sched.c 218 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <asm/tlb.h>
  73. #include <asm/irq_regs.h>
  74. #include "sched_cpupri.h"
  75. /*
  76. * Convert user-nice values [ -20 ... 0 ... 19 ]
  77. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  78. * and back.
  79. */
  80. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  81. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  82. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  83. /*
  84. * 'User priority' is the nice value converted to something we
  85. * can work with better when scaling various scheduler parameters,
  86. * it's a [ 0 ... 39 ] range.
  87. */
  88. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  89. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  90. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  91. /*
  92. * Helpers for converting nanosecond timing to jiffy resolution
  93. */
  94. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  95. #define NICE_0_LOAD SCHED_LOAD_SCALE
  96. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  97. /*
  98. * These are the 'tuning knobs' of the scheduler:
  99. *
  100. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  101. * Timeslices get refilled after they expire.
  102. */
  103. #define DEF_TIMESLICE (100 * HZ / 1000)
  104. /*
  105. * single value that denotes runtime == period, ie unlimited time.
  106. */
  107. #define RUNTIME_INF ((u64)~0ULL)
  108. #ifdef CONFIG_SMP
  109. /*
  110. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  111. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  112. */
  113. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  114. {
  115. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  116. }
  117. /*
  118. * Each time a sched group cpu_power is changed,
  119. * we must compute its reciprocal value
  120. */
  121. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  122. {
  123. sg->__cpu_power += val;
  124. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  125. }
  126. #endif
  127. static inline int rt_policy(int policy)
  128. {
  129. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  130. return 1;
  131. return 0;
  132. }
  133. static inline int task_has_rt_policy(struct task_struct *p)
  134. {
  135. return rt_policy(p->policy);
  136. }
  137. /*
  138. * This is the priority-queue data structure of the RT scheduling class:
  139. */
  140. struct rt_prio_array {
  141. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  142. struct list_head queue[MAX_RT_PRIO];
  143. };
  144. struct rt_bandwidth {
  145. /* nests inside the rq lock: */
  146. spinlock_t rt_runtime_lock;
  147. ktime_t rt_period;
  148. u64 rt_runtime;
  149. struct hrtimer rt_period_timer;
  150. };
  151. static struct rt_bandwidth def_rt_bandwidth;
  152. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  153. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  154. {
  155. struct rt_bandwidth *rt_b =
  156. container_of(timer, struct rt_bandwidth, rt_period_timer);
  157. ktime_t now;
  158. int overrun;
  159. int idle = 0;
  160. for (;;) {
  161. now = hrtimer_cb_get_time(timer);
  162. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  163. if (!overrun)
  164. break;
  165. idle = do_sched_rt_period_timer(rt_b, overrun);
  166. }
  167. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  168. }
  169. static
  170. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  171. {
  172. rt_b->rt_period = ns_to_ktime(period);
  173. rt_b->rt_runtime = runtime;
  174. spin_lock_init(&rt_b->rt_runtime_lock);
  175. hrtimer_init(&rt_b->rt_period_timer,
  176. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  177. rt_b->rt_period_timer.function = sched_rt_period_timer;
  178. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  179. }
  180. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  181. {
  182. ktime_t now;
  183. if (rt_b->rt_runtime == RUNTIME_INF)
  184. return;
  185. if (hrtimer_active(&rt_b->rt_period_timer))
  186. return;
  187. spin_lock(&rt_b->rt_runtime_lock);
  188. for (;;) {
  189. if (hrtimer_active(&rt_b->rt_period_timer))
  190. break;
  191. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  192. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  193. hrtimer_start(&rt_b->rt_period_timer,
  194. rt_b->rt_period_timer.expires,
  195. HRTIMER_MODE_ABS);
  196. }
  197. spin_unlock(&rt_b->rt_runtime_lock);
  198. }
  199. #ifdef CONFIG_RT_GROUP_SCHED
  200. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  201. {
  202. hrtimer_cancel(&rt_b->rt_period_timer);
  203. }
  204. #endif
  205. /*
  206. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  207. * detach_destroy_domains and partition_sched_domains.
  208. */
  209. static DEFINE_MUTEX(sched_domains_mutex);
  210. #ifdef CONFIG_GROUP_SCHED
  211. #include <linux/cgroup.h>
  212. struct cfs_rq;
  213. static LIST_HEAD(task_groups);
  214. /* task group related information */
  215. struct task_group {
  216. #ifdef CONFIG_CGROUP_SCHED
  217. struct cgroup_subsys_state css;
  218. #endif
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. /* schedulable entities of this group on each cpu */
  221. struct sched_entity **se;
  222. /* runqueue "owned" by this group on each cpu */
  223. struct cfs_rq **cfs_rq;
  224. unsigned long shares;
  225. #endif
  226. #ifdef CONFIG_RT_GROUP_SCHED
  227. struct sched_rt_entity **rt_se;
  228. struct rt_rq **rt_rq;
  229. struct rt_bandwidth rt_bandwidth;
  230. #endif
  231. struct rcu_head rcu;
  232. struct list_head list;
  233. struct task_group *parent;
  234. struct list_head siblings;
  235. struct list_head children;
  236. };
  237. #ifdef CONFIG_USER_SCHED
  238. /*
  239. * Root task group.
  240. * Every UID task group (including init_task_group aka UID-0) will
  241. * be a child to this group.
  242. */
  243. struct task_group root_task_group;
  244. #ifdef CONFIG_FAIR_GROUP_SCHED
  245. /* Default task group's sched entity on each cpu */
  246. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  247. /* Default task group's cfs_rq on each cpu */
  248. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  249. #endif /* CONFIG_FAIR_GROUP_SCHED */
  250. #ifdef CONFIG_RT_GROUP_SCHED
  251. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  252. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  253. #endif /* CONFIG_RT_GROUP_SCHED */
  254. #else /* !CONFIG_FAIR_GROUP_SCHED */
  255. #define root_task_group init_task_group
  256. #endif /* CONFIG_FAIR_GROUP_SCHED */
  257. /* task_group_lock serializes add/remove of task groups and also changes to
  258. * a task group's cpu shares.
  259. */
  260. static DEFINE_SPINLOCK(task_group_lock);
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. #ifdef CONFIG_USER_SCHED
  263. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  264. #else /* !CONFIG_USER_SCHED */
  265. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  266. #endif /* CONFIG_USER_SCHED */
  267. /*
  268. * A weight of 0 or 1 can cause arithmetics problems.
  269. * A weight of a cfs_rq is the sum of weights of which entities
  270. * are queued on this cfs_rq, so a weight of a entity should not be
  271. * too large, so as the shares value of a task group.
  272. * (The default weight is 1024 - so there's no practical
  273. * limitation from this.)
  274. */
  275. #define MIN_SHARES 2
  276. #define MAX_SHARES (1UL << 18)
  277. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  278. #endif
  279. /* Default task group.
  280. * Every task in system belong to this group at bootup.
  281. */
  282. struct task_group init_task_group;
  283. /* return group to which a task belongs */
  284. static inline struct task_group *task_group(struct task_struct *p)
  285. {
  286. struct task_group *tg;
  287. #ifdef CONFIG_USER_SCHED
  288. tg = p->user->tg;
  289. #elif defined(CONFIG_CGROUP_SCHED)
  290. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  291. struct task_group, css);
  292. #else
  293. tg = &init_task_group;
  294. #endif
  295. return tg;
  296. }
  297. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  298. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  299. {
  300. #ifdef CONFIG_FAIR_GROUP_SCHED
  301. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  302. p->se.parent = task_group(p)->se[cpu];
  303. #endif
  304. #ifdef CONFIG_RT_GROUP_SCHED
  305. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  306. p->rt.parent = task_group(p)->rt_se[cpu];
  307. #endif
  308. }
  309. #else
  310. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  311. #endif /* CONFIG_GROUP_SCHED */
  312. /* CFS-related fields in a runqueue */
  313. struct cfs_rq {
  314. struct load_weight load;
  315. unsigned long nr_running;
  316. u64 exec_clock;
  317. u64 min_vruntime;
  318. u64 pair_start;
  319. struct rb_root tasks_timeline;
  320. struct rb_node *rb_leftmost;
  321. struct list_head tasks;
  322. struct list_head *balance_iterator;
  323. /*
  324. * 'curr' points to currently running entity on this cfs_rq.
  325. * It is set to NULL otherwise (i.e when none are currently running).
  326. */
  327. struct sched_entity *curr, *next;
  328. unsigned long nr_spread_over;
  329. #ifdef CONFIG_FAIR_GROUP_SCHED
  330. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  331. /*
  332. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  333. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  334. * (like users, containers etc.)
  335. *
  336. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  337. * list is used during load balance.
  338. */
  339. struct list_head leaf_cfs_rq_list;
  340. struct task_group *tg; /* group that "owns" this runqueue */
  341. #ifdef CONFIG_SMP
  342. /*
  343. * the part of load.weight contributed by tasks
  344. */
  345. unsigned long task_weight;
  346. /*
  347. * h_load = weight * f(tg)
  348. *
  349. * Where f(tg) is the recursive weight fraction assigned to
  350. * this group.
  351. */
  352. unsigned long h_load;
  353. /*
  354. * this cpu's part of tg->shares
  355. */
  356. unsigned long shares;
  357. #endif
  358. #endif
  359. };
  360. /* Real-Time classes' related field in a runqueue: */
  361. struct rt_rq {
  362. struct rt_prio_array active;
  363. unsigned long rt_nr_running;
  364. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  365. int highest_prio; /* highest queued rt task prio */
  366. #endif
  367. #ifdef CONFIG_SMP
  368. unsigned long rt_nr_migratory;
  369. int overloaded;
  370. #endif
  371. int rt_throttled;
  372. u64 rt_time;
  373. u64 rt_runtime;
  374. /* Nests inside the rq lock: */
  375. spinlock_t rt_runtime_lock;
  376. #ifdef CONFIG_RT_GROUP_SCHED
  377. unsigned long rt_nr_boosted;
  378. struct rq *rq;
  379. struct list_head leaf_rt_rq_list;
  380. struct task_group *tg;
  381. struct sched_rt_entity *rt_se;
  382. #endif
  383. };
  384. #ifdef CONFIG_SMP
  385. /*
  386. * We add the notion of a root-domain which will be used to define per-domain
  387. * variables. Each exclusive cpuset essentially defines an island domain by
  388. * fully partitioning the member cpus from any other cpuset. Whenever a new
  389. * exclusive cpuset is created, we also create and attach a new root-domain
  390. * object.
  391. *
  392. */
  393. struct root_domain {
  394. atomic_t refcount;
  395. cpumask_t span;
  396. cpumask_t online;
  397. /*
  398. * The "RT overload" flag: it gets set if a CPU has more than
  399. * one runnable RT task.
  400. */
  401. cpumask_t rto_mask;
  402. atomic_t rto_count;
  403. #ifdef CONFIG_SMP
  404. struct cpupri cpupri;
  405. #endif
  406. };
  407. /*
  408. * By default the system creates a single root-domain with all cpus as
  409. * members (mimicking the global state we have today).
  410. */
  411. static struct root_domain def_root_domain;
  412. #endif
  413. /*
  414. * This is the main, per-CPU runqueue data structure.
  415. *
  416. * Locking rule: those places that want to lock multiple runqueues
  417. * (such as the load balancing or the thread migration code), lock
  418. * acquire operations must be ordered by ascending &runqueue.
  419. */
  420. struct rq {
  421. /* runqueue lock: */
  422. spinlock_t lock;
  423. /*
  424. * nr_running and cpu_load should be in the same cacheline because
  425. * remote CPUs use both these fields when doing load calculation.
  426. */
  427. unsigned long nr_running;
  428. #define CPU_LOAD_IDX_MAX 5
  429. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  430. unsigned char idle_at_tick;
  431. #ifdef CONFIG_NO_HZ
  432. unsigned long last_tick_seen;
  433. unsigned char in_nohz_recently;
  434. #endif
  435. /* capture load from *all* tasks on this cpu: */
  436. struct load_weight load;
  437. unsigned long nr_load_updates;
  438. u64 nr_switches;
  439. struct cfs_rq cfs;
  440. struct rt_rq rt;
  441. #ifdef CONFIG_FAIR_GROUP_SCHED
  442. /* list of leaf cfs_rq on this cpu: */
  443. struct list_head leaf_cfs_rq_list;
  444. #endif
  445. #ifdef CONFIG_RT_GROUP_SCHED
  446. struct list_head leaf_rt_rq_list;
  447. #endif
  448. /*
  449. * This is part of a global counter where only the total sum
  450. * over all CPUs matters. A task can increase this counter on
  451. * one CPU and if it got migrated afterwards it may decrease
  452. * it on another CPU. Always updated under the runqueue lock:
  453. */
  454. unsigned long nr_uninterruptible;
  455. struct task_struct *curr, *idle;
  456. unsigned long next_balance;
  457. struct mm_struct *prev_mm;
  458. u64 clock;
  459. atomic_t nr_iowait;
  460. #ifdef CONFIG_SMP
  461. struct root_domain *rd;
  462. struct sched_domain *sd;
  463. /* For active balancing */
  464. int active_balance;
  465. int push_cpu;
  466. /* cpu of this runqueue: */
  467. int cpu;
  468. int online;
  469. unsigned long avg_load_per_task;
  470. struct task_struct *migration_thread;
  471. struct list_head migration_queue;
  472. #endif
  473. #ifdef CONFIG_SCHED_HRTICK
  474. unsigned long hrtick_flags;
  475. ktime_t hrtick_expire;
  476. struct hrtimer hrtick_timer;
  477. #endif
  478. #ifdef CONFIG_SCHEDSTATS
  479. /* latency stats */
  480. struct sched_info rq_sched_info;
  481. /* sys_sched_yield() stats */
  482. unsigned int yld_exp_empty;
  483. unsigned int yld_act_empty;
  484. unsigned int yld_both_empty;
  485. unsigned int yld_count;
  486. /* schedule() stats */
  487. unsigned int sched_switch;
  488. unsigned int sched_count;
  489. unsigned int sched_goidle;
  490. /* try_to_wake_up() stats */
  491. unsigned int ttwu_count;
  492. unsigned int ttwu_local;
  493. /* BKL stats */
  494. unsigned int bkl_count;
  495. #endif
  496. struct lock_class_key rq_lock_key;
  497. };
  498. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  499. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  500. {
  501. rq->curr->sched_class->check_preempt_curr(rq, p);
  502. }
  503. static inline int cpu_of(struct rq *rq)
  504. {
  505. #ifdef CONFIG_SMP
  506. return rq->cpu;
  507. #else
  508. return 0;
  509. #endif
  510. }
  511. /*
  512. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  513. * See detach_destroy_domains: synchronize_sched for details.
  514. *
  515. * The domain tree of any CPU may only be accessed from within
  516. * preempt-disabled sections.
  517. */
  518. #define for_each_domain(cpu, __sd) \
  519. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  520. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  521. #define this_rq() (&__get_cpu_var(runqueues))
  522. #define task_rq(p) cpu_rq(task_cpu(p))
  523. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  524. static inline void update_rq_clock(struct rq *rq)
  525. {
  526. rq->clock = sched_clock_cpu(cpu_of(rq));
  527. }
  528. /*
  529. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  530. */
  531. #ifdef CONFIG_SCHED_DEBUG
  532. # define const_debug __read_mostly
  533. #else
  534. # define const_debug static const
  535. #endif
  536. /*
  537. * Debugging: various feature bits
  538. */
  539. #define SCHED_FEAT(name, enabled) \
  540. __SCHED_FEAT_##name ,
  541. enum {
  542. #include "sched_features.h"
  543. };
  544. #undef SCHED_FEAT
  545. #define SCHED_FEAT(name, enabled) \
  546. (1UL << __SCHED_FEAT_##name) * enabled |
  547. const_debug unsigned int sysctl_sched_features =
  548. #include "sched_features.h"
  549. 0;
  550. #undef SCHED_FEAT
  551. #ifdef CONFIG_SCHED_DEBUG
  552. #define SCHED_FEAT(name, enabled) \
  553. #name ,
  554. static __read_mostly char *sched_feat_names[] = {
  555. #include "sched_features.h"
  556. NULL
  557. };
  558. #undef SCHED_FEAT
  559. static int sched_feat_open(struct inode *inode, struct file *filp)
  560. {
  561. filp->private_data = inode->i_private;
  562. return 0;
  563. }
  564. static ssize_t
  565. sched_feat_read(struct file *filp, char __user *ubuf,
  566. size_t cnt, loff_t *ppos)
  567. {
  568. char *buf;
  569. int r = 0;
  570. int len = 0;
  571. int i;
  572. for (i = 0; sched_feat_names[i]; i++) {
  573. len += strlen(sched_feat_names[i]);
  574. len += 4;
  575. }
  576. buf = kmalloc(len + 2, GFP_KERNEL);
  577. if (!buf)
  578. return -ENOMEM;
  579. for (i = 0; sched_feat_names[i]; i++) {
  580. if (sysctl_sched_features & (1UL << i))
  581. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  582. else
  583. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  584. }
  585. r += sprintf(buf + r, "\n");
  586. WARN_ON(r >= len + 2);
  587. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  588. kfree(buf);
  589. return r;
  590. }
  591. static ssize_t
  592. sched_feat_write(struct file *filp, const char __user *ubuf,
  593. size_t cnt, loff_t *ppos)
  594. {
  595. char buf[64];
  596. char *cmp = buf;
  597. int neg = 0;
  598. int i;
  599. if (cnt > 63)
  600. cnt = 63;
  601. if (copy_from_user(&buf, ubuf, cnt))
  602. return -EFAULT;
  603. buf[cnt] = 0;
  604. if (strncmp(buf, "NO_", 3) == 0) {
  605. neg = 1;
  606. cmp += 3;
  607. }
  608. for (i = 0; sched_feat_names[i]; i++) {
  609. int len = strlen(sched_feat_names[i]);
  610. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  611. if (neg)
  612. sysctl_sched_features &= ~(1UL << i);
  613. else
  614. sysctl_sched_features |= (1UL << i);
  615. break;
  616. }
  617. }
  618. if (!sched_feat_names[i])
  619. return -EINVAL;
  620. filp->f_pos += cnt;
  621. return cnt;
  622. }
  623. static struct file_operations sched_feat_fops = {
  624. .open = sched_feat_open,
  625. .read = sched_feat_read,
  626. .write = sched_feat_write,
  627. };
  628. static __init int sched_init_debug(void)
  629. {
  630. debugfs_create_file("sched_features", 0644, NULL, NULL,
  631. &sched_feat_fops);
  632. return 0;
  633. }
  634. late_initcall(sched_init_debug);
  635. #endif
  636. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  637. /*
  638. * Number of tasks to iterate in a single balance run.
  639. * Limited because this is done with IRQs disabled.
  640. */
  641. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  642. /*
  643. * period over which we measure -rt task cpu usage in us.
  644. * default: 1s
  645. */
  646. unsigned int sysctl_sched_rt_period = 1000000;
  647. static __read_mostly int scheduler_running;
  648. /*
  649. * part of the period that we allow rt tasks to run in us.
  650. * default: 0.95s
  651. */
  652. int sysctl_sched_rt_runtime = 950000;
  653. static inline u64 global_rt_period(void)
  654. {
  655. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  656. }
  657. static inline u64 global_rt_runtime(void)
  658. {
  659. if (sysctl_sched_rt_period < 0)
  660. return RUNTIME_INF;
  661. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  662. }
  663. #ifndef prepare_arch_switch
  664. # define prepare_arch_switch(next) do { } while (0)
  665. #endif
  666. #ifndef finish_arch_switch
  667. # define finish_arch_switch(prev) do { } while (0)
  668. #endif
  669. static inline int task_current(struct rq *rq, struct task_struct *p)
  670. {
  671. return rq->curr == p;
  672. }
  673. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  674. static inline int task_running(struct rq *rq, struct task_struct *p)
  675. {
  676. return task_current(rq, p);
  677. }
  678. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  679. {
  680. }
  681. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  682. {
  683. #ifdef CONFIG_DEBUG_SPINLOCK
  684. /* this is a valid case when another task releases the spinlock */
  685. rq->lock.owner = current;
  686. #endif
  687. /*
  688. * If we are tracking spinlock dependencies then we have to
  689. * fix up the runqueue lock - which gets 'carried over' from
  690. * prev into current:
  691. */
  692. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  693. spin_unlock_irq(&rq->lock);
  694. }
  695. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  696. static inline int task_running(struct rq *rq, struct task_struct *p)
  697. {
  698. #ifdef CONFIG_SMP
  699. return p->oncpu;
  700. #else
  701. return task_current(rq, p);
  702. #endif
  703. }
  704. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  705. {
  706. #ifdef CONFIG_SMP
  707. /*
  708. * We can optimise this out completely for !SMP, because the
  709. * SMP rebalancing from interrupt is the only thing that cares
  710. * here.
  711. */
  712. next->oncpu = 1;
  713. #endif
  714. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  715. spin_unlock_irq(&rq->lock);
  716. #else
  717. spin_unlock(&rq->lock);
  718. #endif
  719. }
  720. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  721. {
  722. #ifdef CONFIG_SMP
  723. /*
  724. * After ->oncpu is cleared, the task can be moved to a different CPU.
  725. * We must ensure this doesn't happen until the switch is completely
  726. * finished.
  727. */
  728. smp_wmb();
  729. prev->oncpu = 0;
  730. #endif
  731. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  732. local_irq_enable();
  733. #endif
  734. }
  735. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  736. /*
  737. * __task_rq_lock - lock the runqueue a given task resides on.
  738. * Must be called interrupts disabled.
  739. */
  740. static inline struct rq *__task_rq_lock(struct task_struct *p)
  741. __acquires(rq->lock)
  742. {
  743. for (;;) {
  744. struct rq *rq = task_rq(p);
  745. spin_lock(&rq->lock);
  746. if (likely(rq == task_rq(p)))
  747. return rq;
  748. spin_unlock(&rq->lock);
  749. }
  750. }
  751. /*
  752. * task_rq_lock - lock the runqueue a given task resides on and disable
  753. * interrupts. Note the ordering: we can safely lookup the task_rq without
  754. * explicitly disabling preemption.
  755. */
  756. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  757. __acquires(rq->lock)
  758. {
  759. struct rq *rq;
  760. for (;;) {
  761. local_irq_save(*flags);
  762. rq = task_rq(p);
  763. spin_lock(&rq->lock);
  764. if (likely(rq == task_rq(p)))
  765. return rq;
  766. spin_unlock_irqrestore(&rq->lock, *flags);
  767. }
  768. }
  769. static void __task_rq_unlock(struct rq *rq)
  770. __releases(rq->lock)
  771. {
  772. spin_unlock(&rq->lock);
  773. }
  774. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  775. __releases(rq->lock)
  776. {
  777. spin_unlock_irqrestore(&rq->lock, *flags);
  778. }
  779. /*
  780. * this_rq_lock - lock this runqueue and disable interrupts.
  781. */
  782. static struct rq *this_rq_lock(void)
  783. __acquires(rq->lock)
  784. {
  785. struct rq *rq;
  786. local_irq_disable();
  787. rq = this_rq();
  788. spin_lock(&rq->lock);
  789. return rq;
  790. }
  791. static void __resched_task(struct task_struct *p, int tif_bit);
  792. static inline void resched_task(struct task_struct *p)
  793. {
  794. __resched_task(p, TIF_NEED_RESCHED);
  795. }
  796. #ifdef CONFIG_SCHED_HRTICK
  797. /*
  798. * Use HR-timers to deliver accurate preemption points.
  799. *
  800. * Its all a bit involved since we cannot program an hrt while holding the
  801. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  802. * reschedule event.
  803. *
  804. * When we get rescheduled we reprogram the hrtick_timer outside of the
  805. * rq->lock.
  806. */
  807. static inline void resched_hrt(struct task_struct *p)
  808. {
  809. __resched_task(p, TIF_HRTICK_RESCHED);
  810. }
  811. static inline void resched_rq(struct rq *rq)
  812. {
  813. unsigned long flags;
  814. spin_lock_irqsave(&rq->lock, flags);
  815. resched_task(rq->curr);
  816. spin_unlock_irqrestore(&rq->lock, flags);
  817. }
  818. enum {
  819. HRTICK_SET, /* re-programm hrtick_timer */
  820. HRTICK_RESET, /* not a new slice */
  821. HRTICK_BLOCK, /* stop hrtick operations */
  822. };
  823. /*
  824. * Use hrtick when:
  825. * - enabled by features
  826. * - hrtimer is actually high res
  827. */
  828. static inline int hrtick_enabled(struct rq *rq)
  829. {
  830. if (!sched_feat(HRTICK))
  831. return 0;
  832. if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
  833. return 0;
  834. return hrtimer_is_hres_active(&rq->hrtick_timer);
  835. }
  836. /*
  837. * Called to set the hrtick timer state.
  838. *
  839. * called with rq->lock held and irqs disabled
  840. */
  841. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  842. {
  843. assert_spin_locked(&rq->lock);
  844. /*
  845. * preempt at: now + delay
  846. */
  847. rq->hrtick_expire =
  848. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  849. /*
  850. * indicate we need to program the timer
  851. */
  852. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  853. if (reset)
  854. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  855. /*
  856. * New slices are called from the schedule path and don't need a
  857. * forced reschedule.
  858. */
  859. if (reset)
  860. resched_hrt(rq->curr);
  861. }
  862. static void hrtick_clear(struct rq *rq)
  863. {
  864. if (hrtimer_active(&rq->hrtick_timer))
  865. hrtimer_cancel(&rq->hrtick_timer);
  866. }
  867. /*
  868. * Update the timer from the possible pending state.
  869. */
  870. static void hrtick_set(struct rq *rq)
  871. {
  872. ktime_t time;
  873. int set, reset;
  874. unsigned long flags;
  875. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  876. spin_lock_irqsave(&rq->lock, flags);
  877. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  878. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  879. time = rq->hrtick_expire;
  880. clear_thread_flag(TIF_HRTICK_RESCHED);
  881. spin_unlock_irqrestore(&rq->lock, flags);
  882. if (set) {
  883. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  884. if (reset && !hrtimer_active(&rq->hrtick_timer))
  885. resched_rq(rq);
  886. } else
  887. hrtick_clear(rq);
  888. }
  889. /*
  890. * High-resolution timer tick.
  891. * Runs from hardirq context with interrupts disabled.
  892. */
  893. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  894. {
  895. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  896. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  897. spin_lock(&rq->lock);
  898. update_rq_clock(rq);
  899. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  900. spin_unlock(&rq->lock);
  901. return HRTIMER_NORESTART;
  902. }
  903. #ifdef CONFIG_SMP
  904. static void hotplug_hrtick_disable(int cpu)
  905. {
  906. struct rq *rq = cpu_rq(cpu);
  907. unsigned long flags;
  908. spin_lock_irqsave(&rq->lock, flags);
  909. rq->hrtick_flags = 0;
  910. __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  911. spin_unlock_irqrestore(&rq->lock, flags);
  912. hrtick_clear(rq);
  913. }
  914. static void hotplug_hrtick_enable(int cpu)
  915. {
  916. struct rq *rq = cpu_rq(cpu);
  917. unsigned long flags;
  918. spin_lock_irqsave(&rq->lock, flags);
  919. __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  920. spin_unlock_irqrestore(&rq->lock, flags);
  921. }
  922. static int
  923. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  924. {
  925. int cpu = (int)(long)hcpu;
  926. switch (action) {
  927. case CPU_UP_CANCELED:
  928. case CPU_UP_CANCELED_FROZEN:
  929. case CPU_DOWN_PREPARE:
  930. case CPU_DOWN_PREPARE_FROZEN:
  931. case CPU_DEAD:
  932. case CPU_DEAD_FROZEN:
  933. hotplug_hrtick_disable(cpu);
  934. return NOTIFY_OK;
  935. case CPU_UP_PREPARE:
  936. case CPU_UP_PREPARE_FROZEN:
  937. case CPU_DOWN_FAILED:
  938. case CPU_DOWN_FAILED_FROZEN:
  939. case CPU_ONLINE:
  940. case CPU_ONLINE_FROZEN:
  941. hotplug_hrtick_enable(cpu);
  942. return NOTIFY_OK;
  943. }
  944. return NOTIFY_DONE;
  945. }
  946. static void init_hrtick(void)
  947. {
  948. hotcpu_notifier(hotplug_hrtick, 0);
  949. }
  950. #endif /* CONFIG_SMP */
  951. static void init_rq_hrtick(struct rq *rq)
  952. {
  953. rq->hrtick_flags = 0;
  954. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  955. rq->hrtick_timer.function = hrtick;
  956. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  957. }
  958. void hrtick_resched(void)
  959. {
  960. struct rq *rq;
  961. unsigned long flags;
  962. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  963. return;
  964. local_irq_save(flags);
  965. rq = cpu_rq(smp_processor_id());
  966. hrtick_set(rq);
  967. local_irq_restore(flags);
  968. }
  969. #else
  970. static inline void hrtick_clear(struct rq *rq)
  971. {
  972. }
  973. static inline void hrtick_set(struct rq *rq)
  974. {
  975. }
  976. static inline void init_rq_hrtick(struct rq *rq)
  977. {
  978. }
  979. void hrtick_resched(void)
  980. {
  981. }
  982. static inline void init_hrtick(void)
  983. {
  984. }
  985. #endif
  986. /*
  987. * resched_task - mark a task 'to be rescheduled now'.
  988. *
  989. * On UP this means the setting of the need_resched flag, on SMP it
  990. * might also involve a cross-CPU call to trigger the scheduler on
  991. * the target CPU.
  992. */
  993. #ifdef CONFIG_SMP
  994. #ifndef tsk_is_polling
  995. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  996. #endif
  997. static void __resched_task(struct task_struct *p, int tif_bit)
  998. {
  999. int cpu;
  1000. assert_spin_locked(&task_rq(p)->lock);
  1001. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  1002. return;
  1003. set_tsk_thread_flag(p, tif_bit);
  1004. cpu = task_cpu(p);
  1005. if (cpu == smp_processor_id())
  1006. return;
  1007. /* NEED_RESCHED must be visible before we test polling */
  1008. smp_mb();
  1009. if (!tsk_is_polling(p))
  1010. smp_send_reschedule(cpu);
  1011. }
  1012. static void resched_cpu(int cpu)
  1013. {
  1014. struct rq *rq = cpu_rq(cpu);
  1015. unsigned long flags;
  1016. if (!spin_trylock_irqsave(&rq->lock, flags))
  1017. return;
  1018. resched_task(cpu_curr(cpu));
  1019. spin_unlock_irqrestore(&rq->lock, flags);
  1020. }
  1021. #ifdef CONFIG_NO_HZ
  1022. /*
  1023. * When add_timer_on() enqueues a timer into the timer wheel of an
  1024. * idle CPU then this timer might expire before the next timer event
  1025. * which is scheduled to wake up that CPU. In case of a completely
  1026. * idle system the next event might even be infinite time into the
  1027. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1028. * leaves the inner idle loop so the newly added timer is taken into
  1029. * account when the CPU goes back to idle and evaluates the timer
  1030. * wheel for the next timer event.
  1031. */
  1032. void wake_up_idle_cpu(int cpu)
  1033. {
  1034. struct rq *rq = cpu_rq(cpu);
  1035. if (cpu == smp_processor_id())
  1036. return;
  1037. /*
  1038. * This is safe, as this function is called with the timer
  1039. * wheel base lock of (cpu) held. When the CPU is on the way
  1040. * to idle and has not yet set rq->curr to idle then it will
  1041. * be serialized on the timer wheel base lock and take the new
  1042. * timer into account automatically.
  1043. */
  1044. if (rq->curr != rq->idle)
  1045. return;
  1046. /*
  1047. * We can set TIF_RESCHED on the idle task of the other CPU
  1048. * lockless. The worst case is that the other CPU runs the
  1049. * idle task through an additional NOOP schedule()
  1050. */
  1051. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1052. /* NEED_RESCHED must be visible before we test polling */
  1053. smp_mb();
  1054. if (!tsk_is_polling(rq->idle))
  1055. smp_send_reschedule(cpu);
  1056. }
  1057. #endif /* CONFIG_NO_HZ */
  1058. #else /* !CONFIG_SMP */
  1059. static void __resched_task(struct task_struct *p, int tif_bit)
  1060. {
  1061. assert_spin_locked(&task_rq(p)->lock);
  1062. set_tsk_thread_flag(p, tif_bit);
  1063. }
  1064. #endif /* CONFIG_SMP */
  1065. #if BITS_PER_LONG == 32
  1066. # define WMULT_CONST (~0UL)
  1067. #else
  1068. # define WMULT_CONST (1UL << 32)
  1069. #endif
  1070. #define WMULT_SHIFT 32
  1071. /*
  1072. * Shift right and round:
  1073. */
  1074. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1075. /*
  1076. * delta *= weight / lw
  1077. */
  1078. static unsigned long
  1079. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1080. struct load_weight *lw)
  1081. {
  1082. u64 tmp;
  1083. if (!lw->inv_weight) {
  1084. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1085. lw->inv_weight = 1;
  1086. else
  1087. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1088. / (lw->weight+1);
  1089. }
  1090. tmp = (u64)delta_exec * weight;
  1091. /*
  1092. * Check whether we'd overflow the 64-bit multiplication:
  1093. */
  1094. if (unlikely(tmp > WMULT_CONST))
  1095. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1096. WMULT_SHIFT/2);
  1097. else
  1098. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1099. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1100. }
  1101. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1102. {
  1103. lw->weight += inc;
  1104. lw->inv_weight = 0;
  1105. }
  1106. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1107. {
  1108. lw->weight -= dec;
  1109. lw->inv_weight = 0;
  1110. }
  1111. /*
  1112. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1113. * of tasks with abnormal "nice" values across CPUs the contribution that
  1114. * each task makes to its run queue's load is weighted according to its
  1115. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1116. * scaled version of the new time slice allocation that they receive on time
  1117. * slice expiry etc.
  1118. */
  1119. #define WEIGHT_IDLEPRIO 2
  1120. #define WMULT_IDLEPRIO (1 << 31)
  1121. /*
  1122. * Nice levels are multiplicative, with a gentle 10% change for every
  1123. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1124. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1125. * that remained on nice 0.
  1126. *
  1127. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1128. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1129. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1130. * If a task goes up by ~10% and another task goes down by ~10% then
  1131. * the relative distance between them is ~25%.)
  1132. */
  1133. static const int prio_to_weight[40] = {
  1134. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1135. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1136. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1137. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1138. /* 0 */ 1024, 820, 655, 526, 423,
  1139. /* 5 */ 335, 272, 215, 172, 137,
  1140. /* 10 */ 110, 87, 70, 56, 45,
  1141. /* 15 */ 36, 29, 23, 18, 15,
  1142. };
  1143. /*
  1144. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1145. *
  1146. * In cases where the weight does not change often, we can use the
  1147. * precalculated inverse to speed up arithmetics by turning divisions
  1148. * into multiplications:
  1149. */
  1150. static const u32 prio_to_wmult[40] = {
  1151. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1152. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1153. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1154. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1155. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1156. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1157. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1158. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1159. };
  1160. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1161. /*
  1162. * runqueue iterator, to support SMP load-balancing between different
  1163. * scheduling classes, without having to expose their internal data
  1164. * structures to the load-balancing proper:
  1165. */
  1166. struct rq_iterator {
  1167. void *arg;
  1168. struct task_struct *(*start)(void *);
  1169. struct task_struct *(*next)(void *);
  1170. };
  1171. #ifdef CONFIG_SMP
  1172. static unsigned long
  1173. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1174. unsigned long max_load_move, struct sched_domain *sd,
  1175. enum cpu_idle_type idle, int *all_pinned,
  1176. int *this_best_prio, struct rq_iterator *iterator);
  1177. static int
  1178. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1179. struct sched_domain *sd, enum cpu_idle_type idle,
  1180. struct rq_iterator *iterator);
  1181. #endif
  1182. #ifdef CONFIG_CGROUP_CPUACCT
  1183. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1184. #else
  1185. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1186. #endif
  1187. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1188. {
  1189. update_load_add(&rq->load, load);
  1190. }
  1191. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1192. {
  1193. update_load_sub(&rq->load, load);
  1194. }
  1195. #ifdef CONFIG_SMP
  1196. static unsigned long source_load(int cpu, int type);
  1197. static unsigned long target_load(int cpu, int type);
  1198. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1199. static unsigned long cpu_avg_load_per_task(int cpu)
  1200. {
  1201. struct rq *rq = cpu_rq(cpu);
  1202. if (rq->nr_running)
  1203. rq->avg_load_per_task = rq->load.weight / rq->nr_running;
  1204. return rq->avg_load_per_task;
  1205. }
  1206. #ifdef CONFIG_FAIR_GROUP_SCHED
  1207. typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
  1208. /*
  1209. * Iterate the full tree, calling @down when first entering a node and @up when
  1210. * leaving it for the final time.
  1211. */
  1212. static void
  1213. walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
  1214. {
  1215. struct task_group *parent, *child;
  1216. rcu_read_lock();
  1217. parent = &root_task_group;
  1218. down:
  1219. (*down)(parent, cpu, sd);
  1220. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1221. parent = child;
  1222. goto down;
  1223. up:
  1224. continue;
  1225. }
  1226. (*up)(parent, cpu, sd);
  1227. child = parent;
  1228. parent = parent->parent;
  1229. if (parent)
  1230. goto up;
  1231. rcu_read_unlock();
  1232. }
  1233. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1234. /*
  1235. * Calculate and set the cpu's group shares.
  1236. */
  1237. static void
  1238. __update_group_shares_cpu(struct task_group *tg, int cpu,
  1239. unsigned long sd_shares, unsigned long sd_rq_weight)
  1240. {
  1241. int boost = 0;
  1242. unsigned long shares;
  1243. unsigned long rq_weight;
  1244. if (!tg->se[cpu])
  1245. return;
  1246. rq_weight = tg->cfs_rq[cpu]->load.weight;
  1247. /*
  1248. * If there are currently no tasks on the cpu pretend there is one of
  1249. * average load so that when a new task gets to run here it will not
  1250. * get delayed by group starvation.
  1251. */
  1252. if (!rq_weight) {
  1253. boost = 1;
  1254. rq_weight = NICE_0_LOAD;
  1255. }
  1256. if (unlikely(rq_weight > sd_rq_weight))
  1257. rq_weight = sd_rq_weight;
  1258. /*
  1259. * \Sum shares * rq_weight
  1260. * shares = -----------------------
  1261. * \Sum rq_weight
  1262. *
  1263. */
  1264. shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
  1265. /*
  1266. * record the actual number of shares, not the boosted amount.
  1267. */
  1268. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1269. if (shares < MIN_SHARES)
  1270. shares = MIN_SHARES;
  1271. else if (shares > MAX_SHARES)
  1272. shares = MAX_SHARES;
  1273. __set_se_shares(tg->se[cpu], shares);
  1274. }
  1275. /*
  1276. * Re-compute the task group their per cpu shares over the given domain.
  1277. * This needs to be done in a bottom-up fashion because the rq weight of a
  1278. * parent group depends on the shares of its child groups.
  1279. */
  1280. static void
  1281. tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
  1282. {
  1283. unsigned long rq_weight = 0;
  1284. unsigned long shares = 0;
  1285. int i;
  1286. for_each_cpu_mask(i, sd->span) {
  1287. rq_weight += tg->cfs_rq[i]->load.weight;
  1288. shares += tg->cfs_rq[i]->shares;
  1289. }
  1290. if ((!shares && rq_weight) || shares > tg->shares)
  1291. shares = tg->shares;
  1292. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1293. shares = tg->shares;
  1294. for_each_cpu_mask(i, sd->span) {
  1295. struct rq *rq = cpu_rq(i);
  1296. unsigned long flags;
  1297. spin_lock_irqsave(&rq->lock, flags);
  1298. __update_group_shares_cpu(tg, i, shares, rq_weight);
  1299. spin_unlock_irqrestore(&rq->lock, flags);
  1300. }
  1301. }
  1302. /*
  1303. * Compute the cpu's hierarchical load factor for each task group.
  1304. * This needs to be done in a top-down fashion because the load of a child
  1305. * group is a fraction of its parents load.
  1306. */
  1307. static void
  1308. tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
  1309. {
  1310. unsigned long load;
  1311. if (!tg->parent) {
  1312. load = cpu_rq(cpu)->load.weight;
  1313. } else {
  1314. load = tg->parent->cfs_rq[cpu]->h_load;
  1315. load *= tg->cfs_rq[cpu]->shares;
  1316. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1317. }
  1318. tg->cfs_rq[cpu]->h_load = load;
  1319. }
  1320. static void
  1321. tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
  1322. {
  1323. }
  1324. static void update_shares(struct sched_domain *sd)
  1325. {
  1326. walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
  1327. }
  1328. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1329. {
  1330. spin_unlock(&rq->lock);
  1331. update_shares(sd);
  1332. spin_lock(&rq->lock);
  1333. }
  1334. static void update_h_load(int cpu)
  1335. {
  1336. walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
  1337. }
  1338. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1339. {
  1340. cfs_rq->shares = shares;
  1341. }
  1342. #else
  1343. static inline void update_shares(struct sched_domain *sd)
  1344. {
  1345. }
  1346. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1347. {
  1348. }
  1349. #endif
  1350. #endif
  1351. #include "sched_stats.h"
  1352. #include "sched_idletask.c"
  1353. #include "sched_fair.c"
  1354. #include "sched_rt.c"
  1355. #ifdef CONFIG_SCHED_DEBUG
  1356. # include "sched_debug.c"
  1357. #endif
  1358. #define sched_class_highest (&rt_sched_class)
  1359. #define for_each_class(class) \
  1360. for (class = sched_class_highest; class; class = class->next)
  1361. static void inc_nr_running(struct rq *rq)
  1362. {
  1363. rq->nr_running++;
  1364. }
  1365. static void dec_nr_running(struct rq *rq)
  1366. {
  1367. rq->nr_running--;
  1368. }
  1369. static void set_load_weight(struct task_struct *p)
  1370. {
  1371. if (task_has_rt_policy(p)) {
  1372. p->se.load.weight = prio_to_weight[0] * 2;
  1373. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1374. return;
  1375. }
  1376. /*
  1377. * SCHED_IDLE tasks get minimal weight:
  1378. */
  1379. if (p->policy == SCHED_IDLE) {
  1380. p->se.load.weight = WEIGHT_IDLEPRIO;
  1381. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1382. return;
  1383. }
  1384. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1385. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1386. }
  1387. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1388. {
  1389. sched_info_queued(p);
  1390. p->sched_class->enqueue_task(rq, p, wakeup);
  1391. p->se.on_rq = 1;
  1392. }
  1393. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1394. {
  1395. p->sched_class->dequeue_task(rq, p, sleep);
  1396. p->se.on_rq = 0;
  1397. }
  1398. /*
  1399. * __normal_prio - return the priority that is based on the static prio
  1400. */
  1401. static inline int __normal_prio(struct task_struct *p)
  1402. {
  1403. return p->static_prio;
  1404. }
  1405. /*
  1406. * Calculate the expected normal priority: i.e. priority
  1407. * without taking RT-inheritance into account. Might be
  1408. * boosted by interactivity modifiers. Changes upon fork,
  1409. * setprio syscalls, and whenever the interactivity
  1410. * estimator recalculates.
  1411. */
  1412. static inline int normal_prio(struct task_struct *p)
  1413. {
  1414. int prio;
  1415. if (task_has_rt_policy(p))
  1416. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1417. else
  1418. prio = __normal_prio(p);
  1419. return prio;
  1420. }
  1421. /*
  1422. * Calculate the current priority, i.e. the priority
  1423. * taken into account by the scheduler. This value might
  1424. * be boosted by RT tasks, or might be boosted by
  1425. * interactivity modifiers. Will be RT if the task got
  1426. * RT-boosted. If not then it returns p->normal_prio.
  1427. */
  1428. static int effective_prio(struct task_struct *p)
  1429. {
  1430. p->normal_prio = normal_prio(p);
  1431. /*
  1432. * If we are RT tasks or we were boosted to RT priority,
  1433. * keep the priority unchanged. Otherwise, update priority
  1434. * to the normal priority:
  1435. */
  1436. if (!rt_prio(p->prio))
  1437. return p->normal_prio;
  1438. return p->prio;
  1439. }
  1440. /*
  1441. * activate_task - move a task to the runqueue.
  1442. */
  1443. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1444. {
  1445. if (task_contributes_to_load(p))
  1446. rq->nr_uninterruptible--;
  1447. enqueue_task(rq, p, wakeup);
  1448. inc_nr_running(rq);
  1449. }
  1450. /*
  1451. * deactivate_task - remove a task from the runqueue.
  1452. */
  1453. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1454. {
  1455. if (task_contributes_to_load(p))
  1456. rq->nr_uninterruptible++;
  1457. dequeue_task(rq, p, sleep);
  1458. dec_nr_running(rq);
  1459. }
  1460. /**
  1461. * task_curr - is this task currently executing on a CPU?
  1462. * @p: the task in question.
  1463. */
  1464. inline int task_curr(const struct task_struct *p)
  1465. {
  1466. return cpu_curr(task_cpu(p)) == p;
  1467. }
  1468. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1469. {
  1470. set_task_rq(p, cpu);
  1471. #ifdef CONFIG_SMP
  1472. /*
  1473. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1474. * successfuly executed on another CPU. We must ensure that updates of
  1475. * per-task data have been completed by this moment.
  1476. */
  1477. smp_wmb();
  1478. task_thread_info(p)->cpu = cpu;
  1479. #endif
  1480. }
  1481. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1482. const struct sched_class *prev_class,
  1483. int oldprio, int running)
  1484. {
  1485. if (prev_class != p->sched_class) {
  1486. if (prev_class->switched_from)
  1487. prev_class->switched_from(rq, p, running);
  1488. p->sched_class->switched_to(rq, p, running);
  1489. } else
  1490. p->sched_class->prio_changed(rq, p, oldprio, running);
  1491. }
  1492. #ifdef CONFIG_SMP
  1493. /* Used instead of source_load when we know the type == 0 */
  1494. static unsigned long weighted_cpuload(const int cpu)
  1495. {
  1496. return cpu_rq(cpu)->load.weight;
  1497. }
  1498. /*
  1499. * Is this task likely cache-hot:
  1500. */
  1501. static int
  1502. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1503. {
  1504. s64 delta;
  1505. /*
  1506. * Buddy candidates are cache hot:
  1507. */
  1508. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1509. return 1;
  1510. if (p->sched_class != &fair_sched_class)
  1511. return 0;
  1512. if (sysctl_sched_migration_cost == -1)
  1513. return 1;
  1514. if (sysctl_sched_migration_cost == 0)
  1515. return 0;
  1516. delta = now - p->se.exec_start;
  1517. return delta < (s64)sysctl_sched_migration_cost;
  1518. }
  1519. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1520. {
  1521. int old_cpu = task_cpu(p);
  1522. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1523. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1524. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1525. u64 clock_offset;
  1526. clock_offset = old_rq->clock - new_rq->clock;
  1527. #ifdef CONFIG_SCHEDSTATS
  1528. if (p->se.wait_start)
  1529. p->se.wait_start -= clock_offset;
  1530. if (p->se.sleep_start)
  1531. p->se.sleep_start -= clock_offset;
  1532. if (p->se.block_start)
  1533. p->se.block_start -= clock_offset;
  1534. if (old_cpu != new_cpu) {
  1535. schedstat_inc(p, se.nr_migrations);
  1536. if (task_hot(p, old_rq->clock, NULL))
  1537. schedstat_inc(p, se.nr_forced2_migrations);
  1538. }
  1539. #endif
  1540. p->se.vruntime -= old_cfsrq->min_vruntime -
  1541. new_cfsrq->min_vruntime;
  1542. __set_task_cpu(p, new_cpu);
  1543. }
  1544. struct migration_req {
  1545. struct list_head list;
  1546. struct task_struct *task;
  1547. int dest_cpu;
  1548. struct completion done;
  1549. };
  1550. /*
  1551. * The task's runqueue lock must be held.
  1552. * Returns true if you have to wait for migration thread.
  1553. */
  1554. static int
  1555. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1556. {
  1557. struct rq *rq = task_rq(p);
  1558. /*
  1559. * If the task is not on a runqueue (and not running), then
  1560. * it is sufficient to simply update the task's cpu field.
  1561. */
  1562. if (!p->se.on_rq && !task_running(rq, p)) {
  1563. set_task_cpu(p, dest_cpu);
  1564. return 0;
  1565. }
  1566. init_completion(&req->done);
  1567. req->task = p;
  1568. req->dest_cpu = dest_cpu;
  1569. list_add(&req->list, &rq->migration_queue);
  1570. return 1;
  1571. }
  1572. /*
  1573. * wait_task_inactive - wait for a thread to unschedule.
  1574. *
  1575. * The caller must ensure that the task *will* unschedule sometime soon,
  1576. * else this function might spin for a *long* time. This function can't
  1577. * be called with interrupts off, or it may introduce deadlock with
  1578. * smp_call_function() if an IPI is sent by the same process we are
  1579. * waiting to become inactive.
  1580. */
  1581. void wait_task_inactive(struct task_struct *p)
  1582. {
  1583. unsigned long flags;
  1584. int running, on_rq;
  1585. struct rq *rq;
  1586. for (;;) {
  1587. /*
  1588. * We do the initial early heuristics without holding
  1589. * any task-queue locks at all. We'll only try to get
  1590. * the runqueue lock when things look like they will
  1591. * work out!
  1592. */
  1593. rq = task_rq(p);
  1594. /*
  1595. * If the task is actively running on another CPU
  1596. * still, just relax and busy-wait without holding
  1597. * any locks.
  1598. *
  1599. * NOTE! Since we don't hold any locks, it's not
  1600. * even sure that "rq" stays as the right runqueue!
  1601. * But we don't care, since "task_running()" will
  1602. * return false if the runqueue has changed and p
  1603. * is actually now running somewhere else!
  1604. */
  1605. while (task_running(rq, p))
  1606. cpu_relax();
  1607. /*
  1608. * Ok, time to look more closely! We need the rq
  1609. * lock now, to be *sure*. If we're wrong, we'll
  1610. * just go back and repeat.
  1611. */
  1612. rq = task_rq_lock(p, &flags);
  1613. running = task_running(rq, p);
  1614. on_rq = p->se.on_rq;
  1615. task_rq_unlock(rq, &flags);
  1616. /*
  1617. * Was it really running after all now that we
  1618. * checked with the proper locks actually held?
  1619. *
  1620. * Oops. Go back and try again..
  1621. */
  1622. if (unlikely(running)) {
  1623. cpu_relax();
  1624. continue;
  1625. }
  1626. /*
  1627. * It's not enough that it's not actively running,
  1628. * it must be off the runqueue _entirely_, and not
  1629. * preempted!
  1630. *
  1631. * So if it wa still runnable (but just not actively
  1632. * running right now), it's preempted, and we should
  1633. * yield - it could be a while.
  1634. */
  1635. if (unlikely(on_rq)) {
  1636. schedule_timeout_uninterruptible(1);
  1637. continue;
  1638. }
  1639. /*
  1640. * Ahh, all good. It wasn't running, and it wasn't
  1641. * runnable, which means that it will never become
  1642. * running in the future either. We're all done!
  1643. */
  1644. break;
  1645. }
  1646. }
  1647. /***
  1648. * kick_process - kick a running thread to enter/exit the kernel
  1649. * @p: the to-be-kicked thread
  1650. *
  1651. * Cause a process which is running on another CPU to enter
  1652. * kernel-mode, without any delay. (to get signals handled.)
  1653. *
  1654. * NOTE: this function doesnt have to take the runqueue lock,
  1655. * because all it wants to ensure is that the remote task enters
  1656. * the kernel. If the IPI races and the task has been migrated
  1657. * to another CPU then no harm is done and the purpose has been
  1658. * achieved as well.
  1659. */
  1660. void kick_process(struct task_struct *p)
  1661. {
  1662. int cpu;
  1663. preempt_disable();
  1664. cpu = task_cpu(p);
  1665. if ((cpu != smp_processor_id()) && task_curr(p))
  1666. smp_send_reschedule(cpu);
  1667. preempt_enable();
  1668. }
  1669. /*
  1670. * Return a low guess at the load of a migration-source cpu weighted
  1671. * according to the scheduling class and "nice" value.
  1672. *
  1673. * We want to under-estimate the load of migration sources, to
  1674. * balance conservatively.
  1675. */
  1676. static unsigned long source_load(int cpu, int type)
  1677. {
  1678. struct rq *rq = cpu_rq(cpu);
  1679. unsigned long total = weighted_cpuload(cpu);
  1680. if (type == 0)
  1681. return total;
  1682. return min(rq->cpu_load[type-1], total);
  1683. }
  1684. /*
  1685. * Return a high guess at the load of a migration-target cpu weighted
  1686. * according to the scheduling class and "nice" value.
  1687. */
  1688. static unsigned long target_load(int cpu, int type)
  1689. {
  1690. struct rq *rq = cpu_rq(cpu);
  1691. unsigned long total = weighted_cpuload(cpu);
  1692. if (type == 0)
  1693. return total;
  1694. return max(rq->cpu_load[type-1], total);
  1695. }
  1696. /*
  1697. * find_idlest_group finds and returns the least busy CPU group within the
  1698. * domain.
  1699. */
  1700. static struct sched_group *
  1701. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1702. {
  1703. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1704. unsigned long min_load = ULONG_MAX, this_load = 0;
  1705. int load_idx = sd->forkexec_idx;
  1706. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1707. do {
  1708. unsigned long load, avg_load;
  1709. int local_group;
  1710. int i;
  1711. /* Skip over this group if it has no CPUs allowed */
  1712. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1713. continue;
  1714. local_group = cpu_isset(this_cpu, group->cpumask);
  1715. /* Tally up the load of all CPUs in the group */
  1716. avg_load = 0;
  1717. for_each_cpu_mask(i, group->cpumask) {
  1718. /* Bias balancing toward cpus of our domain */
  1719. if (local_group)
  1720. load = source_load(i, load_idx);
  1721. else
  1722. load = target_load(i, load_idx);
  1723. avg_load += load;
  1724. }
  1725. /* Adjust by relative CPU power of the group */
  1726. avg_load = sg_div_cpu_power(group,
  1727. avg_load * SCHED_LOAD_SCALE);
  1728. if (local_group) {
  1729. this_load = avg_load;
  1730. this = group;
  1731. } else if (avg_load < min_load) {
  1732. min_load = avg_load;
  1733. idlest = group;
  1734. }
  1735. } while (group = group->next, group != sd->groups);
  1736. if (!idlest || 100*this_load < imbalance*min_load)
  1737. return NULL;
  1738. return idlest;
  1739. }
  1740. /*
  1741. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1742. */
  1743. static int
  1744. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1745. cpumask_t *tmp)
  1746. {
  1747. unsigned long load, min_load = ULONG_MAX;
  1748. int idlest = -1;
  1749. int i;
  1750. /* Traverse only the allowed CPUs */
  1751. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1752. for_each_cpu_mask(i, *tmp) {
  1753. load = weighted_cpuload(i);
  1754. if (load < min_load || (load == min_load && i == this_cpu)) {
  1755. min_load = load;
  1756. idlest = i;
  1757. }
  1758. }
  1759. return idlest;
  1760. }
  1761. /*
  1762. * sched_balance_self: balance the current task (running on cpu) in domains
  1763. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1764. * SD_BALANCE_EXEC.
  1765. *
  1766. * Balance, ie. select the least loaded group.
  1767. *
  1768. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1769. *
  1770. * preempt must be disabled.
  1771. */
  1772. static int sched_balance_self(int cpu, int flag)
  1773. {
  1774. struct task_struct *t = current;
  1775. struct sched_domain *tmp, *sd = NULL;
  1776. for_each_domain(cpu, tmp) {
  1777. /*
  1778. * If power savings logic is enabled for a domain, stop there.
  1779. */
  1780. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1781. break;
  1782. if (tmp->flags & flag)
  1783. sd = tmp;
  1784. }
  1785. if (sd)
  1786. update_shares(sd);
  1787. while (sd) {
  1788. cpumask_t span, tmpmask;
  1789. struct sched_group *group;
  1790. int new_cpu, weight;
  1791. if (!(sd->flags & flag)) {
  1792. sd = sd->child;
  1793. continue;
  1794. }
  1795. span = sd->span;
  1796. group = find_idlest_group(sd, t, cpu);
  1797. if (!group) {
  1798. sd = sd->child;
  1799. continue;
  1800. }
  1801. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1802. if (new_cpu == -1 || new_cpu == cpu) {
  1803. /* Now try balancing at a lower domain level of cpu */
  1804. sd = sd->child;
  1805. continue;
  1806. }
  1807. /* Now try balancing at a lower domain level of new_cpu */
  1808. cpu = new_cpu;
  1809. sd = NULL;
  1810. weight = cpus_weight(span);
  1811. for_each_domain(cpu, tmp) {
  1812. if (weight <= cpus_weight(tmp->span))
  1813. break;
  1814. if (tmp->flags & flag)
  1815. sd = tmp;
  1816. }
  1817. /* while loop will break here if sd == NULL */
  1818. }
  1819. return cpu;
  1820. }
  1821. #endif /* CONFIG_SMP */
  1822. /***
  1823. * try_to_wake_up - wake up a thread
  1824. * @p: the to-be-woken-up thread
  1825. * @state: the mask of task states that can be woken
  1826. * @sync: do a synchronous wakeup?
  1827. *
  1828. * Put it on the run-queue if it's not already there. The "current"
  1829. * thread is always on the run-queue (except when the actual
  1830. * re-schedule is in progress), and as such you're allowed to do
  1831. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1832. * runnable without the overhead of this.
  1833. *
  1834. * returns failure only if the task is already active.
  1835. */
  1836. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1837. {
  1838. int cpu, orig_cpu, this_cpu, success = 0;
  1839. unsigned long flags;
  1840. long old_state;
  1841. struct rq *rq;
  1842. if (!sched_feat(SYNC_WAKEUPS))
  1843. sync = 0;
  1844. smp_wmb();
  1845. rq = task_rq_lock(p, &flags);
  1846. old_state = p->state;
  1847. if (!(old_state & state))
  1848. goto out;
  1849. if (p->se.on_rq)
  1850. goto out_running;
  1851. cpu = task_cpu(p);
  1852. orig_cpu = cpu;
  1853. this_cpu = smp_processor_id();
  1854. #ifdef CONFIG_SMP
  1855. if (unlikely(task_running(rq, p)))
  1856. goto out_activate;
  1857. cpu = p->sched_class->select_task_rq(p, sync);
  1858. if (cpu != orig_cpu) {
  1859. set_task_cpu(p, cpu);
  1860. task_rq_unlock(rq, &flags);
  1861. /* might preempt at this point */
  1862. rq = task_rq_lock(p, &flags);
  1863. old_state = p->state;
  1864. if (!(old_state & state))
  1865. goto out;
  1866. if (p->se.on_rq)
  1867. goto out_running;
  1868. this_cpu = smp_processor_id();
  1869. cpu = task_cpu(p);
  1870. }
  1871. #ifdef CONFIG_SCHEDSTATS
  1872. schedstat_inc(rq, ttwu_count);
  1873. if (cpu == this_cpu)
  1874. schedstat_inc(rq, ttwu_local);
  1875. else {
  1876. struct sched_domain *sd;
  1877. for_each_domain(this_cpu, sd) {
  1878. if (cpu_isset(cpu, sd->span)) {
  1879. schedstat_inc(sd, ttwu_wake_remote);
  1880. break;
  1881. }
  1882. }
  1883. }
  1884. #endif /* CONFIG_SCHEDSTATS */
  1885. out_activate:
  1886. #endif /* CONFIG_SMP */
  1887. schedstat_inc(p, se.nr_wakeups);
  1888. if (sync)
  1889. schedstat_inc(p, se.nr_wakeups_sync);
  1890. if (orig_cpu != cpu)
  1891. schedstat_inc(p, se.nr_wakeups_migrate);
  1892. if (cpu == this_cpu)
  1893. schedstat_inc(p, se.nr_wakeups_local);
  1894. else
  1895. schedstat_inc(p, se.nr_wakeups_remote);
  1896. update_rq_clock(rq);
  1897. activate_task(rq, p, 1);
  1898. success = 1;
  1899. out_running:
  1900. check_preempt_curr(rq, p);
  1901. p->state = TASK_RUNNING;
  1902. #ifdef CONFIG_SMP
  1903. if (p->sched_class->task_wake_up)
  1904. p->sched_class->task_wake_up(rq, p);
  1905. #endif
  1906. out:
  1907. task_rq_unlock(rq, &flags);
  1908. return success;
  1909. }
  1910. int wake_up_process(struct task_struct *p)
  1911. {
  1912. return try_to_wake_up(p, TASK_ALL, 0);
  1913. }
  1914. EXPORT_SYMBOL(wake_up_process);
  1915. int wake_up_state(struct task_struct *p, unsigned int state)
  1916. {
  1917. return try_to_wake_up(p, state, 0);
  1918. }
  1919. /*
  1920. * Perform scheduler related setup for a newly forked process p.
  1921. * p is forked by current.
  1922. *
  1923. * __sched_fork() is basic setup used by init_idle() too:
  1924. */
  1925. static void __sched_fork(struct task_struct *p)
  1926. {
  1927. p->se.exec_start = 0;
  1928. p->se.sum_exec_runtime = 0;
  1929. p->se.prev_sum_exec_runtime = 0;
  1930. p->se.last_wakeup = 0;
  1931. p->se.avg_overlap = 0;
  1932. #ifdef CONFIG_SCHEDSTATS
  1933. p->se.wait_start = 0;
  1934. p->se.sum_sleep_runtime = 0;
  1935. p->se.sleep_start = 0;
  1936. p->se.block_start = 0;
  1937. p->se.sleep_max = 0;
  1938. p->se.block_max = 0;
  1939. p->se.exec_max = 0;
  1940. p->se.slice_max = 0;
  1941. p->se.wait_max = 0;
  1942. #endif
  1943. INIT_LIST_HEAD(&p->rt.run_list);
  1944. p->se.on_rq = 0;
  1945. INIT_LIST_HEAD(&p->se.group_node);
  1946. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1947. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1948. #endif
  1949. /*
  1950. * We mark the process as running here, but have not actually
  1951. * inserted it onto the runqueue yet. This guarantees that
  1952. * nobody will actually run it, and a signal or other external
  1953. * event cannot wake it up and insert it on the runqueue either.
  1954. */
  1955. p->state = TASK_RUNNING;
  1956. }
  1957. /*
  1958. * fork()/clone()-time setup:
  1959. */
  1960. void sched_fork(struct task_struct *p, int clone_flags)
  1961. {
  1962. int cpu = get_cpu();
  1963. __sched_fork(p);
  1964. #ifdef CONFIG_SMP
  1965. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1966. #endif
  1967. set_task_cpu(p, cpu);
  1968. /*
  1969. * Make sure we do not leak PI boosting priority to the child:
  1970. */
  1971. p->prio = current->normal_prio;
  1972. if (!rt_prio(p->prio))
  1973. p->sched_class = &fair_sched_class;
  1974. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1975. if (likely(sched_info_on()))
  1976. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1977. #endif
  1978. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1979. p->oncpu = 0;
  1980. #endif
  1981. #ifdef CONFIG_PREEMPT
  1982. /* Want to start with kernel preemption disabled. */
  1983. task_thread_info(p)->preempt_count = 1;
  1984. #endif
  1985. put_cpu();
  1986. }
  1987. /*
  1988. * wake_up_new_task - wake up a newly created task for the first time.
  1989. *
  1990. * This function will do some initial scheduler statistics housekeeping
  1991. * that must be done for every newly created context, then puts the task
  1992. * on the runqueue and wakes it.
  1993. */
  1994. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1995. {
  1996. unsigned long flags;
  1997. struct rq *rq;
  1998. rq = task_rq_lock(p, &flags);
  1999. BUG_ON(p->state != TASK_RUNNING);
  2000. update_rq_clock(rq);
  2001. p->prio = effective_prio(p);
  2002. if (!p->sched_class->task_new || !current->se.on_rq) {
  2003. activate_task(rq, p, 0);
  2004. } else {
  2005. /*
  2006. * Let the scheduling class do new task startup
  2007. * management (if any):
  2008. */
  2009. p->sched_class->task_new(rq, p);
  2010. inc_nr_running(rq);
  2011. }
  2012. check_preempt_curr(rq, p);
  2013. #ifdef CONFIG_SMP
  2014. if (p->sched_class->task_wake_up)
  2015. p->sched_class->task_wake_up(rq, p);
  2016. #endif
  2017. task_rq_unlock(rq, &flags);
  2018. }
  2019. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2020. /**
  2021. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2022. * @notifier: notifier struct to register
  2023. */
  2024. void preempt_notifier_register(struct preempt_notifier *notifier)
  2025. {
  2026. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2027. }
  2028. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2029. /**
  2030. * preempt_notifier_unregister - no longer interested in preemption notifications
  2031. * @notifier: notifier struct to unregister
  2032. *
  2033. * This is safe to call from within a preemption notifier.
  2034. */
  2035. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2036. {
  2037. hlist_del(&notifier->link);
  2038. }
  2039. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2040. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2041. {
  2042. struct preempt_notifier *notifier;
  2043. struct hlist_node *node;
  2044. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2045. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2046. }
  2047. static void
  2048. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2049. struct task_struct *next)
  2050. {
  2051. struct preempt_notifier *notifier;
  2052. struct hlist_node *node;
  2053. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2054. notifier->ops->sched_out(notifier, next);
  2055. }
  2056. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2057. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2058. {
  2059. }
  2060. static void
  2061. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2062. struct task_struct *next)
  2063. {
  2064. }
  2065. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2066. /**
  2067. * prepare_task_switch - prepare to switch tasks
  2068. * @rq: the runqueue preparing to switch
  2069. * @prev: the current task that is being switched out
  2070. * @next: the task we are going to switch to.
  2071. *
  2072. * This is called with the rq lock held and interrupts off. It must
  2073. * be paired with a subsequent finish_task_switch after the context
  2074. * switch.
  2075. *
  2076. * prepare_task_switch sets up locking and calls architecture specific
  2077. * hooks.
  2078. */
  2079. static inline void
  2080. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2081. struct task_struct *next)
  2082. {
  2083. fire_sched_out_preempt_notifiers(prev, next);
  2084. prepare_lock_switch(rq, next);
  2085. prepare_arch_switch(next);
  2086. }
  2087. /**
  2088. * finish_task_switch - clean up after a task-switch
  2089. * @rq: runqueue associated with task-switch
  2090. * @prev: the thread we just switched away from.
  2091. *
  2092. * finish_task_switch must be called after the context switch, paired
  2093. * with a prepare_task_switch call before the context switch.
  2094. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2095. * and do any other architecture-specific cleanup actions.
  2096. *
  2097. * Note that we may have delayed dropping an mm in context_switch(). If
  2098. * so, we finish that here outside of the runqueue lock. (Doing it
  2099. * with the lock held can cause deadlocks; see schedule() for
  2100. * details.)
  2101. */
  2102. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2103. __releases(rq->lock)
  2104. {
  2105. struct mm_struct *mm = rq->prev_mm;
  2106. long prev_state;
  2107. rq->prev_mm = NULL;
  2108. /*
  2109. * A task struct has one reference for the use as "current".
  2110. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2111. * schedule one last time. The schedule call will never return, and
  2112. * the scheduled task must drop that reference.
  2113. * The test for TASK_DEAD must occur while the runqueue locks are
  2114. * still held, otherwise prev could be scheduled on another cpu, die
  2115. * there before we look at prev->state, and then the reference would
  2116. * be dropped twice.
  2117. * Manfred Spraul <manfred@colorfullife.com>
  2118. */
  2119. prev_state = prev->state;
  2120. finish_arch_switch(prev);
  2121. finish_lock_switch(rq, prev);
  2122. #ifdef CONFIG_SMP
  2123. if (current->sched_class->post_schedule)
  2124. current->sched_class->post_schedule(rq);
  2125. #endif
  2126. fire_sched_in_preempt_notifiers(current);
  2127. if (mm)
  2128. mmdrop(mm);
  2129. if (unlikely(prev_state == TASK_DEAD)) {
  2130. /*
  2131. * Remove function-return probe instances associated with this
  2132. * task and put them back on the free list.
  2133. */
  2134. kprobe_flush_task(prev);
  2135. put_task_struct(prev);
  2136. }
  2137. }
  2138. /**
  2139. * schedule_tail - first thing a freshly forked thread must call.
  2140. * @prev: the thread we just switched away from.
  2141. */
  2142. asmlinkage void schedule_tail(struct task_struct *prev)
  2143. __releases(rq->lock)
  2144. {
  2145. struct rq *rq = this_rq();
  2146. finish_task_switch(rq, prev);
  2147. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2148. /* In this case, finish_task_switch does not reenable preemption */
  2149. preempt_enable();
  2150. #endif
  2151. if (current->set_child_tid)
  2152. put_user(task_pid_vnr(current), current->set_child_tid);
  2153. }
  2154. /*
  2155. * context_switch - switch to the new MM and the new
  2156. * thread's register state.
  2157. */
  2158. static inline void
  2159. context_switch(struct rq *rq, struct task_struct *prev,
  2160. struct task_struct *next)
  2161. {
  2162. struct mm_struct *mm, *oldmm;
  2163. prepare_task_switch(rq, prev, next);
  2164. mm = next->mm;
  2165. oldmm = prev->active_mm;
  2166. /*
  2167. * For paravirt, this is coupled with an exit in switch_to to
  2168. * combine the page table reload and the switch backend into
  2169. * one hypercall.
  2170. */
  2171. arch_enter_lazy_cpu_mode();
  2172. if (unlikely(!mm)) {
  2173. next->active_mm = oldmm;
  2174. atomic_inc(&oldmm->mm_count);
  2175. enter_lazy_tlb(oldmm, next);
  2176. } else
  2177. switch_mm(oldmm, mm, next);
  2178. if (unlikely(!prev->mm)) {
  2179. prev->active_mm = NULL;
  2180. rq->prev_mm = oldmm;
  2181. }
  2182. /*
  2183. * Since the runqueue lock will be released by the next
  2184. * task (which is an invalid locking op but in the case
  2185. * of the scheduler it's an obvious special-case), so we
  2186. * do an early lockdep release here:
  2187. */
  2188. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2189. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2190. #endif
  2191. /* Here we just switch the register state and the stack. */
  2192. switch_to(prev, next, prev);
  2193. barrier();
  2194. /*
  2195. * this_rq must be evaluated again because prev may have moved
  2196. * CPUs since it called schedule(), thus the 'rq' on its stack
  2197. * frame will be invalid.
  2198. */
  2199. finish_task_switch(this_rq(), prev);
  2200. }
  2201. /*
  2202. * nr_running, nr_uninterruptible and nr_context_switches:
  2203. *
  2204. * externally visible scheduler statistics: current number of runnable
  2205. * threads, current number of uninterruptible-sleeping threads, total
  2206. * number of context switches performed since bootup.
  2207. */
  2208. unsigned long nr_running(void)
  2209. {
  2210. unsigned long i, sum = 0;
  2211. for_each_online_cpu(i)
  2212. sum += cpu_rq(i)->nr_running;
  2213. return sum;
  2214. }
  2215. unsigned long nr_uninterruptible(void)
  2216. {
  2217. unsigned long i, sum = 0;
  2218. for_each_possible_cpu(i)
  2219. sum += cpu_rq(i)->nr_uninterruptible;
  2220. /*
  2221. * Since we read the counters lockless, it might be slightly
  2222. * inaccurate. Do not allow it to go below zero though:
  2223. */
  2224. if (unlikely((long)sum < 0))
  2225. sum = 0;
  2226. return sum;
  2227. }
  2228. unsigned long long nr_context_switches(void)
  2229. {
  2230. int i;
  2231. unsigned long long sum = 0;
  2232. for_each_possible_cpu(i)
  2233. sum += cpu_rq(i)->nr_switches;
  2234. return sum;
  2235. }
  2236. unsigned long nr_iowait(void)
  2237. {
  2238. unsigned long i, sum = 0;
  2239. for_each_possible_cpu(i)
  2240. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2241. return sum;
  2242. }
  2243. unsigned long nr_active(void)
  2244. {
  2245. unsigned long i, running = 0, uninterruptible = 0;
  2246. for_each_online_cpu(i) {
  2247. running += cpu_rq(i)->nr_running;
  2248. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2249. }
  2250. if (unlikely((long)uninterruptible < 0))
  2251. uninterruptible = 0;
  2252. return running + uninterruptible;
  2253. }
  2254. /*
  2255. * Update rq->cpu_load[] statistics. This function is usually called every
  2256. * scheduler tick (TICK_NSEC).
  2257. */
  2258. static void update_cpu_load(struct rq *this_rq)
  2259. {
  2260. unsigned long this_load = this_rq->load.weight;
  2261. int i, scale;
  2262. this_rq->nr_load_updates++;
  2263. /* Update our load: */
  2264. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2265. unsigned long old_load, new_load;
  2266. /* scale is effectively 1 << i now, and >> i divides by scale */
  2267. old_load = this_rq->cpu_load[i];
  2268. new_load = this_load;
  2269. /*
  2270. * Round up the averaging division if load is increasing. This
  2271. * prevents us from getting stuck on 9 if the load is 10, for
  2272. * example.
  2273. */
  2274. if (new_load > old_load)
  2275. new_load += scale-1;
  2276. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2277. }
  2278. }
  2279. #ifdef CONFIG_SMP
  2280. /*
  2281. * double_rq_lock - safely lock two runqueues
  2282. *
  2283. * Note this does not disable interrupts like task_rq_lock,
  2284. * you need to do so manually before calling.
  2285. */
  2286. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2287. __acquires(rq1->lock)
  2288. __acquires(rq2->lock)
  2289. {
  2290. BUG_ON(!irqs_disabled());
  2291. if (rq1 == rq2) {
  2292. spin_lock(&rq1->lock);
  2293. __acquire(rq2->lock); /* Fake it out ;) */
  2294. } else {
  2295. if (rq1 < rq2) {
  2296. spin_lock(&rq1->lock);
  2297. spin_lock(&rq2->lock);
  2298. } else {
  2299. spin_lock(&rq2->lock);
  2300. spin_lock(&rq1->lock);
  2301. }
  2302. }
  2303. update_rq_clock(rq1);
  2304. update_rq_clock(rq2);
  2305. }
  2306. /*
  2307. * double_rq_unlock - safely unlock two runqueues
  2308. *
  2309. * Note this does not restore interrupts like task_rq_unlock,
  2310. * you need to do so manually after calling.
  2311. */
  2312. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2313. __releases(rq1->lock)
  2314. __releases(rq2->lock)
  2315. {
  2316. spin_unlock(&rq1->lock);
  2317. if (rq1 != rq2)
  2318. spin_unlock(&rq2->lock);
  2319. else
  2320. __release(rq2->lock);
  2321. }
  2322. /*
  2323. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2324. */
  2325. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2326. __releases(this_rq->lock)
  2327. __acquires(busiest->lock)
  2328. __acquires(this_rq->lock)
  2329. {
  2330. int ret = 0;
  2331. if (unlikely(!irqs_disabled())) {
  2332. /* printk() doesn't work good under rq->lock */
  2333. spin_unlock(&this_rq->lock);
  2334. BUG_ON(1);
  2335. }
  2336. if (unlikely(!spin_trylock(&busiest->lock))) {
  2337. if (busiest < this_rq) {
  2338. spin_unlock(&this_rq->lock);
  2339. spin_lock(&busiest->lock);
  2340. spin_lock(&this_rq->lock);
  2341. ret = 1;
  2342. } else
  2343. spin_lock(&busiest->lock);
  2344. }
  2345. return ret;
  2346. }
  2347. /*
  2348. * If dest_cpu is allowed for this process, migrate the task to it.
  2349. * This is accomplished by forcing the cpu_allowed mask to only
  2350. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2351. * the cpu_allowed mask is restored.
  2352. */
  2353. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2354. {
  2355. struct migration_req req;
  2356. unsigned long flags;
  2357. struct rq *rq;
  2358. rq = task_rq_lock(p, &flags);
  2359. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2360. || unlikely(cpu_is_offline(dest_cpu)))
  2361. goto out;
  2362. /* force the process onto the specified CPU */
  2363. if (migrate_task(p, dest_cpu, &req)) {
  2364. /* Need to wait for migration thread (might exit: take ref). */
  2365. struct task_struct *mt = rq->migration_thread;
  2366. get_task_struct(mt);
  2367. task_rq_unlock(rq, &flags);
  2368. wake_up_process(mt);
  2369. put_task_struct(mt);
  2370. wait_for_completion(&req.done);
  2371. return;
  2372. }
  2373. out:
  2374. task_rq_unlock(rq, &flags);
  2375. }
  2376. /*
  2377. * sched_exec - execve() is a valuable balancing opportunity, because at
  2378. * this point the task has the smallest effective memory and cache footprint.
  2379. */
  2380. void sched_exec(void)
  2381. {
  2382. int new_cpu, this_cpu = get_cpu();
  2383. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2384. put_cpu();
  2385. if (new_cpu != this_cpu)
  2386. sched_migrate_task(current, new_cpu);
  2387. }
  2388. /*
  2389. * pull_task - move a task from a remote runqueue to the local runqueue.
  2390. * Both runqueues must be locked.
  2391. */
  2392. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2393. struct rq *this_rq, int this_cpu)
  2394. {
  2395. deactivate_task(src_rq, p, 0);
  2396. set_task_cpu(p, this_cpu);
  2397. activate_task(this_rq, p, 0);
  2398. /*
  2399. * Note that idle threads have a prio of MAX_PRIO, for this test
  2400. * to be always true for them.
  2401. */
  2402. check_preempt_curr(this_rq, p);
  2403. }
  2404. /*
  2405. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2406. */
  2407. static
  2408. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2409. struct sched_domain *sd, enum cpu_idle_type idle,
  2410. int *all_pinned)
  2411. {
  2412. /*
  2413. * We do not migrate tasks that are:
  2414. * 1) running (obviously), or
  2415. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2416. * 3) are cache-hot on their current CPU.
  2417. */
  2418. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2419. schedstat_inc(p, se.nr_failed_migrations_affine);
  2420. return 0;
  2421. }
  2422. *all_pinned = 0;
  2423. if (task_running(rq, p)) {
  2424. schedstat_inc(p, se.nr_failed_migrations_running);
  2425. return 0;
  2426. }
  2427. /*
  2428. * Aggressive migration if:
  2429. * 1) task is cache cold, or
  2430. * 2) too many balance attempts have failed.
  2431. */
  2432. if (!task_hot(p, rq->clock, sd) ||
  2433. sd->nr_balance_failed > sd->cache_nice_tries) {
  2434. #ifdef CONFIG_SCHEDSTATS
  2435. if (task_hot(p, rq->clock, sd)) {
  2436. schedstat_inc(sd, lb_hot_gained[idle]);
  2437. schedstat_inc(p, se.nr_forced_migrations);
  2438. }
  2439. #endif
  2440. return 1;
  2441. }
  2442. if (task_hot(p, rq->clock, sd)) {
  2443. schedstat_inc(p, se.nr_failed_migrations_hot);
  2444. return 0;
  2445. }
  2446. return 1;
  2447. }
  2448. static unsigned long
  2449. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2450. unsigned long max_load_move, struct sched_domain *sd,
  2451. enum cpu_idle_type idle, int *all_pinned,
  2452. int *this_best_prio, struct rq_iterator *iterator)
  2453. {
  2454. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2455. struct task_struct *p;
  2456. long rem_load_move = max_load_move;
  2457. if (max_load_move == 0)
  2458. goto out;
  2459. pinned = 1;
  2460. /*
  2461. * Start the load-balancing iterator:
  2462. */
  2463. p = iterator->start(iterator->arg);
  2464. next:
  2465. if (!p || loops++ > sysctl_sched_nr_migrate)
  2466. goto out;
  2467. /*
  2468. * To help distribute high priority tasks across CPUs we don't
  2469. * skip a task if it will be the highest priority task (i.e. smallest
  2470. * prio value) on its new queue regardless of its load weight
  2471. */
  2472. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2473. SCHED_LOAD_SCALE_FUZZ;
  2474. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2475. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2476. p = iterator->next(iterator->arg);
  2477. goto next;
  2478. }
  2479. pull_task(busiest, p, this_rq, this_cpu);
  2480. pulled++;
  2481. rem_load_move -= p->se.load.weight;
  2482. /*
  2483. * We only want to steal up to the prescribed amount of weighted load.
  2484. */
  2485. if (rem_load_move > 0) {
  2486. if (p->prio < *this_best_prio)
  2487. *this_best_prio = p->prio;
  2488. p = iterator->next(iterator->arg);
  2489. goto next;
  2490. }
  2491. out:
  2492. /*
  2493. * Right now, this is one of only two places pull_task() is called,
  2494. * so we can safely collect pull_task() stats here rather than
  2495. * inside pull_task().
  2496. */
  2497. schedstat_add(sd, lb_gained[idle], pulled);
  2498. if (all_pinned)
  2499. *all_pinned = pinned;
  2500. return max_load_move - rem_load_move;
  2501. }
  2502. /*
  2503. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2504. * this_rq, as part of a balancing operation within domain "sd".
  2505. * Returns 1 if successful and 0 otherwise.
  2506. *
  2507. * Called with both runqueues locked.
  2508. */
  2509. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2510. unsigned long max_load_move,
  2511. struct sched_domain *sd, enum cpu_idle_type idle,
  2512. int *all_pinned)
  2513. {
  2514. const struct sched_class *class = sched_class_highest;
  2515. unsigned long total_load_moved = 0;
  2516. int this_best_prio = this_rq->curr->prio;
  2517. do {
  2518. total_load_moved +=
  2519. class->load_balance(this_rq, this_cpu, busiest,
  2520. max_load_move - total_load_moved,
  2521. sd, idle, all_pinned, &this_best_prio);
  2522. class = class->next;
  2523. } while (class && max_load_move > total_load_moved);
  2524. return total_load_moved > 0;
  2525. }
  2526. static int
  2527. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2528. struct sched_domain *sd, enum cpu_idle_type idle,
  2529. struct rq_iterator *iterator)
  2530. {
  2531. struct task_struct *p = iterator->start(iterator->arg);
  2532. int pinned = 0;
  2533. while (p) {
  2534. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2535. pull_task(busiest, p, this_rq, this_cpu);
  2536. /*
  2537. * Right now, this is only the second place pull_task()
  2538. * is called, so we can safely collect pull_task()
  2539. * stats here rather than inside pull_task().
  2540. */
  2541. schedstat_inc(sd, lb_gained[idle]);
  2542. return 1;
  2543. }
  2544. p = iterator->next(iterator->arg);
  2545. }
  2546. return 0;
  2547. }
  2548. /*
  2549. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2550. * part of active balancing operations within "domain".
  2551. * Returns 1 if successful and 0 otherwise.
  2552. *
  2553. * Called with both runqueues locked.
  2554. */
  2555. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2556. struct sched_domain *sd, enum cpu_idle_type idle)
  2557. {
  2558. const struct sched_class *class;
  2559. for (class = sched_class_highest; class; class = class->next)
  2560. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2561. return 1;
  2562. return 0;
  2563. }
  2564. /*
  2565. * find_busiest_group finds and returns the busiest CPU group within the
  2566. * domain. It calculates and returns the amount of weighted load which
  2567. * should be moved to restore balance via the imbalance parameter.
  2568. */
  2569. static struct sched_group *
  2570. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2571. unsigned long *imbalance, enum cpu_idle_type idle,
  2572. int *sd_idle, const cpumask_t *cpus, int *balance)
  2573. {
  2574. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2575. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2576. unsigned long max_pull;
  2577. unsigned long busiest_load_per_task, busiest_nr_running;
  2578. unsigned long this_load_per_task, this_nr_running;
  2579. int load_idx, group_imb = 0;
  2580. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2581. int power_savings_balance = 1;
  2582. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2583. unsigned long min_nr_running = ULONG_MAX;
  2584. struct sched_group *group_min = NULL, *group_leader = NULL;
  2585. #endif
  2586. max_load = this_load = total_load = total_pwr = 0;
  2587. busiest_load_per_task = busiest_nr_running = 0;
  2588. this_load_per_task = this_nr_running = 0;
  2589. if (idle == CPU_NOT_IDLE)
  2590. load_idx = sd->busy_idx;
  2591. else if (idle == CPU_NEWLY_IDLE)
  2592. load_idx = sd->newidle_idx;
  2593. else
  2594. load_idx = sd->idle_idx;
  2595. do {
  2596. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2597. int local_group;
  2598. int i;
  2599. int __group_imb = 0;
  2600. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2601. unsigned long sum_nr_running, sum_weighted_load;
  2602. unsigned long sum_avg_load_per_task;
  2603. unsigned long avg_load_per_task;
  2604. local_group = cpu_isset(this_cpu, group->cpumask);
  2605. if (local_group)
  2606. balance_cpu = first_cpu(group->cpumask);
  2607. /* Tally up the load of all CPUs in the group */
  2608. sum_weighted_load = sum_nr_running = avg_load = 0;
  2609. sum_avg_load_per_task = avg_load_per_task = 0;
  2610. max_cpu_load = 0;
  2611. min_cpu_load = ~0UL;
  2612. for_each_cpu_mask(i, group->cpumask) {
  2613. struct rq *rq;
  2614. if (!cpu_isset(i, *cpus))
  2615. continue;
  2616. rq = cpu_rq(i);
  2617. if (*sd_idle && rq->nr_running)
  2618. *sd_idle = 0;
  2619. /* Bias balancing toward cpus of our domain */
  2620. if (local_group) {
  2621. if (idle_cpu(i) && !first_idle_cpu) {
  2622. first_idle_cpu = 1;
  2623. balance_cpu = i;
  2624. }
  2625. load = target_load(i, load_idx);
  2626. } else {
  2627. load = source_load(i, load_idx);
  2628. if (load > max_cpu_load)
  2629. max_cpu_load = load;
  2630. if (min_cpu_load > load)
  2631. min_cpu_load = load;
  2632. }
  2633. avg_load += load;
  2634. sum_nr_running += rq->nr_running;
  2635. sum_weighted_load += weighted_cpuload(i);
  2636. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2637. }
  2638. /*
  2639. * First idle cpu or the first cpu(busiest) in this sched group
  2640. * is eligible for doing load balancing at this and above
  2641. * domains. In the newly idle case, we will allow all the cpu's
  2642. * to do the newly idle load balance.
  2643. */
  2644. if (idle != CPU_NEWLY_IDLE && local_group &&
  2645. balance_cpu != this_cpu && balance) {
  2646. *balance = 0;
  2647. goto ret;
  2648. }
  2649. total_load += avg_load;
  2650. total_pwr += group->__cpu_power;
  2651. /* Adjust by relative CPU power of the group */
  2652. avg_load = sg_div_cpu_power(group,
  2653. avg_load * SCHED_LOAD_SCALE);
  2654. /*
  2655. * Consider the group unbalanced when the imbalance is larger
  2656. * than the average weight of two tasks.
  2657. *
  2658. * APZ: with cgroup the avg task weight can vary wildly and
  2659. * might not be a suitable number - should we keep a
  2660. * normalized nr_running number somewhere that negates
  2661. * the hierarchy?
  2662. */
  2663. avg_load_per_task = sg_div_cpu_power(group,
  2664. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2665. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2666. __group_imb = 1;
  2667. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2668. if (local_group) {
  2669. this_load = avg_load;
  2670. this = group;
  2671. this_nr_running = sum_nr_running;
  2672. this_load_per_task = sum_weighted_load;
  2673. } else if (avg_load > max_load &&
  2674. (sum_nr_running > group_capacity || __group_imb)) {
  2675. max_load = avg_load;
  2676. busiest = group;
  2677. busiest_nr_running = sum_nr_running;
  2678. busiest_load_per_task = sum_weighted_load;
  2679. group_imb = __group_imb;
  2680. }
  2681. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2682. /*
  2683. * Busy processors will not participate in power savings
  2684. * balance.
  2685. */
  2686. if (idle == CPU_NOT_IDLE ||
  2687. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2688. goto group_next;
  2689. /*
  2690. * If the local group is idle or completely loaded
  2691. * no need to do power savings balance at this domain
  2692. */
  2693. if (local_group && (this_nr_running >= group_capacity ||
  2694. !this_nr_running))
  2695. power_savings_balance = 0;
  2696. /*
  2697. * If a group is already running at full capacity or idle,
  2698. * don't include that group in power savings calculations
  2699. */
  2700. if (!power_savings_balance || sum_nr_running >= group_capacity
  2701. || !sum_nr_running)
  2702. goto group_next;
  2703. /*
  2704. * Calculate the group which has the least non-idle load.
  2705. * This is the group from where we need to pick up the load
  2706. * for saving power
  2707. */
  2708. if ((sum_nr_running < min_nr_running) ||
  2709. (sum_nr_running == min_nr_running &&
  2710. first_cpu(group->cpumask) <
  2711. first_cpu(group_min->cpumask))) {
  2712. group_min = group;
  2713. min_nr_running = sum_nr_running;
  2714. min_load_per_task = sum_weighted_load /
  2715. sum_nr_running;
  2716. }
  2717. /*
  2718. * Calculate the group which is almost near its
  2719. * capacity but still has some space to pick up some load
  2720. * from other group and save more power
  2721. */
  2722. if (sum_nr_running <= group_capacity - 1) {
  2723. if (sum_nr_running > leader_nr_running ||
  2724. (sum_nr_running == leader_nr_running &&
  2725. first_cpu(group->cpumask) >
  2726. first_cpu(group_leader->cpumask))) {
  2727. group_leader = group;
  2728. leader_nr_running = sum_nr_running;
  2729. }
  2730. }
  2731. group_next:
  2732. #endif
  2733. group = group->next;
  2734. } while (group != sd->groups);
  2735. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2736. goto out_balanced;
  2737. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2738. if (this_load >= avg_load ||
  2739. 100*max_load <= sd->imbalance_pct*this_load)
  2740. goto out_balanced;
  2741. busiest_load_per_task /= busiest_nr_running;
  2742. if (group_imb)
  2743. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2744. /*
  2745. * We're trying to get all the cpus to the average_load, so we don't
  2746. * want to push ourselves above the average load, nor do we wish to
  2747. * reduce the max loaded cpu below the average load, as either of these
  2748. * actions would just result in more rebalancing later, and ping-pong
  2749. * tasks around. Thus we look for the minimum possible imbalance.
  2750. * Negative imbalances (*we* are more loaded than anyone else) will
  2751. * be counted as no imbalance for these purposes -- we can't fix that
  2752. * by pulling tasks to us. Be careful of negative numbers as they'll
  2753. * appear as very large values with unsigned longs.
  2754. */
  2755. if (max_load <= busiest_load_per_task)
  2756. goto out_balanced;
  2757. /*
  2758. * In the presence of smp nice balancing, certain scenarios can have
  2759. * max load less than avg load(as we skip the groups at or below
  2760. * its cpu_power, while calculating max_load..)
  2761. */
  2762. if (max_load < avg_load) {
  2763. *imbalance = 0;
  2764. goto small_imbalance;
  2765. }
  2766. /* Don't want to pull so many tasks that a group would go idle */
  2767. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2768. /* How much load to actually move to equalise the imbalance */
  2769. *imbalance = min(max_pull * busiest->__cpu_power,
  2770. (avg_load - this_load) * this->__cpu_power)
  2771. / SCHED_LOAD_SCALE;
  2772. /*
  2773. * if *imbalance is less than the average load per runnable task
  2774. * there is no gaurantee that any tasks will be moved so we'll have
  2775. * a think about bumping its value to force at least one task to be
  2776. * moved
  2777. */
  2778. if (*imbalance < busiest_load_per_task) {
  2779. unsigned long tmp, pwr_now, pwr_move;
  2780. unsigned int imbn;
  2781. small_imbalance:
  2782. pwr_move = pwr_now = 0;
  2783. imbn = 2;
  2784. if (this_nr_running) {
  2785. this_load_per_task /= this_nr_running;
  2786. if (busiest_load_per_task > this_load_per_task)
  2787. imbn = 1;
  2788. } else
  2789. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2790. if (max_load - this_load + 2*busiest_load_per_task >=
  2791. busiest_load_per_task * imbn) {
  2792. *imbalance = busiest_load_per_task;
  2793. return busiest;
  2794. }
  2795. /*
  2796. * OK, we don't have enough imbalance to justify moving tasks,
  2797. * however we may be able to increase total CPU power used by
  2798. * moving them.
  2799. */
  2800. pwr_now += busiest->__cpu_power *
  2801. min(busiest_load_per_task, max_load);
  2802. pwr_now += this->__cpu_power *
  2803. min(this_load_per_task, this_load);
  2804. pwr_now /= SCHED_LOAD_SCALE;
  2805. /* Amount of load we'd subtract */
  2806. tmp = sg_div_cpu_power(busiest,
  2807. busiest_load_per_task * SCHED_LOAD_SCALE);
  2808. if (max_load > tmp)
  2809. pwr_move += busiest->__cpu_power *
  2810. min(busiest_load_per_task, max_load - tmp);
  2811. /* Amount of load we'd add */
  2812. if (max_load * busiest->__cpu_power <
  2813. busiest_load_per_task * SCHED_LOAD_SCALE)
  2814. tmp = sg_div_cpu_power(this,
  2815. max_load * busiest->__cpu_power);
  2816. else
  2817. tmp = sg_div_cpu_power(this,
  2818. busiest_load_per_task * SCHED_LOAD_SCALE);
  2819. pwr_move += this->__cpu_power *
  2820. min(this_load_per_task, this_load + tmp);
  2821. pwr_move /= SCHED_LOAD_SCALE;
  2822. /* Move if we gain throughput */
  2823. if (pwr_move > pwr_now)
  2824. *imbalance = busiest_load_per_task;
  2825. }
  2826. return busiest;
  2827. out_balanced:
  2828. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2829. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2830. goto ret;
  2831. if (this == group_leader && group_leader != group_min) {
  2832. *imbalance = min_load_per_task;
  2833. return group_min;
  2834. }
  2835. #endif
  2836. ret:
  2837. *imbalance = 0;
  2838. return NULL;
  2839. }
  2840. /*
  2841. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2842. */
  2843. static struct rq *
  2844. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2845. unsigned long imbalance, const cpumask_t *cpus)
  2846. {
  2847. struct rq *busiest = NULL, *rq;
  2848. unsigned long max_load = 0;
  2849. int i;
  2850. for_each_cpu_mask(i, group->cpumask) {
  2851. unsigned long wl;
  2852. if (!cpu_isset(i, *cpus))
  2853. continue;
  2854. rq = cpu_rq(i);
  2855. wl = weighted_cpuload(i);
  2856. if (rq->nr_running == 1 && wl > imbalance)
  2857. continue;
  2858. if (wl > max_load) {
  2859. max_load = wl;
  2860. busiest = rq;
  2861. }
  2862. }
  2863. return busiest;
  2864. }
  2865. /*
  2866. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2867. * so long as it is large enough.
  2868. */
  2869. #define MAX_PINNED_INTERVAL 512
  2870. /*
  2871. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2872. * tasks if there is an imbalance.
  2873. */
  2874. static int load_balance(int this_cpu, struct rq *this_rq,
  2875. struct sched_domain *sd, enum cpu_idle_type idle,
  2876. int *balance, cpumask_t *cpus)
  2877. {
  2878. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2879. struct sched_group *group;
  2880. unsigned long imbalance;
  2881. struct rq *busiest;
  2882. unsigned long flags;
  2883. cpus_setall(*cpus);
  2884. /*
  2885. * When power savings policy is enabled for the parent domain, idle
  2886. * sibling can pick up load irrespective of busy siblings. In this case,
  2887. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2888. * portraying it as CPU_NOT_IDLE.
  2889. */
  2890. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2891. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2892. sd_idle = 1;
  2893. schedstat_inc(sd, lb_count[idle]);
  2894. redo:
  2895. update_shares(sd);
  2896. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2897. cpus, balance);
  2898. if (*balance == 0)
  2899. goto out_balanced;
  2900. if (!group) {
  2901. schedstat_inc(sd, lb_nobusyg[idle]);
  2902. goto out_balanced;
  2903. }
  2904. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2905. if (!busiest) {
  2906. schedstat_inc(sd, lb_nobusyq[idle]);
  2907. goto out_balanced;
  2908. }
  2909. BUG_ON(busiest == this_rq);
  2910. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2911. ld_moved = 0;
  2912. if (busiest->nr_running > 1) {
  2913. /*
  2914. * Attempt to move tasks. If find_busiest_group has found
  2915. * an imbalance but busiest->nr_running <= 1, the group is
  2916. * still unbalanced. ld_moved simply stays zero, so it is
  2917. * correctly treated as an imbalance.
  2918. */
  2919. local_irq_save(flags);
  2920. double_rq_lock(this_rq, busiest);
  2921. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2922. imbalance, sd, idle, &all_pinned);
  2923. double_rq_unlock(this_rq, busiest);
  2924. local_irq_restore(flags);
  2925. /*
  2926. * some other cpu did the load balance for us.
  2927. */
  2928. if (ld_moved && this_cpu != smp_processor_id())
  2929. resched_cpu(this_cpu);
  2930. /* All tasks on this runqueue were pinned by CPU affinity */
  2931. if (unlikely(all_pinned)) {
  2932. cpu_clear(cpu_of(busiest), *cpus);
  2933. if (!cpus_empty(*cpus))
  2934. goto redo;
  2935. goto out_balanced;
  2936. }
  2937. }
  2938. if (!ld_moved) {
  2939. schedstat_inc(sd, lb_failed[idle]);
  2940. sd->nr_balance_failed++;
  2941. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2942. spin_lock_irqsave(&busiest->lock, flags);
  2943. /* don't kick the migration_thread, if the curr
  2944. * task on busiest cpu can't be moved to this_cpu
  2945. */
  2946. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2947. spin_unlock_irqrestore(&busiest->lock, flags);
  2948. all_pinned = 1;
  2949. goto out_one_pinned;
  2950. }
  2951. if (!busiest->active_balance) {
  2952. busiest->active_balance = 1;
  2953. busiest->push_cpu = this_cpu;
  2954. active_balance = 1;
  2955. }
  2956. spin_unlock_irqrestore(&busiest->lock, flags);
  2957. if (active_balance)
  2958. wake_up_process(busiest->migration_thread);
  2959. /*
  2960. * We've kicked active balancing, reset the failure
  2961. * counter.
  2962. */
  2963. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2964. }
  2965. } else
  2966. sd->nr_balance_failed = 0;
  2967. if (likely(!active_balance)) {
  2968. /* We were unbalanced, so reset the balancing interval */
  2969. sd->balance_interval = sd->min_interval;
  2970. } else {
  2971. /*
  2972. * If we've begun active balancing, start to back off. This
  2973. * case may not be covered by the all_pinned logic if there
  2974. * is only 1 task on the busy runqueue (because we don't call
  2975. * move_tasks).
  2976. */
  2977. if (sd->balance_interval < sd->max_interval)
  2978. sd->balance_interval *= 2;
  2979. }
  2980. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2981. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2982. ld_moved = -1;
  2983. goto out;
  2984. out_balanced:
  2985. schedstat_inc(sd, lb_balanced[idle]);
  2986. sd->nr_balance_failed = 0;
  2987. out_one_pinned:
  2988. /* tune up the balancing interval */
  2989. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2990. (sd->balance_interval < sd->max_interval))
  2991. sd->balance_interval *= 2;
  2992. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2993. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2994. ld_moved = -1;
  2995. else
  2996. ld_moved = 0;
  2997. out:
  2998. if (ld_moved)
  2999. update_shares(sd);
  3000. return ld_moved;
  3001. }
  3002. /*
  3003. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3004. * tasks if there is an imbalance.
  3005. *
  3006. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3007. * this_rq is locked.
  3008. */
  3009. static int
  3010. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3011. cpumask_t *cpus)
  3012. {
  3013. struct sched_group *group;
  3014. struct rq *busiest = NULL;
  3015. unsigned long imbalance;
  3016. int ld_moved = 0;
  3017. int sd_idle = 0;
  3018. int all_pinned = 0;
  3019. cpus_setall(*cpus);
  3020. /*
  3021. * When power savings policy is enabled for the parent domain, idle
  3022. * sibling can pick up load irrespective of busy siblings. In this case,
  3023. * let the state of idle sibling percolate up as IDLE, instead of
  3024. * portraying it as CPU_NOT_IDLE.
  3025. */
  3026. if (sd->flags & SD_SHARE_CPUPOWER &&
  3027. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3028. sd_idle = 1;
  3029. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3030. redo:
  3031. update_shares_locked(this_rq, sd);
  3032. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3033. &sd_idle, cpus, NULL);
  3034. if (!group) {
  3035. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3036. goto out_balanced;
  3037. }
  3038. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3039. if (!busiest) {
  3040. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3041. goto out_balanced;
  3042. }
  3043. BUG_ON(busiest == this_rq);
  3044. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3045. ld_moved = 0;
  3046. if (busiest->nr_running > 1) {
  3047. /* Attempt to move tasks */
  3048. double_lock_balance(this_rq, busiest);
  3049. /* this_rq->clock is already updated */
  3050. update_rq_clock(busiest);
  3051. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3052. imbalance, sd, CPU_NEWLY_IDLE,
  3053. &all_pinned);
  3054. spin_unlock(&busiest->lock);
  3055. if (unlikely(all_pinned)) {
  3056. cpu_clear(cpu_of(busiest), *cpus);
  3057. if (!cpus_empty(*cpus))
  3058. goto redo;
  3059. }
  3060. }
  3061. if (!ld_moved) {
  3062. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3063. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3064. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3065. return -1;
  3066. } else
  3067. sd->nr_balance_failed = 0;
  3068. update_shares_locked(this_rq, sd);
  3069. return ld_moved;
  3070. out_balanced:
  3071. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3072. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3073. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3074. return -1;
  3075. sd->nr_balance_failed = 0;
  3076. return 0;
  3077. }
  3078. /*
  3079. * idle_balance is called by schedule() if this_cpu is about to become
  3080. * idle. Attempts to pull tasks from other CPUs.
  3081. */
  3082. static void idle_balance(int this_cpu, struct rq *this_rq)
  3083. {
  3084. struct sched_domain *sd;
  3085. int pulled_task = -1;
  3086. unsigned long next_balance = jiffies + HZ;
  3087. cpumask_t tmpmask;
  3088. for_each_domain(this_cpu, sd) {
  3089. unsigned long interval;
  3090. if (!(sd->flags & SD_LOAD_BALANCE))
  3091. continue;
  3092. if (sd->flags & SD_BALANCE_NEWIDLE)
  3093. /* If we've pulled tasks over stop searching: */
  3094. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3095. sd, &tmpmask);
  3096. interval = msecs_to_jiffies(sd->balance_interval);
  3097. if (time_after(next_balance, sd->last_balance + interval))
  3098. next_balance = sd->last_balance + interval;
  3099. if (pulled_task)
  3100. break;
  3101. }
  3102. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3103. /*
  3104. * We are going idle. next_balance may be set based on
  3105. * a busy processor. So reset next_balance.
  3106. */
  3107. this_rq->next_balance = next_balance;
  3108. }
  3109. }
  3110. /*
  3111. * active_load_balance is run by migration threads. It pushes running tasks
  3112. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3113. * running on each physical CPU where possible, and avoids physical /
  3114. * logical imbalances.
  3115. *
  3116. * Called with busiest_rq locked.
  3117. */
  3118. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3119. {
  3120. int target_cpu = busiest_rq->push_cpu;
  3121. struct sched_domain *sd;
  3122. struct rq *target_rq;
  3123. /* Is there any task to move? */
  3124. if (busiest_rq->nr_running <= 1)
  3125. return;
  3126. target_rq = cpu_rq(target_cpu);
  3127. /*
  3128. * This condition is "impossible", if it occurs
  3129. * we need to fix it. Originally reported by
  3130. * Bjorn Helgaas on a 128-cpu setup.
  3131. */
  3132. BUG_ON(busiest_rq == target_rq);
  3133. /* move a task from busiest_rq to target_rq */
  3134. double_lock_balance(busiest_rq, target_rq);
  3135. update_rq_clock(busiest_rq);
  3136. update_rq_clock(target_rq);
  3137. /* Search for an sd spanning us and the target CPU. */
  3138. for_each_domain(target_cpu, sd) {
  3139. if ((sd->flags & SD_LOAD_BALANCE) &&
  3140. cpu_isset(busiest_cpu, sd->span))
  3141. break;
  3142. }
  3143. if (likely(sd)) {
  3144. schedstat_inc(sd, alb_count);
  3145. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3146. sd, CPU_IDLE))
  3147. schedstat_inc(sd, alb_pushed);
  3148. else
  3149. schedstat_inc(sd, alb_failed);
  3150. }
  3151. spin_unlock(&target_rq->lock);
  3152. }
  3153. #ifdef CONFIG_NO_HZ
  3154. static struct {
  3155. atomic_t load_balancer;
  3156. cpumask_t cpu_mask;
  3157. } nohz ____cacheline_aligned = {
  3158. .load_balancer = ATOMIC_INIT(-1),
  3159. .cpu_mask = CPU_MASK_NONE,
  3160. };
  3161. /*
  3162. * This routine will try to nominate the ilb (idle load balancing)
  3163. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3164. * load balancing on behalf of all those cpus. If all the cpus in the system
  3165. * go into this tickless mode, then there will be no ilb owner (as there is
  3166. * no need for one) and all the cpus will sleep till the next wakeup event
  3167. * arrives...
  3168. *
  3169. * For the ilb owner, tick is not stopped. And this tick will be used
  3170. * for idle load balancing. ilb owner will still be part of
  3171. * nohz.cpu_mask..
  3172. *
  3173. * While stopping the tick, this cpu will become the ilb owner if there
  3174. * is no other owner. And will be the owner till that cpu becomes busy
  3175. * or if all cpus in the system stop their ticks at which point
  3176. * there is no need for ilb owner.
  3177. *
  3178. * When the ilb owner becomes busy, it nominates another owner, during the
  3179. * next busy scheduler_tick()
  3180. */
  3181. int select_nohz_load_balancer(int stop_tick)
  3182. {
  3183. int cpu = smp_processor_id();
  3184. if (stop_tick) {
  3185. cpu_set(cpu, nohz.cpu_mask);
  3186. cpu_rq(cpu)->in_nohz_recently = 1;
  3187. /*
  3188. * If we are going offline and still the leader, give up!
  3189. */
  3190. if (cpu_is_offline(cpu) &&
  3191. atomic_read(&nohz.load_balancer) == cpu) {
  3192. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3193. BUG();
  3194. return 0;
  3195. }
  3196. /* time for ilb owner also to sleep */
  3197. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3198. if (atomic_read(&nohz.load_balancer) == cpu)
  3199. atomic_set(&nohz.load_balancer, -1);
  3200. return 0;
  3201. }
  3202. if (atomic_read(&nohz.load_balancer) == -1) {
  3203. /* make me the ilb owner */
  3204. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3205. return 1;
  3206. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3207. return 1;
  3208. } else {
  3209. if (!cpu_isset(cpu, nohz.cpu_mask))
  3210. return 0;
  3211. cpu_clear(cpu, nohz.cpu_mask);
  3212. if (atomic_read(&nohz.load_balancer) == cpu)
  3213. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3214. BUG();
  3215. }
  3216. return 0;
  3217. }
  3218. #endif
  3219. static DEFINE_SPINLOCK(balancing);
  3220. /*
  3221. * It checks each scheduling domain to see if it is due to be balanced,
  3222. * and initiates a balancing operation if so.
  3223. *
  3224. * Balancing parameters are set up in arch_init_sched_domains.
  3225. */
  3226. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3227. {
  3228. int balance = 1;
  3229. struct rq *rq = cpu_rq(cpu);
  3230. unsigned long interval;
  3231. struct sched_domain *sd;
  3232. /* Earliest time when we have to do rebalance again */
  3233. unsigned long next_balance = jiffies + 60*HZ;
  3234. int update_next_balance = 0;
  3235. int need_serialize;
  3236. cpumask_t tmp;
  3237. for_each_domain(cpu, sd) {
  3238. if (!(sd->flags & SD_LOAD_BALANCE))
  3239. continue;
  3240. interval = sd->balance_interval;
  3241. if (idle != CPU_IDLE)
  3242. interval *= sd->busy_factor;
  3243. /* scale ms to jiffies */
  3244. interval = msecs_to_jiffies(interval);
  3245. if (unlikely(!interval))
  3246. interval = 1;
  3247. if (interval > HZ*NR_CPUS/10)
  3248. interval = HZ*NR_CPUS/10;
  3249. need_serialize = sd->flags & SD_SERIALIZE;
  3250. if (need_serialize) {
  3251. if (!spin_trylock(&balancing))
  3252. goto out;
  3253. }
  3254. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3255. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3256. /*
  3257. * We've pulled tasks over so either we're no
  3258. * longer idle, or one of our SMT siblings is
  3259. * not idle.
  3260. */
  3261. idle = CPU_NOT_IDLE;
  3262. }
  3263. sd->last_balance = jiffies;
  3264. }
  3265. if (need_serialize)
  3266. spin_unlock(&balancing);
  3267. out:
  3268. if (time_after(next_balance, sd->last_balance + interval)) {
  3269. next_balance = sd->last_balance + interval;
  3270. update_next_balance = 1;
  3271. }
  3272. /*
  3273. * Stop the load balance at this level. There is another
  3274. * CPU in our sched group which is doing load balancing more
  3275. * actively.
  3276. */
  3277. if (!balance)
  3278. break;
  3279. }
  3280. /*
  3281. * next_balance will be updated only when there is a need.
  3282. * When the cpu is attached to null domain for ex, it will not be
  3283. * updated.
  3284. */
  3285. if (likely(update_next_balance))
  3286. rq->next_balance = next_balance;
  3287. }
  3288. /*
  3289. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3290. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3291. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3292. */
  3293. static void run_rebalance_domains(struct softirq_action *h)
  3294. {
  3295. int this_cpu = smp_processor_id();
  3296. struct rq *this_rq = cpu_rq(this_cpu);
  3297. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3298. CPU_IDLE : CPU_NOT_IDLE;
  3299. rebalance_domains(this_cpu, idle);
  3300. #ifdef CONFIG_NO_HZ
  3301. /*
  3302. * If this cpu is the owner for idle load balancing, then do the
  3303. * balancing on behalf of the other idle cpus whose ticks are
  3304. * stopped.
  3305. */
  3306. if (this_rq->idle_at_tick &&
  3307. atomic_read(&nohz.load_balancer) == this_cpu) {
  3308. cpumask_t cpus = nohz.cpu_mask;
  3309. struct rq *rq;
  3310. int balance_cpu;
  3311. cpu_clear(this_cpu, cpus);
  3312. for_each_cpu_mask(balance_cpu, cpus) {
  3313. /*
  3314. * If this cpu gets work to do, stop the load balancing
  3315. * work being done for other cpus. Next load
  3316. * balancing owner will pick it up.
  3317. */
  3318. if (need_resched())
  3319. break;
  3320. rebalance_domains(balance_cpu, CPU_IDLE);
  3321. rq = cpu_rq(balance_cpu);
  3322. if (time_after(this_rq->next_balance, rq->next_balance))
  3323. this_rq->next_balance = rq->next_balance;
  3324. }
  3325. }
  3326. #endif
  3327. }
  3328. /*
  3329. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3330. *
  3331. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3332. * idle load balancing owner or decide to stop the periodic load balancing,
  3333. * if the whole system is idle.
  3334. */
  3335. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3336. {
  3337. #ifdef CONFIG_NO_HZ
  3338. /*
  3339. * If we were in the nohz mode recently and busy at the current
  3340. * scheduler tick, then check if we need to nominate new idle
  3341. * load balancer.
  3342. */
  3343. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3344. rq->in_nohz_recently = 0;
  3345. if (atomic_read(&nohz.load_balancer) == cpu) {
  3346. cpu_clear(cpu, nohz.cpu_mask);
  3347. atomic_set(&nohz.load_balancer, -1);
  3348. }
  3349. if (atomic_read(&nohz.load_balancer) == -1) {
  3350. /*
  3351. * simple selection for now: Nominate the
  3352. * first cpu in the nohz list to be the next
  3353. * ilb owner.
  3354. *
  3355. * TBD: Traverse the sched domains and nominate
  3356. * the nearest cpu in the nohz.cpu_mask.
  3357. */
  3358. int ilb = first_cpu(nohz.cpu_mask);
  3359. if (ilb < nr_cpu_ids)
  3360. resched_cpu(ilb);
  3361. }
  3362. }
  3363. /*
  3364. * If this cpu is idle and doing idle load balancing for all the
  3365. * cpus with ticks stopped, is it time for that to stop?
  3366. */
  3367. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3368. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3369. resched_cpu(cpu);
  3370. return;
  3371. }
  3372. /*
  3373. * If this cpu is idle and the idle load balancing is done by
  3374. * someone else, then no need raise the SCHED_SOFTIRQ
  3375. */
  3376. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3377. cpu_isset(cpu, nohz.cpu_mask))
  3378. return;
  3379. #endif
  3380. if (time_after_eq(jiffies, rq->next_balance))
  3381. raise_softirq(SCHED_SOFTIRQ);
  3382. }
  3383. #else /* CONFIG_SMP */
  3384. /*
  3385. * on UP we do not need to balance between CPUs:
  3386. */
  3387. static inline void idle_balance(int cpu, struct rq *rq)
  3388. {
  3389. }
  3390. #endif
  3391. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3392. EXPORT_PER_CPU_SYMBOL(kstat);
  3393. /*
  3394. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3395. * that have not yet been banked in case the task is currently running.
  3396. */
  3397. unsigned long long task_sched_runtime(struct task_struct *p)
  3398. {
  3399. unsigned long flags;
  3400. u64 ns, delta_exec;
  3401. struct rq *rq;
  3402. rq = task_rq_lock(p, &flags);
  3403. ns = p->se.sum_exec_runtime;
  3404. if (task_current(rq, p)) {
  3405. update_rq_clock(rq);
  3406. delta_exec = rq->clock - p->se.exec_start;
  3407. if ((s64)delta_exec > 0)
  3408. ns += delta_exec;
  3409. }
  3410. task_rq_unlock(rq, &flags);
  3411. return ns;
  3412. }
  3413. /*
  3414. * Account user cpu time to a process.
  3415. * @p: the process that the cpu time gets accounted to
  3416. * @cputime: the cpu time spent in user space since the last update
  3417. */
  3418. void account_user_time(struct task_struct *p, cputime_t cputime)
  3419. {
  3420. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3421. cputime64_t tmp;
  3422. p->utime = cputime_add(p->utime, cputime);
  3423. /* Add user time to cpustat. */
  3424. tmp = cputime_to_cputime64(cputime);
  3425. if (TASK_NICE(p) > 0)
  3426. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3427. else
  3428. cpustat->user = cputime64_add(cpustat->user, tmp);
  3429. }
  3430. /*
  3431. * Account guest cpu time to a process.
  3432. * @p: the process that the cpu time gets accounted to
  3433. * @cputime: the cpu time spent in virtual machine since the last update
  3434. */
  3435. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3436. {
  3437. cputime64_t tmp;
  3438. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3439. tmp = cputime_to_cputime64(cputime);
  3440. p->utime = cputime_add(p->utime, cputime);
  3441. p->gtime = cputime_add(p->gtime, cputime);
  3442. cpustat->user = cputime64_add(cpustat->user, tmp);
  3443. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3444. }
  3445. /*
  3446. * Account scaled user cpu time to a process.
  3447. * @p: the process that the cpu time gets accounted to
  3448. * @cputime: the cpu time spent in user space since the last update
  3449. */
  3450. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3451. {
  3452. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3453. }
  3454. /*
  3455. * Account system cpu time to a process.
  3456. * @p: the process that the cpu time gets accounted to
  3457. * @hardirq_offset: the offset to subtract from hardirq_count()
  3458. * @cputime: the cpu time spent in kernel space since the last update
  3459. */
  3460. void account_system_time(struct task_struct *p, int hardirq_offset,
  3461. cputime_t cputime)
  3462. {
  3463. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3464. struct rq *rq = this_rq();
  3465. cputime64_t tmp;
  3466. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3467. account_guest_time(p, cputime);
  3468. return;
  3469. }
  3470. p->stime = cputime_add(p->stime, cputime);
  3471. /* Add system time to cpustat. */
  3472. tmp = cputime_to_cputime64(cputime);
  3473. if (hardirq_count() - hardirq_offset)
  3474. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3475. else if (softirq_count())
  3476. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3477. else if (p != rq->idle)
  3478. cpustat->system = cputime64_add(cpustat->system, tmp);
  3479. else if (atomic_read(&rq->nr_iowait) > 0)
  3480. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3481. else
  3482. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3483. /* Account for system time used */
  3484. acct_update_integrals(p);
  3485. }
  3486. /*
  3487. * Account scaled system cpu time to a process.
  3488. * @p: the process that the cpu time gets accounted to
  3489. * @hardirq_offset: the offset to subtract from hardirq_count()
  3490. * @cputime: the cpu time spent in kernel space since the last update
  3491. */
  3492. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3493. {
  3494. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3495. }
  3496. /*
  3497. * Account for involuntary wait time.
  3498. * @p: the process from which the cpu time has been stolen
  3499. * @steal: the cpu time spent in involuntary wait
  3500. */
  3501. void account_steal_time(struct task_struct *p, cputime_t steal)
  3502. {
  3503. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3504. cputime64_t tmp = cputime_to_cputime64(steal);
  3505. struct rq *rq = this_rq();
  3506. if (p == rq->idle) {
  3507. p->stime = cputime_add(p->stime, steal);
  3508. if (atomic_read(&rq->nr_iowait) > 0)
  3509. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3510. else
  3511. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3512. } else
  3513. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3514. }
  3515. /*
  3516. * This function gets called by the timer code, with HZ frequency.
  3517. * We call it with interrupts disabled.
  3518. *
  3519. * It also gets called by the fork code, when changing the parent's
  3520. * timeslices.
  3521. */
  3522. void scheduler_tick(void)
  3523. {
  3524. int cpu = smp_processor_id();
  3525. struct rq *rq = cpu_rq(cpu);
  3526. struct task_struct *curr = rq->curr;
  3527. sched_clock_tick();
  3528. spin_lock(&rq->lock);
  3529. update_rq_clock(rq);
  3530. update_cpu_load(rq);
  3531. curr->sched_class->task_tick(rq, curr, 0);
  3532. spin_unlock(&rq->lock);
  3533. #ifdef CONFIG_SMP
  3534. rq->idle_at_tick = idle_cpu(cpu);
  3535. trigger_load_balance(rq, cpu);
  3536. #endif
  3537. }
  3538. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3539. void __kprobes add_preempt_count(int val)
  3540. {
  3541. /*
  3542. * Underflow?
  3543. */
  3544. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3545. return;
  3546. preempt_count() += val;
  3547. /*
  3548. * Spinlock count overflowing soon?
  3549. */
  3550. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3551. PREEMPT_MASK - 10);
  3552. }
  3553. EXPORT_SYMBOL(add_preempt_count);
  3554. void __kprobes sub_preempt_count(int val)
  3555. {
  3556. /*
  3557. * Underflow?
  3558. */
  3559. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3560. return;
  3561. /*
  3562. * Is the spinlock portion underflowing?
  3563. */
  3564. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3565. !(preempt_count() & PREEMPT_MASK)))
  3566. return;
  3567. preempt_count() -= val;
  3568. }
  3569. EXPORT_SYMBOL(sub_preempt_count);
  3570. #endif
  3571. /*
  3572. * Print scheduling while atomic bug:
  3573. */
  3574. static noinline void __schedule_bug(struct task_struct *prev)
  3575. {
  3576. struct pt_regs *regs = get_irq_regs();
  3577. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3578. prev->comm, prev->pid, preempt_count());
  3579. debug_show_held_locks(prev);
  3580. print_modules();
  3581. if (irqs_disabled())
  3582. print_irqtrace_events(prev);
  3583. if (regs)
  3584. show_regs(regs);
  3585. else
  3586. dump_stack();
  3587. }
  3588. /*
  3589. * Various schedule()-time debugging checks and statistics:
  3590. */
  3591. static inline void schedule_debug(struct task_struct *prev)
  3592. {
  3593. /*
  3594. * Test if we are atomic. Since do_exit() needs to call into
  3595. * schedule() atomically, we ignore that path for now.
  3596. * Otherwise, whine if we are scheduling when we should not be.
  3597. */
  3598. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3599. __schedule_bug(prev);
  3600. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3601. schedstat_inc(this_rq(), sched_count);
  3602. #ifdef CONFIG_SCHEDSTATS
  3603. if (unlikely(prev->lock_depth >= 0)) {
  3604. schedstat_inc(this_rq(), bkl_count);
  3605. schedstat_inc(prev, sched_info.bkl_count);
  3606. }
  3607. #endif
  3608. }
  3609. /*
  3610. * Pick up the highest-prio task:
  3611. */
  3612. static inline struct task_struct *
  3613. pick_next_task(struct rq *rq, struct task_struct *prev)
  3614. {
  3615. const struct sched_class *class;
  3616. struct task_struct *p;
  3617. /*
  3618. * Optimization: we know that if all tasks are in
  3619. * the fair class we can call that function directly:
  3620. */
  3621. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3622. p = fair_sched_class.pick_next_task(rq);
  3623. if (likely(p))
  3624. return p;
  3625. }
  3626. class = sched_class_highest;
  3627. for ( ; ; ) {
  3628. p = class->pick_next_task(rq);
  3629. if (p)
  3630. return p;
  3631. /*
  3632. * Will never be NULL as the idle class always
  3633. * returns a non-NULL p:
  3634. */
  3635. class = class->next;
  3636. }
  3637. }
  3638. /*
  3639. * schedule() is the main scheduler function.
  3640. */
  3641. asmlinkage void __sched schedule(void)
  3642. {
  3643. struct task_struct *prev, *next;
  3644. unsigned long *switch_count;
  3645. struct rq *rq;
  3646. int cpu, hrtick = sched_feat(HRTICK);
  3647. need_resched:
  3648. preempt_disable();
  3649. cpu = smp_processor_id();
  3650. rq = cpu_rq(cpu);
  3651. rcu_qsctr_inc(cpu);
  3652. prev = rq->curr;
  3653. switch_count = &prev->nivcsw;
  3654. release_kernel_lock(prev);
  3655. need_resched_nonpreemptible:
  3656. schedule_debug(prev);
  3657. if (hrtick)
  3658. hrtick_clear(rq);
  3659. /*
  3660. * Do the rq-clock update outside the rq lock:
  3661. */
  3662. local_irq_disable();
  3663. update_rq_clock(rq);
  3664. spin_lock(&rq->lock);
  3665. clear_tsk_need_resched(prev);
  3666. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3667. if (unlikely(signal_pending_state(prev->state, prev)))
  3668. prev->state = TASK_RUNNING;
  3669. else
  3670. deactivate_task(rq, prev, 1);
  3671. switch_count = &prev->nvcsw;
  3672. }
  3673. #ifdef CONFIG_SMP
  3674. if (prev->sched_class->pre_schedule)
  3675. prev->sched_class->pre_schedule(rq, prev);
  3676. #endif
  3677. if (unlikely(!rq->nr_running))
  3678. idle_balance(cpu, rq);
  3679. prev->sched_class->put_prev_task(rq, prev);
  3680. next = pick_next_task(rq, prev);
  3681. if (likely(prev != next)) {
  3682. sched_info_switch(prev, next);
  3683. rq->nr_switches++;
  3684. rq->curr = next;
  3685. ++*switch_count;
  3686. context_switch(rq, prev, next); /* unlocks the rq */
  3687. /*
  3688. * the context switch might have flipped the stack from under
  3689. * us, hence refresh the local variables.
  3690. */
  3691. cpu = smp_processor_id();
  3692. rq = cpu_rq(cpu);
  3693. } else
  3694. spin_unlock_irq(&rq->lock);
  3695. if (hrtick)
  3696. hrtick_set(rq);
  3697. if (unlikely(reacquire_kernel_lock(current) < 0))
  3698. goto need_resched_nonpreemptible;
  3699. preempt_enable_no_resched();
  3700. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3701. goto need_resched;
  3702. }
  3703. EXPORT_SYMBOL(schedule);
  3704. #ifdef CONFIG_PREEMPT
  3705. /*
  3706. * this is the entry point to schedule() from in-kernel preemption
  3707. * off of preempt_enable. Kernel preemptions off return from interrupt
  3708. * occur there and call schedule directly.
  3709. */
  3710. asmlinkage void __sched preempt_schedule(void)
  3711. {
  3712. struct thread_info *ti = current_thread_info();
  3713. /*
  3714. * If there is a non-zero preempt_count or interrupts are disabled,
  3715. * we do not want to preempt the current task. Just return..
  3716. */
  3717. if (likely(ti->preempt_count || irqs_disabled()))
  3718. return;
  3719. do {
  3720. add_preempt_count(PREEMPT_ACTIVE);
  3721. schedule();
  3722. sub_preempt_count(PREEMPT_ACTIVE);
  3723. /*
  3724. * Check again in case we missed a preemption opportunity
  3725. * between schedule and now.
  3726. */
  3727. barrier();
  3728. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3729. }
  3730. EXPORT_SYMBOL(preempt_schedule);
  3731. /*
  3732. * this is the entry point to schedule() from kernel preemption
  3733. * off of irq context.
  3734. * Note, that this is called and return with irqs disabled. This will
  3735. * protect us against recursive calling from irq.
  3736. */
  3737. asmlinkage void __sched preempt_schedule_irq(void)
  3738. {
  3739. struct thread_info *ti = current_thread_info();
  3740. /* Catch callers which need to be fixed */
  3741. BUG_ON(ti->preempt_count || !irqs_disabled());
  3742. do {
  3743. add_preempt_count(PREEMPT_ACTIVE);
  3744. local_irq_enable();
  3745. schedule();
  3746. local_irq_disable();
  3747. sub_preempt_count(PREEMPT_ACTIVE);
  3748. /*
  3749. * Check again in case we missed a preemption opportunity
  3750. * between schedule and now.
  3751. */
  3752. barrier();
  3753. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3754. }
  3755. #endif /* CONFIG_PREEMPT */
  3756. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3757. void *key)
  3758. {
  3759. return try_to_wake_up(curr->private, mode, sync);
  3760. }
  3761. EXPORT_SYMBOL(default_wake_function);
  3762. /*
  3763. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3764. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3765. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3766. *
  3767. * There are circumstances in which we can try to wake a task which has already
  3768. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3769. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3770. */
  3771. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3772. int nr_exclusive, int sync, void *key)
  3773. {
  3774. wait_queue_t *curr, *next;
  3775. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3776. unsigned flags = curr->flags;
  3777. if (curr->func(curr, mode, sync, key) &&
  3778. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3779. break;
  3780. }
  3781. }
  3782. /**
  3783. * __wake_up - wake up threads blocked on a waitqueue.
  3784. * @q: the waitqueue
  3785. * @mode: which threads
  3786. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3787. * @key: is directly passed to the wakeup function
  3788. */
  3789. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3790. int nr_exclusive, void *key)
  3791. {
  3792. unsigned long flags;
  3793. spin_lock_irqsave(&q->lock, flags);
  3794. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3795. spin_unlock_irqrestore(&q->lock, flags);
  3796. }
  3797. EXPORT_SYMBOL(__wake_up);
  3798. /*
  3799. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3800. */
  3801. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3802. {
  3803. __wake_up_common(q, mode, 1, 0, NULL);
  3804. }
  3805. /**
  3806. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3807. * @q: the waitqueue
  3808. * @mode: which threads
  3809. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3810. *
  3811. * The sync wakeup differs that the waker knows that it will schedule
  3812. * away soon, so while the target thread will be woken up, it will not
  3813. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3814. * with each other. This can prevent needless bouncing between CPUs.
  3815. *
  3816. * On UP it can prevent extra preemption.
  3817. */
  3818. void
  3819. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3820. {
  3821. unsigned long flags;
  3822. int sync = 1;
  3823. if (unlikely(!q))
  3824. return;
  3825. if (unlikely(!nr_exclusive))
  3826. sync = 0;
  3827. spin_lock_irqsave(&q->lock, flags);
  3828. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3829. spin_unlock_irqrestore(&q->lock, flags);
  3830. }
  3831. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3832. void complete(struct completion *x)
  3833. {
  3834. unsigned long flags;
  3835. spin_lock_irqsave(&x->wait.lock, flags);
  3836. x->done++;
  3837. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3838. spin_unlock_irqrestore(&x->wait.lock, flags);
  3839. }
  3840. EXPORT_SYMBOL(complete);
  3841. void complete_all(struct completion *x)
  3842. {
  3843. unsigned long flags;
  3844. spin_lock_irqsave(&x->wait.lock, flags);
  3845. x->done += UINT_MAX/2;
  3846. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3847. spin_unlock_irqrestore(&x->wait.lock, flags);
  3848. }
  3849. EXPORT_SYMBOL(complete_all);
  3850. static inline long __sched
  3851. do_wait_for_common(struct completion *x, long timeout, int state)
  3852. {
  3853. if (!x->done) {
  3854. DECLARE_WAITQUEUE(wait, current);
  3855. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3856. __add_wait_queue_tail(&x->wait, &wait);
  3857. do {
  3858. if ((state == TASK_INTERRUPTIBLE &&
  3859. signal_pending(current)) ||
  3860. (state == TASK_KILLABLE &&
  3861. fatal_signal_pending(current))) {
  3862. timeout = -ERESTARTSYS;
  3863. break;
  3864. }
  3865. __set_current_state(state);
  3866. spin_unlock_irq(&x->wait.lock);
  3867. timeout = schedule_timeout(timeout);
  3868. spin_lock_irq(&x->wait.lock);
  3869. } while (!x->done && timeout);
  3870. __remove_wait_queue(&x->wait, &wait);
  3871. if (!x->done)
  3872. return timeout;
  3873. }
  3874. x->done--;
  3875. return timeout ?: 1;
  3876. }
  3877. static long __sched
  3878. wait_for_common(struct completion *x, long timeout, int state)
  3879. {
  3880. might_sleep();
  3881. spin_lock_irq(&x->wait.lock);
  3882. timeout = do_wait_for_common(x, timeout, state);
  3883. spin_unlock_irq(&x->wait.lock);
  3884. return timeout;
  3885. }
  3886. void __sched wait_for_completion(struct completion *x)
  3887. {
  3888. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3889. }
  3890. EXPORT_SYMBOL(wait_for_completion);
  3891. unsigned long __sched
  3892. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3893. {
  3894. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3895. }
  3896. EXPORT_SYMBOL(wait_for_completion_timeout);
  3897. int __sched wait_for_completion_interruptible(struct completion *x)
  3898. {
  3899. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3900. if (t == -ERESTARTSYS)
  3901. return t;
  3902. return 0;
  3903. }
  3904. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3905. unsigned long __sched
  3906. wait_for_completion_interruptible_timeout(struct completion *x,
  3907. unsigned long timeout)
  3908. {
  3909. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3910. }
  3911. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3912. int __sched wait_for_completion_killable(struct completion *x)
  3913. {
  3914. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3915. if (t == -ERESTARTSYS)
  3916. return t;
  3917. return 0;
  3918. }
  3919. EXPORT_SYMBOL(wait_for_completion_killable);
  3920. static long __sched
  3921. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3922. {
  3923. unsigned long flags;
  3924. wait_queue_t wait;
  3925. init_waitqueue_entry(&wait, current);
  3926. __set_current_state(state);
  3927. spin_lock_irqsave(&q->lock, flags);
  3928. __add_wait_queue(q, &wait);
  3929. spin_unlock(&q->lock);
  3930. timeout = schedule_timeout(timeout);
  3931. spin_lock_irq(&q->lock);
  3932. __remove_wait_queue(q, &wait);
  3933. spin_unlock_irqrestore(&q->lock, flags);
  3934. return timeout;
  3935. }
  3936. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3937. {
  3938. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3939. }
  3940. EXPORT_SYMBOL(interruptible_sleep_on);
  3941. long __sched
  3942. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3943. {
  3944. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3945. }
  3946. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3947. void __sched sleep_on(wait_queue_head_t *q)
  3948. {
  3949. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3950. }
  3951. EXPORT_SYMBOL(sleep_on);
  3952. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3953. {
  3954. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3955. }
  3956. EXPORT_SYMBOL(sleep_on_timeout);
  3957. #ifdef CONFIG_RT_MUTEXES
  3958. /*
  3959. * rt_mutex_setprio - set the current priority of a task
  3960. * @p: task
  3961. * @prio: prio value (kernel-internal form)
  3962. *
  3963. * This function changes the 'effective' priority of a task. It does
  3964. * not touch ->normal_prio like __setscheduler().
  3965. *
  3966. * Used by the rt_mutex code to implement priority inheritance logic.
  3967. */
  3968. void rt_mutex_setprio(struct task_struct *p, int prio)
  3969. {
  3970. unsigned long flags;
  3971. int oldprio, on_rq, running;
  3972. struct rq *rq;
  3973. const struct sched_class *prev_class = p->sched_class;
  3974. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3975. rq = task_rq_lock(p, &flags);
  3976. update_rq_clock(rq);
  3977. oldprio = p->prio;
  3978. on_rq = p->se.on_rq;
  3979. running = task_current(rq, p);
  3980. if (on_rq)
  3981. dequeue_task(rq, p, 0);
  3982. if (running)
  3983. p->sched_class->put_prev_task(rq, p);
  3984. if (rt_prio(prio))
  3985. p->sched_class = &rt_sched_class;
  3986. else
  3987. p->sched_class = &fair_sched_class;
  3988. p->prio = prio;
  3989. if (running)
  3990. p->sched_class->set_curr_task(rq);
  3991. if (on_rq) {
  3992. enqueue_task(rq, p, 0);
  3993. check_class_changed(rq, p, prev_class, oldprio, running);
  3994. }
  3995. task_rq_unlock(rq, &flags);
  3996. }
  3997. #endif
  3998. void set_user_nice(struct task_struct *p, long nice)
  3999. {
  4000. int old_prio, delta, on_rq;
  4001. unsigned long flags;
  4002. struct rq *rq;
  4003. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4004. return;
  4005. /*
  4006. * We have to be careful, if called from sys_setpriority(),
  4007. * the task might be in the middle of scheduling on another CPU.
  4008. */
  4009. rq = task_rq_lock(p, &flags);
  4010. update_rq_clock(rq);
  4011. /*
  4012. * The RT priorities are set via sched_setscheduler(), but we still
  4013. * allow the 'normal' nice value to be set - but as expected
  4014. * it wont have any effect on scheduling until the task is
  4015. * SCHED_FIFO/SCHED_RR:
  4016. */
  4017. if (task_has_rt_policy(p)) {
  4018. p->static_prio = NICE_TO_PRIO(nice);
  4019. goto out_unlock;
  4020. }
  4021. on_rq = p->se.on_rq;
  4022. if (on_rq)
  4023. dequeue_task(rq, p, 0);
  4024. p->static_prio = NICE_TO_PRIO(nice);
  4025. set_load_weight(p);
  4026. old_prio = p->prio;
  4027. p->prio = effective_prio(p);
  4028. delta = p->prio - old_prio;
  4029. if (on_rq) {
  4030. enqueue_task(rq, p, 0);
  4031. /*
  4032. * If the task increased its priority or is running and
  4033. * lowered its priority, then reschedule its CPU:
  4034. */
  4035. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4036. resched_task(rq->curr);
  4037. }
  4038. out_unlock:
  4039. task_rq_unlock(rq, &flags);
  4040. }
  4041. EXPORT_SYMBOL(set_user_nice);
  4042. /*
  4043. * can_nice - check if a task can reduce its nice value
  4044. * @p: task
  4045. * @nice: nice value
  4046. */
  4047. int can_nice(const struct task_struct *p, const int nice)
  4048. {
  4049. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4050. int nice_rlim = 20 - nice;
  4051. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4052. capable(CAP_SYS_NICE));
  4053. }
  4054. #ifdef __ARCH_WANT_SYS_NICE
  4055. /*
  4056. * sys_nice - change the priority of the current process.
  4057. * @increment: priority increment
  4058. *
  4059. * sys_setpriority is a more generic, but much slower function that
  4060. * does similar things.
  4061. */
  4062. asmlinkage long sys_nice(int increment)
  4063. {
  4064. long nice, retval;
  4065. /*
  4066. * Setpriority might change our priority at the same moment.
  4067. * We don't have to worry. Conceptually one call occurs first
  4068. * and we have a single winner.
  4069. */
  4070. if (increment < -40)
  4071. increment = -40;
  4072. if (increment > 40)
  4073. increment = 40;
  4074. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4075. if (nice < -20)
  4076. nice = -20;
  4077. if (nice > 19)
  4078. nice = 19;
  4079. if (increment < 0 && !can_nice(current, nice))
  4080. return -EPERM;
  4081. retval = security_task_setnice(current, nice);
  4082. if (retval)
  4083. return retval;
  4084. set_user_nice(current, nice);
  4085. return 0;
  4086. }
  4087. #endif
  4088. /**
  4089. * task_prio - return the priority value of a given task.
  4090. * @p: the task in question.
  4091. *
  4092. * This is the priority value as seen by users in /proc.
  4093. * RT tasks are offset by -200. Normal tasks are centered
  4094. * around 0, value goes from -16 to +15.
  4095. */
  4096. int task_prio(const struct task_struct *p)
  4097. {
  4098. return p->prio - MAX_RT_PRIO;
  4099. }
  4100. /**
  4101. * task_nice - return the nice value of a given task.
  4102. * @p: the task in question.
  4103. */
  4104. int task_nice(const struct task_struct *p)
  4105. {
  4106. return TASK_NICE(p);
  4107. }
  4108. EXPORT_SYMBOL(task_nice);
  4109. /**
  4110. * idle_cpu - is a given cpu idle currently?
  4111. * @cpu: the processor in question.
  4112. */
  4113. int idle_cpu(int cpu)
  4114. {
  4115. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4116. }
  4117. /**
  4118. * idle_task - return the idle task for a given cpu.
  4119. * @cpu: the processor in question.
  4120. */
  4121. struct task_struct *idle_task(int cpu)
  4122. {
  4123. return cpu_rq(cpu)->idle;
  4124. }
  4125. /**
  4126. * find_process_by_pid - find a process with a matching PID value.
  4127. * @pid: the pid in question.
  4128. */
  4129. static struct task_struct *find_process_by_pid(pid_t pid)
  4130. {
  4131. return pid ? find_task_by_vpid(pid) : current;
  4132. }
  4133. /* Actually do priority change: must hold rq lock. */
  4134. static void
  4135. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4136. {
  4137. BUG_ON(p->se.on_rq);
  4138. p->policy = policy;
  4139. switch (p->policy) {
  4140. case SCHED_NORMAL:
  4141. case SCHED_BATCH:
  4142. case SCHED_IDLE:
  4143. p->sched_class = &fair_sched_class;
  4144. break;
  4145. case SCHED_FIFO:
  4146. case SCHED_RR:
  4147. p->sched_class = &rt_sched_class;
  4148. break;
  4149. }
  4150. p->rt_priority = prio;
  4151. p->normal_prio = normal_prio(p);
  4152. /* we are holding p->pi_lock already */
  4153. p->prio = rt_mutex_getprio(p);
  4154. set_load_weight(p);
  4155. }
  4156. /**
  4157. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4158. * @p: the task in question.
  4159. * @policy: new policy.
  4160. * @param: structure containing the new RT priority.
  4161. *
  4162. * NOTE that the task may be already dead.
  4163. */
  4164. int sched_setscheduler(struct task_struct *p, int policy,
  4165. struct sched_param *param)
  4166. {
  4167. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4168. unsigned long flags;
  4169. const struct sched_class *prev_class = p->sched_class;
  4170. struct rq *rq;
  4171. /* may grab non-irq protected spin_locks */
  4172. BUG_ON(in_interrupt());
  4173. recheck:
  4174. /* double check policy once rq lock held */
  4175. if (policy < 0)
  4176. policy = oldpolicy = p->policy;
  4177. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4178. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4179. policy != SCHED_IDLE)
  4180. return -EINVAL;
  4181. /*
  4182. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4183. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4184. * SCHED_BATCH and SCHED_IDLE is 0.
  4185. */
  4186. if (param->sched_priority < 0 ||
  4187. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4188. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4189. return -EINVAL;
  4190. if (rt_policy(policy) != (param->sched_priority != 0))
  4191. return -EINVAL;
  4192. /*
  4193. * Allow unprivileged RT tasks to decrease priority:
  4194. */
  4195. if (!capable(CAP_SYS_NICE)) {
  4196. if (rt_policy(policy)) {
  4197. unsigned long rlim_rtprio;
  4198. if (!lock_task_sighand(p, &flags))
  4199. return -ESRCH;
  4200. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4201. unlock_task_sighand(p, &flags);
  4202. /* can't set/change the rt policy */
  4203. if (policy != p->policy && !rlim_rtprio)
  4204. return -EPERM;
  4205. /* can't increase priority */
  4206. if (param->sched_priority > p->rt_priority &&
  4207. param->sched_priority > rlim_rtprio)
  4208. return -EPERM;
  4209. }
  4210. /*
  4211. * Like positive nice levels, dont allow tasks to
  4212. * move out of SCHED_IDLE either:
  4213. */
  4214. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4215. return -EPERM;
  4216. /* can't change other user's priorities */
  4217. if ((current->euid != p->euid) &&
  4218. (current->euid != p->uid))
  4219. return -EPERM;
  4220. }
  4221. #ifdef CONFIG_RT_GROUP_SCHED
  4222. /*
  4223. * Do not allow realtime tasks into groups that have no runtime
  4224. * assigned.
  4225. */
  4226. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4227. return -EPERM;
  4228. #endif
  4229. retval = security_task_setscheduler(p, policy, param);
  4230. if (retval)
  4231. return retval;
  4232. /*
  4233. * make sure no PI-waiters arrive (or leave) while we are
  4234. * changing the priority of the task:
  4235. */
  4236. spin_lock_irqsave(&p->pi_lock, flags);
  4237. /*
  4238. * To be able to change p->policy safely, the apropriate
  4239. * runqueue lock must be held.
  4240. */
  4241. rq = __task_rq_lock(p);
  4242. /* recheck policy now with rq lock held */
  4243. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4244. policy = oldpolicy = -1;
  4245. __task_rq_unlock(rq);
  4246. spin_unlock_irqrestore(&p->pi_lock, flags);
  4247. goto recheck;
  4248. }
  4249. update_rq_clock(rq);
  4250. on_rq = p->se.on_rq;
  4251. running = task_current(rq, p);
  4252. if (on_rq)
  4253. deactivate_task(rq, p, 0);
  4254. if (running)
  4255. p->sched_class->put_prev_task(rq, p);
  4256. oldprio = p->prio;
  4257. __setscheduler(rq, p, policy, param->sched_priority);
  4258. if (running)
  4259. p->sched_class->set_curr_task(rq);
  4260. if (on_rq) {
  4261. activate_task(rq, p, 0);
  4262. check_class_changed(rq, p, prev_class, oldprio, running);
  4263. }
  4264. __task_rq_unlock(rq);
  4265. spin_unlock_irqrestore(&p->pi_lock, flags);
  4266. rt_mutex_adjust_pi(p);
  4267. return 0;
  4268. }
  4269. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4270. static int
  4271. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4272. {
  4273. struct sched_param lparam;
  4274. struct task_struct *p;
  4275. int retval;
  4276. if (!param || pid < 0)
  4277. return -EINVAL;
  4278. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4279. return -EFAULT;
  4280. rcu_read_lock();
  4281. retval = -ESRCH;
  4282. p = find_process_by_pid(pid);
  4283. if (p != NULL)
  4284. retval = sched_setscheduler(p, policy, &lparam);
  4285. rcu_read_unlock();
  4286. return retval;
  4287. }
  4288. /**
  4289. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4290. * @pid: the pid in question.
  4291. * @policy: new policy.
  4292. * @param: structure containing the new RT priority.
  4293. */
  4294. asmlinkage long
  4295. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4296. {
  4297. /* negative values for policy are not valid */
  4298. if (policy < 0)
  4299. return -EINVAL;
  4300. return do_sched_setscheduler(pid, policy, param);
  4301. }
  4302. /**
  4303. * sys_sched_setparam - set/change the RT priority of a thread
  4304. * @pid: the pid in question.
  4305. * @param: structure containing the new RT priority.
  4306. */
  4307. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4308. {
  4309. return do_sched_setscheduler(pid, -1, param);
  4310. }
  4311. /**
  4312. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4313. * @pid: the pid in question.
  4314. */
  4315. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4316. {
  4317. struct task_struct *p;
  4318. int retval;
  4319. if (pid < 0)
  4320. return -EINVAL;
  4321. retval = -ESRCH;
  4322. read_lock(&tasklist_lock);
  4323. p = find_process_by_pid(pid);
  4324. if (p) {
  4325. retval = security_task_getscheduler(p);
  4326. if (!retval)
  4327. retval = p->policy;
  4328. }
  4329. read_unlock(&tasklist_lock);
  4330. return retval;
  4331. }
  4332. /**
  4333. * sys_sched_getscheduler - get the RT priority of a thread
  4334. * @pid: the pid in question.
  4335. * @param: structure containing the RT priority.
  4336. */
  4337. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4338. {
  4339. struct sched_param lp;
  4340. struct task_struct *p;
  4341. int retval;
  4342. if (!param || pid < 0)
  4343. return -EINVAL;
  4344. read_lock(&tasklist_lock);
  4345. p = find_process_by_pid(pid);
  4346. retval = -ESRCH;
  4347. if (!p)
  4348. goto out_unlock;
  4349. retval = security_task_getscheduler(p);
  4350. if (retval)
  4351. goto out_unlock;
  4352. lp.sched_priority = p->rt_priority;
  4353. read_unlock(&tasklist_lock);
  4354. /*
  4355. * This one might sleep, we cannot do it with a spinlock held ...
  4356. */
  4357. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4358. return retval;
  4359. out_unlock:
  4360. read_unlock(&tasklist_lock);
  4361. return retval;
  4362. }
  4363. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4364. {
  4365. cpumask_t cpus_allowed;
  4366. cpumask_t new_mask = *in_mask;
  4367. struct task_struct *p;
  4368. int retval;
  4369. get_online_cpus();
  4370. read_lock(&tasklist_lock);
  4371. p = find_process_by_pid(pid);
  4372. if (!p) {
  4373. read_unlock(&tasklist_lock);
  4374. put_online_cpus();
  4375. return -ESRCH;
  4376. }
  4377. /*
  4378. * It is not safe to call set_cpus_allowed with the
  4379. * tasklist_lock held. We will bump the task_struct's
  4380. * usage count and then drop tasklist_lock.
  4381. */
  4382. get_task_struct(p);
  4383. read_unlock(&tasklist_lock);
  4384. retval = -EPERM;
  4385. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4386. !capable(CAP_SYS_NICE))
  4387. goto out_unlock;
  4388. retval = security_task_setscheduler(p, 0, NULL);
  4389. if (retval)
  4390. goto out_unlock;
  4391. cpuset_cpus_allowed(p, &cpus_allowed);
  4392. cpus_and(new_mask, new_mask, cpus_allowed);
  4393. again:
  4394. retval = set_cpus_allowed_ptr(p, &new_mask);
  4395. if (!retval) {
  4396. cpuset_cpus_allowed(p, &cpus_allowed);
  4397. if (!cpus_subset(new_mask, cpus_allowed)) {
  4398. /*
  4399. * We must have raced with a concurrent cpuset
  4400. * update. Just reset the cpus_allowed to the
  4401. * cpuset's cpus_allowed
  4402. */
  4403. new_mask = cpus_allowed;
  4404. goto again;
  4405. }
  4406. }
  4407. out_unlock:
  4408. put_task_struct(p);
  4409. put_online_cpus();
  4410. return retval;
  4411. }
  4412. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4413. cpumask_t *new_mask)
  4414. {
  4415. if (len < sizeof(cpumask_t)) {
  4416. memset(new_mask, 0, sizeof(cpumask_t));
  4417. } else if (len > sizeof(cpumask_t)) {
  4418. len = sizeof(cpumask_t);
  4419. }
  4420. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4421. }
  4422. /**
  4423. * sys_sched_setaffinity - set the cpu affinity of a process
  4424. * @pid: pid of the process
  4425. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4426. * @user_mask_ptr: user-space pointer to the new cpu mask
  4427. */
  4428. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4429. unsigned long __user *user_mask_ptr)
  4430. {
  4431. cpumask_t new_mask;
  4432. int retval;
  4433. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4434. if (retval)
  4435. return retval;
  4436. return sched_setaffinity(pid, &new_mask);
  4437. }
  4438. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4439. {
  4440. struct task_struct *p;
  4441. int retval;
  4442. get_online_cpus();
  4443. read_lock(&tasklist_lock);
  4444. retval = -ESRCH;
  4445. p = find_process_by_pid(pid);
  4446. if (!p)
  4447. goto out_unlock;
  4448. retval = security_task_getscheduler(p);
  4449. if (retval)
  4450. goto out_unlock;
  4451. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4452. out_unlock:
  4453. read_unlock(&tasklist_lock);
  4454. put_online_cpus();
  4455. return retval;
  4456. }
  4457. /**
  4458. * sys_sched_getaffinity - get the cpu affinity of a process
  4459. * @pid: pid of the process
  4460. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4461. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4462. */
  4463. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4464. unsigned long __user *user_mask_ptr)
  4465. {
  4466. int ret;
  4467. cpumask_t mask;
  4468. if (len < sizeof(cpumask_t))
  4469. return -EINVAL;
  4470. ret = sched_getaffinity(pid, &mask);
  4471. if (ret < 0)
  4472. return ret;
  4473. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4474. return -EFAULT;
  4475. return sizeof(cpumask_t);
  4476. }
  4477. /**
  4478. * sys_sched_yield - yield the current processor to other threads.
  4479. *
  4480. * This function yields the current CPU to other tasks. If there are no
  4481. * other threads running on this CPU then this function will return.
  4482. */
  4483. asmlinkage long sys_sched_yield(void)
  4484. {
  4485. struct rq *rq = this_rq_lock();
  4486. schedstat_inc(rq, yld_count);
  4487. current->sched_class->yield_task(rq);
  4488. /*
  4489. * Since we are going to call schedule() anyway, there's
  4490. * no need to preempt or enable interrupts:
  4491. */
  4492. __release(rq->lock);
  4493. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4494. _raw_spin_unlock(&rq->lock);
  4495. preempt_enable_no_resched();
  4496. schedule();
  4497. return 0;
  4498. }
  4499. static void __cond_resched(void)
  4500. {
  4501. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4502. __might_sleep(__FILE__, __LINE__);
  4503. #endif
  4504. /*
  4505. * The BKS might be reacquired before we have dropped
  4506. * PREEMPT_ACTIVE, which could trigger a second
  4507. * cond_resched() call.
  4508. */
  4509. do {
  4510. add_preempt_count(PREEMPT_ACTIVE);
  4511. schedule();
  4512. sub_preempt_count(PREEMPT_ACTIVE);
  4513. } while (need_resched());
  4514. }
  4515. int __sched _cond_resched(void)
  4516. {
  4517. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4518. system_state == SYSTEM_RUNNING) {
  4519. __cond_resched();
  4520. return 1;
  4521. }
  4522. return 0;
  4523. }
  4524. EXPORT_SYMBOL(_cond_resched);
  4525. /*
  4526. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4527. * call schedule, and on return reacquire the lock.
  4528. *
  4529. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4530. * operations here to prevent schedule() from being called twice (once via
  4531. * spin_unlock(), once by hand).
  4532. */
  4533. int cond_resched_lock(spinlock_t *lock)
  4534. {
  4535. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4536. int ret = 0;
  4537. if (spin_needbreak(lock) || resched) {
  4538. spin_unlock(lock);
  4539. if (resched && need_resched())
  4540. __cond_resched();
  4541. else
  4542. cpu_relax();
  4543. ret = 1;
  4544. spin_lock(lock);
  4545. }
  4546. return ret;
  4547. }
  4548. EXPORT_SYMBOL(cond_resched_lock);
  4549. int __sched cond_resched_softirq(void)
  4550. {
  4551. BUG_ON(!in_softirq());
  4552. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4553. local_bh_enable();
  4554. __cond_resched();
  4555. local_bh_disable();
  4556. return 1;
  4557. }
  4558. return 0;
  4559. }
  4560. EXPORT_SYMBOL(cond_resched_softirq);
  4561. /**
  4562. * yield - yield the current processor to other threads.
  4563. *
  4564. * This is a shortcut for kernel-space yielding - it marks the
  4565. * thread runnable and calls sys_sched_yield().
  4566. */
  4567. void __sched yield(void)
  4568. {
  4569. set_current_state(TASK_RUNNING);
  4570. sys_sched_yield();
  4571. }
  4572. EXPORT_SYMBOL(yield);
  4573. /*
  4574. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4575. * that process accounting knows that this is a task in IO wait state.
  4576. *
  4577. * But don't do that if it is a deliberate, throttling IO wait (this task
  4578. * has set its backing_dev_info: the queue against which it should throttle)
  4579. */
  4580. void __sched io_schedule(void)
  4581. {
  4582. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4583. delayacct_blkio_start();
  4584. atomic_inc(&rq->nr_iowait);
  4585. schedule();
  4586. atomic_dec(&rq->nr_iowait);
  4587. delayacct_blkio_end();
  4588. }
  4589. EXPORT_SYMBOL(io_schedule);
  4590. long __sched io_schedule_timeout(long timeout)
  4591. {
  4592. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4593. long ret;
  4594. delayacct_blkio_start();
  4595. atomic_inc(&rq->nr_iowait);
  4596. ret = schedule_timeout(timeout);
  4597. atomic_dec(&rq->nr_iowait);
  4598. delayacct_blkio_end();
  4599. return ret;
  4600. }
  4601. /**
  4602. * sys_sched_get_priority_max - return maximum RT priority.
  4603. * @policy: scheduling class.
  4604. *
  4605. * this syscall returns the maximum rt_priority that can be used
  4606. * by a given scheduling class.
  4607. */
  4608. asmlinkage long sys_sched_get_priority_max(int policy)
  4609. {
  4610. int ret = -EINVAL;
  4611. switch (policy) {
  4612. case SCHED_FIFO:
  4613. case SCHED_RR:
  4614. ret = MAX_USER_RT_PRIO-1;
  4615. break;
  4616. case SCHED_NORMAL:
  4617. case SCHED_BATCH:
  4618. case SCHED_IDLE:
  4619. ret = 0;
  4620. break;
  4621. }
  4622. return ret;
  4623. }
  4624. /**
  4625. * sys_sched_get_priority_min - return minimum RT priority.
  4626. * @policy: scheduling class.
  4627. *
  4628. * this syscall returns the minimum rt_priority that can be used
  4629. * by a given scheduling class.
  4630. */
  4631. asmlinkage long sys_sched_get_priority_min(int policy)
  4632. {
  4633. int ret = -EINVAL;
  4634. switch (policy) {
  4635. case SCHED_FIFO:
  4636. case SCHED_RR:
  4637. ret = 1;
  4638. break;
  4639. case SCHED_NORMAL:
  4640. case SCHED_BATCH:
  4641. case SCHED_IDLE:
  4642. ret = 0;
  4643. }
  4644. return ret;
  4645. }
  4646. /**
  4647. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4648. * @pid: pid of the process.
  4649. * @interval: userspace pointer to the timeslice value.
  4650. *
  4651. * this syscall writes the default timeslice value of a given process
  4652. * into the user-space timespec buffer. A value of '0' means infinity.
  4653. */
  4654. asmlinkage
  4655. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4656. {
  4657. struct task_struct *p;
  4658. unsigned int time_slice;
  4659. int retval;
  4660. struct timespec t;
  4661. if (pid < 0)
  4662. return -EINVAL;
  4663. retval = -ESRCH;
  4664. read_lock(&tasklist_lock);
  4665. p = find_process_by_pid(pid);
  4666. if (!p)
  4667. goto out_unlock;
  4668. retval = security_task_getscheduler(p);
  4669. if (retval)
  4670. goto out_unlock;
  4671. /*
  4672. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4673. * tasks that are on an otherwise idle runqueue:
  4674. */
  4675. time_slice = 0;
  4676. if (p->policy == SCHED_RR) {
  4677. time_slice = DEF_TIMESLICE;
  4678. } else if (p->policy != SCHED_FIFO) {
  4679. struct sched_entity *se = &p->se;
  4680. unsigned long flags;
  4681. struct rq *rq;
  4682. rq = task_rq_lock(p, &flags);
  4683. if (rq->cfs.load.weight)
  4684. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4685. task_rq_unlock(rq, &flags);
  4686. }
  4687. read_unlock(&tasklist_lock);
  4688. jiffies_to_timespec(time_slice, &t);
  4689. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4690. return retval;
  4691. out_unlock:
  4692. read_unlock(&tasklist_lock);
  4693. return retval;
  4694. }
  4695. static const char stat_nam[] = "RSDTtZX";
  4696. void sched_show_task(struct task_struct *p)
  4697. {
  4698. unsigned long free = 0;
  4699. unsigned state;
  4700. state = p->state ? __ffs(p->state) + 1 : 0;
  4701. printk(KERN_INFO "%-13.13s %c", p->comm,
  4702. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4703. #if BITS_PER_LONG == 32
  4704. if (state == TASK_RUNNING)
  4705. printk(KERN_CONT " running ");
  4706. else
  4707. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4708. #else
  4709. if (state == TASK_RUNNING)
  4710. printk(KERN_CONT " running task ");
  4711. else
  4712. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4713. #endif
  4714. #ifdef CONFIG_DEBUG_STACK_USAGE
  4715. {
  4716. unsigned long *n = end_of_stack(p);
  4717. while (!*n)
  4718. n++;
  4719. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4720. }
  4721. #endif
  4722. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4723. task_pid_nr(p), task_pid_nr(p->real_parent));
  4724. show_stack(p, NULL);
  4725. }
  4726. void show_state_filter(unsigned long state_filter)
  4727. {
  4728. struct task_struct *g, *p;
  4729. #if BITS_PER_LONG == 32
  4730. printk(KERN_INFO
  4731. " task PC stack pid father\n");
  4732. #else
  4733. printk(KERN_INFO
  4734. " task PC stack pid father\n");
  4735. #endif
  4736. read_lock(&tasklist_lock);
  4737. do_each_thread(g, p) {
  4738. /*
  4739. * reset the NMI-timeout, listing all files on a slow
  4740. * console might take alot of time:
  4741. */
  4742. touch_nmi_watchdog();
  4743. if (!state_filter || (p->state & state_filter))
  4744. sched_show_task(p);
  4745. } while_each_thread(g, p);
  4746. touch_all_softlockup_watchdogs();
  4747. #ifdef CONFIG_SCHED_DEBUG
  4748. sysrq_sched_debug_show();
  4749. #endif
  4750. read_unlock(&tasklist_lock);
  4751. /*
  4752. * Only show locks if all tasks are dumped:
  4753. */
  4754. if (state_filter == -1)
  4755. debug_show_all_locks();
  4756. }
  4757. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4758. {
  4759. idle->sched_class = &idle_sched_class;
  4760. }
  4761. /**
  4762. * init_idle - set up an idle thread for a given CPU
  4763. * @idle: task in question
  4764. * @cpu: cpu the idle task belongs to
  4765. *
  4766. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4767. * flag, to make booting more robust.
  4768. */
  4769. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4770. {
  4771. struct rq *rq = cpu_rq(cpu);
  4772. unsigned long flags;
  4773. __sched_fork(idle);
  4774. idle->se.exec_start = sched_clock();
  4775. idle->prio = idle->normal_prio = MAX_PRIO;
  4776. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4777. __set_task_cpu(idle, cpu);
  4778. spin_lock_irqsave(&rq->lock, flags);
  4779. rq->curr = rq->idle = idle;
  4780. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4781. idle->oncpu = 1;
  4782. #endif
  4783. spin_unlock_irqrestore(&rq->lock, flags);
  4784. /* Set the preempt count _outside_ the spinlocks! */
  4785. #if defined(CONFIG_PREEMPT)
  4786. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4787. #else
  4788. task_thread_info(idle)->preempt_count = 0;
  4789. #endif
  4790. /*
  4791. * The idle tasks have their own, simple scheduling class:
  4792. */
  4793. idle->sched_class = &idle_sched_class;
  4794. }
  4795. /*
  4796. * In a system that switches off the HZ timer nohz_cpu_mask
  4797. * indicates which cpus entered this state. This is used
  4798. * in the rcu update to wait only for active cpus. For system
  4799. * which do not switch off the HZ timer nohz_cpu_mask should
  4800. * always be CPU_MASK_NONE.
  4801. */
  4802. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4803. /*
  4804. * Increase the granularity value when there are more CPUs,
  4805. * because with more CPUs the 'effective latency' as visible
  4806. * to users decreases. But the relationship is not linear,
  4807. * so pick a second-best guess by going with the log2 of the
  4808. * number of CPUs.
  4809. *
  4810. * This idea comes from the SD scheduler of Con Kolivas:
  4811. */
  4812. static inline void sched_init_granularity(void)
  4813. {
  4814. unsigned int factor = 1 + ilog2(num_online_cpus());
  4815. const unsigned long limit = 200000000;
  4816. sysctl_sched_min_granularity *= factor;
  4817. if (sysctl_sched_min_granularity > limit)
  4818. sysctl_sched_min_granularity = limit;
  4819. sysctl_sched_latency *= factor;
  4820. if (sysctl_sched_latency > limit)
  4821. sysctl_sched_latency = limit;
  4822. sysctl_sched_wakeup_granularity *= factor;
  4823. }
  4824. #ifdef CONFIG_SMP
  4825. /*
  4826. * This is how migration works:
  4827. *
  4828. * 1) we queue a struct migration_req structure in the source CPU's
  4829. * runqueue and wake up that CPU's migration thread.
  4830. * 2) we down() the locked semaphore => thread blocks.
  4831. * 3) migration thread wakes up (implicitly it forces the migrated
  4832. * thread off the CPU)
  4833. * 4) it gets the migration request and checks whether the migrated
  4834. * task is still in the wrong runqueue.
  4835. * 5) if it's in the wrong runqueue then the migration thread removes
  4836. * it and puts it into the right queue.
  4837. * 6) migration thread up()s the semaphore.
  4838. * 7) we wake up and the migration is done.
  4839. */
  4840. /*
  4841. * Change a given task's CPU affinity. Migrate the thread to a
  4842. * proper CPU and schedule it away if the CPU it's executing on
  4843. * is removed from the allowed bitmask.
  4844. *
  4845. * NOTE: the caller must have a valid reference to the task, the
  4846. * task must not exit() & deallocate itself prematurely. The
  4847. * call is not atomic; no spinlocks may be held.
  4848. */
  4849. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  4850. {
  4851. struct migration_req req;
  4852. unsigned long flags;
  4853. struct rq *rq;
  4854. int ret = 0;
  4855. rq = task_rq_lock(p, &flags);
  4856. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  4857. ret = -EINVAL;
  4858. goto out;
  4859. }
  4860. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4861. !cpus_equal(p->cpus_allowed, *new_mask))) {
  4862. ret = -EINVAL;
  4863. goto out;
  4864. }
  4865. if (p->sched_class->set_cpus_allowed)
  4866. p->sched_class->set_cpus_allowed(p, new_mask);
  4867. else {
  4868. p->cpus_allowed = *new_mask;
  4869. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  4870. }
  4871. /* Can the task run on the task's current CPU? If so, we're done */
  4872. if (cpu_isset(task_cpu(p), *new_mask))
  4873. goto out;
  4874. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  4875. /* Need help from migration thread: drop lock and wait. */
  4876. task_rq_unlock(rq, &flags);
  4877. wake_up_process(rq->migration_thread);
  4878. wait_for_completion(&req.done);
  4879. tlb_migrate_finish(p->mm);
  4880. return 0;
  4881. }
  4882. out:
  4883. task_rq_unlock(rq, &flags);
  4884. return ret;
  4885. }
  4886. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4887. /*
  4888. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4889. * this because either it can't run here any more (set_cpus_allowed()
  4890. * away from this CPU, or CPU going down), or because we're
  4891. * attempting to rebalance this task on exec (sched_exec).
  4892. *
  4893. * So we race with normal scheduler movements, but that's OK, as long
  4894. * as the task is no longer on this CPU.
  4895. *
  4896. * Returns non-zero if task was successfully migrated.
  4897. */
  4898. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4899. {
  4900. struct rq *rq_dest, *rq_src;
  4901. int ret = 0, on_rq;
  4902. if (unlikely(cpu_is_offline(dest_cpu)))
  4903. return ret;
  4904. rq_src = cpu_rq(src_cpu);
  4905. rq_dest = cpu_rq(dest_cpu);
  4906. double_rq_lock(rq_src, rq_dest);
  4907. /* Already moved. */
  4908. if (task_cpu(p) != src_cpu)
  4909. goto out;
  4910. /* Affinity changed (again). */
  4911. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4912. goto out;
  4913. on_rq = p->se.on_rq;
  4914. if (on_rq)
  4915. deactivate_task(rq_src, p, 0);
  4916. set_task_cpu(p, dest_cpu);
  4917. if (on_rq) {
  4918. activate_task(rq_dest, p, 0);
  4919. check_preempt_curr(rq_dest, p);
  4920. }
  4921. ret = 1;
  4922. out:
  4923. double_rq_unlock(rq_src, rq_dest);
  4924. return ret;
  4925. }
  4926. /*
  4927. * migration_thread - this is a highprio system thread that performs
  4928. * thread migration by bumping thread off CPU then 'pushing' onto
  4929. * another runqueue.
  4930. */
  4931. static int migration_thread(void *data)
  4932. {
  4933. int cpu = (long)data;
  4934. struct rq *rq;
  4935. rq = cpu_rq(cpu);
  4936. BUG_ON(rq->migration_thread != current);
  4937. set_current_state(TASK_INTERRUPTIBLE);
  4938. while (!kthread_should_stop()) {
  4939. struct migration_req *req;
  4940. struct list_head *head;
  4941. spin_lock_irq(&rq->lock);
  4942. if (cpu_is_offline(cpu)) {
  4943. spin_unlock_irq(&rq->lock);
  4944. goto wait_to_die;
  4945. }
  4946. if (rq->active_balance) {
  4947. active_load_balance(rq, cpu);
  4948. rq->active_balance = 0;
  4949. }
  4950. head = &rq->migration_queue;
  4951. if (list_empty(head)) {
  4952. spin_unlock_irq(&rq->lock);
  4953. schedule();
  4954. set_current_state(TASK_INTERRUPTIBLE);
  4955. continue;
  4956. }
  4957. req = list_entry(head->next, struct migration_req, list);
  4958. list_del_init(head->next);
  4959. spin_unlock(&rq->lock);
  4960. __migrate_task(req->task, cpu, req->dest_cpu);
  4961. local_irq_enable();
  4962. complete(&req->done);
  4963. }
  4964. __set_current_state(TASK_RUNNING);
  4965. return 0;
  4966. wait_to_die:
  4967. /* Wait for kthread_stop */
  4968. set_current_state(TASK_INTERRUPTIBLE);
  4969. while (!kthread_should_stop()) {
  4970. schedule();
  4971. set_current_state(TASK_INTERRUPTIBLE);
  4972. }
  4973. __set_current_state(TASK_RUNNING);
  4974. return 0;
  4975. }
  4976. #ifdef CONFIG_HOTPLUG_CPU
  4977. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4978. {
  4979. int ret;
  4980. local_irq_disable();
  4981. ret = __migrate_task(p, src_cpu, dest_cpu);
  4982. local_irq_enable();
  4983. return ret;
  4984. }
  4985. /*
  4986. * Figure out where task on dead CPU should go, use force if necessary.
  4987. * NOTE: interrupts should be disabled by the caller
  4988. */
  4989. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4990. {
  4991. unsigned long flags;
  4992. cpumask_t mask;
  4993. struct rq *rq;
  4994. int dest_cpu;
  4995. do {
  4996. /* On same node? */
  4997. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4998. cpus_and(mask, mask, p->cpus_allowed);
  4999. dest_cpu = any_online_cpu(mask);
  5000. /* On any allowed CPU? */
  5001. if (dest_cpu >= nr_cpu_ids)
  5002. dest_cpu = any_online_cpu(p->cpus_allowed);
  5003. /* No more Mr. Nice Guy. */
  5004. if (dest_cpu >= nr_cpu_ids) {
  5005. cpumask_t cpus_allowed;
  5006. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5007. /*
  5008. * Try to stay on the same cpuset, where the
  5009. * current cpuset may be a subset of all cpus.
  5010. * The cpuset_cpus_allowed_locked() variant of
  5011. * cpuset_cpus_allowed() will not block. It must be
  5012. * called within calls to cpuset_lock/cpuset_unlock.
  5013. */
  5014. rq = task_rq_lock(p, &flags);
  5015. p->cpus_allowed = cpus_allowed;
  5016. dest_cpu = any_online_cpu(p->cpus_allowed);
  5017. task_rq_unlock(rq, &flags);
  5018. /*
  5019. * Don't tell them about moving exiting tasks or
  5020. * kernel threads (both mm NULL), since they never
  5021. * leave kernel.
  5022. */
  5023. if (p->mm && printk_ratelimit()) {
  5024. printk(KERN_INFO "process %d (%s) no "
  5025. "longer affine to cpu%d\n",
  5026. task_pid_nr(p), p->comm, dead_cpu);
  5027. }
  5028. }
  5029. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5030. }
  5031. /*
  5032. * While a dead CPU has no uninterruptible tasks queued at this point,
  5033. * it might still have a nonzero ->nr_uninterruptible counter, because
  5034. * for performance reasons the counter is not stricly tracking tasks to
  5035. * their home CPUs. So we just add the counter to another CPU's counter,
  5036. * to keep the global sum constant after CPU-down:
  5037. */
  5038. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5039. {
  5040. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5041. unsigned long flags;
  5042. local_irq_save(flags);
  5043. double_rq_lock(rq_src, rq_dest);
  5044. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5045. rq_src->nr_uninterruptible = 0;
  5046. double_rq_unlock(rq_src, rq_dest);
  5047. local_irq_restore(flags);
  5048. }
  5049. /* Run through task list and migrate tasks from the dead cpu. */
  5050. static void migrate_live_tasks(int src_cpu)
  5051. {
  5052. struct task_struct *p, *t;
  5053. read_lock(&tasklist_lock);
  5054. do_each_thread(t, p) {
  5055. if (p == current)
  5056. continue;
  5057. if (task_cpu(p) == src_cpu)
  5058. move_task_off_dead_cpu(src_cpu, p);
  5059. } while_each_thread(t, p);
  5060. read_unlock(&tasklist_lock);
  5061. }
  5062. /*
  5063. * Schedules idle task to be the next runnable task on current CPU.
  5064. * It does so by boosting its priority to highest possible.
  5065. * Used by CPU offline code.
  5066. */
  5067. void sched_idle_next(void)
  5068. {
  5069. int this_cpu = smp_processor_id();
  5070. struct rq *rq = cpu_rq(this_cpu);
  5071. struct task_struct *p = rq->idle;
  5072. unsigned long flags;
  5073. /* cpu has to be offline */
  5074. BUG_ON(cpu_online(this_cpu));
  5075. /*
  5076. * Strictly not necessary since rest of the CPUs are stopped by now
  5077. * and interrupts disabled on the current cpu.
  5078. */
  5079. spin_lock_irqsave(&rq->lock, flags);
  5080. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5081. update_rq_clock(rq);
  5082. activate_task(rq, p, 0);
  5083. spin_unlock_irqrestore(&rq->lock, flags);
  5084. }
  5085. /*
  5086. * Ensures that the idle task is using init_mm right before its cpu goes
  5087. * offline.
  5088. */
  5089. void idle_task_exit(void)
  5090. {
  5091. struct mm_struct *mm = current->active_mm;
  5092. BUG_ON(cpu_online(smp_processor_id()));
  5093. if (mm != &init_mm)
  5094. switch_mm(mm, &init_mm, current);
  5095. mmdrop(mm);
  5096. }
  5097. /* called under rq->lock with disabled interrupts */
  5098. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5099. {
  5100. struct rq *rq = cpu_rq(dead_cpu);
  5101. /* Must be exiting, otherwise would be on tasklist. */
  5102. BUG_ON(!p->exit_state);
  5103. /* Cannot have done final schedule yet: would have vanished. */
  5104. BUG_ON(p->state == TASK_DEAD);
  5105. get_task_struct(p);
  5106. /*
  5107. * Drop lock around migration; if someone else moves it,
  5108. * that's OK. No task can be added to this CPU, so iteration is
  5109. * fine.
  5110. */
  5111. spin_unlock_irq(&rq->lock);
  5112. move_task_off_dead_cpu(dead_cpu, p);
  5113. spin_lock_irq(&rq->lock);
  5114. put_task_struct(p);
  5115. }
  5116. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5117. static void migrate_dead_tasks(unsigned int dead_cpu)
  5118. {
  5119. struct rq *rq = cpu_rq(dead_cpu);
  5120. struct task_struct *next;
  5121. for ( ; ; ) {
  5122. if (!rq->nr_running)
  5123. break;
  5124. update_rq_clock(rq);
  5125. next = pick_next_task(rq, rq->curr);
  5126. if (!next)
  5127. break;
  5128. migrate_dead(dead_cpu, next);
  5129. }
  5130. }
  5131. #endif /* CONFIG_HOTPLUG_CPU */
  5132. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5133. static struct ctl_table sd_ctl_dir[] = {
  5134. {
  5135. .procname = "sched_domain",
  5136. .mode = 0555,
  5137. },
  5138. {0, },
  5139. };
  5140. static struct ctl_table sd_ctl_root[] = {
  5141. {
  5142. .ctl_name = CTL_KERN,
  5143. .procname = "kernel",
  5144. .mode = 0555,
  5145. .child = sd_ctl_dir,
  5146. },
  5147. {0, },
  5148. };
  5149. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5150. {
  5151. struct ctl_table *entry =
  5152. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5153. return entry;
  5154. }
  5155. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5156. {
  5157. struct ctl_table *entry;
  5158. /*
  5159. * In the intermediate directories, both the child directory and
  5160. * procname are dynamically allocated and could fail but the mode
  5161. * will always be set. In the lowest directory the names are
  5162. * static strings and all have proc handlers.
  5163. */
  5164. for (entry = *tablep; entry->mode; entry++) {
  5165. if (entry->child)
  5166. sd_free_ctl_entry(&entry->child);
  5167. if (entry->proc_handler == NULL)
  5168. kfree(entry->procname);
  5169. }
  5170. kfree(*tablep);
  5171. *tablep = NULL;
  5172. }
  5173. static void
  5174. set_table_entry(struct ctl_table *entry,
  5175. const char *procname, void *data, int maxlen,
  5176. mode_t mode, proc_handler *proc_handler)
  5177. {
  5178. entry->procname = procname;
  5179. entry->data = data;
  5180. entry->maxlen = maxlen;
  5181. entry->mode = mode;
  5182. entry->proc_handler = proc_handler;
  5183. }
  5184. static struct ctl_table *
  5185. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5186. {
  5187. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5188. if (table == NULL)
  5189. return NULL;
  5190. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5191. sizeof(long), 0644, proc_doulongvec_minmax);
  5192. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5193. sizeof(long), 0644, proc_doulongvec_minmax);
  5194. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5195. sizeof(int), 0644, proc_dointvec_minmax);
  5196. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5197. sizeof(int), 0644, proc_dointvec_minmax);
  5198. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5199. sizeof(int), 0644, proc_dointvec_minmax);
  5200. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5201. sizeof(int), 0644, proc_dointvec_minmax);
  5202. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5203. sizeof(int), 0644, proc_dointvec_minmax);
  5204. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5205. sizeof(int), 0644, proc_dointvec_minmax);
  5206. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5207. sizeof(int), 0644, proc_dointvec_minmax);
  5208. set_table_entry(&table[9], "cache_nice_tries",
  5209. &sd->cache_nice_tries,
  5210. sizeof(int), 0644, proc_dointvec_minmax);
  5211. set_table_entry(&table[10], "flags", &sd->flags,
  5212. sizeof(int), 0644, proc_dointvec_minmax);
  5213. /* &table[11] is terminator */
  5214. return table;
  5215. }
  5216. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5217. {
  5218. struct ctl_table *entry, *table;
  5219. struct sched_domain *sd;
  5220. int domain_num = 0, i;
  5221. char buf[32];
  5222. for_each_domain(cpu, sd)
  5223. domain_num++;
  5224. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5225. if (table == NULL)
  5226. return NULL;
  5227. i = 0;
  5228. for_each_domain(cpu, sd) {
  5229. snprintf(buf, 32, "domain%d", i);
  5230. entry->procname = kstrdup(buf, GFP_KERNEL);
  5231. entry->mode = 0555;
  5232. entry->child = sd_alloc_ctl_domain_table(sd);
  5233. entry++;
  5234. i++;
  5235. }
  5236. return table;
  5237. }
  5238. static struct ctl_table_header *sd_sysctl_header;
  5239. static void register_sched_domain_sysctl(void)
  5240. {
  5241. int i, cpu_num = num_online_cpus();
  5242. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5243. char buf[32];
  5244. WARN_ON(sd_ctl_dir[0].child);
  5245. sd_ctl_dir[0].child = entry;
  5246. if (entry == NULL)
  5247. return;
  5248. for_each_online_cpu(i) {
  5249. snprintf(buf, 32, "cpu%d", i);
  5250. entry->procname = kstrdup(buf, GFP_KERNEL);
  5251. entry->mode = 0555;
  5252. entry->child = sd_alloc_ctl_cpu_table(i);
  5253. entry++;
  5254. }
  5255. WARN_ON(sd_sysctl_header);
  5256. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5257. }
  5258. /* may be called multiple times per register */
  5259. static void unregister_sched_domain_sysctl(void)
  5260. {
  5261. if (sd_sysctl_header)
  5262. unregister_sysctl_table(sd_sysctl_header);
  5263. sd_sysctl_header = NULL;
  5264. if (sd_ctl_dir[0].child)
  5265. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5266. }
  5267. #else
  5268. static void register_sched_domain_sysctl(void)
  5269. {
  5270. }
  5271. static void unregister_sched_domain_sysctl(void)
  5272. {
  5273. }
  5274. #endif
  5275. static void set_rq_online(struct rq *rq)
  5276. {
  5277. if (!rq->online) {
  5278. const struct sched_class *class;
  5279. cpu_set(rq->cpu, rq->rd->online);
  5280. rq->online = 1;
  5281. for_each_class(class) {
  5282. if (class->rq_online)
  5283. class->rq_online(rq);
  5284. }
  5285. }
  5286. }
  5287. static void set_rq_offline(struct rq *rq)
  5288. {
  5289. if (rq->online) {
  5290. const struct sched_class *class;
  5291. for_each_class(class) {
  5292. if (class->rq_offline)
  5293. class->rq_offline(rq);
  5294. }
  5295. cpu_clear(rq->cpu, rq->rd->online);
  5296. rq->online = 0;
  5297. }
  5298. }
  5299. /*
  5300. * migration_call - callback that gets triggered when a CPU is added.
  5301. * Here we can start up the necessary migration thread for the new CPU.
  5302. */
  5303. static int __cpuinit
  5304. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5305. {
  5306. struct task_struct *p;
  5307. int cpu = (long)hcpu;
  5308. unsigned long flags;
  5309. struct rq *rq;
  5310. switch (action) {
  5311. case CPU_UP_PREPARE:
  5312. case CPU_UP_PREPARE_FROZEN:
  5313. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5314. if (IS_ERR(p))
  5315. return NOTIFY_BAD;
  5316. kthread_bind(p, cpu);
  5317. /* Must be high prio: stop_machine expects to yield to it. */
  5318. rq = task_rq_lock(p, &flags);
  5319. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5320. task_rq_unlock(rq, &flags);
  5321. cpu_rq(cpu)->migration_thread = p;
  5322. break;
  5323. case CPU_ONLINE:
  5324. case CPU_ONLINE_FROZEN:
  5325. /* Strictly unnecessary, as first user will wake it. */
  5326. wake_up_process(cpu_rq(cpu)->migration_thread);
  5327. /* Update our root-domain */
  5328. rq = cpu_rq(cpu);
  5329. spin_lock_irqsave(&rq->lock, flags);
  5330. if (rq->rd) {
  5331. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5332. set_rq_online(rq);
  5333. }
  5334. spin_unlock_irqrestore(&rq->lock, flags);
  5335. break;
  5336. #ifdef CONFIG_HOTPLUG_CPU
  5337. case CPU_UP_CANCELED:
  5338. case CPU_UP_CANCELED_FROZEN:
  5339. if (!cpu_rq(cpu)->migration_thread)
  5340. break;
  5341. /* Unbind it from offline cpu so it can run. Fall thru. */
  5342. kthread_bind(cpu_rq(cpu)->migration_thread,
  5343. any_online_cpu(cpu_online_map));
  5344. kthread_stop(cpu_rq(cpu)->migration_thread);
  5345. cpu_rq(cpu)->migration_thread = NULL;
  5346. break;
  5347. case CPU_DEAD:
  5348. case CPU_DEAD_FROZEN:
  5349. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5350. migrate_live_tasks(cpu);
  5351. rq = cpu_rq(cpu);
  5352. kthread_stop(rq->migration_thread);
  5353. rq->migration_thread = NULL;
  5354. /* Idle task back to normal (off runqueue, low prio) */
  5355. spin_lock_irq(&rq->lock);
  5356. update_rq_clock(rq);
  5357. deactivate_task(rq, rq->idle, 0);
  5358. rq->idle->static_prio = MAX_PRIO;
  5359. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5360. rq->idle->sched_class = &idle_sched_class;
  5361. migrate_dead_tasks(cpu);
  5362. spin_unlock_irq(&rq->lock);
  5363. cpuset_unlock();
  5364. migrate_nr_uninterruptible(rq);
  5365. BUG_ON(rq->nr_running != 0);
  5366. /*
  5367. * No need to migrate the tasks: it was best-effort if
  5368. * they didn't take sched_hotcpu_mutex. Just wake up
  5369. * the requestors.
  5370. */
  5371. spin_lock_irq(&rq->lock);
  5372. while (!list_empty(&rq->migration_queue)) {
  5373. struct migration_req *req;
  5374. req = list_entry(rq->migration_queue.next,
  5375. struct migration_req, list);
  5376. list_del_init(&req->list);
  5377. complete(&req->done);
  5378. }
  5379. spin_unlock_irq(&rq->lock);
  5380. break;
  5381. case CPU_DYING:
  5382. case CPU_DYING_FROZEN:
  5383. /* Update our root-domain */
  5384. rq = cpu_rq(cpu);
  5385. spin_lock_irqsave(&rq->lock, flags);
  5386. if (rq->rd) {
  5387. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5388. set_rq_offline(rq);
  5389. }
  5390. spin_unlock_irqrestore(&rq->lock, flags);
  5391. break;
  5392. #endif
  5393. }
  5394. return NOTIFY_OK;
  5395. }
  5396. /* Register at highest priority so that task migration (migrate_all_tasks)
  5397. * happens before everything else.
  5398. */
  5399. static struct notifier_block __cpuinitdata migration_notifier = {
  5400. .notifier_call = migration_call,
  5401. .priority = 10
  5402. };
  5403. void __init migration_init(void)
  5404. {
  5405. void *cpu = (void *)(long)smp_processor_id();
  5406. int err;
  5407. /* Start one for the boot CPU: */
  5408. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5409. BUG_ON(err == NOTIFY_BAD);
  5410. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5411. register_cpu_notifier(&migration_notifier);
  5412. }
  5413. #endif
  5414. #ifdef CONFIG_SMP
  5415. #ifdef CONFIG_SCHED_DEBUG
  5416. static inline const char *sd_level_to_string(enum sched_domain_level lvl)
  5417. {
  5418. switch (lvl) {
  5419. case SD_LV_NONE:
  5420. return "NONE";
  5421. case SD_LV_SIBLING:
  5422. return "SIBLING";
  5423. case SD_LV_MC:
  5424. return "MC";
  5425. case SD_LV_CPU:
  5426. return "CPU";
  5427. case SD_LV_NODE:
  5428. return "NODE";
  5429. case SD_LV_ALLNODES:
  5430. return "ALLNODES";
  5431. case SD_LV_MAX:
  5432. return "MAX";
  5433. }
  5434. return "MAX";
  5435. }
  5436. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5437. cpumask_t *groupmask)
  5438. {
  5439. struct sched_group *group = sd->groups;
  5440. char str[256];
  5441. cpulist_scnprintf(str, sizeof(str), sd->span);
  5442. cpus_clear(*groupmask);
  5443. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5444. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5445. printk("does not load-balance\n");
  5446. if (sd->parent)
  5447. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5448. " has parent");
  5449. return -1;
  5450. }
  5451. printk(KERN_CONT "span %s level %s\n",
  5452. str, sd_level_to_string(sd->level));
  5453. if (!cpu_isset(cpu, sd->span)) {
  5454. printk(KERN_ERR "ERROR: domain->span does not contain "
  5455. "CPU%d\n", cpu);
  5456. }
  5457. if (!cpu_isset(cpu, group->cpumask)) {
  5458. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5459. " CPU%d\n", cpu);
  5460. }
  5461. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5462. do {
  5463. if (!group) {
  5464. printk("\n");
  5465. printk(KERN_ERR "ERROR: group is NULL\n");
  5466. break;
  5467. }
  5468. if (!group->__cpu_power) {
  5469. printk(KERN_CONT "\n");
  5470. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5471. "set\n");
  5472. break;
  5473. }
  5474. if (!cpus_weight(group->cpumask)) {
  5475. printk(KERN_CONT "\n");
  5476. printk(KERN_ERR "ERROR: empty group\n");
  5477. break;
  5478. }
  5479. if (cpus_intersects(*groupmask, group->cpumask)) {
  5480. printk(KERN_CONT "\n");
  5481. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5482. break;
  5483. }
  5484. cpus_or(*groupmask, *groupmask, group->cpumask);
  5485. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5486. printk(KERN_CONT " %s", str);
  5487. group = group->next;
  5488. } while (group != sd->groups);
  5489. printk(KERN_CONT "\n");
  5490. if (!cpus_equal(sd->span, *groupmask))
  5491. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5492. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5493. printk(KERN_ERR "ERROR: parent span is not a superset "
  5494. "of domain->span\n");
  5495. return 0;
  5496. }
  5497. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5498. {
  5499. cpumask_t *groupmask;
  5500. int level = 0;
  5501. if (!sd) {
  5502. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5503. return;
  5504. }
  5505. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5506. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5507. if (!groupmask) {
  5508. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5509. return;
  5510. }
  5511. for (;;) {
  5512. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5513. break;
  5514. level++;
  5515. sd = sd->parent;
  5516. if (!sd)
  5517. break;
  5518. }
  5519. kfree(groupmask);
  5520. }
  5521. #else /* !CONFIG_SCHED_DEBUG */
  5522. # define sched_domain_debug(sd, cpu) do { } while (0)
  5523. #endif /* CONFIG_SCHED_DEBUG */
  5524. static int sd_degenerate(struct sched_domain *sd)
  5525. {
  5526. if (cpus_weight(sd->span) == 1)
  5527. return 1;
  5528. /* Following flags need at least 2 groups */
  5529. if (sd->flags & (SD_LOAD_BALANCE |
  5530. SD_BALANCE_NEWIDLE |
  5531. SD_BALANCE_FORK |
  5532. SD_BALANCE_EXEC |
  5533. SD_SHARE_CPUPOWER |
  5534. SD_SHARE_PKG_RESOURCES)) {
  5535. if (sd->groups != sd->groups->next)
  5536. return 0;
  5537. }
  5538. /* Following flags don't use groups */
  5539. if (sd->flags & (SD_WAKE_IDLE |
  5540. SD_WAKE_AFFINE |
  5541. SD_WAKE_BALANCE))
  5542. return 0;
  5543. return 1;
  5544. }
  5545. static int
  5546. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5547. {
  5548. unsigned long cflags = sd->flags, pflags = parent->flags;
  5549. if (sd_degenerate(parent))
  5550. return 1;
  5551. if (!cpus_equal(sd->span, parent->span))
  5552. return 0;
  5553. /* Does parent contain flags not in child? */
  5554. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5555. if (cflags & SD_WAKE_AFFINE)
  5556. pflags &= ~SD_WAKE_BALANCE;
  5557. /* Flags needing groups don't count if only 1 group in parent */
  5558. if (parent->groups == parent->groups->next) {
  5559. pflags &= ~(SD_LOAD_BALANCE |
  5560. SD_BALANCE_NEWIDLE |
  5561. SD_BALANCE_FORK |
  5562. SD_BALANCE_EXEC |
  5563. SD_SHARE_CPUPOWER |
  5564. SD_SHARE_PKG_RESOURCES);
  5565. }
  5566. if (~cflags & pflags)
  5567. return 0;
  5568. return 1;
  5569. }
  5570. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5571. {
  5572. unsigned long flags;
  5573. spin_lock_irqsave(&rq->lock, flags);
  5574. if (rq->rd) {
  5575. struct root_domain *old_rd = rq->rd;
  5576. if (cpu_isset(rq->cpu, old_rd->online))
  5577. set_rq_offline(rq);
  5578. cpu_clear(rq->cpu, old_rd->span);
  5579. if (atomic_dec_and_test(&old_rd->refcount))
  5580. kfree(old_rd);
  5581. }
  5582. atomic_inc(&rd->refcount);
  5583. rq->rd = rd;
  5584. cpu_set(rq->cpu, rd->span);
  5585. if (cpu_isset(rq->cpu, cpu_online_map))
  5586. set_rq_online(rq);
  5587. spin_unlock_irqrestore(&rq->lock, flags);
  5588. }
  5589. static void init_rootdomain(struct root_domain *rd)
  5590. {
  5591. memset(rd, 0, sizeof(*rd));
  5592. cpus_clear(rd->span);
  5593. cpus_clear(rd->online);
  5594. cpupri_init(&rd->cpupri);
  5595. }
  5596. static void init_defrootdomain(void)
  5597. {
  5598. init_rootdomain(&def_root_domain);
  5599. atomic_set(&def_root_domain.refcount, 1);
  5600. }
  5601. static struct root_domain *alloc_rootdomain(void)
  5602. {
  5603. struct root_domain *rd;
  5604. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5605. if (!rd)
  5606. return NULL;
  5607. init_rootdomain(rd);
  5608. return rd;
  5609. }
  5610. /*
  5611. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5612. * hold the hotplug lock.
  5613. */
  5614. static void
  5615. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5616. {
  5617. struct rq *rq = cpu_rq(cpu);
  5618. struct sched_domain *tmp;
  5619. /* Remove the sched domains which do not contribute to scheduling. */
  5620. for (tmp = sd; tmp; tmp = tmp->parent) {
  5621. struct sched_domain *parent = tmp->parent;
  5622. if (!parent)
  5623. break;
  5624. if (sd_parent_degenerate(tmp, parent)) {
  5625. tmp->parent = parent->parent;
  5626. if (parent->parent)
  5627. parent->parent->child = tmp;
  5628. }
  5629. }
  5630. if (sd && sd_degenerate(sd)) {
  5631. sd = sd->parent;
  5632. if (sd)
  5633. sd->child = NULL;
  5634. }
  5635. sched_domain_debug(sd, cpu);
  5636. rq_attach_root(rq, rd);
  5637. rcu_assign_pointer(rq->sd, sd);
  5638. }
  5639. /* cpus with isolated domains */
  5640. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5641. /* Setup the mask of cpus configured for isolated domains */
  5642. static int __init isolated_cpu_setup(char *str)
  5643. {
  5644. int ints[NR_CPUS], i;
  5645. str = get_options(str, ARRAY_SIZE(ints), ints);
  5646. cpus_clear(cpu_isolated_map);
  5647. for (i = 1; i <= ints[0]; i++)
  5648. if (ints[i] < NR_CPUS)
  5649. cpu_set(ints[i], cpu_isolated_map);
  5650. return 1;
  5651. }
  5652. __setup("isolcpus=", isolated_cpu_setup);
  5653. /*
  5654. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5655. * to a function which identifies what group(along with sched group) a CPU
  5656. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5657. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5658. *
  5659. * init_sched_build_groups will build a circular linked list of the groups
  5660. * covered by the given span, and will set each group's ->cpumask correctly,
  5661. * and ->cpu_power to 0.
  5662. */
  5663. static void
  5664. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5665. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5666. struct sched_group **sg,
  5667. cpumask_t *tmpmask),
  5668. cpumask_t *covered, cpumask_t *tmpmask)
  5669. {
  5670. struct sched_group *first = NULL, *last = NULL;
  5671. int i;
  5672. cpus_clear(*covered);
  5673. for_each_cpu_mask(i, *span) {
  5674. struct sched_group *sg;
  5675. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5676. int j;
  5677. if (cpu_isset(i, *covered))
  5678. continue;
  5679. cpus_clear(sg->cpumask);
  5680. sg->__cpu_power = 0;
  5681. for_each_cpu_mask(j, *span) {
  5682. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5683. continue;
  5684. cpu_set(j, *covered);
  5685. cpu_set(j, sg->cpumask);
  5686. }
  5687. if (!first)
  5688. first = sg;
  5689. if (last)
  5690. last->next = sg;
  5691. last = sg;
  5692. }
  5693. last->next = first;
  5694. }
  5695. #define SD_NODES_PER_DOMAIN 16
  5696. #ifdef CONFIG_NUMA
  5697. /**
  5698. * find_next_best_node - find the next node to include in a sched_domain
  5699. * @node: node whose sched_domain we're building
  5700. * @used_nodes: nodes already in the sched_domain
  5701. *
  5702. * Find the next node to include in a given scheduling domain. Simply
  5703. * finds the closest node not already in the @used_nodes map.
  5704. *
  5705. * Should use nodemask_t.
  5706. */
  5707. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5708. {
  5709. int i, n, val, min_val, best_node = 0;
  5710. min_val = INT_MAX;
  5711. for (i = 0; i < MAX_NUMNODES; i++) {
  5712. /* Start at @node */
  5713. n = (node + i) % MAX_NUMNODES;
  5714. if (!nr_cpus_node(n))
  5715. continue;
  5716. /* Skip already used nodes */
  5717. if (node_isset(n, *used_nodes))
  5718. continue;
  5719. /* Simple min distance search */
  5720. val = node_distance(node, n);
  5721. if (val < min_val) {
  5722. min_val = val;
  5723. best_node = n;
  5724. }
  5725. }
  5726. node_set(best_node, *used_nodes);
  5727. return best_node;
  5728. }
  5729. /**
  5730. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5731. * @node: node whose cpumask we're constructing
  5732. * @span: resulting cpumask
  5733. *
  5734. * Given a node, construct a good cpumask for its sched_domain to span. It
  5735. * should be one that prevents unnecessary balancing, but also spreads tasks
  5736. * out optimally.
  5737. */
  5738. static void sched_domain_node_span(int node, cpumask_t *span)
  5739. {
  5740. nodemask_t used_nodes;
  5741. node_to_cpumask_ptr(nodemask, node);
  5742. int i;
  5743. cpus_clear(*span);
  5744. nodes_clear(used_nodes);
  5745. cpus_or(*span, *span, *nodemask);
  5746. node_set(node, used_nodes);
  5747. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5748. int next_node = find_next_best_node(node, &used_nodes);
  5749. node_to_cpumask_ptr_next(nodemask, next_node);
  5750. cpus_or(*span, *span, *nodemask);
  5751. }
  5752. }
  5753. #endif /* CONFIG_NUMA */
  5754. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5755. /*
  5756. * SMT sched-domains:
  5757. */
  5758. #ifdef CONFIG_SCHED_SMT
  5759. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5760. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5761. static int
  5762. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5763. cpumask_t *unused)
  5764. {
  5765. if (sg)
  5766. *sg = &per_cpu(sched_group_cpus, cpu);
  5767. return cpu;
  5768. }
  5769. #endif /* CONFIG_SCHED_SMT */
  5770. /*
  5771. * multi-core sched-domains:
  5772. */
  5773. #ifdef CONFIG_SCHED_MC
  5774. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5775. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5776. #endif /* CONFIG_SCHED_MC */
  5777. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5778. static int
  5779. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5780. cpumask_t *mask)
  5781. {
  5782. int group;
  5783. *mask = per_cpu(cpu_sibling_map, cpu);
  5784. cpus_and(*mask, *mask, *cpu_map);
  5785. group = first_cpu(*mask);
  5786. if (sg)
  5787. *sg = &per_cpu(sched_group_core, group);
  5788. return group;
  5789. }
  5790. #elif defined(CONFIG_SCHED_MC)
  5791. static int
  5792. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5793. cpumask_t *unused)
  5794. {
  5795. if (sg)
  5796. *sg = &per_cpu(sched_group_core, cpu);
  5797. return cpu;
  5798. }
  5799. #endif
  5800. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5801. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5802. static int
  5803. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5804. cpumask_t *mask)
  5805. {
  5806. int group;
  5807. #ifdef CONFIG_SCHED_MC
  5808. *mask = cpu_coregroup_map(cpu);
  5809. cpus_and(*mask, *mask, *cpu_map);
  5810. group = first_cpu(*mask);
  5811. #elif defined(CONFIG_SCHED_SMT)
  5812. *mask = per_cpu(cpu_sibling_map, cpu);
  5813. cpus_and(*mask, *mask, *cpu_map);
  5814. group = first_cpu(*mask);
  5815. #else
  5816. group = cpu;
  5817. #endif
  5818. if (sg)
  5819. *sg = &per_cpu(sched_group_phys, group);
  5820. return group;
  5821. }
  5822. #ifdef CONFIG_NUMA
  5823. /*
  5824. * The init_sched_build_groups can't handle what we want to do with node
  5825. * groups, so roll our own. Now each node has its own list of groups which
  5826. * gets dynamically allocated.
  5827. */
  5828. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5829. static struct sched_group ***sched_group_nodes_bycpu;
  5830. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5831. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5832. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5833. struct sched_group **sg, cpumask_t *nodemask)
  5834. {
  5835. int group;
  5836. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5837. cpus_and(*nodemask, *nodemask, *cpu_map);
  5838. group = first_cpu(*nodemask);
  5839. if (sg)
  5840. *sg = &per_cpu(sched_group_allnodes, group);
  5841. return group;
  5842. }
  5843. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5844. {
  5845. struct sched_group *sg = group_head;
  5846. int j;
  5847. if (!sg)
  5848. return;
  5849. do {
  5850. for_each_cpu_mask(j, sg->cpumask) {
  5851. struct sched_domain *sd;
  5852. sd = &per_cpu(phys_domains, j);
  5853. if (j != first_cpu(sd->groups->cpumask)) {
  5854. /*
  5855. * Only add "power" once for each
  5856. * physical package.
  5857. */
  5858. continue;
  5859. }
  5860. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5861. }
  5862. sg = sg->next;
  5863. } while (sg != group_head);
  5864. }
  5865. #endif /* CONFIG_NUMA */
  5866. #ifdef CONFIG_NUMA
  5867. /* Free memory allocated for various sched_group structures */
  5868. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5869. {
  5870. int cpu, i;
  5871. for_each_cpu_mask(cpu, *cpu_map) {
  5872. struct sched_group **sched_group_nodes
  5873. = sched_group_nodes_bycpu[cpu];
  5874. if (!sched_group_nodes)
  5875. continue;
  5876. for (i = 0; i < MAX_NUMNODES; i++) {
  5877. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5878. *nodemask = node_to_cpumask(i);
  5879. cpus_and(*nodemask, *nodemask, *cpu_map);
  5880. if (cpus_empty(*nodemask))
  5881. continue;
  5882. if (sg == NULL)
  5883. continue;
  5884. sg = sg->next;
  5885. next_sg:
  5886. oldsg = sg;
  5887. sg = sg->next;
  5888. kfree(oldsg);
  5889. if (oldsg != sched_group_nodes[i])
  5890. goto next_sg;
  5891. }
  5892. kfree(sched_group_nodes);
  5893. sched_group_nodes_bycpu[cpu] = NULL;
  5894. }
  5895. }
  5896. #else /* !CONFIG_NUMA */
  5897. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5898. {
  5899. }
  5900. #endif /* CONFIG_NUMA */
  5901. /*
  5902. * Initialize sched groups cpu_power.
  5903. *
  5904. * cpu_power indicates the capacity of sched group, which is used while
  5905. * distributing the load between different sched groups in a sched domain.
  5906. * Typically cpu_power for all the groups in a sched domain will be same unless
  5907. * there are asymmetries in the topology. If there are asymmetries, group
  5908. * having more cpu_power will pickup more load compared to the group having
  5909. * less cpu_power.
  5910. *
  5911. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5912. * the maximum number of tasks a group can handle in the presence of other idle
  5913. * or lightly loaded groups in the same sched domain.
  5914. */
  5915. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5916. {
  5917. struct sched_domain *child;
  5918. struct sched_group *group;
  5919. WARN_ON(!sd || !sd->groups);
  5920. if (cpu != first_cpu(sd->groups->cpumask))
  5921. return;
  5922. child = sd->child;
  5923. sd->groups->__cpu_power = 0;
  5924. /*
  5925. * For perf policy, if the groups in child domain share resources
  5926. * (for example cores sharing some portions of the cache hierarchy
  5927. * or SMT), then set this domain groups cpu_power such that each group
  5928. * can handle only one task, when there are other idle groups in the
  5929. * same sched domain.
  5930. */
  5931. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5932. (child->flags &
  5933. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5934. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5935. return;
  5936. }
  5937. /*
  5938. * add cpu_power of each child group to this groups cpu_power
  5939. */
  5940. group = child->groups;
  5941. do {
  5942. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5943. group = group->next;
  5944. } while (group != child->groups);
  5945. }
  5946. /*
  5947. * Initializers for schedule domains
  5948. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5949. */
  5950. #define SD_INIT(sd, type) sd_init_##type(sd)
  5951. #define SD_INIT_FUNC(type) \
  5952. static noinline void sd_init_##type(struct sched_domain *sd) \
  5953. { \
  5954. memset(sd, 0, sizeof(*sd)); \
  5955. *sd = SD_##type##_INIT; \
  5956. sd->level = SD_LV_##type; \
  5957. }
  5958. SD_INIT_FUNC(CPU)
  5959. #ifdef CONFIG_NUMA
  5960. SD_INIT_FUNC(ALLNODES)
  5961. SD_INIT_FUNC(NODE)
  5962. #endif
  5963. #ifdef CONFIG_SCHED_SMT
  5964. SD_INIT_FUNC(SIBLING)
  5965. #endif
  5966. #ifdef CONFIG_SCHED_MC
  5967. SD_INIT_FUNC(MC)
  5968. #endif
  5969. /*
  5970. * To minimize stack usage kmalloc room for cpumasks and share the
  5971. * space as the usage in build_sched_domains() dictates. Used only
  5972. * if the amount of space is significant.
  5973. */
  5974. struct allmasks {
  5975. cpumask_t tmpmask; /* make this one first */
  5976. union {
  5977. cpumask_t nodemask;
  5978. cpumask_t this_sibling_map;
  5979. cpumask_t this_core_map;
  5980. };
  5981. cpumask_t send_covered;
  5982. #ifdef CONFIG_NUMA
  5983. cpumask_t domainspan;
  5984. cpumask_t covered;
  5985. cpumask_t notcovered;
  5986. #endif
  5987. };
  5988. #if NR_CPUS > 128
  5989. #define SCHED_CPUMASK_ALLOC 1
  5990. #define SCHED_CPUMASK_FREE(v) kfree(v)
  5991. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  5992. #else
  5993. #define SCHED_CPUMASK_ALLOC 0
  5994. #define SCHED_CPUMASK_FREE(v)
  5995. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  5996. #endif
  5997. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  5998. ((unsigned long)(a) + offsetof(struct allmasks, v))
  5999. static int default_relax_domain_level = -1;
  6000. static int __init setup_relax_domain_level(char *str)
  6001. {
  6002. unsigned long val;
  6003. val = simple_strtoul(str, NULL, 0);
  6004. if (val < SD_LV_MAX)
  6005. default_relax_domain_level = val;
  6006. return 1;
  6007. }
  6008. __setup("relax_domain_level=", setup_relax_domain_level);
  6009. static void set_domain_attribute(struct sched_domain *sd,
  6010. struct sched_domain_attr *attr)
  6011. {
  6012. int request;
  6013. if (!attr || attr->relax_domain_level < 0) {
  6014. if (default_relax_domain_level < 0)
  6015. return;
  6016. else
  6017. request = default_relax_domain_level;
  6018. } else
  6019. request = attr->relax_domain_level;
  6020. if (request < sd->level) {
  6021. /* turn off idle balance on this domain */
  6022. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6023. } else {
  6024. /* turn on idle balance on this domain */
  6025. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6026. }
  6027. }
  6028. /*
  6029. * Build sched domains for a given set of cpus and attach the sched domains
  6030. * to the individual cpus
  6031. */
  6032. static int __build_sched_domains(const cpumask_t *cpu_map,
  6033. struct sched_domain_attr *attr)
  6034. {
  6035. int i;
  6036. struct root_domain *rd;
  6037. SCHED_CPUMASK_DECLARE(allmasks);
  6038. cpumask_t *tmpmask;
  6039. #ifdef CONFIG_NUMA
  6040. struct sched_group **sched_group_nodes = NULL;
  6041. int sd_allnodes = 0;
  6042. /*
  6043. * Allocate the per-node list of sched groups
  6044. */
  6045. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  6046. GFP_KERNEL);
  6047. if (!sched_group_nodes) {
  6048. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6049. return -ENOMEM;
  6050. }
  6051. #endif
  6052. rd = alloc_rootdomain();
  6053. if (!rd) {
  6054. printk(KERN_WARNING "Cannot alloc root domain\n");
  6055. #ifdef CONFIG_NUMA
  6056. kfree(sched_group_nodes);
  6057. #endif
  6058. return -ENOMEM;
  6059. }
  6060. #if SCHED_CPUMASK_ALLOC
  6061. /* get space for all scratch cpumask variables */
  6062. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6063. if (!allmasks) {
  6064. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6065. kfree(rd);
  6066. #ifdef CONFIG_NUMA
  6067. kfree(sched_group_nodes);
  6068. #endif
  6069. return -ENOMEM;
  6070. }
  6071. #endif
  6072. tmpmask = (cpumask_t *)allmasks;
  6073. #ifdef CONFIG_NUMA
  6074. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6075. #endif
  6076. /*
  6077. * Set up domains for cpus specified by the cpu_map.
  6078. */
  6079. for_each_cpu_mask(i, *cpu_map) {
  6080. struct sched_domain *sd = NULL, *p;
  6081. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6082. *nodemask = node_to_cpumask(cpu_to_node(i));
  6083. cpus_and(*nodemask, *nodemask, *cpu_map);
  6084. #ifdef CONFIG_NUMA
  6085. if (cpus_weight(*cpu_map) >
  6086. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6087. sd = &per_cpu(allnodes_domains, i);
  6088. SD_INIT(sd, ALLNODES);
  6089. set_domain_attribute(sd, attr);
  6090. sd->span = *cpu_map;
  6091. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6092. p = sd;
  6093. sd_allnodes = 1;
  6094. } else
  6095. p = NULL;
  6096. sd = &per_cpu(node_domains, i);
  6097. SD_INIT(sd, NODE);
  6098. set_domain_attribute(sd, attr);
  6099. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6100. sd->parent = p;
  6101. if (p)
  6102. p->child = sd;
  6103. cpus_and(sd->span, sd->span, *cpu_map);
  6104. #endif
  6105. p = sd;
  6106. sd = &per_cpu(phys_domains, i);
  6107. SD_INIT(sd, CPU);
  6108. set_domain_attribute(sd, attr);
  6109. sd->span = *nodemask;
  6110. sd->parent = p;
  6111. if (p)
  6112. p->child = sd;
  6113. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6114. #ifdef CONFIG_SCHED_MC
  6115. p = sd;
  6116. sd = &per_cpu(core_domains, i);
  6117. SD_INIT(sd, MC);
  6118. set_domain_attribute(sd, attr);
  6119. sd->span = cpu_coregroup_map(i);
  6120. cpus_and(sd->span, sd->span, *cpu_map);
  6121. sd->parent = p;
  6122. p->child = sd;
  6123. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6124. #endif
  6125. #ifdef CONFIG_SCHED_SMT
  6126. p = sd;
  6127. sd = &per_cpu(cpu_domains, i);
  6128. SD_INIT(sd, SIBLING);
  6129. set_domain_attribute(sd, attr);
  6130. sd->span = per_cpu(cpu_sibling_map, i);
  6131. cpus_and(sd->span, sd->span, *cpu_map);
  6132. sd->parent = p;
  6133. p->child = sd;
  6134. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6135. #endif
  6136. }
  6137. #ifdef CONFIG_SCHED_SMT
  6138. /* Set up CPU (sibling) groups */
  6139. for_each_cpu_mask(i, *cpu_map) {
  6140. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6141. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6142. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6143. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6144. if (i != first_cpu(*this_sibling_map))
  6145. continue;
  6146. init_sched_build_groups(this_sibling_map, cpu_map,
  6147. &cpu_to_cpu_group,
  6148. send_covered, tmpmask);
  6149. }
  6150. #endif
  6151. #ifdef CONFIG_SCHED_MC
  6152. /* Set up multi-core groups */
  6153. for_each_cpu_mask(i, *cpu_map) {
  6154. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6155. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6156. *this_core_map = cpu_coregroup_map(i);
  6157. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6158. if (i != first_cpu(*this_core_map))
  6159. continue;
  6160. init_sched_build_groups(this_core_map, cpu_map,
  6161. &cpu_to_core_group,
  6162. send_covered, tmpmask);
  6163. }
  6164. #endif
  6165. /* Set up physical groups */
  6166. for (i = 0; i < MAX_NUMNODES; i++) {
  6167. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6168. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6169. *nodemask = node_to_cpumask(i);
  6170. cpus_and(*nodemask, *nodemask, *cpu_map);
  6171. if (cpus_empty(*nodemask))
  6172. continue;
  6173. init_sched_build_groups(nodemask, cpu_map,
  6174. &cpu_to_phys_group,
  6175. send_covered, tmpmask);
  6176. }
  6177. #ifdef CONFIG_NUMA
  6178. /* Set up node groups */
  6179. if (sd_allnodes) {
  6180. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6181. init_sched_build_groups(cpu_map, cpu_map,
  6182. &cpu_to_allnodes_group,
  6183. send_covered, tmpmask);
  6184. }
  6185. for (i = 0; i < MAX_NUMNODES; i++) {
  6186. /* Set up node groups */
  6187. struct sched_group *sg, *prev;
  6188. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6189. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6190. SCHED_CPUMASK_VAR(covered, allmasks);
  6191. int j;
  6192. *nodemask = node_to_cpumask(i);
  6193. cpus_clear(*covered);
  6194. cpus_and(*nodemask, *nodemask, *cpu_map);
  6195. if (cpus_empty(*nodemask)) {
  6196. sched_group_nodes[i] = NULL;
  6197. continue;
  6198. }
  6199. sched_domain_node_span(i, domainspan);
  6200. cpus_and(*domainspan, *domainspan, *cpu_map);
  6201. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6202. if (!sg) {
  6203. printk(KERN_WARNING "Can not alloc domain group for "
  6204. "node %d\n", i);
  6205. goto error;
  6206. }
  6207. sched_group_nodes[i] = sg;
  6208. for_each_cpu_mask(j, *nodemask) {
  6209. struct sched_domain *sd;
  6210. sd = &per_cpu(node_domains, j);
  6211. sd->groups = sg;
  6212. }
  6213. sg->__cpu_power = 0;
  6214. sg->cpumask = *nodemask;
  6215. sg->next = sg;
  6216. cpus_or(*covered, *covered, *nodemask);
  6217. prev = sg;
  6218. for (j = 0; j < MAX_NUMNODES; j++) {
  6219. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6220. int n = (i + j) % MAX_NUMNODES;
  6221. node_to_cpumask_ptr(pnodemask, n);
  6222. cpus_complement(*notcovered, *covered);
  6223. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6224. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6225. if (cpus_empty(*tmpmask))
  6226. break;
  6227. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6228. if (cpus_empty(*tmpmask))
  6229. continue;
  6230. sg = kmalloc_node(sizeof(struct sched_group),
  6231. GFP_KERNEL, i);
  6232. if (!sg) {
  6233. printk(KERN_WARNING
  6234. "Can not alloc domain group for node %d\n", j);
  6235. goto error;
  6236. }
  6237. sg->__cpu_power = 0;
  6238. sg->cpumask = *tmpmask;
  6239. sg->next = prev->next;
  6240. cpus_or(*covered, *covered, *tmpmask);
  6241. prev->next = sg;
  6242. prev = sg;
  6243. }
  6244. }
  6245. #endif
  6246. /* Calculate CPU power for physical packages and nodes */
  6247. #ifdef CONFIG_SCHED_SMT
  6248. for_each_cpu_mask(i, *cpu_map) {
  6249. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6250. init_sched_groups_power(i, sd);
  6251. }
  6252. #endif
  6253. #ifdef CONFIG_SCHED_MC
  6254. for_each_cpu_mask(i, *cpu_map) {
  6255. struct sched_domain *sd = &per_cpu(core_domains, i);
  6256. init_sched_groups_power(i, sd);
  6257. }
  6258. #endif
  6259. for_each_cpu_mask(i, *cpu_map) {
  6260. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6261. init_sched_groups_power(i, sd);
  6262. }
  6263. #ifdef CONFIG_NUMA
  6264. for (i = 0; i < MAX_NUMNODES; i++)
  6265. init_numa_sched_groups_power(sched_group_nodes[i]);
  6266. if (sd_allnodes) {
  6267. struct sched_group *sg;
  6268. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6269. tmpmask);
  6270. init_numa_sched_groups_power(sg);
  6271. }
  6272. #endif
  6273. /* Attach the domains */
  6274. for_each_cpu_mask(i, *cpu_map) {
  6275. struct sched_domain *sd;
  6276. #ifdef CONFIG_SCHED_SMT
  6277. sd = &per_cpu(cpu_domains, i);
  6278. #elif defined(CONFIG_SCHED_MC)
  6279. sd = &per_cpu(core_domains, i);
  6280. #else
  6281. sd = &per_cpu(phys_domains, i);
  6282. #endif
  6283. cpu_attach_domain(sd, rd, i);
  6284. }
  6285. SCHED_CPUMASK_FREE((void *)allmasks);
  6286. return 0;
  6287. #ifdef CONFIG_NUMA
  6288. error:
  6289. free_sched_groups(cpu_map, tmpmask);
  6290. SCHED_CPUMASK_FREE((void *)allmasks);
  6291. return -ENOMEM;
  6292. #endif
  6293. }
  6294. static int build_sched_domains(const cpumask_t *cpu_map)
  6295. {
  6296. return __build_sched_domains(cpu_map, NULL);
  6297. }
  6298. static cpumask_t *doms_cur; /* current sched domains */
  6299. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6300. static struct sched_domain_attr *dattr_cur;
  6301. /* attribues of custom domains in 'doms_cur' */
  6302. /*
  6303. * Special case: If a kmalloc of a doms_cur partition (array of
  6304. * cpumask_t) fails, then fallback to a single sched domain,
  6305. * as determined by the single cpumask_t fallback_doms.
  6306. */
  6307. static cpumask_t fallback_doms;
  6308. void __attribute__((weak)) arch_update_cpu_topology(void)
  6309. {
  6310. }
  6311. /*
  6312. * Free current domain masks.
  6313. * Called after all cpus are attached to NULL domain.
  6314. */
  6315. static void free_sched_domains(void)
  6316. {
  6317. ndoms_cur = 0;
  6318. if (doms_cur != &fallback_doms)
  6319. kfree(doms_cur);
  6320. doms_cur = &fallback_doms;
  6321. }
  6322. /*
  6323. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6324. * For now this just excludes isolated cpus, but could be used to
  6325. * exclude other special cases in the future.
  6326. */
  6327. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6328. {
  6329. int err;
  6330. arch_update_cpu_topology();
  6331. ndoms_cur = 1;
  6332. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6333. if (!doms_cur)
  6334. doms_cur = &fallback_doms;
  6335. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6336. dattr_cur = NULL;
  6337. err = build_sched_domains(doms_cur);
  6338. register_sched_domain_sysctl();
  6339. return err;
  6340. }
  6341. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6342. cpumask_t *tmpmask)
  6343. {
  6344. free_sched_groups(cpu_map, tmpmask);
  6345. }
  6346. /*
  6347. * Detach sched domains from a group of cpus specified in cpu_map
  6348. * These cpus will now be attached to the NULL domain
  6349. */
  6350. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6351. {
  6352. cpumask_t tmpmask;
  6353. int i;
  6354. unregister_sched_domain_sysctl();
  6355. for_each_cpu_mask(i, *cpu_map)
  6356. cpu_attach_domain(NULL, &def_root_domain, i);
  6357. synchronize_sched();
  6358. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6359. }
  6360. /* handle null as "default" */
  6361. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6362. struct sched_domain_attr *new, int idx_new)
  6363. {
  6364. struct sched_domain_attr tmp;
  6365. /* fast path */
  6366. if (!new && !cur)
  6367. return 1;
  6368. tmp = SD_ATTR_INIT;
  6369. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6370. new ? (new + idx_new) : &tmp,
  6371. sizeof(struct sched_domain_attr));
  6372. }
  6373. /*
  6374. * Partition sched domains as specified by the 'ndoms_new'
  6375. * cpumasks in the array doms_new[] of cpumasks. This compares
  6376. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6377. * It destroys each deleted domain and builds each new domain.
  6378. *
  6379. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6380. * The masks don't intersect (don't overlap.) We should setup one
  6381. * sched domain for each mask. CPUs not in any of the cpumasks will
  6382. * not be load balanced. If the same cpumask appears both in the
  6383. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6384. * it as it is.
  6385. *
  6386. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6387. * ownership of it and will kfree it when done with it. If the caller
  6388. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6389. * and partition_sched_domains() will fallback to the single partition
  6390. * 'fallback_doms'.
  6391. *
  6392. * Call with hotplug lock held
  6393. */
  6394. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6395. struct sched_domain_attr *dattr_new)
  6396. {
  6397. int i, j;
  6398. mutex_lock(&sched_domains_mutex);
  6399. /* always unregister in case we don't destroy any domains */
  6400. unregister_sched_domain_sysctl();
  6401. if (doms_new == NULL) {
  6402. ndoms_new = 1;
  6403. doms_new = &fallback_doms;
  6404. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6405. dattr_new = NULL;
  6406. }
  6407. /* Destroy deleted domains */
  6408. for (i = 0; i < ndoms_cur; i++) {
  6409. for (j = 0; j < ndoms_new; j++) {
  6410. if (cpus_equal(doms_cur[i], doms_new[j])
  6411. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6412. goto match1;
  6413. }
  6414. /* no match - a current sched domain not in new doms_new[] */
  6415. detach_destroy_domains(doms_cur + i);
  6416. match1:
  6417. ;
  6418. }
  6419. /* Build new domains */
  6420. for (i = 0; i < ndoms_new; i++) {
  6421. for (j = 0; j < ndoms_cur; j++) {
  6422. if (cpus_equal(doms_new[i], doms_cur[j])
  6423. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6424. goto match2;
  6425. }
  6426. /* no match - add a new doms_new */
  6427. __build_sched_domains(doms_new + i,
  6428. dattr_new ? dattr_new + i : NULL);
  6429. match2:
  6430. ;
  6431. }
  6432. /* Remember the new sched domains */
  6433. if (doms_cur != &fallback_doms)
  6434. kfree(doms_cur);
  6435. kfree(dattr_cur); /* kfree(NULL) is safe */
  6436. doms_cur = doms_new;
  6437. dattr_cur = dattr_new;
  6438. ndoms_cur = ndoms_new;
  6439. register_sched_domain_sysctl();
  6440. mutex_unlock(&sched_domains_mutex);
  6441. }
  6442. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6443. int arch_reinit_sched_domains(void)
  6444. {
  6445. int err;
  6446. get_online_cpus();
  6447. mutex_lock(&sched_domains_mutex);
  6448. detach_destroy_domains(&cpu_online_map);
  6449. free_sched_domains();
  6450. err = arch_init_sched_domains(&cpu_online_map);
  6451. mutex_unlock(&sched_domains_mutex);
  6452. put_online_cpus();
  6453. return err;
  6454. }
  6455. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6456. {
  6457. int ret;
  6458. if (buf[0] != '0' && buf[0] != '1')
  6459. return -EINVAL;
  6460. if (smt)
  6461. sched_smt_power_savings = (buf[0] == '1');
  6462. else
  6463. sched_mc_power_savings = (buf[0] == '1');
  6464. ret = arch_reinit_sched_domains();
  6465. return ret ? ret : count;
  6466. }
  6467. #ifdef CONFIG_SCHED_MC
  6468. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6469. {
  6470. return sprintf(page, "%u\n", sched_mc_power_savings);
  6471. }
  6472. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6473. const char *buf, size_t count)
  6474. {
  6475. return sched_power_savings_store(buf, count, 0);
  6476. }
  6477. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6478. sched_mc_power_savings_store);
  6479. #endif
  6480. #ifdef CONFIG_SCHED_SMT
  6481. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6482. {
  6483. return sprintf(page, "%u\n", sched_smt_power_savings);
  6484. }
  6485. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6486. const char *buf, size_t count)
  6487. {
  6488. return sched_power_savings_store(buf, count, 1);
  6489. }
  6490. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6491. sched_smt_power_savings_store);
  6492. #endif
  6493. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6494. {
  6495. int err = 0;
  6496. #ifdef CONFIG_SCHED_SMT
  6497. if (smt_capable())
  6498. err = sysfs_create_file(&cls->kset.kobj,
  6499. &attr_sched_smt_power_savings.attr);
  6500. #endif
  6501. #ifdef CONFIG_SCHED_MC
  6502. if (!err && mc_capable())
  6503. err = sysfs_create_file(&cls->kset.kobj,
  6504. &attr_sched_mc_power_savings.attr);
  6505. #endif
  6506. return err;
  6507. }
  6508. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6509. /*
  6510. * Force a reinitialization of the sched domains hierarchy. The domains
  6511. * and groups cannot be updated in place without racing with the balancing
  6512. * code, so we temporarily attach all running cpus to the NULL domain
  6513. * which will prevent rebalancing while the sched domains are recalculated.
  6514. */
  6515. static int update_sched_domains(struct notifier_block *nfb,
  6516. unsigned long action, void *hcpu)
  6517. {
  6518. int cpu = (int)(long)hcpu;
  6519. switch (action) {
  6520. case CPU_DOWN_PREPARE:
  6521. case CPU_DOWN_PREPARE_FROZEN:
  6522. disable_runtime(cpu_rq(cpu));
  6523. /* fall-through */
  6524. case CPU_UP_PREPARE:
  6525. case CPU_UP_PREPARE_FROZEN:
  6526. detach_destroy_domains(&cpu_online_map);
  6527. free_sched_domains();
  6528. return NOTIFY_OK;
  6529. case CPU_DOWN_FAILED:
  6530. case CPU_DOWN_FAILED_FROZEN:
  6531. case CPU_ONLINE:
  6532. case CPU_ONLINE_FROZEN:
  6533. enable_runtime(cpu_rq(cpu));
  6534. /* fall-through */
  6535. case CPU_UP_CANCELED:
  6536. case CPU_UP_CANCELED_FROZEN:
  6537. case CPU_DEAD:
  6538. case CPU_DEAD_FROZEN:
  6539. /*
  6540. * Fall through and re-initialise the domains.
  6541. */
  6542. break;
  6543. default:
  6544. return NOTIFY_DONE;
  6545. }
  6546. #ifndef CONFIG_CPUSETS
  6547. /*
  6548. * Create default domain partitioning if cpusets are disabled.
  6549. * Otherwise we let cpusets rebuild the domains based on the
  6550. * current setup.
  6551. */
  6552. /* The hotplug lock is already held by cpu_up/cpu_down */
  6553. arch_init_sched_domains(&cpu_online_map);
  6554. #endif
  6555. return NOTIFY_OK;
  6556. }
  6557. void __init sched_init_smp(void)
  6558. {
  6559. cpumask_t non_isolated_cpus;
  6560. #if defined(CONFIG_NUMA)
  6561. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6562. GFP_KERNEL);
  6563. BUG_ON(sched_group_nodes_bycpu == NULL);
  6564. #endif
  6565. get_online_cpus();
  6566. mutex_lock(&sched_domains_mutex);
  6567. arch_init_sched_domains(&cpu_online_map);
  6568. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6569. if (cpus_empty(non_isolated_cpus))
  6570. cpu_set(smp_processor_id(), non_isolated_cpus);
  6571. mutex_unlock(&sched_domains_mutex);
  6572. put_online_cpus();
  6573. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6574. hotcpu_notifier(update_sched_domains, 0);
  6575. init_hrtick();
  6576. /* Move init over to a non-isolated CPU */
  6577. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6578. BUG();
  6579. sched_init_granularity();
  6580. }
  6581. #else
  6582. void __init sched_init_smp(void)
  6583. {
  6584. sched_init_granularity();
  6585. }
  6586. #endif /* CONFIG_SMP */
  6587. int in_sched_functions(unsigned long addr)
  6588. {
  6589. return in_lock_functions(addr) ||
  6590. (addr >= (unsigned long)__sched_text_start
  6591. && addr < (unsigned long)__sched_text_end);
  6592. }
  6593. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6594. {
  6595. cfs_rq->tasks_timeline = RB_ROOT;
  6596. INIT_LIST_HEAD(&cfs_rq->tasks);
  6597. #ifdef CONFIG_FAIR_GROUP_SCHED
  6598. cfs_rq->rq = rq;
  6599. #endif
  6600. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6601. }
  6602. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6603. {
  6604. struct rt_prio_array *array;
  6605. int i;
  6606. array = &rt_rq->active;
  6607. for (i = 0; i < MAX_RT_PRIO; i++) {
  6608. INIT_LIST_HEAD(array->queue + i);
  6609. __clear_bit(i, array->bitmap);
  6610. }
  6611. /* delimiter for bitsearch: */
  6612. __set_bit(MAX_RT_PRIO, array->bitmap);
  6613. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6614. rt_rq->highest_prio = MAX_RT_PRIO;
  6615. #endif
  6616. #ifdef CONFIG_SMP
  6617. rt_rq->rt_nr_migratory = 0;
  6618. rt_rq->overloaded = 0;
  6619. #endif
  6620. rt_rq->rt_time = 0;
  6621. rt_rq->rt_throttled = 0;
  6622. rt_rq->rt_runtime = 0;
  6623. spin_lock_init(&rt_rq->rt_runtime_lock);
  6624. #ifdef CONFIG_RT_GROUP_SCHED
  6625. rt_rq->rt_nr_boosted = 0;
  6626. rt_rq->rq = rq;
  6627. #endif
  6628. }
  6629. #ifdef CONFIG_FAIR_GROUP_SCHED
  6630. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6631. struct sched_entity *se, int cpu, int add,
  6632. struct sched_entity *parent)
  6633. {
  6634. struct rq *rq = cpu_rq(cpu);
  6635. tg->cfs_rq[cpu] = cfs_rq;
  6636. init_cfs_rq(cfs_rq, rq);
  6637. cfs_rq->tg = tg;
  6638. if (add)
  6639. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6640. tg->se[cpu] = se;
  6641. /* se could be NULL for init_task_group */
  6642. if (!se)
  6643. return;
  6644. if (!parent)
  6645. se->cfs_rq = &rq->cfs;
  6646. else
  6647. se->cfs_rq = parent->my_q;
  6648. se->my_q = cfs_rq;
  6649. se->load.weight = tg->shares;
  6650. se->load.inv_weight = 0;
  6651. se->parent = parent;
  6652. }
  6653. #endif
  6654. #ifdef CONFIG_RT_GROUP_SCHED
  6655. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6656. struct sched_rt_entity *rt_se, int cpu, int add,
  6657. struct sched_rt_entity *parent)
  6658. {
  6659. struct rq *rq = cpu_rq(cpu);
  6660. tg->rt_rq[cpu] = rt_rq;
  6661. init_rt_rq(rt_rq, rq);
  6662. rt_rq->tg = tg;
  6663. rt_rq->rt_se = rt_se;
  6664. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6665. if (add)
  6666. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6667. tg->rt_se[cpu] = rt_se;
  6668. if (!rt_se)
  6669. return;
  6670. if (!parent)
  6671. rt_se->rt_rq = &rq->rt;
  6672. else
  6673. rt_se->rt_rq = parent->my_q;
  6674. rt_se->my_q = rt_rq;
  6675. rt_se->parent = parent;
  6676. INIT_LIST_HEAD(&rt_se->run_list);
  6677. }
  6678. #endif
  6679. void __init sched_init(void)
  6680. {
  6681. int i, j;
  6682. unsigned long alloc_size = 0, ptr;
  6683. #ifdef CONFIG_FAIR_GROUP_SCHED
  6684. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6685. #endif
  6686. #ifdef CONFIG_RT_GROUP_SCHED
  6687. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6688. #endif
  6689. #ifdef CONFIG_USER_SCHED
  6690. alloc_size *= 2;
  6691. #endif
  6692. /*
  6693. * As sched_init() is called before page_alloc is setup,
  6694. * we use alloc_bootmem().
  6695. */
  6696. if (alloc_size) {
  6697. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6698. #ifdef CONFIG_FAIR_GROUP_SCHED
  6699. init_task_group.se = (struct sched_entity **)ptr;
  6700. ptr += nr_cpu_ids * sizeof(void **);
  6701. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6702. ptr += nr_cpu_ids * sizeof(void **);
  6703. #ifdef CONFIG_USER_SCHED
  6704. root_task_group.se = (struct sched_entity **)ptr;
  6705. ptr += nr_cpu_ids * sizeof(void **);
  6706. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6707. ptr += nr_cpu_ids * sizeof(void **);
  6708. #endif /* CONFIG_USER_SCHED */
  6709. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6710. #ifdef CONFIG_RT_GROUP_SCHED
  6711. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6712. ptr += nr_cpu_ids * sizeof(void **);
  6713. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6714. ptr += nr_cpu_ids * sizeof(void **);
  6715. #ifdef CONFIG_USER_SCHED
  6716. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6717. ptr += nr_cpu_ids * sizeof(void **);
  6718. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6719. ptr += nr_cpu_ids * sizeof(void **);
  6720. #endif /* CONFIG_USER_SCHED */
  6721. #endif /* CONFIG_RT_GROUP_SCHED */
  6722. }
  6723. #ifdef CONFIG_SMP
  6724. init_defrootdomain();
  6725. #endif
  6726. init_rt_bandwidth(&def_rt_bandwidth,
  6727. global_rt_period(), global_rt_runtime());
  6728. #ifdef CONFIG_RT_GROUP_SCHED
  6729. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6730. global_rt_period(), global_rt_runtime());
  6731. #ifdef CONFIG_USER_SCHED
  6732. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6733. global_rt_period(), RUNTIME_INF);
  6734. #endif /* CONFIG_USER_SCHED */
  6735. #endif /* CONFIG_RT_GROUP_SCHED */
  6736. #ifdef CONFIG_GROUP_SCHED
  6737. list_add(&init_task_group.list, &task_groups);
  6738. INIT_LIST_HEAD(&init_task_group.children);
  6739. #ifdef CONFIG_USER_SCHED
  6740. INIT_LIST_HEAD(&root_task_group.children);
  6741. init_task_group.parent = &root_task_group;
  6742. list_add(&init_task_group.siblings, &root_task_group.children);
  6743. #endif /* CONFIG_USER_SCHED */
  6744. #endif /* CONFIG_GROUP_SCHED */
  6745. for_each_possible_cpu(i) {
  6746. struct rq *rq;
  6747. rq = cpu_rq(i);
  6748. spin_lock_init(&rq->lock);
  6749. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6750. rq->nr_running = 0;
  6751. init_cfs_rq(&rq->cfs, rq);
  6752. init_rt_rq(&rq->rt, rq);
  6753. #ifdef CONFIG_FAIR_GROUP_SCHED
  6754. init_task_group.shares = init_task_group_load;
  6755. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6756. #ifdef CONFIG_CGROUP_SCHED
  6757. /*
  6758. * How much cpu bandwidth does init_task_group get?
  6759. *
  6760. * In case of task-groups formed thr' the cgroup filesystem, it
  6761. * gets 100% of the cpu resources in the system. This overall
  6762. * system cpu resource is divided among the tasks of
  6763. * init_task_group and its child task-groups in a fair manner,
  6764. * based on each entity's (task or task-group's) weight
  6765. * (se->load.weight).
  6766. *
  6767. * In other words, if init_task_group has 10 tasks of weight
  6768. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6769. * then A0's share of the cpu resource is:
  6770. *
  6771. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6772. *
  6773. * We achieve this by letting init_task_group's tasks sit
  6774. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6775. */
  6776. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6777. #elif defined CONFIG_USER_SCHED
  6778. root_task_group.shares = NICE_0_LOAD;
  6779. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6780. /*
  6781. * In case of task-groups formed thr' the user id of tasks,
  6782. * init_task_group represents tasks belonging to root user.
  6783. * Hence it forms a sibling of all subsequent groups formed.
  6784. * In this case, init_task_group gets only a fraction of overall
  6785. * system cpu resource, based on the weight assigned to root
  6786. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6787. * by letting tasks of init_task_group sit in a separate cfs_rq
  6788. * (init_cfs_rq) and having one entity represent this group of
  6789. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6790. */
  6791. init_tg_cfs_entry(&init_task_group,
  6792. &per_cpu(init_cfs_rq, i),
  6793. &per_cpu(init_sched_entity, i), i, 1,
  6794. root_task_group.se[i]);
  6795. #endif
  6796. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6797. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6798. #ifdef CONFIG_RT_GROUP_SCHED
  6799. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6800. #ifdef CONFIG_CGROUP_SCHED
  6801. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6802. #elif defined CONFIG_USER_SCHED
  6803. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6804. init_tg_rt_entry(&init_task_group,
  6805. &per_cpu(init_rt_rq, i),
  6806. &per_cpu(init_sched_rt_entity, i), i, 1,
  6807. root_task_group.rt_se[i]);
  6808. #endif
  6809. #endif
  6810. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6811. rq->cpu_load[j] = 0;
  6812. #ifdef CONFIG_SMP
  6813. rq->sd = NULL;
  6814. rq->rd = NULL;
  6815. rq->active_balance = 0;
  6816. rq->next_balance = jiffies;
  6817. rq->push_cpu = 0;
  6818. rq->cpu = i;
  6819. rq->online = 0;
  6820. rq->migration_thread = NULL;
  6821. INIT_LIST_HEAD(&rq->migration_queue);
  6822. rq_attach_root(rq, &def_root_domain);
  6823. #endif
  6824. init_rq_hrtick(rq);
  6825. atomic_set(&rq->nr_iowait, 0);
  6826. }
  6827. set_load_weight(&init_task);
  6828. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6829. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6830. #endif
  6831. #ifdef CONFIG_SMP
  6832. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6833. #endif
  6834. #ifdef CONFIG_RT_MUTEXES
  6835. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6836. #endif
  6837. /*
  6838. * The boot idle thread does lazy MMU switching as well:
  6839. */
  6840. atomic_inc(&init_mm.mm_count);
  6841. enter_lazy_tlb(&init_mm, current);
  6842. /*
  6843. * Make us the idle thread. Technically, schedule() should not be
  6844. * called from this thread, however somewhere below it might be,
  6845. * but because we are the idle thread, we just pick up running again
  6846. * when this runqueue becomes "idle".
  6847. */
  6848. init_idle(current, smp_processor_id());
  6849. /*
  6850. * During early bootup we pretend to be a normal task:
  6851. */
  6852. current->sched_class = &fair_sched_class;
  6853. scheduler_running = 1;
  6854. }
  6855. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6856. void __might_sleep(char *file, int line)
  6857. {
  6858. #ifdef in_atomic
  6859. static unsigned long prev_jiffy; /* ratelimiting */
  6860. if ((in_atomic() || irqs_disabled()) &&
  6861. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6862. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6863. return;
  6864. prev_jiffy = jiffies;
  6865. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6866. " context at %s:%d\n", file, line);
  6867. printk("in_atomic():%d, irqs_disabled():%d\n",
  6868. in_atomic(), irqs_disabled());
  6869. debug_show_held_locks(current);
  6870. if (irqs_disabled())
  6871. print_irqtrace_events(current);
  6872. dump_stack();
  6873. }
  6874. #endif
  6875. }
  6876. EXPORT_SYMBOL(__might_sleep);
  6877. #endif
  6878. #ifdef CONFIG_MAGIC_SYSRQ
  6879. static void normalize_task(struct rq *rq, struct task_struct *p)
  6880. {
  6881. int on_rq;
  6882. update_rq_clock(rq);
  6883. on_rq = p->se.on_rq;
  6884. if (on_rq)
  6885. deactivate_task(rq, p, 0);
  6886. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6887. if (on_rq) {
  6888. activate_task(rq, p, 0);
  6889. resched_task(rq->curr);
  6890. }
  6891. }
  6892. void normalize_rt_tasks(void)
  6893. {
  6894. struct task_struct *g, *p;
  6895. unsigned long flags;
  6896. struct rq *rq;
  6897. read_lock_irqsave(&tasklist_lock, flags);
  6898. do_each_thread(g, p) {
  6899. /*
  6900. * Only normalize user tasks:
  6901. */
  6902. if (!p->mm)
  6903. continue;
  6904. p->se.exec_start = 0;
  6905. #ifdef CONFIG_SCHEDSTATS
  6906. p->se.wait_start = 0;
  6907. p->se.sleep_start = 0;
  6908. p->se.block_start = 0;
  6909. #endif
  6910. if (!rt_task(p)) {
  6911. /*
  6912. * Renice negative nice level userspace
  6913. * tasks back to 0:
  6914. */
  6915. if (TASK_NICE(p) < 0 && p->mm)
  6916. set_user_nice(p, 0);
  6917. continue;
  6918. }
  6919. spin_lock(&p->pi_lock);
  6920. rq = __task_rq_lock(p);
  6921. normalize_task(rq, p);
  6922. __task_rq_unlock(rq);
  6923. spin_unlock(&p->pi_lock);
  6924. } while_each_thread(g, p);
  6925. read_unlock_irqrestore(&tasklist_lock, flags);
  6926. }
  6927. #endif /* CONFIG_MAGIC_SYSRQ */
  6928. #ifdef CONFIG_IA64
  6929. /*
  6930. * These functions are only useful for the IA64 MCA handling.
  6931. *
  6932. * They can only be called when the whole system has been
  6933. * stopped - every CPU needs to be quiescent, and no scheduling
  6934. * activity can take place. Using them for anything else would
  6935. * be a serious bug, and as a result, they aren't even visible
  6936. * under any other configuration.
  6937. */
  6938. /**
  6939. * curr_task - return the current task for a given cpu.
  6940. * @cpu: the processor in question.
  6941. *
  6942. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6943. */
  6944. struct task_struct *curr_task(int cpu)
  6945. {
  6946. return cpu_curr(cpu);
  6947. }
  6948. /**
  6949. * set_curr_task - set the current task for a given cpu.
  6950. * @cpu: the processor in question.
  6951. * @p: the task pointer to set.
  6952. *
  6953. * Description: This function must only be used when non-maskable interrupts
  6954. * are serviced on a separate stack. It allows the architecture to switch the
  6955. * notion of the current task on a cpu in a non-blocking manner. This function
  6956. * must be called with all CPU's synchronized, and interrupts disabled, the
  6957. * and caller must save the original value of the current task (see
  6958. * curr_task() above) and restore that value before reenabling interrupts and
  6959. * re-starting the system.
  6960. *
  6961. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6962. */
  6963. void set_curr_task(int cpu, struct task_struct *p)
  6964. {
  6965. cpu_curr(cpu) = p;
  6966. }
  6967. #endif
  6968. #ifdef CONFIG_FAIR_GROUP_SCHED
  6969. static void free_fair_sched_group(struct task_group *tg)
  6970. {
  6971. int i;
  6972. for_each_possible_cpu(i) {
  6973. if (tg->cfs_rq)
  6974. kfree(tg->cfs_rq[i]);
  6975. if (tg->se)
  6976. kfree(tg->se[i]);
  6977. }
  6978. kfree(tg->cfs_rq);
  6979. kfree(tg->se);
  6980. }
  6981. static
  6982. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6983. {
  6984. struct cfs_rq *cfs_rq;
  6985. struct sched_entity *se, *parent_se;
  6986. struct rq *rq;
  6987. int i;
  6988. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6989. if (!tg->cfs_rq)
  6990. goto err;
  6991. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6992. if (!tg->se)
  6993. goto err;
  6994. tg->shares = NICE_0_LOAD;
  6995. for_each_possible_cpu(i) {
  6996. rq = cpu_rq(i);
  6997. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  6998. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6999. if (!cfs_rq)
  7000. goto err;
  7001. se = kmalloc_node(sizeof(struct sched_entity),
  7002. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7003. if (!se)
  7004. goto err;
  7005. parent_se = parent ? parent->se[i] : NULL;
  7006. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7007. }
  7008. return 1;
  7009. err:
  7010. return 0;
  7011. }
  7012. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7013. {
  7014. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7015. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7016. }
  7017. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7018. {
  7019. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7020. }
  7021. #else /* !CONFG_FAIR_GROUP_SCHED */
  7022. static inline void free_fair_sched_group(struct task_group *tg)
  7023. {
  7024. }
  7025. static inline
  7026. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7027. {
  7028. return 1;
  7029. }
  7030. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7031. {
  7032. }
  7033. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7034. {
  7035. }
  7036. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7037. #ifdef CONFIG_RT_GROUP_SCHED
  7038. static void free_rt_sched_group(struct task_group *tg)
  7039. {
  7040. int i;
  7041. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7042. for_each_possible_cpu(i) {
  7043. if (tg->rt_rq)
  7044. kfree(tg->rt_rq[i]);
  7045. if (tg->rt_se)
  7046. kfree(tg->rt_se[i]);
  7047. }
  7048. kfree(tg->rt_rq);
  7049. kfree(tg->rt_se);
  7050. }
  7051. static
  7052. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7053. {
  7054. struct rt_rq *rt_rq;
  7055. struct sched_rt_entity *rt_se, *parent_se;
  7056. struct rq *rq;
  7057. int i;
  7058. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7059. if (!tg->rt_rq)
  7060. goto err;
  7061. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7062. if (!tg->rt_se)
  7063. goto err;
  7064. init_rt_bandwidth(&tg->rt_bandwidth,
  7065. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7066. for_each_possible_cpu(i) {
  7067. rq = cpu_rq(i);
  7068. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7069. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7070. if (!rt_rq)
  7071. goto err;
  7072. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7073. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7074. if (!rt_se)
  7075. goto err;
  7076. parent_se = parent ? parent->rt_se[i] : NULL;
  7077. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7078. }
  7079. return 1;
  7080. err:
  7081. return 0;
  7082. }
  7083. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7084. {
  7085. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7086. &cpu_rq(cpu)->leaf_rt_rq_list);
  7087. }
  7088. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7089. {
  7090. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7091. }
  7092. #else /* !CONFIG_RT_GROUP_SCHED */
  7093. static inline void free_rt_sched_group(struct task_group *tg)
  7094. {
  7095. }
  7096. static inline
  7097. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7098. {
  7099. return 1;
  7100. }
  7101. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7102. {
  7103. }
  7104. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7105. {
  7106. }
  7107. #endif /* CONFIG_RT_GROUP_SCHED */
  7108. #ifdef CONFIG_GROUP_SCHED
  7109. static void free_sched_group(struct task_group *tg)
  7110. {
  7111. free_fair_sched_group(tg);
  7112. free_rt_sched_group(tg);
  7113. kfree(tg);
  7114. }
  7115. /* allocate runqueue etc for a new task group */
  7116. struct task_group *sched_create_group(struct task_group *parent)
  7117. {
  7118. struct task_group *tg;
  7119. unsigned long flags;
  7120. int i;
  7121. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7122. if (!tg)
  7123. return ERR_PTR(-ENOMEM);
  7124. if (!alloc_fair_sched_group(tg, parent))
  7125. goto err;
  7126. if (!alloc_rt_sched_group(tg, parent))
  7127. goto err;
  7128. spin_lock_irqsave(&task_group_lock, flags);
  7129. for_each_possible_cpu(i) {
  7130. register_fair_sched_group(tg, i);
  7131. register_rt_sched_group(tg, i);
  7132. }
  7133. list_add_rcu(&tg->list, &task_groups);
  7134. WARN_ON(!parent); /* root should already exist */
  7135. tg->parent = parent;
  7136. list_add_rcu(&tg->siblings, &parent->children);
  7137. INIT_LIST_HEAD(&tg->children);
  7138. spin_unlock_irqrestore(&task_group_lock, flags);
  7139. return tg;
  7140. err:
  7141. free_sched_group(tg);
  7142. return ERR_PTR(-ENOMEM);
  7143. }
  7144. /* rcu callback to free various structures associated with a task group */
  7145. static void free_sched_group_rcu(struct rcu_head *rhp)
  7146. {
  7147. /* now it should be safe to free those cfs_rqs */
  7148. free_sched_group(container_of(rhp, struct task_group, rcu));
  7149. }
  7150. /* Destroy runqueue etc associated with a task group */
  7151. void sched_destroy_group(struct task_group *tg)
  7152. {
  7153. unsigned long flags;
  7154. int i;
  7155. spin_lock_irqsave(&task_group_lock, flags);
  7156. for_each_possible_cpu(i) {
  7157. unregister_fair_sched_group(tg, i);
  7158. unregister_rt_sched_group(tg, i);
  7159. }
  7160. list_del_rcu(&tg->list);
  7161. list_del_rcu(&tg->siblings);
  7162. spin_unlock_irqrestore(&task_group_lock, flags);
  7163. /* wait for possible concurrent references to cfs_rqs complete */
  7164. call_rcu(&tg->rcu, free_sched_group_rcu);
  7165. }
  7166. /* change task's runqueue when it moves between groups.
  7167. * The caller of this function should have put the task in its new group
  7168. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7169. * reflect its new group.
  7170. */
  7171. void sched_move_task(struct task_struct *tsk)
  7172. {
  7173. int on_rq, running;
  7174. unsigned long flags;
  7175. struct rq *rq;
  7176. rq = task_rq_lock(tsk, &flags);
  7177. update_rq_clock(rq);
  7178. running = task_current(rq, tsk);
  7179. on_rq = tsk->se.on_rq;
  7180. if (on_rq)
  7181. dequeue_task(rq, tsk, 0);
  7182. if (unlikely(running))
  7183. tsk->sched_class->put_prev_task(rq, tsk);
  7184. set_task_rq(tsk, task_cpu(tsk));
  7185. #ifdef CONFIG_FAIR_GROUP_SCHED
  7186. if (tsk->sched_class->moved_group)
  7187. tsk->sched_class->moved_group(tsk);
  7188. #endif
  7189. if (unlikely(running))
  7190. tsk->sched_class->set_curr_task(rq);
  7191. if (on_rq)
  7192. enqueue_task(rq, tsk, 0);
  7193. task_rq_unlock(rq, &flags);
  7194. }
  7195. #endif /* CONFIG_GROUP_SCHED */
  7196. #ifdef CONFIG_FAIR_GROUP_SCHED
  7197. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7198. {
  7199. struct cfs_rq *cfs_rq = se->cfs_rq;
  7200. int on_rq;
  7201. on_rq = se->on_rq;
  7202. if (on_rq)
  7203. dequeue_entity(cfs_rq, se, 0);
  7204. se->load.weight = shares;
  7205. se->load.inv_weight = 0;
  7206. if (on_rq)
  7207. enqueue_entity(cfs_rq, se, 0);
  7208. }
  7209. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7210. {
  7211. struct cfs_rq *cfs_rq = se->cfs_rq;
  7212. struct rq *rq = cfs_rq->rq;
  7213. unsigned long flags;
  7214. spin_lock_irqsave(&rq->lock, flags);
  7215. __set_se_shares(se, shares);
  7216. spin_unlock_irqrestore(&rq->lock, flags);
  7217. }
  7218. static DEFINE_MUTEX(shares_mutex);
  7219. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7220. {
  7221. int i;
  7222. unsigned long flags;
  7223. /*
  7224. * We can't change the weight of the root cgroup.
  7225. */
  7226. if (!tg->se[0])
  7227. return -EINVAL;
  7228. if (shares < MIN_SHARES)
  7229. shares = MIN_SHARES;
  7230. else if (shares > MAX_SHARES)
  7231. shares = MAX_SHARES;
  7232. mutex_lock(&shares_mutex);
  7233. if (tg->shares == shares)
  7234. goto done;
  7235. spin_lock_irqsave(&task_group_lock, flags);
  7236. for_each_possible_cpu(i)
  7237. unregister_fair_sched_group(tg, i);
  7238. list_del_rcu(&tg->siblings);
  7239. spin_unlock_irqrestore(&task_group_lock, flags);
  7240. /* wait for any ongoing reference to this group to finish */
  7241. synchronize_sched();
  7242. /*
  7243. * Now we are free to modify the group's share on each cpu
  7244. * w/o tripping rebalance_share or load_balance_fair.
  7245. */
  7246. tg->shares = shares;
  7247. for_each_possible_cpu(i) {
  7248. /*
  7249. * force a rebalance
  7250. */
  7251. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7252. set_se_shares(tg->se[i], shares);
  7253. }
  7254. /*
  7255. * Enable load balance activity on this group, by inserting it back on
  7256. * each cpu's rq->leaf_cfs_rq_list.
  7257. */
  7258. spin_lock_irqsave(&task_group_lock, flags);
  7259. for_each_possible_cpu(i)
  7260. register_fair_sched_group(tg, i);
  7261. list_add_rcu(&tg->siblings, &tg->parent->children);
  7262. spin_unlock_irqrestore(&task_group_lock, flags);
  7263. done:
  7264. mutex_unlock(&shares_mutex);
  7265. return 0;
  7266. }
  7267. unsigned long sched_group_shares(struct task_group *tg)
  7268. {
  7269. return tg->shares;
  7270. }
  7271. #endif
  7272. #ifdef CONFIG_RT_GROUP_SCHED
  7273. /*
  7274. * Ensure that the real time constraints are schedulable.
  7275. */
  7276. static DEFINE_MUTEX(rt_constraints_mutex);
  7277. static unsigned long to_ratio(u64 period, u64 runtime)
  7278. {
  7279. if (runtime == RUNTIME_INF)
  7280. return 1ULL << 16;
  7281. return div64_u64(runtime << 16, period);
  7282. }
  7283. #ifdef CONFIG_CGROUP_SCHED
  7284. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7285. {
  7286. struct task_group *tgi, *parent = tg->parent;
  7287. unsigned long total = 0;
  7288. if (!parent) {
  7289. if (global_rt_period() < period)
  7290. return 0;
  7291. return to_ratio(period, runtime) <
  7292. to_ratio(global_rt_period(), global_rt_runtime());
  7293. }
  7294. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7295. return 0;
  7296. rcu_read_lock();
  7297. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7298. if (tgi == tg)
  7299. continue;
  7300. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7301. tgi->rt_bandwidth.rt_runtime);
  7302. }
  7303. rcu_read_unlock();
  7304. return total + to_ratio(period, runtime) <=
  7305. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7306. parent->rt_bandwidth.rt_runtime);
  7307. }
  7308. #elif defined CONFIG_USER_SCHED
  7309. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7310. {
  7311. struct task_group *tgi;
  7312. unsigned long total = 0;
  7313. unsigned long global_ratio =
  7314. to_ratio(global_rt_period(), global_rt_runtime());
  7315. rcu_read_lock();
  7316. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7317. if (tgi == tg)
  7318. continue;
  7319. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7320. tgi->rt_bandwidth.rt_runtime);
  7321. }
  7322. rcu_read_unlock();
  7323. return total + to_ratio(period, runtime) < global_ratio;
  7324. }
  7325. #endif
  7326. /* Must be called with tasklist_lock held */
  7327. static inline int tg_has_rt_tasks(struct task_group *tg)
  7328. {
  7329. struct task_struct *g, *p;
  7330. do_each_thread(g, p) {
  7331. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7332. return 1;
  7333. } while_each_thread(g, p);
  7334. return 0;
  7335. }
  7336. static int tg_set_bandwidth(struct task_group *tg,
  7337. u64 rt_period, u64 rt_runtime)
  7338. {
  7339. int i, err = 0;
  7340. mutex_lock(&rt_constraints_mutex);
  7341. read_lock(&tasklist_lock);
  7342. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7343. err = -EBUSY;
  7344. goto unlock;
  7345. }
  7346. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7347. err = -EINVAL;
  7348. goto unlock;
  7349. }
  7350. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7351. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7352. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7353. for_each_possible_cpu(i) {
  7354. struct rt_rq *rt_rq = tg->rt_rq[i];
  7355. spin_lock(&rt_rq->rt_runtime_lock);
  7356. rt_rq->rt_runtime = rt_runtime;
  7357. spin_unlock(&rt_rq->rt_runtime_lock);
  7358. }
  7359. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7360. unlock:
  7361. read_unlock(&tasklist_lock);
  7362. mutex_unlock(&rt_constraints_mutex);
  7363. return err;
  7364. }
  7365. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7366. {
  7367. u64 rt_runtime, rt_period;
  7368. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7369. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7370. if (rt_runtime_us < 0)
  7371. rt_runtime = RUNTIME_INF;
  7372. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7373. }
  7374. long sched_group_rt_runtime(struct task_group *tg)
  7375. {
  7376. u64 rt_runtime_us;
  7377. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7378. return -1;
  7379. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7380. do_div(rt_runtime_us, NSEC_PER_USEC);
  7381. return rt_runtime_us;
  7382. }
  7383. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7384. {
  7385. u64 rt_runtime, rt_period;
  7386. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7387. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7388. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7389. }
  7390. long sched_group_rt_period(struct task_group *tg)
  7391. {
  7392. u64 rt_period_us;
  7393. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7394. do_div(rt_period_us, NSEC_PER_USEC);
  7395. return rt_period_us;
  7396. }
  7397. static int sched_rt_global_constraints(void)
  7398. {
  7399. struct task_group *tg = &root_task_group;
  7400. u64 rt_runtime, rt_period;
  7401. int ret = 0;
  7402. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7403. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7404. mutex_lock(&rt_constraints_mutex);
  7405. if (!__rt_schedulable(tg, rt_period, rt_runtime))
  7406. ret = -EINVAL;
  7407. mutex_unlock(&rt_constraints_mutex);
  7408. return ret;
  7409. }
  7410. #else /* !CONFIG_RT_GROUP_SCHED */
  7411. static int sched_rt_global_constraints(void)
  7412. {
  7413. unsigned long flags;
  7414. int i;
  7415. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7416. for_each_possible_cpu(i) {
  7417. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7418. spin_lock(&rt_rq->rt_runtime_lock);
  7419. rt_rq->rt_runtime = global_rt_runtime();
  7420. spin_unlock(&rt_rq->rt_runtime_lock);
  7421. }
  7422. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7423. return 0;
  7424. }
  7425. #endif /* CONFIG_RT_GROUP_SCHED */
  7426. int sched_rt_handler(struct ctl_table *table, int write,
  7427. struct file *filp, void __user *buffer, size_t *lenp,
  7428. loff_t *ppos)
  7429. {
  7430. int ret;
  7431. int old_period, old_runtime;
  7432. static DEFINE_MUTEX(mutex);
  7433. mutex_lock(&mutex);
  7434. old_period = sysctl_sched_rt_period;
  7435. old_runtime = sysctl_sched_rt_runtime;
  7436. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7437. if (!ret && write) {
  7438. ret = sched_rt_global_constraints();
  7439. if (ret) {
  7440. sysctl_sched_rt_period = old_period;
  7441. sysctl_sched_rt_runtime = old_runtime;
  7442. } else {
  7443. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7444. def_rt_bandwidth.rt_period =
  7445. ns_to_ktime(global_rt_period());
  7446. }
  7447. }
  7448. mutex_unlock(&mutex);
  7449. return ret;
  7450. }
  7451. #ifdef CONFIG_CGROUP_SCHED
  7452. /* return corresponding task_group object of a cgroup */
  7453. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7454. {
  7455. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7456. struct task_group, css);
  7457. }
  7458. static struct cgroup_subsys_state *
  7459. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7460. {
  7461. struct task_group *tg, *parent;
  7462. if (!cgrp->parent) {
  7463. /* This is early initialization for the top cgroup */
  7464. init_task_group.css.cgroup = cgrp;
  7465. return &init_task_group.css;
  7466. }
  7467. parent = cgroup_tg(cgrp->parent);
  7468. tg = sched_create_group(parent);
  7469. if (IS_ERR(tg))
  7470. return ERR_PTR(-ENOMEM);
  7471. /* Bind the cgroup to task_group object we just created */
  7472. tg->css.cgroup = cgrp;
  7473. return &tg->css;
  7474. }
  7475. static void
  7476. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7477. {
  7478. struct task_group *tg = cgroup_tg(cgrp);
  7479. sched_destroy_group(tg);
  7480. }
  7481. static int
  7482. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7483. struct task_struct *tsk)
  7484. {
  7485. #ifdef CONFIG_RT_GROUP_SCHED
  7486. /* Don't accept realtime tasks when there is no way for them to run */
  7487. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7488. return -EINVAL;
  7489. #else
  7490. /* We don't support RT-tasks being in separate groups */
  7491. if (tsk->sched_class != &fair_sched_class)
  7492. return -EINVAL;
  7493. #endif
  7494. return 0;
  7495. }
  7496. static void
  7497. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7498. struct cgroup *old_cont, struct task_struct *tsk)
  7499. {
  7500. sched_move_task(tsk);
  7501. }
  7502. #ifdef CONFIG_FAIR_GROUP_SCHED
  7503. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7504. u64 shareval)
  7505. {
  7506. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7507. }
  7508. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7509. {
  7510. struct task_group *tg = cgroup_tg(cgrp);
  7511. return (u64) tg->shares;
  7512. }
  7513. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7514. #ifdef CONFIG_RT_GROUP_SCHED
  7515. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7516. s64 val)
  7517. {
  7518. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7519. }
  7520. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7521. {
  7522. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7523. }
  7524. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7525. u64 rt_period_us)
  7526. {
  7527. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7528. }
  7529. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7530. {
  7531. return sched_group_rt_period(cgroup_tg(cgrp));
  7532. }
  7533. #endif /* CONFIG_RT_GROUP_SCHED */
  7534. static struct cftype cpu_files[] = {
  7535. #ifdef CONFIG_FAIR_GROUP_SCHED
  7536. {
  7537. .name = "shares",
  7538. .read_u64 = cpu_shares_read_u64,
  7539. .write_u64 = cpu_shares_write_u64,
  7540. },
  7541. #endif
  7542. #ifdef CONFIG_RT_GROUP_SCHED
  7543. {
  7544. .name = "rt_runtime_us",
  7545. .read_s64 = cpu_rt_runtime_read,
  7546. .write_s64 = cpu_rt_runtime_write,
  7547. },
  7548. {
  7549. .name = "rt_period_us",
  7550. .read_u64 = cpu_rt_period_read_uint,
  7551. .write_u64 = cpu_rt_period_write_uint,
  7552. },
  7553. #endif
  7554. };
  7555. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7556. {
  7557. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7558. }
  7559. struct cgroup_subsys cpu_cgroup_subsys = {
  7560. .name = "cpu",
  7561. .create = cpu_cgroup_create,
  7562. .destroy = cpu_cgroup_destroy,
  7563. .can_attach = cpu_cgroup_can_attach,
  7564. .attach = cpu_cgroup_attach,
  7565. .populate = cpu_cgroup_populate,
  7566. .subsys_id = cpu_cgroup_subsys_id,
  7567. .early_init = 1,
  7568. };
  7569. #endif /* CONFIG_CGROUP_SCHED */
  7570. #ifdef CONFIG_CGROUP_CPUACCT
  7571. /*
  7572. * CPU accounting code for task groups.
  7573. *
  7574. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7575. * (balbir@in.ibm.com).
  7576. */
  7577. /* track cpu usage of a group of tasks */
  7578. struct cpuacct {
  7579. struct cgroup_subsys_state css;
  7580. /* cpuusage holds pointer to a u64-type object on every cpu */
  7581. u64 *cpuusage;
  7582. };
  7583. struct cgroup_subsys cpuacct_subsys;
  7584. /* return cpu accounting group corresponding to this container */
  7585. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7586. {
  7587. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7588. struct cpuacct, css);
  7589. }
  7590. /* return cpu accounting group to which this task belongs */
  7591. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7592. {
  7593. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7594. struct cpuacct, css);
  7595. }
  7596. /* create a new cpu accounting group */
  7597. static struct cgroup_subsys_state *cpuacct_create(
  7598. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7599. {
  7600. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7601. if (!ca)
  7602. return ERR_PTR(-ENOMEM);
  7603. ca->cpuusage = alloc_percpu(u64);
  7604. if (!ca->cpuusage) {
  7605. kfree(ca);
  7606. return ERR_PTR(-ENOMEM);
  7607. }
  7608. return &ca->css;
  7609. }
  7610. /* destroy an existing cpu accounting group */
  7611. static void
  7612. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7613. {
  7614. struct cpuacct *ca = cgroup_ca(cgrp);
  7615. free_percpu(ca->cpuusage);
  7616. kfree(ca);
  7617. }
  7618. /* return total cpu usage (in nanoseconds) of a group */
  7619. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7620. {
  7621. struct cpuacct *ca = cgroup_ca(cgrp);
  7622. u64 totalcpuusage = 0;
  7623. int i;
  7624. for_each_possible_cpu(i) {
  7625. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7626. /*
  7627. * Take rq->lock to make 64-bit addition safe on 32-bit
  7628. * platforms.
  7629. */
  7630. spin_lock_irq(&cpu_rq(i)->lock);
  7631. totalcpuusage += *cpuusage;
  7632. spin_unlock_irq(&cpu_rq(i)->lock);
  7633. }
  7634. return totalcpuusage;
  7635. }
  7636. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7637. u64 reset)
  7638. {
  7639. struct cpuacct *ca = cgroup_ca(cgrp);
  7640. int err = 0;
  7641. int i;
  7642. if (reset) {
  7643. err = -EINVAL;
  7644. goto out;
  7645. }
  7646. for_each_possible_cpu(i) {
  7647. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7648. spin_lock_irq(&cpu_rq(i)->lock);
  7649. *cpuusage = 0;
  7650. spin_unlock_irq(&cpu_rq(i)->lock);
  7651. }
  7652. out:
  7653. return err;
  7654. }
  7655. static struct cftype files[] = {
  7656. {
  7657. .name = "usage",
  7658. .read_u64 = cpuusage_read,
  7659. .write_u64 = cpuusage_write,
  7660. },
  7661. };
  7662. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7663. {
  7664. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7665. }
  7666. /*
  7667. * charge this task's execution time to its accounting group.
  7668. *
  7669. * called with rq->lock held.
  7670. */
  7671. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7672. {
  7673. struct cpuacct *ca;
  7674. if (!cpuacct_subsys.active)
  7675. return;
  7676. ca = task_ca(tsk);
  7677. if (ca) {
  7678. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7679. *cpuusage += cputime;
  7680. }
  7681. }
  7682. struct cgroup_subsys cpuacct_subsys = {
  7683. .name = "cpuacct",
  7684. .create = cpuacct_create,
  7685. .destroy = cpuacct_destroy,
  7686. .populate = cpuacct_populate,
  7687. .subsys_id = cpuacct_subsys_id,
  7688. };
  7689. #endif /* CONFIG_CGROUP_CPUACCT */