched_priority > rlim_rtprio)
  3941. return -EPERM;
  3942. }
  3943. /*
  3944. * Like positive nice levels, dont allow tasks to
  3945. * move out of SCHED_IDLE either:
  3946. */
  3947. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3948. return -EPERM;
  3949. /* can't change other user's priorities */
  3950. if (!check_same_owner(p))
  3951. return -EPERM;
  3952. /* Normal users shall not reset the sched_reset_on_fork flag */
  3953. if (p->sched_reset_on_fork && !reset_on_fork)
  3954. return -EPERM;
  3955. }
  3956. if (user) {
  3957. retval = security_task_setscheduler(p);
  3958. if (retval)
  3959. return retval;
  3960. }
  3961. /*
  3962. * make sure no PI-waiters arrive (or leave) while we are
  3963. * changing the priority of the task:
  3964. */
  3965. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3966. /*
  3967. * To be able to change p->policy safely, the apropriate
  3968. * runqueue lock must be held.
  3969. */
  3970. rq = __task_rq_lock(p);
  3971. /*
  3972. * Changing the policy of the stop threads its a very bad idea
  3973. */
  3974. if (p == rq->stop) {
  3975. __task_rq_unlock(rq);
  3976. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3977. return -EINVAL;
  3978. }
  3979. #ifdef CONFIG_RT_GROUP_SCHED
  3980. if (user) {
  3981. /*
  3982. * Do not allow realtime tasks into groups that have no runtime
  3983. * assigned.
  3984. */
  3985. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3986. task_group(p)->rt_bandwidth.rt_runtime == 0) {
  3987. __task_rq_unlock(rq);
  3988. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3989. return -EPERM;
  3990. }
  3991. }
  3992. #endif
  3993. /* recheck policy now with rq lock held */
  3994. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3995. policy = oldpolicy = -1;
  3996. __task_rq_unlock(rq);
  3997. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3998. goto recheck;
  3999. }
  4000. on_rq = p->se.on_rq;
  4001. running = task_current(rq, p);
  4002. if (on_rq)
  4003. deactivate_task(rq, p, 0);
  4004. if (running)
  4005. p->sched_class->put_prev_task(rq, p);
  4006. p->sched_reset_on_fork = reset_on_fork;
  4007. oldprio = p->prio;
  4008. prev_class = p->sched_class;
  4009. __setscheduler(rq, p, policy, param->sched_priority);
  4010. if (running)
  4011. p->sched_class->set_curr_task(rq);
  4012. if (on_rq) {
  4013. activate_task(rq, p, 0);
  4014. check_class_changed(rq, p, prev_class, oldprio, running);
  4015. }
  4016. __task_rq_unlock(rq);
  4017. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4018. rt_mutex_adjust_pi(p);
  4019. return 0;
  4020. }
  4021. /**
  4022. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4023. * @p: the task in question.
  4024. * @policy: new policy.
  4025. * @param: structure containing the new RT priority.
  4026. *
  4027. * NOTE that the task may be already dead.
  4028. */
  4029. int sched_setscheduler(struct task_struct *p, int policy,
  4030. const struct sched_param *param)
  4031. {
  4032. return __sched_setscheduler(p, policy, param, true);
  4033. }
  4034. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4035. /**
  4036. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4037. * @p: the task in question.
  4038. * @policy: new policy.
  4039. * @param: structure containing the new RT priority.
  4040. *
  4041. * Just like sched_setscheduler, only don't bother checking if the
  4042. * current context has permission. For example, this is needed in
  4043. * stop_machine(): we create temporary high priority worker threads,
  4044. * but our caller might not have that capability.
  4045. */
  4046. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4047. const struct sched_param *param)
  4048. {
  4049. return __sched_setscheduler(p, policy, param, false);
  4050. }
  4051. static int
  4052. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4053. {
  4054. struct sched_param lparam;
  4055. struct task_struct *p;
  4056. int retval;
  4057. if (!param || pid < 0)
  4058. return -EINVAL;
  4059. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4060. return -EFAULT;
  4061. rcu_read_lock();
  4062. retval = -ESRCH;
  4063. p = find_process_by_pid(pid);
  4064. if (p != NULL)
  4065. retval = sched_setscheduler(p, policy, &lparam);
  4066. rcu_read_unlock();
  4067. return retval;
  4068. }
  4069. /**
  4070. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4071. * @pid: the pid in question.
  4072. * @policy: new policy.
  4073. * @param: structure containing the new RT priority.
  4074. */
  4075. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4076. struct sched_param __user *, param)
  4077. {
  4078. /* negative values for policy are not valid */
  4079. if (policy < 0)
  4080. return -EINVAL;
  4081. return do_sched_setscheduler(pid, policy, param);
  4082. }
  4083. /**
  4084. * sys_sched_setparam - set/change the RT priority of a thread
  4085. * @pid: the pid in question.
  4086. * @param: structure containing the new RT priority.
  4087. */
  4088. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4089. {
  4090. return do_sched_setscheduler(pid, -1, param);
  4091. }
  4092. /**
  4093. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4094. * @pid: the pid in question.
  4095. */
  4096. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4097. {
  4098. struct task_struct *p;
  4099. int retval;
  4100. if (pid < 0)
  4101. return -EINVAL;
  4102. retval = -ESRCH;
  4103. rcu_read_lock();
  4104. p = find_process_by_pid(pid);
  4105. if (p) {
  4106. retval = security_task_getscheduler(p);
  4107. if (!retval)
  4108. retval = p->policy
  4109. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4110. }
  4111. rcu_read_unlock();
  4112. return retval;
  4113. }
  4114. /**
  4115. * sys_sched_getparam - get the RT priority of a thread
  4116. * @pid: the pid in question.
  4117. * @param: structure containing the RT priority.
  4118. */
  4119. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4120. {
  4121. struct sched_param lp;
  4122. struct task_struct *p;
  4123. int retval;
  4124. if (!param || pid < 0)
  4125. return -EINVAL;
  4126. rcu_read_lock();
  4127. p = find_process_by_pid(pid);
  4128. retval = -ESRCH;
  4129. if (!p)
  4130. goto out_unlock;
  4131. retval = security_task_getscheduler(p);
  4132. if (retval)
  4133. goto out_unlock;
  4134. lp.sched_priority = p->rt_priority;
  4135. rcu_read_unlock();
  4136. /*
  4137. * This one might sleep, we cannot do it with a spinlock held ...
  4138. */
  4139. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4140. return retval;
  4141. out_unlock:
  4142. rcu_read_unlock();
  4143. return retval;
  4144. }
  4145. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4146. {
  4147. cpumask_var_t cpus_allowed, new_mask;
  4148. struct task_struct *p;
  4149. int retval;
  4150. get_online_cpus();
  4151. rcu_read_lock();
  4152. p = find_process_by_pid(pid);
  4153. if (!p) {
  4154. rcu_read_unlock();
  4155. put_online_cpus();
  4156. return -ESRCH;
  4157. }
  4158. /* Prevent p going away */
  4159. get_task_struct(p);
  4160. rcu_read_unlock();
  4161. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4162. retval = -ENOMEM;
  4163. goto out_put_task;
  4164. }
  4165. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4166. retval = -ENOMEM;
  4167. goto out_free_cpus_allowed;
  4168. }
  4169. retval = -EPERM;
  4170. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4171. goto out_unlock;
  4172. retval = security_task_setscheduler(p);
  4173. if (retval)
  4174. goto out_unlock;
  4175. cpuset_cpus_allowed(p, cpus_allowed);
  4176. cpumask_and(new_mask, in_mask, cpus_allowed);
  4177. again:
  4178. retval = set_cpus_allowed_ptr(p, new_mask);
  4179. if (!retval) {
  4180. cpuset_cpus_allowed(p, cpus_allowed);
  4181. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4182. /*
  4183. * We must have raced with a concurrent cpuset
  4184. * update. Just reset the cpus_allowed to the
  4185. * cpuset's cpus_allowed
  4186. */
  4187. cpumask_copy(new_mask, cpus_allowed);
  4188. goto again;
  4189. }
  4190. }
  4191. out_unlock:
  4192. free_cpumask_var(new_mask);
  4193. out_free_cpus_allowed:
  4194. free_cpumask_var(cpus_allowed);
  4195. out_put_task:
  4196. put_task_struct(p);
  4197. put_online_cpus();
  4198. return retval;
  4199. }
  4200. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4201. struct cpumask *new_mask)
  4202. {
  4203. if (len < cpumask_size())
  4204. cpumask_clear(new_mask);
  4205. else if (len > cpumask_size())
  4206. len = cpumask_size();
  4207. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4208. }
  4209. /**
  4210. * sys_sched_setaffinity - set the cpu affinity of a process
  4211. * @pid: pid of the process
  4212. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4213. * @user_mask_ptr: user-space pointer to the new cpu mask
  4214. */
  4215. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4216. unsigned long __user *, user_mask_ptr)
  4217. {
  4218. cpumask_var_t new_mask;
  4219. int retval;
  4220. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4221. return -ENOMEM;
  4222. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4223. if (retval == 0)
  4224. retval = sched_setaffinity(pid, new_mask);
  4225. free_cpumask_var(new_mask);
  4226. return retval;
  4227. }
  4228. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4229. {
  4230. struct task_struct *p;
  4231. unsigned long flags;
  4232. struct rq *rq;
  4233. int retval;
  4234. get_online_cpus();
  4235. rcu_read_lock();
  4236. retval = -ESRCH;
  4237. p = find_process_by_pid(pid);
  4238. if (!p)
  4239. goto out_unlock;
  4240. retval = security_task_getscheduler(p);
  4241. if (retval)
  4242. goto out_unlock;
  4243. rq = task_rq_lock(p, &flags);
  4244. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4245. task_rq_unlock(rq, &flags);
  4246. out_unlock:
  4247. rcu_read_unlock();
  4248. put_online_cpus();
  4249. return retval;
  4250. }
  4251. /**
  4252. * sys_sched_getaffinity - get the cpu affinity of a process
  4253. * @pid: pid of the process
  4254. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4255. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4256. */
  4257. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4258. unsigned long __user *, user_mask_ptr)
  4259. {
  4260. int ret;
  4261. cpumask_var_t mask;
  4262. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4263. return -EINVAL;
  4264. if (len & (sizeof(unsigned long)-1))
  4265. return -EINVAL;
  4266. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4267. return -ENOMEM;
  4268. ret = sched_getaffinity(pid, mask);
  4269. if (ret == 0) {
  4270. size_t retlen = min_t(size_t, len, cpumask_size());
  4271. if (copy_to_user(user_mask_ptr, mask, retlen))
  4272. ret = -EFAULT;
  4273. else
  4274. ret = retlen;
  4275. }
  4276. free_cpumask_var(mask);
  4277. return ret;
  4278. }
  4279. /**
  4280. * sys_sched_yield - yield the current processor to other threads.
  4281. *
  4282. * This function yields the current CPU to other tasks. If there are no
  4283. * other threads running on this CPU then this function will return.
  4284. */
  4285. SYSCALL_DEFINE0(sched_yield)
  4286. {
  4287. struct rq *rq = this_rq_lock();
  4288. schedstat_inc(rq, yld_count);
  4289. current->sched_class->yield_task(rq);
  4290. /*
  4291. * Since we are going to call schedule() anyway, there's
  4292. * no need to preempt or enable interrupts:
  4293. */
  4294. __release(rq->lock);
  4295. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4296. do_raw_spin_unlock(&rq->lock);
  4297. preempt_enable_no_resched();
  4298. schedule();
  4299. return 0;
  4300. }
  4301. static inline int should_resched(void)
  4302. {
  4303. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4304. }
  4305. static void __cond_resched(void)
  4306. {
  4307. add_preempt_count(PREEMPT_ACTIVE);
  4308. schedule();
  4309. sub_preempt_count(PREEMPT_ACTIVE);
  4310. }
  4311. int __sched _cond_resched(void)
  4312. {
  4313. if (should_resched()) {
  4314. __cond_resched();
  4315. return 1;
  4316. }
  4317. return 0;
  4318. }
  4319. EXPORT_SYMBOL(_cond_resched);
  4320. /*
  4321. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4322. * call schedule, and on return reacquire the lock.
  4323. *
  4324. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4325. * operations here to prevent schedule() from being called twice (once via
  4326. * spin_unlock(), once by hand).
  4327. */
  4328. int __cond_resched_lock(spinlock_t *lock)
  4329. {
  4330. int resched = should_resched();
  4331. int ret = 0;
  4332. lockdep_assert_held(lock);
  4333. if (spin_needbreak(lock) || resched) {
  4334. spin_unlock(lock);
  4335. if (resched)
  4336. __cond_resched();
  4337. else
  4338. cpu_relax();
  4339. ret = 1;
  4340. spin_lock(lock);
  4341. }
  4342. return ret;
  4343. }
  4344. EXPORT_SYMBOL(__cond_resched_lock);
  4345. int __sched __cond_resched_softirq(void)
  4346. {
  4347. BUG_ON(!in_softirq());
  4348. if (should_resched()) {
  4349. local_bh_enable();
  4350. __cond_resched();
  4351. local_bh_disable();
  4352. return 1;
  4353. }
  4354. return 0;
  4355. }
  4356. EXPORT_SYMBOL(__cond_resched_softirq);
  4357. /**
  4358. * yield - yield the current processor to other threads.
  4359. *
  4360. * This is a shortcut for kernel-space yielding - it marks the
  4361. * thread runnable and calls sys_sched_yield().
  4362. */
  4363. void __sched yield(void)
  4364. {
  4365. set_current_state(TASK_RUNNING);
  4366. sys_sched_yield();
  4367. }
  4368. EXPORT_SYMBOL(yield);
  4369. /*
  4370. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4371. * that process accounting knows that this is a task in IO wait state.
  4372. */
  4373. void __sched io_schedule(void)
  4374. {
  4375. struct rq *rq = raw_rq();
  4376. delayacct_blkio_start();
  4377. atomic_inc(&rq->nr_iowait);
  4378. current->in_iowait = 1;
  4379. schedule();
  4380. current->in_iowait = 0;
  4381. atomic_dec(&rq->nr_iowait);
  4382. delayacct_blkio_end();
  4383. }
  4384. EXPORT_SYMBOL(io_schedule);
  4385. long __sched io_schedule_timeout(long timeout)
  4386. {
  4387. struct rq *rq = raw_rq();
  4388. long ret;
  4389. delayacct_blkio_start();
  4390. atomic_inc(&rq->nr_iowait);
  4391. current->in_iowait = 1;
  4392. ret = schedule_timeout(timeout);
  4393. current->in_iowait = 0;
  4394. atomic_dec(&rq->nr_iowait);
  4395. delayacct_blkio_end();
  4396. return ret;
  4397. }
  4398. /**
  4399. * sys_sched_get_priority_max - return maximum RT priority.
  4400. * @policy: scheduling class.
  4401. *
  4402. * this syscall returns the maximum rt_priority that can be used
  4403. * by a given scheduling class.
  4404. */
  4405. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4406. {
  4407. int ret = -EINVAL;
  4408. switch (policy) {
  4409. case SCHED_FIFO:
  4410. case SCHED_RR:
  4411. ret = MAX_USER_RT_PRIO-1;
  4412. break;
  4413. case SCHED_NORMAL:
  4414. case SCHED_BATCH:
  4415. case SCHED_IDLE:
  4416. ret = 0;
  4417. break;
  4418. }
  4419. return ret;
  4420. }
  4421. /**
  4422. * sys_sched_get_priority_min - return minimum RT priority.
  4423. * @policy: scheduling class.
  4424. *
  4425. * this syscall returns the minimum rt_priority that can be used
  4426. * by a given scheduling class.
  4427. */
  4428. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4429. {
  4430. int ret = -EINVAL;
  4431. switch (policy) {
  4432. case SCHED_FIFO:
  4433. case SCHED_RR:
  4434. ret = 1;
  4435. break;
  4436. case SCHED_NORMAL:
  4437. case SCHED_BATCH:
  4438. case SCHED_IDLE:
  4439. ret = 0;
  4440. }
  4441. return ret;
  4442. }
  4443. /**
  4444. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4445. * @pid: pid of the process.
  4446. * @interval: userspace pointer to the timeslice value.
  4447. *
  4448. * this syscall writes the default timeslice value of a given process
  4449. * into the user-space timespec buffer. A value of '0' means infinity.
  4450. */
  4451. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4452. struct timespec __user *, interval)
  4453. {
  4454. struct task_struct *p;
  4455. unsigned int time_slice;
  4456. unsigned long flags;
  4457. struct rq *rq;
  4458. int retval;
  4459. struct timespec t;
  4460. if (pid < 0)
  4461. return -EINVAL;
  4462. retval = -ESRCH;
  4463. rcu_read_lock();
  4464. p = find_process_by_pid(pid);
  4465. if (!p)
  4466. goto out_unlock;
  4467. retval = security_task_getscheduler(p);
  4468. if (retval)
  4469. goto out_unlock;
  4470. rq = task_rq_lock(p, &flags);
  4471. time_slice = p->sched_class->get_rr_interval(rq, p);
  4472. task_rq_unlock(rq, &flags);
  4473. rcu_read_unlock();
  4474. jiffies_to_timespec(time_slice, &t);
  4475. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4476. return retval;
  4477. out_unlock:
  4478. rcu_read_unlock();
  4479. return retval;
  4480. }
  4481. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4482. void sched_show_task(struct task_struct *p)
  4483. {
  4484. unsigned long free = 0;
  4485. unsigned state;
  4486. state = p->state ? __ffs(p->state) + 1 : 0;
  4487. printk(KERN_INFO "%-15.15s %c", p->comm,
  4488. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4489. #if BITS_PER_LONG == 32
  4490. if (state == TASK_RUNNING)
  4491. printk(KERN_CONT " running ");
  4492. else
  4493. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4494. #else
  4495. if (state == TASK_RUNNING)
  4496. printk(KERN_CONT " running task ");
  4497. else
  4498. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4499. #endif
  4500. #ifdef CONFIG_DEBUG_STACK_USAGE
  4501. free = stack_not_used(p);
  4502. #endif
  4503. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4504. task_pid_nr(p), task_pid_nr(p->real_parent),
  4505. (unsigned long)task_thread_info(p)->flags);
  4506. show_stack(p, NULL);
  4507. }
  4508. void show_state_filter(unsigned long state_filter)
  4509. {
  4510. struct task_struct *g, *p;
  4511. #if BITS_PER_LONG == 32
  4512. printk(KERN_INFO
  4513. " task PC stack pid father\n");
  4514. #else
  4515. printk(KERN_INFO
  4516. " task PC stack pid father\n");
  4517. #endif
  4518. read_lock(&tasklist_lock);
  4519. do_each_thread(g, p) {
  4520. /*
  4521. * reset the NMI-timeout, listing all files on a slow
  4522. * console might take alot of time:
  4523. */
  4524. touch_nmi_watchdog();
  4525. if (!state_filter || (p->state & state_filter))
  4526. sched_show_task(p);
  4527. } while_each_thread(g, p);
  4528. touch_all_softlockup_watchdogs();
  4529. #ifdef CONFIG_SCHED_DEBUG
  4530. sysrq_sched_debug_show();
  4531. #endif
  4532. read_unlock(&tasklist_lock);
  4533. /*
  4534. * Only show locks if all tasks are dumped:
  4535. */
  4536. if (!state_filter)
  4537. debug_show_all_locks();
  4538. }
  4539. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4540. {
  4541. idle->sched_class = &idle_sched_class;
  4542. }
  4543. /**
  4544. * init_idle - set up an idle thread for a given CPU
  4545. * @idle: task in question
  4546. * @cpu: cpu the idle task belongs to
  4547. *
  4548. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4549. * flag, to make booting more robust.
  4550. */
  4551. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4552. {
  4553. struct rq *rq = cpu_rq(cpu);
  4554. unsigned long flags;
  4555. raw_spin_lock_irqsave(&rq->lock, flags);
  4556. __sched_fork(idle);
  4557. idle->state = TASK_RUNNING;
  4558. idle->se.exec_start = sched_clock();
  4559. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4560. /*
  4561. * We're having a chicken and egg problem, even though we are
  4562. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4563. * lockdep check in task_group() will fail.
  4564. *
  4565. * Similar case to sched_fork(). / Alternatively we could
  4566. * use task_rq_lock() here and obtain the other rq->lock.
  4567. *
  4568. * Silence PROVE_RCU
  4569. */
  4570. rcu_read_lock();
  4571. __set_task_cpu(idle, cpu);
  4572. rcu_read_unlock();
  4573. rq->curr = rq->idle = idle;
  4574. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4575. idle->oncpu = 1;
  4576. #endif
  4577. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4578. /* Set the preempt count _outside_ the spinlocks! */
  4579. #if defined(CONFIG_PREEMPT)
  4580. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4581. #else
  4582. task_thread_info(idle)->preempt_count = 0;
  4583. #endif
  4584. /*
  4585. * The idle tasks have their own, simple scheduling class:
  4586. */
  4587. idle->sched_class = &idle_sched_class;
  4588. ftrace_graph_init_task(idle);
  4589. }
  4590. /*
  4591. * In a system that switches off the HZ timer nohz_cpu_mask
  4592. * indicates which cpus entered this state. This is used
  4593. * in the rcu update to wait only for active cpus. For system
  4594. * which do not switch off the HZ timer nohz_cpu_mask should
  4595. * always be CPU_BITS_NONE.
  4596. */
  4597. cpumask_var_t nohz_cpu_mask;
  4598. /*
  4599. * Increase the granularity value when there are more CPUs,
  4600. * because with more CPUs the 'effective latency' as visible
  4601. * to users decreases. But the relationship is not linear,
  4602. * so pick a second-best guess by going with the log2 of the
  4603. * number of CPUs.
  4604. *
  4605. * This idea comes from the SD scheduler of Con Kolivas:
  4606. */
  4607. static int get_update_sysctl_factor(void)
  4608. {
  4609. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4610. unsigned int factor;
  4611. switch (sysctl_sched_tunable_scaling) {
  4612. case SCHED_TUNABLESCALING_NONE:
  4613. factor = 1;
  4614. break;
  4615. case SCHED_TUNABLESCALING_LINEAR:
  4616. factor = cpus;
  4617. break;
  4618. case SCHED_TUNABLESCALING_LOG:
  4619. default:
  4620. factor = 1 + ilog2(cpus);
  4621. break;
  4622. }
  4623. return factor;
  4624. }
  4625. static void update_sysctl(void)
  4626. {
  4627. unsigned int factor = get_update_sysctl_factor();
  4628. #define SET_SYSCTL(name) \
  4629. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4630. SET_SYSCTL(sched_min_granularity);
  4631. SET_SYSCTL(sched_latency);
  4632. SET_SYSCTL(sched_wakeup_granularity);
  4633. #undef SET_SYSCTL
  4634. }
  4635. static inline void sched_init_granularity(void)
  4636. {
  4637. update_sysctl();
  4638. }
  4639. #ifdef CONFIG_SMP
  4640. /*
  4641. * This is how migration works:
  4642. *
  4643. * 1) we invoke migration_cpu_stop() on the target CPU using
  4644. * stop_one_cpu().
  4645. * 2) stopper starts to run (implicitly forcing the migrated thread
  4646. * off the CPU)
  4647. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4648. * 4) if it's in the wrong runqueue then the migration thread removes
  4649. * it and puts it into the right queue.
  4650. * 5) stopper completes and stop_one_cpu() returns and the migration
  4651. * is done.
  4652. */
  4653. /*
  4654. * Change a given task's CPU affinity. Migrate the thread to a
  4655. * proper CPU and schedule it away if the CPU it's executing on
  4656. * is removed from the allowed bitmask.
  4657. *
  4658. * NOTE: the caller must have a valid reference to the task, the
  4659. * task must not exit() & deallocate itself prematurely. The
  4660. * call is not atomic; no spinlocks may be held.
  4661. */
  4662. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4663. {
  4664. unsigned long flags;
  4665. struct rq *rq;
  4666. unsigned int dest_cpu;
  4667. int ret = 0;
  4668. /*
  4669. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  4670. * drop the rq->lock and still rely on ->cpus_allowed.
  4671. */
  4672. again:
  4673. while (task_is_waking(p))
  4674. cpu_relax();
  4675. rq = task_rq_lock(p, &flags);
  4676. if (task_is_waking(p)) {
  4677. task_rq_unlock(rq, &flags);
  4678. goto again;
  4679. }
  4680. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4681. ret = -EINVAL;
  4682. goto out;
  4683. }
  4684. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4685. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4686. ret = -EINVAL;
  4687. goto out;
  4688. }
  4689. if (p->sched_class->set_cpus_allowed)
  4690. p->sched_class->set_cpus_allowed(p, new_mask);
  4691. else {
  4692. cpumask_copy(&p->cpus_allowed, new_mask);
  4693. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4694. }
  4695. /* Can the task run on the task's current CPU? If so, we're done */
  4696. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4697. goto out;
  4698. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4699. if (migrate_task(p, rq)) {
  4700. struct migration_arg arg = { p, dest_cpu };
  4701. /* Need help from migration thread: drop lock and wait. */
  4702. task_rq_unlock(rq, &flags);
  4703. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4704. tlb_migrate_finish(p->mm);
  4705. return 0;
  4706. }
  4707. out:
  4708. task_rq_unlock(rq, &flags);
  4709. return ret;
  4710. }
  4711. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4712. /*
  4713. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4714. * this because either it can't run here any more (set_cpus_allowed()
  4715. * away from this CPU, or CPU going down), or because we're
  4716. * attempting to rebalance this task on exec (sched_exec).
  4717. *
  4718. * So we race with normal scheduler movements, but that's OK, as long
  4719. * as the task is no longer on this CPU.
  4720. *
  4721. * Returns non-zero if task was successfully migrated.
  4722. */
  4723. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4724. {
  4725. struct rq *rq_dest, *rq_src;
  4726. int ret = 0;
  4727. if (unlikely(!cpu_active(dest_cpu)))
  4728. return ret;
  4729. rq_src = cpu_rq(src_cpu);
  4730. rq_dest = cpu_rq(dest_cpu);
  4731. double_rq_lock(rq_src, rq_dest);
  4732. /* Already moved. */
  4733. if (task_cpu(p) != src_cpu)
  4734. goto done;
  4735. /* Affinity changed (again). */
  4736. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4737. goto fail;
  4738. /*
  4739. * If we're not on a rq, the next wake-up will ensure we're
  4740. * placed properly.
  4741. */
  4742. if (p->se.on_rq) {
  4743. deactivate_task(rq_src, p, 0);
  4744. set_task_cpu(p, dest_cpu);
  4745. activate_task(rq_dest, p, 0);
  4746. check_preempt_curr(rq_dest, p, 0);
  4747. }
  4748. done:
  4749. ret = 1;
  4750. fail:
  4751. double_rq_unlock(rq_src, rq_dest);
  4752. return ret;
  4753. }
  4754. /*
  4755. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4756. * and performs thread migration by bumping thread off CPU then
  4757. * 'pushing' onto another runqueue.
  4758. */
  4759. static int migration_cpu_stop(void *data)
  4760. {
  4761. struct migration_arg *arg = data;
  4762. /*
  4763. * The original target cpu might have gone down and we might
  4764. * be on another cpu but it doesn't matter.
  4765. */
  4766. local_irq_disable();
  4767. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4768. local_irq_enable();
  4769. return 0;
  4770. }
  4771. #ifdef CONFIG_HOTPLUG_CPU
  4772. /*
  4773. * Ensures that the idle task is using init_mm right before its cpu goes
  4774. * offline.
  4775. */
  4776. void idle_task_exit(void)
  4777. {
  4778. struct mm_struct *mm = current->active_mm;
  4779. BUG_ON(cpu_online(smp_processor_id()));
  4780. if (mm != &init_mm)
  4781. switch_mm(mm, &init_mm, current);
  4782. mmdrop(mm);
  4783. }
  4784. /*
  4785. * While a dead CPU has no uninterruptible tasks queued at this point,
  4786. * it might still have a nonzero ->nr_uninterruptible counter, because
  4787. * for performance reasons the counter is not stricly tracking tasks to
  4788. * their home CPUs. So we just add the counter to another CPU's counter,
  4789. * to keep the global sum constant after CPU-down:
  4790. */
  4791. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4792. {
  4793. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4794. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4795. rq_src->nr_uninterruptible = 0;
  4796. }
  4797. /*
  4798. * remove the tasks which were accounted by rq from calc_load_tasks.
  4799. */
  4800. static void calc_global_load_remove(struct rq *rq)
  4801. {
  4802. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4803. rq->calc_load_active = 0;
  4804. }
  4805. /*
  4806. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4807. * try_to_wake_up()->select_task_rq().
  4808. *
  4809. * Called with rq->lock held even though we'er in stop_machine() and
  4810. * there's no concurrency possible, we hold the required locks anyway
  4811. * because of lock validation efforts.
  4812. */
  4813. static void migrate_tasks(unsigned int dead_cpu)
  4814. {
  4815. struct rq *rq = cpu_rq(dead_cpu);
  4816. struct task_struct *next, *stop = rq->stop;
  4817. int dest_cpu;
  4818. /*
  4819. * Fudge the rq selection such that the below task selection loop
  4820. * doesn't get stuck on the currently eligible stop task.
  4821. *
  4822. * We're currently inside stop_machine() and the rq is either stuck
  4823. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4824. * either way we should never end up calling schedule() until we're
  4825. * done here.
  4826. */
  4827. rq->stop = NULL;
  4828. for ( ; ; ) {
  4829. /*
  4830. * There's this thread running, bail when that's the only
  4831. * remaining thread.
  4832. */
  4833. if (rq->nr_running == 1)
  4834. break;
  4835. next = pick_next_task(rq);
  4836. BUG_ON(!next);
  4837. next->sched_class->put_prev_task(rq, next);
  4838. /* Find suitable destination for @next, with force if needed. */
  4839. dest_cpu = select_fallback_rq(dead_cpu, next);
  4840. raw_spin_unlock(&rq->lock);
  4841. __migrate_task(next, dead_cpu, dest_cpu);
  4842. raw_spin_lock(&rq->lock);
  4843. }
  4844. rq->stop = stop;
  4845. }
  4846. #endif /* CONFIG_HOTPLUG_CPU */
  4847. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4848. static struct ctl_table sd_ctl_dir[] = {
  4849. {
  4850. .procname = "sched_domain",
  4851. .mode = 0555,
  4852. },
  4853. {}
  4854. };
  4855. static struct ctl_table sd_ctl_root[] = {
  4856. {
  4857. .procname = "kernel",
  4858. .mode = 0555,
  4859. .child = sd_ctl_dir,
  4860. },
  4861. {}
  4862. };
  4863. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4864. {
  4865. struct ctl_table *entry =
  4866. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4867. return entry;
  4868. }
  4869. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4870. {
  4871. struct ctl_table *entry;
  4872. /*
  4873. * In the intermediate directories, both the child directory and
  4874. * procname are dynamically allocated and could fail but the mode
  4875. * will always be set. In the lowest directory the names are
  4876. * static strings and all have proc handlers.
  4877. */
  4878. for (entry = *tablep; entry->mode; entry++) {
  4879. if (entry->child)
  4880. sd_free_ctl_entry(&entry->child);
  4881. if (entry->proc_handler == NULL)
  4882. kfree(entry->procname);
  4883. }
  4884. kfree(*tablep);
  4885. *tablep = NULL;
  4886. }
  4887. static void
  4888. set_table_entry(struct ctl_table *entry,
  4889. const char *procname, void *data, int maxlen,
  4890. mode_t mode, proc_handler *proc_handler)
  4891. {
  4892. entry->procname = procname;
  4893. entry->data = data;
  4894. entry->maxlen = maxlen;
  4895. entry->mode = mode;
  4896. entry->proc_handler = proc_handler;
  4897. }
  4898. static struct ctl_table *
  4899. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4900. {
  4901. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4902. if (table == NULL)
  4903. return NULL;
  4904. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4905. sizeof(long), 0644, proc_doulongvec_minmax);
  4906. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4907. sizeof(long), 0644, proc_doulongvec_minmax);
  4908. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4909. sizeof(int), 0644, proc_dointvec_minmax);
  4910. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4911. sizeof(int), 0644, proc_dointvec_minmax);
  4912. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4913. sizeof(int), 0644, proc_dointvec_minmax);
  4914. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4915. sizeof(int), 0644, proc_dointvec_minmax);
  4916. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4917. sizeof(int), 0644, proc_dointvec_minmax);
  4918. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4919. sizeof(int), 0644, proc_dointvec_minmax);
  4920. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4921. sizeof(int), 0644, proc_dointvec_minmax);
  4922. set_table_entry(&table[9], "cache_nice_tries",
  4923. &sd->cache_nice_tries,
  4924. sizeof(int), 0644, proc_dointvec_minmax);
  4925. set_table_entry(&table[10], "flags", &sd->flags,
  4926. sizeof(int), 0644, proc_dointvec_minmax);
  4927. set_table_entry(&table[11], "name", sd->name,
  4928. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4929. /* &table[12] is terminator */
  4930. return table;
  4931. }
  4932. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4933. {
  4934. struct ctl_table *entry, *table;
  4935. struct sched_domain *sd;
  4936. int domain_num = 0, i;
  4937. char buf[32];
  4938. for_each_domain(cpu, sd)
  4939. domain_num++;
  4940. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4941. if (table == NULL)
  4942. return NULL;
  4943. i = 0;
  4944. for_each_domain(cpu, sd) {
  4945. snprintf(buf, 32, "domain%d", i);
  4946. entry->procname = kstrdup(buf, GFP_KERNEL);
  4947. entry->mode = 0555;
  4948. entry->child = sd_alloc_ctl_domain_table(sd);
  4949. entry++;
  4950. i++;
  4951. }
  4952. return table;
  4953. }
  4954. static struct ctl_table_header *sd_sysctl_header;
  4955. static void register_sched_domain_sysctl(void)
  4956. {
  4957. int i, cpu_num = num_possible_cpus();
  4958. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4959. char buf[32];
  4960. WARN_ON(sd_ctl_dir[0].child);
  4961. sd_ctl_dir[0].child = entry;
  4962. if (entry == NULL)
  4963. return;
  4964. for_each_possible_cpu(i) {
  4965. snprintf(buf, 32, "cpu%d", i);
  4966. entry->procname = kstrdup(buf, GFP_KERNEL);
  4967. entry->mode = 0555;
  4968. entry->child = sd_alloc_ctl_cpu_table(i);
  4969. entry++;
  4970. }
  4971. WARN_ON(sd_sysctl_header);
  4972. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4973. }
  4974. /* may be called multiple times per register */
  4975. static void unregister_sched_domain_sysctl(void)
  4976. {
  4977. if (sd_sysctl_header)
  4978. unregister_sysctl_table(sd_sysctl_header);
  4979. sd_sysctl_header = NULL;
  4980. if (sd_ctl_dir[0].child)
  4981. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4982. }
  4983. #else
  4984. static void register_sched_domain_sysctl(void)
  4985. {
  4986. }
  4987. static void unregister_sched_domain_sysctl(void)
  4988. {
  4989. }
  4990. #endif
  4991. static void set_rq_online(struct rq *rq)
  4992. {
  4993. if (!rq->online) {
  4994. const struct sched_class *class;
  4995. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4996. rq->online = 1;
  4997. for_each_class(class) {
  4998. if (class->rq_online)
  4999. class->rq_online(rq);
  5000. }
  5001. }
  5002. }
  5003. static void set_rq_offline(struct rq *rq)
  5004. {
  5005. if (rq->online) {
  5006. const struct sched_class *class;
  5007. for_each_class(class) {
  5008. if (class->rq_offline)
  5009. class->rq_offline(rq);
  5010. }
  5011. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5012. rq->online = 0;
  5013. }
  5014. }
  5015. /*
  5016. * migration_call - callback that gets triggered when a CPU is added.
  5017. * Here we can start up the necessary migration thread for the new CPU.
  5018. */
  5019. static int __cpuinit
  5020. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5021. {
  5022. int cpu = (long)hcpu;
  5023. unsigned long flags;
  5024. struct rq *rq = cpu_rq(cpu);
  5025. switch (action & ~CPU_TASKS_FROZEN) {
  5026. case CPU_UP_PREPARE:
  5027. rq->calc_load_update = calc_load_update;
  5028. break;
  5029. case CPU_ONLINE:
  5030. /* Update our root-domain */
  5031. raw_spin_lock_irqsave(&rq->lock, flags);
  5032. if (rq->rd) {
  5033. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5034. set_rq_online(rq);
  5035. }
  5036. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5037. break;
  5038. #ifdef CONFIG_HOTPLUG_CPU
  5039. case CPU_DYING:
  5040. /* Update our root-domain */
  5041. raw_spin_lock_irqsave(&rq->lock, flags);
  5042. if (rq->rd) {
  5043. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5044. set_rq_offline(rq);
  5045. }
  5046. migrate_tasks(cpu);
  5047. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5048. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5049. migrate_nr_uninterruptible(rq);
  5050. calc_global_load_remove(rq);
  5051. break;
  5052. #endif
  5053. }
  5054. return NOTIFY_OK;
  5055. }
  5056. /*
  5057. * Register at high priority so that task migration (migrate_all_tasks)
  5058. * happens before everything else. This has to be lower priority than
  5059. * the notifier in the perf_event subsystem, though.
  5060. */
  5061. static struct notifier_block __cpuinitdata migration_notifier = {
  5062. .notifier_call = migration_call,
  5063. .priority = CPU_PRI_MIGRATION,
  5064. };
  5065. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5066. unsigned long action, void *hcpu)
  5067. {
  5068. switch (action & ~CPU_TASKS_FROZEN) {
  5069. case CPU_ONLINE:
  5070. case CPU_DOWN_FAILED:
  5071. set_cpu_active((long)hcpu, true);
  5072. return NOTIFY_OK;
  5073. default:
  5074. return NOTIFY_DONE;
  5075. }
  5076. }
  5077. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5078. unsigned long action, void *hcpu)
  5079. {
  5080. switch (action & ~CPU_TASKS_FROZEN) {
  5081. case CPU_DOWN_PREPARE:
  5082. set_cpu_active((long)hcpu, false);
  5083. return NOTIFY_OK;
  5084. default:
  5085. return NOTIFY_DONE;
  5086. }
  5087. }
  5088. static int __init migration_init(void)
  5089. {
  5090. void *cpu = (void *)(long)smp_processor_id();
  5091. int err;
  5092. /* Initialize migration for the boot CPU */
  5093. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5094. BUG_ON(err == NOTIFY_BAD);
  5095. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5096. register_cpu_notifier(&migration_notifier);
  5097. /* Register cpu active notifiers */
  5098. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5099. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5100. return 0;
  5101. }
  5102. early_initcall(migration_init);
  5103. #endif
  5104. #ifdef CONFIG_SMP
  5105. #ifdef CONFIG_SCHED_DEBUG
  5106. static __read_mostly int sched_domain_debug_enabled;
  5107. static int __init sched_domain_debug_setup(char *str)
  5108. {
  5109. sched_domain_debug_enabled = 1;
  5110. return 0;
  5111. }
  5112. early_param("sched_debug", sched_domain_debug_setup);
  5113. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5114. struct cpumask *groupmask)
  5115. {
  5116. struct sched_group *group = sd->groups;
  5117. char str[256];
  5118. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5119. cpumask_clear(groupmask);
  5120. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5121. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5122. printk("does not load-balance\n");
  5123. if (sd->parent)
  5124. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5125. " has parent");
  5126. return -1;
  5127. }
  5128. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5129. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5130. printk(KERN_ERR "ERROR: domain->span does not contain "
  5131. "CPU%d\n", cpu);
  5132. }
  5133. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5134. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5135. " CPU%d\n", cpu);
  5136. }
  5137. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5138. do {
  5139. if (!group) {
  5140. printk("\n");
  5141. printk(KERN_ERR "ERROR: group is NULL\n");
  5142. break;
  5143. }
  5144. if (!group->cpu_power) {
  5145. printk(KERN_CONT "\n");
  5146. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5147. "set\n");
  5148. break;
  5149. }
  5150. if (!cpumask_weight(sched_group_cpus(group))) {
  5151. printk(KERN_CONT "\n");
  5152. printk(KERN_ERR "ERROR: empty group\n");
  5153. break;
  5154. }
  5155. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5156. printk(KERN_CONT "\n");
  5157. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5158. break;
  5159. }
  5160. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5161. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5162. printk(KERN_CONT " %s", str);
  5163. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5164. printk(KERN_CONT " (cpu_power = %d)",
  5165. group->cpu_power);
  5166. }
  5167. group = group->next;
  5168. } while (group != sd->groups);
  5169. printk(KERN_CONT "\n");
  5170. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5171. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5172. if (sd->parent &&
  5173. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5174. printk(KERN_ERR "ERROR: parent span is not a superset "
  5175. "of domain->span\n");
  5176. return 0;
  5177. }
  5178. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5179. {
  5180. cpumask_var_t groupmask;
  5181. int level = 0;
  5182. if (!sched_domain_debug_enabled)
  5183. return;
  5184. if (!sd) {
  5185. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5186. return;
  5187. }
  5188. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5189. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5190. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5191. return;
  5192. }
  5193. for (;;) {
  5194. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5195. break;
  5196. level++;
  5197. sd = sd->parent;
  5198. if (!sd)
  5199. break;
  5200. }
  5201. free_cpumask_var(groupmask);
  5202. }
  5203. #else /* !CONFIG_SCHED_DEBUG */
  5204. # define sched_domain_debug(sd, cpu) do { } while (0)
  5205. #endif /* CONFIG_SCHED_DEBUG */
  5206. static int sd_degenerate(struct sched_domain *sd)
  5207. {
  5208. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5209. return 1;
  5210. /* Following flags need at least 2 groups */
  5211. if (sd->flags & (SD_LOAD_BALANCE |
  5212. SD_BALANCE_NEWIDLE |
  5213. SD_BALANCE_FORK |
  5214. SD_BALANCE_EXEC |
  5215. SD_SHARE_CPUPOWER |
  5216. SD_SHARE_PKG_RESOURCES)) {
  5217. if (sd->groups != sd->groups->next)
  5218. return 0;
  5219. }
  5220. /* Following flags don't use groups */
  5221. if (sd->flags & (SD_WAKE_AFFINE))
  5222. return 0;
  5223. return 1;
  5224. }
  5225. static int
  5226. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5227. {
  5228. unsigned long cflags = sd->flags, pflags = parent->flags;
  5229. if (sd_degenerate(parent))
  5230. return 1;
  5231. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5232. return 0;
  5233. /* Flags needing groups don't count if only 1 group in parent */
  5234. if (parent->groups == parent->groups->next) {
  5235. pflags &= ~(SD_LOAD_BALANCE |
  5236. SD_BALANCE_NEWIDLE |
  5237. SD_BALANCE_FORK |
  5238. SD_BALANCE_EXEC |
  5239. SD_SHARE_CPUPOWER |
  5240. SD_SHARE_PKG_RESOURCES);
  5241. if (nr_node_ids == 1)
  5242. pflags &= ~SD_SERIALIZE;
  5243. }
  5244. if (~cflags & pflags)
  5245. return 0;
  5246. return 1;
  5247. }
  5248. static void free_rootdomain(struct root_domain *rd)
  5249. {
  5250. synchronize_sched();
  5251. cpupri_cleanup(&rd->cpupri);
  5252. free_cpumask_var(rd->rto_mask);
  5253. free_cpumask_var(rd->online);
  5254. free_cpumask_var(rd->span);
  5255. kfree(rd);
  5256. }
  5257. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5258. {
  5259. struct root_domain *old_rd = NULL;
  5260. unsigned long flags;
  5261. raw_spin_lock_irqsave(&rq->lock, flags);
  5262. if (rq->rd) {
  5263. old_rd = rq->rd;
  5264. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5265. set_rq_offline(rq);
  5266. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5267. /*
  5268. * If we dont want to free the old_rt yet then
  5269. * set old_rd to NULL to skip the freeing later
  5270. * in this function:
  5271. */
  5272. if (!atomic_dec_and_test(&old_rd->refcount))
  5273. old_rd = NULL;
  5274. }
  5275. atomic_inc(&rd->refcount);
  5276. rq->rd = rd;
  5277. cpumask_set_cpu(rq->cpu, rd->span);
  5278. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5279. set_rq_online(rq);
  5280. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5281. if (old_rd)
  5282. free_rootdomain(old_rd);
  5283. }
  5284. static int init_rootdomain(struct root_domain *rd)
  5285. {
  5286. memset(rd, 0, sizeof(*rd));
  5287. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5288. goto out;
  5289. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5290. goto free_span;
  5291. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5292. goto free_online;
  5293. if (cpupri_init(&rd->cpupri) != 0)
  5294. goto free_rto_mask;
  5295. return 0;
  5296. free_rto_mask:
  5297. free_cpumask_var(rd->rto_mask);
  5298. free_online:
  5299. free_cpumask_var(rd->online);
  5300. free_span:
  5301. free_cpumask_var(rd->span);
  5302. out:
  5303. return -ENOMEM;
  5304. }
  5305. static void init_defrootdomain(void)
  5306. {
  5307. init_rootdomain(&def_root_domain);
  5308. atomic_set(&def_root_domain.refcount, 1);
  5309. }
  5310. static struct root_domain *alloc_rootdomain(void)
  5311. {
  5312. struct root_domain *rd;
  5313. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5314. if (!rd)
  5315. return NULL;
  5316. if (init_rootdomain(rd) != 0) {
  5317. kfree(rd);
  5318. return NULL;
  5319. }
  5320. return rd;
  5321. }
  5322. /*
  5323. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5324. * hold the hotplug lock.
  5325. */
  5326. static void
  5327. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5328. {
  5329. struct rq *rq = cpu_rq(cpu);
  5330. struct sched_domain *tmp;
  5331. for (tmp = sd; tmp; tmp = tmp->parent)
  5332. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5333. /* Remove the sched domains which do not contribute to scheduling. */
  5334. for (tmp = sd; tmp; ) {
  5335. struct sched_domain *parent = tmp->parent;
  5336. if (!parent)
  5337. break;
  5338. if (sd_parent_degenerate(tmp, parent)) {
  5339. tmp->parent = parent->parent;
  5340. if (parent->parent)
  5341. parent->parent->child = tmp;
  5342. } else
  5343. tmp = tmp->parent;
  5344. }
  5345. if (sd && sd_degenerate(sd)) {
  5346. sd = sd->parent;
  5347. if (sd)
  5348. sd->child = NULL;
  5349. }
  5350. sched_domain_debug(sd, cpu);
  5351. rq_attach_root(rq, rd);
  5352. rcu_assign_pointer(rq->sd, sd);
  5353. }
  5354. /* cpus with isolated domains */
  5355. static cpumask_var_t cpu_isolated_map;
  5356. /* Setup the mask of cpus configured for isolated domains */
  5357. static int __init isolated_cpu_setup(char *str)
  5358. {
  5359. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5360. cpulist_parse(str, cpu_isolated_map);
  5361. return 1;
  5362. }
  5363. __setup("isolcpus=", isolated_cpu_setup);
  5364. /*
  5365. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5366. * to a function which identifies what group(along with sched group) a CPU
  5367. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5368. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5369. *
  5370. * init_sched_build_groups will build a circular linked list of the groups
  5371. * covered by the given span, and will set each group's ->cpumask correctly,
  5372. * and ->cpu_power to 0.
  5373. */
  5374. static void
  5375. init_sched_build_groups(const struct cpumask *span,
  5376. const struct cpumask *cpu_map,
  5377. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5378. struct sched_group **sg,
  5379. struct cpumask *tmpmask),
  5380. struct cpumask *covered, struct cpumask *tmpmask)
  5381. {
  5382. struct sched_group *first = NULL, *last = NULL;
  5383. int i;
  5384. cpumask_clear(covered);
  5385. for_each_cpu(i, span) {
  5386. struct sched_group *sg;
  5387. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5388. int j;
  5389. if (cpumask_test_cpu(i, covered))
  5390. continue;
  5391. cpumask_clear(sched_group_cpus(sg));
  5392. sg->cpu_power = 0;
  5393. for_each_cpu(j, span) {
  5394. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5395. continue;
  5396. cpumask_set_cpu(j, covered);
  5397. cpumask_set_cpu(j, sched_group_cpus(sg));
  5398. }
  5399. if (!first)
  5400. first = sg;
  5401. if (last)
  5402. last->next = sg;
  5403. last = sg;
  5404. }
  5405. last->next = first;
  5406. }
  5407. #define SD_NODES_PER_DOMAIN 16
  5408. #ifdef CONFIG_NUMA
  5409. /**
  5410. * find_next_best_node - find the next node to include in a sched_domain
  5411. * @node: node whose sched_domain we're building
  5412. * @used_nodes: nodes already in the sched_domain
  5413. *
  5414. * Find the next node to include in a given scheduling domain. Simply
  5415. * finds the closest node not already in the @used_nodes map.
  5416. *
  5417. * Should use nodemask_t.
  5418. */
  5419. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5420. {
  5421. int i, n, val, min_val, best_node = 0;
  5422. min_val = INT_MAX;
  5423. for (i = 0; i < nr_node_ids; i++) {
  5424. /* Start at @node */
  5425. n = (node + i) % nr_node_ids;
  5426. if (!nr_cpus_node(n))
  5427. continue;
  5428. /* Skip already used nodes */
  5429. if (node_isset(n, *used_nodes))
  5430. continue;
  5431. /* Simple min distance search */
  5432. val = node_distance(node, n);
  5433. if (val < min_val) {
  5434. min_val = val;
  5435. best_node = n;
  5436. }
  5437. }
  5438. node_set(best_node, *used_nodes);
  5439. return best_node;
  5440. }
  5441. /**
  5442. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5443. * @node: node whose cpumask we're constructing
  5444. * @span: resulting cpumask
  5445. *
  5446. * Given a node, construct a good cpumask for its sched_domain to span. It
  5447. * should be one that prevents unnecessary balancing, but also spreads tasks
  5448. * out optimally.
  5449. */
  5450. static void sched_domain_node_span(int node, struct cpumask *span)
  5451. {
  5452. nodemask_t used_nodes;
  5453. int i;
  5454. cpumask_clear(span);
  5455. nodes_clear(used_nodes);
  5456. cpumask_or(span, span, cpumask_of_node(node));
  5457. node_set(node, used_nodes);
  5458. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5459. int next_node = find_next_best_node(node, &used_nodes);
  5460. cpumask_or(span, span, cpumask_of_node(next_node));
  5461. }
  5462. }
  5463. #endif /* CONFIG_NUMA */
  5464. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5465. /*
  5466. * The cpus mask in sched_group and sched_domain hangs off the end.
  5467. *
  5468. * ( See the the comments in include/linux/sched.h:struct sched_group
  5469. * and struct sched_domain. )
  5470. */
  5471. struct static_sched_group {
  5472. struct sched_group sg;
  5473. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5474. };
  5475. struct static_sched_domain {
  5476. struct sched_domain sd;
  5477. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5478. };
  5479. struct s_data {
  5480. #ifdef CONFIG_NUMA
  5481. int sd_allnodes;
  5482. cpumask_var_t domainspan;
  5483. cpumask_var_t covered;
  5484. cpumask_var_t notcovered;
  5485. #endif
  5486. cpumask_var_t nodemask;
  5487. cpumask_var_t this_sibling_map;
  5488. cpumask_var_t this_core_map;
  5489. cpumask_var_t this_book_map;
  5490. cpumask_var_t send_covered;
  5491. cpumask_var_t tmpmask;
  5492. struct sched_group **sched_group_nodes;
  5493. struct root_domain *rd;
  5494. };
  5495. enum s_alloc {
  5496. sa_sched_groups = 0,
  5497. sa_rootdomain,
  5498. sa_tmpmask,
  5499. sa_send_covered,
  5500. sa_this_book_map,
  5501. sa_this_core_map,
  5502. sa_this_sibling_map,
  5503. sa_nodemask,
  5504. sa_sched_group_nodes,
  5505. #ifdef CONFIG_NUMA
  5506. sa_notcovered,
  5507. sa_covered,
  5508. sa_domainspan,
  5509. #endif
  5510. sa_none,
  5511. };
  5512. /*
  5513. * SMT sched-domains:
  5514. */
  5515. #ifdef CONFIG_SCHED_SMT
  5516. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5517. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5518. static int
  5519. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5520. struct sched_group **sg, struct cpumask *unused)
  5521. {
  5522. if (sg)
  5523. *sg = &per_cpu(sched_groups, cpu).sg;
  5524. return cpu;
  5525. }
  5526. #endif /* CONFIG_SCHED_SMT */
  5527. /*
  5528. * multi-core sched-domains:
  5529. */
  5530. #ifdef CONFIG_SCHED_MC
  5531. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5532. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5533. static int
  5534. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5535. struct sched_group **sg, struct cpumask *mask)
  5536. {
  5537. int group;
  5538. #ifdef CONFIG_SCHED_SMT
  5539. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5540. group = cpumask_first(mask);
  5541. #else
  5542. group = cpu;
  5543. #endif
  5544. if (sg)
  5545. *sg = &per_cpu(sched_group_core, group).sg;
  5546. return group;
  5547. }
  5548. #endif /* CONFIG_SCHED_MC */
  5549. /*
  5550. * book sched-domains:
  5551. */
  5552. #ifdef CONFIG_SCHED_BOOK
  5553. static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
  5554. static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
  5555. static int
  5556. cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
  5557. struct sched_group **sg, struct cpumask *mask)
  5558. {
  5559. int group = cpu;
  5560. #ifdef CONFIG_SCHED_MC
  5561. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5562. group = cpumask_first(mask);
  5563. #elif defined(CONFIG_SCHED_SMT)
  5564. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5565. group = cpumask_first(mask);
  5566. #endif
  5567. if (sg)
  5568. *sg = &per_cpu(sched_group_book, group).sg;
  5569. return group;
  5570. }
  5571. #endif /* CONFIG_SCHED_BOOK */
  5572. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5573. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5574. static int
  5575. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5576. struct sched_group **sg, struct cpumask *mask)
  5577. {
  5578. int group;
  5579. #ifdef CONFIG_SCHED_BOOK
  5580. cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
  5581. group = cpumask_first(mask);
  5582. #elif defined(CONFIG_SCHED_MC)
  5583. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5584. group = cpumask_first(mask);
  5585. #elif defined(CONFIG_SCHED_SMT)
  5586. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5587. group = cpumask_first(mask);
  5588. #else
  5589. group = cpu;
  5590. #endif
  5591. if (sg)
  5592. *sg = &per_cpu(sched_group_phys, group).sg;
  5593. return group;
  5594. }
  5595. #ifdef CONFIG_NUMA
  5596. /*
  5597. * The init_sched_build_groups can't handle what we want to do with node
  5598. * groups, so roll our own. Now each node has its own list of groups which
  5599. * gets dynamically allocated.
  5600. */
  5601. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5602. static struct sched_group ***sched_group_nodes_bycpu;
  5603. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5604. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5605. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5606. struct sched_group **sg,
  5607. struct cpumask *nodemask)
  5608. {
  5609. int group;
  5610. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5611. group = cpumask_first(nodemask);
  5612. if (sg)
  5613. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5614. return group;
  5615. }
  5616. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5617. {
  5618. struct sched_group *sg = group_head;
  5619. int j;
  5620. if (!sg)
  5621. return;
  5622. do {
  5623. for_each_cpu(j, sched_group_cpus(sg)) {
  5624. struct sched_domain *sd;
  5625. sd = &per_cpu(phys_domains, j).sd;
  5626. if (j != group_first_cpu(sd->groups)) {
  5627. /*
  5628. * Only add "power" once for each
  5629. * physical package.
  5630. */
  5631. continue;
  5632. }
  5633. sg->cpu_power += sd->groups->cpu_power;
  5634. }
  5635. sg = sg->next;
  5636. } while (sg != group_head);
  5637. }
  5638. static int build_numa_sched_groups(struct s_data *d,
  5639. const struct cpumask *cpu_map, int num)
  5640. {
  5641. struct sched_domain *sd;
  5642. struct sched_group *sg, *prev;
  5643. int n, j;
  5644. cpumask_clear(d->covered);
  5645. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5646. if (cpumask_empty(d->nodemask)) {
  5647. d->sched_group_nodes[num] = NULL;
  5648. goto out;
  5649. }
  5650. sched_domain_node_span(num, d->domainspan);
  5651. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5652. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5653. GFP_KERNEL, num);
  5654. if (!sg) {
  5655. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5656. num);
  5657. return -ENOMEM;
  5658. }
  5659. d->sched_group_nodes[num] = sg;
  5660. for_each_cpu(j, d->nodemask) {
  5661. sd = &per_cpu(node_domains, j).sd;
  5662. sd->groups = sg;
  5663. }
  5664. sg->cpu_power = 0;
  5665. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5666. sg->next = sg;
  5667. cpumask_or(d->covered, d->covered, d->nodemask);
  5668. prev = sg;
  5669. for (j = 0; j < nr_node_ids; j++) {
  5670. n = (num + j) % nr_node_ids;
  5671. cpumask_complement(d->notcovered, d->covered);
  5672. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5673. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5674. if (cpumask_empty(d->tmpmask))
  5675. break;
  5676. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5677. if (cpumask_empty(d->tmpmask))
  5678. continue;
  5679. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5680. GFP_KERNEL, num);
  5681. if (!sg) {
  5682. printk(KERN_WARNING
  5683. "Can not alloc domain group for node %d\n", j);
  5684. return -ENOMEM;
  5685. }
  5686. sg->cpu_power = 0;
  5687. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5688. sg->next = prev->next;
  5689. cpumask_or(d->covered, d->covered, d->tmpmask);
  5690. prev->next = sg;
  5691. prev = sg;
  5692. }
  5693. out:
  5694. return 0;
  5695. }
  5696. #endif /* CONFIG_NUMA */
  5697. #ifdef CONFIG_NUMA
  5698. /* Free memory allocated for various sched_group structures */
  5699. static void free_sched_groups(const struct cpumask *cpu_map,
  5700. struct cpumask *nodemask)
  5701. {
  5702. int cpu, i;
  5703. for_each_cpu(cpu, cpu_map) {
  5704. struct sched_group **sched_group_nodes
  5705. = sched_group_nodes_bycpu[cpu];
  5706. if (!sched_group_nodes)
  5707. continue;
  5708. for (i = 0; i < nr_node_ids; i++) {
  5709. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5710. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5711. if (cpumask_empty(nodemask))
  5712. continue;
  5713. if (sg == NULL)
  5714. continue;
  5715. sg = sg->next;
  5716. next_sg:
  5717. oldsg = sg;
  5718. sg = sg->next;
  5719. kfree(oldsg);
  5720. if (oldsg != sched_group_nodes[i])
  5721. goto next_sg;
  5722. }
  5723. kfree(sched_group_nodes);
  5724. sched_group_nodes_bycpu[cpu] = NULL;
  5725. }
  5726. }
  5727. #else /* !CONFIG_NUMA */
  5728. static void free_sched_groups(const struct cpumask *cpu_map,
  5729. struct cpumask *nodemask)
  5730. {
  5731. }
  5732. #endif /* CONFIG_NUMA */
  5733. /*
  5734. * Initialize sched groups cpu_power.
  5735. *
  5736. * cpu_power indicates the capacity of sched group, which is used while
  5737. * distributing the load between different sched groups in a sched domain.
  5738. * Typically cpu_power for all the groups in a sched domain will be same unless
  5739. * there are asymmetries in the topology. If there are asymmetries, group
  5740. * having more cpu_power will pickup more load compared to the group having
  5741. * less cpu_power.
  5742. */
  5743. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5744. {
  5745. struct sched_domain *child;
  5746. struct sched_group *group;
  5747. long power;
  5748. int weight;
  5749. WARN_ON(!sd || !sd->groups);
  5750. if (cpu != group_first_cpu(sd->groups))
  5751. return;
  5752. sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
  5753. child = sd->child;
  5754. sd->groups->cpu_power = 0;
  5755. if (!child) {
  5756. power = SCHED_LOAD_SCALE;
  5757. weight = cpumask_weight(sched_domain_span(sd));
  5758. /*
  5759. * SMT siblings share the power of a single core.
  5760. * Usually multiple threads get a better yield out of
  5761. * that one core than a single thread would have,
  5762. * reflect that in sd->smt_gain.
  5763. */
  5764. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5765. power *= sd->smt_gain;
  5766. power /= weight;
  5767. power >>= SCHED_LOAD_SHIFT;
  5768. }
  5769. sd->groups->cpu_power += power;
  5770. return;
  5771. }
  5772. /*
  5773. * Add cpu_power of each child group to this groups cpu_power.
  5774. */
  5775. group = child->groups;
  5776. do {
  5777. sd->groups->cpu_power += group->cpu_power;
  5778. group = group->next;
  5779. } while (group != child->groups);
  5780. }
  5781. /*
  5782. * Initializers for schedule domains
  5783. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5784. */
  5785. #ifdef CONFIG_SCHED_DEBUG
  5786. # define SD_INIT_NAME(sd, type) sd->name = #type
  5787. #else
  5788. # define SD_INIT_NAME(sd, type) do { } while (0)
  5789. #endif
  5790. #define SD_INIT(sd, type) sd_init_##type(sd)
  5791. #define SD_INIT_FUNC(type) \
  5792. static noinline void sd_init_##type(struct sched_domain *sd) \
  5793. { \
  5794. memset(sd, 0, sizeof(*sd)); \
  5795. *sd = SD_##type##_INIT; \
  5796. sd->level = SD_LV_##type; \
  5797. SD_INIT_NAME(sd, type); \
  5798. }
  5799. SD_INIT_FUNC(CPU)
  5800. #ifdef CONFIG_NUMA
  5801. SD_INIT_FUNC(ALLNODES)
  5802. SD_INIT_FUNC(NODE)
  5803. #endif
  5804. #ifdef CONFIG_SCHED_SMT
  5805. SD_INIT_FUNC(SIBLING)
  5806. #endif
  5807. #ifdef CONFIG_SCHED_MC
  5808. SD_INIT_FUNC(MC)
  5809. #endif
  5810. #ifdef CONFIG_SCHED_BOOK
  5811. SD_INIT_FUNC(BOOK)
  5812. #endif
  5813. static int default_relax_domain_level = -1;
  5814. static int __init setup_relax_domain_level(char *str)
  5815. {
  5816. unsigned long val;
  5817. val = simple_strtoul(str, NULL, 0);
  5818. if (val < SD_LV_MAX)
  5819. default_relax_domain_level = val;
  5820. return 1;
  5821. }
  5822. __setup("relax_domain_level=", setup_relax_domain_level);
  5823. static void set_domain_attribute(struct sched_domain *sd,
  5824. struct sched_domain_attr *attr)
  5825. {
  5826. int request;
  5827. if (!attr || attr->relax_domain_level < 0) {
  5828. if (default_relax_domain_level < 0)
  5829. return;
  5830. else
  5831. request = default_relax_domain_level;
  5832. } else
  5833. request = attr->relax_domain_level;
  5834. if (request < sd->level) {
  5835. /* turn off idle balance on this domain */
  5836. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5837. } else {
  5838. /* turn on idle balance on this domain */
  5839. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5840. }
  5841. }
  5842. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5843. const struct cpumask *cpu_map)
  5844. {
  5845. switch (what) {
  5846. case sa_sched_groups:
  5847. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5848. d->sched_group_nodes = NULL;
  5849. case sa_rootdomain:
  5850. free_rootdomain(d->rd); /* fall through */
  5851. case sa_tmpmask:
  5852. free_cpumask_var(d->tmpmask); /* fall through */
  5853. case sa_send_covered:
  5854. free_cpumask_var(d->send_covered); /* fall through */
  5855. case sa_this_book_map:
  5856. free_cpumask_var(d->this_book_map); /* fall through */
  5857. case sa_this_core_map:
  5858. free_cpumask_var(d->this_core_map); /* fall through */
  5859. case sa_this_sibling_map:
  5860. free_cpumask_var(d->this_sibling_map); /* fall through */
  5861. case sa_nodemask:
  5862. free_cpumask_var(d->nodemask); /* fall through */
  5863. case sa_sched_group_nodes:
  5864. #ifdef CONFIG_NUMA
  5865. kfree(d->sched_group_nodes); /* fall through */
  5866. case sa_notcovered:
  5867. free_cpumask_var(d->notcovered); /* fall through */
  5868. case sa_covered:
  5869. free_cpumask_var(d->covered); /* fall through */
  5870. case sa_domainspan:
  5871. free_cpumask_var(d->domainspan); /* fall through */
  5872. #endif
  5873. case sa_none:
  5874. break;
  5875. }
  5876. }
  5877. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5878. const struct cpumask *cpu_map)
  5879. {
  5880. #ifdef CONFIG_NUMA
  5881. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  5882. return sa_none;
  5883. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  5884. return sa_domainspan;
  5885. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  5886. return sa_covered;
  5887. /* Allocate the per-node list of sched groups */
  5888. d->sched_group_nodes = kcalloc(nr_node_ids,
  5889. sizeof(struct sched_group *), GFP_KERNEL);
  5890. if (!d->sched_group_nodes) {
  5891. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5892. return sa_notcovered;
  5893. }
  5894. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  5895. #endif
  5896. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  5897. return sa_sched_group_nodes;
  5898. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  5899. return sa_nodemask;
  5900. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  5901. return sa_this_sibling_map;
  5902. if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
  5903. return sa_this_core_map;
  5904. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  5905. return sa_this_book_map;
  5906. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  5907. return sa_send_covered;
  5908. d->rd = alloc_rootdomain();
  5909. if (!d->rd) {
  5910. printk(KERN_WARNING "Cannot alloc root domain\n");
  5911. return sa_tmpmask;
  5912. }
  5913. return sa_rootdomain;
  5914. }
  5915. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  5916. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  5917. {
  5918. struct sched_domain *sd = NULL;
  5919. #ifdef CONFIG_NUMA
  5920. struct sched_domain *parent;
  5921. d->sd_allnodes = 0;
  5922. if (cpumask_weight(cpu_map) >
  5923. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  5924. sd = &per_cpu(allnodes_domains, i).sd;
  5925. SD_INIT(sd, ALLNODES);
  5926. set_domain_attribute(sd, attr);
  5927. cpumask_copy(sched_domain_span(sd), cpu_map);
  5928. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  5929. d->sd_allnodes = 1;
  5930. }
  5931. parent = sd;
  5932. sd = &per_cpu(node_domains, i).sd;
  5933. SD_INIT(sd, NODE);
  5934. set_domain_attribute(sd, attr);
  5935. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  5936. sd->parent = parent;
  5937. if (parent)
  5938. parent->child = sd;
  5939. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  5940. #endif
  5941. return sd;
  5942. }
  5943. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  5944. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5945. struct sched_domain *parent, int i)
  5946. {
  5947. struct sched_domain *sd;
  5948. sd = &per_cpu(phys_domains, i).sd;
  5949. SD_INIT(sd, CPU);
  5950. set_domain_attribute(sd, attr);
  5951. cpumask_copy(sched_domain_span(sd), d->nodemask);
  5952. sd->parent = parent;
  5953. if (parent)
  5954. parent->child = sd;
  5955. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  5956. return sd;
  5957. }
  5958. static struct sched_domain *__build_book_sched_domain(struct s_data *d,
  5959. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5960. struct sched_domain *parent, int i)
  5961. {
  5962. struct sched_domain *sd = parent;
  5963. #ifdef CONFIG_SCHED_BOOK
  5964. sd = &per_cpu(book_domains, i).sd;
  5965. SD_INIT(sd, BOOK);
  5966. set_domain_attribute(sd, attr);
  5967. cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
  5968. sd->parent = parent;
  5969. parent->child = sd;
  5970. cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
  5971. #endif
  5972. return sd;
  5973. }
  5974. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  5975. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5976. struct sched_domain *parent, int i)
  5977. {
  5978. struct sched_domain *sd = parent;
  5979. #ifdef CONFIG_SCHED_MC
  5980. sd = &per_cpu(core_domains, i).sd;
  5981. SD_INIT(sd, MC);
  5982. set_domain_attribute(sd, attr);
  5983. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  5984. sd->parent = parent;
  5985. parent->child = sd;
  5986. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  5987. #endif
  5988. return sd;
  5989. }
  5990. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  5991. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5992. struct sched_domain *parent, int i)
  5993. {
  5994. struct sched_domain *sd = parent;
  5995. #ifdef CONFIG_SCHED_SMT
  5996. sd = &per_cpu(cpu_domains, i).sd;
  5997. SD_INIT(sd, SIBLING);
  5998. set_domain_attribute(sd, attr);
  5999. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  6000. sd->parent = parent;
  6001. parent->child = sd;
  6002. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  6003. #endif
  6004. return sd;
  6005. }
  6006. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  6007. const struct cpumask *cpu_map, int cpu)
  6008. {
  6009. switch (l) {
  6010. #ifdef CONFIG_SCHED_SMT
  6011. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6012. cpumask_and(d->this_sibling_map, cpu_map,
  6013. topology_thread_cpumask(cpu));
  6014. if (cpu == cpumask_first(d->this_sibling_map))
  6015. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6016. &cpu_to_cpu_group,
  6017. d->send_covered, d->tmpmask);
  6018. break;
  6019. #endif
  6020. #ifdef CONFIG_SCHED_MC
  6021. case SD_LV_MC: /* set up multi-core groups */
  6022. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6023. if (cpu == cpumask_first(d->this_core_map))
  6024. init_sched_build_groups(d->this_core_map, cpu_map,
  6025. &cpu_to_core_group,
  6026. d->send_covered, d->tmpmask);
  6027. break;
  6028. #endif
  6029. #ifdef CONFIG_SCHED_BOOK
  6030. case SD_LV_BOOK: /* set up book groups */
  6031. cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
  6032. if (cpu == cpumask_first(d->this_book_map))
  6033. init_sched_build_groups(d->this_book_map, cpu_map,
  6034. &cpu_to_book_group,
  6035. d->send_covered, d->tmpmask);
  6036. break;
  6037. #endif
  6038. case SD_LV_CPU: /* set up physical groups */
  6039. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6040. if (!cpumask_empty(d->nodemask))
  6041. init_sched_build_groups(d->nodemask, cpu_map,
  6042. &cpu_to_phys_group,
  6043. d->send_covered, d->tmpmask);
  6044. break;
  6045. #ifdef CONFIG_NUMA
  6046. case SD_LV_ALLNODES:
  6047. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6048. d->send_covered, d->tmpmask);
  6049. break;
  6050. #endif
  6051. default:
  6052. break;
  6053. }
  6054. }
  6055. /*
  6056. * Build sched domains for a given set of cpus and attach the sched domains
  6057. * to the individual cpus
  6058. */
  6059. static int __build_sched_domains(const struct cpumask *cpu_map,
  6060. struct sched_domain_attr *attr)
  6061. {
  6062. enum s_alloc alloc_state = sa_none;
  6063. struct s_data d;
  6064. struct sched_domain *sd;
  6065. int i;
  6066. #ifdef CONFIG_NUMA
  6067. d.sd_allnodes = 0;
  6068. #endif
  6069. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6070. if (alloc_state != sa_rootdomain)
  6071. goto error;
  6072. alloc_state = sa_sched_groups;
  6073. /*
  6074. * Set up domains for cpus specified by the cpu_map.
  6075. */
  6076. for_each_cpu(i, cpu_map) {
  6077. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6078. cpu_map);
  6079. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6080. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6081. sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
  6082. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6083. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6084. }
  6085. for_each_cpu(i, cpu_map) {
  6086. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6087. build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
  6088. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6089. }
  6090. /* Set up physical groups */
  6091. for (i = 0; i < nr_node_ids; i++)
  6092. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6093. #ifdef CONFIG_NUMA
  6094. /* Set up node groups */
  6095. if (d.sd_allnodes)
  6096. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6097. for (i = 0; i < nr_node_ids; i++)
  6098. if (build_numa_sched_groups(&d, cpu_map, i))
  6099. goto error;
  6100. #endif
  6101. /* Calculate CPU power for physical packages and nodes */
  6102. #ifdef CONFIG_SCHED_SMT
  6103. for_each_cpu(i, cpu_map) {
  6104. sd = &per_cpu(cpu_domains, i).sd;
  6105. init_sched_groups_power(i, sd);
  6106. }
  6107. #endif
  6108. #ifdef CONFIG_SCHED_MC
  6109. for_each_cpu(i, cpu_map) {
  6110. sd = &per_cpu(core_domains, i).sd;
  6111. init_sched_groups_power(i, sd);
  6112. }
  6113. #endif
  6114. #ifdef CONFIG_SCHED_BOOK
  6115. for_each_cpu(i, cpu_map) {
  6116. sd = &per_cpu(book_domains, i).sd;
  6117. init_sched_groups_power(i, sd);
  6118. }
  6119. #endif
  6120. for_each_cpu(i, cpu_map) {
  6121. sd = &per_cpu(phys_domains, i).sd;
  6122. init_sched_groups_power(i, sd);
  6123. }
  6124. #ifdef CONFIG_NUMA
  6125. for (i = 0; i < nr_node_ids; i++)
  6126. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6127. if (d.sd_allnodes) {
  6128. struct sched_group *sg;
  6129. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6130. d.tmpmask);
  6131. init_numa_sched_groups_power(sg);
  6132. }
  6133. #endif
  6134. /* Attach the domains */
  6135. for_each_cpu(i, cpu_map) {
  6136. #ifdef CONFIG_SCHED_SMT
  6137. sd = &per_cpu(cpu_domains, i).sd;
  6138. #elif defined(CONFIG_SCHED_MC)
  6139. sd = &per_cpu(core_domains, i).sd;
  6140. #elif defined(CONFIG_SCHED_BOOK)
  6141. sd = &per_cpu(book_domains, i).sd;
  6142. #else
  6143. sd = &per_cpu(phys_domains, i).sd;
  6144. #endif
  6145. cpu_attach_domain(sd, d.rd, i);
  6146. }
  6147. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6148. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6149. return 0;
  6150. error:
  6151. __free_domain_allocs(&d, alloc_state, cpu_map);
  6152. return -ENOMEM;
  6153. }
  6154. static int build_sched_domains(const struct cpumask *cpu_map)
  6155. {
  6156. return __build_sched_domains(cpu_map, NULL);
  6157. }
  6158. static cpumask_var_t *doms_cur; /* current sched domains */
  6159. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6160. static struct sched_domain_attr *dattr_cur;
  6161. /* attribues of custom domains in 'doms_cur' */
  6162. /*
  6163. * Special case: If a kmalloc of a doms_cur partition (array of
  6164. * cpumask) fails, then fallback to a single sched domain,
  6165. * as determined by the single cpumask fallback_doms.
  6166. */
  6167. static cpumask_var_t fallback_doms;
  6168. /*
  6169. * arch_update_cpu_topology lets virtualized architectures update the
  6170. * cpu core maps. It is supposed to return 1 if the topology changed
  6171. * or 0 if it stayed the same.
  6172. */
  6173. int __attribute__((weak)) arch_update_cpu_topology(void)
  6174. {
  6175. return 0;
  6176. }
  6177. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6178. {
  6179. int i;
  6180. cpumask_var_t *doms;
  6181. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6182. if (!doms)
  6183. return NULL;
  6184. for (i = 0; i < ndoms; i++) {
  6185. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6186. free_sched_domains(doms, i);
  6187. return NULL;
  6188. }
  6189. }
  6190. return doms;
  6191. }
  6192. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6193. {
  6194. unsigned int i;
  6195. for (i = 0; i < ndoms; i++)
  6196. free_cpumask_var(doms[i]);
  6197. kfree(doms);
  6198. }
  6199. /*
  6200. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6201. * For now this just excludes isolated cpus, but could be used to
  6202. * exclude other special cases in the future.
  6203. */
  6204. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6205. {
  6206. int err;
  6207. arch_update_cpu_topology();
  6208. ndoms_cur = 1;
  6209. doms_cur = alloc_sched_domains(ndoms_cur);
  6210. if (!doms_cur)
  6211. doms_cur = &fallback_doms;
  6212. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6213. dattr_cur = NULL;
  6214. err = build_sched_domains(doms_cur[0]);
  6215. register_sched_domain_sysctl();
  6216. return err;
  6217. }
  6218. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6219. struct cpumask *tmpmask)
  6220. {
  6221. free_sched_groups(cpu_map, tmpmask);
  6222. }
  6223. /*
  6224. * Detach sched domains from a group of cpus specified in cpu_map
  6225. * These cpus will now be attached to the NULL domain
  6226. */
  6227. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6228. {
  6229. /* Save because hotplug lock held. */
  6230. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6231. int i;
  6232. for_each_cpu(i, cpu_map)
  6233. cpu_attach_domain(NULL, &def_root_domain, i);
  6234. synchronize_sched();
  6235. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6236. }
  6237. /* handle null as "default" */
  6238. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6239. struct sched_domain_attr *new, int idx_new)
  6240. {
  6241. struct sched_domain_attr tmp;
  6242. /* fast path */
  6243. if (!new && !cur)
  6244. return 1;
  6245. tmp = SD_ATTR_INIT;
  6246. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6247. new ? (new + idx_new) : &tmp,
  6248. sizeof(struct sched_domain_attr));
  6249. }
  6250. /*
  6251. * Partition sched domains as specified by the 'ndoms_new'
  6252. * cpumasks in the array doms_new[] of cpumasks. This compares
  6253. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6254. * It destroys each deleted domain and builds each new domain.
  6255. *
  6256. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6257. * The masks don't intersect (don't overlap.) We should setup one
  6258. * sched domain for each mask. CPUs not in any of the cpumasks will
  6259. * not be load balanced. If the same cpumask appears both in the
  6260. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6261. * it as it is.
  6262. *
  6263. * The passed in 'doms_new' should be allocated using
  6264. * alloc_sched_domains. This routine takes ownership of it and will
  6265. * free_sched_domains it when done with it. If the caller failed the
  6266. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6267. * and partition_sched_domains() will fallback to the single partition
  6268. * 'fallback_doms', it also forces the domains to be rebuilt.
  6269. *
  6270. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6271. * ndoms_new == 0 is a special case for destroying existing domains,
  6272. * and it will not create the default domain.
  6273. *
  6274. * Call with hotplug lock held
  6275. */
  6276. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6277. struct sched_domain_attr *dattr_new)
  6278. {
  6279. int i, j, n;
  6280. int new_topology;
  6281. mutex_lock(&sched_domains_mutex);
  6282. /* always unregister in case we don't destroy any domains */
  6283. unregister_sched_domain_sysctl();
  6284. /* Let architecture update cpu core mappings. */
  6285. new_topology = arch_update_cpu_topology();
  6286. n = doms_new ? ndoms_new : 0;
  6287. /* Destroy deleted domains */
  6288. for (i = 0; i < ndoms_cur; i++) {
  6289. for (j = 0; j < n && !new_topology; j++) {
  6290. if (cpumask_equal(doms_cur[i], doms_new[j])
  6291. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6292. goto match1;
  6293. }
  6294. /* no match - a current sched domain not in new doms_new[] */
  6295. detach_destroy_domains(doms_cur[i]);
  6296. match1:
  6297. ;
  6298. }
  6299. if (doms_new == NULL) {
  6300. ndoms_cur = 0;
  6301. doms_new = &fallback_doms;
  6302. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6303. WARN_ON_ONCE(dattr_new);
  6304. }
  6305. /* Build new domains */
  6306. for (i = 0; i < ndoms_new; i++) {
  6307. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6308. if (cpumask_equal(doms_new[i], doms_cur[j])
  6309. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6310. goto match2;
  6311. }
  6312. /* no match - add a new doms_new */
  6313. __build_sched_domains(doms_new[i],
  6314. dattr_new ? dattr_new + i : NULL);
  6315. match2:
  6316. ;
  6317. }
  6318. /* Remember the new sched domains */
  6319. if (doms_cur != &fallback_doms)
  6320. free_sched_domains(doms_cur, ndoms_cur);
  6321. kfree(dattr_cur); /* kfree(NULL) is safe */
  6322. doms_cur = doms_new;
  6323. dattr_cur = dattr_new;
  6324. ndoms_cur = ndoms_new;
  6325. register_sched_domain_sysctl();
  6326. mutex_unlock(&sched_domains_mutex);
  6327. }
  6328. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6329. static void arch_reinit_sched_domains(void)
  6330. {
  6331. get_online_cpus();
  6332. /* Destroy domains first to force the rebuild */
  6333. partition_sched_domains(0, NULL, NULL);
  6334. rebuild_sched_domains();
  6335. put_online_cpus();
  6336. }
  6337. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6338. {
  6339. unsigned int level = 0;
  6340. if (sscanf(buf, "%u", &level) != 1)
  6341. return -EINVAL;
  6342. /*
  6343. * level is always be positive so don't check for
  6344. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6345. * What happens on 0 or 1 byte write,
  6346. * need to check for count as well?
  6347. */
  6348. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6349. return -EINVAL;
  6350. if (smt)
  6351. sched_smt_power_savings = level;
  6352. else
  6353. sched_mc_power_savings = level;
  6354. arch_reinit_sched_domains();
  6355. return count;
  6356. }
  6357. #ifdef CONFIG_SCHED_MC
  6358. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6359. struct sysdev_class_attribute *attr,
  6360. char *page)
  6361. {
  6362. return sprintf(page, "%u\n", sched_mc_power_savings);
  6363. }
  6364. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6365. struct sysdev_class_attribute *attr,
  6366. const char *buf, size_t count)
  6367. {
  6368. return sched_power_savings_store(buf, count, 0);
  6369. }
  6370. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6371. sched_mc_power_savings_show,
  6372. sched_mc_power_savings_store);
  6373. #endif
  6374. #ifdef CONFIG_SCHED_SMT
  6375. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6376. struct sysdev_class_attribute *attr,
  6377. char *page)
  6378. {
  6379. return sprintf(page, "%u\n", sched_smt_power_savings);
  6380. }
  6381. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6382. struct sysdev_class_attribute *attr,
  6383. const char *buf, size_t count)
  6384. {
  6385. return sched_power_savings_store(buf, count, 1);
  6386. }
  6387. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6388. sched_smt_power_savings_show,
  6389. sched_smt_power_savings_store);
  6390. #endif
  6391. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6392. {
  6393. int err = 0;
  6394. #ifdef CONFIG_SCHED_SMT
  6395. if (smt_capable())
  6396. err = sysfs_create_file(&cls->kset.kobj,
  6397. &attr_sched_smt_power_savings.attr);
  6398. #endif
  6399. #ifdef CONFIG_SCHED_MC
  6400. if (!err && mc_capable())
  6401. err = sysfs_create_file(&cls->kset.kobj,
  6402. &attr_sched_mc_power_savings.attr);
  6403. #endif
  6404. return err;
  6405. }
  6406. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6407. /*
  6408. * Update cpusets according to cpu_active mask. If cpusets are
  6409. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6410. * around partition_sched_domains().
  6411. */
  6412. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6413. void *hcpu)
  6414. {
  6415. switch (action & ~CPU_TASKS_FROZEN) {
  6416. case CPU_ONLINE:
  6417. case CPU_DOWN_FAILED:
  6418. cpuset_update_active_cpus();
  6419. return NOTIFY_OK;
  6420. default:
  6421. return NOTIFY_DONE;
  6422. }
  6423. }
  6424. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6425. void *hcpu)
  6426. {
  6427. switch (action & ~CPU_TASKS_FROZEN) {
  6428. case CPU_DOWN_PREPARE:
  6429. cpuset_update_active_cpus();
  6430. return NOTIFY_OK;
  6431. default:
  6432. return NOTIFY_DONE;
  6433. }
  6434. }
  6435. static int update_runtime(struct notifier_block *nfb,
  6436. unsigned long action, void *hcpu)
  6437. {
  6438. int cpu = (int)(long)hcpu;
  6439. switch (action) {
  6440. case CPU_DOWN_PREPARE:
  6441. case CPU_DOWN_PREPARE_FROZEN:
  6442. disable_runtime(cpu_rq(cpu));
  6443. return NOTIFY_OK;
  6444. case CPU_DOWN_FAILED:
  6445. case CPU_DOWN_FAILED_FROZEN:
  6446. case CPU_ONLINE:
  6447. case CPU_ONLINE_FROZEN:
  6448. enable_runtime(cpu_rq(cpu));
  6449. return NOTIFY_OK;
  6450. default:
  6451. return NOTIFY_DONE;
  6452. }
  6453. }
  6454. void __init sched_init_smp(void)
  6455. {
  6456. cpumask_var_t non_isolated_cpus;
  6457. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6458. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6459. #if defined(CONFIG_NUMA)
  6460. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6461. GFP_KERNEL);
  6462. BUG_ON(sched_group_nodes_bycpu == NULL);
  6463. #endif
  6464. get_online_cpus();
  6465. mutex_lock(&sched_domains_mutex);
  6466. arch_init_sched_domains(cpu_active_mask);
  6467. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6468. if (cpumask_empty(non_isolated_cpus))
  6469. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6470. mutex_unlock(&sched_domains_mutex);
  6471. put_online_cpus();
  6472. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6473. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6474. /* RT runtime code needs to handle some hotplug events */
  6475. hotcpu_notifier(update_runtime, 0);
  6476. init_hrtick();
  6477. /* Move init over to a non-isolated CPU */
  6478. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6479. BUG();
  6480. sched_init_granularity();
  6481. free_cpumask_var(non_isolated_cpus);
  6482. init_sched_rt_class();
  6483. }
  6484. #else
  6485. void __init sched_init_smp(void)
  6486. {
  6487. sched_init_granularity();
  6488. }
  6489. #endif /* CONFIG_SMP */
  6490. const_debug unsigned int sysctl_timer_migration = 1;
  6491. int in_sched_functions(unsigned long addr)
  6492. {
  6493. return in_lock_functions(addr) ||
  6494. (addr >= (unsigned long)__sched_text_start
  6495. && addr < (unsigned long)__sched_text_end);
  6496. }
  6497. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6498. {
  6499. cfs_rq->tasks_timeline = RB_ROOT;
  6500. INIT_LIST_HEAD(&cfs_rq->tasks);
  6501. #ifdef CONFIG_FAIR_GROUP_SCHED
  6502. cfs_rq->rq = rq;
  6503. #endif
  6504. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6505. }
  6506. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6507. {
  6508. struct rt_prio_array *array;
  6509. int i;
  6510. array = &rt_rq->active;
  6511. for (i = 0; i < MAX_RT_PRIO; i++) {
  6512. INIT_LIST_HEAD(array->queue + i);
  6513. __clear_bit(i, array->bitmap);
  6514. }
  6515. /* delimiter for bitsearch: */
  6516. __set_bit(MAX_RT_PRIO, array->bitmap);
  6517. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6518. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6519. #ifdef CONFIG_SMP
  6520. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6521. #endif
  6522. #endif
  6523. #ifdef CONFIG_SMP
  6524. rt_rq->rt_nr_migratory = 0;
  6525. rt_rq->overloaded = 0;
  6526. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6527. #endif
  6528. rt_rq->rt_time = 0;
  6529. rt_rq->rt_throttled = 0;
  6530. rt_rq->rt_runtime = 0;
  6531. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6532. #ifdef CONFIG_RT_GROUP_SCHED
  6533. rt_rq->rt_nr_boosted = 0;
  6534. rt_rq->rq = rq;
  6535. #endif
  6536. }
  6537. #ifdef CONFIG_FAIR_GROUP_SCHED
  6538. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6539. struct sched_entity *se, int cpu,
  6540. struct sched_entity *parent)
  6541. {
  6542. struct rq *rq = cpu_rq(cpu);
  6543. tg->cfs_rq[cpu] = cfs_rq;
  6544. init_cfs_rq(cfs_rq, rq);
  6545. cfs_rq->tg = tg;
  6546. tg->se[cpu] = se;
  6547. /* se could be NULL for init_task_group */
  6548. if (!se)
  6549. return;
  6550. if (!parent)
  6551. se->cfs_rq = &rq->cfs;
  6552. else
  6553. se->cfs_rq = parent->my_q;
  6554. se->my_q = cfs_rq;
  6555. update_load_set(&se->load, 0);
  6556. se->parent = parent;
  6557. }
  6558. #endif
  6559. #ifdef CONFIG_RT_GROUP_SCHED
  6560. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6561. struct sched_rt_entity *rt_se, int cpu,
  6562. struct sched_rt_entity *parent)
  6563. {
  6564. struct rq *rq = cpu_rq(cpu);
  6565. tg->rt_rq[cpu] = rt_rq;
  6566. init_rt_rq(rt_rq, rq);
  6567. rt_rq->tg = tg;
  6568. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6569. tg->rt_se[cpu] = rt_se;
  6570. if (!rt_se)
  6571. return;
  6572. if (!parent)
  6573. rt_se->rt_rq = &rq->rt;
  6574. else
  6575. rt_se->rt_rq = parent->my_q;
  6576. rt_se->my_q = rt_rq;
  6577. rt_se->parent = parent;
  6578. INIT_LIST_HEAD(&rt_se->run_list);
  6579. }
  6580. #endif
  6581. void __init sched_init(void)
  6582. {
  6583. int i, j;
  6584. unsigned long alloc_size = 0, ptr;
  6585. #ifdef CONFIG_FAIR_GROUP_SCHED
  6586. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6587. #endif
  6588. #ifdef CONFIG_RT_GROUP_SCHED
  6589. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6590. #endif
  6591. #ifdef CONFIG_CPUMASK_OFFSTACK
  6592. alloc_size += num_possible_cpus() * cpumask_size();
  6593. #endif
  6594. if (alloc_size) {
  6595. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6596. #ifdef CONFIG_FAIR_GROUP_SCHED
  6597. init_task_group.se = (struct sched_entity **)ptr;
  6598. ptr += nr_cpu_ids * sizeof(void **);
  6599. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6600. ptr += nr_cpu_ids * sizeof(void **);
  6601. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6602. #ifdef CONFIG_RT_GROUP_SCHED
  6603. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6604. ptr += nr_cpu_ids * sizeof(void **);
  6605. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6606. ptr += nr_cpu_ids * sizeof(void **);
  6607. #endif /* CONFIG_RT_GROUP_SCHED */
  6608. #ifdef CONFIG_CPUMASK_OFFSTACK
  6609. for_each_possible_cpu(i) {
  6610. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6611. ptr += cpumask_size();
  6612. }
  6613. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6614. }
  6615. #ifdef CONFIG_SMP
  6616. init_defrootdomain();
  6617. #endif
  6618. init_rt_bandwidth(&def_rt_bandwidth,
  6619. global_rt_period(), global_rt_runtime());
  6620. #ifdef CONFIG_RT_GROUP_SCHED
  6621. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6622. global_rt_period(), global_rt_runtime());
  6623. #endif /* CONFIG_RT_GROUP_SCHED */
  6624. #ifdef CONFIG_CGROUP_SCHED
  6625. list_add(&init_task_group.list, &task_groups);
  6626. INIT_LIST_HEAD(&init_task_group.children);
  6627. autogroup_init(&init_task);
  6628. #endif /* CONFIG_CGROUP_SCHED */
  6629. for_each_possible_cpu(i) {
  6630. struct rq *rq;
  6631. rq = cpu_rq(i);
  6632. raw_spin_lock_init(&rq->lock);
  6633. rq->nr_running = 0;
  6634. rq->calc_load_active = 0;
  6635. rq->calc_load_update = jiffies + LOAD_FREQ;
  6636. init_cfs_rq(&rq->cfs, rq);
  6637. init_rt_rq(&rq->rt, rq);
  6638. #ifdef CONFIG_FAIR_GROUP_SCHED
  6639. init_task_group.shares = init_task_group_load;
  6640. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6641. #ifdef CONFIG_CGROUP_SCHED
  6642. /*
  6643. * How much cpu bandwidth does init_task_group get?
  6644. *
  6645. * In case of task-groups formed thr' the cgroup filesystem, it
  6646. * gets 100% of the cpu resources in the system. This overall
  6647. * system cpu resource is divided among the tasks of
  6648. * init_task_group and its child task-groups in a fair manner,
  6649. * based on each entity's (task or task-group's) weight
  6650. * (se->load.weight).
  6651. *
  6652. * In other words, if init_task_group has 10 tasks of weight
  6653. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6654. * then A0's share of the cpu resource is:
  6655. *
  6656. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6657. *
  6658. * We achieve this by letting init_task_group's tasks sit
  6659. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6660. */
  6661. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, NULL);
  6662. #endif
  6663. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6664. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6665. #ifdef CONFIG_RT_GROUP_SCHED
  6666. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6667. #ifdef CONFIG_CGROUP_SCHED
  6668. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, NULL);
  6669. #endif
  6670. #endif
  6671. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6672. rq->cpu_load[j] = 0;
  6673. rq->last_load_update_tick = jiffies;
  6674. #ifdef CONFIG_SMP
  6675. rq->sd = NULL;
  6676. rq->rd = NULL;
  6677. rq->cpu_power = SCHED_LOAD_SCALE;
  6678. rq->post_schedule = 0;
  6679. rq->active_balance = 0;
  6680. rq->next_balance = jiffies;
  6681. rq->push_cpu = 0;
  6682. rq->cpu = i;
  6683. rq->online = 0;
  6684. rq->idle_stamp = 0;
  6685. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6686. rq_attach_root(rq, &def_root_domain);
  6687. #ifdef CONFIG_NO_HZ
  6688. rq->nohz_balance_kick = 0;
  6689. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6690. #endif
  6691. #endif
  6692. init_rq_hrtick(rq);
  6693. atomic_set(&rq->nr_iowait, 0);
  6694. }
  6695. set_load_weight(&init_task);
  6696. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6697. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6698. #endif
  6699. #ifdef CONFIG_SMP
  6700. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6701. #endif
  6702. #ifdef CONFIG_RT_MUTEXES
  6703. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6704. #endif
  6705. /*
  6706. * The boot idle thread does lazy MMU switching as well:
  6707. */
  6708. atomic_inc(&init_mm.mm_count);
  6709. enter_lazy_tlb(&init_mm, current);
  6710. /*
  6711. * Make us the idle thread. Technically, schedule() should not be
  6712. * called from this thread, however somewhere below it might be,
  6713. * but because we are the idle thread, we just pick up running again
  6714. * when this runqueue becomes "idle".
  6715. */
  6716. init_idle(current, smp_processor_id());
  6717. calc_load_update = jiffies + LOAD_FREQ;
  6718. /*
  6719. * During early bootup we pretend to be a normal task:
  6720. */
  6721. current->sched_class = &fair_sched_class;
  6722. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6723. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6724. #ifdef CONFIG_SMP
  6725. #ifdef CONFIG_NO_HZ
  6726. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6727. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6728. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6729. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6730. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6731. #endif
  6732. /* May be allocated at isolcpus cmdline parse time */
  6733. if (cpu_isolated_map == NULL)
  6734. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6735. #endif /* SMP */
  6736. perf_event_init();
  6737. scheduler_running = 1;
  6738. }
  6739. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6740. static inline int preempt_count_equals(int preempt_offset)
  6741. {
  6742. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6743. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6744. }
  6745. void __might_sleep(const char *file, int line, int preempt_offset)
  6746. {
  6747. #ifdef in_atomic
  6748. static unsigned long prev_jiffy; /* ratelimiting */
  6749. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6750. system_state != SYSTEM_RUNNING || oops_in_progress)
  6751. return;
  6752. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6753. return;
  6754. prev_jiffy = jiffies;
  6755. printk(KERN_ERR
  6756. "BUG: sleeping function called from invalid context at %s:%d\n",
  6757. file, line);
  6758. printk(KERN_ERR
  6759. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6760. in_atomic(), irqs_disabled(),
  6761. current->pid, current->comm);
  6762. debug_show_held_locks(current);
  6763. if (irqs_disabled())
  6764. print_irqtrace_events(current);
  6765. dump_stack();
  6766. #endif
  6767. }
  6768. EXPORT_SYMBOL(__might_sleep);
  6769. #endif
  6770. #ifdef CONFIG_MAGIC_SYSRQ
  6771. static void normalize_task(struct rq *rq, struct task_struct *p)
  6772. {
  6773. int on_rq;
  6774. on_rq = p->se.on_rq;
  6775. if (on_rq)
  6776. deactivate_task(rq, p, 0);
  6777. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6778. if (on_rq) {
  6779. activate_task(rq, p, 0);
  6780. resched_task(rq->curr);
  6781. }
  6782. }
  6783. void normalize_rt_tasks(void)
  6784. {
  6785. struct task_struct *g, *p;
  6786. unsigned long flags;
  6787. struct rq *rq;
  6788. read_lock_irqsave(&tasklist_lock, flags);
  6789. do_each_thread(g, p) {
  6790. /*
  6791. * Only normalize user tasks:
  6792. */
  6793. if (!p->mm)
  6794. continue;
  6795. p->se.exec_start = 0;
  6796. #ifdef CONFIG_SCHEDSTATS
  6797. p->se.statistics.wait_start = 0;
  6798. p->se.statistics.sleep_start = 0;
  6799. p->se.statistics.block_start = 0;
  6800. #endif
  6801. if (!rt_task(p)) {
  6802. /*
  6803. * Renice negative nice level userspace
  6804. * tasks back to 0:
  6805. */
  6806. if (TASK_NICE(p) < 0 && p->mm)
  6807. set_user_nice(p, 0);
  6808. continue;
  6809. }
  6810. raw_spin_lock(&p->pi_lock);
  6811. rq = __task_rq_lock(p);
  6812. normalize_task(rq, p);
  6813. __task_rq_unlock(rq);
  6814. raw_spin_unlock(&p->pi_lock);
  6815. } while_each_thread(g, p);
  6816. read_unlock_irqrestore(&tasklist_lock, flags);
  6817. }
  6818. #endif /* CONFIG_MAGIC_SYSRQ */
  6819. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6820. /*
  6821. * These functions are only useful for the IA64 MCA handling, or kdb.
  6822. *
  6823. * They can only be called when the whole system has been
  6824. * stopped - every CPU needs to be quiescent, and no scheduling
  6825. * activity can take place. Using them for anything else would
  6826. * be a serious bug, and as a result, they aren't even visible
  6827. * under any other configuration.
  6828. */
  6829. /**
  6830. * curr_task - return the current task for a given cpu.
  6831. * @cpu: the processor in question.
  6832. *
  6833. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6834. */
  6835. struct task_struct *curr_task(int cpu)
  6836. {
  6837. return cpu_curr(cpu);
  6838. }
  6839. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6840. #ifdef CONFIG_IA64
  6841. /**
  6842. * set_curr_task - set the current task for a given cpu.
  6843. * @cpu: the processor in question.
  6844. * @p: the task pointer to set.
  6845. *
  6846. * Description: This function must only be used when non-maskable interrupts
  6847. * are serviced on a separate stack. It allows the architecture to switch the
  6848. * notion of the current task on a cpu in a non-blocking manner. This function
  6849. * must be called with all CPU's synchronized, and interrupts disabled, the
  6850. * and caller must save the original value of the current task (see
  6851. * curr_task() above) and restore that value before reenabling interrupts and
  6852. * re-starting the system.
  6853. *
  6854. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6855. */
  6856. void set_curr_task(int cpu, struct task_struct *p)
  6857. {
  6858. cpu_curr(cpu) = p;
  6859. }
  6860. #endif
  6861. #ifdef CONFIG_FAIR_GROUP_SCHED
  6862. static void free_fair_sched_group(struct task_group *tg)
  6863. {
  6864. int i;
  6865. for_each_possible_cpu(i) {
  6866. if (tg->cfs_rq)
  6867. kfree(tg->cfs_rq[i]);
  6868. if (tg->se)
  6869. kfree(tg->se[i]);
  6870. }
  6871. kfree(tg->cfs_rq);
  6872. kfree(tg->se);
  6873. }
  6874. static
  6875. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6876. {
  6877. struct cfs_rq *cfs_rq;
  6878. struct sched_entity *se;
  6879. struct rq *rq;
  6880. int i;
  6881. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6882. if (!tg->cfs_rq)
  6883. goto err;
  6884. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6885. if (!tg->se)
  6886. goto err;
  6887. tg->shares = NICE_0_LOAD;
  6888. for_each_possible_cpu(i) {
  6889. rq = cpu_rq(i);
  6890. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6891. GFP_KERNEL, cpu_to_node(i));
  6892. if (!cfs_rq)
  6893. goto err;
  6894. se = kzalloc_node(sizeof(struct sched_entity),
  6895. GFP_KERNEL, cpu_to_node(i));
  6896. if (!se)
  6897. goto err_free_rq;
  6898. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  6899. }
  6900. return 1;
  6901. err_free_rq:
  6902. kfree(cfs_rq);
  6903. err:
  6904. return 0;
  6905. }
  6906. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6907. {
  6908. struct rq *rq = cpu_rq(cpu);
  6909. unsigned long flags;
  6910. /*
  6911. * Only empty task groups can be destroyed; so we can speculatively
  6912. * check on_list without danger of it being re-added.
  6913. */
  6914. if (!tg->cfs_rq[cpu]->on_list)
  6915. return;
  6916. raw_spin_lock_irqsave(&rq->lock, flags);
  6917. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  6918. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6919. }
  6920. #else /* !CONFG_FAIR_GROUP_SCHED */
  6921. static inline void free_fair_sched_group(struct task_group *tg)
  6922. {
  6923. }
  6924. static inline
  6925. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6926. {
  6927. return 1;
  6928. }
  6929. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6930. {
  6931. }
  6932. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6933. #ifdef CONFIG_RT_GROUP_SCHED
  6934. static void free_rt_sched_group(struct task_group *tg)
  6935. {
  6936. int i;
  6937. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6938. for_each_possible_cpu(i) {
  6939. if (tg->rt_rq)
  6940. kfree(tg->rt_rq[i]);
  6941. if (tg->rt_se)
  6942. kfree(tg->rt_se[i]);
  6943. }
  6944. kfree(tg->rt_rq);
  6945. kfree(tg->rt_se);
  6946. }
  6947. static
  6948. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6949. {
  6950. struct rt_rq *rt_rq;
  6951. struct sched_rt_entity *rt_se;
  6952. struct rq *rq;
  6953. int i;
  6954. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6955. if (!tg->rt_rq)
  6956. goto err;
  6957. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6958. if (!tg->rt_se)
  6959. goto err;
  6960. init_rt_bandwidth(&tg->rt_bandwidth,
  6961. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6962. for_each_possible_cpu(i) {
  6963. rq = cpu_rq(i);
  6964. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6965. GFP_KERNEL, cpu_to_node(i));
  6966. if (!rt_rq)
  6967. goto err;
  6968. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6969. GFP_KERNEL, cpu_to_node(i));
  6970. if (!rt_se)
  6971. goto err_free_rq;
  6972. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  6973. }
  6974. return 1;
  6975. err_free_rq:
  6976. kfree(rt_rq);
  6977. err:
  6978. return 0;
  6979. }
  6980. #else /* !CONFIG_RT_GROUP_SCHED */
  6981. static inline void free_rt_sched_group(struct task_group *tg)
  6982. {
  6983. }
  6984. static inline
  6985. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6986. {
  6987. return 1;
  6988. }
  6989. #endif /* CONFIG_RT_GROUP_SCHED */
  6990. #ifdef CONFIG_CGROUP_SCHED
  6991. static void free_sched_group(struct task_group *tg)
  6992. {
  6993. free_fair_sched_group(tg);
  6994. free_rt_sched_group(tg);
  6995. kfree(tg);
  6996. }
  6997. /* allocate runqueue etc for a new task group */
  6998. struct task_group *sched_create_group(struct task_group *parent)
  6999. {
  7000. struct task_group *tg;
  7001. unsigned long flags;
  7002. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7003. if (!tg)
  7004. return ERR_PTR(-ENOMEM);
  7005. if (!alloc_fair_sched_group(tg, parent))
  7006. goto err;
  7007. if (!alloc_rt_sched_group(tg, parent))
  7008. goto err;
  7009. spin_lock_irqsave(&task_group_lock, flags);
  7010. list_add_rcu(&tg->list, &task_groups);
  7011. WARN_ON(!parent); /* root should already exist */
  7012. tg->parent = parent;
  7013. INIT_LIST_HEAD(&tg->children);
  7014. list_add_rcu(&tg->siblings, &parent->children);
  7015. spin_unlock_irqrestore(&task_group_lock, flags);
  7016. return tg;
  7017. err:
  7018. free_sched_group(tg);
  7019. return ERR_PTR(-ENOMEM);
  7020. }
  7021. /* rcu callback to free various structures associated with a task group */
  7022. static void free_sched_group_rcu(struct rcu_head *rhp)
  7023. {
  7024. /* now it should be safe to free those cfs_rqs */
  7025. free_sched_group(container_of(rhp, struct task_group, rcu));
  7026. }
  7027. /* Destroy runqueue etc associated with a task group */
  7028. void sched_destroy_group(struct task_group *tg)
  7029. {
  7030. unsigned long flags;
  7031. int i;
  7032. /* end participation in shares distribution */
  7033. for_each_possible_cpu(i)
  7034. unregister_fair_sched_group(tg, i);
  7035. spin_lock_irqsave(&task_group_lock, flags);
  7036. list_del_rcu(&tg->list);
  7037. list_del_rcu(&tg->siblings);
  7038. spin_unlock_irqrestore(&task_group_lock, flags);
  7039. /* wait for possible concurrent references to cfs_rqs complete */
  7040. call_rcu(&tg->rcu, free_sched_group_rcu);
  7041. }
  7042. /* change task's runqueue when it moves between groups.
  7043. * The caller of this function should have put the task in its new group
  7044. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7045. * reflect its new group.
  7046. */
  7047. void sched_move_task(struct task_struct *tsk)
  7048. {
  7049. int on_rq, running;
  7050. unsigned long flags;
  7051. struct rq *rq;
  7052. rq = task_rq_lock(tsk, &flags);
  7053. running = task_current(rq, tsk);
  7054. on_rq = tsk->se.on_rq;
  7055. if (on_rq)
  7056. dequeue_task(rq, tsk, 0);
  7057. if (unlikely(running))
  7058. tsk->sched_class->put_prev_task(rq, tsk);
  7059. #ifdef CONFIG_FAIR_GROUP_SCHED
  7060. if (tsk->sched_class->task_move_group)
  7061. tsk->sched_class->task_move_group(tsk, on_rq);
  7062. else
  7063. #endif
  7064. set_task_rq(tsk, task_cpu(tsk));
  7065. if (unlikely(running))
  7066. tsk->sched_class->set_curr_task(rq);
  7067. if (on_rq)
  7068. enqueue_task(rq, tsk, 0);
  7069. task_rq_unlock(rq, &flags);
  7070. }
  7071. #endif /* CONFIG_CGROUP_SCHED */
  7072. #ifdef CONFIG_FAIR_GROUP_SCHED
  7073. static DEFINE_MUTEX(shares_mutex);
  7074. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7075. {
  7076. int i;
  7077. unsigned long flags;
  7078. /*
  7079. * We can't change the weight of the root cgroup.
  7080. */
  7081. if (!tg->se[0])
  7082. return -EINVAL;
  7083. if (shares < MIN_SHARES)
  7084. shares = MIN_SHARES;
  7085. else if (shares > MAX_SHARES)
  7086. shares = MAX_SHARES;
  7087. mutex_lock(&shares_mutex);
  7088. if (tg->shares == shares)
  7089. goto done;
  7090. tg->shares = shares;
  7091. for_each_possible_cpu(i) {
  7092. struct rq *rq = cpu_rq(i);
  7093. struct sched_entity *se;
  7094. se = tg->se[i];
  7095. /* Propagate contribution to hierarchy */
  7096. raw_spin_lock_irqsave(&rq->lock, flags);
  7097. for_each_sched_entity(se)
  7098. update_cfs_shares(group_cfs_rq(se), 0);
  7099. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7100. }
  7101. done:
  7102. mutex_unlock(&shares_mutex);
  7103. return 0;
  7104. }
  7105. unsigned long sched_group_shares(struct task_group *tg)
  7106. {
  7107. return tg->shares;
  7108. }
  7109. #endif
  7110. #ifdef CONFIG_RT_GROUP_SCHED
  7111. /*
  7112. * Ensure that the real time constraints are schedulable.
  7113. */
  7114. static DEFINE_MUTEX(rt_constraints_mutex);
  7115. static unsigned long to_ratio(u64 period, u64 runtime)
  7116. {
  7117. if (runtime == RUNTIME_INF)
  7118. return 1ULL << 20;
  7119. return div64_u64(runtime << 20, period);
  7120. }
  7121. /* Must be called with tasklist_lock held */
  7122. static inline int tg_has_rt_tasks(struct task_group *tg)
  7123. {
  7124. struct task_struct *g, *p;
  7125. do_each_thread(g, p) {
  7126. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7127. return 1;
  7128. } while_each_thread(g, p);
  7129. return 0;
  7130. }
  7131. struct rt_schedulable_data {
  7132. struct task_group *tg;
  7133. u64 rt_period;
  7134. u64 rt_runtime;
  7135. };
  7136. static int tg_schedulable(struct task_group *tg, void *data)
  7137. {
  7138. struct rt_schedulable_data *d = data;
  7139. struct task_group *child;
  7140. unsigned long total, sum = 0;
  7141. u64 period, runtime;
  7142. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7143. runtime = tg->rt_bandwidth.rt_runtime;
  7144. if (tg == d->tg) {
  7145. period = d->rt_period;
  7146. runtime = d->rt_runtime;
  7147. }
  7148. /*
  7149. * Cannot have more runtime than the period.
  7150. */
  7151. if (runtime > period && runtime != RUNTIME_INF)
  7152. return -EINVAL;
  7153. /*
  7154. * Ensure we don't starve existing RT tasks.
  7155. */
  7156. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7157. return -EBUSY;
  7158. total = to_ratio(period, runtime);
  7159. /*
  7160. * Nobody can have more than the global setting allows.
  7161. */
  7162. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7163. return -EINVAL;
  7164. /*
  7165. * The sum of our children's runtime should not exceed our own.
  7166. */
  7167. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7168. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7169. runtime = child->rt_bandwidth.rt_runtime;
  7170. if (child == d->tg) {
  7171. period = d->rt_period;
  7172. runtime = d->rt_runtime;
  7173. }
  7174. sum += to_ratio(period, runtime);
  7175. }
  7176. if (sum > total)
  7177. return -EINVAL;
  7178. return 0;
  7179. }
  7180. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7181. {
  7182. struct rt_schedulable_data data = {
  7183. .tg = tg,
  7184. .rt_period = period,
  7185. .rt_runtime = runtime,
  7186. };
  7187. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7188. }
  7189. static int tg_set_bandwidth(struct task_group *tg,
  7190. u64 rt_period, u64 rt_runtime)
  7191. {
  7192. int i, err = 0;
  7193. mutex_lock(&rt_constraints_mutex);
  7194. read_lock(&tasklist_lock);
  7195. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7196. if (err)
  7197. goto unlock;
  7198. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7199. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7200. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7201. for_each_possible_cpu(i) {
  7202. struct rt_rq *rt_rq = tg->rt_rq[i];
  7203. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7204. rt_rq->rt_runtime = rt_runtime;
  7205. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7206. }
  7207. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7208. unlock:
  7209. read_unlock(&tasklist_lock);
  7210. mutex_unlock(&rt_constraints_mutex);
  7211. return err;
  7212. }
  7213. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7214. {
  7215. u64 rt_runtime, rt_period;
  7216. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7217. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7218. if (rt_runtime_us < 0)
  7219. rt_runtime = RUNTIME_INF;
  7220. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7221. }
  7222. long sched_group_rt_runtime(struct task_group *tg)
  7223. {
  7224. u64 rt_runtime_us;
  7225. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7226. return -1;
  7227. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7228. do_div(rt_runtime_us, NSEC_PER_USEC);
  7229. return rt_runtime_us;
  7230. }
  7231. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7232. {
  7233. u64 rt_runtime, rt_period;
  7234. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7235. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7236. if (rt_period == 0)
  7237. return -EINVAL;
  7238. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7239. }
  7240. long sched_group_rt_period(struct task_group *tg)
  7241. {
  7242. u64 rt_period_us;
  7243. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7244. do_div(rt_period_us, NSEC_PER_USEC);
  7245. return rt_period_us;
  7246. }
  7247. static int sched_rt_global_constraints(void)
  7248. {
  7249. u64 runtime, period;
  7250. int ret = 0;
  7251. if (sysctl_sched_rt_period <= 0)
  7252. return -EINVAL;
  7253. runtime = global_rt_runtime();
  7254. period = global_rt_period();
  7255. /*
  7256. * Sanity check on the sysctl variables.
  7257. */
  7258. if (runtime > period && runtime != RUNTIME_INF)
  7259. return -EINVAL;
  7260. mutex_lock(&rt_constraints_mutex);
  7261. read_lock(&tasklist_lock);
  7262. ret = __rt_schedulable(NULL, 0, 0);
  7263. read_unlock(&tasklist_lock);
  7264. mutex_unlock(&rt_constraints_mutex);
  7265. return ret;
  7266. }
  7267. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7268. {
  7269. /* Don't accept realtime tasks when there is no way for them to run */
  7270. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7271. return 0;
  7272. return 1;
  7273. }
  7274. #else /* !CONFIG_RT_GROUP_SCHED */
  7275. static int sched_rt_global_constraints(void)
  7276. {
  7277. unsigned long flags;
  7278. int i;
  7279. if (sysctl_sched_rt_period <= 0)
  7280. return -EINVAL;
  7281. /*
  7282. * There's always some RT tasks in the root group
  7283. * -- migration, kstopmachine etc..
  7284. */
  7285. if (sysctl_sched_rt_runtime == 0)
  7286. return -EBUSY;
  7287. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7288. for_each_possible_cpu(i) {
  7289. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7290. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7291. rt_rq->rt_runtime = global_rt_runtime();
  7292. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7293. }
  7294. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7295. return 0;
  7296. }
  7297. #endif /* CONFIG_RT_GROUP_SCHED */
  7298. int sched_rt_handler(struct ctl_table *table, int write,
  7299. void __user *buffer, size_t *lenp,
  7300. loff_t *ppos)
  7301. {
  7302. int ret;
  7303. int old_period, old_runtime;
  7304. static DEFINE_MUTEX(mutex);
  7305. mutex_lock(&mutex);
  7306. old_period = sysctl_sched_rt_period;
  7307. old_runtime = sysctl_sched_rt_runtime;
  7308. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7309. if (!ret && write) {
  7310. ret = sched_rt_global_constraints();
  7311. if (ret) {
  7312. sysctl_sched_rt_period = old_period;
  7313. sysctl_sched_rt_runtime = old_runtime;
  7314. } else {
  7315. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7316. def_rt_bandwidth.rt_period =
  7317. ns_to_ktime(global_rt_period());
  7318. }
  7319. }
  7320. mutex_unlock(&mutex);
  7321. return ret;
  7322. }
  7323. #ifdef CONFIG_CGROUP_SCHED
  7324. /* return corresponding task_group object of a cgroup */
  7325. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7326. {
  7327. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7328. struct task_group, css);
  7329. }
  7330. static struct cgroup_subsys_state *
  7331. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7332. {
  7333. struct task_group *tg, *parent;
  7334. if (!cgrp->parent) {
  7335. /* This is early initialization for the top cgroup */
  7336. return &init_task_group.css;
  7337. }
  7338. parent = cgroup_tg(cgrp->parent);
  7339. tg = sched_create_group(parent);
  7340. if (IS_ERR(tg))
  7341. return ERR_PTR(-ENOMEM);
  7342. return &tg->css;
  7343. }
  7344. static void
  7345. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7346. {
  7347. struct task_group *tg = cgroup_tg(cgrp);
  7348. sched_destroy_group(tg);
  7349. }
  7350. static int
  7351. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7352. {
  7353. #ifdef CONFIG_RT_GROUP_SCHED
  7354. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7355. return -EINVAL;
  7356. #else
  7357. /* We don't support RT-tasks being in separate groups */
  7358. if (tsk->sched_class != &fair_sched_class)
  7359. return -EINVAL;
  7360. #endif
  7361. return 0;
  7362. }
  7363. static int
  7364. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7365. struct task_struct *tsk, bool threadgroup)
  7366. {
  7367. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7368. if (retval)
  7369. return retval;
  7370. if (threadgroup) {
  7371. struct task_struct *c;
  7372. rcu_read_lock();
  7373. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7374. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7375. if (retval) {
  7376. rcu_read_unlock();
  7377. return retval;
  7378. }
  7379. }
  7380. rcu_read_unlock();
  7381. }
  7382. return 0;
  7383. }
  7384. static void
  7385. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7386. struct cgroup *old_cont, struct task_struct *tsk,
  7387. bool threadgroup)
  7388. {
  7389. sched_move_task(tsk);
  7390. if (threadgroup) {
  7391. struct task_struct *c;
  7392. rcu_read_lock();
  7393. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7394. sched_move_task(c);
  7395. }
  7396. rcu_read_unlock();
  7397. }
  7398. }
  7399. #ifdef CONFIG_FAIR_GROUP_SCHED
  7400. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7401. u64 shareval)
  7402. {
  7403. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7404. }
  7405. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7406. {
  7407. struct task_group *tg = cgroup_tg(cgrp);
  7408. return (u64) tg->shares;
  7409. }
  7410. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7411. #ifdef CONFIG_RT_GROUP_SCHED
  7412. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7413. s64 val)
  7414. {
  7415. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7416. }
  7417. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7418. {
  7419. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7420. }
  7421. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7422. u64 rt_period_us)
  7423. {
  7424. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7425. }
  7426. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7427. {
  7428. return sched_group_rt_period(cgroup_tg(cgrp));
  7429. }
  7430. #endif /* CONFIG_RT_GROUP_SCHED */
  7431. static struct cftype cpu_files[] = {
  7432. #ifdef CONFIG_FAIR_GROUP_SCHED
  7433. {
  7434. .name = "shares",
  7435. .read_u64 = cpu_shares_read_u64,
  7436. .write_u64 = cpu_shares_write_u64,
  7437. },
  7438. #endif
  7439. #ifdef CONFIG_RT_GROUP_SCHED
  7440. {
  7441. .name = "rt_runtime_us",
  7442. .read_s64 = cpu_rt_runtime_read,
  7443. .write_s64 = cpu_rt_runtime_write,
  7444. },
  7445. {
  7446. .name = "rt_period_us",
  7447. .read_u64 = cpu_rt_period_read_uint,
  7448. .write_u64 = cpu_rt_period_write_uint,
  7449. },
  7450. #endif
  7451. };
  7452. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7453. {
  7454. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7455. }
  7456. struct cgroup_subsys cpu_cgroup_subsys = {
  7457. .name = "cpu",
  7458. .create = cpu_cgroup_create,
  7459. .destroy = cpu_cgroup_destroy,
  7460. .can_attach = cpu_cgroup_can_attach,
  7461. .attach = cpu_cgroup_attach,
  7462. .populate = cpu_cgroup_populate,
  7463. .subsys_id = cpu_cgroup_subsys_id,
  7464. .early_init = 1,
  7465. };
  7466. #endif /* CONFIG_CGROUP_SCHED */
  7467. #ifdef CONFIG_CGROUP_CPUACCT
  7468. /*
  7469. * CPU accounting code for task groups.
  7470. *
  7471. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7472. * (balbir@in.ibm.com).
  7473. */
  7474. /* track cpu usage of a group of tasks and its child groups */
  7475. struct cpuacct {
  7476. struct cgroup_subsys_state css;
  7477. /* cpuusage holds pointer to a u64-type object on every cpu */
  7478. u64 __percpu *cpuusage;
  7479. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7480. struct cpuacct *parent;
  7481. };
  7482. struct cgroup_subsys cpuacct_subsys;
  7483. /* return cpu accounting group corresponding to this container */
  7484. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7485. {
  7486. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7487. struct cpuacct, css);
  7488. }
  7489. /* return cpu accounting group to which this task belongs */
  7490. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7491. {
  7492. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7493. struct cpuacct, css);
  7494. }
  7495. /* create a new cpu accounting group */
  7496. static struct cgroup_subsys_state *cpuacct_create(
  7497. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7498. {
  7499. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7500. int i;
  7501. if (!ca)
  7502. goto out;
  7503. ca->cpuusage = alloc_percpu(u64);
  7504. if (!ca->cpuusage)
  7505. goto out_free_ca;
  7506. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7507. if (percpu_counter_init(&ca->cpustat[i], 0))
  7508. goto out_free_counters;
  7509. if (cgrp->parent)
  7510. ca->parent = cgroup_ca(cgrp->parent);
  7511. return &ca->css;
  7512. out_free_counters:
  7513. while (--i >= 0)
  7514. percpu_counter_destroy(&ca->cpustat[i]);
  7515. free_percpu(ca->cpuusage);
  7516. out_free_ca:
  7517. kfree(ca);
  7518. out:
  7519. return ERR_PTR(-ENOMEM);
  7520. }
  7521. /* destroy an existing cpu accounting group */
  7522. static void
  7523. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7524. {
  7525. struct cpuacct *ca = cgroup_ca(cgrp);
  7526. int i;
  7527. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7528. percpu_counter_destroy(&ca->cpustat[i]);
  7529. free_percpu(ca->cpuusage);
  7530. kfree(ca);
  7531. }
  7532. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7533. {
  7534. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7535. u64 data;
  7536. #ifndef CONFIG_64BIT
  7537. /*
  7538. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7539. */
  7540. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7541. data = *cpuusage;
  7542. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7543. #else
  7544. data = *cpuusage;
  7545. #endif
  7546. return data;
  7547. }
  7548. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7549. {
  7550. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7551. #ifndef CONFIG_64BIT
  7552. /*
  7553. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7554. */
  7555. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7556. *cpuusage = val;
  7557. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7558. #else
  7559. *cpuusage = val;
  7560. #endif
  7561. }
  7562. /* return total cpu usage (in nanoseconds) of a group */
  7563. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7564. {
  7565. struct cpuacct *ca = cgroup_ca(cgrp);
  7566. u64 totalcpuusage = 0;
  7567. int i;
  7568. for_each_present_cpu(i)
  7569. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7570. return totalcpuusage;
  7571. }
  7572. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7573. u64 reset)
  7574. {
  7575. struct cpuacct *ca = cgroup_ca(cgrp);
  7576. int err = 0;
  7577. int i;
  7578. if (reset) {
  7579. err = -EINVAL;
  7580. goto out;
  7581. }
  7582. for_each_present_cpu(i)
  7583. cpuacct_cpuusage_write(ca, i, 0);
  7584. out:
  7585. return err;
  7586. }
  7587. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7588. struct seq_file *m)
  7589. {
  7590. struct cpuacct *ca = cgroup_ca(cgroup);
  7591. u64 percpu;
  7592. int i;
  7593. for_each_present_cpu(i) {
  7594. percpu = cpuacct_cpuusage_read(ca, i);
  7595. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7596. }
  7597. seq_printf(m, "\n");
  7598. return 0;
  7599. }
  7600. static const char *cpuacct_stat_desc[] = {
  7601. [CPUACCT_STAT_USER] = "user",
  7602. [CPUACCT_STAT_SYSTEM] = "system",
  7603. };
  7604. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7605. struct cgroup_map_cb *cb)
  7606. {
  7607. struct cpuacct *ca = cgroup_ca(cgrp);
  7608. int i;
  7609. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7610. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7611. val = cputime64_to_clock_t(val);
  7612. cb->fill(cb, cpuacct_stat_desc[i], val);
  7613. }
  7614. return 0;
  7615. }
  7616. static struct cftype files[] = {
  7617. {
  7618. .name = "usage",
  7619. .read_u64 = cpuusage_read,
  7620. .write_u64 = cpuusage_write,
  7621. },
  7622. {
  7623. .name = "usage_percpu",
  7624. .read_seq_string = cpuacct_percpu_seq_read,
  7625. },
  7626. {
  7627. .name = "stat",
  7628. .read_map = cpuacct_stats_show,
  7629. },
  7630. };
  7631. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7632. {
  7633. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7634. }
  7635. /*
  7636. * charge this task's execution time to its accounting group.
  7637. *
  7638. * called with rq->lock held.
  7639. */
  7640. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7641. {
  7642. struct cpuacct *ca;
  7643. int cpu;
  7644. if (unlikely(!cpuacct_subsys.active))
  7645. return;
  7646. cpu = task_cpu(tsk);
  7647. rcu_read_lock();
  7648. ca = task_ca(tsk);
  7649. for (; ca; ca = ca->parent) {
  7650. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7651. *cpuusage += cputime;
  7652. }
  7653. rcu_read_unlock();
  7654. }
  7655. /*
  7656. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7657. * in cputime_t units. As a result, cpuacct_update_stats calls
  7658. * percpu_counter_add with values large enough to always overflow the
  7659. * per cpu batch limit causing bad SMP scalability.
  7660. *
  7661. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7662. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7663. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7664. */
  7665. #ifdef CONFIG_SMP
  7666. #define CPUACCT_BATCH \
  7667. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7668. #else
  7669. #define CPUACCT_BATCH 0
  7670. #endif
  7671. /*
  7672. * Charge the system/user time to the task's accounting group.
  7673. */
  7674. static void cpuacct_update_stats(struct task_struct *tsk,
  7675. enum cpuacct_stat_index idx, cputime_t val)
  7676. {
  7677. struct cpuacct *ca;
  7678. int batch = CPUACCT_BATCH;
  7679. if (unlikely(!cpuacct_subsys.active))
  7680. return;
  7681. rcu_read_lock();
  7682. ca = task_ca(tsk);
  7683. do {
  7684. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7685. ca = ca->parent;
  7686. } while (ca);
  7687. rcu_read_unlock();
  7688. }
  7689. struct cgroup_subsys cpuacct_subsys = {
  7690. .name = "cpuacct",
  7691. .create = cpuacct_create,
  7692. .destroy = cpuacct_destroy,
  7693. .populate = cpuacct_populate,
  7694. .subsys_id = cpuacct_subsys_id,
  7695. };
  7696. #endif /* CONFIG_CGROUP_CPUACCT */
  7697. #ifndef CONFIG_SMP
  7698. void synchronize_sched_expedited(void)
  7699. {
  7700. barrier();
  7701. }
  7702. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7703. #else /* #ifndef CONFIG_SMP */
  7704. static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
  7705. static int synchronize_sched_expedited_cpu_stop(void *data)
  7706. {
  7707. /*
  7708. * There must be a full memory barrier on each affected CPU
  7709. * between the time that try_stop_cpus() is called and the
  7710. * time that it returns.
  7711. *
  7712. * In the current initial implementation of cpu_stop, the
  7713. * above condition is already met when the control reaches
  7714. * this point and the following smp_mb() is not strictly
  7715. * necessary. Do smp_mb() anyway for documentation and
  7716. * robustness against future implementation changes.
  7717. */
  7718. smp_mb(); /* See above comment block. */
  7719. return 0;
  7720. }
  7721. /*
  7722. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  7723. * approach to force grace period to end quickly. This consumes
  7724. * significant time on all CPUs, and is thus not recommended for
  7725. * any sort of common-case code.
  7726. *
  7727. * Note that it is illegal to call this function while holding any
  7728. * lock that is acquired by a CPU-hotplug notifier. Failing to
  7729. * observe this restriction will result in deadlock.
  7730. */
  7731. void synchronize_sched_expedited(void)
  7732. {
  7733. int snap, trycount = 0;
  7734. smp_mb(); /* ensure prior mod happens before capturing snap. */
  7735. snap = atomic_read(&synchronize_sched_expedited_count) + 1;
  7736. get_online_cpus();
  7737. while (try_stop_cpus(cpu_online_mask,
  7738. synchronize_sched_expedited_cpu_stop,
  7739. NULL) == -EAGAIN) {
  7740. put_online_cpus();
  7741. if (trycount++ < 10)
  7742. udelay(trycount * num_online_cpus());
  7743. else {
  7744. synchronize_sched();
  7745. return;
  7746. }
  7747. if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
  7748. smp_mb(); /* ensure test happens before caller kfree */
  7749. return;
  7750. }
  7751. get_online_cpus();
  7752. }
  7753. atomic_inc(&synchronize_sched_expedited_count);
  7754. smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
  7755. put_online_cpus();
  7756. }
  7757. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7758. #endif /* #else #ifndef CONFIG_SMP */