init.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682
  1. /*
  2. * linux/arch/arm/mm/init.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/ptrace.h>
  13. #include <linux/swap.h>
  14. #include <linux/init.h>
  15. #include <linux/bootmem.h>
  16. #include <linux/mman.h>
  17. #include <linux/nodemask.h>
  18. #include <linux/initrd.h>
  19. #include <asm/mach-types.h>
  20. #include <asm/setup.h>
  21. #include <asm/sizes.h>
  22. #include <asm/tlb.h>
  23. #include <asm/mach/arch.h>
  24. #include <asm/mach/map.h>
  25. #include "mm.h"
  26. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  27. extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
  28. extern void _stext, _text, _etext, __data_start, _end, __init_begin, __init_end;
  29. extern unsigned long phys_initrd_start;
  30. extern unsigned long phys_initrd_size;
  31. /*
  32. * The sole use of this is to pass memory configuration
  33. * data from paging_init to mem_init.
  34. */
  35. static struct meminfo meminfo __initdata = { 0, };
  36. /*
  37. * empty_zero_page is a special page that is used for
  38. * zero-initialized data and COW.
  39. */
  40. struct page *empty_zero_page;
  41. /*
  42. * The pmd table for the upper-most set of pages.
  43. */
  44. pmd_t *top_pmd;
  45. void show_mem(void)
  46. {
  47. int free = 0, total = 0, reserved = 0;
  48. int shared = 0, cached = 0, slab = 0, node;
  49. printk("Mem-info:\n");
  50. show_free_areas();
  51. printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
  52. for_each_online_node(node) {
  53. struct page *page, *end;
  54. page = NODE_MEM_MAP(node);
  55. end = page + NODE_DATA(node)->node_spanned_pages;
  56. do {
  57. total++;
  58. if (PageReserved(page))
  59. reserved++;
  60. else if (PageSwapCache(page))
  61. cached++;
  62. else if (PageSlab(page))
  63. slab++;
  64. else if (!page_count(page))
  65. free++;
  66. else
  67. shared += page_count(page) - 1;
  68. page++;
  69. } while (page < end);
  70. }
  71. printk("%d pages of RAM\n", total);
  72. printk("%d free pages\n", free);
  73. printk("%d reserved pages\n", reserved);
  74. printk("%d slab pages\n", slab);
  75. printk("%d pages shared\n", shared);
  76. printk("%d pages swap cached\n", cached);
  77. }
  78. #define for_each_nodebank(iter,mi,no) \
  79. for (iter = 0; iter < mi->nr_banks; iter++) \
  80. if (mi->bank[iter].node == no)
  81. /*
  82. * FIXME: We really want to avoid allocating the bootmap bitmap
  83. * over the top of the initrd. Hopefully, this is located towards
  84. * the start of a bank, so if we allocate the bootmap bitmap at
  85. * the end, we won't clash.
  86. */
  87. static unsigned int __init
  88. find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
  89. {
  90. unsigned int start_pfn, bank, bootmap_pfn;
  91. start_pfn = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT;
  92. bootmap_pfn = 0;
  93. for_each_nodebank(bank, mi, node) {
  94. unsigned int start, end;
  95. start = mi->bank[bank].start >> PAGE_SHIFT;
  96. end = (mi->bank[bank].size +
  97. mi->bank[bank].start) >> PAGE_SHIFT;
  98. if (end < start_pfn)
  99. continue;
  100. if (start < start_pfn)
  101. start = start_pfn;
  102. if (end <= start)
  103. continue;
  104. if (end - start >= bootmap_pages) {
  105. bootmap_pfn = start;
  106. break;
  107. }
  108. }
  109. if (bootmap_pfn == 0)
  110. BUG();
  111. return bootmap_pfn;
  112. }
  113. static int __init check_initrd(struct meminfo *mi)
  114. {
  115. int initrd_node = -2;
  116. #ifdef CONFIG_BLK_DEV_INITRD
  117. unsigned long end = phys_initrd_start + phys_initrd_size;
  118. /*
  119. * Make sure that the initrd is within a valid area of
  120. * memory.
  121. */
  122. if (phys_initrd_size) {
  123. unsigned int i;
  124. initrd_node = -1;
  125. for (i = 0; i < mi->nr_banks; i++) {
  126. unsigned long bank_end;
  127. bank_end = mi->bank[i].start + mi->bank[i].size;
  128. if (mi->bank[i].start <= phys_initrd_start &&
  129. end <= bank_end)
  130. initrd_node = mi->bank[i].node;
  131. }
  132. }
  133. if (initrd_node == -1) {
  134. printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond "
  135. "physical memory - disabling initrd\n",
  136. phys_initrd_start, end);
  137. phys_initrd_start = phys_initrd_size = 0;
  138. }
  139. #endif
  140. return initrd_node;
  141. }
  142. /*
  143. * Reserve the various regions of node 0
  144. */
  145. static __init void reserve_node_zero(pg_data_t *pgdat)
  146. {
  147. unsigned long res_size = 0;
  148. /*
  149. * Register the kernel text and data with bootmem.
  150. * Note that this can only be in node 0.
  151. */
  152. #ifdef CONFIG_XIP_KERNEL
  153. reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start);
  154. #else
  155. reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext);
  156. #endif
  157. /*
  158. * Reserve the page tables. These are already in use,
  159. * and can only be in node 0.
  160. */
  161. reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
  162. PTRS_PER_PGD * sizeof(pgd_t));
  163. /*
  164. * Hmm... This should go elsewhere, but we really really need to
  165. * stop things allocating the low memory; ideally we need a better
  166. * implementation of GFP_DMA which does not assume that DMA-able
  167. * memory starts at zero.
  168. */
  169. if (machine_is_integrator() || machine_is_cintegrator())
  170. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  171. /*
  172. * These should likewise go elsewhere. They pre-reserve the
  173. * screen memory region at the start of main system memory.
  174. */
  175. if (machine_is_edb7211())
  176. res_size = 0x00020000;
  177. if (machine_is_p720t())
  178. res_size = 0x00014000;
  179. #ifdef CONFIG_SA1111
  180. /*
  181. * Because of the SA1111 DMA bug, we want to preserve our
  182. * precious DMA-able memory...
  183. */
  184. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  185. #endif
  186. if (res_size)
  187. reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size);
  188. }
  189. static unsigned long __init
  190. bootmem_init_node(int node, int initrd_node, struct meminfo *mi)
  191. {
  192. unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
  193. unsigned long start_pfn, end_pfn, boot_pfn;
  194. unsigned int boot_pages;
  195. pg_data_t *pgdat;
  196. int i;
  197. start_pfn = -1UL;
  198. end_pfn = 0;
  199. /*
  200. * Calculate the pfn range, and map the memory banks for this node.
  201. */
  202. for_each_nodebank(i, mi, node) {
  203. unsigned long start, end;
  204. struct map_desc map;
  205. start = mi->bank[i].start >> PAGE_SHIFT;
  206. end = (mi->bank[i].start + mi->bank[i].size) >> PAGE_SHIFT;
  207. if (start_pfn > start)
  208. start_pfn = start;
  209. if (end_pfn < end)
  210. end_pfn = end;
  211. map.pfn = __phys_to_pfn(mi->bank[i].start);
  212. map.virtual = __phys_to_virt(mi->bank[i].start);
  213. map.length = mi->bank[i].size;
  214. map.type = MT_MEMORY;
  215. create_mapping(&map);
  216. }
  217. /*
  218. * If there is no memory in this node, ignore it.
  219. */
  220. if (end_pfn == 0)
  221. return end_pfn;
  222. /*
  223. * Allocate the bootmem bitmap page.
  224. */
  225. boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
  226. boot_pfn = find_bootmap_pfn(node, mi, boot_pages);
  227. /*
  228. * Initialise the bootmem allocator for this node, handing the
  229. * memory banks over to bootmem.
  230. */
  231. node_set_online(node);
  232. pgdat = NODE_DATA(node);
  233. init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn);
  234. for_each_nodebank(i, mi, node)
  235. free_bootmem_node(pgdat, mi->bank[i].start, mi->bank[i].size);
  236. /*
  237. * Reserve the bootmem bitmap for this node.
  238. */
  239. reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT,
  240. boot_pages << PAGE_SHIFT);
  241. #ifdef CONFIG_BLK_DEV_INITRD
  242. /*
  243. * If the initrd is in this node, reserve its memory.
  244. */
  245. if (node == initrd_node) {
  246. reserve_bootmem_node(pgdat, phys_initrd_start,
  247. phys_initrd_size);
  248. initrd_start = __phys_to_virt(phys_initrd_start);
  249. initrd_end = initrd_start + phys_initrd_size;
  250. }
  251. #endif
  252. /*
  253. * Finally, reserve any node zero regions.
  254. */
  255. if (node == 0)
  256. reserve_node_zero(pgdat);
  257. /*
  258. * initialise the zones within this node.
  259. */
  260. memset(zone_size, 0, sizeof(zone_size));
  261. memset(zhole_size, 0, sizeof(zhole_size));
  262. /*
  263. * The size of this node has already been determined. If we need
  264. * to do anything fancy with the allocation of this memory to the
  265. * zones, now is the time to do it.
  266. */
  267. zone_size[0] = end_pfn - start_pfn;
  268. /*
  269. * For each bank in this node, calculate the size of the holes.
  270. * holes = node_size - sum(bank_sizes_in_node)
  271. */
  272. zhole_size[0] = zone_size[0];
  273. for_each_nodebank(i, mi, node)
  274. zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT;
  275. /*
  276. * Adjust the sizes according to any special requirements for
  277. * this machine type.
  278. */
  279. arch_adjust_zones(node, zone_size, zhole_size);
  280. free_area_init_node(node, pgdat, zone_size, start_pfn, zhole_size);
  281. return end_pfn;
  282. }
  283. static void __init bootmem_init(struct meminfo *mi)
  284. {
  285. unsigned long addr, memend_pfn = 0;
  286. int node, initrd_node, i;
  287. /*
  288. * Invalidate the node number for empty or invalid memory banks
  289. */
  290. for (i = 0; i < mi->nr_banks; i++)
  291. if (mi->bank[i].size == 0 || mi->bank[i].node >= MAX_NUMNODES)
  292. mi->bank[i].node = -1;
  293. memcpy(&meminfo, mi, sizeof(meminfo));
  294. /*
  295. * Clear out all the mappings below the kernel image.
  296. */
  297. for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
  298. pmd_clear(pmd_off_k(addr));
  299. #ifdef CONFIG_XIP_KERNEL
  300. /* The XIP kernel is mapped in the module area -- skip over it */
  301. addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
  302. #endif
  303. for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
  304. pmd_clear(pmd_off_k(addr));
  305. /*
  306. * Clear out all the kernel space mappings, except for the first
  307. * memory bank, up to the end of the vmalloc region.
  308. */
  309. for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
  310. addr < VMALLOC_END; addr += PGDIR_SIZE)
  311. pmd_clear(pmd_off_k(addr));
  312. /*
  313. * Locate which node contains the ramdisk image, if any.
  314. */
  315. initrd_node = check_initrd(mi);
  316. /*
  317. * Run through each node initialising the bootmem allocator.
  318. */
  319. for_each_node(node) {
  320. unsigned long end_pfn;
  321. end_pfn = bootmem_init_node(node, initrd_node, mi);
  322. /*
  323. * Remember the highest memory PFN.
  324. */
  325. if (end_pfn > memend_pfn)
  326. memend_pfn = end_pfn;
  327. }
  328. high_memory = __va(memend_pfn << PAGE_SHIFT);
  329. /*
  330. * This doesn't seem to be used by the Linux memory manager any
  331. * more, but is used by ll_rw_block. If we can get rid of it, we
  332. * also get rid of some of the stuff above as well.
  333. *
  334. * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
  335. * the system, not the maximum PFN.
  336. */
  337. max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET;
  338. }
  339. /*
  340. * Set up device the mappings. Since we clear out the page tables for all
  341. * mappings above VMALLOC_END, we will remove any debug device mappings.
  342. * This means you have to be careful how you debug this function, or any
  343. * called function. This means you can't use any function or debugging
  344. * method which may touch any device, otherwise the kernel _will_ crash.
  345. */
  346. static void __init devicemaps_init(struct machine_desc *mdesc)
  347. {
  348. struct map_desc map;
  349. unsigned long addr;
  350. void *vectors;
  351. /*
  352. * Allocate the vector page early.
  353. */
  354. vectors = alloc_bootmem_low_pages(PAGE_SIZE);
  355. BUG_ON(!vectors);
  356. for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
  357. pmd_clear(pmd_off_k(addr));
  358. /*
  359. * Map the kernel if it is XIP.
  360. * It is always first in the modulearea.
  361. */
  362. #ifdef CONFIG_XIP_KERNEL
  363. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  364. map.virtual = MODULE_START;
  365. map.length = ((unsigned long)&_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  366. map.type = MT_ROM;
  367. create_mapping(&map);
  368. #endif
  369. /*
  370. * Map the cache flushing regions.
  371. */
  372. #ifdef FLUSH_BASE
  373. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  374. map.virtual = FLUSH_BASE;
  375. map.length = SZ_1M;
  376. map.type = MT_CACHECLEAN;
  377. create_mapping(&map);
  378. #endif
  379. #ifdef FLUSH_BASE_MINICACHE
  380. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  381. map.virtual = FLUSH_BASE_MINICACHE;
  382. map.length = SZ_1M;
  383. map.type = MT_MINICLEAN;
  384. create_mapping(&map);
  385. #endif
  386. /*
  387. * Create a mapping for the machine vectors at the high-vectors
  388. * location (0xffff0000). If we aren't using high-vectors, also
  389. * create a mapping at the low-vectors virtual address.
  390. */
  391. map.pfn = __phys_to_pfn(virt_to_phys(vectors));
  392. map.virtual = 0xffff0000;
  393. map.length = PAGE_SIZE;
  394. map.type = MT_HIGH_VECTORS;
  395. create_mapping(&map);
  396. if (!vectors_high()) {
  397. map.virtual = 0;
  398. map.type = MT_LOW_VECTORS;
  399. create_mapping(&map);
  400. }
  401. /*
  402. * Ask the machine support to map in the statically mapped devices.
  403. */
  404. if (mdesc->map_io)
  405. mdesc->map_io();
  406. /*
  407. * Finally flush the caches and tlb to ensure that we're in a
  408. * consistent state wrt the writebuffer. This also ensures that
  409. * any write-allocated cache lines in the vector page are written
  410. * back. After this point, we can start to touch devices again.
  411. */
  412. local_flush_tlb_all();
  413. flush_cache_all();
  414. }
  415. /*
  416. * paging_init() sets up the page tables, initialises the zone memory
  417. * maps, and sets up the zero page, bad page and bad page tables.
  418. */
  419. void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
  420. {
  421. void *zero_page;
  422. build_mem_type_table();
  423. bootmem_init(mi);
  424. devicemaps_init(mdesc);
  425. top_pmd = pmd_off_k(0xffff0000);
  426. /*
  427. * allocate the zero page. Note that we count on this going ok.
  428. */
  429. zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
  430. memzero(zero_page, PAGE_SIZE);
  431. empty_zero_page = virt_to_page(zero_page);
  432. flush_dcache_page(empty_zero_page);
  433. }
  434. static inline void free_area(unsigned long addr, unsigned long end, char *s)
  435. {
  436. unsigned int size = (end - addr) >> 10;
  437. for (; addr < end; addr += PAGE_SIZE) {
  438. struct page *page = virt_to_page(addr);
  439. ClearPageReserved(page);
  440. init_page_count(page);
  441. free_page(addr);
  442. totalram_pages++;
  443. }
  444. if (size && s)
  445. printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
  446. }
  447. static inline void
  448. free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
  449. {
  450. struct page *start_pg, *end_pg;
  451. unsigned long pg, pgend;
  452. /*
  453. * Convert start_pfn/end_pfn to a struct page pointer.
  454. */
  455. start_pg = pfn_to_page(start_pfn);
  456. end_pg = pfn_to_page(end_pfn);
  457. /*
  458. * Convert to physical addresses, and
  459. * round start upwards and end downwards.
  460. */
  461. pg = PAGE_ALIGN(__pa(start_pg));
  462. pgend = __pa(end_pg) & PAGE_MASK;
  463. /*
  464. * If there are free pages between these,
  465. * free the section of the memmap array.
  466. */
  467. if (pg < pgend)
  468. free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
  469. }
  470. /*
  471. * The mem_map array can get very big. Free the unused area of the memory map.
  472. */
  473. static void __init free_unused_memmap_node(int node, struct meminfo *mi)
  474. {
  475. unsigned long bank_start, prev_bank_end = 0;
  476. unsigned int i;
  477. /*
  478. * [FIXME] This relies on each bank being in address order. This
  479. * may not be the case, especially if the user has provided the
  480. * information on the command line.
  481. */
  482. for_each_nodebank(i, mi, node) {
  483. bank_start = mi->bank[i].start >> PAGE_SHIFT;
  484. if (bank_start < prev_bank_end) {
  485. printk(KERN_ERR "MEM: unordered memory banks. "
  486. "Not freeing memmap.\n");
  487. break;
  488. }
  489. /*
  490. * If we had a previous bank, and there is a space
  491. * between the current bank and the previous, free it.
  492. */
  493. if (prev_bank_end && prev_bank_end != bank_start)
  494. free_memmap(node, prev_bank_end, bank_start);
  495. prev_bank_end = (mi->bank[i].start +
  496. mi->bank[i].size) >> PAGE_SHIFT;
  497. }
  498. }
  499. /*
  500. * mem_init() marks the free areas in the mem_map and tells us how much
  501. * memory is free. This is done after various parts of the system have
  502. * claimed their memory after the kernel image.
  503. */
  504. void __init mem_init(void)
  505. {
  506. unsigned int codepages, datapages, initpages;
  507. int i, node;
  508. codepages = &_etext - &_text;
  509. datapages = &_end - &__data_start;
  510. initpages = &__init_end - &__init_begin;
  511. #ifndef CONFIG_DISCONTIGMEM
  512. max_mapnr = virt_to_page(high_memory) - mem_map;
  513. #endif
  514. /* this will put all unused low memory onto the freelists */
  515. for_each_online_node(node) {
  516. pg_data_t *pgdat = NODE_DATA(node);
  517. free_unused_memmap_node(node, &meminfo);
  518. if (pgdat->node_spanned_pages != 0)
  519. totalram_pages += free_all_bootmem_node(pgdat);
  520. }
  521. #ifdef CONFIG_SA1111
  522. /* now that our DMA memory is actually so designated, we can free it */
  523. free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL);
  524. #endif
  525. /*
  526. * Since our memory may not be contiguous, calculate the
  527. * real number of pages we have in this system
  528. */
  529. printk(KERN_INFO "Memory:");
  530. num_physpages = 0;
  531. for (i = 0; i < meminfo.nr_banks; i++) {
  532. num_physpages += meminfo.bank[i].size >> PAGE_SHIFT;
  533. printk(" %ldMB", meminfo.bank[i].size >> 20);
  534. }
  535. printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
  536. printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
  537. "%dK data, %dK init)\n",
  538. (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
  539. codepages >> 10, datapages >> 10, initpages >> 10);
  540. if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
  541. extern int sysctl_overcommit_memory;
  542. /*
  543. * On a machine this small we won't get
  544. * anywhere without overcommit, so turn
  545. * it on by default.
  546. */
  547. sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
  548. }
  549. }
  550. void free_initmem(void)
  551. {
  552. if (!machine_is_integrator() && !machine_is_cintegrator()) {
  553. free_area((unsigned long)(&__init_begin),
  554. (unsigned long)(&__init_end),
  555. "init");
  556. }
  557. }
  558. #ifdef CONFIG_BLK_DEV_INITRD
  559. static int keep_initrd;
  560. void free_initrd_mem(unsigned long start, unsigned long end)
  561. {
  562. if (!keep_initrd)
  563. free_area(start, end, "initrd");
  564. }
  565. static int __init keepinitrd_setup(char *__unused)
  566. {
  567. keep_initrd = 1;
  568. return 1;
  569. }
  570. __setup("keepinitrd", keepinitrd_setup);
  571. #endif