dm-thin-metadata.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589
  1. /*
  2. * Copyright (C) 2011 Red Hat, Inc.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-thin-metadata.h"
  7. #include "persistent-data/dm-btree.h"
  8. #include "persistent-data/dm-space-map.h"
  9. #include "persistent-data/dm-space-map-disk.h"
  10. #include "persistent-data/dm-transaction-manager.h"
  11. #include <linux/list.h>
  12. #include <linux/device-mapper.h>
  13. #include <linux/workqueue.h>
  14. /*--------------------------------------------------------------------------
  15. * As far as the metadata goes, there is:
  16. *
  17. * - A superblock in block zero, taking up fewer than 512 bytes for
  18. * atomic writes.
  19. *
  20. * - A space map managing the metadata blocks.
  21. *
  22. * - A space map managing the data blocks.
  23. *
  24. * - A btree mapping our internal thin dev ids onto struct disk_device_details.
  25. *
  26. * - A hierarchical btree, with 2 levels which effectively maps (thin
  27. * dev id, virtual block) -> block_time. Block time is a 64-bit
  28. * field holding the time in the low 24 bits, and block in the top 48
  29. * bits.
  30. *
  31. * BTrees consist solely of btree_nodes, that fill a block. Some are
  32. * internal nodes, as such their values are a __le64 pointing to other
  33. * nodes. Leaf nodes can store data of any reasonable size (ie. much
  34. * smaller than the block size). The nodes consist of the header,
  35. * followed by an array of keys, followed by an array of values. We have
  36. * to binary search on the keys so they're all held together to help the
  37. * cpu cache.
  38. *
  39. * Space maps have 2 btrees:
  40. *
  41. * - One maps a uint64_t onto a struct index_entry. Which points to a
  42. * bitmap block, and has some details about how many free entries there
  43. * are etc.
  44. *
  45. * - The bitmap blocks have a header (for the checksum). Then the rest
  46. * of the block is pairs of bits. With the meaning being:
  47. *
  48. * 0 - ref count is 0
  49. * 1 - ref count is 1
  50. * 2 - ref count is 2
  51. * 3 - ref count is higher than 2
  52. *
  53. * - If the count is higher than 2 then the ref count is entered in a
  54. * second btree that directly maps the block_address to a uint32_t ref
  55. * count.
  56. *
  57. * The space map metadata variant doesn't have a bitmaps btree. Instead
  58. * it has one single blocks worth of index_entries. This avoids
  59. * recursive issues with the bitmap btree needing to allocate space in
  60. * order to insert. With a small data block size such as 64k the
  61. * metadata support data devices that are hundreds of terrabytes.
  62. *
  63. * The space maps allocate space linearly from front to back. Space that
  64. * is freed in a transaction is never recycled within that transaction.
  65. * To try and avoid fragmenting _free_ space the allocator always goes
  66. * back and fills in gaps.
  67. *
  68. * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
  69. * from the block manager.
  70. *--------------------------------------------------------------------------*/
  71. #define DM_MSG_PREFIX "thin metadata"
  72. #define THIN_SUPERBLOCK_MAGIC 27022010
  73. #define THIN_SUPERBLOCK_LOCATION 0
  74. #define THIN_VERSION 1
  75. #define THIN_METADATA_CACHE_SIZE 64
  76. #define SECTOR_TO_BLOCK_SHIFT 3
  77. /*
  78. * 3 for btree insert +
  79. * 2 for btree lookup used within space map
  80. */
  81. #define THIN_MAX_CONCURRENT_LOCKS 5
  82. /* This should be plenty */
  83. #define SPACE_MAP_ROOT_SIZE 128
  84. /*
  85. * Little endian on-disk superblock and device details.
  86. */
  87. struct thin_disk_superblock {
  88. __le32 csum; /* Checksum of superblock except for this field. */
  89. __le32 flags;
  90. __le64 blocknr; /* This block number, dm_block_t. */
  91. __u8 uuid[16];
  92. __le64 magic;
  93. __le32 version;
  94. __le32 time;
  95. __le64 trans_id;
  96. /*
  97. * Root held by userspace transactions.
  98. */
  99. __le64 held_root;
  100. __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
  101. __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
  102. /*
  103. * 2-level btree mapping (dev_id, (dev block, time)) -> data block
  104. */
  105. __le64 data_mapping_root;
  106. /*
  107. * Device detail root mapping dev_id -> device_details
  108. */
  109. __le64 device_details_root;
  110. __le32 data_block_size; /* In 512-byte sectors. */
  111. __le32 metadata_block_size; /* In 512-byte sectors. */
  112. __le64 metadata_nr_blocks;
  113. __le32 compat_flags;
  114. __le32 compat_ro_flags;
  115. __le32 incompat_flags;
  116. } __packed;
  117. struct disk_device_details {
  118. __le64 mapped_blocks;
  119. __le64 transaction_id; /* When created. */
  120. __le32 creation_time;
  121. __le32 snapshotted_time;
  122. } __packed;
  123. struct dm_pool_metadata {
  124. struct hlist_node hash;
  125. struct block_device *bdev;
  126. struct dm_block_manager *bm;
  127. struct dm_space_map *metadata_sm;
  128. struct dm_space_map *data_sm;
  129. struct dm_transaction_manager *tm;
  130. struct dm_transaction_manager *nb_tm;
  131. /*
  132. * Two-level btree.
  133. * First level holds thin_dev_t.
  134. * Second level holds mappings.
  135. */
  136. struct dm_btree_info info;
  137. /*
  138. * Non-blocking version of the above.
  139. */
  140. struct dm_btree_info nb_info;
  141. /*
  142. * Just the top level for deleting whole devices.
  143. */
  144. struct dm_btree_info tl_info;
  145. /*
  146. * Just the bottom level for creating new devices.
  147. */
  148. struct dm_btree_info bl_info;
  149. /*
  150. * Describes the device details btree.
  151. */
  152. struct dm_btree_info details_info;
  153. struct rw_semaphore root_lock;
  154. uint32_t time;
  155. dm_block_t root;
  156. dm_block_t details_root;
  157. struct list_head thin_devices;
  158. uint64_t trans_id;
  159. unsigned long flags;
  160. sector_t data_block_size;
  161. };
  162. struct dm_thin_device {
  163. struct list_head list;
  164. struct dm_pool_metadata *pmd;
  165. dm_thin_id id;
  166. int open_count;
  167. int changed;
  168. uint64_t mapped_blocks;
  169. uint64_t transaction_id;
  170. uint32_t creation_time;
  171. uint32_t snapshotted_time;
  172. };
  173. /*----------------------------------------------------------------
  174. * superblock validator
  175. *--------------------------------------------------------------*/
  176. #define SUPERBLOCK_CSUM_XOR 160774
  177. static void sb_prepare_for_write(struct dm_block_validator *v,
  178. struct dm_block *b,
  179. size_t block_size)
  180. {
  181. struct thin_disk_superblock *disk_super = dm_block_data(b);
  182. disk_super->blocknr = cpu_to_le64(dm_block_location(b));
  183. disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  184. block_size - sizeof(__le32),
  185. SUPERBLOCK_CSUM_XOR));
  186. }
  187. static int sb_check(struct dm_block_validator *v,
  188. struct dm_block *b,
  189. size_t block_size)
  190. {
  191. struct thin_disk_superblock *disk_super = dm_block_data(b);
  192. __le32 csum_le;
  193. if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
  194. DMERR("sb_check failed: blocknr %llu: "
  195. "wanted %llu", le64_to_cpu(disk_super->blocknr),
  196. (unsigned long long)dm_block_location(b));
  197. return -ENOTBLK;
  198. }
  199. if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
  200. DMERR("sb_check failed: magic %llu: "
  201. "wanted %llu", le64_to_cpu(disk_super->magic),
  202. (unsigned long long)THIN_SUPERBLOCK_MAGIC);
  203. return -EILSEQ;
  204. }
  205. csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  206. block_size - sizeof(__le32),
  207. SUPERBLOCK_CSUM_XOR));
  208. if (csum_le != disk_super->csum) {
  209. DMERR("sb_check failed: csum %u: wanted %u",
  210. le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
  211. return -EILSEQ;
  212. }
  213. return 0;
  214. }
  215. static struct dm_block_validator sb_validator = {
  216. .name = "superblock",
  217. .prepare_for_write = sb_prepare_for_write,
  218. .check = sb_check
  219. };
  220. /*----------------------------------------------------------------
  221. * Methods for the btree value types
  222. *--------------------------------------------------------------*/
  223. static uint64_t pack_block_time(dm_block_t b, uint32_t t)
  224. {
  225. return (b << 24) | t;
  226. }
  227. static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
  228. {
  229. *b = v >> 24;
  230. *t = v & ((1 << 24) - 1);
  231. }
  232. static void data_block_inc(void *context, void *value_le)
  233. {
  234. struct dm_space_map *sm = context;
  235. __le64 v_le;
  236. uint64_t b;
  237. uint32_t t;
  238. memcpy(&v_le, value_le, sizeof(v_le));
  239. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  240. dm_sm_inc_block(sm, b);
  241. }
  242. static void data_block_dec(void *context, void *value_le)
  243. {
  244. struct dm_space_map *sm = context;
  245. __le64 v_le;
  246. uint64_t b;
  247. uint32_t t;
  248. memcpy(&v_le, value_le, sizeof(v_le));
  249. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  250. dm_sm_dec_block(sm, b);
  251. }
  252. static int data_block_equal(void *context, void *value1_le, void *value2_le)
  253. {
  254. __le64 v1_le, v2_le;
  255. uint64_t b1, b2;
  256. uint32_t t;
  257. memcpy(&v1_le, value1_le, sizeof(v1_le));
  258. memcpy(&v2_le, value2_le, sizeof(v2_le));
  259. unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
  260. unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
  261. return b1 == b2;
  262. }
  263. static void subtree_inc(void *context, void *value)
  264. {
  265. struct dm_btree_info *info = context;
  266. __le64 root_le;
  267. uint64_t root;
  268. memcpy(&root_le, value, sizeof(root_le));
  269. root = le64_to_cpu(root_le);
  270. dm_tm_inc(info->tm, root);
  271. }
  272. static void subtree_dec(void *context, void *value)
  273. {
  274. struct dm_btree_info *info = context;
  275. __le64 root_le;
  276. uint64_t root;
  277. memcpy(&root_le, value, sizeof(root_le));
  278. root = le64_to_cpu(root_le);
  279. if (dm_btree_del(info, root))
  280. DMERR("btree delete failed\n");
  281. }
  282. static int subtree_equal(void *context, void *value1_le, void *value2_le)
  283. {
  284. __le64 v1_le, v2_le;
  285. memcpy(&v1_le, value1_le, sizeof(v1_le));
  286. memcpy(&v2_le, value2_le, sizeof(v2_le));
  287. return v1_le == v2_le;
  288. }
  289. /*----------------------------------------------------------------*/
  290. static int superblock_lock_zero(struct dm_pool_metadata *pmd,
  291. struct dm_block **sblock)
  292. {
  293. return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  294. &sb_validator, sblock);
  295. }
  296. static int superblock_lock(struct dm_pool_metadata *pmd,
  297. struct dm_block **sblock)
  298. {
  299. return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  300. &sb_validator, sblock);
  301. }
  302. static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
  303. {
  304. int r;
  305. unsigned i;
  306. struct dm_block *b;
  307. __le64 *data_le, zero = cpu_to_le64(0);
  308. unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
  309. /*
  310. * We can't use a validator here - it may be all zeroes.
  311. */
  312. r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
  313. if (r)
  314. return r;
  315. data_le = dm_block_data(b);
  316. *result = 1;
  317. for (i = 0; i < block_size; i++) {
  318. if (data_le[i] != zero) {
  319. *result = 0;
  320. break;
  321. }
  322. }
  323. return dm_bm_unlock(b);
  324. }
  325. static void __setup_btree_details(struct dm_pool_metadata *pmd)
  326. {
  327. pmd->info.tm = pmd->tm;
  328. pmd->info.levels = 2;
  329. pmd->info.value_type.context = pmd->data_sm;
  330. pmd->info.value_type.size = sizeof(__le64);
  331. pmd->info.value_type.inc = data_block_inc;
  332. pmd->info.value_type.dec = data_block_dec;
  333. pmd->info.value_type.equal = data_block_equal;
  334. memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
  335. pmd->nb_info.tm = pmd->nb_tm;
  336. pmd->tl_info.tm = pmd->tm;
  337. pmd->tl_info.levels = 1;
  338. pmd->tl_info.value_type.context = &pmd->info;
  339. pmd->tl_info.value_type.size = sizeof(__le64);
  340. pmd->tl_info.value_type.inc = subtree_inc;
  341. pmd->tl_info.value_type.dec = subtree_dec;
  342. pmd->tl_info.value_type.equal = subtree_equal;
  343. pmd->bl_info.tm = pmd->tm;
  344. pmd->bl_info.levels = 1;
  345. pmd->bl_info.value_type.context = pmd->data_sm;
  346. pmd->bl_info.value_type.size = sizeof(__le64);
  347. pmd->bl_info.value_type.inc = data_block_inc;
  348. pmd->bl_info.value_type.dec = data_block_dec;
  349. pmd->bl_info.value_type.equal = data_block_equal;
  350. pmd->details_info.tm = pmd->tm;
  351. pmd->details_info.levels = 1;
  352. pmd->details_info.value_type.context = NULL;
  353. pmd->details_info.value_type.size = sizeof(struct disk_device_details);
  354. pmd->details_info.value_type.inc = NULL;
  355. pmd->details_info.value_type.dec = NULL;
  356. pmd->details_info.value_type.equal = NULL;
  357. }
  358. static int __write_initial_superblock(struct dm_pool_metadata *pmd)
  359. {
  360. int r;
  361. struct dm_block *sblock;
  362. size_t metadata_len, data_len;
  363. struct thin_disk_superblock *disk_super;
  364. sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
  365. if (bdev_size > THIN_METADATA_MAX_SECTORS)
  366. bdev_size = THIN_METADATA_MAX_SECTORS;
  367. r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
  368. if (r < 0)
  369. return r;
  370. r = dm_sm_root_size(pmd->data_sm, &data_len);
  371. if (r < 0)
  372. return r;
  373. r = dm_sm_commit(pmd->data_sm);
  374. if (r < 0)
  375. return r;
  376. r = dm_tm_pre_commit(pmd->tm);
  377. if (r < 0)
  378. return r;
  379. r = superblock_lock_zero(pmd, &sblock);
  380. if (r)
  381. return r;
  382. disk_super = dm_block_data(sblock);
  383. disk_super->flags = 0;
  384. memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
  385. disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
  386. disk_super->version = cpu_to_le32(THIN_VERSION);
  387. disk_super->time = 0;
  388. disk_super->trans_id = 0;
  389. disk_super->held_root = 0;
  390. r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
  391. metadata_len);
  392. if (r < 0)
  393. goto bad_locked;
  394. r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
  395. data_len);
  396. if (r < 0)
  397. goto bad_locked;
  398. disk_super->data_mapping_root = cpu_to_le64(pmd->root);
  399. disk_super->device_details_root = cpu_to_le64(pmd->details_root);
  400. disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
  401. disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
  402. disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
  403. return dm_tm_commit(pmd->tm, sblock);
  404. bad_locked:
  405. dm_bm_unlock(sblock);
  406. return r;
  407. }
  408. static int __format_metadata(struct dm_pool_metadata *pmd)
  409. {
  410. int r;
  411. r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  412. &pmd->tm, &pmd->metadata_sm);
  413. if (r < 0) {
  414. DMERR("tm_create_with_sm failed");
  415. return r;
  416. }
  417. pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
  418. if (IS_ERR(pmd->data_sm)) {
  419. DMERR("sm_disk_create failed");
  420. r = PTR_ERR(pmd->data_sm);
  421. goto bad_cleanup_tm;
  422. }
  423. pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
  424. if (!pmd->nb_tm) {
  425. DMERR("could not create non-blocking clone tm");
  426. r = -ENOMEM;
  427. goto bad_cleanup_data_sm;
  428. }
  429. __setup_btree_details(pmd);
  430. r = dm_btree_empty(&pmd->info, &pmd->root);
  431. if (r < 0)
  432. goto bad_cleanup_nb_tm;
  433. r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
  434. if (r < 0) {
  435. DMERR("couldn't create devices root");
  436. goto bad_cleanup_nb_tm;
  437. }
  438. r = __write_initial_superblock(pmd);
  439. if (r)
  440. goto bad_cleanup_nb_tm;
  441. return 0;
  442. bad_cleanup_nb_tm:
  443. dm_tm_destroy(pmd->nb_tm);
  444. bad_cleanup_data_sm:
  445. dm_sm_destroy(pmd->data_sm);
  446. bad_cleanup_tm:
  447. dm_tm_destroy(pmd->tm);
  448. dm_sm_destroy(pmd->metadata_sm);
  449. return r;
  450. }
  451. static int __check_incompat_features(struct thin_disk_superblock *disk_super,
  452. struct dm_pool_metadata *pmd)
  453. {
  454. uint32_t features;
  455. features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
  456. if (features) {
  457. DMERR("could not access metadata due to unsupported optional features (%lx).",
  458. (unsigned long)features);
  459. return -EINVAL;
  460. }
  461. /*
  462. * Check for read-only metadata to skip the following RDWR checks.
  463. */
  464. if (get_disk_ro(pmd->bdev->bd_disk))
  465. return 0;
  466. features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
  467. if (features) {
  468. DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
  469. (unsigned long)features);
  470. return -EINVAL;
  471. }
  472. return 0;
  473. }
  474. static int __open_metadata(struct dm_pool_metadata *pmd)
  475. {
  476. int r;
  477. struct dm_block *sblock;
  478. struct thin_disk_superblock *disk_super;
  479. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  480. &sb_validator, &sblock);
  481. if (r < 0) {
  482. DMERR("couldn't read superblock");
  483. return r;
  484. }
  485. disk_super = dm_block_data(sblock);
  486. r = __check_incompat_features(disk_super, pmd);
  487. if (r < 0)
  488. goto bad_unlock_sblock;
  489. r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  490. disk_super->metadata_space_map_root,
  491. sizeof(disk_super->metadata_space_map_root),
  492. &pmd->tm, &pmd->metadata_sm);
  493. if (r < 0) {
  494. DMERR("tm_open_with_sm failed");
  495. goto bad_unlock_sblock;
  496. }
  497. pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
  498. sizeof(disk_super->data_space_map_root));
  499. if (IS_ERR(pmd->data_sm)) {
  500. DMERR("sm_disk_open failed");
  501. r = PTR_ERR(pmd->data_sm);
  502. goto bad_cleanup_tm;
  503. }
  504. pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
  505. if (!pmd->nb_tm) {
  506. DMERR("could not create non-blocking clone tm");
  507. r = -ENOMEM;
  508. goto bad_cleanup_data_sm;
  509. }
  510. __setup_btree_details(pmd);
  511. return dm_bm_unlock(sblock);
  512. bad_cleanup_data_sm:
  513. dm_sm_destroy(pmd->data_sm);
  514. bad_cleanup_tm:
  515. dm_tm_destroy(pmd->tm);
  516. dm_sm_destroy(pmd->metadata_sm);
  517. bad_unlock_sblock:
  518. dm_bm_unlock(sblock);
  519. return r;
  520. }
  521. static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
  522. {
  523. int r, unformatted;
  524. r = __superblock_all_zeroes(pmd->bm, &unformatted);
  525. if (r)
  526. return r;
  527. if (unformatted)
  528. return format_device ? __format_metadata(pmd) : -EPERM;
  529. return __open_metadata(pmd);
  530. }
  531. static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
  532. {
  533. int r;
  534. pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE,
  535. THIN_METADATA_CACHE_SIZE,
  536. THIN_MAX_CONCURRENT_LOCKS);
  537. if (IS_ERR(pmd->bm)) {
  538. DMERR("could not create block manager");
  539. return PTR_ERR(pmd->bm);
  540. }
  541. r = __open_or_format_metadata(pmd, format_device);
  542. if (r)
  543. dm_block_manager_destroy(pmd->bm);
  544. return r;
  545. }
  546. static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
  547. {
  548. dm_sm_destroy(pmd->data_sm);
  549. dm_sm_destroy(pmd->metadata_sm);
  550. dm_tm_destroy(pmd->nb_tm);
  551. dm_tm_destroy(pmd->tm);
  552. dm_block_manager_destroy(pmd->bm);
  553. }
  554. static int __begin_transaction(struct dm_pool_metadata *pmd)
  555. {
  556. int r;
  557. struct thin_disk_superblock *disk_super;
  558. struct dm_block *sblock;
  559. /*
  560. * We re-read the superblock every time. Shouldn't need to do this
  561. * really.
  562. */
  563. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  564. &sb_validator, &sblock);
  565. if (r)
  566. return r;
  567. disk_super = dm_block_data(sblock);
  568. pmd->time = le32_to_cpu(disk_super->time);
  569. pmd->root = le64_to_cpu(disk_super->data_mapping_root);
  570. pmd->details_root = le64_to_cpu(disk_super->device_details_root);
  571. pmd->trans_id = le64_to_cpu(disk_super->trans_id);
  572. pmd->flags = le32_to_cpu(disk_super->flags);
  573. pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
  574. dm_bm_unlock(sblock);
  575. return 0;
  576. }
  577. static int __write_changed_details(struct dm_pool_metadata *pmd)
  578. {
  579. int r;
  580. struct dm_thin_device *td, *tmp;
  581. struct disk_device_details details;
  582. uint64_t key;
  583. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  584. if (!td->changed)
  585. continue;
  586. key = td->id;
  587. details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
  588. details.transaction_id = cpu_to_le64(td->transaction_id);
  589. details.creation_time = cpu_to_le32(td->creation_time);
  590. details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
  591. __dm_bless_for_disk(&details);
  592. r = dm_btree_insert(&pmd->details_info, pmd->details_root,
  593. &key, &details, &pmd->details_root);
  594. if (r)
  595. return r;
  596. if (td->open_count)
  597. td->changed = 0;
  598. else {
  599. list_del(&td->list);
  600. kfree(td);
  601. }
  602. }
  603. return 0;
  604. }
  605. static int __commit_transaction(struct dm_pool_metadata *pmd)
  606. {
  607. /*
  608. * FIXME: Associated pool should be made read-only on failure.
  609. */
  610. int r;
  611. size_t metadata_len, data_len;
  612. struct thin_disk_superblock *disk_super;
  613. struct dm_block *sblock;
  614. /*
  615. * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
  616. */
  617. BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
  618. r = __write_changed_details(pmd);
  619. if (r < 0)
  620. return r;
  621. r = dm_sm_commit(pmd->data_sm);
  622. if (r < 0)
  623. return r;
  624. r = dm_tm_pre_commit(pmd->tm);
  625. if (r < 0)
  626. return r;
  627. r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
  628. if (r < 0)
  629. return r;
  630. r = dm_sm_root_size(pmd->data_sm, &data_len);
  631. if (r < 0)
  632. return r;
  633. r = superblock_lock(pmd, &sblock);
  634. if (r)
  635. return r;
  636. disk_super = dm_block_data(sblock);
  637. disk_super->time = cpu_to_le32(pmd->time);
  638. disk_super->data_mapping_root = cpu_to_le64(pmd->root);
  639. disk_super->device_details_root = cpu_to_le64(pmd->details_root);
  640. disk_super->trans_id = cpu_to_le64(pmd->trans_id);
  641. disk_super->flags = cpu_to_le32(pmd->flags);
  642. r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
  643. metadata_len);
  644. if (r < 0)
  645. goto out_locked;
  646. r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
  647. data_len);
  648. if (r < 0)
  649. goto out_locked;
  650. return dm_tm_commit(pmd->tm, sblock);
  651. out_locked:
  652. dm_bm_unlock(sblock);
  653. return r;
  654. }
  655. struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
  656. sector_t data_block_size,
  657. bool format_device)
  658. {
  659. int r;
  660. struct dm_pool_metadata *pmd;
  661. pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
  662. if (!pmd) {
  663. DMERR("could not allocate metadata struct");
  664. return ERR_PTR(-ENOMEM);
  665. }
  666. init_rwsem(&pmd->root_lock);
  667. pmd->time = 0;
  668. INIT_LIST_HEAD(&pmd->thin_devices);
  669. pmd->bdev = bdev;
  670. pmd->data_block_size = data_block_size;
  671. r = __create_persistent_data_objects(pmd, format_device);
  672. if (r) {
  673. kfree(pmd);
  674. return ERR_PTR(r);
  675. }
  676. r = __begin_transaction(pmd);
  677. if (r < 0) {
  678. if (dm_pool_metadata_close(pmd) < 0)
  679. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  680. return ERR_PTR(r);
  681. }
  682. return pmd;
  683. }
  684. int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
  685. {
  686. int r;
  687. unsigned open_devices = 0;
  688. struct dm_thin_device *td, *tmp;
  689. down_read(&pmd->root_lock);
  690. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  691. if (td->open_count)
  692. open_devices++;
  693. else {
  694. list_del(&td->list);
  695. kfree(td);
  696. }
  697. }
  698. up_read(&pmd->root_lock);
  699. if (open_devices) {
  700. DMERR("attempt to close pmd when %u device(s) are still open",
  701. open_devices);
  702. return -EBUSY;
  703. }
  704. r = __commit_transaction(pmd);
  705. if (r < 0)
  706. DMWARN("%s: __commit_transaction() failed, error = %d",
  707. __func__, r);
  708. __destroy_persistent_data_objects(pmd);
  709. kfree(pmd);
  710. return 0;
  711. }
  712. /*
  713. * __open_device: Returns @td corresponding to device with id @dev,
  714. * creating it if @create is set and incrementing @td->open_count.
  715. * On failure, @td is undefined.
  716. */
  717. static int __open_device(struct dm_pool_metadata *pmd,
  718. dm_thin_id dev, int create,
  719. struct dm_thin_device **td)
  720. {
  721. int r, changed = 0;
  722. struct dm_thin_device *td2;
  723. uint64_t key = dev;
  724. struct disk_device_details details_le;
  725. /*
  726. * If the device is already open, return it.
  727. */
  728. list_for_each_entry(td2, &pmd->thin_devices, list)
  729. if (td2->id == dev) {
  730. /*
  731. * May not create an already-open device.
  732. */
  733. if (create)
  734. return -EEXIST;
  735. td2->open_count++;
  736. *td = td2;
  737. return 0;
  738. }
  739. /*
  740. * Check the device exists.
  741. */
  742. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  743. &key, &details_le);
  744. if (r) {
  745. if (r != -ENODATA || !create)
  746. return r;
  747. /*
  748. * Create new device.
  749. */
  750. changed = 1;
  751. details_le.mapped_blocks = 0;
  752. details_le.transaction_id = cpu_to_le64(pmd->trans_id);
  753. details_le.creation_time = cpu_to_le32(pmd->time);
  754. details_le.snapshotted_time = cpu_to_le32(pmd->time);
  755. }
  756. *td = kmalloc(sizeof(**td), GFP_NOIO);
  757. if (!*td)
  758. return -ENOMEM;
  759. (*td)->pmd = pmd;
  760. (*td)->id = dev;
  761. (*td)->open_count = 1;
  762. (*td)->changed = changed;
  763. (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
  764. (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
  765. (*td)->creation_time = le32_to_cpu(details_le.creation_time);
  766. (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
  767. list_add(&(*td)->list, &pmd->thin_devices);
  768. return 0;
  769. }
  770. static void __close_device(struct dm_thin_device *td)
  771. {
  772. --td->open_count;
  773. }
  774. static int __create_thin(struct dm_pool_metadata *pmd,
  775. dm_thin_id dev)
  776. {
  777. int r;
  778. dm_block_t dev_root;
  779. uint64_t key = dev;
  780. struct disk_device_details details_le;
  781. struct dm_thin_device *td;
  782. __le64 value;
  783. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  784. &key, &details_le);
  785. if (!r)
  786. return -EEXIST;
  787. /*
  788. * Create an empty btree for the mappings.
  789. */
  790. r = dm_btree_empty(&pmd->bl_info, &dev_root);
  791. if (r)
  792. return r;
  793. /*
  794. * Insert it into the main mapping tree.
  795. */
  796. value = cpu_to_le64(dev_root);
  797. __dm_bless_for_disk(&value);
  798. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  799. if (r) {
  800. dm_btree_del(&pmd->bl_info, dev_root);
  801. return r;
  802. }
  803. r = __open_device(pmd, dev, 1, &td);
  804. if (r) {
  805. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  806. dm_btree_del(&pmd->bl_info, dev_root);
  807. return r;
  808. }
  809. __close_device(td);
  810. return r;
  811. }
  812. int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
  813. {
  814. int r;
  815. down_write(&pmd->root_lock);
  816. r = __create_thin(pmd, dev);
  817. up_write(&pmd->root_lock);
  818. return r;
  819. }
  820. static int __set_snapshot_details(struct dm_pool_metadata *pmd,
  821. struct dm_thin_device *snap,
  822. dm_thin_id origin, uint32_t time)
  823. {
  824. int r;
  825. struct dm_thin_device *td;
  826. r = __open_device(pmd, origin, 0, &td);
  827. if (r)
  828. return r;
  829. td->changed = 1;
  830. td->snapshotted_time = time;
  831. snap->mapped_blocks = td->mapped_blocks;
  832. snap->snapshotted_time = time;
  833. __close_device(td);
  834. return 0;
  835. }
  836. static int __create_snap(struct dm_pool_metadata *pmd,
  837. dm_thin_id dev, dm_thin_id origin)
  838. {
  839. int r;
  840. dm_block_t origin_root;
  841. uint64_t key = origin, dev_key = dev;
  842. struct dm_thin_device *td;
  843. struct disk_device_details details_le;
  844. __le64 value;
  845. /* check this device is unused */
  846. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  847. &dev_key, &details_le);
  848. if (!r)
  849. return -EEXIST;
  850. /* find the mapping tree for the origin */
  851. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
  852. if (r)
  853. return r;
  854. origin_root = le64_to_cpu(value);
  855. /* clone the origin, an inc will do */
  856. dm_tm_inc(pmd->tm, origin_root);
  857. /* insert into the main mapping tree */
  858. value = cpu_to_le64(origin_root);
  859. __dm_bless_for_disk(&value);
  860. key = dev;
  861. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  862. if (r) {
  863. dm_tm_dec(pmd->tm, origin_root);
  864. return r;
  865. }
  866. pmd->time++;
  867. r = __open_device(pmd, dev, 1, &td);
  868. if (r)
  869. goto bad;
  870. r = __set_snapshot_details(pmd, td, origin, pmd->time);
  871. __close_device(td);
  872. if (r)
  873. goto bad;
  874. return 0;
  875. bad:
  876. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  877. dm_btree_remove(&pmd->details_info, pmd->details_root,
  878. &key, &pmd->details_root);
  879. return r;
  880. }
  881. int dm_pool_create_snap(struct dm_pool_metadata *pmd,
  882. dm_thin_id dev,
  883. dm_thin_id origin)
  884. {
  885. int r;
  886. down_write(&pmd->root_lock);
  887. r = __create_snap(pmd, dev, origin);
  888. up_write(&pmd->root_lock);
  889. return r;
  890. }
  891. static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
  892. {
  893. int r;
  894. uint64_t key = dev;
  895. struct dm_thin_device *td;
  896. /* TODO: failure should mark the transaction invalid */
  897. r = __open_device(pmd, dev, 0, &td);
  898. if (r)
  899. return r;
  900. if (td->open_count > 1) {
  901. __close_device(td);
  902. return -EBUSY;
  903. }
  904. list_del(&td->list);
  905. kfree(td);
  906. r = dm_btree_remove(&pmd->details_info, pmd->details_root,
  907. &key, &pmd->details_root);
  908. if (r)
  909. return r;
  910. r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  911. if (r)
  912. return r;
  913. return 0;
  914. }
  915. int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
  916. dm_thin_id dev)
  917. {
  918. int r;
  919. down_write(&pmd->root_lock);
  920. r = __delete_device(pmd, dev);
  921. up_write(&pmd->root_lock);
  922. return r;
  923. }
  924. int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
  925. uint64_t current_id,
  926. uint64_t new_id)
  927. {
  928. down_write(&pmd->root_lock);
  929. if (pmd->trans_id != current_id) {
  930. up_write(&pmd->root_lock);
  931. DMERR("mismatched transaction id");
  932. return -EINVAL;
  933. }
  934. pmd->trans_id = new_id;
  935. up_write(&pmd->root_lock);
  936. return 0;
  937. }
  938. int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
  939. uint64_t *result)
  940. {
  941. down_read(&pmd->root_lock);
  942. *result = pmd->trans_id;
  943. up_read(&pmd->root_lock);
  944. return 0;
  945. }
  946. static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
  947. {
  948. int r, inc;
  949. struct thin_disk_superblock *disk_super;
  950. struct dm_block *copy, *sblock;
  951. dm_block_t held_root;
  952. /*
  953. * Copy the superblock.
  954. */
  955. dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
  956. r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
  957. &sb_validator, &copy, &inc);
  958. if (r)
  959. return r;
  960. BUG_ON(!inc);
  961. held_root = dm_block_location(copy);
  962. disk_super = dm_block_data(copy);
  963. if (le64_to_cpu(disk_super->held_root)) {
  964. DMWARN("Pool metadata snapshot already exists: release this before taking another.");
  965. dm_tm_dec(pmd->tm, held_root);
  966. dm_tm_unlock(pmd->tm, copy);
  967. return -EBUSY;
  968. }
  969. /*
  970. * Wipe the spacemap since we're not publishing this.
  971. */
  972. memset(&disk_super->data_space_map_root, 0,
  973. sizeof(disk_super->data_space_map_root));
  974. memset(&disk_super->metadata_space_map_root, 0,
  975. sizeof(disk_super->metadata_space_map_root));
  976. /*
  977. * Increment the data structures that need to be preserved.
  978. */
  979. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
  980. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
  981. dm_tm_unlock(pmd->tm, copy);
  982. /*
  983. * Write the held root into the superblock.
  984. */
  985. r = superblock_lock(pmd, &sblock);
  986. if (r) {
  987. dm_tm_dec(pmd->tm, held_root);
  988. return r;
  989. }
  990. disk_super = dm_block_data(sblock);
  991. disk_super->held_root = cpu_to_le64(held_root);
  992. dm_bm_unlock(sblock);
  993. return 0;
  994. }
  995. int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
  996. {
  997. int r;
  998. down_write(&pmd->root_lock);
  999. r = __reserve_metadata_snap(pmd);
  1000. up_write(&pmd->root_lock);
  1001. return r;
  1002. }
  1003. static int __release_metadata_snap(struct dm_pool_metadata *pmd)
  1004. {
  1005. int r;
  1006. struct thin_disk_superblock *disk_super;
  1007. struct dm_block *sblock, *copy;
  1008. dm_block_t held_root;
  1009. r = superblock_lock(pmd, &sblock);
  1010. if (r)
  1011. return r;
  1012. disk_super = dm_block_data(sblock);
  1013. held_root = le64_to_cpu(disk_super->held_root);
  1014. disk_super->held_root = cpu_to_le64(0);
  1015. dm_bm_unlock(sblock);
  1016. if (!held_root) {
  1017. DMWARN("No pool metadata snapshot found: nothing to release.");
  1018. return -EINVAL;
  1019. }
  1020. r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
  1021. if (r)
  1022. return r;
  1023. disk_super = dm_block_data(copy);
  1024. dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root));
  1025. dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root));
  1026. dm_sm_dec_block(pmd->metadata_sm, held_root);
  1027. return dm_tm_unlock(pmd->tm, copy);
  1028. }
  1029. int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
  1030. {
  1031. int r;
  1032. down_write(&pmd->root_lock);
  1033. r = __release_metadata_snap(pmd);
  1034. up_write(&pmd->root_lock);
  1035. return r;
  1036. }
  1037. static int __get_metadata_snap(struct dm_pool_metadata *pmd,
  1038. dm_block_t *result)
  1039. {
  1040. int r;
  1041. struct thin_disk_superblock *disk_super;
  1042. struct dm_block *sblock;
  1043. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  1044. &sb_validator, &sblock);
  1045. if (r)
  1046. return r;
  1047. disk_super = dm_block_data(sblock);
  1048. *result = le64_to_cpu(disk_super->held_root);
  1049. return dm_bm_unlock(sblock);
  1050. }
  1051. int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
  1052. dm_block_t *result)
  1053. {
  1054. int r;
  1055. down_read(&pmd->root_lock);
  1056. r = __get_metadata_snap(pmd, result);
  1057. up_read(&pmd->root_lock);
  1058. return r;
  1059. }
  1060. int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
  1061. struct dm_thin_device **td)
  1062. {
  1063. int r;
  1064. down_write(&pmd->root_lock);
  1065. r = __open_device(pmd, dev, 0, td);
  1066. up_write(&pmd->root_lock);
  1067. return r;
  1068. }
  1069. int dm_pool_close_thin_device(struct dm_thin_device *td)
  1070. {
  1071. down_write(&td->pmd->root_lock);
  1072. __close_device(td);
  1073. up_write(&td->pmd->root_lock);
  1074. return 0;
  1075. }
  1076. dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
  1077. {
  1078. return td->id;
  1079. }
  1080. static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
  1081. {
  1082. return td->snapshotted_time > time;
  1083. }
  1084. int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
  1085. int can_block, struct dm_thin_lookup_result *result)
  1086. {
  1087. int r;
  1088. uint64_t block_time = 0;
  1089. __le64 value;
  1090. struct dm_pool_metadata *pmd = td->pmd;
  1091. dm_block_t keys[2] = { td->id, block };
  1092. if (can_block) {
  1093. down_read(&pmd->root_lock);
  1094. r = dm_btree_lookup(&pmd->info, pmd->root, keys, &value);
  1095. if (!r)
  1096. block_time = le64_to_cpu(value);
  1097. up_read(&pmd->root_lock);
  1098. } else if (down_read_trylock(&pmd->root_lock)) {
  1099. r = dm_btree_lookup(&pmd->nb_info, pmd->root, keys, &value);
  1100. if (!r)
  1101. block_time = le64_to_cpu(value);
  1102. up_read(&pmd->root_lock);
  1103. } else
  1104. return -EWOULDBLOCK;
  1105. if (!r) {
  1106. dm_block_t exception_block;
  1107. uint32_t exception_time;
  1108. unpack_block_time(block_time, &exception_block,
  1109. &exception_time);
  1110. result->block = exception_block;
  1111. result->shared = __snapshotted_since(td, exception_time);
  1112. }
  1113. return r;
  1114. }
  1115. static int __insert(struct dm_thin_device *td, dm_block_t block,
  1116. dm_block_t data_block)
  1117. {
  1118. int r, inserted;
  1119. __le64 value;
  1120. struct dm_pool_metadata *pmd = td->pmd;
  1121. dm_block_t keys[2] = { td->id, block };
  1122. value = cpu_to_le64(pack_block_time(data_block, pmd->time));
  1123. __dm_bless_for_disk(&value);
  1124. r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
  1125. &pmd->root, &inserted);
  1126. if (r)
  1127. return r;
  1128. td->changed = 1;
  1129. if (inserted)
  1130. td->mapped_blocks++;
  1131. return 0;
  1132. }
  1133. int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
  1134. dm_block_t data_block)
  1135. {
  1136. int r;
  1137. down_write(&td->pmd->root_lock);
  1138. r = __insert(td, block, data_block);
  1139. up_write(&td->pmd->root_lock);
  1140. return r;
  1141. }
  1142. static int __remove(struct dm_thin_device *td, dm_block_t block)
  1143. {
  1144. int r;
  1145. struct dm_pool_metadata *pmd = td->pmd;
  1146. dm_block_t keys[2] = { td->id, block };
  1147. r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
  1148. if (r)
  1149. return r;
  1150. td->mapped_blocks--;
  1151. td->changed = 1;
  1152. return 0;
  1153. }
  1154. int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
  1155. {
  1156. int r;
  1157. down_write(&td->pmd->root_lock);
  1158. r = __remove(td, block);
  1159. up_write(&td->pmd->root_lock);
  1160. return r;
  1161. }
  1162. bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
  1163. {
  1164. int r;
  1165. down_read(&td->pmd->root_lock);
  1166. r = td->changed;
  1167. up_read(&td->pmd->root_lock);
  1168. return r;
  1169. }
  1170. int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
  1171. {
  1172. int r;
  1173. down_write(&pmd->root_lock);
  1174. r = dm_sm_new_block(pmd->data_sm, result);
  1175. up_write(&pmd->root_lock);
  1176. return r;
  1177. }
  1178. int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
  1179. {
  1180. int r;
  1181. down_write(&pmd->root_lock);
  1182. r = __commit_transaction(pmd);
  1183. if (r <= 0)
  1184. goto out;
  1185. /*
  1186. * Open the next transaction.
  1187. */
  1188. r = __begin_transaction(pmd);
  1189. out:
  1190. up_write(&pmd->root_lock);
  1191. return r;
  1192. }
  1193. int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
  1194. {
  1195. int r;
  1196. down_read(&pmd->root_lock);
  1197. r = dm_sm_get_nr_free(pmd->data_sm, result);
  1198. up_read(&pmd->root_lock);
  1199. return r;
  1200. }
  1201. int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
  1202. dm_block_t *result)
  1203. {
  1204. int r;
  1205. down_read(&pmd->root_lock);
  1206. r = dm_sm_get_nr_free(pmd->metadata_sm, result);
  1207. up_read(&pmd->root_lock);
  1208. return r;
  1209. }
  1210. int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
  1211. dm_block_t *result)
  1212. {
  1213. int r;
  1214. down_read(&pmd->root_lock);
  1215. r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
  1216. up_read(&pmd->root_lock);
  1217. return r;
  1218. }
  1219. int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
  1220. {
  1221. down_read(&pmd->root_lock);
  1222. *result = pmd->data_block_size;
  1223. up_read(&pmd->root_lock);
  1224. return 0;
  1225. }
  1226. int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
  1227. {
  1228. int r;
  1229. down_read(&pmd->root_lock);
  1230. r = dm_sm_get_nr_blocks(pmd->data_sm, result);
  1231. up_read(&pmd->root_lock);
  1232. return r;
  1233. }
  1234. int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
  1235. {
  1236. struct dm_pool_metadata *pmd = td->pmd;
  1237. down_read(&pmd->root_lock);
  1238. *result = td->mapped_blocks;
  1239. up_read(&pmd->root_lock);
  1240. return 0;
  1241. }
  1242. static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
  1243. {
  1244. int r;
  1245. __le64 value_le;
  1246. dm_block_t thin_root;
  1247. struct dm_pool_metadata *pmd = td->pmd;
  1248. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
  1249. if (r)
  1250. return r;
  1251. thin_root = le64_to_cpu(value_le);
  1252. return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
  1253. }
  1254. int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
  1255. dm_block_t *result)
  1256. {
  1257. int r;
  1258. struct dm_pool_metadata *pmd = td->pmd;
  1259. down_read(&pmd->root_lock);
  1260. r = __highest_block(td, result);
  1261. up_read(&pmd->root_lock);
  1262. return r;
  1263. }
  1264. static int __resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1265. {
  1266. int r;
  1267. dm_block_t old_count;
  1268. r = dm_sm_get_nr_blocks(pmd->data_sm, &old_count);
  1269. if (r)
  1270. return r;
  1271. if (new_count == old_count)
  1272. return 0;
  1273. if (new_count < old_count) {
  1274. DMERR("cannot reduce size of data device");
  1275. return -EINVAL;
  1276. }
  1277. return dm_sm_extend(pmd->data_sm, new_count - old_count);
  1278. }
  1279. int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1280. {
  1281. int r;
  1282. down_write(&pmd->root_lock);
  1283. r = __resize_data_dev(pmd, new_count);
  1284. up_write(&pmd->root_lock);
  1285. return r;
  1286. }