xfs_inode.c 138 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_imap.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_dir2.h"
  30. #include "xfs_dmapi.h"
  31. #include "xfs_mount.h"
  32. #include "xfs_bmap_btree.h"
  33. #include "xfs_alloc_btree.h"
  34. #include "xfs_ialloc_btree.h"
  35. #include "xfs_dir2_sf.h"
  36. #include "xfs_attr_sf.h"
  37. #include "xfs_dinode.h"
  38. #include "xfs_inode.h"
  39. #include "xfs_buf_item.h"
  40. #include "xfs_inode_item.h"
  41. #include "xfs_btree.h"
  42. #include "xfs_alloc.h"
  43. #include "xfs_ialloc.h"
  44. #include "xfs_bmap.h"
  45. #include "xfs_rw.h"
  46. #include "xfs_error.h"
  47. #include "xfs_utils.h"
  48. #include "xfs_dir2_trace.h"
  49. #include "xfs_quota.h"
  50. #include "xfs_acl.h"
  51. #include "xfs_filestream.h"
  52. #include <linux/log2.h>
  53. kmem_zone_t *xfs_ifork_zone;
  54. kmem_zone_t *xfs_inode_zone;
  55. kmem_zone_t *xfs_chashlist_zone;
  56. /*
  57. * Used in xfs_itruncate(). This is the maximum number of extents
  58. * freed from a file in a single transaction.
  59. */
  60. #define XFS_ITRUNC_MAX_EXTENTS 2
  61. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  62. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  63. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  64. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  65. #ifdef DEBUG
  66. /*
  67. * Make sure that the extents in the given memory buffer
  68. * are valid.
  69. */
  70. STATIC void
  71. xfs_validate_extents(
  72. xfs_ifork_t *ifp,
  73. int nrecs,
  74. xfs_exntfmt_t fmt)
  75. {
  76. xfs_bmbt_irec_t irec;
  77. xfs_bmbt_rec_host_t rec;
  78. int i;
  79. for (i = 0; i < nrecs; i++) {
  80. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  81. rec.l0 = get_unaligned(&ep->l0);
  82. rec.l1 = get_unaligned(&ep->l1);
  83. xfs_bmbt_get_all(&rec, &irec);
  84. if (fmt == XFS_EXTFMT_NOSTATE)
  85. ASSERT(irec.br_state == XFS_EXT_NORM);
  86. }
  87. }
  88. #else /* DEBUG */
  89. #define xfs_validate_extents(ifp, nrecs, fmt)
  90. #endif /* DEBUG */
  91. /*
  92. * Check that none of the inode's in the buffer have a next
  93. * unlinked field of 0.
  94. */
  95. #if defined(DEBUG)
  96. void
  97. xfs_inobp_check(
  98. xfs_mount_t *mp,
  99. xfs_buf_t *bp)
  100. {
  101. int i;
  102. int j;
  103. xfs_dinode_t *dip;
  104. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  105. for (i = 0; i < j; i++) {
  106. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  107. i * mp->m_sb.sb_inodesize);
  108. if (!dip->di_next_unlinked) {
  109. xfs_fs_cmn_err(CE_ALERT, mp,
  110. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  111. bp);
  112. ASSERT(dip->di_next_unlinked);
  113. }
  114. }
  115. }
  116. #endif
  117. /*
  118. * This routine is called to map an inode number within a file
  119. * system to the buffer containing the on-disk version of the
  120. * inode. It returns a pointer to the buffer containing the
  121. * on-disk inode in the bpp parameter, and in the dip parameter
  122. * it returns a pointer to the on-disk inode within that buffer.
  123. *
  124. * If a non-zero error is returned, then the contents of bpp and
  125. * dipp are undefined.
  126. *
  127. * Use xfs_imap() to determine the size and location of the
  128. * buffer to read from disk.
  129. */
  130. STATIC int
  131. xfs_inotobp(
  132. xfs_mount_t *mp,
  133. xfs_trans_t *tp,
  134. xfs_ino_t ino,
  135. xfs_dinode_t **dipp,
  136. xfs_buf_t **bpp,
  137. int *offset)
  138. {
  139. int di_ok;
  140. xfs_imap_t imap;
  141. xfs_buf_t *bp;
  142. int error;
  143. xfs_dinode_t *dip;
  144. /*
  145. * Call the space management code to find the location of the
  146. * inode on disk.
  147. */
  148. imap.im_blkno = 0;
  149. error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
  150. if (error != 0) {
  151. cmn_err(CE_WARN,
  152. "xfs_inotobp: xfs_imap() returned an "
  153. "error %d on %s. Returning error.", error, mp->m_fsname);
  154. return error;
  155. }
  156. /*
  157. * If the inode number maps to a block outside the bounds of the
  158. * file system then return NULL rather than calling read_buf
  159. * and panicing when we get an error from the driver.
  160. */
  161. if ((imap.im_blkno + imap.im_len) >
  162. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  163. cmn_err(CE_WARN,
  164. "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
  165. "of the file system %s. Returning EINVAL.",
  166. (unsigned long long)imap.im_blkno,
  167. imap.im_len, mp->m_fsname);
  168. return XFS_ERROR(EINVAL);
  169. }
  170. /*
  171. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  172. * default to just a read_buf() call.
  173. */
  174. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  175. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  176. if (error) {
  177. cmn_err(CE_WARN,
  178. "xfs_inotobp: xfs_trans_read_buf() returned an "
  179. "error %d on %s. Returning error.", error, mp->m_fsname);
  180. return error;
  181. }
  182. dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
  183. di_ok =
  184. INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
  185. XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
  186. if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
  187. XFS_RANDOM_ITOBP_INOTOBP))) {
  188. XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
  189. xfs_trans_brelse(tp, bp);
  190. cmn_err(CE_WARN,
  191. "xfs_inotobp: XFS_TEST_ERROR() returned an "
  192. "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
  193. return XFS_ERROR(EFSCORRUPTED);
  194. }
  195. xfs_inobp_check(mp, bp);
  196. /*
  197. * Set *dipp to point to the on-disk inode in the buffer.
  198. */
  199. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  200. *bpp = bp;
  201. *offset = imap.im_boffset;
  202. return 0;
  203. }
  204. /*
  205. * This routine is called to map an inode to the buffer containing
  206. * the on-disk version of the inode. It returns a pointer to the
  207. * buffer containing the on-disk inode in the bpp parameter, and in
  208. * the dip parameter it returns a pointer to the on-disk inode within
  209. * that buffer.
  210. *
  211. * If a non-zero error is returned, then the contents of bpp and
  212. * dipp are undefined.
  213. *
  214. * If the inode is new and has not yet been initialized, use xfs_imap()
  215. * to determine the size and location of the buffer to read from disk.
  216. * If the inode has already been mapped to its buffer and read in once,
  217. * then use the mapping information stored in the inode rather than
  218. * calling xfs_imap(). This allows us to avoid the overhead of looking
  219. * at the inode btree for small block file systems (see xfs_dilocate()).
  220. * We can tell whether the inode has been mapped in before by comparing
  221. * its disk block address to 0. Only uninitialized inodes will have
  222. * 0 for the disk block address.
  223. */
  224. int
  225. xfs_itobp(
  226. xfs_mount_t *mp,
  227. xfs_trans_t *tp,
  228. xfs_inode_t *ip,
  229. xfs_dinode_t **dipp,
  230. xfs_buf_t **bpp,
  231. xfs_daddr_t bno,
  232. uint imap_flags)
  233. {
  234. xfs_imap_t imap;
  235. xfs_buf_t *bp;
  236. int error;
  237. int i;
  238. int ni;
  239. if (ip->i_blkno == (xfs_daddr_t)0) {
  240. /*
  241. * Call the space management code to find the location of the
  242. * inode on disk.
  243. */
  244. imap.im_blkno = bno;
  245. if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
  246. XFS_IMAP_LOOKUP | imap_flags)))
  247. return error;
  248. /*
  249. * If the inode number maps to a block outside the bounds
  250. * of the file system then return NULL rather than calling
  251. * read_buf and panicing when we get an error from the
  252. * driver.
  253. */
  254. if ((imap.im_blkno + imap.im_len) >
  255. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  256. #ifdef DEBUG
  257. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  258. "(imap.im_blkno (0x%llx) "
  259. "+ imap.im_len (0x%llx)) > "
  260. " XFS_FSB_TO_BB(mp, "
  261. "mp->m_sb.sb_dblocks) (0x%llx)",
  262. (unsigned long long) imap.im_blkno,
  263. (unsigned long long) imap.im_len,
  264. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  265. #endif /* DEBUG */
  266. return XFS_ERROR(EINVAL);
  267. }
  268. /*
  269. * Fill in the fields in the inode that will be used to
  270. * map the inode to its buffer from now on.
  271. */
  272. ip->i_blkno = imap.im_blkno;
  273. ip->i_len = imap.im_len;
  274. ip->i_boffset = imap.im_boffset;
  275. } else {
  276. /*
  277. * We've already mapped the inode once, so just use the
  278. * mapping that we saved the first time.
  279. */
  280. imap.im_blkno = ip->i_blkno;
  281. imap.im_len = ip->i_len;
  282. imap.im_boffset = ip->i_boffset;
  283. }
  284. ASSERT(bno == 0 || bno == imap.im_blkno);
  285. /*
  286. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  287. * default to just a read_buf() call.
  288. */
  289. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  290. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  291. if (error) {
  292. #ifdef DEBUG
  293. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  294. "xfs_trans_read_buf() returned error %d, "
  295. "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
  296. error, (unsigned long long) imap.im_blkno,
  297. (unsigned long long) imap.im_len);
  298. #endif /* DEBUG */
  299. return error;
  300. }
  301. /*
  302. * Validate the magic number and version of every inode in the buffer
  303. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  304. * No validation is done here in userspace (xfs_repair).
  305. */
  306. #if !defined(__KERNEL__)
  307. ni = 0;
  308. #elif defined(DEBUG)
  309. ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
  310. #else /* usual case */
  311. ni = 1;
  312. #endif
  313. for (i = 0; i < ni; i++) {
  314. int di_ok;
  315. xfs_dinode_t *dip;
  316. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  317. (i << mp->m_sb.sb_inodelog));
  318. di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
  319. XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
  320. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  321. XFS_ERRTAG_ITOBP_INOTOBP,
  322. XFS_RANDOM_ITOBP_INOTOBP))) {
  323. if (imap_flags & XFS_IMAP_BULKSTAT) {
  324. xfs_trans_brelse(tp, bp);
  325. return XFS_ERROR(EINVAL);
  326. }
  327. #ifdef DEBUG
  328. cmn_err(CE_ALERT,
  329. "Device %s - bad inode magic/vsn "
  330. "daddr %lld #%d (magic=%x)",
  331. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  332. (unsigned long long)imap.im_blkno, i,
  333. INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
  334. #endif
  335. XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
  336. mp, dip);
  337. xfs_trans_brelse(tp, bp);
  338. return XFS_ERROR(EFSCORRUPTED);
  339. }
  340. }
  341. xfs_inobp_check(mp, bp);
  342. /*
  343. * Mark the buffer as an inode buffer now that it looks good
  344. */
  345. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  346. /*
  347. * Set *dipp to point to the on-disk inode in the buffer.
  348. */
  349. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  350. *bpp = bp;
  351. return 0;
  352. }
  353. /*
  354. * Move inode type and inode format specific information from the
  355. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  356. * this means set if_rdev to the proper value. For files, directories,
  357. * and symlinks this means to bring in the in-line data or extent
  358. * pointers. For a file in B-tree format, only the root is immediately
  359. * brought in-core. The rest will be in-lined in if_extents when it
  360. * is first referenced (see xfs_iread_extents()).
  361. */
  362. STATIC int
  363. xfs_iformat(
  364. xfs_inode_t *ip,
  365. xfs_dinode_t *dip)
  366. {
  367. xfs_attr_shortform_t *atp;
  368. int size;
  369. int error;
  370. xfs_fsize_t di_size;
  371. ip->i_df.if_ext_max =
  372. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  373. error = 0;
  374. if (unlikely(
  375. INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
  376. INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
  377. INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
  378. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  379. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  380. (unsigned long long)ip->i_ino,
  381. (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
  382. + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
  383. (unsigned long long)
  384. INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
  385. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  386. ip->i_mount, dip);
  387. return XFS_ERROR(EFSCORRUPTED);
  388. }
  389. if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
  390. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  391. "corrupt dinode %Lu, forkoff = 0x%x.",
  392. (unsigned long long)ip->i_ino,
  393. (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
  394. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  395. ip->i_mount, dip);
  396. return XFS_ERROR(EFSCORRUPTED);
  397. }
  398. switch (ip->i_d.di_mode & S_IFMT) {
  399. case S_IFIFO:
  400. case S_IFCHR:
  401. case S_IFBLK:
  402. case S_IFSOCK:
  403. if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
  404. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  405. ip->i_mount, dip);
  406. return XFS_ERROR(EFSCORRUPTED);
  407. }
  408. ip->i_d.di_size = 0;
  409. ip->i_size = 0;
  410. ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
  411. break;
  412. case S_IFREG:
  413. case S_IFLNK:
  414. case S_IFDIR:
  415. switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
  416. case XFS_DINODE_FMT_LOCAL:
  417. /*
  418. * no local regular files yet
  419. */
  420. if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
  421. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  422. "corrupt inode %Lu "
  423. "(local format for regular file).",
  424. (unsigned long long) ip->i_ino);
  425. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  426. XFS_ERRLEVEL_LOW,
  427. ip->i_mount, dip);
  428. return XFS_ERROR(EFSCORRUPTED);
  429. }
  430. di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
  431. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  432. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  433. "corrupt inode %Lu "
  434. "(bad size %Ld for local inode).",
  435. (unsigned long long) ip->i_ino,
  436. (long long) di_size);
  437. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  438. XFS_ERRLEVEL_LOW,
  439. ip->i_mount, dip);
  440. return XFS_ERROR(EFSCORRUPTED);
  441. }
  442. size = (int)di_size;
  443. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  444. break;
  445. case XFS_DINODE_FMT_EXTENTS:
  446. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  447. break;
  448. case XFS_DINODE_FMT_BTREE:
  449. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  450. break;
  451. default:
  452. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  453. ip->i_mount);
  454. return XFS_ERROR(EFSCORRUPTED);
  455. }
  456. break;
  457. default:
  458. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  459. return XFS_ERROR(EFSCORRUPTED);
  460. }
  461. if (error) {
  462. return error;
  463. }
  464. if (!XFS_DFORK_Q(dip))
  465. return 0;
  466. ASSERT(ip->i_afp == NULL);
  467. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  468. ip->i_afp->if_ext_max =
  469. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  470. switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
  471. case XFS_DINODE_FMT_LOCAL:
  472. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  473. size = be16_to_cpu(atp->hdr.totsize);
  474. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  475. break;
  476. case XFS_DINODE_FMT_EXTENTS:
  477. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  478. break;
  479. case XFS_DINODE_FMT_BTREE:
  480. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  481. break;
  482. default:
  483. error = XFS_ERROR(EFSCORRUPTED);
  484. break;
  485. }
  486. if (error) {
  487. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  488. ip->i_afp = NULL;
  489. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  490. }
  491. return error;
  492. }
  493. /*
  494. * The file is in-lined in the on-disk inode.
  495. * If it fits into if_inline_data, then copy
  496. * it there, otherwise allocate a buffer for it
  497. * and copy the data there. Either way, set
  498. * if_data to point at the data.
  499. * If we allocate a buffer for the data, make
  500. * sure that its size is a multiple of 4 and
  501. * record the real size in i_real_bytes.
  502. */
  503. STATIC int
  504. xfs_iformat_local(
  505. xfs_inode_t *ip,
  506. xfs_dinode_t *dip,
  507. int whichfork,
  508. int size)
  509. {
  510. xfs_ifork_t *ifp;
  511. int real_size;
  512. /*
  513. * If the size is unreasonable, then something
  514. * is wrong and we just bail out rather than crash in
  515. * kmem_alloc() or memcpy() below.
  516. */
  517. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  518. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  519. "corrupt inode %Lu "
  520. "(bad size %d for local fork, size = %d).",
  521. (unsigned long long) ip->i_ino, size,
  522. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  523. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  524. ip->i_mount, dip);
  525. return XFS_ERROR(EFSCORRUPTED);
  526. }
  527. ifp = XFS_IFORK_PTR(ip, whichfork);
  528. real_size = 0;
  529. if (size == 0)
  530. ifp->if_u1.if_data = NULL;
  531. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  532. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  533. else {
  534. real_size = roundup(size, 4);
  535. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  536. }
  537. ifp->if_bytes = size;
  538. ifp->if_real_bytes = real_size;
  539. if (size)
  540. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  541. ifp->if_flags &= ~XFS_IFEXTENTS;
  542. ifp->if_flags |= XFS_IFINLINE;
  543. return 0;
  544. }
  545. /*
  546. * The file consists of a set of extents all
  547. * of which fit into the on-disk inode.
  548. * If there are few enough extents to fit into
  549. * the if_inline_ext, then copy them there.
  550. * Otherwise allocate a buffer for them and copy
  551. * them into it. Either way, set if_extents
  552. * to point at the extents.
  553. */
  554. STATIC int
  555. xfs_iformat_extents(
  556. xfs_inode_t *ip,
  557. xfs_dinode_t *dip,
  558. int whichfork)
  559. {
  560. xfs_bmbt_rec_t *dp;
  561. xfs_ifork_t *ifp;
  562. int nex;
  563. int size;
  564. int i;
  565. ifp = XFS_IFORK_PTR(ip, whichfork);
  566. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  567. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  568. /*
  569. * If the number of extents is unreasonable, then something
  570. * is wrong and we just bail out rather than crash in
  571. * kmem_alloc() or memcpy() below.
  572. */
  573. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  574. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  575. "corrupt inode %Lu ((a)extents = %d).",
  576. (unsigned long long) ip->i_ino, nex);
  577. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  578. ip->i_mount, dip);
  579. return XFS_ERROR(EFSCORRUPTED);
  580. }
  581. ifp->if_real_bytes = 0;
  582. if (nex == 0)
  583. ifp->if_u1.if_extents = NULL;
  584. else if (nex <= XFS_INLINE_EXTS)
  585. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  586. else
  587. xfs_iext_add(ifp, 0, nex);
  588. ifp->if_bytes = size;
  589. if (size) {
  590. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  591. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  592. for (i = 0; i < nex; i++, dp++) {
  593. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  594. ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
  595. ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
  596. }
  597. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  598. if (whichfork != XFS_DATA_FORK ||
  599. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  600. if (unlikely(xfs_check_nostate_extents(
  601. ifp, 0, nex))) {
  602. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  603. XFS_ERRLEVEL_LOW,
  604. ip->i_mount);
  605. return XFS_ERROR(EFSCORRUPTED);
  606. }
  607. }
  608. ifp->if_flags |= XFS_IFEXTENTS;
  609. return 0;
  610. }
  611. /*
  612. * The file has too many extents to fit into
  613. * the inode, so they are in B-tree format.
  614. * Allocate a buffer for the root of the B-tree
  615. * and copy the root into it. The i_extents
  616. * field will remain NULL until all of the
  617. * extents are read in (when they are needed).
  618. */
  619. STATIC int
  620. xfs_iformat_btree(
  621. xfs_inode_t *ip,
  622. xfs_dinode_t *dip,
  623. int whichfork)
  624. {
  625. xfs_bmdr_block_t *dfp;
  626. xfs_ifork_t *ifp;
  627. /* REFERENCED */
  628. int nrecs;
  629. int size;
  630. ifp = XFS_IFORK_PTR(ip, whichfork);
  631. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  632. size = XFS_BMAP_BROOT_SPACE(dfp);
  633. nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
  634. /*
  635. * blow out if -- fork has less extents than can fit in
  636. * fork (fork shouldn't be a btree format), root btree
  637. * block has more records than can fit into the fork,
  638. * or the number of extents is greater than the number of
  639. * blocks.
  640. */
  641. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  642. || XFS_BMDR_SPACE_CALC(nrecs) >
  643. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  644. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  645. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  646. "corrupt inode %Lu (btree).",
  647. (unsigned long long) ip->i_ino);
  648. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  649. ip->i_mount);
  650. return XFS_ERROR(EFSCORRUPTED);
  651. }
  652. ifp->if_broot_bytes = size;
  653. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  654. ASSERT(ifp->if_broot != NULL);
  655. /*
  656. * Copy and convert from the on-disk structure
  657. * to the in-memory structure.
  658. */
  659. xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  660. ifp->if_broot, size);
  661. ifp->if_flags &= ~XFS_IFEXTENTS;
  662. ifp->if_flags |= XFS_IFBROOT;
  663. return 0;
  664. }
  665. /*
  666. * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
  667. * and native format
  668. *
  669. * buf = on-disk representation
  670. * dip = native representation
  671. * dir = direction - +ve -> disk to native
  672. * -ve -> native to disk
  673. */
  674. void
  675. xfs_xlate_dinode_core(
  676. xfs_caddr_t buf,
  677. xfs_dinode_core_t *dip,
  678. int dir)
  679. {
  680. xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
  681. xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
  682. xfs_arch_t arch = ARCH_CONVERT;
  683. ASSERT(dir);
  684. INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
  685. INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
  686. INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
  687. INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
  688. INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
  689. INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
  690. INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
  691. INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
  692. INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
  693. if (dir > 0) {
  694. memcpy(mem_core->di_pad, buf_core->di_pad,
  695. sizeof(buf_core->di_pad));
  696. } else {
  697. memcpy(buf_core->di_pad, mem_core->di_pad,
  698. sizeof(buf_core->di_pad));
  699. }
  700. INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
  701. INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
  702. dir, arch);
  703. INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
  704. dir, arch);
  705. INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
  706. dir, arch);
  707. INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
  708. dir, arch);
  709. INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
  710. dir, arch);
  711. INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
  712. dir, arch);
  713. INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
  714. INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
  715. INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
  716. INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
  717. INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
  718. INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
  719. INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
  720. INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
  721. INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
  722. INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
  723. INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
  724. }
  725. STATIC uint
  726. _xfs_dic2xflags(
  727. __uint16_t di_flags)
  728. {
  729. uint flags = 0;
  730. if (di_flags & XFS_DIFLAG_ANY) {
  731. if (di_flags & XFS_DIFLAG_REALTIME)
  732. flags |= XFS_XFLAG_REALTIME;
  733. if (di_flags & XFS_DIFLAG_PREALLOC)
  734. flags |= XFS_XFLAG_PREALLOC;
  735. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  736. flags |= XFS_XFLAG_IMMUTABLE;
  737. if (di_flags & XFS_DIFLAG_APPEND)
  738. flags |= XFS_XFLAG_APPEND;
  739. if (di_flags & XFS_DIFLAG_SYNC)
  740. flags |= XFS_XFLAG_SYNC;
  741. if (di_flags & XFS_DIFLAG_NOATIME)
  742. flags |= XFS_XFLAG_NOATIME;
  743. if (di_flags & XFS_DIFLAG_NODUMP)
  744. flags |= XFS_XFLAG_NODUMP;
  745. if (di_flags & XFS_DIFLAG_RTINHERIT)
  746. flags |= XFS_XFLAG_RTINHERIT;
  747. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  748. flags |= XFS_XFLAG_PROJINHERIT;
  749. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  750. flags |= XFS_XFLAG_NOSYMLINKS;
  751. if (di_flags & XFS_DIFLAG_EXTSIZE)
  752. flags |= XFS_XFLAG_EXTSIZE;
  753. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  754. flags |= XFS_XFLAG_EXTSZINHERIT;
  755. if (di_flags & XFS_DIFLAG_NODEFRAG)
  756. flags |= XFS_XFLAG_NODEFRAG;
  757. if (di_flags & XFS_DIFLAG_FILESTREAM)
  758. flags |= XFS_XFLAG_FILESTREAM;
  759. }
  760. return flags;
  761. }
  762. uint
  763. xfs_ip2xflags(
  764. xfs_inode_t *ip)
  765. {
  766. xfs_dinode_core_t *dic = &ip->i_d;
  767. return _xfs_dic2xflags(dic->di_flags) |
  768. (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
  769. }
  770. uint
  771. xfs_dic2xflags(
  772. xfs_dinode_core_t *dic)
  773. {
  774. return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
  775. (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
  776. }
  777. /*
  778. * Given a mount structure and an inode number, return a pointer
  779. * to a newly allocated in-core inode corresponding to the given
  780. * inode number.
  781. *
  782. * Initialize the inode's attributes and extent pointers if it
  783. * already has them (it will not if the inode has no links).
  784. */
  785. int
  786. xfs_iread(
  787. xfs_mount_t *mp,
  788. xfs_trans_t *tp,
  789. xfs_ino_t ino,
  790. xfs_inode_t **ipp,
  791. xfs_daddr_t bno,
  792. uint imap_flags)
  793. {
  794. xfs_buf_t *bp;
  795. xfs_dinode_t *dip;
  796. xfs_inode_t *ip;
  797. int error;
  798. ASSERT(xfs_inode_zone != NULL);
  799. ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
  800. ip->i_ino = ino;
  801. ip->i_mount = mp;
  802. spin_lock_init(&ip->i_flags_lock);
  803. /*
  804. * Get pointer's to the on-disk inode and the buffer containing it.
  805. * If the inode number refers to a block outside the file system
  806. * then xfs_itobp() will return NULL. In this case we should
  807. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  808. * know that this is a new incore inode.
  809. */
  810. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
  811. if (error) {
  812. kmem_zone_free(xfs_inode_zone, ip);
  813. return error;
  814. }
  815. /*
  816. * Initialize inode's trace buffers.
  817. * Do this before xfs_iformat in case it adds entries.
  818. */
  819. #ifdef XFS_BMAP_TRACE
  820. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
  821. #endif
  822. #ifdef XFS_BMBT_TRACE
  823. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
  824. #endif
  825. #ifdef XFS_RW_TRACE
  826. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
  827. #endif
  828. #ifdef XFS_ILOCK_TRACE
  829. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
  830. #endif
  831. #ifdef XFS_DIR2_TRACE
  832. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
  833. #endif
  834. /*
  835. * If we got something that isn't an inode it means someone
  836. * (nfs or dmi) has a stale handle.
  837. */
  838. if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
  839. kmem_zone_free(xfs_inode_zone, ip);
  840. xfs_trans_brelse(tp, bp);
  841. #ifdef DEBUG
  842. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  843. "dip->di_core.di_magic (0x%x) != "
  844. "XFS_DINODE_MAGIC (0x%x)",
  845. INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
  846. XFS_DINODE_MAGIC);
  847. #endif /* DEBUG */
  848. return XFS_ERROR(EINVAL);
  849. }
  850. /*
  851. * If the on-disk inode is already linked to a directory
  852. * entry, copy all of the inode into the in-core inode.
  853. * xfs_iformat() handles copying in the inode format
  854. * specific information.
  855. * Otherwise, just get the truly permanent information.
  856. */
  857. if (dip->di_core.di_mode) {
  858. xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
  859. &(ip->i_d), 1);
  860. error = xfs_iformat(ip, dip);
  861. if (error) {
  862. kmem_zone_free(xfs_inode_zone, ip);
  863. xfs_trans_brelse(tp, bp);
  864. #ifdef DEBUG
  865. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  866. "xfs_iformat() returned error %d",
  867. error);
  868. #endif /* DEBUG */
  869. return error;
  870. }
  871. } else {
  872. ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
  873. ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
  874. ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
  875. ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
  876. /*
  877. * Make sure to pull in the mode here as well in
  878. * case the inode is released without being used.
  879. * This ensures that xfs_inactive() will see that
  880. * the inode is already free and not try to mess
  881. * with the uninitialized part of it.
  882. */
  883. ip->i_d.di_mode = 0;
  884. /*
  885. * Initialize the per-fork minima and maxima for a new
  886. * inode here. xfs_iformat will do it for old inodes.
  887. */
  888. ip->i_df.if_ext_max =
  889. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  890. }
  891. INIT_LIST_HEAD(&ip->i_reclaim);
  892. /*
  893. * The inode format changed when we moved the link count and
  894. * made it 32 bits long. If this is an old format inode,
  895. * convert it in memory to look like a new one. If it gets
  896. * flushed to disk we will convert back before flushing or
  897. * logging it. We zero out the new projid field and the old link
  898. * count field. We'll handle clearing the pad field (the remains
  899. * of the old uuid field) when we actually convert the inode to
  900. * the new format. We don't change the version number so that we
  901. * can distinguish this from a real new format inode.
  902. */
  903. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  904. ip->i_d.di_nlink = ip->i_d.di_onlink;
  905. ip->i_d.di_onlink = 0;
  906. ip->i_d.di_projid = 0;
  907. }
  908. ip->i_delayed_blks = 0;
  909. ip->i_size = ip->i_d.di_size;
  910. /*
  911. * Mark the buffer containing the inode as something to keep
  912. * around for a while. This helps to keep recently accessed
  913. * meta-data in-core longer.
  914. */
  915. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  916. /*
  917. * Use xfs_trans_brelse() to release the buffer containing the
  918. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  919. * in xfs_itobp() above. If tp is NULL, this is just a normal
  920. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  921. * will only release the buffer if it is not dirty within the
  922. * transaction. It will be OK to release the buffer in this case,
  923. * because inodes on disk are never destroyed and we will be
  924. * locking the new in-core inode before putting it in the hash
  925. * table where other processes can find it. Thus we don't have
  926. * to worry about the inode being changed just because we released
  927. * the buffer.
  928. */
  929. xfs_trans_brelse(tp, bp);
  930. *ipp = ip;
  931. return 0;
  932. }
  933. /*
  934. * Read in extents from a btree-format inode.
  935. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  936. */
  937. int
  938. xfs_iread_extents(
  939. xfs_trans_t *tp,
  940. xfs_inode_t *ip,
  941. int whichfork)
  942. {
  943. int error;
  944. xfs_ifork_t *ifp;
  945. xfs_extnum_t nextents;
  946. size_t size;
  947. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  948. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  949. ip->i_mount);
  950. return XFS_ERROR(EFSCORRUPTED);
  951. }
  952. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  953. size = nextents * sizeof(xfs_bmbt_rec_t);
  954. ifp = XFS_IFORK_PTR(ip, whichfork);
  955. /*
  956. * We know that the size is valid (it's checked in iformat_btree)
  957. */
  958. ifp->if_lastex = NULLEXTNUM;
  959. ifp->if_bytes = ifp->if_real_bytes = 0;
  960. ifp->if_flags |= XFS_IFEXTENTS;
  961. xfs_iext_add(ifp, 0, nextents);
  962. error = xfs_bmap_read_extents(tp, ip, whichfork);
  963. if (error) {
  964. xfs_iext_destroy(ifp);
  965. ifp->if_flags &= ~XFS_IFEXTENTS;
  966. return error;
  967. }
  968. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  969. return 0;
  970. }
  971. /*
  972. * Allocate an inode on disk and return a copy of its in-core version.
  973. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  974. * appropriately within the inode. The uid and gid for the inode are
  975. * set according to the contents of the given cred structure.
  976. *
  977. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  978. * has a free inode available, call xfs_iget()
  979. * to obtain the in-core version of the allocated inode. Finally,
  980. * fill in the inode and log its initial contents. In this case,
  981. * ialloc_context would be set to NULL and call_again set to false.
  982. *
  983. * If xfs_dialloc() does not have an available inode,
  984. * it will replenish its supply by doing an allocation. Since we can
  985. * only do one allocation within a transaction without deadlocks, we
  986. * must commit the current transaction before returning the inode itself.
  987. * In this case, therefore, we will set call_again to true and return.
  988. * The caller should then commit the current transaction, start a new
  989. * transaction, and call xfs_ialloc() again to actually get the inode.
  990. *
  991. * To ensure that some other process does not grab the inode that
  992. * was allocated during the first call to xfs_ialloc(), this routine
  993. * also returns the [locked] bp pointing to the head of the freelist
  994. * as ialloc_context. The caller should hold this buffer across
  995. * the commit and pass it back into this routine on the second call.
  996. *
  997. * If we are allocating quota inodes, we do not have a parent inode
  998. * to attach to or associate with (i.e. pip == NULL) because they
  999. * are not linked into the directory structure - they are attached
  1000. * directly to the superblock - and so have no parent.
  1001. */
  1002. int
  1003. xfs_ialloc(
  1004. xfs_trans_t *tp,
  1005. xfs_inode_t *pip,
  1006. mode_t mode,
  1007. xfs_nlink_t nlink,
  1008. xfs_dev_t rdev,
  1009. cred_t *cr,
  1010. xfs_prid_t prid,
  1011. int okalloc,
  1012. xfs_buf_t **ialloc_context,
  1013. boolean_t *call_again,
  1014. xfs_inode_t **ipp)
  1015. {
  1016. xfs_ino_t ino;
  1017. xfs_inode_t *ip;
  1018. bhv_vnode_t *vp;
  1019. uint flags;
  1020. int error;
  1021. /*
  1022. * Call the space management code to pick
  1023. * the on-disk inode to be allocated.
  1024. */
  1025. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  1026. ialloc_context, call_again, &ino);
  1027. if (error != 0) {
  1028. return error;
  1029. }
  1030. if (*call_again || ino == NULLFSINO) {
  1031. *ipp = NULL;
  1032. return 0;
  1033. }
  1034. ASSERT(*ialloc_context == NULL);
  1035. /*
  1036. * Get the in-core inode with the lock held exclusively.
  1037. * This is because we're setting fields here we need
  1038. * to prevent others from looking at until we're done.
  1039. */
  1040. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  1041. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  1042. if (error != 0) {
  1043. return error;
  1044. }
  1045. ASSERT(ip != NULL);
  1046. vp = XFS_ITOV(ip);
  1047. ip->i_d.di_mode = (__uint16_t)mode;
  1048. ip->i_d.di_onlink = 0;
  1049. ip->i_d.di_nlink = nlink;
  1050. ASSERT(ip->i_d.di_nlink == nlink);
  1051. ip->i_d.di_uid = current_fsuid(cr);
  1052. ip->i_d.di_gid = current_fsgid(cr);
  1053. ip->i_d.di_projid = prid;
  1054. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1055. /*
  1056. * If the superblock version is up to where we support new format
  1057. * inodes and this is currently an old format inode, then change
  1058. * the inode version number now. This way we only do the conversion
  1059. * here rather than here and in the flush/logging code.
  1060. */
  1061. if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
  1062. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1063. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1064. /*
  1065. * We've already zeroed the old link count, the projid field,
  1066. * and the pad field.
  1067. */
  1068. }
  1069. /*
  1070. * Project ids won't be stored on disk if we are using a version 1 inode.
  1071. */
  1072. if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1073. xfs_bump_ino_vers2(tp, ip);
  1074. if (pip && XFS_INHERIT_GID(pip, vp->v_vfsp)) {
  1075. ip->i_d.di_gid = pip->i_d.di_gid;
  1076. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1077. ip->i_d.di_mode |= S_ISGID;
  1078. }
  1079. }
  1080. /*
  1081. * If the group ID of the new file does not match the effective group
  1082. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1083. * (and only if the irix_sgid_inherit compatibility variable is set).
  1084. */
  1085. if ((irix_sgid_inherit) &&
  1086. (ip->i_d.di_mode & S_ISGID) &&
  1087. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1088. ip->i_d.di_mode &= ~S_ISGID;
  1089. }
  1090. ip->i_d.di_size = 0;
  1091. ip->i_size = 0;
  1092. ip->i_d.di_nextents = 0;
  1093. ASSERT(ip->i_d.di_nblocks == 0);
  1094. xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
  1095. /*
  1096. * di_gen will have been taken care of in xfs_iread.
  1097. */
  1098. ip->i_d.di_extsize = 0;
  1099. ip->i_d.di_dmevmask = 0;
  1100. ip->i_d.di_dmstate = 0;
  1101. ip->i_d.di_flags = 0;
  1102. flags = XFS_ILOG_CORE;
  1103. switch (mode & S_IFMT) {
  1104. case S_IFIFO:
  1105. case S_IFCHR:
  1106. case S_IFBLK:
  1107. case S_IFSOCK:
  1108. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1109. ip->i_df.if_u2.if_rdev = rdev;
  1110. ip->i_df.if_flags = 0;
  1111. flags |= XFS_ILOG_DEV;
  1112. break;
  1113. case S_IFREG:
  1114. if (pip && xfs_inode_is_filestream(pip)) {
  1115. error = xfs_filestream_associate(pip, ip);
  1116. if (error < 0)
  1117. return -error;
  1118. if (!error)
  1119. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1120. }
  1121. /* fall through */
  1122. case S_IFDIR:
  1123. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1124. uint di_flags = 0;
  1125. if ((mode & S_IFMT) == S_IFDIR) {
  1126. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1127. di_flags |= XFS_DIFLAG_RTINHERIT;
  1128. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1129. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1130. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1131. }
  1132. } else if ((mode & S_IFMT) == S_IFREG) {
  1133. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
  1134. di_flags |= XFS_DIFLAG_REALTIME;
  1135. ip->i_iocore.io_flags |= XFS_IOCORE_RT;
  1136. }
  1137. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1138. di_flags |= XFS_DIFLAG_EXTSIZE;
  1139. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1140. }
  1141. }
  1142. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1143. xfs_inherit_noatime)
  1144. di_flags |= XFS_DIFLAG_NOATIME;
  1145. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1146. xfs_inherit_nodump)
  1147. di_flags |= XFS_DIFLAG_NODUMP;
  1148. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1149. xfs_inherit_sync)
  1150. di_flags |= XFS_DIFLAG_SYNC;
  1151. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1152. xfs_inherit_nosymlinks)
  1153. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1154. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1155. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1156. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1157. xfs_inherit_nodefrag)
  1158. di_flags |= XFS_DIFLAG_NODEFRAG;
  1159. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1160. di_flags |= XFS_DIFLAG_FILESTREAM;
  1161. ip->i_d.di_flags |= di_flags;
  1162. }
  1163. /* FALLTHROUGH */
  1164. case S_IFLNK:
  1165. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1166. ip->i_df.if_flags = XFS_IFEXTENTS;
  1167. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1168. ip->i_df.if_u1.if_extents = NULL;
  1169. break;
  1170. default:
  1171. ASSERT(0);
  1172. }
  1173. /*
  1174. * Attribute fork settings for new inode.
  1175. */
  1176. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1177. ip->i_d.di_anextents = 0;
  1178. /*
  1179. * Log the new values stuffed into the inode.
  1180. */
  1181. xfs_trans_log_inode(tp, ip, flags);
  1182. /* now that we have an i_mode we can setup inode ops and unlock */
  1183. bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
  1184. *ipp = ip;
  1185. return 0;
  1186. }
  1187. /*
  1188. * Check to make sure that there are no blocks allocated to the
  1189. * file beyond the size of the file. We don't check this for
  1190. * files with fixed size extents or real time extents, but we
  1191. * at least do it for regular files.
  1192. */
  1193. #ifdef DEBUG
  1194. void
  1195. xfs_isize_check(
  1196. xfs_mount_t *mp,
  1197. xfs_inode_t *ip,
  1198. xfs_fsize_t isize)
  1199. {
  1200. xfs_fileoff_t map_first;
  1201. int nimaps;
  1202. xfs_bmbt_irec_t imaps[2];
  1203. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1204. return;
  1205. if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
  1206. return;
  1207. nimaps = 2;
  1208. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1209. /*
  1210. * The filesystem could be shutting down, so bmapi may return
  1211. * an error.
  1212. */
  1213. if (xfs_bmapi(NULL, ip, map_first,
  1214. (XFS_B_TO_FSB(mp,
  1215. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1216. map_first),
  1217. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1218. NULL, NULL))
  1219. return;
  1220. ASSERT(nimaps == 1);
  1221. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1222. }
  1223. #endif /* DEBUG */
  1224. /*
  1225. * Calculate the last possible buffered byte in a file. This must
  1226. * include data that was buffered beyond the EOF by the write code.
  1227. * This also needs to deal with overflowing the xfs_fsize_t type
  1228. * which can happen for sizes near the limit.
  1229. *
  1230. * We also need to take into account any blocks beyond the EOF. It
  1231. * may be the case that they were buffered by a write which failed.
  1232. * In that case the pages will still be in memory, but the inode size
  1233. * will never have been updated.
  1234. */
  1235. xfs_fsize_t
  1236. xfs_file_last_byte(
  1237. xfs_inode_t *ip)
  1238. {
  1239. xfs_mount_t *mp;
  1240. xfs_fsize_t last_byte;
  1241. xfs_fileoff_t last_block;
  1242. xfs_fileoff_t size_last_block;
  1243. int error;
  1244. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
  1245. mp = ip->i_mount;
  1246. /*
  1247. * Only check for blocks beyond the EOF if the extents have
  1248. * been read in. This eliminates the need for the inode lock,
  1249. * and it also saves us from looking when it really isn't
  1250. * necessary.
  1251. */
  1252. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1253. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1254. XFS_DATA_FORK);
  1255. if (error) {
  1256. last_block = 0;
  1257. }
  1258. } else {
  1259. last_block = 0;
  1260. }
  1261. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1262. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1263. last_byte = XFS_FSB_TO_B(mp, last_block);
  1264. if (last_byte < 0) {
  1265. return XFS_MAXIOFFSET(mp);
  1266. }
  1267. last_byte += (1 << mp->m_writeio_log);
  1268. if (last_byte < 0) {
  1269. return XFS_MAXIOFFSET(mp);
  1270. }
  1271. return last_byte;
  1272. }
  1273. #if defined(XFS_RW_TRACE)
  1274. STATIC void
  1275. xfs_itrunc_trace(
  1276. int tag,
  1277. xfs_inode_t *ip,
  1278. int flag,
  1279. xfs_fsize_t new_size,
  1280. xfs_off_t toss_start,
  1281. xfs_off_t toss_finish)
  1282. {
  1283. if (ip->i_rwtrace == NULL) {
  1284. return;
  1285. }
  1286. ktrace_enter(ip->i_rwtrace,
  1287. (void*)((long)tag),
  1288. (void*)ip,
  1289. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1290. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1291. (void*)((long)flag),
  1292. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1293. (void*)(unsigned long)(new_size & 0xffffffff),
  1294. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1295. (void*)(unsigned long)(toss_start & 0xffffffff),
  1296. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1297. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1298. (void*)(unsigned long)current_cpu(),
  1299. (void*)(unsigned long)current_pid(),
  1300. (void*)NULL,
  1301. (void*)NULL,
  1302. (void*)NULL);
  1303. }
  1304. #else
  1305. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1306. #endif
  1307. /*
  1308. * Start the truncation of the file to new_size. The new size
  1309. * must be smaller than the current size. This routine will
  1310. * clear the buffer and page caches of file data in the removed
  1311. * range, and xfs_itruncate_finish() will remove the underlying
  1312. * disk blocks.
  1313. *
  1314. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1315. * must NOT have the inode lock held at all. This is because we're
  1316. * calling into the buffer/page cache code and we can't hold the
  1317. * inode lock when we do so.
  1318. *
  1319. * We need to wait for any direct I/Os in flight to complete before we
  1320. * proceed with the truncate. This is needed to prevent the extents
  1321. * being read or written by the direct I/Os from being removed while the
  1322. * I/O is in flight as there is no other method of synchronising
  1323. * direct I/O with the truncate operation. Also, because we hold
  1324. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1325. * started until the truncate completes and drops the lock. Essentially,
  1326. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1327. * between direct I/Os and the truncate operation.
  1328. *
  1329. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1330. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1331. * in the case that the caller is locking things out of order and
  1332. * may not be able to call xfs_itruncate_finish() with the inode lock
  1333. * held without dropping the I/O lock. If the caller must drop the
  1334. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1335. * must be called again with all the same restrictions as the initial
  1336. * call.
  1337. */
  1338. int
  1339. xfs_itruncate_start(
  1340. xfs_inode_t *ip,
  1341. uint flags,
  1342. xfs_fsize_t new_size)
  1343. {
  1344. xfs_fsize_t last_byte;
  1345. xfs_off_t toss_start;
  1346. xfs_mount_t *mp;
  1347. bhv_vnode_t *vp;
  1348. int error = 0;
  1349. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1350. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1351. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1352. (flags == XFS_ITRUNC_MAYBE));
  1353. mp = ip->i_mount;
  1354. vp = XFS_ITOV(ip);
  1355. vn_iowait(vp); /* wait for the completion of any pending DIOs */
  1356. /*
  1357. * Call toss_pages or flushinval_pages to get rid of pages
  1358. * overlapping the region being removed. We have to use
  1359. * the less efficient flushinval_pages in the case that the
  1360. * caller may not be able to finish the truncate without
  1361. * dropping the inode's I/O lock. Make sure
  1362. * to catch any pages brought in by buffers overlapping
  1363. * the EOF by searching out beyond the isize by our
  1364. * block size. We round new_size up to a block boundary
  1365. * so that we don't toss things on the same block as
  1366. * new_size but before it.
  1367. *
  1368. * Before calling toss_page or flushinval_pages, make sure to
  1369. * call remapf() over the same region if the file is mapped.
  1370. * This frees up mapped file references to the pages in the
  1371. * given range and for the flushinval_pages case it ensures
  1372. * that we get the latest mapped changes flushed out.
  1373. */
  1374. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1375. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1376. if (toss_start < 0) {
  1377. /*
  1378. * The place to start tossing is beyond our maximum
  1379. * file size, so there is no way that the data extended
  1380. * out there.
  1381. */
  1382. return 0;
  1383. }
  1384. last_byte = xfs_file_last_byte(ip);
  1385. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1386. last_byte);
  1387. if (last_byte > toss_start) {
  1388. if (flags & XFS_ITRUNC_DEFINITE) {
  1389. bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1390. } else {
  1391. error = bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1392. }
  1393. }
  1394. #ifdef DEBUG
  1395. if (new_size == 0) {
  1396. ASSERT(VN_CACHED(vp) == 0);
  1397. }
  1398. #endif
  1399. return error;
  1400. }
  1401. /*
  1402. * Shrink the file to the given new_size. The new
  1403. * size must be smaller than the current size.
  1404. * This will free up the underlying blocks
  1405. * in the removed range after a call to xfs_itruncate_start()
  1406. * or xfs_atruncate_start().
  1407. *
  1408. * The transaction passed to this routine must have made
  1409. * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
  1410. * This routine may commit the given transaction and
  1411. * start new ones, so make sure everything involved in
  1412. * the transaction is tidy before calling here.
  1413. * Some transaction will be returned to the caller to be
  1414. * committed. The incoming transaction must already include
  1415. * the inode, and both inode locks must be held exclusively.
  1416. * The inode must also be "held" within the transaction. On
  1417. * return the inode will be "held" within the returned transaction.
  1418. * This routine does NOT require any disk space to be reserved
  1419. * for it within the transaction.
  1420. *
  1421. * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
  1422. * and it indicates the fork which is to be truncated. For the
  1423. * attribute fork we only support truncation to size 0.
  1424. *
  1425. * We use the sync parameter to indicate whether or not the first
  1426. * transaction we perform might have to be synchronous. For the attr fork,
  1427. * it needs to be so if the unlink of the inode is not yet known to be
  1428. * permanent in the log. This keeps us from freeing and reusing the
  1429. * blocks of the attribute fork before the unlink of the inode becomes
  1430. * permanent.
  1431. *
  1432. * For the data fork, we normally have to run synchronously if we're
  1433. * being called out of the inactive path or we're being called
  1434. * out of the create path where we're truncating an existing file.
  1435. * Either way, the truncate needs to be sync so blocks don't reappear
  1436. * in the file with altered data in case of a crash. wsync filesystems
  1437. * can run the first case async because anything that shrinks the inode
  1438. * has to run sync so by the time we're called here from inactive, the
  1439. * inode size is permanently set to 0.
  1440. *
  1441. * Calls from the truncate path always need to be sync unless we're
  1442. * in a wsync filesystem and the file has already been unlinked.
  1443. *
  1444. * The caller is responsible for correctly setting the sync parameter.
  1445. * It gets too hard for us to guess here which path we're being called
  1446. * out of just based on inode state.
  1447. */
  1448. int
  1449. xfs_itruncate_finish(
  1450. xfs_trans_t **tp,
  1451. xfs_inode_t *ip,
  1452. xfs_fsize_t new_size,
  1453. int fork,
  1454. int sync)
  1455. {
  1456. xfs_fsblock_t first_block;
  1457. xfs_fileoff_t first_unmap_block;
  1458. xfs_fileoff_t last_block;
  1459. xfs_filblks_t unmap_len=0;
  1460. xfs_mount_t *mp;
  1461. xfs_trans_t *ntp;
  1462. int done;
  1463. int committed;
  1464. xfs_bmap_free_t free_list;
  1465. int error;
  1466. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1467. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
  1468. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1469. ASSERT(*tp != NULL);
  1470. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1471. ASSERT(ip->i_transp == *tp);
  1472. ASSERT(ip->i_itemp != NULL);
  1473. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1474. ntp = *tp;
  1475. mp = (ntp)->t_mountp;
  1476. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1477. /*
  1478. * We only support truncating the entire attribute fork.
  1479. */
  1480. if (fork == XFS_ATTR_FORK) {
  1481. new_size = 0LL;
  1482. }
  1483. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1484. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1485. /*
  1486. * The first thing we do is set the size to new_size permanently
  1487. * on disk. This way we don't have to worry about anyone ever
  1488. * being able to look at the data being freed even in the face
  1489. * of a crash. What we're getting around here is the case where
  1490. * we free a block, it is allocated to another file, it is written
  1491. * to, and then we crash. If the new data gets written to the
  1492. * file but the log buffers containing the free and reallocation
  1493. * don't, then we'd end up with garbage in the blocks being freed.
  1494. * As long as we make the new_size permanent before actually
  1495. * freeing any blocks it doesn't matter if they get writtten to.
  1496. *
  1497. * The callers must signal into us whether or not the size
  1498. * setting here must be synchronous. There are a few cases
  1499. * where it doesn't have to be synchronous. Those cases
  1500. * occur if the file is unlinked and we know the unlink is
  1501. * permanent or if the blocks being truncated are guaranteed
  1502. * to be beyond the inode eof (regardless of the link count)
  1503. * and the eof value is permanent. Both of these cases occur
  1504. * only on wsync-mounted filesystems. In those cases, we're
  1505. * guaranteed that no user will ever see the data in the blocks
  1506. * that are being truncated so the truncate can run async.
  1507. * In the free beyond eof case, the file may wind up with
  1508. * more blocks allocated to it than it needs if we crash
  1509. * and that won't get fixed until the next time the file
  1510. * is re-opened and closed but that's ok as that shouldn't
  1511. * be too many blocks.
  1512. *
  1513. * However, we can't just make all wsync xactions run async
  1514. * because there's one call out of the create path that needs
  1515. * to run sync where it's truncating an existing file to size
  1516. * 0 whose size is > 0.
  1517. *
  1518. * It's probably possible to come up with a test in this
  1519. * routine that would correctly distinguish all the above
  1520. * cases from the values of the function parameters and the
  1521. * inode state but for sanity's sake, I've decided to let the
  1522. * layers above just tell us. It's simpler to correctly figure
  1523. * out in the layer above exactly under what conditions we
  1524. * can run async and I think it's easier for others read and
  1525. * follow the logic in case something has to be changed.
  1526. * cscope is your friend -- rcc.
  1527. *
  1528. * The attribute fork is much simpler.
  1529. *
  1530. * For the attribute fork we allow the caller to tell us whether
  1531. * the unlink of the inode that led to this call is yet permanent
  1532. * in the on disk log. If it is not and we will be freeing extents
  1533. * in this inode then we make the first transaction synchronous
  1534. * to make sure that the unlink is permanent by the time we free
  1535. * the blocks.
  1536. */
  1537. if (fork == XFS_DATA_FORK) {
  1538. if (ip->i_d.di_nextents > 0) {
  1539. /*
  1540. * If we are not changing the file size then do
  1541. * not update the on-disk file size - we may be
  1542. * called from xfs_inactive_free_eofblocks(). If we
  1543. * update the on-disk file size and then the system
  1544. * crashes before the contents of the file are
  1545. * flushed to disk then the files may be full of
  1546. * holes (ie NULL files bug).
  1547. */
  1548. if (ip->i_size != new_size) {
  1549. ip->i_d.di_size = new_size;
  1550. ip->i_size = new_size;
  1551. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1552. }
  1553. }
  1554. } else if (sync) {
  1555. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1556. if (ip->i_d.di_anextents > 0)
  1557. xfs_trans_set_sync(ntp);
  1558. }
  1559. ASSERT(fork == XFS_DATA_FORK ||
  1560. (fork == XFS_ATTR_FORK &&
  1561. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1562. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1563. /*
  1564. * Since it is possible for space to become allocated beyond
  1565. * the end of the file (in a crash where the space is allocated
  1566. * but the inode size is not yet updated), simply remove any
  1567. * blocks which show up between the new EOF and the maximum
  1568. * possible file size. If the first block to be removed is
  1569. * beyond the maximum file size (ie it is the same as last_block),
  1570. * then there is nothing to do.
  1571. */
  1572. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1573. ASSERT(first_unmap_block <= last_block);
  1574. done = 0;
  1575. if (last_block == first_unmap_block) {
  1576. done = 1;
  1577. } else {
  1578. unmap_len = last_block - first_unmap_block + 1;
  1579. }
  1580. while (!done) {
  1581. /*
  1582. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1583. * will tell us whether it freed the entire range or
  1584. * not. If this is a synchronous mount (wsync),
  1585. * then we can tell bunmapi to keep all the
  1586. * transactions asynchronous since the unlink
  1587. * transaction that made this inode inactive has
  1588. * already hit the disk. There's no danger of
  1589. * the freed blocks being reused, there being a
  1590. * crash, and the reused blocks suddenly reappearing
  1591. * in this file with garbage in them once recovery
  1592. * runs.
  1593. */
  1594. XFS_BMAP_INIT(&free_list, &first_block);
  1595. error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
  1596. first_unmap_block, unmap_len,
  1597. XFS_BMAPI_AFLAG(fork) |
  1598. (sync ? 0 : XFS_BMAPI_ASYNC),
  1599. XFS_ITRUNC_MAX_EXTENTS,
  1600. &first_block, &free_list,
  1601. NULL, &done);
  1602. if (error) {
  1603. /*
  1604. * If the bunmapi call encounters an error,
  1605. * return to the caller where the transaction
  1606. * can be properly aborted. We just need to
  1607. * make sure we're not holding any resources
  1608. * that we were not when we came in.
  1609. */
  1610. xfs_bmap_cancel(&free_list);
  1611. return error;
  1612. }
  1613. /*
  1614. * Duplicate the transaction that has the permanent
  1615. * reservation and commit the old transaction.
  1616. */
  1617. error = xfs_bmap_finish(tp, &free_list, &committed);
  1618. ntp = *tp;
  1619. if (error) {
  1620. /*
  1621. * If the bmap finish call encounters an error,
  1622. * return to the caller where the transaction
  1623. * can be properly aborted. We just need to
  1624. * make sure we're not holding any resources
  1625. * that we were not when we came in.
  1626. *
  1627. * Aborting from this point might lose some
  1628. * blocks in the file system, but oh well.
  1629. */
  1630. xfs_bmap_cancel(&free_list);
  1631. if (committed) {
  1632. /*
  1633. * If the passed in transaction committed
  1634. * in xfs_bmap_finish(), then we want to
  1635. * add the inode to this one before returning.
  1636. * This keeps things simple for the higher
  1637. * level code, because it always knows that
  1638. * the inode is locked and held in the
  1639. * transaction that returns to it whether
  1640. * errors occur or not. We don't mark the
  1641. * inode dirty so that this transaction can
  1642. * be easily aborted if possible.
  1643. */
  1644. xfs_trans_ijoin(ntp, ip,
  1645. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1646. xfs_trans_ihold(ntp, ip);
  1647. }
  1648. return error;
  1649. }
  1650. if (committed) {
  1651. /*
  1652. * The first xact was committed,
  1653. * so add the inode to the new one.
  1654. * Mark it dirty so it will be logged
  1655. * and moved forward in the log as
  1656. * part of every commit.
  1657. */
  1658. xfs_trans_ijoin(ntp, ip,
  1659. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1660. xfs_trans_ihold(ntp, ip);
  1661. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1662. }
  1663. ntp = xfs_trans_dup(ntp);
  1664. (void) xfs_trans_commit(*tp, 0);
  1665. *tp = ntp;
  1666. error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
  1667. XFS_TRANS_PERM_LOG_RES,
  1668. XFS_ITRUNCATE_LOG_COUNT);
  1669. /*
  1670. * Add the inode being truncated to the next chained
  1671. * transaction.
  1672. */
  1673. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1674. xfs_trans_ihold(ntp, ip);
  1675. if (error)
  1676. return (error);
  1677. }
  1678. /*
  1679. * Only update the size in the case of the data fork, but
  1680. * always re-log the inode so that our permanent transaction
  1681. * can keep on rolling it forward in the log.
  1682. */
  1683. if (fork == XFS_DATA_FORK) {
  1684. xfs_isize_check(mp, ip, new_size);
  1685. /*
  1686. * If we are not changing the file size then do
  1687. * not update the on-disk file size - we may be
  1688. * called from xfs_inactive_free_eofblocks(). If we
  1689. * update the on-disk file size and then the system
  1690. * crashes before the contents of the file are
  1691. * flushed to disk then the files may be full of
  1692. * holes (ie NULL files bug).
  1693. */
  1694. if (ip->i_size != new_size) {
  1695. ip->i_d.di_size = new_size;
  1696. ip->i_size = new_size;
  1697. }
  1698. }
  1699. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1700. ASSERT((new_size != 0) ||
  1701. (fork == XFS_ATTR_FORK) ||
  1702. (ip->i_delayed_blks == 0));
  1703. ASSERT((new_size != 0) ||
  1704. (fork == XFS_ATTR_FORK) ||
  1705. (ip->i_d.di_nextents == 0));
  1706. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1707. return 0;
  1708. }
  1709. /*
  1710. * xfs_igrow_start
  1711. *
  1712. * Do the first part of growing a file: zero any data in the last
  1713. * block that is beyond the old EOF. We need to do this before
  1714. * the inode is joined to the transaction to modify the i_size.
  1715. * That way we can drop the inode lock and call into the buffer
  1716. * cache to get the buffer mapping the EOF.
  1717. */
  1718. int
  1719. xfs_igrow_start(
  1720. xfs_inode_t *ip,
  1721. xfs_fsize_t new_size,
  1722. cred_t *credp)
  1723. {
  1724. int error;
  1725. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1726. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1727. ASSERT(new_size > ip->i_size);
  1728. /*
  1729. * Zero any pages that may have been created by
  1730. * xfs_write_file() beyond the end of the file
  1731. * and any blocks between the old and new file sizes.
  1732. */
  1733. error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
  1734. ip->i_size);
  1735. return error;
  1736. }
  1737. /*
  1738. * xfs_igrow_finish
  1739. *
  1740. * This routine is called to extend the size of a file.
  1741. * The inode must have both the iolock and the ilock locked
  1742. * for update and it must be a part of the current transaction.
  1743. * The xfs_igrow_start() function must have been called previously.
  1744. * If the change_flag is not zero, the inode change timestamp will
  1745. * be updated.
  1746. */
  1747. void
  1748. xfs_igrow_finish(
  1749. xfs_trans_t *tp,
  1750. xfs_inode_t *ip,
  1751. xfs_fsize_t new_size,
  1752. int change_flag)
  1753. {
  1754. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1755. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1756. ASSERT(ip->i_transp == tp);
  1757. ASSERT(new_size > ip->i_size);
  1758. /*
  1759. * Update the file size. Update the inode change timestamp
  1760. * if change_flag set.
  1761. */
  1762. ip->i_d.di_size = new_size;
  1763. ip->i_size = new_size;
  1764. if (change_flag)
  1765. xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
  1766. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1767. }
  1768. /*
  1769. * This is called when the inode's link count goes to 0.
  1770. * We place the on-disk inode on a list in the AGI. It
  1771. * will be pulled from this list when the inode is freed.
  1772. */
  1773. int
  1774. xfs_iunlink(
  1775. xfs_trans_t *tp,
  1776. xfs_inode_t *ip)
  1777. {
  1778. xfs_mount_t *mp;
  1779. xfs_agi_t *agi;
  1780. xfs_dinode_t *dip;
  1781. xfs_buf_t *agibp;
  1782. xfs_buf_t *ibp;
  1783. xfs_agnumber_t agno;
  1784. xfs_daddr_t agdaddr;
  1785. xfs_agino_t agino;
  1786. short bucket_index;
  1787. int offset;
  1788. int error;
  1789. int agi_ok;
  1790. ASSERT(ip->i_d.di_nlink == 0);
  1791. ASSERT(ip->i_d.di_mode != 0);
  1792. ASSERT(ip->i_transp == tp);
  1793. mp = tp->t_mountp;
  1794. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1795. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1796. /*
  1797. * Get the agi buffer first. It ensures lock ordering
  1798. * on the list.
  1799. */
  1800. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1801. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1802. if (error) {
  1803. return error;
  1804. }
  1805. /*
  1806. * Validate the magic number of the agi block.
  1807. */
  1808. agi = XFS_BUF_TO_AGI(agibp);
  1809. agi_ok =
  1810. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1811. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1812. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1813. XFS_RANDOM_IUNLINK))) {
  1814. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1815. xfs_trans_brelse(tp, agibp);
  1816. return XFS_ERROR(EFSCORRUPTED);
  1817. }
  1818. /*
  1819. * Get the index into the agi hash table for the
  1820. * list this inode will go on.
  1821. */
  1822. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1823. ASSERT(agino != 0);
  1824. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1825. ASSERT(agi->agi_unlinked[bucket_index]);
  1826. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1827. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1828. /*
  1829. * There is already another inode in the bucket we need
  1830. * to add ourselves to. Add us at the front of the list.
  1831. * Here we put the head pointer into our next pointer,
  1832. * and then we fall through to point the head at us.
  1833. */
  1834. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1835. if (error) {
  1836. return error;
  1837. }
  1838. ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
  1839. ASSERT(dip->di_next_unlinked);
  1840. /* both on-disk, don't endian flip twice */
  1841. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1842. offset = ip->i_boffset +
  1843. offsetof(xfs_dinode_t, di_next_unlinked);
  1844. xfs_trans_inode_buf(tp, ibp);
  1845. xfs_trans_log_buf(tp, ibp, offset,
  1846. (offset + sizeof(xfs_agino_t) - 1));
  1847. xfs_inobp_check(mp, ibp);
  1848. }
  1849. /*
  1850. * Point the bucket head pointer at the inode being inserted.
  1851. */
  1852. ASSERT(agino != 0);
  1853. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1854. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1855. (sizeof(xfs_agino_t) * bucket_index);
  1856. xfs_trans_log_buf(tp, agibp, offset,
  1857. (offset + sizeof(xfs_agino_t) - 1));
  1858. return 0;
  1859. }
  1860. /*
  1861. * Pull the on-disk inode from the AGI unlinked list.
  1862. */
  1863. STATIC int
  1864. xfs_iunlink_remove(
  1865. xfs_trans_t *tp,
  1866. xfs_inode_t *ip)
  1867. {
  1868. xfs_ino_t next_ino;
  1869. xfs_mount_t *mp;
  1870. xfs_agi_t *agi;
  1871. xfs_dinode_t *dip;
  1872. xfs_buf_t *agibp;
  1873. xfs_buf_t *ibp;
  1874. xfs_agnumber_t agno;
  1875. xfs_daddr_t agdaddr;
  1876. xfs_agino_t agino;
  1877. xfs_agino_t next_agino;
  1878. xfs_buf_t *last_ibp;
  1879. xfs_dinode_t *last_dip = NULL;
  1880. short bucket_index;
  1881. int offset, last_offset = 0;
  1882. int error;
  1883. int agi_ok;
  1884. /*
  1885. * First pull the on-disk inode from the AGI unlinked list.
  1886. */
  1887. mp = tp->t_mountp;
  1888. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1889. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1890. /*
  1891. * Get the agi buffer first. It ensures lock ordering
  1892. * on the list.
  1893. */
  1894. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1895. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1896. if (error) {
  1897. cmn_err(CE_WARN,
  1898. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1899. error, mp->m_fsname);
  1900. return error;
  1901. }
  1902. /*
  1903. * Validate the magic number of the agi block.
  1904. */
  1905. agi = XFS_BUF_TO_AGI(agibp);
  1906. agi_ok =
  1907. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1908. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1909. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1910. XFS_RANDOM_IUNLINK_REMOVE))) {
  1911. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1912. mp, agi);
  1913. xfs_trans_brelse(tp, agibp);
  1914. cmn_err(CE_WARN,
  1915. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1916. mp->m_fsname);
  1917. return XFS_ERROR(EFSCORRUPTED);
  1918. }
  1919. /*
  1920. * Get the index into the agi hash table for the
  1921. * list this inode will go on.
  1922. */
  1923. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1924. ASSERT(agino != 0);
  1925. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1926. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1927. ASSERT(agi->agi_unlinked[bucket_index]);
  1928. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1929. /*
  1930. * We're at the head of the list. Get the inode's
  1931. * on-disk buffer to see if there is anyone after us
  1932. * on the list. Only modify our next pointer if it
  1933. * is not already NULLAGINO. This saves us the overhead
  1934. * of dealing with the buffer when there is no need to
  1935. * change it.
  1936. */
  1937. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1938. if (error) {
  1939. cmn_err(CE_WARN,
  1940. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1941. error, mp->m_fsname);
  1942. return error;
  1943. }
  1944. next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
  1945. ASSERT(next_agino != 0);
  1946. if (next_agino != NULLAGINO) {
  1947. INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
  1948. offset = ip->i_boffset +
  1949. offsetof(xfs_dinode_t, di_next_unlinked);
  1950. xfs_trans_inode_buf(tp, ibp);
  1951. xfs_trans_log_buf(tp, ibp, offset,
  1952. (offset + sizeof(xfs_agino_t) - 1));
  1953. xfs_inobp_check(mp, ibp);
  1954. } else {
  1955. xfs_trans_brelse(tp, ibp);
  1956. }
  1957. /*
  1958. * Point the bucket head pointer at the next inode.
  1959. */
  1960. ASSERT(next_agino != 0);
  1961. ASSERT(next_agino != agino);
  1962. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1963. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1964. (sizeof(xfs_agino_t) * bucket_index);
  1965. xfs_trans_log_buf(tp, agibp, offset,
  1966. (offset + sizeof(xfs_agino_t) - 1));
  1967. } else {
  1968. /*
  1969. * We need to search the list for the inode being freed.
  1970. */
  1971. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1972. last_ibp = NULL;
  1973. while (next_agino != agino) {
  1974. /*
  1975. * If the last inode wasn't the one pointing to
  1976. * us, then release its buffer since we're not
  1977. * going to do anything with it.
  1978. */
  1979. if (last_ibp != NULL) {
  1980. xfs_trans_brelse(tp, last_ibp);
  1981. }
  1982. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1983. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1984. &last_ibp, &last_offset);
  1985. if (error) {
  1986. cmn_err(CE_WARN,
  1987. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1988. error, mp->m_fsname);
  1989. return error;
  1990. }
  1991. next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
  1992. ASSERT(next_agino != NULLAGINO);
  1993. ASSERT(next_agino != 0);
  1994. }
  1995. /*
  1996. * Now last_ibp points to the buffer previous to us on
  1997. * the unlinked list. Pull us from the list.
  1998. */
  1999. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  2000. if (error) {
  2001. cmn_err(CE_WARN,
  2002. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  2003. error, mp->m_fsname);
  2004. return error;
  2005. }
  2006. next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
  2007. ASSERT(next_agino != 0);
  2008. ASSERT(next_agino != agino);
  2009. if (next_agino != NULLAGINO) {
  2010. INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
  2011. offset = ip->i_boffset +
  2012. offsetof(xfs_dinode_t, di_next_unlinked);
  2013. xfs_trans_inode_buf(tp, ibp);
  2014. xfs_trans_log_buf(tp, ibp, offset,
  2015. (offset + sizeof(xfs_agino_t) - 1));
  2016. xfs_inobp_check(mp, ibp);
  2017. } else {
  2018. xfs_trans_brelse(tp, ibp);
  2019. }
  2020. /*
  2021. * Point the previous inode on the list to the next inode.
  2022. */
  2023. INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
  2024. ASSERT(next_agino != 0);
  2025. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  2026. xfs_trans_inode_buf(tp, last_ibp);
  2027. xfs_trans_log_buf(tp, last_ibp, offset,
  2028. (offset + sizeof(xfs_agino_t) - 1));
  2029. xfs_inobp_check(mp, last_ibp);
  2030. }
  2031. return 0;
  2032. }
  2033. STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
  2034. {
  2035. return (((ip->i_itemp == NULL) ||
  2036. !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2037. (ip->i_update_core == 0));
  2038. }
  2039. STATIC void
  2040. xfs_ifree_cluster(
  2041. xfs_inode_t *free_ip,
  2042. xfs_trans_t *tp,
  2043. xfs_ino_t inum)
  2044. {
  2045. xfs_mount_t *mp = free_ip->i_mount;
  2046. int blks_per_cluster;
  2047. int nbufs;
  2048. int ninodes;
  2049. int i, j, found, pre_flushed;
  2050. xfs_daddr_t blkno;
  2051. xfs_buf_t *bp;
  2052. xfs_ihash_t *ih;
  2053. xfs_inode_t *ip, **ip_found;
  2054. xfs_inode_log_item_t *iip;
  2055. xfs_log_item_t *lip;
  2056. SPLDECL(s);
  2057. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  2058. blks_per_cluster = 1;
  2059. ninodes = mp->m_sb.sb_inopblock;
  2060. nbufs = XFS_IALLOC_BLOCKS(mp);
  2061. } else {
  2062. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  2063. mp->m_sb.sb_blocksize;
  2064. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  2065. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  2066. }
  2067. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  2068. for (j = 0; j < nbufs; j++, inum += ninodes) {
  2069. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  2070. XFS_INO_TO_AGBNO(mp, inum));
  2071. /*
  2072. * Look for each inode in memory and attempt to lock it,
  2073. * we can be racing with flush and tail pushing here.
  2074. * any inode we get the locks on, add to an array of
  2075. * inode items to process later.
  2076. *
  2077. * The get the buffer lock, we could beat a flush
  2078. * or tail pushing thread to the lock here, in which
  2079. * case they will go looking for the inode buffer
  2080. * and fail, we need some other form of interlock
  2081. * here.
  2082. */
  2083. found = 0;
  2084. for (i = 0; i < ninodes; i++) {
  2085. ih = XFS_IHASH(mp, inum + i);
  2086. read_lock(&ih->ih_lock);
  2087. for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
  2088. if (ip->i_ino == inum + i)
  2089. break;
  2090. }
  2091. /* Inode not in memory or we found it already,
  2092. * nothing to do
  2093. */
  2094. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  2095. read_unlock(&ih->ih_lock);
  2096. continue;
  2097. }
  2098. if (xfs_inode_clean(ip)) {
  2099. read_unlock(&ih->ih_lock);
  2100. continue;
  2101. }
  2102. /* If we can get the locks then add it to the
  2103. * list, otherwise by the time we get the bp lock
  2104. * below it will already be attached to the
  2105. * inode buffer.
  2106. */
  2107. /* This inode will already be locked - by us, lets
  2108. * keep it that way.
  2109. */
  2110. if (ip == free_ip) {
  2111. if (xfs_iflock_nowait(ip)) {
  2112. xfs_iflags_set(ip, XFS_ISTALE);
  2113. if (xfs_inode_clean(ip)) {
  2114. xfs_ifunlock(ip);
  2115. } else {
  2116. ip_found[found++] = ip;
  2117. }
  2118. }
  2119. read_unlock(&ih->ih_lock);
  2120. continue;
  2121. }
  2122. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  2123. if (xfs_iflock_nowait(ip)) {
  2124. xfs_iflags_set(ip, XFS_ISTALE);
  2125. if (xfs_inode_clean(ip)) {
  2126. xfs_ifunlock(ip);
  2127. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2128. } else {
  2129. ip_found[found++] = ip;
  2130. }
  2131. } else {
  2132. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2133. }
  2134. }
  2135. read_unlock(&ih->ih_lock);
  2136. }
  2137. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2138. mp->m_bsize * blks_per_cluster,
  2139. XFS_BUF_LOCK);
  2140. pre_flushed = 0;
  2141. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2142. while (lip) {
  2143. if (lip->li_type == XFS_LI_INODE) {
  2144. iip = (xfs_inode_log_item_t *)lip;
  2145. ASSERT(iip->ili_logged == 1);
  2146. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2147. AIL_LOCK(mp,s);
  2148. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2149. AIL_UNLOCK(mp, s);
  2150. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  2151. pre_flushed++;
  2152. }
  2153. lip = lip->li_bio_list;
  2154. }
  2155. for (i = 0; i < found; i++) {
  2156. ip = ip_found[i];
  2157. iip = ip->i_itemp;
  2158. if (!iip) {
  2159. ip->i_update_core = 0;
  2160. xfs_ifunlock(ip);
  2161. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2162. continue;
  2163. }
  2164. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2165. iip->ili_format.ilf_fields = 0;
  2166. iip->ili_logged = 1;
  2167. AIL_LOCK(mp,s);
  2168. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2169. AIL_UNLOCK(mp, s);
  2170. xfs_buf_attach_iodone(bp,
  2171. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2172. xfs_istale_done, (xfs_log_item_t *)iip);
  2173. if (ip != free_ip) {
  2174. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2175. }
  2176. }
  2177. if (found || pre_flushed)
  2178. xfs_trans_stale_inode_buf(tp, bp);
  2179. xfs_trans_binval(tp, bp);
  2180. }
  2181. kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
  2182. }
  2183. /*
  2184. * This is called to return an inode to the inode free list.
  2185. * The inode should already be truncated to 0 length and have
  2186. * no pages associated with it. This routine also assumes that
  2187. * the inode is already a part of the transaction.
  2188. *
  2189. * The on-disk copy of the inode will have been added to the list
  2190. * of unlinked inodes in the AGI. We need to remove the inode from
  2191. * that list atomically with respect to freeing it here.
  2192. */
  2193. int
  2194. xfs_ifree(
  2195. xfs_trans_t *tp,
  2196. xfs_inode_t *ip,
  2197. xfs_bmap_free_t *flist)
  2198. {
  2199. int error;
  2200. int delete;
  2201. xfs_ino_t first_ino;
  2202. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2203. ASSERT(ip->i_transp == tp);
  2204. ASSERT(ip->i_d.di_nlink == 0);
  2205. ASSERT(ip->i_d.di_nextents == 0);
  2206. ASSERT(ip->i_d.di_anextents == 0);
  2207. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  2208. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2209. ASSERT(ip->i_d.di_nblocks == 0);
  2210. /*
  2211. * Pull the on-disk inode from the AGI unlinked list.
  2212. */
  2213. error = xfs_iunlink_remove(tp, ip);
  2214. if (error != 0) {
  2215. return error;
  2216. }
  2217. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2218. if (error != 0) {
  2219. return error;
  2220. }
  2221. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2222. ip->i_d.di_flags = 0;
  2223. ip->i_d.di_dmevmask = 0;
  2224. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2225. ip->i_df.if_ext_max =
  2226. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2227. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2228. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2229. /*
  2230. * Bump the generation count so no one will be confused
  2231. * by reincarnations of this inode.
  2232. */
  2233. ip->i_d.di_gen++;
  2234. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2235. if (delete) {
  2236. xfs_ifree_cluster(ip, tp, first_ino);
  2237. }
  2238. return 0;
  2239. }
  2240. /*
  2241. * Reallocate the space for if_broot based on the number of records
  2242. * being added or deleted as indicated in rec_diff. Move the records
  2243. * and pointers in if_broot to fit the new size. When shrinking this
  2244. * will eliminate holes between the records and pointers created by
  2245. * the caller. When growing this will create holes to be filled in
  2246. * by the caller.
  2247. *
  2248. * The caller must not request to add more records than would fit in
  2249. * the on-disk inode root. If the if_broot is currently NULL, then
  2250. * if we adding records one will be allocated. The caller must also
  2251. * not request that the number of records go below zero, although
  2252. * it can go to zero.
  2253. *
  2254. * ip -- the inode whose if_broot area is changing
  2255. * ext_diff -- the change in the number of records, positive or negative,
  2256. * requested for the if_broot array.
  2257. */
  2258. void
  2259. xfs_iroot_realloc(
  2260. xfs_inode_t *ip,
  2261. int rec_diff,
  2262. int whichfork)
  2263. {
  2264. int cur_max;
  2265. xfs_ifork_t *ifp;
  2266. xfs_bmbt_block_t *new_broot;
  2267. int new_max;
  2268. size_t new_size;
  2269. char *np;
  2270. char *op;
  2271. /*
  2272. * Handle the degenerate case quietly.
  2273. */
  2274. if (rec_diff == 0) {
  2275. return;
  2276. }
  2277. ifp = XFS_IFORK_PTR(ip, whichfork);
  2278. if (rec_diff > 0) {
  2279. /*
  2280. * If there wasn't any memory allocated before, just
  2281. * allocate it now and get out.
  2282. */
  2283. if (ifp->if_broot_bytes == 0) {
  2284. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2285. ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
  2286. KM_SLEEP);
  2287. ifp->if_broot_bytes = (int)new_size;
  2288. return;
  2289. }
  2290. /*
  2291. * If there is already an existing if_broot, then we need
  2292. * to realloc() it and shift the pointers to their new
  2293. * location. The records don't change location because
  2294. * they are kept butted up against the btree block header.
  2295. */
  2296. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2297. new_max = cur_max + rec_diff;
  2298. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2299. ifp->if_broot = (xfs_bmbt_block_t *)
  2300. kmem_realloc(ifp->if_broot,
  2301. new_size,
  2302. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2303. KM_SLEEP);
  2304. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2305. ifp->if_broot_bytes);
  2306. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2307. (int)new_size);
  2308. ifp->if_broot_bytes = (int)new_size;
  2309. ASSERT(ifp->if_broot_bytes <=
  2310. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2311. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2312. return;
  2313. }
  2314. /*
  2315. * rec_diff is less than 0. In this case, we are shrinking the
  2316. * if_broot buffer. It must already exist. If we go to zero
  2317. * records, just get rid of the root and clear the status bit.
  2318. */
  2319. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2320. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2321. new_max = cur_max + rec_diff;
  2322. ASSERT(new_max >= 0);
  2323. if (new_max > 0)
  2324. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2325. else
  2326. new_size = 0;
  2327. if (new_size > 0) {
  2328. new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
  2329. /*
  2330. * First copy over the btree block header.
  2331. */
  2332. memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
  2333. } else {
  2334. new_broot = NULL;
  2335. ifp->if_flags &= ~XFS_IFBROOT;
  2336. }
  2337. /*
  2338. * Only copy the records and pointers if there are any.
  2339. */
  2340. if (new_max > 0) {
  2341. /*
  2342. * First copy the records.
  2343. */
  2344. op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
  2345. ifp->if_broot_bytes);
  2346. np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
  2347. (int)new_size);
  2348. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2349. /*
  2350. * Then copy the pointers.
  2351. */
  2352. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2353. ifp->if_broot_bytes);
  2354. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
  2355. (int)new_size);
  2356. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2357. }
  2358. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2359. ifp->if_broot = new_broot;
  2360. ifp->if_broot_bytes = (int)new_size;
  2361. ASSERT(ifp->if_broot_bytes <=
  2362. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2363. return;
  2364. }
  2365. /*
  2366. * This is called when the amount of space needed for if_data
  2367. * is increased or decreased. The change in size is indicated by
  2368. * the number of bytes that need to be added or deleted in the
  2369. * byte_diff parameter.
  2370. *
  2371. * If the amount of space needed has decreased below the size of the
  2372. * inline buffer, then switch to using the inline buffer. Otherwise,
  2373. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2374. * to what is needed.
  2375. *
  2376. * ip -- the inode whose if_data area is changing
  2377. * byte_diff -- the change in the number of bytes, positive or negative,
  2378. * requested for the if_data array.
  2379. */
  2380. void
  2381. xfs_idata_realloc(
  2382. xfs_inode_t *ip,
  2383. int byte_diff,
  2384. int whichfork)
  2385. {
  2386. xfs_ifork_t *ifp;
  2387. int new_size;
  2388. int real_size;
  2389. if (byte_diff == 0) {
  2390. return;
  2391. }
  2392. ifp = XFS_IFORK_PTR(ip, whichfork);
  2393. new_size = (int)ifp->if_bytes + byte_diff;
  2394. ASSERT(new_size >= 0);
  2395. if (new_size == 0) {
  2396. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2397. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2398. }
  2399. ifp->if_u1.if_data = NULL;
  2400. real_size = 0;
  2401. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2402. /*
  2403. * If the valid extents/data can fit in if_inline_ext/data,
  2404. * copy them from the malloc'd vector and free it.
  2405. */
  2406. if (ifp->if_u1.if_data == NULL) {
  2407. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2408. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2409. ASSERT(ifp->if_real_bytes != 0);
  2410. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2411. new_size);
  2412. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2413. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2414. }
  2415. real_size = 0;
  2416. } else {
  2417. /*
  2418. * Stuck with malloc/realloc.
  2419. * For inline data, the underlying buffer must be
  2420. * a multiple of 4 bytes in size so that it can be
  2421. * logged and stay on word boundaries. We enforce
  2422. * that here.
  2423. */
  2424. real_size = roundup(new_size, 4);
  2425. if (ifp->if_u1.if_data == NULL) {
  2426. ASSERT(ifp->if_real_bytes == 0);
  2427. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2428. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2429. /*
  2430. * Only do the realloc if the underlying size
  2431. * is really changing.
  2432. */
  2433. if (ifp->if_real_bytes != real_size) {
  2434. ifp->if_u1.if_data =
  2435. kmem_realloc(ifp->if_u1.if_data,
  2436. real_size,
  2437. ifp->if_real_bytes,
  2438. KM_SLEEP);
  2439. }
  2440. } else {
  2441. ASSERT(ifp->if_real_bytes == 0);
  2442. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2443. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2444. ifp->if_bytes);
  2445. }
  2446. }
  2447. ifp->if_real_bytes = real_size;
  2448. ifp->if_bytes = new_size;
  2449. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2450. }
  2451. /*
  2452. * Map inode to disk block and offset.
  2453. *
  2454. * mp -- the mount point structure for the current file system
  2455. * tp -- the current transaction
  2456. * ino -- the inode number of the inode to be located
  2457. * imap -- this structure is filled in with the information necessary
  2458. * to retrieve the given inode from disk
  2459. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2460. * lookups in the inode btree were OK or not
  2461. */
  2462. int
  2463. xfs_imap(
  2464. xfs_mount_t *mp,
  2465. xfs_trans_t *tp,
  2466. xfs_ino_t ino,
  2467. xfs_imap_t *imap,
  2468. uint flags)
  2469. {
  2470. xfs_fsblock_t fsbno;
  2471. int len;
  2472. int off;
  2473. int error;
  2474. fsbno = imap->im_blkno ?
  2475. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2476. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2477. if (error != 0) {
  2478. return error;
  2479. }
  2480. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2481. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2482. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2483. imap->im_ioffset = (ushort)off;
  2484. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2485. return 0;
  2486. }
  2487. void
  2488. xfs_idestroy_fork(
  2489. xfs_inode_t *ip,
  2490. int whichfork)
  2491. {
  2492. xfs_ifork_t *ifp;
  2493. ifp = XFS_IFORK_PTR(ip, whichfork);
  2494. if (ifp->if_broot != NULL) {
  2495. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2496. ifp->if_broot = NULL;
  2497. }
  2498. /*
  2499. * If the format is local, then we can't have an extents
  2500. * array so just look for an inline data array. If we're
  2501. * not local then we may or may not have an extents list,
  2502. * so check and free it up if we do.
  2503. */
  2504. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2505. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2506. (ifp->if_u1.if_data != NULL)) {
  2507. ASSERT(ifp->if_real_bytes != 0);
  2508. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2509. ifp->if_u1.if_data = NULL;
  2510. ifp->if_real_bytes = 0;
  2511. }
  2512. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2513. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2514. ((ifp->if_u1.if_extents != NULL) &&
  2515. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2516. ASSERT(ifp->if_real_bytes != 0);
  2517. xfs_iext_destroy(ifp);
  2518. }
  2519. ASSERT(ifp->if_u1.if_extents == NULL ||
  2520. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2521. ASSERT(ifp->if_real_bytes == 0);
  2522. if (whichfork == XFS_ATTR_FORK) {
  2523. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2524. ip->i_afp = NULL;
  2525. }
  2526. }
  2527. /*
  2528. * This is called free all the memory associated with an inode.
  2529. * It must free the inode itself and any buffers allocated for
  2530. * if_extents/if_data and if_broot. It must also free the lock
  2531. * associated with the inode.
  2532. */
  2533. void
  2534. xfs_idestroy(
  2535. xfs_inode_t *ip)
  2536. {
  2537. switch (ip->i_d.di_mode & S_IFMT) {
  2538. case S_IFREG:
  2539. case S_IFDIR:
  2540. case S_IFLNK:
  2541. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2542. break;
  2543. }
  2544. if (ip->i_afp)
  2545. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2546. mrfree(&ip->i_lock);
  2547. mrfree(&ip->i_iolock);
  2548. freesema(&ip->i_flock);
  2549. #ifdef XFS_BMAP_TRACE
  2550. ktrace_free(ip->i_xtrace);
  2551. #endif
  2552. #ifdef XFS_BMBT_TRACE
  2553. ktrace_free(ip->i_btrace);
  2554. #endif
  2555. #ifdef XFS_RW_TRACE
  2556. ktrace_free(ip->i_rwtrace);
  2557. #endif
  2558. #ifdef XFS_ILOCK_TRACE
  2559. ktrace_free(ip->i_lock_trace);
  2560. #endif
  2561. #ifdef XFS_DIR2_TRACE
  2562. ktrace_free(ip->i_dir_trace);
  2563. #endif
  2564. if (ip->i_itemp) {
  2565. /*
  2566. * Only if we are shutting down the fs will we see an
  2567. * inode still in the AIL. If it is there, we should remove
  2568. * it to prevent a use-after-free from occurring.
  2569. */
  2570. xfs_mount_t *mp = ip->i_mount;
  2571. xfs_log_item_t *lip = &ip->i_itemp->ili_item;
  2572. int s;
  2573. ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
  2574. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2575. if (lip->li_flags & XFS_LI_IN_AIL) {
  2576. AIL_LOCK(mp, s);
  2577. if (lip->li_flags & XFS_LI_IN_AIL)
  2578. xfs_trans_delete_ail(mp, lip, s);
  2579. else
  2580. AIL_UNLOCK(mp, s);
  2581. }
  2582. xfs_inode_item_destroy(ip);
  2583. }
  2584. kmem_zone_free(xfs_inode_zone, ip);
  2585. }
  2586. /*
  2587. * Increment the pin count of the given buffer.
  2588. * This value is protected by ipinlock spinlock in the mount structure.
  2589. */
  2590. void
  2591. xfs_ipin(
  2592. xfs_inode_t *ip)
  2593. {
  2594. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2595. atomic_inc(&ip->i_pincount);
  2596. }
  2597. /*
  2598. * Decrement the pin count of the given inode, and wake up
  2599. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2600. * inode must have been previously pinned with a call to xfs_ipin().
  2601. */
  2602. void
  2603. xfs_iunpin(
  2604. xfs_inode_t *ip)
  2605. {
  2606. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2607. if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
  2608. /*
  2609. * If the inode is currently being reclaimed, the link between
  2610. * the bhv_vnode and the xfs_inode will be broken after the
  2611. * XFS_IRECLAIM* flag is set. Hence, if these flags are not
  2612. * set, then we can move forward and mark the linux inode dirty
  2613. * knowing that it is still valid as it won't freed until after
  2614. * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
  2615. * i_flags_lock is used to synchronise the setting of the
  2616. * XFS_IRECLAIM* flags and the breaking of the link, and so we
  2617. * can execute atomically w.r.t to reclaim by holding this lock
  2618. * here.
  2619. *
  2620. * However, we still need to issue the unpin wakeup call as the
  2621. * inode reclaim may be blocked waiting for the inode to become
  2622. * unpinned.
  2623. */
  2624. if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
  2625. bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
  2626. struct inode *inode = NULL;
  2627. BUG_ON(vp == NULL);
  2628. inode = vn_to_inode(vp);
  2629. BUG_ON(inode->i_state & I_CLEAR);
  2630. /* make sync come back and flush this inode */
  2631. if (!(inode->i_state & (I_NEW|I_FREEING)))
  2632. mark_inode_dirty_sync(inode);
  2633. }
  2634. spin_unlock(&ip->i_flags_lock);
  2635. wake_up(&ip->i_ipin_wait);
  2636. }
  2637. }
  2638. /*
  2639. * This is called to wait for the given inode to be unpinned.
  2640. * It will sleep until this happens. The caller must have the
  2641. * inode locked in at least shared mode so that the buffer cannot
  2642. * be subsequently pinned once someone is waiting for it to be
  2643. * unpinned.
  2644. */
  2645. STATIC void
  2646. xfs_iunpin_wait(
  2647. xfs_inode_t *ip)
  2648. {
  2649. xfs_inode_log_item_t *iip;
  2650. xfs_lsn_t lsn;
  2651. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
  2652. if (atomic_read(&ip->i_pincount) == 0) {
  2653. return;
  2654. }
  2655. iip = ip->i_itemp;
  2656. if (iip && iip->ili_last_lsn) {
  2657. lsn = iip->ili_last_lsn;
  2658. } else {
  2659. lsn = (xfs_lsn_t)0;
  2660. }
  2661. /*
  2662. * Give the log a push so we don't wait here too long.
  2663. */
  2664. xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
  2665. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2666. }
  2667. /*
  2668. * xfs_iextents_copy()
  2669. *
  2670. * This is called to copy the REAL extents (as opposed to the delayed
  2671. * allocation extents) from the inode into the given buffer. It
  2672. * returns the number of bytes copied into the buffer.
  2673. *
  2674. * If there are no delayed allocation extents, then we can just
  2675. * memcpy() the extents into the buffer. Otherwise, we need to
  2676. * examine each extent in turn and skip those which are delayed.
  2677. */
  2678. int
  2679. xfs_iextents_copy(
  2680. xfs_inode_t *ip,
  2681. xfs_bmbt_rec_t *dp,
  2682. int whichfork)
  2683. {
  2684. int copied;
  2685. int i;
  2686. xfs_ifork_t *ifp;
  2687. int nrecs;
  2688. xfs_fsblock_t start_block;
  2689. ifp = XFS_IFORK_PTR(ip, whichfork);
  2690. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2691. ASSERT(ifp->if_bytes > 0);
  2692. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2693. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2694. ASSERT(nrecs > 0);
  2695. /*
  2696. * There are some delayed allocation extents in the
  2697. * inode, so copy the extents one at a time and skip
  2698. * the delayed ones. There must be at least one
  2699. * non-delayed extent.
  2700. */
  2701. copied = 0;
  2702. for (i = 0; i < nrecs; i++) {
  2703. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2704. start_block = xfs_bmbt_get_startblock(ep);
  2705. if (ISNULLSTARTBLOCK(start_block)) {
  2706. /*
  2707. * It's a delayed allocation extent, so skip it.
  2708. */
  2709. continue;
  2710. }
  2711. /* Translate to on disk format */
  2712. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2713. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2714. dp++;
  2715. copied++;
  2716. }
  2717. ASSERT(copied != 0);
  2718. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2719. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2720. }
  2721. /*
  2722. * Each of the following cases stores data into the same region
  2723. * of the on-disk inode, so only one of them can be valid at
  2724. * any given time. While it is possible to have conflicting formats
  2725. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2726. * in EXTENTS format, this can only happen when the fork has
  2727. * changed formats after being modified but before being flushed.
  2728. * In these cases, the format always takes precedence, because the
  2729. * format indicates the current state of the fork.
  2730. */
  2731. /*ARGSUSED*/
  2732. STATIC int
  2733. xfs_iflush_fork(
  2734. xfs_inode_t *ip,
  2735. xfs_dinode_t *dip,
  2736. xfs_inode_log_item_t *iip,
  2737. int whichfork,
  2738. xfs_buf_t *bp)
  2739. {
  2740. char *cp;
  2741. xfs_ifork_t *ifp;
  2742. xfs_mount_t *mp;
  2743. #ifdef XFS_TRANS_DEBUG
  2744. int first;
  2745. #endif
  2746. static const short brootflag[2] =
  2747. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2748. static const short dataflag[2] =
  2749. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2750. static const short extflag[2] =
  2751. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2752. if (iip == NULL)
  2753. return 0;
  2754. ifp = XFS_IFORK_PTR(ip, whichfork);
  2755. /*
  2756. * This can happen if we gave up in iformat in an error path,
  2757. * for the attribute fork.
  2758. */
  2759. if (ifp == NULL) {
  2760. ASSERT(whichfork == XFS_ATTR_FORK);
  2761. return 0;
  2762. }
  2763. cp = XFS_DFORK_PTR(dip, whichfork);
  2764. mp = ip->i_mount;
  2765. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2766. case XFS_DINODE_FMT_LOCAL:
  2767. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2768. (ifp->if_bytes > 0)) {
  2769. ASSERT(ifp->if_u1.if_data != NULL);
  2770. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2771. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2772. }
  2773. break;
  2774. case XFS_DINODE_FMT_EXTENTS:
  2775. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2776. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2777. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2778. (ifp->if_bytes == 0));
  2779. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2780. (ifp->if_bytes > 0));
  2781. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2782. (ifp->if_bytes > 0)) {
  2783. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2784. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2785. whichfork);
  2786. }
  2787. break;
  2788. case XFS_DINODE_FMT_BTREE:
  2789. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2790. (ifp->if_broot_bytes > 0)) {
  2791. ASSERT(ifp->if_broot != NULL);
  2792. ASSERT(ifp->if_broot_bytes <=
  2793. (XFS_IFORK_SIZE(ip, whichfork) +
  2794. XFS_BROOT_SIZE_ADJ));
  2795. xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
  2796. (xfs_bmdr_block_t *)cp,
  2797. XFS_DFORK_SIZE(dip, mp, whichfork));
  2798. }
  2799. break;
  2800. case XFS_DINODE_FMT_DEV:
  2801. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2802. ASSERT(whichfork == XFS_DATA_FORK);
  2803. INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
  2804. }
  2805. break;
  2806. case XFS_DINODE_FMT_UUID:
  2807. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2808. ASSERT(whichfork == XFS_DATA_FORK);
  2809. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2810. sizeof(uuid_t));
  2811. }
  2812. break;
  2813. default:
  2814. ASSERT(0);
  2815. break;
  2816. }
  2817. return 0;
  2818. }
  2819. /*
  2820. * xfs_iflush() will write a modified inode's changes out to the
  2821. * inode's on disk home. The caller must have the inode lock held
  2822. * in at least shared mode and the inode flush semaphore must be
  2823. * held as well. The inode lock will still be held upon return from
  2824. * the call and the caller is free to unlock it.
  2825. * The inode flush lock will be unlocked when the inode reaches the disk.
  2826. * The flags indicate how the inode's buffer should be written out.
  2827. */
  2828. int
  2829. xfs_iflush(
  2830. xfs_inode_t *ip,
  2831. uint flags)
  2832. {
  2833. xfs_inode_log_item_t *iip;
  2834. xfs_buf_t *bp;
  2835. xfs_dinode_t *dip;
  2836. xfs_mount_t *mp;
  2837. int error;
  2838. /* REFERENCED */
  2839. xfs_chash_t *ch;
  2840. xfs_inode_t *iq;
  2841. int clcount; /* count of inodes clustered */
  2842. int bufwasdelwri;
  2843. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2844. SPLDECL(s);
  2845. XFS_STATS_INC(xs_iflush_count);
  2846. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2847. ASSERT(issemalocked(&(ip->i_flock)));
  2848. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2849. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2850. iip = ip->i_itemp;
  2851. mp = ip->i_mount;
  2852. /*
  2853. * If the inode isn't dirty, then just release the inode
  2854. * flush lock and do nothing.
  2855. */
  2856. if ((ip->i_update_core == 0) &&
  2857. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2858. ASSERT((iip != NULL) ?
  2859. !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
  2860. xfs_ifunlock(ip);
  2861. return 0;
  2862. }
  2863. /*
  2864. * We can't flush the inode until it is unpinned, so
  2865. * wait for it. We know noone new can pin it, because
  2866. * we are holding the inode lock shared and you need
  2867. * to hold it exclusively to pin the inode.
  2868. */
  2869. xfs_iunpin_wait(ip);
  2870. /*
  2871. * This may have been unpinned because the filesystem is shutting
  2872. * down forcibly. If that's the case we must not write this inode
  2873. * to disk, because the log record didn't make it to disk!
  2874. */
  2875. if (XFS_FORCED_SHUTDOWN(mp)) {
  2876. ip->i_update_core = 0;
  2877. if (iip)
  2878. iip->ili_format.ilf_fields = 0;
  2879. xfs_ifunlock(ip);
  2880. return XFS_ERROR(EIO);
  2881. }
  2882. /*
  2883. * Get the buffer containing the on-disk inode.
  2884. */
  2885. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
  2886. if (error) {
  2887. xfs_ifunlock(ip);
  2888. return error;
  2889. }
  2890. /*
  2891. * Decide how buffer will be flushed out. This is done before
  2892. * the call to xfs_iflush_int because this field is zeroed by it.
  2893. */
  2894. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2895. /*
  2896. * Flush out the inode buffer according to the directions
  2897. * of the caller. In the cases where the caller has given
  2898. * us a choice choose the non-delwri case. This is because
  2899. * the inode is in the AIL and we need to get it out soon.
  2900. */
  2901. switch (flags) {
  2902. case XFS_IFLUSH_SYNC:
  2903. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2904. flags = 0;
  2905. break;
  2906. case XFS_IFLUSH_ASYNC:
  2907. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2908. flags = INT_ASYNC;
  2909. break;
  2910. case XFS_IFLUSH_DELWRI:
  2911. flags = INT_DELWRI;
  2912. break;
  2913. default:
  2914. ASSERT(0);
  2915. flags = 0;
  2916. break;
  2917. }
  2918. } else {
  2919. switch (flags) {
  2920. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2921. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2922. case XFS_IFLUSH_DELWRI:
  2923. flags = INT_DELWRI;
  2924. break;
  2925. case XFS_IFLUSH_ASYNC:
  2926. flags = INT_ASYNC;
  2927. break;
  2928. case XFS_IFLUSH_SYNC:
  2929. flags = 0;
  2930. break;
  2931. default:
  2932. ASSERT(0);
  2933. flags = 0;
  2934. break;
  2935. }
  2936. }
  2937. /*
  2938. * First flush out the inode that xfs_iflush was called with.
  2939. */
  2940. error = xfs_iflush_int(ip, bp);
  2941. if (error) {
  2942. goto corrupt_out;
  2943. }
  2944. /*
  2945. * inode clustering:
  2946. * see if other inodes can be gathered into this write
  2947. */
  2948. ip->i_chash->chl_buf = bp;
  2949. ch = XFS_CHASH(mp, ip->i_blkno);
  2950. s = mutex_spinlock(&ch->ch_lock);
  2951. clcount = 0;
  2952. for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
  2953. /*
  2954. * Do an un-protected check to see if the inode is dirty and
  2955. * is a candidate for flushing. These checks will be repeated
  2956. * later after the appropriate locks are acquired.
  2957. */
  2958. iip = iq->i_itemp;
  2959. if ((iq->i_update_core == 0) &&
  2960. ((iip == NULL) ||
  2961. !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2962. xfs_ipincount(iq) == 0) {
  2963. continue;
  2964. }
  2965. /*
  2966. * Try to get locks. If any are unavailable,
  2967. * then this inode cannot be flushed and is skipped.
  2968. */
  2969. /* get inode locks (just i_lock) */
  2970. if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
  2971. /* get inode flush lock */
  2972. if (xfs_iflock_nowait(iq)) {
  2973. /* check if pinned */
  2974. if (xfs_ipincount(iq) == 0) {
  2975. /* arriving here means that
  2976. * this inode can be flushed.
  2977. * first re-check that it's
  2978. * dirty
  2979. */
  2980. iip = iq->i_itemp;
  2981. if ((iq->i_update_core != 0)||
  2982. ((iip != NULL) &&
  2983. (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2984. clcount++;
  2985. error = xfs_iflush_int(iq, bp);
  2986. if (error) {
  2987. xfs_iunlock(iq,
  2988. XFS_ILOCK_SHARED);
  2989. goto cluster_corrupt_out;
  2990. }
  2991. } else {
  2992. xfs_ifunlock(iq);
  2993. }
  2994. } else {
  2995. xfs_ifunlock(iq);
  2996. }
  2997. }
  2998. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2999. }
  3000. }
  3001. mutex_spinunlock(&ch->ch_lock, s);
  3002. if (clcount) {
  3003. XFS_STATS_INC(xs_icluster_flushcnt);
  3004. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  3005. }
  3006. /*
  3007. * If the buffer is pinned then push on the log so we won't
  3008. * get stuck waiting in the write for too long.
  3009. */
  3010. if (XFS_BUF_ISPINNED(bp)){
  3011. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  3012. }
  3013. if (flags & INT_DELWRI) {
  3014. xfs_bdwrite(mp, bp);
  3015. } else if (flags & INT_ASYNC) {
  3016. xfs_bawrite(mp, bp);
  3017. } else {
  3018. error = xfs_bwrite(mp, bp);
  3019. }
  3020. return error;
  3021. corrupt_out:
  3022. xfs_buf_relse(bp);
  3023. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3024. xfs_iflush_abort(ip);
  3025. /*
  3026. * Unlocks the flush lock
  3027. */
  3028. return XFS_ERROR(EFSCORRUPTED);
  3029. cluster_corrupt_out:
  3030. /* Corruption detected in the clustering loop. Invalidate the
  3031. * inode buffer and shut down the filesystem.
  3032. */
  3033. mutex_spinunlock(&ch->ch_lock, s);
  3034. /*
  3035. * Clean up the buffer. If it was B_DELWRI, just release it --
  3036. * brelse can handle it with no problems. If not, shut down the
  3037. * filesystem before releasing the buffer.
  3038. */
  3039. if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
  3040. xfs_buf_relse(bp);
  3041. }
  3042. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3043. if(!bufwasdelwri) {
  3044. /*
  3045. * Just like incore_relse: if we have b_iodone functions,
  3046. * mark the buffer as an error and call them. Otherwise
  3047. * mark it as stale and brelse.
  3048. */
  3049. if (XFS_BUF_IODONE_FUNC(bp)) {
  3050. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  3051. XFS_BUF_UNDONE(bp);
  3052. XFS_BUF_STALE(bp);
  3053. XFS_BUF_SHUT(bp);
  3054. XFS_BUF_ERROR(bp,EIO);
  3055. xfs_biodone(bp);
  3056. } else {
  3057. XFS_BUF_STALE(bp);
  3058. xfs_buf_relse(bp);
  3059. }
  3060. }
  3061. xfs_iflush_abort(iq);
  3062. /*
  3063. * Unlocks the flush lock
  3064. */
  3065. return XFS_ERROR(EFSCORRUPTED);
  3066. }
  3067. STATIC int
  3068. xfs_iflush_int(
  3069. xfs_inode_t *ip,
  3070. xfs_buf_t *bp)
  3071. {
  3072. xfs_inode_log_item_t *iip;
  3073. xfs_dinode_t *dip;
  3074. xfs_mount_t *mp;
  3075. #ifdef XFS_TRANS_DEBUG
  3076. int first;
  3077. #endif
  3078. SPLDECL(s);
  3079. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  3080. ASSERT(issemalocked(&(ip->i_flock)));
  3081. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3082. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  3083. iip = ip->i_itemp;
  3084. mp = ip->i_mount;
  3085. /*
  3086. * If the inode isn't dirty, then just release the inode
  3087. * flush lock and do nothing.
  3088. */
  3089. if ((ip->i_update_core == 0) &&
  3090. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  3091. xfs_ifunlock(ip);
  3092. return 0;
  3093. }
  3094. /* set *dip = inode's place in the buffer */
  3095. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3096. /*
  3097. * Clear i_update_core before copying out the data.
  3098. * This is for coordination with our timestamp updates
  3099. * that don't hold the inode lock. They will always
  3100. * update the timestamps BEFORE setting i_update_core,
  3101. * so if we clear i_update_core after they set it we
  3102. * are guaranteed to see their updates to the timestamps.
  3103. * I believe that this depends on strongly ordered memory
  3104. * semantics, but we have that. We use the SYNCHRONIZE
  3105. * macro to make sure that the compiler does not reorder
  3106. * the i_update_core access below the data copy below.
  3107. */
  3108. ip->i_update_core = 0;
  3109. SYNCHRONIZE();
  3110. /*
  3111. * Make sure to get the latest atime from the Linux inode.
  3112. */
  3113. xfs_synchronize_atime(ip);
  3114. if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
  3115. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3116. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3117. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3118. ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
  3119. goto corrupt_out;
  3120. }
  3121. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3122. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3123. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3124. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3125. ip->i_ino, ip, ip->i_d.di_magic);
  3126. goto corrupt_out;
  3127. }
  3128. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3129. if (XFS_TEST_ERROR(
  3130. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3131. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3132. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3133. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3134. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3135. ip->i_ino, ip);
  3136. goto corrupt_out;
  3137. }
  3138. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3139. if (XFS_TEST_ERROR(
  3140. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3141. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3142. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3143. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3144. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3145. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3146. ip->i_ino, ip);
  3147. goto corrupt_out;
  3148. }
  3149. }
  3150. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3151. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3152. XFS_RANDOM_IFLUSH_5)) {
  3153. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3154. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3155. ip->i_ino,
  3156. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3157. ip->i_d.di_nblocks,
  3158. ip);
  3159. goto corrupt_out;
  3160. }
  3161. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3162. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3163. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3164. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3165. ip->i_ino, ip->i_d.di_forkoff, ip);
  3166. goto corrupt_out;
  3167. }
  3168. /*
  3169. * bump the flush iteration count, used to detect flushes which
  3170. * postdate a log record during recovery.
  3171. */
  3172. ip->i_d.di_flushiter++;
  3173. /*
  3174. * Copy the dirty parts of the inode into the on-disk
  3175. * inode. We always copy out the core of the inode,
  3176. * because if the inode is dirty at all the core must
  3177. * be.
  3178. */
  3179. xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
  3180. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3181. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3182. ip->i_d.di_flushiter = 0;
  3183. /*
  3184. * If this is really an old format inode and the superblock version
  3185. * has not been updated to support only new format inodes, then
  3186. * convert back to the old inode format. If the superblock version
  3187. * has been updated, then make the conversion permanent.
  3188. */
  3189. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3190. XFS_SB_VERSION_HASNLINK(&mp->m_sb));
  3191. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3192. if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
  3193. /*
  3194. * Convert it back.
  3195. */
  3196. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3197. INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
  3198. } else {
  3199. /*
  3200. * The superblock version has already been bumped,
  3201. * so just make the conversion to the new inode
  3202. * format permanent.
  3203. */
  3204. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3205. INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
  3206. ip->i_d.di_onlink = 0;
  3207. dip->di_core.di_onlink = 0;
  3208. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3209. memset(&(dip->di_core.di_pad[0]), 0,
  3210. sizeof(dip->di_core.di_pad));
  3211. ASSERT(ip->i_d.di_projid == 0);
  3212. }
  3213. }
  3214. if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
  3215. goto corrupt_out;
  3216. }
  3217. if (XFS_IFORK_Q(ip)) {
  3218. /*
  3219. * The only error from xfs_iflush_fork is on the data fork.
  3220. */
  3221. (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3222. }
  3223. xfs_inobp_check(mp, bp);
  3224. /*
  3225. * We've recorded everything logged in the inode, so we'd
  3226. * like to clear the ilf_fields bits so we don't log and
  3227. * flush things unnecessarily. However, we can't stop
  3228. * logging all this information until the data we've copied
  3229. * into the disk buffer is written to disk. If we did we might
  3230. * overwrite the copy of the inode in the log with all the
  3231. * data after re-logging only part of it, and in the face of
  3232. * a crash we wouldn't have all the data we need to recover.
  3233. *
  3234. * What we do is move the bits to the ili_last_fields field.
  3235. * When logging the inode, these bits are moved back to the
  3236. * ilf_fields field. In the xfs_iflush_done() routine we
  3237. * clear ili_last_fields, since we know that the information
  3238. * those bits represent is permanently on disk. As long as
  3239. * the flush completes before the inode is logged again, then
  3240. * both ilf_fields and ili_last_fields will be cleared.
  3241. *
  3242. * We can play with the ilf_fields bits here, because the inode
  3243. * lock must be held exclusively in order to set bits there
  3244. * and the flush lock protects the ili_last_fields bits.
  3245. * Set ili_logged so the flush done
  3246. * routine can tell whether or not to look in the AIL.
  3247. * Also, store the current LSN of the inode so that we can tell
  3248. * whether the item has moved in the AIL from xfs_iflush_done().
  3249. * In order to read the lsn we need the AIL lock, because
  3250. * it is a 64 bit value that cannot be read atomically.
  3251. */
  3252. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3253. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3254. iip->ili_format.ilf_fields = 0;
  3255. iip->ili_logged = 1;
  3256. ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
  3257. AIL_LOCK(mp,s);
  3258. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  3259. AIL_UNLOCK(mp, s);
  3260. /*
  3261. * Attach the function xfs_iflush_done to the inode's
  3262. * buffer. This will remove the inode from the AIL
  3263. * and unlock the inode's flush lock when the inode is
  3264. * completely written to disk.
  3265. */
  3266. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3267. xfs_iflush_done, (xfs_log_item_t *)iip);
  3268. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3269. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3270. } else {
  3271. /*
  3272. * We're flushing an inode which is not in the AIL and has
  3273. * not been logged but has i_update_core set. For this
  3274. * case we can use a B_DELWRI flush and immediately drop
  3275. * the inode flush lock because we can avoid the whole
  3276. * AIL state thing. It's OK to drop the flush lock now,
  3277. * because we've already locked the buffer and to do anything
  3278. * you really need both.
  3279. */
  3280. if (iip != NULL) {
  3281. ASSERT(iip->ili_logged == 0);
  3282. ASSERT(iip->ili_last_fields == 0);
  3283. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3284. }
  3285. xfs_ifunlock(ip);
  3286. }
  3287. return 0;
  3288. corrupt_out:
  3289. return XFS_ERROR(EFSCORRUPTED);
  3290. }
  3291. /*
  3292. * Flush all inactive inodes in mp.
  3293. */
  3294. void
  3295. xfs_iflush_all(
  3296. xfs_mount_t *mp)
  3297. {
  3298. xfs_inode_t *ip;
  3299. bhv_vnode_t *vp;
  3300. again:
  3301. XFS_MOUNT_ILOCK(mp);
  3302. ip = mp->m_inodes;
  3303. if (ip == NULL)
  3304. goto out;
  3305. do {
  3306. /* Make sure we skip markers inserted by sync */
  3307. if (ip->i_mount == NULL) {
  3308. ip = ip->i_mnext;
  3309. continue;
  3310. }
  3311. vp = XFS_ITOV_NULL(ip);
  3312. if (!vp) {
  3313. XFS_MOUNT_IUNLOCK(mp);
  3314. xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
  3315. goto again;
  3316. }
  3317. ASSERT(vn_count(vp) == 0);
  3318. ip = ip->i_mnext;
  3319. } while (ip != mp->m_inodes);
  3320. out:
  3321. XFS_MOUNT_IUNLOCK(mp);
  3322. }
  3323. /*
  3324. * xfs_iaccess: check accessibility of inode for mode.
  3325. */
  3326. int
  3327. xfs_iaccess(
  3328. xfs_inode_t *ip,
  3329. mode_t mode,
  3330. cred_t *cr)
  3331. {
  3332. int error;
  3333. mode_t orgmode = mode;
  3334. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  3335. if (mode & S_IWUSR) {
  3336. umode_t imode = inode->i_mode;
  3337. if (IS_RDONLY(inode) &&
  3338. (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
  3339. return XFS_ERROR(EROFS);
  3340. if (IS_IMMUTABLE(inode))
  3341. return XFS_ERROR(EACCES);
  3342. }
  3343. /*
  3344. * If there's an Access Control List it's used instead of
  3345. * the mode bits.
  3346. */
  3347. if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
  3348. return error ? XFS_ERROR(error) : 0;
  3349. if (current_fsuid(cr) != ip->i_d.di_uid) {
  3350. mode >>= 3;
  3351. if (!in_group_p((gid_t)ip->i_d.di_gid))
  3352. mode >>= 3;
  3353. }
  3354. /*
  3355. * If the DACs are ok we don't need any capability check.
  3356. */
  3357. if ((ip->i_d.di_mode & mode) == mode)
  3358. return 0;
  3359. /*
  3360. * Read/write DACs are always overridable.
  3361. * Executable DACs are overridable if at least one exec bit is set.
  3362. */
  3363. if (!(orgmode & S_IXUSR) ||
  3364. (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
  3365. if (capable_cred(cr, CAP_DAC_OVERRIDE))
  3366. return 0;
  3367. if ((orgmode == S_IRUSR) ||
  3368. (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
  3369. if (capable_cred(cr, CAP_DAC_READ_SEARCH))
  3370. return 0;
  3371. #ifdef NOISE
  3372. cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
  3373. #endif /* NOISE */
  3374. return XFS_ERROR(EACCES);
  3375. }
  3376. return XFS_ERROR(EACCES);
  3377. }
  3378. /*
  3379. * xfs_iroundup: round up argument to next power of two
  3380. */
  3381. uint
  3382. xfs_iroundup(
  3383. uint v)
  3384. {
  3385. int i;
  3386. uint m;
  3387. if ((v & (v - 1)) == 0)
  3388. return v;
  3389. ASSERT((v & 0x80000000) == 0);
  3390. if ((v & (v + 1)) == 0)
  3391. return v + 1;
  3392. for (i = 0, m = 1; i < 31; i++, m <<= 1) {
  3393. if (v & m)
  3394. continue;
  3395. v |= m;
  3396. if ((v & (v + 1)) == 0)
  3397. return v + 1;
  3398. }
  3399. ASSERT(0);
  3400. return( 0 );
  3401. }
  3402. #ifdef XFS_ILOCK_TRACE
  3403. ktrace_t *xfs_ilock_trace_buf;
  3404. void
  3405. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3406. {
  3407. ktrace_enter(ip->i_lock_trace,
  3408. (void *)ip,
  3409. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3410. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3411. (void *)ra, /* caller of ilock */
  3412. (void *)(unsigned long)current_cpu(),
  3413. (void *)(unsigned long)current_pid(),
  3414. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3415. }
  3416. #endif
  3417. /*
  3418. * Return a pointer to the extent record at file index idx.
  3419. */
  3420. xfs_bmbt_rec_host_t *
  3421. xfs_iext_get_ext(
  3422. xfs_ifork_t *ifp, /* inode fork pointer */
  3423. xfs_extnum_t idx) /* index of target extent */
  3424. {
  3425. ASSERT(idx >= 0);
  3426. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3427. return ifp->if_u1.if_ext_irec->er_extbuf;
  3428. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3429. xfs_ext_irec_t *erp; /* irec pointer */
  3430. int erp_idx = 0; /* irec index */
  3431. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3432. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3433. return &erp->er_extbuf[page_idx];
  3434. } else if (ifp->if_bytes) {
  3435. return &ifp->if_u1.if_extents[idx];
  3436. } else {
  3437. return NULL;
  3438. }
  3439. }
  3440. /*
  3441. * Insert new item(s) into the extent records for incore inode
  3442. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3443. */
  3444. void
  3445. xfs_iext_insert(
  3446. xfs_ifork_t *ifp, /* inode fork pointer */
  3447. xfs_extnum_t idx, /* starting index of new items */
  3448. xfs_extnum_t count, /* number of inserted items */
  3449. xfs_bmbt_irec_t *new) /* items to insert */
  3450. {
  3451. xfs_extnum_t i; /* extent record index */
  3452. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3453. xfs_iext_add(ifp, idx, count);
  3454. for (i = idx; i < idx + count; i++, new++)
  3455. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  3456. }
  3457. /*
  3458. * This is called when the amount of space required for incore file
  3459. * extents needs to be increased. The ext_diff parameter stores the
  3460. * number of new extents being added and the idx parameter contains
  3461. * the extent index where the new extents will be added. If the new
  3462. * extents are being appended, then we just need to (re)allocate and
  3463. * initialize the space. Otherwise, if the new extents are being
  3464. * inserted into the middle of the existing entries, a bit more work
  3465. * is required to make room for the new extents to be inserted. The
  3466. * caller is responsible for filling in the new extent entries upon
  3467. * return.
  3468. */
  3469. void
  3470. xfs_iext_add(
  3471. xfs_ifork_t *ifp, /* inode fork pointer */
  3472. xfs_extnum_t idx, /* index to begin adding exts */
  3473. int ext_diff) /* number of extents to add */
  3474. {
  3475. int byte_diff; /* new bytes being added */
  3476. int new_size; /* size of extents after adding */
  3477. xfs_extnum_t nextents; /* number of extents in file */
  3478. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3479. ASSERT((idx >= 0) && (idx <= nextents));
  3480. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3481. new_size = ifp->if_bytes + byte_diff;
  3482. /*
  3483. * If the new number of extents (nextents + ext_diff)
  3484. * fits inside the inode, then continue to use the inline
  3485. * extent buffer.
  3486. */
  3487. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3488. if (idx < nextents) {
  3489. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3490. &ifp->if_u2.if_inline_ext[idx],
  3491. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3492. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3493. }
  3494. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3495. ifp->if_real_bytes = 0;
  3496. ifp->if_lastex = nextents + ext_diff;
  3497. }
  3498. /*
  3499. * Otherwise use a linear (direct) extent list.
  3500. * If the extents are currently inside the inode,
  3501. * xfs_iext_realloc_direct will switch us from
  3502. * inline to direct extent allocation mode.
  3503. */
  3504. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3505. xfs_iext_realloc_direct(ifp, new_size);
  3506. if (idx < nextents) {
  3507. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3508. &ifp->if_u1.if_extents[idx],
  3509. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3510. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3511. }
  3512. }
  3513. /* Indirection array */
  3514. else {
  3515. xfs_ext_irec_t *erp;
  3516. int erp_idx = 0;
  3517. int page_idx = idx;
  3518. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3519. if (ifp->if_flags & XFS_IFEXTIREC) {
  3520. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3521. } else {
  3522. xfs_iext_irec_init(ifp);
  3523. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3524. erp = ifp->if_u1.if_ext_irec;
  3525. }
  3526. /* Extents fit in target extent page */
  3527. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3528. if (page_idx < erp->er_extcount) {
  3529. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3530. &erp->er_extbuf[page_idx],
  3531. (erp->er_extcount - page_idx) *
  3532. sizeof(xfs_bmbt_rec_t));
  3533. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3534. }
  3535. erp->er_extcount += ext_diff;
  3536. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3537. }
  3538. /* Insert a new extent page */
  3539. else if (erp) {
  3540. xfs_iext_add_indirect_multi(ifp,
  3541. erp_idx, page_idx, ext_diff);
  3542. }
  3543. /*
  3544. * If extent(s) are being appended to the last page in
  3545. * the indirection array and the new extent(s) don't fit
  3546. * in the page, then erp is NULL and erp_idx is set to
  3547. * the next index needed in the indirection array.
  3548. */
  3549. else {
  3550. int count = ext_diff;
  3551. while (count) {
  3552. erp = xfs_iext_irec_new(ifp, erp_idx);
  3553. erp->er_extcount = count;
  3554. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3555. if (count) {
  3556. erp_idx++;
  3557. }
  3558. }
  3559. }
  3560. }
  3561. ifp->if_bytes = new_size;
  3562. }
  3563. /*
  3564. * This is called when incore extents are being added to the indirection
  3565. * array and the new extents do not fit in the target extent list. The
  3566. * erp_idx parameter contains the irec index for the target extent list
  3567. * in the indirection array, and the idx parameter contains the extent
  3568. * index within the list. The number of extents being added is stored
  3569. * in the count parameter.
  3570. *
  3571. * |-------| |-------|
  3572. * | | | | idx - number of extents before idx
  3573. * | idx | | count |
  3574. * | | | | count - number of extents being inserted at idx
  3575. * |-------| |-------|
  3576. * | count | | nex2 | nex2 - number of extents after idx + count
  3577. * |-------| |-------|
  3578. */
  3579. void
  3580. xfs_iext_add_indirect_multi(
  3581. xfs_ifork_t *ifp, /* inode fork pointer */
  3582. int erp_idx, /* target extent irec index */
  3583. xfs_extnum_t idx, /* index within target list */
  3584. int count) /* new extents being added */
  3585. {
  3586. int byte_diff; /* new bytes being added */
  3587. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3588. xfs_extnum_t ext_diff; /* number of extents to add */
  3589. xfs_extnum_t ext_cnt; /* new extents still needed */
  3590. xfs_extnum_t nex2; /* extents after idx + count */
  3591. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3592. int nlists; /* number of irec's (lists) */
  3593. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3594. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3595. nex2 = erp->er_extcount - idx;
  3596. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3597. /*
  3598. * Save second part of target extent list
  3599. * (all extents past */
  3600. if (nex2) {
  3601. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3602. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
  3603. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3604. erp->er_extcount -= nex2;
  3605. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3606. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3607. }
  3608. /*
  3609. * Add the new extents to the end of the target
  3610. * list, then allocate new irec record(s) and
  3611. * extent buffer(s) as needed to store the rest
  3612. * of the new extents.
  3613. */
  3614. ext_cnt = count;
  3615. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3616. if (ext_diff) {
  3617. erp->er_extcount += ext_diff;
  3618. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3619. ext_cnt -= ext_diff;
  3620. }
  3621. while (ext_cnt) {
  3622. erp_idx++;
  3623. erp = xfs_iext_irec_new(ifp, erp_idx);
  3624. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3625. erp->er_extcount = ext_diff;
  3626. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3627. ext_cnt -= ext_diff;
  3628. }
  3629. /* Add nex2 extents back to indirection array */
  3630. if (nex2) {
  3631. xfs_extnum_t ext_avail;
  3632. int i;
  3633. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3634. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3635. i = 0;
  3636. /*
  3637. * If nex2 extents fit in the current page, append
  3638. * nex2_ep after the new extents.
  3639. */
  3640. if (nex2 <= ext_avail) {
  3641. i = erp->er_extcount;
  3642. }
  3643. /*
  3644. * Otherwise, check if space is available in the
  3645. * next page.
  3646. */
  3647. else if ((erp_idx < nlists - 1) &&
  3648. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3649. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3650. erp_idx++;
  3651. erp++;
  3652. /* Create a hole for nex2 extents */
  3653. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3654. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3655. }
  3656. /*
  3657. * Final choice, create a new extent page for
  3658. * nex2 extents.
  3659. */
  3660. else {
  3661. erp_idx++;
  3662. erp = xfs_iext_irec_new(ifp, erp_idx);
  3663. }
  3664. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3665. kmem_free(nex2_ep, byte_diff);
  3666. erp->er_extcount += nex2;
  3667. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3668. }
  3669. }
  3670. /*
  3671. * This is called when the amount of space required for incore file
  3672. * extents needs to be decreased. The ext_diff parameter stores the
  3673. * number of extents to be removed and the idx parameter contains
  3674. * the extent index where the extents will be removed from.
  3675. *
  3676. * If the amount of space needed has decreased below the linear
  3677. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3678. * extent array. Otherwise, use kmem_realloc() to adjust the
  3679. * size to what is needed.
  3680. */
  3681. void
  3682. xfs_iext_remove(
  3683. xfs_ifork_t *ifp, /* inode fork pointer */
  3684. xfs_extnum_t idx, /* index to begin removing exts */
  3685. int ext_diff) /* number of extents to remove */
  3686. {
  3687. xfs_extnum_t nextents; /* number of extents in file */
  3688. int new_size; /* size of extents after removal */
  3689. ASSERT(ext_diff > 0);
  3690. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3691. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3692. if (new_size == 0) {
  3693. xfs_iext_destroy(ifp);
  3694. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3695. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3696. } else if (ifp->if_real_bytes) {
  3697. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3698. } else {
  3699. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3700. }
  3701. ifp->if_bytes = new_size;
  3702. }
  3703. /*
  3704. * This removes ext_diff extents from the inline buffer, beginning
  3705. * at extent index idx.
  3706. */
  3707. void
  3708. xfs_iext_remove_inline(
  3709. xfs_ifork_t *ifp, /* inode fork pointer */
  3710. xfs_extnum_t idx, /* index to begin removing exts */
  3711. int ext_diff) /* number of extents to remove */
  3712. {
  3713. int nextents; /* number of extents in file */
  3714. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3715. ASSERT(idx < XFS_INLINE_EXTS);
  3716. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3717. ASSERT(((nextents - ext_diff) > 0) &&
  3718. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3719. if (idx + ext_diff < nextents) {
  3720. memmove(&ifp->if_u2.if_inline_ext[idx],
  3721. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3722. (nextents - (idx + ext_diff)) *
  3723. sizeof(xfs_bmbt_rec_t));
  3724. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3725. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3726. } else {
  3727. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3728. ext_diff * sizeof(xfs_bmbt_rec_t));
  3729. }
  3730. }
  3731. /*
  3732. * This removes ext_diff extents from a linear (direct) extent list,
  3733. * beginning at extent index idx. If the extents are being removed
  3734. * from the end of the list (ie. truncate) then we just need to re-
  3735. * allocate the list to remove the extra space. Otherwise, if the
  3736. * extents are being removed from the middle of the existing extent
  3737. * entries, then we first need to move the extent records beginning
  3738. * at idx + ext_diff up in the list to overwrite the records being
  3739. * removed, then remove the extra space via kmem_realloc.
  3740. */
  3741. void
  3742. xfs_iext_remove_direct(
  3743. xfs_ifork_t *ifp, /* inode fork pointer */
  3744. xfs_extnum_t idx, /* index to begin removing exts */
  3745. int ext_diff) /* number of extents to remove */
  3746. {
  3747. xfs_extnum_t nextents; /* number of extents in file */
  3748. int new_size; /* size of extents after removal */
  3749. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3750. new_size = ifp->if_bytes -
  3751. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3752. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3753. if (new_size == 0) {
  3754. xfs_iext_destroy(ifp);
  3755. return;
  3756. }
  3757. /* Move extents up in the list (if needed) */
  3758. if (idx + ext_diff < nextents) {
  3759. memmove(&ifp->if_u1.if_extents[idx],
  3760. &ifp->if_u1.if_extents[idx + ext_diff],
  3761. (nextents - (idx + ext_diff)) *
  3762. sizeof(xfs_bmbt_rec_t));
  3763. }
  3764. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3765. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3766. /*
  3767. * Reallocate the direct extent list. If the extents
  3768. * will fit inside the inode then xfs_iext_realloc_direct
  3769. * will switch from direct to inline extent allocation
  3770. * mode for us.
  3771. */
  3772. xfs_iext_realloc_direct(ifp, new_size);
  3773. ifp->if_bytes = new_size;
  3774. }
  3775. /*
  3776. * This is called when incore extents are being removed from the
  3777. * indirection array and the extents being removed span multiple extent
  3778. * buffers. The idx parameter contains the file extent index where we
  3779. * want to begin removing extents, and the count parameter contains
  3780. * how many extents need to be removed.
  3781. *
  3782. * |-------| |-------|
  3783. * | nex1 | | | nex1 - number of extents before idx
  3784. * |-------| | count |
  3785. * | | | | count - number of extents being removed at idx
  3786. * | count | |-------|
  3787. * | | | nex2 | nex2 - number of extents after idx + count
  3788. * |-------| |-------|
  3789. */
  3790. void
  3791. xfs_iext_remove_indirect(
  3792. xfs_ifork_t *ifp, /* inode fork pointer */
  3793. xfs_extnum_t idx, /* index to begin removing extents */
  3794. int count) /* number of extents to remove */
  3795. {
  3796. xfs_ext_irec_t *erp; /* indirection array pointer */
  3797. int erp_idx = 0; /* indirection array index */
  3798. xfs_extnum_t ext_cnt; /* extents left to remove */
  3799. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3800. xfs_extnum_t nex1; /* number of extents before idx */
  3801. xfs_extnum_t nex2; /* extents after idx + count */
  3802. int nlists; /* entries in indirection array */
  3803. int page_idx = idx; /* index in target extent list */
  3804. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3805. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3806. ASSERT(erp != NULL);
  3807. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3808. nex1 = page_idx;
  3809. ext_cnt = count;
  3810. while (ext_cnt) {
  3811. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3812. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3813. /*
  3814. * Check for deletion of entire list;
  3815. * xfs_iext_irec_remove() updates extent offsets.
  3816. */
  3817. if (ext_diff == erp->er_extcount) {
  3818. xfs_iext_irec_remove(ifp, erp_idx);
  3819. ext_cnt -= ext_diff;
  3820. nex1 = 0;
  3821. if (ext_cnt) {
  3822. ASSERT(erp_idx < ifp->if_real_bytes /
  3823. XFS_IEXT_BUFSZ);
  3824. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3825. nex1 = 0;
  3826. continue;
  3827. } else {
  3828. break;
  3829. }
  3830. }
  3831. /* Move extents up (if needed) */
  3832. if (nex2) {
  3833. memmove(&erp->er_extbuf[nex1],
  3834. &erp->er_extbuf[nex1 + ext_diff],
  3835. nex2 * sizeof(xfs_bmbt_rec_t));
  3836. }
  3837. /* Zero out rest of page */
  3838. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3839. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3840. /* Update remaining counters */
  3841. erp->er_extcount -= ext_diff;
  3842. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3843. ext_cnt -= ext_diff;
  3844. nex1 = 0;
  3845. erp_idx++;
  3846. erp++;
  3847. }
  3848. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3849. xfs_iext_irec_compact(ifp);
  3850. }
  3851. /*
  3852. * Create, destroy, or resize a linear (direct) block of extents.
  3853. */
  3854. void
  3855. xfs_iext_realloc_direct(
  3856. xfs_ifork_t *ifp, /* inode fork pointer */
  3857. int new_size) /* new size of extents */
  3858. {
  3859. int rnew_size; /* real new size of extents */
  3860. rnew_size = new_size;
  3861. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3862. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3863. (new_size != ifp->if_real_bytes)));
  3864. /* Free extent records */
  3865. if (new_size == 0) {
  3866. xfs_iext_destroy(ifp);
  3867. }
  3868. /* Resize direct extent list and zero any new bytes */
  3869. else if (ifp->if_real_bytes) {
  3870. /* Check if extents will fit inside the inode */
  3871. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3872. xfs_iext_direct_to_inline(ifp, new_size /
  3873. (uint)sizeof(xfs_bmbt_rec_t));
  3874. ifp->if_bytes = new_size;
  3875. return;
  3876. }
  3877. if (!is_power_of_2(new_size)){
  3878. rnew_size = xfs_iroundup(new_size);
  3879. }
  3880. if (rnew_size != ifp->if_real_bytes) {
  3881. ifp->if_u1.if_extents =
  3882. kmem_realloc(ifp->if_u1.if_extents,
  3883. rnew_size,
  3884. ifp->if_real_bytes,
  3885. KM_SLEEP);
  3886. }
  3887. if (rnew_size > ifp->if_real_bytes) {
  3888. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3889. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3890. rnew_size - ifp->if_real_bytes);
  3891. }
  3892. }
  3893. /*
  3894. * Switch from the inline extent buffer to a direct
  3895. * extent list. Be sure to include the inline extent
  3896. * bytes in new_size.
  3897. */
  3898. else {
  3899. new_size += ifp->if_bytes;
  3900. if (!is_power_of_2(new_size)) {
  3901. rnew_size = xfs_iroundup(new_size);
  3902. }
  3903. xfs_iext_inline_to_direct(ifp, rnew_size);
  3904. }
  3905. ifp->if_real_bytes = rnew_size;
  3906. ifp->if_bytes = new_size;
  3907. }
  3908. /*
  3909. * Switch from linear (direct) extent records to inline buffer.
  3910. */
  3911. void
  3912. xfs_iext_direct_to_inline(
  3913. xfs_ifork_t *ifp, /* inode fork pointer */
  3914. xfs_extnum_t nextents) /* number of extents in file */
  3915. {
  3916. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3917. ASSERT(nextents <= XFS_INLINE_EXTS);
  3918. /*
  3919. * The inline buffer was zeroed when we switched
  3920. * from inline to direct extent allocation mode,
  3921. * so we don't need to clear it here.
  3922. */
  3923. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3924. nextents * sizeof(xfs_bmbt_rec_t));
  3925. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3926. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3927. ifp->if_real_bytes = 0;
  3928. }
  3929. /*
  3930. * Switch from inline buffer to linear (direct) extent records.
  3931. * new_size should already be rounded up to the next power of 2
  3932. * by the caller (when appropriate), so use new_size as it is.
  3933. * However, since new_size may be rounded up, we can't update
  3934. * if_bytes here. It is the caller's responsibility to update
  3935. * if_bytes upon return.
  3936. */
  3937. void
  3938. xfs_iext_inline_to_direct(
  3939. xfs_ifork_t *ifp, /* inode fork pointer */
  3940. int new_size) /* number of extents in file */
  3941. {
  3942. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
  3943. memset(ifp->if_u1.if_extents, 0, new_size);
  3944. if (ifp->if_bytes) {
  3945. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3946. ifp->if_bytes);
  3947. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3948. sizeof(xfs_bmbt_rec_t));
  3949. }
  3950. ifp->if_real_bytes = new_size;
  3951. }
  3952. /*
  3953. * Resize an extent indirection array to new_size bytes.
  3954. */
  3955. void
  3956. xfs_iext_realloc_indirect(
  3957. xfs_ifork_t *ifp, /* inode fork pointer */
  3958. int new_size) /* new indirection array size */
  3959. {
  3960. int nlists; /* number of irec's (ex lists) */
  3961. int size; /* current indirection array size */
  3962. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3963. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3964. size = nlists * sizeof(xfs_ext_irec_t);
  3965. ASSERT(ifp->if_real_bytes);
  3966. ASSERT((new_size >= 0) && (new_size != size));
  3967. if (new_size == 0) {
  3968. xfs_iext_destroy(ifp);
  3969. } else {
  3970. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3971. kmem_realloc(ifp->if_u1.if_ext_irec,
  3972. new_size, size, KM_SLEEP);
  3973. }
  3974. }
  3975. /*
  3976. * Switch from indirection array to linear (direct) extent allocations.
  3977. */
  3978. void
  3979. xfs_iext_indirect_to_direct(
  3980. xfs_ifork_t *ifp) /* inode fork pointer */
  3981. {
  3982. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3983. xfs_extnum_t nextents; /* number of extents in file */
  3984. int size; /* size of file extents */
  3985. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3986. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3987. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3988. size = nextents * sizeof(xfs_bmbt_rec_t);
  3989. xfs_iext_irec_compact_full(ifp);
  3990. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3991. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3992. kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
  3993. ifp->if_flags &= ~XFS_IFEXTIREC;
  3994. ifp->if_u1.if_extents = ep;
  3995. ifp->if_bytes = size;
  3996. if (nextents < XFS_LINEAR_EXTS) {
  3997. xfs_iext_realloc_direct(ifp, size);
  3998. }
  3999. }
  4000. /*
  4001. * Free incore file extents.
  4002. */
  4003. void
  4004. xfs_iext_destroy(
  4005. xfs_ifork_t *ifp) /* inode fork pointer */
  4006. {
  4007. if (ifp->if_flags & XFS_IFEXTIREC) {
  4008. int erp_idx;
  4009. int nlists;
  4010. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4011. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  4012. xfs_iext_irec_remove(ifp, erp_idx);
  4013. }
  4014. ifp->if_flags &= ~XFS_IFEXTIREC;
  4015. } else if (ifp->if_real_bytes) {
  4016. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  4017. } else if (ifp->if_bytes) {
  4018. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  4019. sizeof(xfs_bmbt_rec_t));
  4020. }
  4021. ifp->if_u1.if_extents = NULL;
  4022. ifp->if_real_bytes = 0;
  4023. ifp->if_bytes = 0;
  4024. }
  4025. /*
  4026. * Return a pointer to the extent record for file system block bno.
  4027. */
  4028. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  4029. xfs_iext_bno_to_ext(
  4030. xfs_ifork_t *ifp, /* inode fork pointer */
  4031. xfs_fileoff_t bno, /* block number to search for */
  4032. xfs_extnum_t *idxp) /* index of target extent */
  4033. {
  4034. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  4035. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  4036. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  4037. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4038. int high; /* upper boundary in search */
  4039. xfs_extnum_t idx = 0; /* index of target extent */
  4040. int low; /* lower boundary in search */
  4041. xfs_extnum_t nextents; /* number of file extents */
  4042. xfs_fileoff_t startoff = 0; /* start offset of extent */
  4043. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4044. if (nextents == 0) {
  4045. *idxp = 0;
  4046. return NULL;
  4047. }
  4048. low = 0;
  4049. if (ifp->if_flags & XFS_IFEXTIREC) {
  4050. /* Find target extent list */
  4051. int erp_idx = 0;
  4052. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  4053. base = erp->er_extbuf;
  4054. high = erp->er_extcount - 1;
  4055. } else {
  4056. base = ifp->if_u1.if_extents;
  4057. high = nextents - 1;
  4058. }
  4059. /* Binary search extent records */
  4060. while (low <= high) {
  4061. idx = (low + high) >> 1;
  4062. ep = base + idx;
  4063. startoff = xfs_bmbt_get_startoff(ep);
  4064. blockcount = xfs_bmbt_get_blockcount(ep);
  4065. if (bno < startoff) {
  4066. high = idx - 1;
  4067. } else if (bno >= startoff + blockcount) {
  4068. low = idx + 1;
  4069. } else {
  4070. /* Convert back to file-based extent index */
  4071. if (ifp->if_flags & XFS_IFEXTIREC) {
  4072. idx += erp->er_extoff;
  4073. }
  4074. *idxp = idx;
  4075. return ep;
  4076. }
  4077. }
  4078. /* Convert back to file-based extent index */
  4079. if (ifp->if_flags & XFS_IFEXTIREC) {
  4080. idx += erp->er_extoff;
  4081. }
  4082. if (bno >= startoff + blockcount) {
  4083. if (++idx == nextents) {
  4084. ep = NULL;
  4085. } else {
  4086. ep = xfs_iext_get_ext(ifp, idx);
  4087. }
  4088. }
  4089. *idxp = idx;
  4090. return ep;
  4091. }
  4092. /*
  4093. * Return a pointer to the indirection array entry containing the
  4094. * extent record for filesystem block bno. Store the index of the
  4095. * target irec in *erp_idxp.
  4096. */
  4097. xfs_ext_irec_t * /* pointer to found extent record */
  4098. xfs_iext_bno_to_irec(
  4099. xfs_ifork_t *ifp, /* inode fork pointer */
  4100. xfs_fileoff_t bno, /* block number to search for */
  4101. int *erp_idxp) /* irec index of target ext list */
  4102. {
  4103. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4104. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  4105. int erp_idx; /* indirection array index */
  4106. int nlists; /* number of extent irec's (lists) */
  4107. int high; /* binary search upper limit */
  4108. int low; /* binary search lower limit */
  4109. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4110. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4111. erp_idx = 0;
  4112. low = 0;
  4113. high = nlists - 1;
  4114. while (low <= high) {
  4115. erp_idx = (low + high) >> 1;
  4116. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4117. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  4118. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  4119. high = erp_idx - 1;
  4120. } else if (erp_next && bno >=
  4121. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  4122. low = erp_idx + 1;
  4123. } else {
  4124. break;
  4125. }
  4126. }
  4127. *erp_idxp = erp_idx;
  4128. return erp;
  4129. }
  4130. /*
  4131. * Return a pointer to the indirection array entry containing the
  4132. * extent record at file extent index *idxp. Store the index of the
  4133. * target irec in *erp_idxp and store the page index of the target
  4134. * extent record in *idxp.
  4135. */
  4136. xfs_ext_irec_t *
  4137. xfs_iext_idx_to_irec(
  4138. xfs_ifork_t *ifp, /* inode fork pointer */
  4139. xfs_extnum_t *idxp, /* extent index (file -> page) */
  4140. int *erp_idxp, /* pointer to target irec */
  4141. int realloc) /* new bytes were just added */
  4142. {
  4143. xfs_ext_irec_t *prev; /* pointer to previous irec */
  4144. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  4145. int erp_idx; /* indirection array index */
  4146. int nlists; /* number of irec's (ex lists) */
  4147. int high; /* binary search upper limit */
  4148. int low; /* binary search lower limit */
  4149. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  4150. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4151. ASSERT(page_idx >= 0 && page_idx <=
  4152. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  4153. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4154. erp_idx = 0;
  4155. low = 0;
  4156. high = nlists - 1;
  4157. /* Binary search extent irec's */
  4158. while (low <= high) {
  4159. erp_idx = (low + high) >> 1;
  4160. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4161. prev = erp_idx > 0 ? erp - 1 : NULL;
  4162. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  4163. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  4164. high = erp_idx - 1;
  4165. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  4166. (page_idx == erp->er_extoff + erp->er_extcount &&
  4167. !realloc)) {
  4168. low = erp_idx + 1;
  4169. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  4170. erp->er_extcount == XFS_LINEAR_EXTS) {
  4171. ASSERT(realloc);
  4172. page_idx = 0;
  4173. erp_idx++;
  4174. erp = erp_idx < nlists ? erp + 1 : NULL;
  4175. break;
  4176. } else {
  4177. page_idx -= erp->er_extoff;
  4178. break;
  4179. }
  4180. }
  4181. *idxp = page_idx;
  4182. *erp_idxp = erp_idx;
  4183. return(erp);
  4184. }
  4185. /*
  4186. * Allocate and initialize an indirection array once the space needed
  4187. * for incore extents increases above XFS_IEXT_BUFSZ.
  4188. */
  4189. void
  4190. xfs_iext_irec_init(
  4191. xfs_ifork_t *ifp) /* inode fork pointer */
  4192. {
  4193. xfs_ext_irec_t *erp; /* indirection array pointer */
  4194. xfs_extnum_t nextents; /* number of extents in file */
  4195. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4196. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4197. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4198. erp = (xfs_ext_irec_t *)
  4199. kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
  4200. if (nextents == 0) {
  4201. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4202. } else if (!ifp->if_real_bytes) {
  4203. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4204. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4205. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4206. }
  4207. erp->er_extbuf = ifp->if_u1.if_extents;
  4208. erp->er_extcount = nextents;
  4209. erp->er_extoff = 0;
  4210. ifp->if_flags |= XFS_IFEXTIREC;
  4211. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4212. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4213. ifp->if_u1.if_ext_irec = erp;
  4214. return;
  4215. }
  4216. /*
  4217. * Allocate and initialize a new entry in the indirection array.
  4218. */
  4219. xfs_ext_irec_t *
  4220. xfs_iext_irec_new(
  4221. xfs_ifork_t *ifp, /* inode fork pointer */
  4222. int erp_idx) /* index for new irec */
  4223. {
  4224. xfs_ext_irec_t *erp; /* indirection array pointer */
  4225. int i; /* loop counter */
  4226. int nlists; /* number of irec's (ex lists) */
  4227. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4228. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4229. /* Resize indirection array */
  4230. xfs_iext_realloc_indirect(ifp, ++nlists *
  4231. sizeof(xfs_ext_irec_t));
  4232. /*
  4233. * Move records down in the array so the
  4234. * new page can use erp_idx.
  4235. */
  4236. erp = ifp->if_u1.if_ext_irec;
  4237. for (i = nlists - 1; i > erp_idx; i--) {
  4238. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4239. }
  4240. ASSERT(i == erp_idx);
  4241. /* Initialize new extent record */
  4242. erp = ifp->if_u1.if_ext_irec;
  4243. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4244. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4245. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4246. erp[erp_idx].er_extcount = 0;
  4247. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4248. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4249. return (&erp[erp_idx]);
  4250. }
  4251. /*
  4252. * Remove a record from the indirection array.
  4253. */
  4254. void
  4255. xfs_iext_irec_remove(
  4256. xfs_ifork_t *ifp, /* inode fork pointer */
  4257. int erp_idx) /* irec index to remove */
  4258. {
  4259. xfs_ext_irec_t *erp; /* indirection array pointer */
  4260. int i; /* loop counter */
  4261. int nlists; /* number of irec's (ex lists) */
  4262. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4263. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4264. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4265. if (erp->er_extbuf) {
  4266. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4267. -erp->er_extcount);
  4268. kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
  4269. }
  4270. /* Compact extent records */
  4271. erp = ifp->if_u1.if_ext_irec;
  4272. for (i = erp_idx; i < nlists - 1; i++) {
  4273. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4274. }
  4275. /*
  4276. * Manually free the last extent record from the indirection
  4277. * array. A call to xfs_iext_realloc_indirect() with a size
  4278. * of zero would result in a call to xfs_iext_destroy() which
  4279. * would in turn call this function again, creating a nasty
  4280. * infinite loop.
  4281. */
  4282. if (--nlists) {
  4283. xfs_iext_realloc_indirect(ifp,
  4284. nlists * sizeof(xfs_ext_irec_t));
  4285. } else {
  4286. kmem_free(ifp->if_u1.if_ext_irec,
  4287. sizeof(xfs_ext_irec_t));
  4288. }
  4289. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4290. }
  4291. /*
  4292. * This is called to clean up large amounts of unused memory allocated
  4293. * by the indirection array. Before compacting anything though, verify
  4294. * that the indirection array is still needed and switch back to the
  4295. * linear extent list (or even the inline buffer) if possible. The
  4296. * compaction policy is as follows:
  4297. *
  4298. * Full Compaction: Extents fit into a single page (or inline buffer)
  4299. * Full Compaction: Extents occupy less than 10% of allocated space
  4300. * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
  4301. * No Compaction: Extents occupy at least 50% of allocated space
  4302. */
  4303. void
  4304. xfs_iext_irec_compact(
  4305. xfs_ifork_t *ifp) /* inode fork pointer */
  4306. {
  4307. xfs_extnum_t nextents; /* number of extents in file */
  4308. int nlists; /* number of irec's (ex lists) */
  4309. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4310. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4311. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4312. if (nextents == 0) {
  4313. xfs_iext_destroy(ifp);
  4314. } else if (nextents <= XFS_INLINE_EXTS) {
  4315. xfs_iext_indirect_to_direct(ifp);
  4316. xfs_iext_direct_to_inline(ifp, nextents);
  4317. } else if (nextents <= XFS_LINEAR_EXTS) {
  4318. xfs_iext_indirect_to_direct(ifp);
  4319. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
  4320. xfs_iext_irec_compact_full(ifp);
  4321. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4322. xfs_iext_irec_compact_pages(ifp);
  4323. }
  4324. }
  4325. /*
  4326. * Combine extents from neighboring extent pages.
  4327. */
  4328. void
  4329. xfs_iext_irec_compact_pages(
  4330. xfs_ifork_t *ifp) /* inode fork pointer */
  4331. {
  4332. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4333. int erp_idx = 0; /* indirection array index */
  4334. int nlists; /* number of irec's (ex lists) */
  4335. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4336. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4337. while (erp_idx < nlists - 1) {
  4338. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4339. erp_next = erp + 1;
  4340. if (erp_next->er_extcount <=
  4341. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4342. memmove(&erp->er_extbuf[erp->er_extcount],
  4343. erp_next->er_extbuf, erp_next->er_extcount *
  4344. sizeof(xfs_bmbt_rec_t));
  4345. erp->er_extcount += erp_next->er_extcount;
  4346. /*
  4347. * Free page before removing extent record
  4348. * so er_extoffs don't get modified in
  4349. * xfs_iext_irec_remove.
  4350. */
  4351. kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
  4352. erp_next->er_extbuf = NULL;
  4353. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4354. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4355. } else {
  4356. erp_idx++;
  4357. }
  4358. }
  4359. }
  4360. /*
  4361. * Fully compact the extent records managed by the indirection array.
  4362. */
  4363. void
  4364. xfs_iext_irec_compact_full(
  4365. xfs_ifork_t *ifp) /* inode fork pointer */
  4366. {
  4367. xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
  4368. xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
  4369. int erp_idx = 0; /* extent irec index */
  4370. int ext_avail; /* empty entries in ex list */
  4371. int ext_diff; /* number of exts to add */
  4372. int nlists; /* number of irec's (ex lists) */
  4373. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4374. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4375. erp = ifp->if_u1.if_ext_irec;
  4376. ep = &erp->er_extbuf[erp->er_extcount];
  4377. erp_next = erp + 1;
  4378. ep_next = erp_next->er_extbuf;
  4379. while (erp_idx < nlists - 1) {
  4380. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  4381. ext_diff = MIN(ext_avail, erp_next->er_extcount);
  4382. memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
  4383. erp->er_extcount += ext_diff;
  4384. erp_next->er_extcount -= ext_diff;
  4385. /* Remove next page */
  4386. if (erp_next->er_extcount == 0) {
  4387. /*
  4388. * Free page before removing extent record
  4389. * so er_extoffs don't get modified in
  4390. * xfs_iext_irec_remove.
  4391. */
  4392. kmem_free(erp_next->er_extbuf,
  4393. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4394. erp_next->er_extbuf = NULL;
  4395. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4396. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4397. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4398. /* Update next page */
  4399. } else {
  4400. /* Move rest of page up to become next new page */
  4401. memmove(erp_next->er_extbuf, ep_next,
  4402. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4403. ep_next = erp_next->er_extbuf;
  4404. memset(&ep_next[erp_next->er_extcount], 0,
  4405. (XFS_LINEAR_EXTS - erp_next->er_extcount) *
  4406. sizeof(xfs_bmbt_rec_t));
  4407. }
  4408. if (erp->er_extcount == XFS_LINEAR_EXTS) {
  4409. erp_idx++;
  4410. if (erp_idx < nlists)
  4411. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4412. else
  4413. break;
  4414. }
  4415. ep = &erp->er_extbuf[erp->er_extcount];
  4416. erp_next = erp + 1;
  4417. ep_next = erp_next->er_extbuf;
  4418. }
  4419. }
  4420. /*
  4421. * This is called to update the er_extoff field in the indirection
  4422. * array when extents have been added or removed from one of the
  4423. * extent lists. erp_idx contains the irec index to begin updating
  4424. * at and ext_diff contains the number of extents that were added
  4425. * or removed.
  4426. */
  4427. void
  4428. xfs_iext_irec_update_extoffs(
  4429. xfs_ifork_t *ifp, /* inode fork pointer */
  4430. int erp_idx, /* irec index to update */
  4431. int ext_diff) /* number of new extents */
  4432. {
  4433. int i; /* loop counter */
  4434. int nlists; /* number of irec's (ex lists */
  4435. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4436. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4437. for (i = erp_idx; i < nlists; i++) {
  4438. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4439. }
  4440. }