x86.c 157 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10. *
  11. * Authors:
  12. * Avi Kivity <avi@qumranet.com>
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Amit Shah <amit.shah@qumranet.com>
  15. * Ben-Ami Yassour <benami@il.ibm.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. */
  21. #include <linux/kvm_host.h>
  22. #include "irq.h"
  23. #include "mmu.h"
  24. #include "i8254.h"
  25. #include "tss.h"
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <linux/clocksource.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/kvm.h>
  31. #include <linux/fs.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/module.h>
  34. #include <linux/mman.h>
  35. #include <linux/highmem.h>
  36. #include <linux/iommu.h>
  37. #include <linux/intel-iommu.h>
  38. #include <linux/cpufreq.h>
  39. #include <linux/user-return-notifier.h>
  40. #include <linux/srcu.h>
  41. #include <linux/slab.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/uaccess.h>
  44. #include <linux/hash.h>
  45. #include <trace/events/kvm.h>
  46. #define CREATE_TRACE_POINTS
  47. #include "trace.h"
  48. #include <asm/debugreg.h>
  49. #include <asm/msr.h>
  50. #include <asm/desc.h>
  51. #include <asm/mtrr.h>
  52. #include <asm/mce.h>
  53. #include <asm/i387.h>
  54. #include <asm/xcr.h>
  55. #include <asm/pvclock.h>
  56. #include <asm/div64.h>
  57. #define MAX_IO_MSRS 256
  58. #define CR0_RESERVED_BITS \
  59. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  60. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  61. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  62. #define CR4_RESERVED_BITS \
  63. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  64. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  65. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  66. | X86_CR4_OSXSAVE \
  67. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  68. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  69. #define KVM_MAX_MCE_BANKS 32
  70. #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
  71. /* EFER defaults:
  72. * - enable syscall per default because its emulated by KVM
  73. * - enable LME and LMA per default on 64 bit KVM
  74. */
  75. #ifdef CONFIG_X86_64
  76. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  77. #else
  78. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  79. #endif
  80. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  81. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  82. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  83. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  84. struct kvm_cpuid_entry2 __user *entries);
  85. struct kvm_x86_ops *kvm_x86_ops;
  86. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  87. int ignore_msrs = 0;
  88. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  89. #define KVM_NR_SHARED_MSRS 16
  90. struct kvm_shared_msrs_global {
  91. int nr;
  92. u32 msrs[KVM_NR_SHARED_MSRS];
  93. };
  94. struct kvm_shared_msrs {
  95. struct user_return_notifier urn;
  96. bool registered;
  97. struct kvm_shared_msr_values {
  98. u64 host;
  99. u64 curr;
  100. } values[KVM_NR_SHARED_MSRS];
  101. };
  102. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  103. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  104. struct kvm_stats_debugfs_item debugfs_entries[] = {
  105. { "pf_fixed", VCPU_STAT(pf_fixed) },
  106. { "pf_guest", VCPU_STAT(pf_guest) },
  107. { "tlb_flush", VCPU_STAT(tlb_flush) },
  108. { "invlpg", VCPU_STAT(invlpg) },
  109. { "exits", VCPU_STAT(exits) },
  110. { "io_exits", VCPU_STAT(io_exits) },
  111. { "mmio_exits", VCPU_STAT(mmio_exits) },
  112. { "signal_exits", VCPU_STAT(signal_exits) },
  113. { "irq_window", VCPU_STAT(irq_window_exits) },
  114. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  115. { "halt_exits", VCPU_STAT(halt_exits) },
  116. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  117. { "hypercalls", VCPU_STAT(hypercalls) },
  118. { "request_irq", VCPU_STAT(request_irq_exits) },
  119. { "irq_exits", VCPU_STAT(irq_exits) },
  120. { "host_state_reload", VCPU_STAT(host_state_reload) },
  121. { "efer_reload", VCPU_STAT(efer_reload) },
  122. { "fpu_reload", VCPU_STAT(fpu_reload) },
  123. { "insn_emulation", VCPU_STAT(insn_emulation) },
  124. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  125. { "irq_injections", VCPU_STAT(irq_injections) },
  126. { "nmi_injections", VCPU_STAT(nmi_injections) },
  127. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  128. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  129. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  130. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  131. { "mmu_flooded", VM_STAT(mmu_flooded) },
  132. { "mmu_recycled", VM_STAT(mmu_recycled) },
  133. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  134. { "mmu_unsync", VM_STAT(mmu_unsync) },
  135. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  136. { "largepages", VM_STAT(lpages) },
  137. { NULL }
  138. };
  139. u64 __read_mostly host_xcr0;
  140. static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
  141. {
  142. int i;
  143. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
  144. vcpu->arch.apf.gfns[i] = ~0;
  145. }
  146. static void kvm_on_user_return(struct user_return_notifier *urn)
  147. {
  148. unsigned slot;
  149. struct kvm_shared_msrs *locals
  150. = container_of(urn, struct kvm_shared_msrs, urn);
  151. struct kvm_shared_msr_values *values;
  152. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  153. values = &locals->values[slot];
  154. if (values->host != values->curr) {
  155. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  156. values->curr = values->host;
  157. }
  158. }
  159. locals->registered = false;
  160. user_return_notifier_unregister(urn);
  161. }
  162. static void shared_msr_update(unsigned slot, u32 msr)
  163. {
  164. struct kvm_shared_msrs *smsr;
  165. u64 value;
  166. smsr = &__get_cpu_var(shared_msrs);
  167. /* only read, and nobody should modify it at this time,
  168. * so don't need lock */
  169. if (slot >= shared_msrs_global.nr) {
  170. printk(KERN_ERR "kvm: invalid MSR slot!");
  171. return;
  172. }
  173. rdmsrl_safe(msr, &value);
  174. smsr->values[slot].host = value;
  175. smsr->values[slot].curr = value;
  176. }
  177. void kvm_define_shared_msr(unsigned slot, u32 msr)
  178. {
  179. if (slot >= shared_msrs_global.nr)
  180. shared_msrs_global.nr = slot + 1;
  181. shared_msrs_global.msrs[slot] = msr;
  182. /* we need ensured the shared_msr_global have been updated */
  183. smp_wmb();
  184. }
  185. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  186. static void kvm_shared_msr_cpu_online(void)
  187. {
  188. unsigned i;
  189. for (i = 0; i < shared_msrs_global.nr; ++i)
  190. shared_msr_update(i, shared_msrs_global.msrs[i]);
  191. }
  192. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  193. {
  194. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  195. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  196. return;
  197. smsr->values[slot].curr = value;
  198. wrmsrl(shared_msrs_global.msrs[slot], value);
  199. if (!smsr->registered) {
  200. smsr->urn.on_user_return = kvm_on_user_return;
  201. user_return_notifier_register(&smsr->urn);
  202. smsr->registered = true;
  203. }
  204. }
  205. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  206. static void drop_user_return_notifiers(void *ignore)
  207. {
  208. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  209. if (smsr->registered)
  210. kvm_on_user_return(&smsr->urn);
  211. }
  212. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  213. {
  214. if (irqchip_in_kernel(vcpu->kvm))
  215. return vcpu->arch.apic_base;
  216. else
  217. return vcpu->arch.apic_base;
  218. }
  219. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  220. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  221. {
  222. /* TODO: reserve bits check */
  223. if (irqchip_in_kernel(vcpu->kvm))
  224. kvm_lapic_set_base(vcpu, data);
  225. else
  226. vcpu->arch.apic_base = data;
  227. }
  228. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  229. #define EXCPT_BENIGN 0
  230. #define EXCPT_CONTRIBUTORY 1
  231. #define EXCPT_PF 2
  232. static int exception_class(int vector)
  233. {
  234. switch (vector) {
  235. case PF_VECTOR:
  236. return EXCPT_PF;
  237. case DE_VECTOR:
  238. case TS_VECTOR:
  239. case NP_VECTOR:
  240. case SS_VECTOR:
  241. case GP_VECTOR:
  242. return EXCPT_CONTRIBUTORY;
  243. default:
  244. break;
  245. }
  246. return EXCPT_BENIGN;
  247. }
  248. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  249. unsigned nr, bool has_error, u32 error_code,
  250. bool reinject)
  251. {
  252. u32 prev_nr;
  253. int class1, class2;
  254. kvm_make_request(KVM_REQ_EVENT, vcpu);
  255. if (!vcpu->arch.exception.pending) {
  256. queue:
  257. vcpu->arch.exception.pending = true;
  258. vcpu->arch.exception.has_error_code = has_error;
  259. vcpu->arch.exception.nr = nr;
  260. vcpu->arch.exception.error_code = error_code;
  261. vcpu->arch.exception.reinject = reinject;
  262. return;
  263. }
  264. /* to check exception */
  265. prev_nr = vcpu->arch.exception.nr;
  266. if (prev_nr == DF_VECTOR) {
  267. /* triple fault -> shutdown */
  268. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  269. return;
  270. }
  271. class1 = exception_class(prev_nr);
  272. class2 = exception_class(nr);
  273. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  274. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  275. /* generate double fault per SDM Table 5-5 */
  276. vcpu->arch.exception.pending = true;
  277. vcpu->arch.exception.has_error_code = true;
  278. vcpu->arch.exception.nr = DF_VECTOR;
  279. vcpu->arch.exception.error_code = 0;
  280. } else
  281. /* replace previous exception with a new one in a hope
  282. that instruction re-execution will regenerate lost
  283. exception */
  284. goto queue;
  285. }
  286. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  287. {
  288. kvm_multiple_exception(vcpu, nr, false, 0, false);
  289. }
  290. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  291. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  292. {
  293. kvm_multiple_exception(vcpu, nr, false, 0, true);
  294. }
  295. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  296. void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
  297. {
  298. if (err)
  299. kvm_inject_gp(vcpu, 0);
  300. else
  301. kvm_x86_ops->skip_emulated_instruction(vcpu);
  302. }
  303. EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
  304. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
  305. {
  306. ++vcpu->stat.pf_guest;
  307. vcpu->arch.cr2 = fault->address;
  308. kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
  309. }
  310. void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
  311. {
  312. if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
  313. vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
  314. else
  315. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  316. }
  317. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  318. {
  319. kvm_make_request(KVM_REQ_EVENT, vcpu);
  320. vcpu->arch.nmi_pending = 1;
  321. }
  322. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  323. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  324. {
  325. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  326. }
  327. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  328. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  329. {
  330. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  331. }
  332. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  333. /*
  334. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  335. * a #GP and return false.
  336. */
  337. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  338. {
  339. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  340. return true;
  341. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  342. return false;
  343. }
  344. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  345. /*
  346. * This function will be used to read from the physical memory of the currently
  347. * running guest. The difference to kvm_read_guest_page is that this function
  348. * can read from guest physical or from the guest's guest physical memory.
  349. */
  350. int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  351. gfn_t ngfn, void *data, int offset, int len,
  352. u32 access)
  353. {
  354. gfn_t real_gfn;
  355. gpa_t ngpa;
  356. ngpa = gfn_to_gpa(ngfn);
  357. real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
  358. if (real_gfn == UNMAPPED_GVA)
  359. return -EFAULT;
  360. real_gfn = gpa_to_gfn(real_gfn);
  361. return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
  362. }
  363. EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
  364. int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
  365. void *data, int offset, int len, u32 access)
  366. {
  367. return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
  368. data, offset, len, access);
  369. }
  370. /*
  371. * Load the pae pdptrs. Return true is they are all valid.
  372. */
  373. int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
  374. {
  375. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  376. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  377. int i;
  378. int ret;
  379. u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
  380. ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
  381. offset * sizeof(u64), sizeof(pdpte),
  382. PFERR_USER_MASK|PFERR_WRITE_MASK);
  383. if (ret < 0) {
  384. ret = 0;
  385. goto out;
  386. }
  387. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  388. if (is_present_gpte(pdpte[i]) &&
  389. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  390. ret = 0;
  391. goto out;
  392. }
  393. }
  394. ret = 1;
  395. memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
  396. __set_bit(VCPU_EXREG_PDPTR,
  397. (unsigned long *)&vcpu->arch.regs_avail);
  398. __set_bit(VCPU_EXREG_PDPTR,
  399. (unsigned long *)&vcpu->arch.regs_dirty);
  400. out:
  401. return ret;
  402. }
  403. EXPORT_SYMBOL_GPL(load_pdptrs);
  404. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  405. {
  406. u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
  407. bool changed = true;
  408. int offset;
  409. gfn_t gfn;
  410. int r;
  411. if (is_long_mode(vcpu) || !is_pae(vcpu))
  412. return false;
  413. if (!test_bit(VCPU_EXREG_PDPTR,
  414. (unsigned long *)&vcpu->arch.regs_avail))
  415. return true;
  416. gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
  417. offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
  418. r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
  419. PFERR_USER_MASK | PFERR_WRITE_MASK);
  420. if (r < 0)
  421. goto out;
  422. changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
  423. out:
  424. return changed;
  425. }
  426. int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  427. {
  428. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  429. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  430. X86_CR0_CD | X86_CR0_NW;
  431. cr0 |= X86_CR0_ET;
  432. #ifdef CONFIG_X86_64
  433. if (cr0 & 0xffffffff00000000UL)
  434. return 1;
  435. #endif
  436. cr0 &= ~CR0_RESERVED_BITS;
  437. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  438. return 1;
  439. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  440. return 1;
  441. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  442. #ifdef CONFIG_X86_64
  443. if ((vcpu->arch.efer & EFER_LME)) {
  444. int cs_db, cs_l;
  445. if (!is_pae(vcpu))
  446. return 1;
  447. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  448. if (cs_l)
  449. return 1;
  450. } else
  451. #endif
  452. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  453. kvm_read_cr3(vcpu)))
  454. return 1;
  455. }
  456. kvm_x86_ops->set_cr0(vcpu, cr0);
  457. if ((cr0 ^ old_cr0) & X86_CR0_PG)
  458. kvm_clear_async_pf_completion_queue(vcpu);
  459. if ((cr0 ^ old_cr0) & update_bits)
  460. kvm_mmu_reset_context(vcpu);
  461. return 0;
  462. }
  463. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  464. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  465. {
  466. (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  467. }
  468. EXPORT_SYMBOL_GPL(kvm_lmsw);
  469. int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  470. {
  471. u64 xcr0;
  472. /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
  473. if (index != XCR_XFEATURE_ENABLED_MASK)
  474. return 1;
  475. xcr0 = xcr;
  476. if (kvm_x86_ops->get_cpl(vcpu) != 0)
  477. return 1;
  478. if (!(xcr0 & XSTATE_FP))
  479. return 1;
  480. if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
  481. return 1;
  482. if (xcr0 & ~host_xcr0)
  483. return 1;
  484. vcpu->arch.xcr0 = xcr0;
  485. vcpu->guest_xcr0_loaded = 0;
  486. return 0;
  487. }
  488. int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  489. {
  490. if (__kvm_set_xcr(vcpu, index, xcr)) {
  491. kvm_inject_gp(vcpu, 0);
  492. return 1;
  493. }
  494. return 0;
  495. }
  496. EXPORT_SYMBOL_GPL(kvm_set_xcr);
  497. static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
  498. {
  499. struct kvm_cpuid_entry2 *best;
  500. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  501. return best && (best->ecx & bit(X86_FEATURE_XSAVE));
  502. }
  503. static void update_cpuid(struct kvm_vcpu *vcpu)
  504. {
  505. struct kvm_cpuid_entry2 *best;
  506. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  507. if (!best)
  508. return;
  509. /* Update OSXSAVE bit */
  510. if (cpu_has_xsave && best->function == 0x1) {
  511. best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
  512. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  513. best->ecx |= bit(X86_FEATURE_OSXSAVE);
  514. }
  515. }
  516. int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  517. {
  518. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  519. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  520. if (cr4 & CR4_RESERVED_BITS)
  521. return 1;
  522. if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
  523. return 1;
  524. if (is_long_mode(vcpu)) {
  525. if (!(cr4 & X86_CR4_PAE))
  526. return 1;
  527. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  528. && ((cr4 ^ old_cr4) & pdptr_bits)
  529. && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  530. kvm_read_cr3(vcpu)))
  531. return 1;
  532. if (cr4 & X86_CR4_VMXE)
  533. return 1;
  534. kvm_x86_ops->set_cr4(vcpu, cr4);
  535. if ((cr4 ^ old_cr4) & pdptr_bits)
  536. kvm_mmu_reset_context(vcpu);
  537. if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
  538. update_cpuid(vcpu);
  539. return 0;
  540. }
  541. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  542. int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  543. {
  544. if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
  545. kvm_mmu_sync_roots(vcpu);
  546. kvm_mmu_flush_tlb(vcpu);
  547. return 0;
  548. }
  549. if (is_long_mode(vcpu)) {
  550. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  551. return 1;
  552. } else {
  553. if (is_pae(vcpu)) {
  554. if (cr3 & CR3_PAE_RESERVED_BITS)
  555. return 1;
  556. if (is_paging(vcpu) &&
  557. !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
  558. return 1;
  559. }
  560. /*
  561. * We don't check reserved bits in nonpae mode, because
  562. * this isn't enforced, and VMware depends on this.
  563. */
  564. }
  565. /*
  566. * Does the new cr3 value map to physical memory? (Note, we
  567. * catch an invalid cr3 even in real-mode, because it would
  568. * cause trouble later on when we turn on paging anyway.)
  569. *
  570. * A real CPU would silently accept an invalid cr3 and would
  571. * attempt to use it - with largely undefined (and often hard
  572. * to debug) behavior on the guest side.
  573. */
  574. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  575. return 1;
  576. vcpu->arch.cr3 = cr3;
  577. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  578. vcpu->arch.mmu.new_cr3(vcpu);
  579. return 0;
  580. }
  581. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  582. int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  583. {
  584. if (cr8 & CR8_RESERVED_BITS)
  585. return 1;
  586. if (irqchip_in_kernel(vcpu->kvm))
  587. kvm_lapic_set_tpr(vcpu, cr8);
  588. else
  589. vcpu->arch.cr8 = cr8;
  590. return 0;
  591. }
  592. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  593. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  594. {
  595. if (irqchip_in_kernel(vcpu->kvm))
  596. return kvm_lapic_get_cr8(vcpu);
  597. else
  598. return vcpu->arch.cr8;
  599. }
  600. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  601. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  602. {
  603. switch (dr) {
  604. case 0 ... 3:
  605. vcpu->arch.db[dr] = val;
  606. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  607. vcpu->arch.eff_db[dr] = val;
  608. break;
  609. case 4:
  610. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  611. return 1; /* #UD */
  612. /* fall through */
  613. case 6:
  614. if (val & 0xffffffff00000000ULL)
  615. return -1; /* #GP */
  616. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  617. break;
  618. case 5:
  619. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  620. return 1; /* #UD */
  621. /* fall through */
  622. default: /* 7 */
  623. if (val & 0xffffffff00000000ULL)
  624. return -1; /* #GP */
  625. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  626. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  627. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  628. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  629. }
  630. break;
  631. }
  632. return 0;
  633. }
  634. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  635. {
  636. int res;
  637. res = __kvm_set_dr(vcpu, dr, val);
  638. if (res > 0)
  639. kvm_queue_exception(vcpu, UD_VECTOR);
  640. else if (res < 0)
  641. kvm_inject_gp(vcpu, 0);
  642. return res;
  643. }
  644. EXPORT_SYMBOL_GPL(kvm_set_dr);
  645. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  646. {
  647. switch (dr) {
  648. case 0 ... 3:
  649. *val = vcpu->arch.db[dr];
  650. break;
  651. case 4:
  652. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  653. return 1;
  654. /* fall through */
  655. case 6:
  656. *val = vcpu->arch.dr6;
  657. break;
  658. case 5:
  659. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  660. return 1;
  661. /* fall through */
  662. default: /* 7 */
  663. *val = vcpu->arch.dr7;
  664. break;
  665. }
  666. return 0;
  667. }
  668. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  669. {
  670. if (_kvm_get_dr(vcpu, dr, val)) {
  671. kvm_queue_exception(vcpu, UD_VECTOR);
  672. return 1;
  673. }
  674. return 0;
  675. }
  676. EXPORT_SYMBOL_GPL(kvm_get_dr);
  677. /*
  678. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  679. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  680. *
  681. * This list is modified at module load time to reflect the
  682. * capabilities of the host cpu. This capabilities test skips MSRs that are
  683. * kvm-specific. Those are put in the beginning of the list.
  684. */
  685. #define KVM_SAVE_MSRS_BEGIN 8
  686. static u32 msrs_to_save[] = {
  687. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  688. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  689. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  690. HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
  691. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  692. MSR_STAR,
  693. #ifdef CONFIG_X86_64
  694. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  695. #endif
  696. MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  697. };
  698. static unsigned num_msrs_to_save;
  699. static u32 emulated_msrs[] = {
  700. MSR_IA32_MISC_ENABLE,
  701. MSR_IA32_MCG_STATUS,
  702. MSR_IA32_MCG_CTL,
  703. };
  704. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  705. {
  706. u64 old_efer = vcpu->arch.efer;
  707. if (efer & efer_reserved_bits)
  708. return 1;
  709. if (is_paging(vcpu)
  710. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  711. return 1;
  712. if (efer & EFER_FFXSR) {
  713. struct kvm_cpuid_entry2 *feat;
  714. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  715. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  716. return 1;
  717. }
  718. if (efer & EFER_SVME) {
  719. struct kvm_cpuid_entry2 *feat;
  720. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  721. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  722. return 1;
  723. }
  724. efer &= ~EFER_LMA;
  725. efer |= vcpu->arch.efer & EFER_LMA;
  726. kvm_x86_ops->set_efer(vcpu, efer);
  727. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  728. /* Update reserved bits */
  729. if ((efer ^ old_efer) & EFER_NX)
  730. kvm_mmu_reset_context(vcpu);
  731. return 0;
  732. }
  733. void kvm_enable_efer_bits(u64 mask)
  734. {
  735. efer_reserved_bits &= ~mask;
  736. }
  737. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  738. /*
  739. * Writes msr value into into the appropriate "register".
  740. * Returns 0 on success, non-0 otherwise.
  741. * Assumes vcpu_load() was already called.
  742. */
  743. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  744. {
  745. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  746. }
  747. /*
  748. * Adapt set_msr() to msr_io()'s calling convention
  749. */
  750. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  751. {
  752. return kvm_set_msr(vcpu, index, *data);
  753. }
  754. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  755. {
  756. int version;
  757. int r;
  758. struct pvclock_wall_clock wc;
  759. struct timespec boot;
  760. if (!wall_clock)
  761. return;
  762. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  763. if (r)
  764. return;
  765. if (version & 1)
  766. ++version; /* first time write, random junk */
  767. ++version;
  768. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  769. /*
  770. * The guest calculates current wall clock time by adding
  771. * system time (updated by kvm_guest_time_update below) to the
  772. * wall clock specified here. guest system time equals host
  773. * system time for us, thus we must fill in host boot time here.
  774. */
  775. getboottime(&boot);
  776. wc.sec = boot.tv_sec;
  777. wc.nsec = boot.tv_nsec;
  778. wc.version = version;
  779. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  780. version++;
  781. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  782. }
  783. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  784. {
  785. uint32_t quotient, remainder;
  786. /* Don't try to replace with do_div(), this one calculates
  787. * "(dividend << 32) / divisor" */
  788. __asm__ ( "divl %4"
  789. : "=a" (quotient), "=d" (remainder)
  790. : "0" (0), "1" (dividend), "r" (divisor) );
  791. return quotient;
  792. }
  793. static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
  794. s8 *pshift, u32 *pmultiplier)
  795. {
  796. uint64_t scaled64;
  797. int32_t shift = 0;
  798. uint64_t tps64;
  799. uint32_t tps32;
  800. tps64 = base_khz * 1000LL;
  801. scaled64 = scaled_khz * 1000LL;
  802. while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
  803. tps64 >>= 1;
  804. shift--;
  805. }
  806. tps32 = (uint32_t)tps64;
  807. while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
  808. if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
  809. scaled64 >>= 1;
  810. else
  811. tps32 <<= 1;
  812. shift++;
  813. }
  814. *pshift = shift;
  815. *pmultiplier = div_frac(scaled64, tps32);
  816. pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
  817. __func__, base_khz, scaled_khz, shift, *pmultiplier);
  818. }
  819. static inline u64 get_kernel_ns(void)
  820. {
  821. struct timespec ts;
  822. WARN_ON(preemptible());
  823. ktime_get_ts(&ts);
  824. monotonic_to_bootbased(&ts);
  825. return timespec_to_ns(&ts);
  826. }
  827. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  828. unsigned long max_tsc_khz;
  829. static inline int kvm_tsc_changes_freq(void)
  830. {
  831. int cpu = get_cpu();
  832. int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
  833. cpufreq_quick_get(cpu) != 0;
  834. put_cpu();
  835. return ret;
  836. }
  837. static inline u64 nsec_to_cycles(u64 nsec)
  838. {
  839. u64 ret;
  840. WARN_ON(preemptible());
  841. if (kvm_tsc_changes_freq())
  842. printk_once(KERN_WARNING
  843. "kvm: unreliable cycle conversion on adjustable rate TSC\n");
  844. ret = nsec * __this_cpu_read(cpu_tsc_khz);
  845. do_div(ret, USEC_PER_SEC);
  846. return ret;
  847. }
  848. static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
  849. {
  850. /* Compute a scale to convert nanoseconds in TSC cycles */
  851. kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
  852. &kvm->arch.virtual_tsc_shift,
  853. &kvm->arch.virtual_tsc_mult);
  854. kvm->arch.virtual_tsc_khz = this_tsc_khz;
  855. }
  856. static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
  857. {
  858. u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
  859. vcpu->kvm->arch.virtual_tsc_mult,
  860. vcpu->kvm->arch.virtual_tsc_shift);
  861. tsc += vcpu->arch.last_tsc_write;
  862. return tsc;
  863. }
  864. void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
  865. {
  866. struct kvm *kvm = vcpu->kvm;
  867. u64 offset, ns, elapsed;
  868. unsigned long flags;
  869. s64 sdiff;
  870. spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
  871. offset = data - native_read_tsc();
  872. ns = get_kernel_ns();
  873. elapsed = ns - kvm->arch.last_tsc_nsec;
  874. sdiff = data - kvm->arch.last_tsc_write;
  875. if (sdiff < 0)
  876. sdiff = -sdiff;
  877. /*
  878. * Special case: close write to TSC within 5 seconds of
  879. * another CPU is interpreted as an attempt to synchronize
  880. * The 5 seconds is to accomodate host load / swapping as
  881. * well as any reset of TSC during the boot process.
  882. *
  883. * In that case, for a reliable TSC, we can match TSC offsets,
  884. * or make a best guest using elapsed value.
  885. */
  886. if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
  887. elapsed < 5ULL * NSEC_PER_SEC) {
  888. if (!check_tsc_unstable()) {
  889. offset = kvm->arch.last_tsc_offset;
  890. pr_debug("kvm: matched tsc offset for %llu\n", data);
  891. } else {
  892. u64 delta = nsec_to_cycles(elapsed);
  893. offset += delta;
  894. pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
  895. }
  896. ns = kvm->arch.last_tsc_nsec;
  897. }
  898. kvm->arch.last_tsc_nsec = ns;
  899. kvm->arch.last_tsc_write = data;
  900. kvm->arch.last_tsc_offset = offset;
  901. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  902. spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
  903. /* Reset of TSC must disable overshoot protection below */
  904. vcpu->arch.hv_clock.tsc_timestamp = 0;
  905. vcpu->arch.last_tsc_write = data;
  906. vcpu->arch.last_tsc_nsec = ns;
  907. }
  908. EXPORT_SYMBOL_GPL(kvm_write_tsc);
  909. static int kvm_guest_time_update(struct kvm_vcpu *v)
  910. {
  911. unsigned long flags;
  912. struct kvm_vcpu_arch *vcpu = &v->arch;
  913. void *shared_kaddr;
  914. unsigned long this_tsc_khz;
  915. s64 kernel_ns, max_kernel_ns;
  916. u64 tsc_timestamp;
  917. /* Keep irq disabled to prevent changes to the clock */
  918. local_irq_save(flags);
  919. kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
  920. kernel_ns = get_kernel_ns();
  921. this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
  922. if (unlikely(this_tsc_khz == 0)) {
  923. local_irq_restore(flags);
  924. kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
  925. return 1;
  926. }
  927. /*
  928. * We may have to catch up the TSC to match elapsed wall clock
  929. * time for two reasons, even if kvmclock is used.
  930. * 1) CPU could have been running below the maximum TSC rate
  931. * 2) Broken TSC compensation resets the base at each VCPU
  932. * entry to avoid unknown leaps of TSC even when running
  933. * again on the same CPU. This may cause apparent elapsed
  934. * time to disappear, and the guest to stand still or run
  935. * very slowly.
  936. */
  937. if (vcpu->tsc_catchup) {
  938. u64 tsc = compute_guest_tsc(v, kernel_ns);
  939. if (tsc > tsc_timestamp) {
  940. kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
  941. tsc_timestamp = tsc;
  942. }
  943. }
  944. local_irq_restore(flags);
  945. if (!vcpu->time_page)
  946. return 0;
  947. /*
  948. * Time as measured by the TSC may go backwards when resetting the base
  949. * tsc_timestamp. The reason for this is that the TSC resolution is
  950. * higher than the resolution of the other clock scales. Thus, many
  951. * possible measurments of the TSC correspond to one measurement of any
  952. * other clock, and so a spread of values is possible. This is not a
  953. * problem for the computation of the nanosecond clock; with TSC rates
  954. * around 1GHZ, there can only be a few cycles which correspond to one
  955. * nanosecond value, and any path through this code will inevitably
  956. * take longer than that. However, with the kernel_ns value itself,
  957. * the precision may be much lower, down to HZ granularity. If the
  958. * first sampling of TSC against kernel_ns ends in the low part of the
  959. * range, and the second in the high end of the range, we can get:
  960. *
  961. * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
  962. *
  963. * As the sampling errors potentially range in the thousands of cycles,
  964. * it is possible such a time value has already been observed by the
  965. * guest. To protect against this, we must compute the system time as
  966. * observed by the guest and ensure the new system time is greater.
  967. */
  968. max_kernel_ns = 0;
  969. if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
  970. max_kernel_ns = vcpu->last_guest_tsc -
  971. vcpu->hv_clock.tsc_timestamp;
  972. max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
  973. vcpu->hv_clock.tsc_to_system_mul,
  974. vcpu->hv_clock.tsc_shift);
  975. max_kernel_ns += vcpu->last_kernel_ns;
  976. }
  977. if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
  978. kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
  979. &vcpu->hv_clock.tsc_shift,
  980. &vcpu->hv_clock.tsc_to_system_mul);
  981. vcpu->hw_tsc_khz = this_tsc_khz;
  982. }
  983. if (max_kernel_ns > kernel_ns)
  984. kernel_ns = max_kernel_ns;
  985. /* With all the info we got, fill in the values */
  986. vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
  987. vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
  988. vcpu->last_kernel_ns = kernel_ns;
  989. vcpu->last_guest_tsc = tsc_timestamp;
  990. vcpu->hv_clock.flags = 0;
  991. /*
  992. * The interface expects us to write an even number signaling that the
  993. * update is finished. Since the guest won't see the intermediate
  994. * state, we just increase by 2 at the end.
  995. */
  996. vcpu->hv_clock.version += 2;
  997. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  998. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  999. sizeof(vcpu->hv_clock));
  1000. kunmap_atomic(shared_kaddr, KM_USER0);
  1001. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  1002. return 0;
  1003. }
  1004. static bool msr_mtrr_valid(unsigned msr)
  1005. {
  1006. switch (msr) {
  1007. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  1008. case MSR_MTRRfix64K_00000:
  1009. case MSR_MTRRfix16K_80000:
  1010. case MSR_MTRRfix16K_A0000:
  1011. case MSR_MTRRfix4K_C0000:
  1012. case MSR_MTRRfix4K_C8000:
  1013. case MSR_MTRRfix4K_D0000:
  1014. case MSR_MTRRfix4K_D8000:
  1015. case MSR_MTRRfix4K_E0000:
  1016. case MSR_MTRRfix4K_E8000:
  1017. case MSR_MTRRfix4K_F0000:
  1018. case MSR_MTRRfix4K_F8000:
  1019. case MSR_MTRRdefType:
  1020. case MSR_IA32_CR_PAT:
  1021. return true;
  1022. case 0x2f8:
  1023. return true;
  1024. }
  1025. return false;
  1026. }
  1027. static bool valid_pat_type(unsigned t)
  1028. {
  1029. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  1030. }
  1031. static bool valid_mtrr_type(unsigned t)
  1032. {
  1033. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  1034. }
  1035. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1036. {
  1037. int i;
  1038. if (!msr_mtrr_valid(msr))
  1039. return false;
  1040. if (msr == MSR_IA32_CR_PAT) {
  1041. for (i = 0; i < 8; i++)
  1042. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  1043. return false;
  1044. return true;
  1045. } else if (msr == MSR_MTRRdefType) {
  1046. if (data & ~0xcff)
  1047. return false;
  1048. return valid_mtrr_type(data & 0xff);
  1049. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  1050. for (i = 0; i < 8 ; i++)
  1051. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  1052. return false;
  1053. return true;
  1054. }
  1055. /* variable MTRRs */
  1056. return valid_mtrr_type(data & 0xff);
  1057. }
  1058. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1059. {
  1060. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1061. if (!mtrr_valid(vcpu, msr, data))
  1062. return 1;
  1063. if (msr == MSR_MTRRdefType) {
  1064. vcpu->arch.mtrr_state.def_type = data;
  1065. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  1066. } else if (msr == MSR_MTRRfix64K_00000)
  1067. p[0] = data;
  1068. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1069. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  1070. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1071. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  1072. else if (msr == MSR_IA32_CR_PAT)
  1073. vcpu->arch.pat = data;
  1074. else { /* Variable MTRRs */
  1075. int idx, is_mtrr_mask;
  1076. u64 *pt;
  1077. idx = (msr - 0x200) / 2;
  1078. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1079. if (!is_mtrr_mask)
  1080. pt =
  1081. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1082. else
  1083. pt =
  1084. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1085. *pt = data;
  1086. }
  1087. kvm_mmu_reset_context(vcpu);
  1088. return 0;
  1089. }
  1090. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1091. {
  1092. u64 mcg_cap = vcpu->arch.mcg_cap;
  1093. unsigned bank_num = mcg_cap & 0xff;
  1094. switch (msr) {
  1095. case MSR_IA32_MCG_STATUS:
  1096. vcpu->arch.mcg_status = data;
  1097. break;
  1098. case MSR_IA32_MCG_CTL:
  1099. if (!(mcg_cap & MCG_CTL_P))
  1100. return 1;
  1101. if (data != 0 && data != ~(u64)0)
  1102. return -1;
  1103. vcpu->arch.mcg_ctl = data;
  1104. break;
  1105. default:
  1106. if (msr >= MSR_IA32_MC0_CTL &&
  1107. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1108. u32 offset = msr - MSR_IA32_MC0_CTL;
  1109. /* only 0 or all 1s can be written to IA32_MCi_CTL
  1110. * some Linux kernels though clear bit 10 in bank 4 to
  1111. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  1112. * this to avoid an uncatched #GP in the guest
  1113. */
  1114. if ((offset & 0x3) == 0 &&
  1115. data != 0 && (data | (1 << 10)) != ~(u64)0)
  1116. return -1;
  1117. vcpu->arch.mce_banks[offset] = data;
  1118. break;
  1119. }
  1120. return 1;
  1121. }
  1122. return 0;
  1123. }
  1124. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  1125. {
  1126. struct kvm *kvm = vcpu->kvm;
  1127. int lm = is_long_mode(vcpu);
  1128. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  1129. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  1130. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  1131. : kvm->arch.xen_hvm_config.blob_size_32;
  1132. u32 page_num = data & ~PAGE_MASK;
  1133. u64 page_addr = data & PAGE_MASK;
  1134. u8 *page;
  1135. int r;
  1136. r = -E2BIG;
  1137. if (page_num >= blob_size)
  1138. goto out;
  1139. r = -ENOMEM;
  1140. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  1141. if (!page)
  1142. goto out;
  1143. r = -EFAULT;
  1144. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  1145. goto out_free;
  1146. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  1147. goto out_free;
  1148. r = 0;
  1149. out_free:
  1150. kfree(page);
  1151. out:
  1152. return r;
  1153. }
  1154. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  1155. {
  1156. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  1157. }
  1158. static bool kvm_hv_msr_partition_wide(u32 msr)
  1159. {
  1160. bool r = false;
  1161. switch (msr) {
  1162. case HV_X64_MSR_GUEST_OS_ID:
  1163. case HV_X64_MSR_HYPERCALL:
  1164. r = true;
  1165. break;
  1166. }
  1167. return r;
  1168. }
  1169. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1170. {
  1171. struct kvm *kvm = vcpu->kvm;
  1172. switch (msr) {
  1173. case HV_X64_MSR_GUEST_OS_ID:
  1174. kvm->arch.hv_guest_os_id = data;
  1175. /* setting guest os id to zero disables hypercall page */
  1176. if (!kvm->arch.hv_guest_os_id)
  1177. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  1178. break;
  1179. case HV_X64_MSR_HYPERCALL: {
  1180. u64 gfn;
  1181. unsigned long addr;
  1182. u8 instructions[4];
  1183. /* if guest os id is not set hypercall should remain disabled */
  1184. if (!kvm->arch.hv_guest_os_id)
  1185. break;
  1186. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  1187. kvm->arch.hv_hypercall = data;
  1188. break;
  1189. }
  1190. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  1191. addr = gfn_to_hva(kvm, gfn);
  1192. if (kvm_is_error_hva(addr))
  1193. return 1;
  1194. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  1195. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  1196. if (copy_to_user((void __user *)addr, instructions, 4))
  1197. return 1;
  1198. kvm->arch.hv_hypercall = data;
  1199. break;
  1200. }
  1201. default:
  1202. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1203. "data 0x%llx\n", msr, data);
  1204. return 1;
  1205. }
  1206. return 0;
  1207. }
  1208. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1209. {
  1210. switch (msr) {
  1211. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  1212. unsigned long addr;
  1213. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  1214. vcpu->arch.hv_vapic = data;
  1215. break;
  1216. }
  1217. addr = gfn_to_hva(vcpu->kvm, data >>
  1218. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  1219. if (kvm_is_error_hva(addr))
  1220. return 1;
  1221. if (clear_user((void __user *)addr, PAGE_SIZE))
  1222. return 1;
  1223. vcpu->arch.hv_vapic = data;
  1224. break;
  1225. }
  1226. case HV_X64_MSR_EOI:
  1227. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  1228. case HV_X64_MSR_ICR:
  1229. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  1230. case HV_X64_MSR_TPR:
  1231. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  1232. default:
  1233. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1234. "data 0x%llx\n", msr, data);
  1235. return 1;
  1236. }
  1237. return 0;
  1238. }
  1239. static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
  1240. {
  1241. gpa_t gpa = data & ~0x3f;
  1242. /* Bits 2:5 are resrved, Should be zero */
  1243. if (data & 0x3c)
  1244. return 1;
  1245. vcpu->arch.apf.msr_val = data;
  1246. if (!(data & KVM_ASYNC_PF_ENABLED)) {
  1247. kvm_clear_async_pf_completion_queue(vcpu);
  1248. kvm_async_pf_hash_reset(vcpu);
  1249. return 0;
  1250. }
  1251. if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
  1252. return 1;
  1253. vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
  1254. kvm_async_pf_wakeup_all(vcpu);
  1255. return 0;
  1256. }
  1257. static void kvmclock_reset(struct kvm_vcpu *vcpu)
  1258. {
  1259. if (vcpu->arch.time_page) {
  1260. kvm_release_page_dirty(vcpu->arch.time_page);
  1261. vcpu->arch.time_page = NULL;
  1262. }
  1263. }
  1264. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1265. {
  1266. switch (msr) {
  1267. case MSR_EFER:
  1268. return set_efer(vcpu, data);
  1269. case MSR_K7_HWCR:
  1270. data &= ~(u64)0x40; /* ignore flush filter disable */
  1271. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1272. if (data != 0) {
  1273. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1274. data);
  1275. return 1;
  1276. }
  1277. break;
  1278. case MSR_FAM10H_MMIO_CONF_BASE:
  1279. if (data != 0) {
  1280. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1281. "0x%llx\n", data);
  1282. return 1;
  1283. }
  1284. break;
  1285. case MSR_AMD64_NB_CFG:
  1286. break;
  1287. case MSR_IA32_DEBUGCTLMSR:
  1288. if (!data) {
  1289. /* We support the non-activated case already */
  1290. break;
  1291. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1292. /* Values other than LBR and BTF are vendor-specific,
  1293. thus reserved and should throw a #GP */
  1294. return 1;
  1295. }
  1296. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1297. __func__, data);
  1298. break;
  1299. case MSR_IA32_UCODE_REV:
  1300. case MSR_IA32_UCODE_WRITE:
  1301. case MSR_VM_HSAVE_PA:
  1302. case MSR_AMD64_PATCH_LOADER:
  1303. break;
  1304. case 0x200 ... 0x2ff:
  1305. return set_msr_mtrr(vcpu, msr, data);
  1306. case MSR_IA32_APICBASE:
  1307. kvm_set_apic_base(vcpu, data);
  1308. break;
  1309. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1310. return kvm_x2apic_msr_write(vcpu, msr, data);
  1311. case MSR_IA32_MISC_ENABLE:
  1312. vcpu->arch.ia32_misc_enable_msr = data;
  1313. break;
  1314. case MSR_KVM_WALL_CLOCK_NEW:
  1315. case MSR_KVM_WALL_CLOCK:
  1316. vcpu->kvm->arch.wall_clock = data;
  1317. kvm_write_wall_clock(vcpu->kvm, data);
  1318. break;
  1319. case MSR_KVM_SYSTEM_TIME_NEW:
  1320. case MSR_KVM_SYSTEM_TIME: {
  1321. kvmclock_reset(vcpu);
  1322. vcpu->arch.time = data;
  1323. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1324. /* we verify if the enable bit is set... */
  1325. if (!(data & 1))
  1326. break;
  1327. /* ...but clean it before doing the actual write */
  1328. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1329. vcpu->arch.time_page =
  1330. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1331. if (is_error_page(vcpu->arch.time_page)) {
  1332. kvm_release_page_clean(vcpu->arch.time_page);
  1333. vcpu->arch.time_page = NULL;
  1334. }
  1335. break;
  1336. }
  1337. case MSR_KVM_ASYNC_PF_EN:
  1338. if (kvm_pv_enable_async_pf(vcpu, data))
  1339. return 1;
  1340. break;
  1341. case MSR_IA32_MCG_CTL:
  1342. case MSR_IA32_MCG_STATUS:
  1343. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1344. return set_msr_mce(vcpu, msr, data);
  1345. /* Performance counters are not protected by a CPUID bit,
  1346. * so we should check all of them in the generic path for the sake of
  1347. * cross vendor migration.
  1348. * Writing a zero into the event select MSRs disables them,
  1349. * which we perfectly emulate ;-). Any other value should be at least
  1350. * reported, some guests depend on them.
  1351. */
  1352. case MSR_P6_EVNTSEL0:
  1353. case MSR_P6_EVNTSEL1:
  1354. case MSR_K7_EVNTSEL0:
  1355. case MSR_K7_EVNTSEL1:
  1356. case MSR_K7_EVNTSEL2:
  1357. case MSR_K7_EVNTSEL3:
  1358. if (data != 0)
  1359. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1360. "0x%x data 0x%llx\n", msr, data);
  1361. break;
  1362. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1363. * so we ignore writes to make it happy.
  1364. */
  1365. case MSR_P6_PERFCTR0:
  1366. case MSR_P6_PERFCTR1:
  1367. case MSR_K7_PERFCTR0:
  1368. case MSR_K7_PERFCTR1:
  1369. case MSR_K7_PERFCTR2:
  1370. case MSR_K7_PERFCTR3:
  1371. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1372. "0x%x data 0x%llx\n", msr, data);
  1373. break;
  1374. case MSR_K7_CLK_CTL:
  1375. /*
  1376. * Ignore all writes to this no longer documented MSR.
  1377. * Writes are only relevant for old K7 processors,
  1378. * all pre-dating SVM, but a recommended workaround from
  1379. * AMD for these chips. It is possible to speicify the
  1380. * affected processor models on the command line, hence
  1381. * the need to ignore the workaround.
  1382. */
  1383. break;
  1384. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1385. if (kvm_hv_msr_partition_wide(msr)) {
  1386. int r;
  1387. mutex_lock(&vcpu->kvm->lock);
  1388. r = set_msr_hyperv_pw(vcpu, msr, data);
  1389. mutex_unlock(&vcpu->kvm->lock);
  1390. return r;
  1391. } else
  1392. return set_msr_hyperv(vcpu, msr, data);
  1393. break;
  1394. case MSR_IA32_BBL_CR_CTL3:
  1395. /* Drop writes to this legacy MSR -- see rdmsr
  1396. * counterpart for further detail.
  1397. */
  1398. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
  1399. break;
  1400. default:
  1401. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1402. return xen_hvm_config(vcpu, data);
  1403. if (!ignore_msrs) {
  1404. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1405. msr, data);
  1406. return 1;
  1407. } else {
  1408. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1409. msr, data);
  1410. break;
  1411. }
  1412. }
  1413. return 0;
  1414. }
  1415. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1416. /*
  1417. * Reads an msr value (of 'msr_index') into 'pdata'.
  1418. * Returns 0 on success, non-0 otherwise.
  1419. * Assumes vcpu_load() was already called.
  1420. */
  1421. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1422. {
  1423. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1424. }
  1425. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1426. {
  1427. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1428. if (!msr_mtrr_valid(msr))
  1429. return 1;
  1430. if (msr == MSR_MTRRdefType)
  1431. *pdata = vcpu->arch.mtrr_state.def_type +
  1432. (vcpu->arch.mtrr_state.enabled << 10);
  1433. else if (msr == MSR_MTRRfix64K_00000)
  1434. *pdata = p[0];
  1435. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1436. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1437. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1438. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1439. else if (msr == MSR_IA32_CR_PAT)
  1440. *pdata = vcpu->arch.pat;
  1441. else { /* Variable MTRRs */
  1442. int idx, is_mtrr_mask;
  1443. u64 *pt;
  1444. idx = (msr - 0x200) / 2;
  1445. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1446. if (!is_mtrr_mask)
  1447. pt =
  1448. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1449. else
  1450. pt =
  1451. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1452. *pdata = *pt;
  1453. }
  1454. return 0;
  1455. }
  1456. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1457. {
  1458. u64 data;
  1459. u64 mcg_cap = vcpu->arch.mcg_cap;
  1460. unsigned bank_num = mcg_cap & 0xff;
  1461. switch (msr) {
  1462. case MSR_IA32_P5_MC_ADDR:
  1463. case MSR_IA32_P5_MC_TYPE:
  1464. data = 0;
  1465. break;
  1466. case MSR_IA32_MCG_CAP:
  1467. data = vcpu->arch.mcg_cap;
  1468. break;
  1469. case MSR_IA32_MCG_CTL:
  1470. if (!(mcg_cap & MCG_CTL_P))
  1471. return 1;
  1472. data = vcpu->arch.mcg_ctl;
  1473. break;
  1474. case MSR_IA32_MCG_STATUS:
  1475. data = vcpu->arch.mcg_status;
  1476. break;
  1477. default:
  1478. if (msr >= MSR_IA32_MC0_CTL &&
  1479. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1480. u32 offset = msr - MSR_IA32_MC0_CTL;
  1481. data = vcpu->arch.mce_banks[offset];
  1482. break;
  1483. }
  1484. return 1;
  1485. }
  1486. *pdata = data;
  1487. return 0;
  1488. }
  1489. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1490. {
  1491. u64 data = 0;
  1492. struct kvm *kvm = vcpu->kvm;
  1493. switch (msr) {
  1494. case HV_X64_MSR_GUEST_OS_ID:
  1495. data = kvm->arch.hv_guest_os_id;
  1496. break;
  1497. case HV_X64_MSR_HYPERCALL:
  1498. data = kvm->arch.hv_hypercall;
  1499. break;
  1500. default:
  1501. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1502. return 1;
  1503. }
  1504. *pdata = data;
  1505. return 0;
  1506. }
  1507. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1508. {
  1509. u64 data = 0;
  1510. switch (msr) {
  1511. case HV_X64_MSR_VP_INDEX: {
  1512. int r;
  1513. struct kvm_vcpu *v;
  1514. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1515. if (v == vcpu)
  1516. data = r;
  1517. break;
  1518. }
  1519. case HV_X64_MSR_EOI:
  1520. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1521. case HV_X64_MSR_ICR:
  1522. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1523. case HV_X64_MSR_TPR:
  1524. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1525. default:
  1526. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1527. return 1;
  1528. }
  1529. *pdata = data;
  1530. return 0;
  1531. }
  1532. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1533. {
  1534. u64 data;
  1535. switch (msr) {
  1536. case MSR_IA32_PLATFORM_ID:
  1537. case MSR_IA32_UCODE_REV:
  1538. case MSR_IA32_EBL_CR_POWERON:
  1539. case MSR_IA32_DEBUGCTLMSR:
  1540. case MSR_IA32_LASTBRANCHFROMIP:
  1541. case MSR_IA32_LASTBRANCHTOIP:
  1542. case MSR_IA32_LASTINTFROMIP:
  1543. case MSR_IA32_LASTINTTOIP:
  1544. case MSR_K8_SYSCFG:
  1545. case MSR_K7_HWCR:
  1546. case MSR_VM_HSAVE_PA:
  1547. case MSR_P6_PERFCTR0:
  1548. case MSR_P6_PERFCTR1:
  1549. case MSR_P6_EVNTSEL0:
  1550. case MSR_P6_EVNTSEL1:
  1551. case MSR_K7_EVNTSEL0:
  1552. case MSR_K7_PERFCTR0:
  1553. case MSR_K8_INT_PENDING_MSG:
  1554. case MSR_AMD64_NB_CFG:
  1555. case MSR_FAM10H_MMIO_CONF_BASE:
  1556. data = 0;
  1557. break;
  1558. case MSR_MTRRcap:
  1559. data = 0x500 | KVM_NR_VAR_MTRR;
  1560. break;
  1561. case 0x200 ... 0x2ff:
  1562. return get_msr_mtrr(vcpu, msr, pdata);
  1563. case 0xcd: /* fsb frequency */
  1564. data = 3;
  1565. break;
  1566. /*
  1567. * MSR_EBC_FREQUENCY_ID
  1568. * Conservative value valid for even the basic CPU models.
  1569. * Models 0,1: 000 in bits 23:21 indicating a bus speed of
  1570. * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
  1571. * and 266MHz for model 3, or 4. Set Core Clock
  1572. * Frequency to System Bus Frequency Ratio to 1 (bits
  1573. * 31:24) even though these are only valid for CPU
  1574. * models > 2, however guests may end up dividing or
  1575. * multiplying by zero otherwise.
  1576. */
  1577. case MSR_EBC_FREQUENCY_ID:
  1578. data = 1 << 24;
  1579. break;
  1580. case MSR_IA32_APICBASE:
  1581. data = kvm_get_apic_base(vcpu);
  1582. break;
  1583. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1584. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1585. break;
  1586. case MSR_IA32_MISC_ENABLE:
  1587. data = vcpu->arch.ia32_misc_enable_msr;
  1588. break;
  1589. case MSR_IA32_PERF_STATUS:
  1590. /* TSC increment by tick */
  1591. data = 1000ULL;
  1592. /* CPU multiplier */
  1593. data |= (((uint64_t)4ULL) << 40);
  1594. break;
  1595. case MSR_EFER:
  1596. data = vcpu->arch.efer;
  1597. break;
  1598. case MSR_KVM_WALL_CLOCK:
  1599. case MSR_KVM_WALL_CLOCK_NEW:
  1600. data = vcpu->kvm->arch.wall_clock;
  1601. break;
  1602. case MSR_KVM_SYSTEM_TIME:
  1603. case MSR_KVM_SYSTEM_TIME_NEW:
  1604. data = vcpu->arch.time;
  1605. break;
  1606. case MSR_KVM_ASYNC_PF_EN:
  1607. data = vcpu->arch.apf.msr_val;
  1608. break;
  1609. case MSR_IA32_P5_MC_ADDR:
  1610. case MSR_IA32_P5_MC_TYPE:
  1611. case MSR_IA32_MCG_CAP:
  1612. case MSR_IA32_MCG_CTL:
  1613. case MSR_IA32_MCG_STATUS:
  1614. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1615. return get_msr_mce(vcpu, msr, pdata);
  1616. case MSR_K7_CLK_CTL:
  1617. /*
  1618. * Provide expected ramp-up count for K7. All other
  1619. * are set to zero, indicating minimum divisors for
  1620. * every field.
  1621. *
  1622. * This prevents guest kernels on AMD host with CPU
  1623. * type 6, model 8 and higher from exploding due to
  1624. * the rdmsr failing.
  1625. */
  1626. data = 0x20000000;
  1627. break;
  1628. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1629. if (kvm_hv_msr_partition_wide(msr)) {
  1630. int r;
  1631. mutex_lock(&vcpu->kvm->lock);
  1632. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1633. mutex_unlock(&vcpu->kvm->lock);
  1634. return r;
  1635. } else
  1636. return get_msr_hyperv(vcpu, msr, pdata);
  1637. break;
  1638. case MSR_IA32_BBL_CR_CTL3:
  1639. /* This legacy MSR exists but isn't fully documented in current
  1640. * silicon. It is however accessed by winxp in very narrow
  1641. * scenarios where it sets bit #19, itself documented as
  1642. * a "reserved" bit. Best effort attempt to source coherent
  1643. * read data here should the balance of the register be
  1644. * interpreted by the guest:
  1645. *
  1646. * L2 cache control register 3: 64GB range, 256KB size,
  1647. * enabled, latency 0x1, configured
  1648. */
  1649. data = 0xbe702111;
  1650. break;
  1651. default:
  1652. if (!ignore_msrs) {
  1653. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1654. return 1;
  1655. } else {
  1656. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1657. data = 0;
  1658. }
  1659. break;
  1660. }
  1661. *pdata = data;
  1662. return 0;
  1663. }
  1664. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1665. /*
  1666. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1667. *
  1668. * @return number of msrs set successfully.
  1669. */
  1670. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1671. struct kvm_msr_entry *entries,
  1672. int (*do_msr)(struct kvm_vcpu *vcpu,
  1673. unsigned index, u64 *data))
  1674. {
  1675. int i, idx;
  1676. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1677. for (i = 0; i < msrs->nmsrs; ++i)
  1678. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1679. break;
  1680. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1681. return i;
  1682. }
  1683. /*
  1684. * Read or write a bunch of msrs. Parameters are user addresses.
  1685. *
  1686. * @return number of msrs set successfully.
  1687. */
  1688. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1689. int (*do_msr)(struct kvm_vcpu *vcpu,
  1690. unsigned index, u64 *data),
  1691. int writeback)
  1692. {
  1693. struct kvm_msrs msrs;
  1694. struct kvm_msr_entry *entries;
  1695. int r, n;
  1696. unsigned size;
  1697. r = -EFAULT;
  1698. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1699. goto out;
  1700. r = -E2BIG;
  1701. if (msrs.nmsrs >= MAX_IO_MSRS)
  1702. goto out;
  1703. r = -ENOMEM;
  1704. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1705. entries = kmalloc(size, GFP_KERNEL);
  1706. if (!entries)
  1707. goto out;
  1708. r = -EFAULT;
  1709. if (copy_from_user(entries, user_msrs->entries, size))
  1710. goto out_free;
  1711. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1712. if (r < 0)
  1713. goto out_free;
  1714. r = -EFAULT;
  1715. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1716. goto out_free;
  1717. r = n;
  1718. out_free:
  1719. kfree(entries);
  1720. out:
  1721. return r;
  1722. }
  1723. int kvm_dev_ioctl_check_extension(long ext)
  1724. {
  1725. int r;
  1726. switch (ext) {
  1727. case KVM_CAP_IRQCHIP:
  1728. case KVM_CAP_HLT:
  1729. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1730. case KVM_CAP_SET_TSS_ADDR:
  1731. case KVM_CAP_EXT_CPUID:
  1732. case KVM_CAP_CLOCKSOURCE:
  1733. case KVM_CAP_PIT:
  1734. case KVM_CAP_NOP_IO_DELAY:
  1735. case KVM_CAP_MP_STATE:
  1736. case KVM_CAP_SYNC_MMU:
  1737. case KVM_CAP_USER_NMI:
  1738. case KVM_CAP_REINJECT_CONTROL:
  1739. case KVM_CAP_IRQ_INJECT_STATUS:
  1740. case KVM_CAP_ASSIGN_DEV_IRQ:
  1741. case KVM_CAP_IRQFD:
  1742. case KVM_CAP_IOEVENTFD:
  1743. case KVM_CAP_PIT2:
  1744. case KVM_CAP_PIT_STATE2:
  1745. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1746. case KVM_CAP_XEN_HVM:
  1747. case KVM_CAP_ADJUST_CLOCK:
  1748. case KVM_CAP_VCPU_EVENTS:
  1749. case KVM_CAP_HYPERV:
  1750. case KVM_CAP_HYPERV_VAPIC:
  1751. case KVM_CAP_HYPERV_SPIN:
  1752. case KVM_CAP_PCI_SEGMENT:
  1753. case KVM_CAP_DEBUGREGS:
  1754. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1755. case KVM_CAP_XSAVE:
  1756. case KVM_CAP_ASYNC_PF:
  1757. r = 1;
  1758. break;
  1759. case KVM_CAP_COALESCED_MMIO:
  1760. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1761. break;
  1762. case KVM_CAP_VAPIC:
  1763. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1764. break;
  1765. case KVM_CAP_NR_VCPUS:
  1766. r = KVM_MAX_VCPUS;
  1767. break;
  1768. case KVM_CAP_NR_MEMSLOTS:
  1769. r = KVM_MEMORY_SLOTS;
  1770. break;
  1771. case KVM_CAP_PV_MMU: /* obsolete */
  1772. r = 0;
  1773. break;
  1774. case KVM_CAP_IOMMU:
  1775. r = iommu_found();
  1776. break;
  1777. case KVM_CAP_MCE:
  1778. r = KVM_MAX_MCE_BANKS;
  1779. break;
  1780. case KVM_CAP_XCRS:
  1781. r = cpu_has_xsave;
  1782. break;
  1783. default:
  1784. r = 0;
  1785. break;
  1786. }
  1787. return r;
  1788. }
  1789. long kvm_arch_dev_ioctl(struct file *filp,
  1790. unsigned int ioctl, unsigned long arg)
  1791. {
  1792. void __user *argp = (void __user *)arg;
  1793. long r;
  1794. switch (ioctl) {
  1795. case KVM_GET_MSR_INDEX_LIST: {
  1796. struct kvm_msr_list __user *user_msr_list = argp;
  1797. struct kvm_msr_list msr_list;
  1798. unsigned n;
  1799. r = -EFAULT;
  1800. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1801. goto out;
  1802. n = msr_list.nmsrs;
  1803. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1804. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1805. goto out;
  1806. r = -E2BIG;
  1807. if (n < msr_list.nmsrs)
  1808. goto out;
  1809. r = -EFAULT;
  1810. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1811. num_msrs_to_save * sizeof(u32)))
  1812. goto out;
  1813. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1814. &emulated_msrs,
  1815. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1816. goto out;
  1817. r = 0;
  1818. break;
  1819. }
  1820. case KVM_GET_SUPPORTED_CPUID: {
  1821. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1822. struct kvm_cpuid2 cpuid;
  1823. r = -EFAULT;
  1824. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1825. goto out;
  1826. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1827. cpuid_arg->entries);
  1828. if (r)
  1829. goto out;
  1830. r = -EFAULT;
  1831. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1832. goto out;
  1833. r = 0;
  1834. break;
  1835. }
  1836. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1837. u64 mce_cap;
  1838. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1839. r = -EFAULT;
  1840. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1841. goto out;
  1842. r = 0;
  1843. break;
  1844. }
  1845. default:
  1846. r = -EINVAL;
  1847. }
  1848. out:
  1849. return r;
  1850. }
  1851. static void wbinvd_ipi(void *garbage)
  1852. {
  1853. wbinvd();
  1854. }
  1855. static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
  1856. {
  1857. return vcpu->kvm->arch.iommu_domain &&
  1858. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
  1859. }
  1860. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1861. {
  1862. /* Address WBINVD may be executed by guest */
  1863. if (need_emulate_wbinvd(vcpu)) {
  1864. if (kvm_x86_ops->has_wbinvd_exit())
  1865. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  1866. else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
  1867. smp_call_function_single(vcpu->cpu,
  1868. wbinvd_ipi, NULL, 1);
  1869. }
  1870. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1871. if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
  1872. /* Make sure TSC doesn't go backwards */
  1873. s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
  1874. native_read_tsc() - vcpu->arch.last_host_tsc;
  1875. if (tsc_delta < 0)
  1876. mark_tsc_unstable("KVM discovered backwards TSC");
  1877. if (check_tsc_unstable()) {
  1878. kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
  1879. vcpu->arch.tsc_catchup = 1;
  1880. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1881. }
  1882. if (vcpu->cpu != cpu)
  1883. kvm_migrate_timers(vcpu);
  1884. vcpu->cpu = cpu;
  1885. }
  1886. }
  1887. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1888. {
  1889. kvm_x86_ops->vcpu_put(vcpu);
  1890. kvm_put_guest_fpu(vcpu);
  1891. vcpu->arch.last_host_tsc = native_read_tsc();
  1892. }
  1893. static int is_efer_nx(void)
  1894. {
  1895. unsigned long long efer = 0;
  1896. rdmsrl_safe(MSR_EFER, &efer);
  1897. return efer & EFER_NX;
  1898. }
  1899. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1900. {
  1901. int i;
  1902. struct kvm_cpuid_entry2 *e, *entry;
  1903. entry = NULL;
  1904. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1905. e = &vcpu->arch.cpuid_entries[i];
  1906. if (e->function == 0x80000001) {
  1907. entry = e;
  1908. break;
  1909. }
  1910. }
  1911. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1912. entry->edx &= ~(1 << 20);
  1913. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1914. }
  1915. }
  1916. /* when an old userspace process fills a new kernel module */
  1917. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1918. struct kvm_cpuid *cpuid,
  1919. struct kvm_cpuid_entry __user *entries)
  1920. {
  1921. int r, i;
  1922. struct kvm_cpuid_entry *cpuid_entries;
  1923. r = -E2BIG;
  1924. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1925. goto out;
  1926. r = -ENOMEM;
  1927. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1928. if (!cpuid_entries)
  1929. goto out;
  1930. r = -EFAULT;
  1931. if (copy_from_user(cpuid_entries, entries,
  1932. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1933. goto out_free;
  1934. for (i = 0; i < cpuid->nent; i++) {
  1935. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1936. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1937. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1938. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1939. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1940. vcpu->arch.cpuid_entries[i].index = 0;
  1941. vcpu->arch.cpuid_entries[i].flags = 0;
  1942. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1943. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1944. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1945. }
  1946. vcpu->arch.cpuid_nent = cpuid->nent;
  1947. cpuid_fix_nx_cap(vcpu);
  1948. r = 0;
  1949. kvm_apic_set_version(vcpu);
  1950. kvm_x86_ops->cpuid_update(vcpu);
  1951. update_cpuid(vcpu);
  1952. out_free:
  1953. vfree(cpuid_entries);
  1954. out:
  1955. return r;
  1956. }
  1957. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1958. struct kvm_cpuid2 *cpuid,
  1959. struct kvm_cpuid_entry2 __user *entries)
  1960. {
  1961. int r;
  1962. r = -E2BIG;
  1963. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1964. goto out;
  1965. r = -EFAULT;
  1966. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1967. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1968. goto out;
  1969. vcpu->arch.cpuid_nent = cpuid->nent;
  1970. kvm_apic_set_version(vcpu);
  1971. kvm_x86_ops->cpuid_update(vcpu);
  1972. update_cpuid(vcpu);
  1973. return 0;
  1974. out:
  1975. return r;
  1976. }
  1977. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1978. struct kvm_cpuid2 *cpuid,
  1979. struct kvm_cpuid_entry2 __user *entries)
  1980. {
  1981. int r;
  1982. r = -E2BIG;
  1983. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1984. goto out;
  1985. r = -EFAULT;
  1986. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1987. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1988. goto out;
  1989. return 0;
  1990. out:
  1991. cpuid->nent = vcpu->arch.cpuid_nent;
  1992. return r;
  1993. }
  1994. static void cpuid_mask(u32 *word, int wordnum)
  1995. {
  1996. *word &= boot_cpu_data.x86_capability[wordnum];
  1997. }
  1998. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1999. u32 index)
  2000. {
  2001. entry->function = function;
  2002. entry->index = index;
  2003. cpuid_count(entry->function, entry->index,
  2004. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  2005. entry->flags = 0;
  2006. }
  2007. #define F(x) bit(X86_FEATURE_##x)
  2008. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  2009. u32 index, int *nent, int maxnent)
  2010. {
  2011. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  2012. #ifdef CONFIG_X86_64
  2013. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  2014. ? F(GBPAGES) : 0;
  2015. unsigned f_lm = F(LM);
  2016. #else
  2017. unsigned f_gbpages = 0;
  2018. unsigned f_lm = 0;
  2019. #endif
  2020. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  2021. /* cpuid 1.edx */
  2022. const u32 kvm_supported_word0_x86_features =
  2023. F(FPU) | F(VME) | F(DE) | F(PSE) |
  2024. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  2025. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  2026. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  2027. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  2028. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  2029. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  2030. 0 /* HTT, TM, Reserved, PBE */;
  2031. /* cpuid 0x80000001.edx */
  2032. const u32 kvm_supported_word1_x86_features =
  2033. F(FPU) | F(VME) | F(DE) | F(PSE) |
  2034. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  2035. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  2036. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  2037. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  2038. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  2039. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  2040. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  2041. /* cpuid 1.ecx */
  2042. const u32 kvm_supported_word4_x86_features =
  2043. F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
  2044. 0 /* DS-CPL, VMX, SMX, EST */ |
  2045. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  2046. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  2047. 0 /* Reserved, DCA */ | F(XMM4_1) |
  2048. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  2049. 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
  2050. F(F16C);
  2051. /* cpuid 0x80000001.ecx */
  2052. const u32 kvm_supported_word6_x86_features =
  2053. F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
  2054. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  2055. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
  2056. 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
  2057. /* all calls to cpuid_count() should be made on the same cpu */
  2058. get_cpu();
  2059. do_cpuid_1_ent(entry, function, index);
  2060. ++*nent;
  2061. switch (function) {
  2062. case 0:
  2063. entry->eax = min(entry->eax, (u32)0xd);
  2064. break;
  2065. case 1:
  2066. entry->edx &= kvm_supported_word0_x86_features;
  2067. cpuid_mask(&entry->edx, 0);
  2068. entry->ecx &= kvm_supported_word4_x86_features;
  2069. cpuid_mask(&entry->ecx, 4);
  2070. /* we support x2apic emulation even if host does not support
  2071. * it since we emulate x2apic in software */
  2072. entry->ecx |= F(X2APIC);
  2073. break;
  2074. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  2075. * may return different values. This forces us to get_cpu() before
  2076. * issuing the first command, and also to emulate this annoying behavior
  2077. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  2078. case 2: {
  2079. int t, times = entry->eax & 0xff;
  2080. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2081. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2082. for (t = 1; t < times && *nent < maxnent; ++t) {
  2083. do_cpuid_1_ent(&entry[t], function, 0);
  2084. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2085. ++*nent;
  2086. }
  2087. break;
  2088. }
  2089. /* function 4 and 0xb have additional index. */
  2090. case 4: {
  2091. int i, cache_type;
  2092. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2093. /* read more entries until cache_type is zero */
  2094. for (i = 1; *nent < maxnent; ++i) {
  2095. cache_type = entry[i - 1].eax & 0x1f;
  2096. if (!cache_type)
  2097. break;
  2098. do_cpuid_1_ent(&entry[i], function, i);
  2099. entry[i].flags |=
  2100. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2101. ++*nent;
  2102. }
  2103. break;
  2104. }
  2105. case 0xb: {
  2106. int i, level_type;
  2107. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2108. /* read more entries until level_type is zero */
  2109. for (i = 1; *nent < maxnent; ++i) {
  2110. level_type = entry[i - 1].ecx & 0xff00;
  2111. if (!level_type)
  2112. break;
  2113. do_cpuid_1_ent(&entry[i], function, i);
  2114. entry[i].flags |=
  2115. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2116. ++*nent;
  2117. }
  2118. break;
  2119. }
  2120. case 0xd: {
  2121. int i;
  2122. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2123. for (i = 1; *nent < maxnent; ++i) {
  2124. if (entry[i - 1].eax == 0 && i != 2)
  2125. break;
  2126. do_cpuid_1_ent(&entry[i], function, i);
  2127. entry[i].flags |=
  2128. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2129. ++*nent;
  2130. }
  2131. break;
  2132. }
  2133. case KVM_CPUID_SIGNATURE: {
  2134. char signature[12] = "KVMKVMKVM\0\0";
  2135. u32 *sigptr = (u32 *)signature;
  2136. entry->eax = 0;
  2137. entry->ebx = sigptr[0];
  2138. entry->ecx = sigptr[1];
  2139. entry->edx = sigptr[2];
  2140. break;
  2141. }
  2142. case KVM_CPUID_FEATURES:
  2143. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  2144. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  2145. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  2146. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
  2147. entry->ebx = 0;
  2148. entry->ecx = 0;
  2149. entry->edx = 0;
  2150. break;
  2151. case 0x80000000:
  2152. entry->eax = min(entry->eax, 0x8000001a);
  2153. break;
  2154. case 0x80000001:
  2155. entry->edx &= kvm_supported_word1_x86_features;
  2156. cpuid_mask(&entry->edx, 1);
  2157. entry->ecx &= kvm_supported_word6_x86_features;
  2158. cpuid_mask(&entry->ecx, 6);
  2159. break;
  2160. }
  2161. kvm_x86_ops->set_supported_cpuid(function, entry);
  2162. put_cpu();
  2163. }
  2164. #undef F
  2165. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  2166. struct kvm_cpuid_entry2 __user *entries)
  2167. {
  2168. struct kvm_cpuid_entry2 *cpuid_entries;
  2169. int limit, nent = 0, r = -E2BIG;
  2170. u32 func;
  2171. if (cpuid->nent < 1)
  2172. goto out;
  2173. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2174. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  2175. r = -ENOMEM;
  2176. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  2177. if (!cpuid_entries)
  2178. goto out;
  2179. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  2180. limit = cpuid_entries[0].eax;
  2181. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  2182. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2183. &nent, cpuid->nent);
  2184. r = -E2BIG;
  2185. if (nent >= cpuid->nent)
  2186. goto out_free;
  2187. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  2188. limit = cpuid_entries[nent - 1].eax;
  2189. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  2190. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2191. &nent, cpuid->nent);
  2192. r = -E2BIG;
  2193. if (nent >= cpuid->nent)
  2194. goto out_free;
  2195. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
  2196. cpuid->nent);
  2197. r = -E2BIG;
  2198. if (nent >= cpuid->nent)
  2199. goto out_free;
  2200. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
  2201. cpuid->nent);
  2202. r = -E2BIG;
  2203. if (nent >= cpuid->nent)
  2204. goto out_free;
  2205. r = -EFAULT;
  2206. if (copy_to_user(entries, cpuid_entries,
  2207. nent * sizeof(struct kvm_cpuid_entry2)))
  2208. goto out_free;
  2209. cpuid->nent = nent;
  2210. r = 0;
  2211. out_free:
  2212. vfree(cpuid_entries);
  2213. out:
  2214. return r;
  2215. }
  2216. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2217. struct kvm_lapic_state *s)
  2218. {
  2219. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  2220. return 0;
  2221. }
  2222. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2223. struct kvm_lapic_state *s)
  2224. {
  2225. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  2226. kvm_apic_post_state_restore(vcpu);
  2227. update_cr8_intercept(vcpu);
  2228. return 0;
  2229. }
  2230. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2231. struct kvm_interrupt *irq)
  2232. {
  2233. if (irq->irq < 0 || irq->irq >= 256)
  2234. return -EINVAL;
  2235. if (irqchip_in_kernel(vcpu->kvm))
  2236. return -ENXIO;
  2237. kvm_queue_interrupt(vcpu, irq->irq, false);
  2238. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2239. return 0;
  2240. }
  2241. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  2242. {
  2243. kvm_inject_nmi(vcpu);
  2244. return 0;
  2245. }
  2246. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  2247. struct kvm_tpr_access_ctl *tac)
  2248. {
  2249. if (tac->flags)
  2250. return -EINVAL;
  2251. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  2252. return 0;
  2253. }
  2254. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  2255. u64 mcg_cap)
  2256. {
  2257. int r;
  2258. unsigned bank_num = mcg_cap & 0xff, bank;
  2259. r = -EINVAL;
  2260. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  2261. goto out;
  2262. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  2263. goto out;
  2264. r = 0;
  2265. vcpu->arch.mcg_cap = mcg_cap;
  2266. /* Init IA32_MCG_CTL to all 1s */
  2267. if (mcg_cap & MCG_CTL_P)
  2268. vcpu->arch.mcg_ctl = ~(u64)0;
  2269. /* Init IA32_MCi_CTL to all 1s */
  2270. for (bank = 0; bank < bank_num; bank++)
  2271. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  2272. out:
  2273. return r;
  2274. }
  2275. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  2276. struct kvm_x86_mce *mce)
  2277. {
  2278. u64 mcg_cap = vcpu->arch.mcg_cap;
  2279. unsigned bank_num = mcg_cap & 0xff;
  2280. u64 *banks = vcpu->arch.mce_banks;
  2281. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  2282. return -EINVAL;
  2283. /*
  2284. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  2285. * reporting is disabled
  2286. */
  2287. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  2288. vcpu->arch.mcg_ctl != ~(u64)0)
  2289. return 0;
  2290. banks += 4 * mce->bank;
  2291. /*
  2292. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  2293. * reporting is disabled for the bank
  2294. */
  2295. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  2296. return 0;
  2297. if (mce->status & MCI_STATUS_UC) {
  2298. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  2299. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  2300. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2301. return 0;
  2302. }
  2303. if (banks[1] & MCI_STATUS_VAL)
  2304. mce->status |= MCI_STATUS_OVER;
  2305. banks[2] = mce->addr;
  2306. banks[3] = mce->misc;
  2307. vcpu->arch.mcg_status = mce->mcg_status;
  2308. banks[1] = mce->status;
  2309. kvm_queue_exception(vcpu, MC_VECTOR);
  2310. } else if (!(banks[1] & MCI_STATUS_VAL)
  2311. || !(banks[1] & MCI_STATUS_UC)) {
  2312. if (banks[1] & MCI_STATUS_VAL)
  2313. mce->status |= MCI_STATUS_OVER;
  2314. banks[2] = mce->addr;
  2315. banks[3] = mce->misc;
  2316. banks[1] = mce->status;
  2317. } else
  2318. banks[1] |= MCI_STATUS_OVER;
  2319. return 0;
  2320. }
  2321. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  2322. struct kvm_vcpu_events *events)
  2323. {
  2324. events->exception.injected =
  2325. vcpu->arch.exception.pending &&
  2326. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  2327. events->exception.nr = vcpu->arch.exception.nr;
  2328. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  2329. events->exception.pad = 0;
  2330. events->exception.error_code = vcpu->arch.exception.error_code;
  2331. events->interrupt.injected =
  2332. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  2333. events->interrupt.nr = vcpu->arch.interrupt.nr;
  2334. events->interrupt.soft = 0;
  2335. events->interrupt.shadow =
  2336. kvm_x86_ops->get_interrupt_shadow(vcpu,
  2337. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  2338. events->nmi.injected = vcpu->arch.nmi_injected;
  2339. events->nmi.pending = vcpu->arch.nmi_pending;
  2340. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  2341. events->nmi.pad = 0;
  2342. events->sipi_vector = vcpu->arch.sipi_vector;
  2343. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  2344. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2345. | KVM_VCPUEVENT_VALID_SHADOW);
  2346. memset(&events->reserved, 0, sizeof(events->reserved));
  2347. }
  2348. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  2349. struct kvm_vcpu_events *events)
  2350. {
  2351. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  2352. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2353. | KVM_VCPUEVENT_VALID_SHADOW))
  2354. return -EINVAL;
  2355. vcpu->arch.exception.pending = events->exception.injected;
  2356. vcpu->arch.exception.nr = events->exception.nr;
  2357. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  2358. vcpu->arch.exception.error_code = events->exception.error_code;
  2359. vcpu->arch.interrupt.pending = events->interrupt.injected;
  2360. vcpu->arch.interrupt.nr = events->interrupt.nr;
  2361. vcpu->arch.interrupt.soft = events->interrupt.soft;
  2362. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  2363. kvm_pic_clear_isr_ack(vcpu->kvm);
  2364. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  2365. kvm_x86_ops->set_interrupt_shadow(vcpu,
  2366. events->interrupt.shadow);
  2367. vcpu->arch.nmi_injected = events->nmi.injected;
  2368. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  2369. vcpu->arch.nmi_pending = events->nmi.pending;
  2370. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  2371. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  2372. vcpu->arch.sipi_vector = events->sipi_vector;
  2373. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2374. return 0;
  2375. }
  2376. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  2377. struct kvm_debugregs *dbgregs)
  2378. {
  2379. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2380. dbgregs->dr6 = vcpu->arch.dr6;
  2381. dbgregs->dr7 = vcpu->arch.dr7;
  2382. dbgregs->flags = 0;
  2383. memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
  2384. }
  2385. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2386. struct kvm_debugregs *dbgregs)
  2387. {
  2388. if (dbgregs->flags)
  2389. return -EINVAL;
  2390. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2391. vcpu->arch.dr6 = dbgregs->dr6;
  2392. vcpu->arch.dr7 = dbgregs->dr7;
  2393. return 0;
  2394. }
  2395. static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
  2396. struct kvm_xsave *guest_xsave)
  2397. {
  2398. if (cpu_has_xsave)
  2399. memcpy(guest_xsave->region,
  2400. &vcpu->arch.guest_fpu.state->xsave,
  2401. xstate_size);
  2402. else {
  2403. memcpy(guest_xsave->region,
  2404. &vcpu->arch.guest_fpu.state->fxsave,
  2405. sizeof(struct i387_fxsave_struct));
  2406. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
  2407. XSTATE_FPSSE;
  2408. }
  2409. }
  2410. static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
  2411. struct kvm_xsave *guest_xsave)
  2412. {
  2413. u64 xstate_bv =
  2414. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
  2415. if (cpu_has_xsave)
  2416. memcpy(&vcpu->arch.guest_fpu.state->xsave,
  2417. guest_xsave->region, xstate_size);
  2418. else {
  2419. if (xstate_bv & ~XSTATE_FPSSE)
  2420. return -EINVAL;
  2421. memcpy(&vcpu->arch.guest_fpu.state->fxsave,
  2422. guest_xsave->region, sizeof(struct i387_fxsave_struct));
  2423. }
  2424. return 0;
  2425. }
  2426. static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
  2427. struct kvm_xcrs *guest_xcrs)
  2428. {
  2429. if (!cpu_has_xsave) {
  2430. guest_xcrs->nr_xcrs = 0;
  2431. return;
  2432. }
  2433. guest_xcrs->nr_xcrs = 1;
  2434. guest_xcrs->flags = 0;
  2435. guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
  2436. guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
  2437. }
  2438. static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
  2439. struct kvm_xcrs *guest_xcrs)
  2440. {
  2441. int i, r = 0;
  2442. if (!cpu_has_xsave)
  2443. return -EINVAL;
  2444. if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
  2445. return -EINVAL;
  2446. for (i = 0; i < guest_xcrs->nr_xcrs; i++)
  2447. /* Only support XCR0 currently */
  2448. if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
  2449. r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
  2450. guest_xcrs->xcrs[0].value);
  2451. break;
  2452. }
  2453. if (r)
  2454. r = -EINVAL;
  2455. return r;
  2456. }
  2457. long kvm_arch_vcpu_ioctl(struct file *filp,
  2458. unsigned int ioctl, unsigned long arg)
  2459. {
  2460. struct kvm_vcpu *vcpu = filp->private_data;
  2461. void __user *argp = (void __user *)arg;
  2462. int r;
  2463. union {
  2464. struct kvm_lapic_state *lapic;
  2465. struct kvm_xsave *xsave;
  2466. struct kvm_xcrs *xcrs;
  2467. void *buffer;
  2468. } u;
  2469. u.buffer = NULL;
  2470. switch (ioctl) {
  2471. case KVM_GET_LAPIC: {
  2472. r = -EINVAL;
  2473. if (!vcpu->arch.apic)
  2474. goto out;
  2475. u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2476. r = -ENOMEM;
  2477. if (!u.lapic)
  2478. goto out;
  2479. r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
  2480. if (r)
  2481. goto out;
  2482. r = -EFAULT;
  2483. if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
  2484. goto out;
  2485. r = 0;
  2486. break;
  2487. }
  2488. case KVM_SET_LAPIC: {
  2489. r = -EINVAL;
  2490. if (!vcpu->arch.apic)
  2491. goto out;
  2492. u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2493. r = -ENOMEM;
  2494. if (!u.lapic)
  2495. goto out;
  2496. r = -EFAULT;
  2497. if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
  2498. goto out;
  2499. r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
  2500. if (r)
  2501. goto out;
  2502. r = 0;
  2503. break;
  2504. }
  2505. case KVM_INTERRUPT: {
  2506. struct kvm_interrupt irq;
  2507. r = -EFAULT;
  2508. if (copy_from_user(&irq, argp, sizeof irq))
  2509. goto out;
  2510. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2511. if (r)
  2512. goto out;
  2513. r = 0;
  2514. break;
  2515. }
  2516. case KVM_NMI: {
  2517. r = kvm_vcpu_ioctl_nmi(vcpu);
  2518. if (r)
  2519. goto out;
  2520. r = 0;
  2521. break;
  2522. }
  2523. case KVM_SET_CPUID: {
  2524. struct kvm_cpuid __user *cpuid_arg = argp;
  2525. struct kvm_cpuid cpuid;
  2526. r = -EFAULT;
  2527. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2528. goto out;
  2529. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2530. if (r)
  2531. goto out;
  2532. break;
  2533. }
  2534. case KVM_SET_CPUID2: {
  2535. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2536. struct kvm_cpuid2 cpuid;
  2537. r = -EFAULT;
  2538. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2539. goto out;
  2540. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2541. cpuid_arg->entries);
  2542. if (r)
  2543. goto out;
  2544. break;
  2545. }
  2546. case KVM_GET_CPUID2: {
  2547. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2548. struct kvm_cpuid2 cpuid;
  2549. r = -EFAULT;
  2550. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2551. goto out;
  2552. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2553. cpuid_arg->entries);
  2554. if (r)
  2555. goto out;
  2556. r = -EFAULT;
  2557. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2558. goto out;
  2559. r = 0;
  2560. break;
  2561. }
  2562. case KVM_GET_MSRS:
  2563. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2564. break;
  2565. case KVM_SET_MSRS:
  2566. r = msr_io(vcpu, argp, do_set_msr, 0);
  2567. break;
  2568. case KVM_TPR_ACCESS_REPORTING: {
  2569. struct kvm_tpr_access_ctl tac;
  2570. r = -EFAULT;
  2571. if (copy_from_user(&tac, argp, sizeof tac))
  2572. goto out;
  2573. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2574. if (r)
  2575. goto out;
  2576. r = -EFAULT;
  2577. if (copy_to_user(argp, &tac, sizeof tac))
  2578. goto out;
  2579. r = 0;
  2580. break;
  2581. };
  2582. case KVM_SET_VAPIC_ADDR: {
  2583. struct kvm_vapic_addr va;
  2584. r = -EINVAL;
  2585. if (!irqchip_in_kernel(vcpu->kvm))
  2586. goto out;
  2587. r = -EFAULT;
  2588. if (copy_from_user(&va, argp, sizeof va))
  2589. goto out;
  2590. r = 0;
  2591. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2592. break;
  2593. }
  2594. case KVM_X86_SETUP_MCE: {
  2595. u64 mcg_cap;
  2596. r = -EFAULT;
  2597. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2598. goto out;
  2599. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2600. break;
  2601. }
  2602. case KVM_X86_SET_MCE: {
  2603. struct kvm_x86_mce mce;
  2604. r = -EFAULT;
  2605. if (copy_from_user(&mce, argp, sizeof mce))
  2606. goto out;
  2607. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2608. break;
  2609. }
  2610. case KVM_GET_VCPU_EVENTS: {
  2611. struct kvm_vcpu_events events;
  2612. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2613. r = -EFAULT;
  2614. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2615. break;
  2616. r = 0;
  2617. break;
  2618. }
  2619. case KVM_SET_VCPU_EVENTS: {
  2620. struct kvm_vcpu_events events;
  2621. r = -EFAULT;
  2622. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2623. break;
  2624. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2625. break;
  2626. }
  2627. case KVM_GET_DEBUGREGS: {
  2628. struct kvm_debugregs dbgregs;
  2629. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2630. r = -EFAULT;
  2631. if (copy_to_user(argp, &dbgregs,
  2632. sizeof(struct kvm_debugregs)))
  2633. break;
  2634. r = 0;
  2635. break;
  2636. }
  2637. case KVM_SET_DEBUGREGS: {
  2638. struct kvm_debugregs dbgregs;
  2639. r = -EFAULT;
  2640. if (copy_from_user(&dbgregs, argp,
  2641. sizeof(struct kvm_debugregs)))
  2642. break;
  2643. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2644. break;
  2645. }
  2646. case KVM_GET_XSAVE: {
  2647. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2648. r = -ENOMEM;
  2649. if (!u.xsave)
  2650. break;
  2651. kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
  2652. r = -EFAULT;
  2653. if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
  2654. break;
  2655. r = 0;
  2656. break;
  2657. }
  2658. case KVM_SET_XSAVE: {
  2659. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2660. r = -ENOMEM;
  2661. if (!u.xsave)
  2662. break;
  2663. r = -EFAULT;
  2664. if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
  2665. break;
  2666. r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
  2667. break;
  2668. }
  2669. case KVM_GET_XCRS: {
  2670. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2671. r = -ENOMEM;
  2672. if (!u.xcrs)
  2673. break;
  2674. kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
  2675. r = -EFAULT;
  2676. if (copy_to_user(argp, u.xcrs,
  2677. sizeof(struct kvm_xcrs)))
  2678. break;
  2679. r = 0;
  2680. break;
  2681. }
  2682. case KVM_SET_XCRS: {
  2683. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2684. r = -ENOMEM;
  2685. if (!u.xcrs)
  2686. break;
  2687. r = -EFAULT;
  2688. if (copy_from_user(u.xcrs, argp,
  2689. sizeof(struct kvm_xcrs)))
  2690. break;
  2691. r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
  2692. break;
  2693. }
  2694. default:
  2695. r = -EINVAL;
  2696. }
  2697. out:
  2698. kfree(u.buffer);
  2699. return r;
  2700. }
  2701. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2702. {
  2703. int ret;
  2704. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2705. return -1;
  2706. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2707. return ret;
  2708. }
  2709. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2710. u64 ident_addr)
  2711. {
  2712. kvm->arch.ept_identity_map_addr = ident_addr;
  2713. return 0;
  2714. }
  2715. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2716. u32 kvm_nr_mmu_pages)
  2717. {
  2718. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2719. return -EINVAL;
  2720. mutex_lock(&kvm->slots_lock);
  2721. spin_lock(&kvm->mmu_lock);
  2722. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2723. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2724. spin_unlock(&kvm->mmu_lock);
  2725. mutex_unlock(&kvm->slots_lock);
  2726. return 0;
  2727. }
  2728. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2729. {
  2730. return kvm->arch.n_max_mmu_pages;
  2731. }
  2732. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2733. {
  2734. int r;
  2735. r = 0;
  2736. switch (chip->chip_id) {
  2737. case KVM_IRQCHIP_PIC_MASTER:
  2738. memcpy(&chip->chip.pic,
  2739. &pic_irqchip(kvm)->pics[0],
  2740. sizeof(struct kvm_pic_state));
  2741. break;
  2742. case KVM_IRQCHIP_PIC_SLAVE:
  2743. memcpy(&chip->chip.pic,
  2744. &pic_irqchip(kvm)->pics[1],
  2745. sizeof(struct kvm_pic_state));
  2746. break;
  2747. case KVM_IRQCHIP_IOAPIC:
  2748. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2749. break;
  2750. default:
  2751. r = -EINVAL;
  2752. break;
  2753. }
  2754. return r;
  2755. }
  2756. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2757. {
  2758. int r;
  2759. r = 0;
  2760. switch (chip->chip_id) {
  2761. case KVM_IRQCHIP_PIC_MASTER:
  2762. spin_lock(&pic_irqchip(kvm)->lock);
  2763. memcpy(&pic_irqchip(kvm)->pics[0],
  2764. &chip->chip.pic,
  2765. sizeof(struct kvm_pic_state));
  2766. spin_unlock(&pic_irqchip(kvm)->lock);
  2767. break;
  2768. case KVM_IRQCHIP_PIC_SLAVE:
  2769. spin_lock(&pic_irqchip(kvm)->lock);
  2770. memcpy(&pic_irqchip(kvm)->pics[1],
  2771. &chip->chip.pic,
  2772. sizeof(struct kvm_pic_state));
  2773. spin_unlock(&pic_irqchip(kvm)->lock);
  2774. break;
  2775. case KVM_IRQCHIP_IOAPIC:
  2776. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2777. break;
  2778. default:
  2779. r = -EINVAL;
  2780. break;
  2781. }
  2782. kvm_pic_update_irq(pic_irqchip(kvm));
  2783. return r;
  2784. }
  2785. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2786. {
  2787. int r = 0;
  2788. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2789. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2790. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2791. return r;
  2792. }
  2793. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2794. {
  2795. int r = 0;
  2796. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2797. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2798. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2799. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2800. return r;
  2801. }
  2802. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2803. {
  2804. int r = 0;
  2805. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2806. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2807. sizeof(ps->channels));
  2808. ps->flags = kvm->arch.vpit->pit_state.flags;
  2809. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2810. memset(&ps->reserved, 0, sizeof(ps->reserved));
  2811. return r;
  2812. }
  2813. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2814. {
  2815. int r = 0, start = 0;
  2816. u32 prev_legacy, cur_legacy;
  2817. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2818. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2819. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2820. if (!prev_legacy && cur_legacy)
  2821. start = 1;
  2822. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2823. sizeof(kvm->arch.vpit->pit_state.channels));
  2824. kvm->arch.vpit->pit_state.flags = ps->flags;
  2825. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2826. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2827. return r;
  2828. }
  2829. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2830. struct kvm_reinject_control *control)
  2831. {
  2832. if (!kvm->arch.vpit)
  2833. return -ENXIO;
  2834. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2835. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2836. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2837. return 0;
  2838. }
  2839. /*
  2840. * Get (and clear) the dirty memory log for a memory slot.
  2841. */
  2842. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2843. struct kvm_dirty_log *log)
  2844. {
  2845. int r, i;
  2846. struct kvm_memory_slot *memslot;
  2847. unsigned long n;
  2848. unsigned long is_dirty = 0;
  2849. mutex_lock(&kvm->slots_lock);
  2850. r = -EINVAL;
  2851. if (log->slot >= KVM_MEMORY_SLOTS)
  2852. goto out;
  2853. memslot = &kvm->memslots->memslots[log->slot];
  2854. r = -ENOENT;
  2855. if (!memslot->dirty_bitmap)
  2856. goto out;
  2857. n = kvm_dirty_bitmap_bytes(memslot);
  2858. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2859. is_dirty = memslot->dirty_bitmap[i];
  2860. /* If nothing is dirty, don't bother messing with page tables. */
  2861. if (is_dirty) {
  2862. struct kvm_memslots *slots, *old_slots;
  2863. unsigned long *dirty_bitmap;
  2864. dirty_bitmap = memslot->dirty_bitmap_head;
  2865. if (memslot->dirty_bitmap == dirty_bitmap)
  2866. dirty_bitmap += n / sizeof(long);
  2867. memset(dirty_bitmap, 0, n);
  2868. r = -ENOMEM;
  2869. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2870. if (!slots)
  2871. goto out;
  2872. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2873. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2874. slots->generation++;
  2875. old_slots = kvm->memslots;
  2876. rcu_assign_pointer(kvm->memslots, slots);
  2877. synchronize_srcu_expedited(&kvm->srcu);
  2878. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2879. kfree(old_slots);
  2880. spin_lock(&kvm->mmu_lock);
  2881. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2882. spin_unlock(&kvm->mmu_lock);
  2883. r = -EFAULT;
  2884. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
  2885. goto out;
  2886. } else {
  2887. r = -EFAULT;
  2888. if (clear_user(log->dirty_bitmap, n))
  2889. goto out;
  2890. }
  2891. r = 0;
  2892. out:
  2893. mutex_unlock(&kvm->slots_lock);
  2894. return r;
  2895. }
  2896. long kvm_arch_vm_ioctl(struct file *filp,
  2897. unsigned int ioctl, unsigned long arg)
  2898. {
  2899. struct kvm *kvm = filp->private_data;
  2900. void __user *argp = (void __user *)arg;
  2901. int r = -ENOTTY;
  2902. /*
  2903. * This union makes it completely explicit to gcc-3.x
  2904. * that these two variables' stack usage should be
  2905. * combined, not added together.
  2906. */
  2907. union {
  2908. struct kvm_pit_state ps;
  2909. struct kvm_pit_state2 ps2;
  2910. struct kvm_pit_config pit_config;
  2911. } u;
  2912. switch (ioctl) {
  2913. case KVM_SET_TSS_ADDR:
  2914. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2915. if (r < 0)
  2916. goto out;
  2917. break;
  2918. case KVM_SET_IDENTITY_MAP_ADDR: {
  2919. u64 ident_addr;
  2920. r = -EFAULT;
  2921. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2922. goto out;
  2923. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2924. if (r < 0)
  2925. goto out;
  2926. break;
  2927. }
  2928. case KVM_SET_NR_MMU_PAGES:
  2929. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2930. if (r)
  2931. goto out;
  2932. break;
  2933. case KVM_GET_NR_MMU_PAGES:
  2934. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2935. break;
  2936. case KVM_CREATE_IRQCHIP: {
  2937. struct kvm_pic *vpic;
  2938. mutex_lock(&kvm->lock);
  2939. r = -EEXIST;
  2940. if (kvm->arch.vpic)
  2941. goto create_irqchip_unlock;
  2942. r = -ENOMEM;
  2943. vpic = kvm_create_pic(kvm);
  2944. if (vpic) {
  2945. r = kvm_ioapic_init(kvm);
  2946. if (r) {
  2947. mutex_lock(&kvm->slots_lock);
  2948. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2949. &vpic->dev);
  2950. mutex_unlock(&kvm->slots_lock);
  2951. kfree(vpic);
  2952. goto create_irqchip_unlock;
  2953. }
  2954. } else
  2955. goto create_irqchip_unlock;
  2956. smp_wmb();
  2957. kvm->arch.vpic = vpic;
  2958. smp_wmb();
  2959. r = kvm_setup_default_irq_routing(kvm);
  2960. if (r) {
  2961. mutex_lock(&kvm->slots_lock);
  2962. mutex_lock(&kvm->irq_lock);
  2963. kvm_ioapic_destroy(kvm);
  2964. kvm_destroy_pic(kvm);
  2965. mutex_unlock(&kvm->irq_lock);
  2966. mutex_unlock(&kvm->slots_lock);
  2967. }
  2968. create_irqchip_unlock:
  2969. mutex_unlock(&kvm->lock);
  2970. break;
  2971. }
  2972. case KVM_CREATE_PIT:
  2973. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2974. goto create_pit;
  2975. case KVM_CREATE_PIT2:
  2976. r = -EFAULT;
  2977. if (copy_from_user(&u.pit_config, argp,
  2978. sizeof(struct kvm_pit_config)))
  2979. goto out;
  2980. create_pit:
  2981. mutex_lock(&kvm->slots_lock);
  2982. r = -EEXIST;
  2983. if (kvm->arch.vpit)
  2984. goto create_pit_unlock;
  2985. r = -ENOMEM;
  2986. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2987. if (kvm->arch.vpit)
  2988. r = 0;
  2989. create_pit_unlock:
  2990. mutex_unlock(&kvm->slots_lock);
  2991. break;
  2992. case KVM_IRQ_LINE_STATUS:
  2993. case KVM_IRQ_LINE: {
  2994. struct kvm_irq_level irq_event;
  2995. r = -EFAULT;
  2996. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2997. goto out;
  2998. r = -ENXIO;
  2999. if (irqchip_in_kernel(kvm)) {
  3000. __s32 status;
  3001. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  3002. irq_event.irq, irq_event.level);
  3003. if (ioctl == KVM_IRQ_LINE_STATUS) {
  3004. r = -EFAULT;
  3005. irq_event.status = status;
  3006. if (copy_to_user(argp, &irq_event,
  3007. sizeof irq_event))
  3008. goto out;
  3009. }
  3010. r = 0;
  3011. }
  3012. break;
  3013. }
  3014. case KVM_GET_IRQCHIP: {
  3015. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  3016. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  3017. r = -ENOMEM;
  3018. if (!chip)
  3019. goto out;
  3020. r = -EFAULT;
  3021. if (copy_from_user(chip, argp, sizeof *chip))
  3022. goto get_irqchip_out;
  3023. r = -ENXIO;
  3024. if (!irqchip_in_kernel(kvm))
  3025. goto get_irqchip_out;
  3026. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  3027. if (r)
  3028. goto get_irqchip_out;
  3029. r = -EFAULT;
  3030. if (copy_to_user(argp, chip, sizeof *chip))
  3031. goto get_irqchip_out;
  3032. r = 0;
  3033. get_irqchip_out:
  3034. kfree(chip);
  3035. if (r)
  3036. goto out;
  3037. break;
  3038. }
  3039. case KVM_SET_IRQCHIP: {
  3040. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  3041. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  3042. r = -ENOMEM;
  3043. if (!chip)
  3044. goto out;
  3045. r = -EFAULT;
  3046. if (copy_from_user(chip, argp, sizeof *chip))
  3047. goto set_irqchip_out;
  3048. r = -ENXIO;
  3049. if (!irqchip_in_kernel(kvm))
  3050. goto set_irqchip_out;
  3051. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  3052. if (r)
  3053. goto set_irqchip_out;
  3054. r = 0;
  3055. set_irqchip_out:
  3056. kfree(chip);
  3057. if (r)
  3058. goto out;
  3059. break;
  3060. }
  3061. case KVM_GET_PIT: {
  3062. r = -EFAULT;
  3063. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  3064. goto out;
  3065. r = -ENXIO;
  3066. if (!kvm->arch.vpit)
  3067. goto out;
  3068. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  3069. if (r)
  3070. goto out;
  3071. r = -EFAULT;
  3072. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  3073. goto out;
  3074. r = 0;
  3075. break;
  3076. }
  3077. case KVM_SET_PIT: {
  3078. r = -EFAULT;
  3079. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  3080. goto out;
  3081. r = -ENXIO;
  3082. if (!kvm->arch.vpit)
  3083. goto out;
  3084. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  3085. if (r)
  3086. goto out;
  3087. r = 0;
  3088. break;
  3089. }
  3090. case KVM_GET_PIT2: {
  3091. r = -ENXIO;
  3092. if (!kvm->arch.vpit)
  3093. goto out;
  3094. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  3095. if (r)
  3096. goto out;
  3097. r = -EFAULT;
  3098. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  3099. goto out;
  3100. r = 0;
  3101. break;
  3102. }
  3103. case KVM_SET_PIT2: {
  3104. r = -EFAULT;
  3105. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  3106. goto out;
  3107. r = -ENXIO;
  3108. if (!kvm->arch.vpit)
  3109. goto out;
  3110. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  3111. if (r)
  3112. goto out;
  3113. r = 0;
  3114. break;
  3115. }
  3116. case KVM_REINJECT_CONTROL: {
  3117. struct kvm_reinject_control control;
  3118. r = -EFAULT;
  3119. if (copy_from_user(&control, argp, sizeof(control)))
  3120. goto out;
  3121. r = kvm_vm_ioctl_reinject(kvm, &control);
  3122. if (r)
  3123. goto out;
  3124. r = 0;
  3125. break;
  3126. }
  3127. case KVM_XEN_HVM_CONFIG: {
  3128. r = -EFAULT;
  3129. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  3130. sizeof(struct kvm_xen_hvm_config)))
  3131. goto out;
  3132. r = -EINVAL;
  3133. if (kvm->arch.xen_hvm_config.flags)
  3134. goto out;
  3135. r = 0;
  3136. break;
  3137. }
  3138. case KVM_SET_CLOCK: {
  3139. struct kvm_clock_data user_ns;
  3140. u64 now_ns;
  3141. s64 delta;
  3142. r = -EFAULT;
  3143. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  3144. goto out;
  3145. r = -EINVAL;
  3146. if (user_ns.flags)
  3147. goto out;
  3148. r = 0;
  3149. local_irq_disable();
  3150. now_ns = get_kernel_ns();
  3151. delta = user_ns.clock - now_ns;
  3152. local_irq_enable();
  3153. kvm->arch.kvmclock_offset = delta;
  3154. break;
  3155. }
  3156. case KVM_GET_CLOCK: {
  3157. struct kvm_clock_data user_ns;
  3158. u64 now_ns;
  3159. local_irq_disable();
  3160. now_ns = get_kernel_ns();
  3161. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  3162. local_irq_enable();
  3163. user_ns.flags = 0;
  3164. memset(&user_ns.pad, 0, sizeof(user_ns.pad));
  3165. r = -EFAULT;
  3166. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  3167. goto out;
  3168. r = 0;
  3169. break;
  3170. }
  3171. default:
  3172. ;
  3173. }
  3174. out:
  3175. return r;
  3176. }
  3177. static void kvm_init_msr_list(void)
  3178. {
  3179. u32 dummy[2];
  3180. unsigned i, j;
  3181. /* skip the first msrs in the list. KVM-specific */
  3182. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  3183. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  3184. continue;
  3185. if (j < i)
  3186. msrs_to_save[j] = msrs_to_save[i];
  3187. j++;
  3188. }
  3189. num_msrs_to_save = j;
  3190. }
  3191. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  3192. const void *v)
  3193. {
  3194. if (vcpu->arch.apic &&
  3195. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  3196. return 0;
  3197. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  3198. }
  3199. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  3200. {
  3201. if (vcpu->arch.apic &&
  3202. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  3203. return 0;
  3204. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  3205. }
  3206. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3207. struct kvm_segment *var, int seg)
  3208. {
  3209. kvm_x86_ops->set_segment(vcpu, var, seg);
  3210. }
  3211. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3212. struct kvm_segment *var, int seg)
  3213. {
  3214. kvm_x86_ops->get_segment(vcpu, var, seg);
  3215. }
  3216. static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3217. {
  3218. return gpa;
  3219. }
  3220. static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3221. {
  3222. gpa_t t_gpa;
  3223. struct x86_exception exception;
  3224. BUG_ON(!mmu_is_nested(vcpu));
  3225. /* NPT walks are always user-walks */
  3226. access |= PFERR_USER_MASK;
  3227. t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
  3228. return t_gpa;
  3229. }
  3230. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
  3231. struct x86_exception *exception)
  3232. {
  3233. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3234. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3235. }
  3236. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
  3237. struct x86_exception *exception)
  3238. {
  3239. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3240. access |= PFERR_FETCH_MASK;
  3241. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3242. }
  3243. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
  3244. struct x86_exception *exception)
  3245. {
  3246. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3247. access |= PFERR_WRITE_MASK;
  3248. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3249. }
  3250. /* uses this to access any guest's mapped memory without checking CPL */
  3251. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
  3252. struct x86_exception *exception)
  3253. {
  3254. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
  3255. }
  3256. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  3257. struct kvm_vcpu *vcpu, u32 access,
  3258. struct x86_exception *exception)
  3259. {
  3260. void *data = val;
  3261. int r = X86EMUL_CONTINUE;
  3262. while (bytes) {
  3263. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
  3264. exception);
  3265. unsigned offset = addr & (PAGE_SIZE-1);
  3266. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  3267. int ret;
  3268. if (gpa == UNMAPPED_GVA)
  3269. return X86EMUL_PROPAGATE_FAULT;
  3270. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  3271. if (ret < 0) {
  3272. r = X86EMUL_IO_NEEDED;
  3273. goto out;
  3274. }
  3275. bytes -= toread;
  3276. data += toread;
  3277. addr += toread;
  3278. }
  3279. out:
  3280. return r;
  3281. }
  3282. /* used for instruction fetching */
  3283. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3284. struct kvm_vcpu *vcpu,
  3285. struct x86_exception *exception)
  3286. {
  3287. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3288. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  3289. access | PFERR_FETCH_MASK,
  3290. exception);
  3291. }
  3292. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3293. struct kvm_vcpu *vcpu,
  3294. struct x86_exception *exception)
  3295. {
  3296. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3297. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  3298. exception);
  3299. }
  3300. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  3301. struct kvm_vcpu *vcpu,
  3302. struct x86_exception *exception)
  3303. {
  3304. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
  3305. }
  3306. static int kvm_write_guest_virt_system(gva_t addr, void *val,
  3307. unsigned int bytes,
  3308. struct kvm_vcpu *vcpu,
  3309. struct x86_exception *exception)
  3310. {
  3311. void *data = val;
  3312. int r = X86EMUL_CONTINUE;
  3313. while (bytes) {
  3314. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
  3315. PFERR_WRITE_MASK,
  3316. exception);
  3317. unsigned offset = addr & (PAGE_SIZE-1);
  3318. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  3319. int ret;
  3320. if (gpa == UNMAPPED_GVA)
  3321. return X86EMUL_PROPAGATE_FAULT;
  3322. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  3323. if (ret < 0) {
  3324. r = X86EMUL_IO_NEEDED;
  3325. goto out;
  3326. }
  3327. bytes -= towrite;
  3328. data += towrite;
  3329. addr += towrite;
  3330. }
  3331. out:
  3332. return r;
  3333. }
  3334. static int emulator_read_emulated(unsigned long addr,
  3335. void *val,
  3336. unsigned int bytes,
  3337. struct x86_exception *exception,
  3338. struct kvm_vcpu *vcpu)
  3339. {
  3340. gpa_t gpa;
  3341. if (vcpu->mmio_read_completed) {
  3342. memcpy(val, vcpu->mmio_data, bytes);
  3343. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  3344. vcpu->mmio_phys_addr, *(u64 *)val);
  3345. vcpu->mmio_read_completed = 0;
  3346. return X86EMUL_CONTINUE;
  3347. }
  3348. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
  3349. if (gpa == UNMAPPED_GVA)
  3350. return X86EMUL_PROPAGATE_FAULT;
  3351. /* For APIC access vmexit */
  3352. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3353. goto mmio;
  3354. if (kvm_read_guest_virt(addr, val, bytes, vcpu, exception)
  3355. == X86EMUL_CONTINUE)
  3356. return X86EMUL_CONTINUE;
  3357. mmio:
  3358. /*
  3359. * Is this MMIO handled locally?
  3360. */
  3361. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  3362. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  3363. return X86EMUL_CONTINUE;
  3364. }
  3365. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  3366. vcpu->mmio_needed = 1;
  3367. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3368. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3369. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3370. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
  3371. return X86EMUL_IO_NEEDED;
  3372. }
  3373. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  3374. const void *val, int bytes)
  3375. {
  3376. int ret;
  3377. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  3378. if (ret < 0)
  3379. return 0;
  3380. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  3381. return 1;
  3382. }
  3383. static int emulator_write_emulated_onepage(unsigned long addr,
  3384. const void *val,
  3385. unsigned int bytes,
  3386. struct x86_exception *exception,
  3387. struct kvm_vcpu *vcpu)
  3388. {
  3389. gpa_t gpa;
  3390. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
  3391. if (gpa == UNMAPPED_GVA)
  3392. return X86EMUL_PROPAGATE_FAULT;
  3393. /* For APIC access vmexit */
  3394. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3395. goto mmio;
  3396. if (emulator_write_phys(vcpu, gpa, val, bytes))
  3397. return X86EMUL_CONTINUE;
  3398. mmio:
  3399. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3400. /*
  3401. * Is this MMIO handled locally?
  3402. */
  3403. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  3404. return X86EMUL_CONTINUE;
  3405. vcpu->mmio_needed = 1;
  3406. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3407. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3408. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3409. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
  3410. memcpy(vcpu->run->mmio.data, val, bytes);
  3411. return X86EMUL_CONTINUE;
  3412. }
  3413. int emulator_write_emulated(unsigned long addr,
  3414. const void *val,
  3415. unsigned int bytes,
  3416. struct x86_exception *exception,
  3417. struct kvm_vcpu *vcpu)
  3418. {
  3419. /* Crossing a page boundary? */
  3420. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3421. int rc, now;
  3422. now = -addr & ~PAGE_MASK;
  3423. rc = emulator_write_emulated_onepage(addr, val, now, exception,
  3424. vcpu);
  3425. if (rc != X86EMUL_CONTINUE)
  3426. return rc;
  3427. addr += now;
  3428. val += now;
  3429. bytes -= now;
  3430. }
  3431. return emulator_write_emulated_onepage(addr, val, bytes, exception,
  3432. vcpu);
  3433. }
  3434. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3435. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3436. #ifdef CONFIG_X86_64
  3437. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3438. #else
  3439. # define CMPXCHG64(ptr, old, new) \
  3440. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3441. #endif
  3442. static int emulator_cmpxchg_emulated(unsigned long addr,
  3443. const void *old,
  3444. const void *new,
  3445. unsigned int bytes,
  3446. struct x86_exception *exception,
  3447. struct kvm_vcpu *vcpu)
  3448. {
  3449. gpa_t gpa;
  3450. struct page *page;
  3451. char *kaddr;
  3452. bool exchanged;
  3453. /* guests cmpxchg8b have to be emulated atomically */
  3454. if (bytes > 8 || (bytes & (bytes - 1)))
  3455. goto emul_write;
  3456. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3457. if (gpa == UNMAPPED_GVA ||
  3458. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3459. goto emul_write;
  3460. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3461. goto emul_write;
  3462. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3463. if (is_error_page(page)) {
  3464. kvm_release_page_clean(page);
  3465. goto emul_write;
  3466. }
  3467. kaddr = kmap_atomic(page, KM_USER0);
  3468. kaddr += offset_in_page(gpa);
  3469. switch (bytes) {
  3470. case 1:
  3471. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3472. break;
  3473. case 2:
  3474. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3475. break;
  3476. case 4:
  3477. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3478. break;
  3479. case 8:
  3480. exchanged = CMPXCHG64(kaddr, old, new);
  3481. break;
  3482. default:
  3483. BUG();
  3484. }
  3485. kunmap_atomic(kaddr, KM_USER0);
  3486. kvm_release_page_dirty(page);
  3487. if (!exchanged)
  3488. return X86EMUL_CMPXCHG_FAILED;
  3489. kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
  3490. return X86EMUL_CONTINUE;
  3491. emul_write:
  3492. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3493. return emulator_write_emulated(addr, new, bytes, exception, vcpu);
  3494. }
  3495. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3496. {
  3497. /* TODO: String I/O for in kernel device */
  3498. int r;
  3499. if (vcpu->arch.pio.in)
  3500. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3501. vcpu->arch.pio.size, pd);
  3502. else
  3503. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3504. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3505. pd);
  3506. return r;
  3507. }
  3508. static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
  3509. unsigned int count, struct kvm_vcpu *vcpu)
  3510. {
  3511. if (vcpu->arch.pio.count)
  3512. goto data_avail;
  3513. trace_kvm_pio(0, port, size, count);
  3514. vcpu->arch.pio.port = port;
  3515. vcpu->arch.pio.in = 1;
  3516. vcpu->arch.pio.count = count;
  3517. vcpu->arch.pio.size = size;
  3518. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3519. data_avail:
  3520. memcpy(val, vcpu->arch.pio_data, size * count);
  3521. vcpu->arch.pio.count = 0;
  3522. return 1;
  3523. }
  3524. vcpu->run->exit_reason = KVM_EXIT_IO;
  3525. vcpu->run->io.direction = KVM_EXIT_IO_IN;
  3526. vcpu->run->io.size = size;
  3527. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3528. vcpu->run->io.count = count;
  3529. vcpu->run->io.port = port;
  3530. return 0;
  3531. }
  3532. static int emulator_pio_out_emulated(int size, unsigned short port,
  3533. const void *val, unsigned int count,
  3534. struct kvm_vcpu *vcpu)
  3535. {
  3536. trace_kvm_pio(1, port, size, count);
  3537. vcpu->arch.pio.port = port;
  3538. vcpu->arch.pio.in = 0;
  3539. vcpu->arch.pio.count = count;
  3540. vcpu->arch.pio.size = size;
  3541. memcpy(vcpu->arch.pio_data, val, size * count);
  3542. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3543. vcpu->arch.pio.count = 0;
  3544. return 1;
  3545. }
  3546. vcpu->run->exit_reason = KVM_EXIT_IO;
  3547. vcpu->run->io.direction = KVM_EXIT_IO_OUT;
  3548. vcpu->run->io.size = size;
  3549. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3550. vcpu->run->io.count = count;
  3551. vcpu->run->io.port = port;
  3552. return 0;
  3553. }
  3554. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3555. {
  3556. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3557. }
  3558. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  3559. {
  3560. kvm_mmu_invlpg(vcpu, address);
  3561. return X86EMUL_CONTINUE;
  3562. }
  3563. int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
  3564. {
  3565. if (!need_emulate_wbinvd(vcpu))
  3566. return X86EMUL_CONTINUE;
  3567. if (kvm_x86_ops->has_wbinvd_exit()) {
  3568. int cpu = get_cpu();
  3569. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  3570. smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
  3571. wbinvd_ipi, NULL, 1);
  3572. put_cpu();
  3573. cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
  3574. } else
  3575. wbinvd();
  3576. return X86EMUL_CONTINUE;
  3577. }
  3578. EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
  3579. int emulate_clts(struct kvm_vcpu *vcpu)
  3580. {
  3581. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3582. kvm_x86_ops->fpu_activate(vcpu);
  3583. return X86EMUL_CONTINUE;
  3584. }
  3585. int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
  3586. {
  3587. return _kvm_get_dr(vcpu, dr, dest);
  3588. }
  3589. int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
  3590. {
  3591. return __kvm_set_dr(vcpu, dr, value);
  3592. }
  3593. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3594. {
  3595. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3596. }
  3597. static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
  3598. {
  3599. unsigned long value;
  3600. switch (cr) {
  3601. case 0:
  3602. value = kvm_read_cr0(vcpu);
  3603. break;
  3604. case 2:
  3605. value = vcpu->arch.cr2;
  3606. break;
  3607. case 3:
  3608. value = kvm_read_cr3(vcpu);
  3609. break;
  3610. case 4:
  3611. value = kvm_read_cr4(vcpu);
  3612. break;
  3613. case 8:
  3614. value = kvm_get_cr8(vcpu);
  3615. break;
  3616. default:
  3617. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3618. return 0;
  3619. }
  3620. return value;
  3621. }
  3622. static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
  3623. {
  3624. int res = 0;
  3625. switch (cr) {
  3626. case 0:
  3627. res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3628. break;
  3629. case 2:
  3630. vcpu->arch.cr2 = val;
  3631. break;
  3632. case 3:
  3633. res = kvm_set_cr3(vcpu, val);
  3634. break;
  3635. case 4:
  3636. res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3637. break;
  3638. case 8:
  3639. res = kvm_set_cr8(vcpu, val);
  3640. break;
  3641. default:
  3642. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3643. res = -1;
  3644. }
  3645. return res;
  3646. }
  3647. static int emulator_get_cpl(struct kvm_vcpu *vcpu)
  3648. {
  3649. return kvm_x86_ops->get_cpl(vcpu);
  3650. }
  3651. static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3652. {
  3653. kvm_x86_ops->get_gdt(vcpu, dt);
  3654. }
  3655. static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3656. {
  3657. kvm_x86_ops->get_idt(vcpu, dt);
  3658. }
  3659. static unsigned long emulator_get_cached_segment_base(int seg,
  3660. struct kvm_vcpu *vcpu)
  3661. {
  3662. return get_segment_base(vcpu, seg);
  3663. }
  3664. static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
  3665. struct kvm_vcpu *vcpu)
  3666. {
  3667. struct kvm_segment var;
  3668. kvm_get_segment(vcpu, &var, seg);
  3669. if (var.unusable)
  3670. return false;
  3671. if (var.g)
  3672. var.limit >>= 12;
  3673. set_desc_limit(desc, var.limit);
  3674. set_desc_base(desc, (unsigned long)var.base);
  3675. desc->type = var.type;
  3676. desc->s = var.s;
  3677. desc->dpl = var.dpl;
  3678. desc->p = var.present;
  3679. desc->avl = var.avl;
  3680. desc->l = var.l;
  3681. desc->d = var.db;
  3682. desc->g = var.g;
  3683. return true;
  3684. }
  3685. static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
  3686. struct kvm_vcpu *vcpu)
  3687. {
  3688. struct kvm_segment var;
  3689. /* needed to preserve selector */
  3690. kvm_get_segment(vcpu, &var, seg);
  3691. var.base = get_desc_base(desc);
  3692. var.limit = get_desc_limit(desc);
  3693. if (desc->g)
  3694. var.limit = (var.limit << 12) | 0xfff;
  3695. var.type = desc->type;
  3696. var.present = desc->p;
  3697. var.dpl = desc->dpl;
  3698. var.db = desc->d;
  3699. var.s = desc->s;
  3700. var.l = desc->l;
  3701. var.g = desc->g;
  3702. var.avl = desc->avl;
  3703. var.present = desc->p;
  3704. var.unusable = !var.present;
  3705. var.padding = 0;
  3706. kvm_set_segment(vcpu, &var, seg);
  3707. return;
  3708. }
  3709. static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
  3710. {
  3711. struct kvm_segment kvm_seg;
  3712. kvm_get_segment(vcpu, &kvm_seg, seg);
  3713. return kvm_seg.selector;
  3714. }
  3715. static void emulator_set_segment_selector(u16 sel, int seg,
  3716. struct kvm_vcpu *vcpu)
  3717. {
  3718. struct kvm_segment kvm_seg;
  3719. kvm_get_segment(vcpu, &kvm_seg, seg);
  3720. kvm_seg.selector = sel;
  3721. kvm_set_segment(vcpu, &kvm_seg, seg);
  3722. }
  3723. static struct x86_emulate_ops emulate_ops = {
  3724. .read_std = kvm_read_guest_virt_system,
  3725. .write_std = kvm_write_guest_virt_system,
  3726. .fetch = kvm_fetch_guest_virt,
  3727. .read_emulated = emulator_read_emulated,
  3728. .write_emulated = emulator_write_emulated,
  3729. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3730. .pio_in_emulated = emulator_pio_in_emulated,
  3731. .pio_out_emulated = emulator_pio_out_emulated,
  3732. .get_cached_descriptor = emulator_get_cached_descriptor,
  3733. .set_cached_descriptor = emulator_set_cached_descriptor,
  3734. .get_segment_selector = emulator_get_segment_selector,
  3735. .set_segment_selector = emulator_set_segment_selector,
  3736. .get_cached_segment_base = emulator_get_cached_segment_base,
  3737. .get_gdt = emulator_get_gdt,
  3738. .get_idt = emulator_get_idt,
  3739. .get_cr = emulator_get_cr,
  3740. .set_cr = emulator_set_cr,
  3741. .cpl = emulator_get_cpl,
  3742. .get_dr = emulator_get_dr,
  3743. .set_dr = emulator_set_dr,
  3744. .set_msr = kvm_set_msr,
  3745. .get_msr = kvm_get_msr,
  3746. };
  3747. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3748. {
  3749. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3750. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3751. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3752. vcpu->arch.regs_dirty = ~0;
  3753. }
  3754. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  3755. {
  3756. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  3757. /*
  3758. * an sti; sti; sequence only disable interrupts for the first
  3759. * instruction. So, if the last instruction, be it emulated or
  3760. * not, left the system with the INT_STI flag enabled, it
  3761. * means that the last instruction is an sti. We should not
  3762. * leave the flag on in this case. The same goes for mov ss
  3763. */
  3764. if (!(int_shadow & mask))
  3765. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  3766. }
  3767. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  3768. {
  3769. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3770. if (ctxt->exception.vector == PF_VECTOR)
  3771. kvm_propagate_fault(vcpu, &ctxt->exception);
  3772. else if (ctxt->exception.error_code_valid)
  3773. kvm_queue_exception_e(vcpu, ctxt->exception.vector,
  3774. ctxt->exception.error_code);
  3775. else
  3776. kvm_queue_exception(vcpu, ctxt->exception.vector);
  3777. }
  3778. static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
  3779. {
  3780. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3781. int cs_db, cs_l;
  3782. cache_all_regs(vcpu);
  3783. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3784. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3785. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  3786. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  3787. vcpu->arch.emulate_ctxt.mode =
  3788. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3789. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3790. ? X86EMUL_MODE_VM86 : cs_l
  3791. ? X86EMUL_MODE_PROT64 : cs_db
  3792. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3793. memset(c, 0, sizeof(struct decode_cache));
  3794. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3795. }
  3796. int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
  3797. {
  3798. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3799. int ret;
  3800. init_emulate_ctxt(vcpu);
  3801. vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
  3802. vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
  3803. vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
  3804. ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
  3805. if (ret != X86EMUL_CONTINUE)
  3806. return EMULATE_FAIL;
  3807. vcpu->arch.emulate_ctxt.eip = c->eip;
  3808. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3809. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3810. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3811. if (irq == NMI_VECTOR)
  3812. vcpu->arch.nmi_pending = false;
  3813. else
  3814. vcpu->arch.interrupt.pending = false;
  3815. return EMULATE_DONE;
  3816. }
  3817. EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
  3818. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  3819. {
  3820. int r = EMULATE_DONE;
  3821. ++vcpu->stat.insn_emulation_fail;
  3822. trace_kvm_emulate_insn_failed(vcpu);
  3823. if (!is_guest_mode(vcpu)) {
  3824. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3825. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3826. vcpu->run->internal.ndata = 0;
  3827. r = EMULATE_FAIL;
  3828. }
  3829. kvm_queue_exception(vcpu, UD_VECTOR);
  3830. return r;
  3831. }
  3832. static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
  3833. {
  3834. gpa_t gpa;
  3835. if (tdp_enabled)
  3836. return false;
  3837. /*
  3838. * if emulation was due to access to shadowed page table
  3839. * and it failed try to unshadow page and re-entetr the
  3840. * guest to let CPU execute the instruction.
  3841. */
  3842. if (kvm_mmu_unprotect_page_virt(vcpu, gva))
  3843. return true;
  3844. gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
  3845. if (gpa == UNMAPPED_GVA)
  3846. return true; /* let cpu generate fault */
  3847. if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
  3848. return true;
  3849. return false;
  3850. }
  3851. int x86_emulate_instruction(struct kvm_vcpu *vcpu,
  3852. unsigned long cr2,
  3853. int emulation_type,
  3854. void *insn,
  3855. int insn_len)
  3856. {
  3857. int r;
  3858. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3859. kvm_clear_exception_queue(vcpu);
  3860. vcpu->arch.mmio_fault_cr2 = cr2;
  3861. /*
  3862. * TODO: fix emulate.c to use guest_read/write_register
  3863. * instead of direct ->regs accesses, can save hundred cycles
  3864. * on Intel for instructions that don't read/change RSP, for
  3865. * for example.
  3866. */
  3867. cache_all_regs(vcpu);
  3868. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3869. init_emulate_ctxt(vcpu);
  3870. vcpu->arch.emulate_ctxt.interruptibility = 0;
  3871. vcpu->arch.emulate_ctxt.have_exception = false;
  3872. vcpu->arch.emulate_ctxt.perm_ok = false;
  3873. vcpu->arch.emulate_ctxt.only_vendor_specific_insn
  3874. = emulation_type & EMULTYPE_TRAP_UD;
  3875. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, insn, insn_len);
  3876. trace_kvm_emulate_insn_start(vcpu);
  3877. ++vcpu->stat.insn_emulation;
  3878. if (r) {
  3879. if (emulation_type & EMULTYPE_TRAP_UD)
  3880. return EMULATE_FAIL;
  3881. if (reexecute_instruction(vcpu, cr2))
  3882. return EMULATE_DONE;
  3883. if (emulation_type & EMULTYPE_SKIP)
  3884. return EMULATE_FAIL;
  3885. return handle_emulation_failure(vcpu);
  3886. }
  3887. }
  3888. if (emulation_type & EMULTYPE_SKIP) {
  3889. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3890. return EMULATE_DONE;
  3891. }
  3892. /* this is needed for vmware backdor interface to work since it
  3893. changes registers values during IO operation */
  3894. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3895. restart:
  3896. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
  3897. if (r == EMULATION_FAILED) {
  3898. if (reexecute_instruction(vcpu, cr2))
  3899. return EMULATE_DONE;
  3900. return handle_emulation_failure(vcpu);
  3901. }
  3902. if (vcpu->arch.emulate_ctxt.have_exception) {
  3903. inject_emulated_exception(vcpu);
  3904. r = EMULATE_DONE;
  3905. } else if (vcpu->arch.pio.count) {
  3906. if (!vcpu->arch.pio.in)
  3907. vcpu->arch.pio.count = 0;
  3908. r = EMULATE_DO_MMIO;
  3909. } else if (vcpu->mmio_needed) {
  3910. if (vcpu->mmio_is_write)
  3911. vcpu->mmio_needed = 0;
  3912. r = EMULATE_DO_MMIO;
  3913. } else if (r == EMULATION_RESTART)
  3914. goto restart;
  3915. else
  3916. r = EMULATE_DONE;
  3917. toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
  3918. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3919. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3920. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3921. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3922. return r;
  3923. }
  3924. EXPORT_SYMBOL_GPL(x86_emulate_instruction);
  3925. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  3926. {
  3927. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3928. int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
  3929. /* do not return to emulator after return from userspace */
  3930. vcpu->arch.pio.count = 0;
  3931. return ret;
  3932. }
  3933. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  3934. static void tsc_bad(void *info)
  3935. {
  3936. __this_cpu_write(cpu_tsc_khz, 0);
  3937. }
  3938. static void tsc_khz_changed(void *data)
  3939. {
  3940. struct cpufreq_freqs *freq = data;
  3941. unsigned long khz = 0;
  3942. if (data)
  3943. khz = freq->new;
  3944. else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3945. khz = cpufreq_quick_get(raw_smp_processor_id());
  3946. if (!khz)
  3947. khz = tsc_khz;
  3948. __this_cpu_write(cpu_tsc_khz, khz);
  3949. }
  3950. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3951. void *data)
  3952. {
  3953. struct cpufreq_freqs *freq = data;
  3954. struct kvm *kvm;
  3955. struct kvm_vcpu *vcpu;
  3956. int i, send_ipi = 0;
  3957. /*
  3958. * We allow guests to temporarily run on slowing clocks,
  3959. * provided we notify them after, or to run on accelerating
  3960. * clocks, provided we notify them before. Thus time never
  3961. * goes backwards.
  3962. *
  3963. * However, we have a problem. We can't atomically update
  3964. * the frequency of a given CPU from this function; it is
  3965. * merely a notifier, which can be called from any CPU.
  3966. * Changing the TSC frequency at arbitrary points in time
  3967. * requires a recomputation of local variables related to
  3968. * the TSC for each VCPU. We must flag these local variables
  3969. * to be updated and be sure the update takes place with the
  3970. * new frequency before any guests proceed.
  3971. *
  3972. * Unfortunately, the combination of hotplug CPU and frequency
  3973. * change creates an intractable locking scenario; the order
  3974. * of when these callouts happen is undefined with respect to
  3975. * CPU hotplug, and they can race with each other. As such,
  3976. * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
  3977. * undefined; you can actually have a CPU frequency change take
  3978. * place in between the computation of X and the setting of the
  3979. * variable. To protect against this problem, all updates of
  3980. * the per_cpu tsc_khz variable are done in an interrupt
  3981. * protected IPI, and all callers wishing to update the value
  3982. * must wait for a synchronous IPI to complete (which is trivial
  3983. * if the caller is on the CPU already). This establishes the
  3984. * necessary total order on variable updates.
  3985. *
  3986. * Note that because a guest time update may take place
  3987. * anytime after the setting of the VCPU's request bit, the
  3988. * correct TSC value must be set before the request. However,
  3989. * to ensure the update actually makes it to any guest which
  3990. * starts running in hardware virtualization between the set
  3991. * and the acquisition of the spinlock, we must also ping the
  3992. * CPU after setting the request bit.
  3993. *
  3994. */
  3995. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3996. return 0;
  3997. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3998. return 0;
  3999. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4000. spin_lock(&kvm_lock);
  4001. list_for_each_entry(kvm, &vm_list, vm_list) {
  4002. kvm_for_each_vcpu(i, vcpu, kvm) {
  4003. if (vcpu->cpu != freq->cpu)
  4004. continue;
  4005. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  4006. if (vcpu->cpu != smp_processor_id())
  4007. send_ipi = 1;
  4008. }
  4009. }
  4010. spin_unlock(&kvm_lock);
  4011. if (freq->old < freq->new && send_ipi) {
  4012. /*
  4013. * We upscale the frequency. Must make the guest
  4014. * doesn't see old kvmclock values while running with
  4015. * the new frequency, otherwise we risk the guest sees
  4016. * time go backwards.
  4017. *
  4018. * In case we update the frequency for another cpu
  4019. * (which might be in guest context) send an interrupt
  4020. * to kick the cpu out of guest context. Next time
  4021. * guest context is entered kvmclock will be updated,
  4022. * so the guest will not see stale values.
  4023. */
  4024. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4025. }
  4026. return 0;
  4027. }
  4028. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  4029. .notifier_call = kvmclock_cpufreq_notifier
  4030. };
  4031. static int kvmclock_cpu_notifier(struct notifier_block *nfb,
  4032. unsigned long action, void *hcpu)
  4033. {
  4034. unsigned int cpu = (unsigned long)hcpu;
  4035. switch (action) {
  4036. case CPU_ONLINE:
  4037. case CPU_DOWN_FAILED:
  4038. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4039. break;
  4040. case CPU_DOWN_PREPARE:
  4041. smp_call_function_single(cpu, tsc_bad, NULL, 1);
  4042. break;
  4043. }
  4044. return NOTIFY_OK;
  4045. }
  4046. static struct notifier_block kvmclock_cpu_notifier_block = {
  4047. .notifier_call = kvmclock_cpu_notifier,
  4048. .priority = -INT_MAX
  4049. };
  4050. static void kvm_timer_init(void)
  4051. {
  4052. int cpu;
  4053. max_tsc_khz = tsc_khz;
  4054. register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4055. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4056. #ifdef CONFIG_CPU_FREQ
  4057. struct cpufreq_policy policy;
  4058. memset(&policy, 0, sizeof(policy));
  4059. cpu = get_cpu();
  4060. cpufreq_get_policy(&policy, cpu);
  4061. if (policy.cpuinfo.max_freq)
  4062. max_tsc_khz = policy.cpuinfo.max_freq;
  4063. put_cpu();
  4064. #endif
  4065. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  4066. CPUFREQ_TRANSITION_NOTIFIER);
  4067. }
  4068. pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
  4069. for_each_online_cpu(cpu)
  4070. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4071. }
  4072. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  4073. static int kvm_is_in_guest(void)
  4074. {
  4075. return percpu_read(current_vcpu) != NULL;
  4076. }
  4077. static int kvm_is_user_mode(void)
  4078. {
  4079. int user_mode = 3;
  4080. if (percpu_read(current_vcpu))
  4081. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  4082. return user_mode != 0;
  4083. }
  4084. static unsigned long kvm_get_guest_ip(void)
  4085. {
  4086. unsigned long ip = 0;
  4087. if (percpu_read(current_vcpu))
  4088. ip = kvm_rip_read(percpu_read(current_vcpu));
  4089. return ip;
  4090. }
  4091. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  4092. .is_in_guest = kvm_is_in_guest,
  4093. .is_user_mode = kvm_is_user_mode,
  4094. .get_guest_ip = kvm_get_guest_ip,
  4095. };
  4096. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  4097. {
  4098. percpu_write(current_vcpu, vcpu);
  4099. }
  4100. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  4101. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  4102. {
  4103. percpu_write(current_vcpu, NULL);
  4104. }
  4105. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  4106. int kvm_arch_init(void *opaque)
  4107. {
  4108. int r;
  4109. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  4110. if (kvm_x86_ops) {
  4111. printk(KERN_ERR "kvm: already loaded the other module\n");
  4112. r = -EEXIST;
  4113. goto out;
  4114. }
  4115. if (!ops->cpu_has_kvm_support()) {
  4116. printk(KERN_ERR "kvm: no hardware support\n");
  4117. r = -EOPNOTSUPP;
  4118. goto out;
  4119. }
  4120. if (ops->disabled_by_bios()) {
  4121. printk(KERN_ERR "kvm: disabled by bios\n");
  4122. r = -EOPNOTSUPP;
  4123. goto out;
  4124. }
  4125. r = kvm_mmu_module_init();
  4126. if (r)
  4127. goto out;
  4128. kvm_init_msr_list();
  4129. kvm_x86_ops = ops;
  4130. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  4131. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  4132. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  4133. kvm_timer_init();
  4134. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  4135. if (cpu_has_xsave)
  4136. host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  4137. return 0;
  4138. out:
  4139. return r;
  4140. }
  4141. void kvm_arch_exit(void)
  4142. {
  4143. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  4144. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4145. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  4146. CPUFREQ_TRANSITION_NOTIFIER);
  4147. unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4148. kvm_x86_ops = NULL;
  4149. kvm_mmu_module_exit();
  4150. }
  4151. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  4152. {
  4153. ++vcpu->stat.halt_exits;
  4154. if (irqchip_in_kernel(vcpu->kvm)) {
  4155. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  4156. return 1;
  4157. } else {
  4158. vcpu->run->exit_reason = KVM_EXIT_HLT;
  4159. return 0;
  4160. }
  4161. }
  4162. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  4163. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  4164. unsigned long a1)
  4165. {
  4166. if (is_long_mode(vcpu))
  4167. return a0;
  4168. else
  4169. return a0 | ((gpa_t)a1 << 32);
  4170. }
  4171. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  4172. {
  4173. u64 param, ingpa, outgpa, ret;
  4174. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  4175. bool fast, longmode;
  4176. int cs_db, cs_l;
  4177. /*
  4178. * hypercall generates UD from non zero cpl and real mode
  4179. * per HYPER-V spec
  4180. */
  4181. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  4182. kvm_queue_exception(vcpu, UD_VECTOR);
  4183. return 0;
  4184. }
  4185. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4186. longmode = is_long_mode(vcpu) && cs_l == 1;
  4187. if (!longmode) {
  4188. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  4189. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  4190. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  4191. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  4192. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  4193. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  4194. }
  4195. #ifdef CONFIG_X86_64
  4196. else {
  4197. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4198. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4199. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  4200. }
  4201. #endif
  4202. code = param & 0xffff;
  4203. fast = (param >> 16) & 0x1;
  4204. rep_cnt = (param >> 32) & 0xfff;
  4205. rep_idx = (param >> 48) & 0xfff;
  4206. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  4207. switch (code) {
  4208. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  4209. kvm_vcpu_on_spin(vcpu);
  4210. break;
  4211. default:
  4212. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  4213. break;
  4214. }
  4215. ret = res | (((u64)rep_done & 0xfff) << 32);
  4216. if (longmode) {
  4217. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4218. } else {
  4219. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  4220. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  4221. }
  4222. return 1;
  4223. }
  4224. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  4225. {
  4226. unsigned long nr, a0, a1, a2, a3, ret;
  4227. int r = 1;
  4228. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  4229. return kvm_hv_hypercall(vcpu);
  4230. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4231. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4232. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4233. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4234. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4235. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  4236. if (!is_long_mode(vcpu)) {
  4237. nr &= 0xFFFFFFFF;
  4238. a0 &= 0xFFFFFFFF;
  4239. a1 &= 0xFFFFFFFF;
  4240. a2 &= 0xFFFFFFFF;
  4241. a3 &= 0xFFFFFFFF;
  4242. }
  4243. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  4244. ret = -KVM_EPERM;
  4245. goto out;
  4246. }
  4247. switch (nr) {
  4248. case KVM_HC_VAPIC_POLL_IRQ:
  4249. ret = 0;
  4250. break;
  4251. case KVM_HC_MMU_OP:
  4252. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  4253. break;
  4254. default:
  4255. ret = -KVM_ENOSYS;
  4256. break;
  4257. }
  4258. out:
  4259. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4260. ++vcpu->stat.hypercalls;
  4261. return r;
  4262. }
  4263. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  4264. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  4265. {
  4266. char instruction[3];
  4267. unsigned long rip = kvm_rip_read(vcpu);
  4268. /*
  4269. * Blow out the MMU to ensure that no other VCPU has an active mapping
  4270. * to ensure that the updated hypercall appears atomically across all
  4271. * VCPUs.
  4272. */
  4273. kvm_mmu_zap_all(vcpu->kvm);
  4274. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  4275. return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
  4276. }
  4277. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  4278. {
  4279. struct desc_ptr dt = { limit, base };
  4280. kvm_x86_ops->set_gdt(vcpu, &dt);
  4281. }
  4282. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  4283. {
  4284. struct desc_ptr dt = { limit, base };
  4285. kvm_x86_ops->set_idt(vcpu, &dt);
  4286. }
  4287. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  4288. {
  4289. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  4290. int j, nent = vcpu->arch.cpuid_nent;
  4291. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  4292. /* when no next entry is found, the current entry[i] is reselected */
  4293. for (j = i + 1; ; j = (j + 1) % nent) {
  4294. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  4295. if (ej->function == e->function) {
  4296. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  4297. return j;
  4298. }
  4299. }
  4300. return 0; /* silence gcc, even though control never reaches here */
  4301. }
  4302. /* find an entry with matching function, matching index (if needed), and that
  4303. * should be read next (if it's stateful) */
  4304. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  4305. u32 function, u32 index)
  4306. {
  4307. if (e->function != function)
  4308. return 0;
  4309. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  4310. return 0;
  4311. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  4312. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  4313. return 0;
  4314. return 1;
  4315. }
  4316. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  4317. u32 function, u32 index)
  4318. {
  4319. int i;
  4320. struct kvm_cpuid_entry2 *best = NULL;
  4321. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  4322. struct kvm_cpuid_entry2 *e;
  4323. e = &vcpu->arch.cpuid_entries[i];
  4324. if (is_matching_cpuid_entry(e, function, index)) {
  4325. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  4326. move_to_next_stateful_cpuid_entry(vcpu, i);
  4327. best = e;
  4328. break;
  4329. }
  4330. /*
  4331. * Both basic or both extended?
  4332. */
  4333. if (((e->function ^ function) & 0x80000000) == 0)
  4334. if (!best || e->function > best->function)
  4335. best = e;
  4336. }
  4337. return best;
  4338. }
  4339. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  4340. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  4341. {
  4342. struct kvm_cpuid_entry2 *best;
  4343. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  4344. if (!best || best->eax < 0x80000008)
  4345. goto not_found;
  4346. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  4347. if (best)
  4348. return best->eax & 0xff;
  4349. not_found:
  4350. return 36;
  4351. }
  4352. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  4353. {
  4354. u32 function, index;
  4355. struct kvm_cpuid_entry2 *best;
  4356. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4357. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4358. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  4359. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  4360. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  4361. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  4362. best = kvm_find_cpuid_entry(vcpu, function, index);
  4363. if (best) {
  4364. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  4365. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  4366. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  4367. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  4368. }
  4369. kvm_x86_ops->skip_emulated_instruction(vcpu);
  4370. trace_kvm_cpuid(function,
  4371. kvm_register_read(vcpu, VCPU_REGS_RAX),
  4372. kvm_register_read(vcpu, VCPU_REGS_RBX),
  4373. kvm_register_read(vcpu, VCPU_REGS_RCX),
  4374. kvm_register_read(vcpu, VCPU_REGS_RDX));
  4375. }
  4376. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  4377. /*
  4378. * Check if userspace requested an interrupt window, and that the
  4379. * interrupt window is open.
  4380. *
  4381. * No need to exit to userspace if we already have an interrupt queued.
  4382. */
  4383. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  4384. {
  4385. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  4386. vcpu->run->request_interrupt_window &&
  4387. kvm_arch_interrupt_allowed(vcpu));
  4388. }
  4389. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  4390. {
  4391. struct kvm_run *kvm_run = vcpu->run;
  4392. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  4393. kvm_run->cr8 = kvm_get_cr8(vcpu);
  4394. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  4395. if (irqchip_in_kernel(vcpu->kvm))
  4396. kvm_run->ready_for_interrupt_injection = 1;
  4397. else
  4398. kvm_run->ready_for_interrupt_injection =
  4399. kvm_arch_interrupt_allowed(vcpu) &&
  4400. !kvm_cpu_has_interrupt(vcpu) &&
  4401. !kvm_event_needs_reinjection(vcpu);
  4402. }
  4403. static void vapic_enter(struct kvm_vcpu *vcpu)
  4404. {
  4405. struct kvm_lapic *apic = vcpu->arch.apic;
  4406. struct page *page;
  4407. if (!apic || !apic->vapic_addr)
  4408. return;
  4409. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4410. vcpu->arch.apic->vapic_page = page;
  4411. }
  4412. static void vapic_exit(struct kvm_vcpu *vcpu)
  4413. {
  4414. struct kvm_lapic *apic = vcpu->arch.apic;
  4415. int idx;
  4416. if (!apic || !apic->vapic_addr)
  4417. return;
  4418. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4419. kvm_release_page_dirty(apic->vapic_page);
  4420. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4421. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4422. }
  4423. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  4424. {
  4425. int max_irr, tpr;
  4426. if (!kvm_x86_ops->update_cr8_intercept)
  4427. return;
  4428. if (!vcpu->arch.apic)
  4429. return;
  4430. if (!vcpu->arch.apic->vapic_addr)
  4431. max_irr = kvm_lapic_find_highest_irr(vcpu);
  4432. else
  4433. max_irr = -1;
  4434. if (max_irr != -1)
  4435. max_irr >>= 4;
  4436. tpr = kvm_lapic_get_cr8(vcpu);
  4437. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  4438. }
  4439. static void inject_pending_event(struct kvm_vcpu *vcpu)
  4440. {
  4441. /* try to reinject previous events if any */
  4442. if (vcpu->arch.exception.pending) {
  4443. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  4444. vcpu->arch.exception.has_error_code,
  4445. vcpu->arch.exception.error_code);
  4446. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  4447. vcpu->arch.exception.has_error_code,
  4448. vcpu->arch.exception.error_code,
  4449. vcpu->arch.exception.reinject);
  4450. return;
  4451. }
  4452. if (vcpu->arch.nmi_injected) {
  4453. kvm_x86_ops->set_nmi(vcpu);
  4454. return;
  4455. }
  4456. if (vcpu->arch.interrupt.pending) {
  4457. kvm_x86_ops->set_irq(vcpu);
  4458. return;
  4459. }
  4460. /* try to inject new event if pending */
  4461. if (vcpu->arch.nmi_pending) {
  4462. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  4463. vcpu->arch.nmi_pending = false;
  4464. vcpu->arch.nmi_injected = true;
  4465. kvm_x86_ops->set_nmi(vcpu);
  4466. }
  4467. } else if (kvm_cpu_has_interrupt(vcpu)) {
  4468. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  4469. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  4470. false);
  4471. kvm_x86_ops->set_irq(vcpu);
  4472. }
  4473. }
  4474. }
  4475. static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
  4476. {
  4477. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
  4478. !vcpu->guest_xcr0_loaded) {
  4479. /* kvm_set_xcr() also depends on this */
  4480. xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
  4481. vcpu->guest_xcr0_loaded = 1;
  4482. }
  4483. }
  4484. static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
  4485. {
  4486. if (vcpu->guest_xcr0_loaded) {
  4487. if (vcpu->arch.xcr0 != host_xcr0)
  4488. xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
  4489. vcpu->guest_xcr0_loaded = 0;
  4490. }
  4491. }
  4492. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  4493. {
  4494. int r;
  4495. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  4496. vcpu->run->request_interrupt_window;
  4497. if (vcpu->requests) {
  4498. if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
  4499. kvm_mmu_unload(vcpu);
  4500. if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
  4501. __kvm_migrate_timers(vcpu);
  4502. if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
  4503. r = kvm_guest_time_update(vcpu);
  4504. if (unlikely(r))
  4505. goto out;
  4506. }
  4507. if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
  4508. kvm_mmu_sync_roots(vcpu);
  4509. if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  4510. kvm_x86_ops->tlb_flush(vcpu);
  4511. if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
  4512. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  4513. r = 0;
  4514. goto out;
  4515. }
  4516. if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
  4517. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4518. r = 0;
  4519. goto out;
  4520. }
  4521. if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
  4522. vcpu->fpu_active = 0;
  4523. kvm_x86_ops->fpu_deactivate(vcpu);
  4524. }
  4525. if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
  4526. /* Page is swapped out. Do synthetic halt */
  4527. vcpu->arch.apf.halted = true;
  4528. r = 1;
  4529. goto out;
  4530. }
  4531. }
  4532. r = kvm_mmu_reload(vcpu);
  4533. if (unlikely(r))
  4534. goto out;
  4535. if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
  4536. inject_pending_event(vcpu);
  4537. /* enable NMI/IRQ window open exits if needed */
  4538. if (vcpu->arch.nmi_pending)
  4539. kvm_x86_ops->enable_nmi_window(vcpu);
  4540. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  4541. kvm_x86_ops->enable_irq_window(vcpu);
  4542. if (kvm_lapic_enabled(vcpu)) {
  4543. update_cr8_intercept(vcpu);
  4544. kvm_lapic_sync_to_vapic(vcpu);
  4545. }
  4546. }
  4547. preempt_disable();
  4548. kvm_x86_ops->prepare_guest_switch(vcpu);
  4549. if (vcpu->fpu_active)
  4550. kvm_load_guest_fpu(vcpu);
  4551. kvm_load_guest_xcr0(vcpu);
  4552. vcpu->mode = IN_GUEST_MODE;
  4553. /* We should set ->mode before check ->requests,
  4554. * see the comment in make_all_cpus_request.
  4555. */
  4556. smp_mb();
  4557. local_irq_disable();
  4558. if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
  4559. || need_resched() || signal_pending(current)) {
  4560. vcpu->mode = OUTSIDE_GUEST_MODE;
  4561. smp_wmb();
  4562. local_irq_enable();
  4563. preempt_enable();
  4564. kvm_x86_ops->cancel_injection(vcpu);
  4565. r = 1;
  4566. goto out;
  4567. }
  4568. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4569. kvm_guest_enter();
  4570. if (unlikely(vcpu->arch.switch_db_regs)) {
  4571. set_debugreg(0, 7);
  4572. set_debugreg(vcpu->arch.eff_db[0], 0);
  4573. set_debugreg(vcpu->arch.eff_db[1], 1);
  4574. set_debugreg(vcpu->arch.eff_db[2], 2);
  4575. set_debugreg(vcpu->arch.eff_db[3], 3);
  4576. }
  4577. trace_kvm_entry(vcpu->vcpu_id);
  4578. kvm_x86_ops->run(vcpu);
  4579. /*
  4580. * If the guest has used debug registers, at least dr7
  4581. * will be disabled while returning to the host.
  4582. * If we don't have active breakpoints in the host, we don't
  4583. * care about the messed up debug address registers. But if
  4584. * we have some of them active, restore the old state.
  4585. */
  4586. if (hw_breakpoint_active())
  4587. hw_breakpoint_restore();
  4588. kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
  4589. vcpu->mode = OUTSIDE_GUEST_MODE;
  4590. smp_wmb();
  4591. local_irq_enable();
  4592. ++vcpu->stat.exits;
  4593. /*
  4594. * We must have an instruction between local_irq_enable() and
  4595. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  4596. * the interrupt shadow. The stat.exits increment will do nicely.
  4597. * But we need to prevent reordering, hence this barrier():
  4598. */
  4599. barrier();
  4600. kvm_guest_exit();
  4601. preempt_enable();
  4602. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4603. /*
  4604. * Profile KVM exit RIPs:
  4605. */
  4606. if (unlikely(prof_on == KVM_PROFILING)) {
  4607. unsigned long rip = kvm_rip_read(vcpu);
  4608. profile_hit(KVM_PROFILING, (void *)rip);
  4609. }
  4610. kvm_lapic_sync_from_vapic(vcpu);
  4611. r = kvm_x86_ops->handle_exit(vcpu);
  4612. out:
  4613. return r;
  4614. }
  4615. static int __vcpu_run(struct kvm_vcpu *vcpu)
  4616. {
  4617. int r;
  4618. struct kvm *kvm = vcpu->kvm;
  4619. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  4620. pr_debug("vcpu %d received sipi with vector # %x\n",
  4621. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  4622. kvm_lapic_reset(vcpu);
  4623. r = kvm_arch_vcpu_reset(vcpu);
  4624. if (r)
  4625. return r;
  4626. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4627. }
  4628. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4629. vapic_enter(vcpu);
  4630. r = 1;
  4631. while (r > 0) {
  4632. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  4633. !vcpu->arch.apf.halted)
  4634. r = vcpu_enter_guest(vcpu);
  4635. else {
  4636. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4637. kvm_vcpu_block(vcpu);
  4638. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4639. if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
  4640. {
  4641. switch(vcpu->arch.mp_state) {
  4642. case KVM_MP_STATE_HALTED:
  4643. vcpu->arch.mp_state =
  4644. KVM_MP_STATE_RUNNABLE;
  4645. case KVM_MP_STATE_RUNNABLE:
  4646. vcpu->arch.apf.halted = false;
  4647. break;
  4648. case KVM_MP_STATE_SIPI_RECEIVED:
  4649. default:
  4650. r = -EINTR;
  4651. break;
  4652. }
  4653. }
  4654. }
  4655. if (r <= 0)
  4656. break;
  4657. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  4658. if (kvm_cpu_has_pending_timer(vcpu))
  4659. kvm_inject_pending_timer_irqs(vcpu);
  4660. if (dm_request_for_irq_injection(vcpu)) {
  4661. r = -EINTR;
  4662. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4663. ++vcpu->stat.request_irq_exits;
  4664. }
  4665. kvm_check_async_pf_completion(vcpu);
  4666. if (signal_pending(current)) {
  4667. r = -EINTR;
  4668. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4669. ++vcpu->stat.signal_exits;
  4670. }
  4671. if (need_resched()) {
  4672. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4673. kvm_resched(vcpu);
  4674. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4675. }
  4676. }
  4677. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4678. vapic_exit(vcpu);
  4679. return r;
  4680. }
  4681. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  4682. {
  4683. int r;
  4684. sigset_t sigsaved;
  4685. if (!tsk_used_math(current) && init_fpu(current))
  4686. return -ENOMEM;
  4687. if (vcpu->sigset_active)
  4688. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  4689. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  4690. kvm_vcpu_block(vcpu);
  4691. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  4692. r = -EAGAIN;
  4693. goto out;
  4694. }
  4695. /* re-sync apic's tpr */
  4696. if (!irqchip_in_kernel(vcpu->kvm)) {
  4697. if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
  4698. r = -EINVAL;
  4699. goto out;
  4700. }
  4701. }
  4702. if (vcpu->arch.pio.count || vcpu->mmio_needed) {
  4703. if (vcpu->mmio_needed) {
  4704. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  4705. vcpu->mmio_read_completed = 1;
  4706. vcpu->mmio_needed = 0;
  4707. }
  4708. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4709. r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
  4710. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4711. if (r != EMULATE_DONE) {
  4712. r = 0;
  4713. goto out;
  4714. }
  4715. }
  4716. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  4717. kvm_register_write(vcpu, VCPU_REGS_RAX,
  4718. kvm_run->hypercall.ret);
  4719. r = __vcpu_run(vcpu);
  4720. out:
  4721. post_kvm_run_save(vcpu);
  4722. if (vcpu->sigset_active)
  4723. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  4724. return r;
  4725. }
  4726. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4727. {
  4728. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4729. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4730. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4731. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4732. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4733. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4734. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4735. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4736. #ifdef CONFIG_X86_64
  4737. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4738. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4739. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4740. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4741. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4742. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  4743. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4744. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4745. #endif
  4746. regs->rip = kvm_rip_read(vcpu);
  4747. regs->rflags = kvm_get_rflags(vcpu);
  4748. return 0;
  4749. }
  4750. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4751. {
  4752. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4753. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4754. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4755. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4756. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4757. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4758. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4759. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4760. #ifdef CONFIG_X86_64
  4761. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4762. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4763. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4764. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4765. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4766. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4767. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4768. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4769. #endif
  4770. kvm_rip_write(vcpu, regs->rip);
  4771. kvm_set_rflags(vcpu, regs->rflags);
  4772. vcpu->arch.exception.pending = false;
  4773. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4774. return 0;
  4775. }
  4776. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4777. {
  4778. struct kvm_segment cs;
  4779. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4780. *db = cs.db;
  4781. *l = cs.l;
  4782. }
  4783. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4784. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4785. struct kvm_sregs *sregs)
  4786. {
  4787. struct desc_ptr dt;
  4788. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4789. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4790. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4791. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4792. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4793. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4794. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4795. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4796. kvm_x86_ops->get_idt(vcpu, &dt);
  4797. sregs->idt.limit = dt.size;
  4798. sregs->idt.base = dt.address;
  4799. kvm_x86_ops->get_gdt(vcpu, &dt);
  4800. sregs->gdt.limit = dt.size;
  4801. sregs->gdt.base = dt.address;
  4802. sregs->cr0 = kvm_read_cr0(vcpu);
  4803. sregs->cr2 = vcpu->arch.cr2;
  4804. sregs->cr3 = kvm_read_cr3(vcpu);
  4805. sregs->cr4 = kvm_read_cr4(vcpu);
  4806. sregs->cr8 = kvm_get_cr8(vcpu);
  4807. sregs->efer = vcpu->arch.efer;
  4808. sregs->apic_base = kvm_get_apic_base(vcpu);
  4809. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4810. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4811. set_bit(vcpu->arch.interrupt.nr,
  4812. (unsigned long *)sregs->interrupt_bitmap);
  4813. return 0;
  4814. }
  4815. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4816. struct kvm_mp_state *mp_state)
  4817. {
  4818. mp_state->mp_state = vcpu->arch.mp_state;
  4819. return 0;
  4820. }
  4821. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4822. struct kvm_mp_state *mp_state)
  4823. {
  4824. vcpu->arch.mp_state = mp_state->mp_state;
  4825. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4826. return 0;
  4827. }
  4828. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
  4829. bool has_error_code, u32 error_code)
  4830. {
  4831. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  4832. int ret;
  4833. init_emulate_ctxt(vcpu);
  4834. ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
  4835. tss_selector, reason, has_error_code,
  4836. error_code);
  4837. if (ret)
  4838. return EMULATE_FAIL;
  4839. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  4840. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  4841. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  4842. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4843. return EMULATE_DONE;
  4844. }
  4845. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4846. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4847. struct kvm_sregs *sregs)
  4848. {
  4849. int mmu_reset_needed = 0;
  4850. int pending_vec, max_bits, idx;
  4851. struct desc_ptr dt;
  4852. dt.size = sregs->idt.limit;
  4853. dt.address = sregs->idt.base;
  4854. kvm_x86_ops->set_idt(vcpu, &dt);
  4855. dt.size = sregs->gdt.limit;
  4856. dt.address = sregs->gdt.base;
  4857. kvm_x86_ops->set_gdt(vcpu, &dt);
  4858. vcpu->arch.cr2 = sregs->cr2;
  4859. mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
  4860. vcpu->arch.cr3 = sregs->cr3;
  4861. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  4862. kvm_set_cr8(vcpu, sregs->cr8);
  4863. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4864. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4865. kvm_set_apic_base(vcpu, sregs->apic_base);
  4866. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4867. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4868. vcpu->arch.cr0 = sregs->cr0;
  4869. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4870. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4871. if (sregs->cr4 & X86_CR4_OSXSAVE)
  4872. update_cpuid(vcpu);
  4873. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4874. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4875. load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
  4876. mmu_reset_needed = 1;
  4877. }
  4878. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4879. if (mmu_reset_needed)
  4880. kvm_mmu_reset_context(vcpu);
  4881. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4882. pending_vec = find_first_bit(
  4883. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4884. if (pending_vec < max_bits) {
  4885. kvm_queue_interrupt(vcpu, pending_vec, false);
  4886. pr_debug("Set back pending irq %d\n", pending_vec);
  4887. if (irqchip_in_kernel(vcpu->kvm))
  4888. kvm_pic_clear_isr_ack(vcpu->kvm);
  4889. }
  4890. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4891. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4892. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4893. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4894. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4895. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4896. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4897. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4898. update_cr8_intercept(vcpu);
  4899. /* Older userspace won't unhalt the vcpu on reset. */
  4900. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4901. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4902. !is_protmode(vcpu))
  4903. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4904. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4905. return 0;
  4906. }
  4907. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4908. struct kvm_guest_debug *dbg)
  4909. {
  4910. unsigned long rflags;
  4911. int i, r;
  4912. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4913. r = -EBUSY;
  4914. if (vcpu->arch.exception.pending)
  4915. goto out;
  4916. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4917. kvm_queue_exception(vcpu, DB_VECTOR);
  4918. else
  4919. kvm_queue_exception(vcpu, BP_VECTOR);
  4920. }
  4921. /*
  4922. * Read rflags as long as potentially injected trace flags are still
  4923. * filtered out.
  4924. */
  4925. rflags = kvm_get_rflags(vcpu);
  4926. vcpu->guest_debug = dbg->control;
  4927. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4928. vcpu->guest_debug = 0;
  4929. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4930. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4931. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4932. vcpu->arch.switch_db_regs =
  4933. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4934. } else {
  4935. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4936. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4937. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4938. }
  4939. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4940. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  4941. get_segment_base(vcpu, VCPU_SREG_CS);
  4942. /*
  4943. * Trigger an rflags update that will inject or remove the trace
  4944. * flags.
  4945. */
  4946. kvm_set_rflags(vcpu, rflags);
  4947. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4948. r = 0;
  4949. out:
  4950. return r;
  4951. }
  4952. /*
  4953. * Translate a guest virtual address to a guest physical address.
  4954. */
  4955. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4956. struct kvm_translation *tr)
  4957. {
  4958. unsigned long vaddr = tr->linear_address;
  4959. gpa_t gpa;
  4960. int idx;
  4961. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4962. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  4963. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4964. tr->physical_address = gpa;
  4965. tr->valid = gpa != UNMAPPED_GVA;
  4966. tr->writeable = 1;
  4967. tr->usermode = 0;
  4968. return 0;
  4969. }
  4970. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4971. {
  4972. struct i387_fxsave_struct *fxsave =
  4973. &vcpu->arch.guest_fpu.state->fxsave;
  4974. memcpy(fpu->fpr, fxsave->st_space, 128);
  4975. fpu->fcw = fxsave->cwd;
  4976. fpu->fsw = fxsave->swd;
  4977. fpu->ftwx = fxsave->twd;
  4978. fpu->last_opcode = fxsave->fop;
  4979. fpu->last_ip = fxsave->rip;
  4980. fpu->last_dp = fxsave->rdp;
  4981. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4982. return 0;
  4983. }
  4984. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4985. {
  4986. struct i387_fxsave_struct *fxsave =
  4987. &vcpu->arch.guest_fpu.state->fxsave;
  4988. memcpy(fxsave->st_space, fpu->fpr, 128);
  4989. fxsave->cwd = fpu->fcw;
  4990. fxsave->swd = fpu->fsw;
  4991. fxsave->twd = fpu->ftwx;
  4992. fxsave->fop = fpu->last_opcode;
  4993. fxsave->rip = fpu->last_ip;
  4994. fxsave->rdp = fpu->last_dp;
  4995. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4996. return 0;
  4997. }
  4998. int fx_init(struct kvm_vcpu *vcpu)
  4999. {
  5000. int err;
  5001. err = fpu_alloc(&vcpu->arch.guest_fpu);
  5002. if (err)
  5003. return err;
  5004. fpu_finit(&vcpu->arch.guest_fpu);
  5005. /*
  5006. * Ensure guest xcr0 is valid for loading
  5007. */
  5008. vcpu->arch.xcr0 = XSTATE_FP;
  5009. vcpu->arch.cr0 |= X86_CR0_ET;
  5010. return 0;
  5011. }
  5012. EXPORT_SYMBOL_GPL(fx_init);
  5013. static void fx_free(struct kvm_vcpu *vcpu)
  5014. {
  5015. fpu_free(&vcpu->arch.guest_fpu);
  5016. }
  5017. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  5018. {
  5019. if (vcpu->guest_fpu_loaded)
  5020. return;
  5021. /*
  5022. * Restore all possible states in the guest,
  5023. * and assume host would use all available bits.
  5024. * Guest xcr0 would be loaded later.
  5025. */
  5026. kvm_put_guest_xcr0(vcpu);
  5027. vcpu->guest_fpu_loaded = 1;
  5028. unlazy_fpu(current);
  5029. fpu_restore_checking(&vcpu->arch.guest_fpu);
  5030. trace_kvm_fpu(1);
  5031. }
  5032. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  5033. {
  5034. kvm_put_guest_xcr0(vcpu);
  5035. if (!vcpu->guest_fpu_loaded)
  5036. return;
  5037. vcpu->guest_fpu_loaded = 0;
  5038. fpu_save_init(&vcpu->arch.guest_fpu);
  5039. ++vcpu->stat.fpu_reload;
  5040. kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
  5041. trace_kvm_fpu(0);
  5042. }
  5043. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  5044. {
  5045. kvmclock_reset(vcpu);
  5046. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  5047. fx_free(vcpu);
  5048. kvm_x86_ops->vcpu_free(vcpu);
  5049. }
  5050. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  5051. unsigned int id)
  5052. {
  5053. if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
  5054. printk_once(KERN_WARNING
  5055. "kvm: SMP vm created on host with unstable TSC; "
  5056. "guest TSC will not be reliable\n");
  5057. return kvm_x86_ops->vcpu_create(kvm, id);
  5058. }
  5059. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  5060. {
  5061. int r;
  5062. vcpu->arch.mtrr_state.have_fixed = 1;
  5063. vcpu_load(vcpu);
  5064. r = kvm_arch_vcpu_reset(vcpu);
  5065. if (r == 0)
  5066. r = kvm_mmu_setup(vcpu);
  5067. vcpu_put(vcpu);
  5068. if (r < 0)
  5069. goto free_vcpu;
  5070. return 0;
  5071. free_vcpu:
  5072. kvm_x86_ops->vcpu_free(vcpu);
  5073. return r;
  5074. }
  5075. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  5076. {
  5077. vcpu->arch.apf.msr_val = 0;
  5078. vcpu_load(vcpu);
  5079. kvm_mmu_unload(vcpu);
  5080. vcpu_put(vcpu);
  5081. fx_free(vcpu);
  5082. kvm_x86_ops->vcpu_free(vcpu);
  5083. }
  5084. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  5085. {
  5086. vcpu->arch.nmi_pending = false;
  5087. vcpu->arch.nmi_injected = false;
  5088. vcpu->arch.switch_db_regs = 0;
  5089. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  5090. vcpu->arch.dr6 = DR6_FIXED_1;
  5091. vcpu->arch.dr7 = DR7_FIXED_1;
  5092. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5093. vcpu->arch.apf.msr_val = 0;
  5094. kvmclock_reset(vcpu);
  5095. kvm_clear_async_pf_completion_queue(vcpu);
  5096. kvm_async_pf_hash_reset(vcpu);
  5097. vcpu->arch.apf.halted = false;
  5098. return kvm_x86_ops->vcpu_reset(vcpu);
  5099. }
  5100. int kvm_arch_hardware_enable(void *garbage)
  5101. {
  5102. struct kvm *kvm;
  5103. struct kvm_vcpu *vcpu;
  5104. int i;
  5105. kvm_shared_msr_cpu_online();
  5106. list_for_each_entry(kvm, &vm_list, vm_list)
  5107. kvm_for_each_vcpu(i, vcpu, kvm)
  5108. if (vcpu->cpu == smp_processor_id())
  5109. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  5110. return kvm_x86_ops->hardware_enable(garbage);
  5111. }
  5112. void kvm_arch_hardware_disable(void *garbage)
  5113. {
  5114. kvm_x86_ops->hardware_disable(garbage);
  5115. drop_user_return_notifiers(garbage);
  5116. }
  5117. int kvm_arch_hardware_setup(void)
  5118. {
  5119. return kvm_x86_ops->hardware_setup();
  5120. }
  5121. void kvm_arch_hardware_unsetup(void)
  5122. {
  5123. kvm_x86_ops->hardware_unsetup();
  5124. }
  5125. void kvm_arch_check_processor_compat(void *rtn)
  5126. {
  5127. kvm_x86_ops->check_processor_compatibility(rtn);
  5128. }
  5129. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  5130. {
  5131. struct page *page;
  5132. struct kvm *kvm;
  5133. int r;
  5134. BUG_ON(vcpu->kvm == NULL);
  5135. kvm = vcpu->kvm;
  5136. vcpu->arch.emulate_ctxt.ops = &emulate_ops;
  5137. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  5138. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  5139. vcpu->arch.mmu.translate_gpa = translate_gpa;
  5140. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  5141. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  5142. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5143. else
  5144. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  5145. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  5146. if (!page) {
  5147. r = -ENOMEM;
  5148. goto fail;
  5149. }
  5150. vcpu->arch.pio_data = page_address(page);
  5151. if (!kvm->arch.virtual_tsc_khz)
  5152. kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
  5153. r = kvm_mmu_create(vcpu);
  5154. if (r < 0)
  5155. goto fail_free_pio_data;
  5156. if (irqchip_in_kernel(kvm)) {
  5157. r = kvm_create_lapic(vcpu);
  5158. if (r < 0)
  5159. goto fail_mmu_destroy;
  5160. }
  5161. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  5162. GFP_KERNEL);
  5163. if (!vcpu->arch.mce_banks) {
  5164. r = -ENOMEM;
  5165. goto fail_free_lapic;
  5166. }
  5167. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  5168. if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
  5169. goto fail_free_mce_banks;
  5170. kvm_async_pf_hash_reset(vcpu);
  5171. return 0;
  5172. fail_free_mce_banks:
  5173. kfree(vcpu->arch.mce_banks);
  5174. fail_free_lapic:
  5175. kvm_free_lapic(vcpu);
  5176. fail_mmu_destroy:
  5177. kvm_mmu_destroy(vcpu);
  5178. fail_free_pio_data:
  5179. free_page((unsigned long)vcpu->arch.pio_data);
  5180. fail:
  5181. return r;
  5182. }
  5183. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  5184. {
  5185. int idx;
  5186. kfree(vcpu->arch.mce_banks);
  5187. kvm_free_lapic(vcpu);
  5188. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5189. kvm_mmu_destroy(vcpu);
  5190. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5191. free_page((unsigned long)vcpu->arch.pio_data);
  5192. }
  5193. int kvm_arch_init_vm(struct kvm *kvm)
  5194. {
  5195. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  5196. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  5197. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  5198. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  5199. spin_lock_init(&kvm->arch.tsc_write_lock);
  5200. return 0;
  5201. }
  5202. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  5203. {
  5204. vcpu_load(vcpu);
  5205. kvm_mmu_unload(vcpu);
  5206. vcpu_put(vcpu);
  5207. }
  5208. static void kvm_free_vcpus(struct kvm *kvm)
  5209. {
  5210. unsigned int i;
  5211. struct kvm_vcpu *vcpu;
  5212. /*
  5213. * Unpin any mmu pages first.
  5214. */
  5215. kvm_for_each_vcpu(i, vcpu, kvm) {
  5216. kvm_clear_async_pf_completion_queue(vcpu);
  5217. kvm_unload_vcpu_mmu(vcpu);
  5218. }
  5219. kvm_for_each_vcpu(i, vcpu, kvm)
  5220. kvm_arch_vcpu_free(vcpu);
  5221. mutex_lock(&kvm->lock);
  5222. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  5223. kvm->vcpus[i] = NULL;
  5224. atomic_set(&kvm->online_vcpus, 0);
  5225. mutex_unlock(&kvm->lock);
  5226. }
  5227. void kvm_arch_sync_events(struct kvm *kvm)
  5228. {
  5229. kvm_free_all_assigned_devices(kvm);
  5230. kvm_free_pit(kvm);
  5231. }
  5232. void kvm_arch_destroy_vm(struct kvm *kvm)
  5233. {
  5234. kvm_iommu_unmap_guest(kvm);
  5235. kfree(kvm->arch.vpic);
  5236. kfree(kvm->arch.vioapic);
  5237. kvm_free_vcpus(kvm);
  5238. if (kvm->arch.apic_access_page)
  5239. put_page(kvm->arch.apic_access_page);
  5240. if (kvm->arch.ept_identity_pagetable)
  5241. put_page(kvm->arch.ept_identity_pagetable);
  5242. }
  5243. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  5244. struct kvm_memory_slot *memslot,
  5245. struct kvm_memory_slot old,
  5246. struct kvm_userspace_memory_region *mem,
  5247. int user_alloc)
  5248. {
  5249. int npages = memslot->npages;
  5250. int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
  5251. /* Prevent internal slot pages from being moved by fork()/COW. */
  5252. if (memslot->id >= KVM_MEMORY_SLOTS)
  5253. map_flags = MAP_SHARED | MAP_ANONYMOUS;
  5254. /*To keep backward compatibility with older userspace,
  5255. *x86 needs to hanlde !user_alloc case.
  5256. */
  5257. if (!user_alloc) {
  5258. if (npages && !old.rmap) {
  5259. unsigned long userspace_addr;
  5260. down_write(&current->mm->mmap_sem);
  5261. userspace_addr = do_mmap(NULL, 0,
  5262. npages * PAGE_SIZE,
  5263. PROT_READ | PROT_WRITE,
  5264. map_flags,
  5265. 0);
  5266. up_write(&current->mm->mmap_sem);
  5267. if (IS_ERR((void *)userspace_addr))
  5268. return PTR_ERR((void *)userspace_addr);
  5269. memslot->userspace_addr = userspace_addr;
  5270. }
  5271. }
  5272. return 0;
  5273. }
  5274. void kvm_arch_commit_memory_region(struct kvm *kvm,
  5275. struct kvm_userspace_memory_region *mem,
  5276. struct kvm_memory_slot old,
  5277. int user_alloc)
  5278. {
  5279. int npages = mem->memory_size >> PAGE_SHIFT;
  5280. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  5281. int ret;
  5282. down_write(&current->mm->mmap_sem);
  5283. ret = do_munmap(current->mm, old.userspace_addr,
  5284. old.npages * PAGE_SIZE);
  5285. up_write(&current->mm->mmap_sem);
  5286. if (ret < 0)
  5287. printk(KERN_WARNING
  5288. "kvm_vm_ioctl_set_memory_region: "
  5289. "failed to munmap memory\n");
  5290. }
  5291. spin_lock(&kvm->mmu_lock);
  5292. if (!kvm->arch.n_requested_mmu_pages) {
  5293. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  5294. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  5295. }
  5296. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  5297. spin_unlock(&kvm->mmu_lock);
  5298. }
  5299. void kvm_arch_flush_shadow(struct kvm *kvm)
  5300. {
  5301. kvm_mmu_zap_all(kvm);
  5302. kvm_reload_remote_mmus(kvm);
  5303. }
  5304. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  5305. {
  5306. return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  5307. !vcpu->arch.apf.halted)
  5308. || !list_empty_careful(&vcpu->async_pf.done)
  5309. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  5310. || vcpu->arch.nmi_pending ||
  5311. (kvm_arch_interrupt_allowed(vcpu) &&
  5312. kvm_cpu_has_interrupt(vcpu));
  5313. }
  5314. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  5315. {
  5316. int me;
  5317. int cpu = vcpu->cpu;
  5318. if (waitqueue_active(&vcpu->wq)) {
  5319. wake_up_interruptible(&vcpu->wq);
  5320. ++vcpu->stat.halt_wakeup;
  5321. }
  5322. me = get_cpu();
  5323. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  5324. if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
  5325. smp_send_reschedule(cpu);
  5326. put_cpu();
  5327. }
  5328. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  5329. {
  5330. return kvm_x86_ops->interrupt_allowed(vcpu);
  5331. }
  5332. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  5333. {
  5334. unsigned long current_rip = kvm_rip_read(vcpu) +
  5335. get_segment_base(vcpu, VCPU_SREG_CS);
  5336. return current_rip == linear_rip;
  5337. }
  5338. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  5339. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  5340. {
  5341. unsigned long rflags;
  5342. rflags = kvm_x86_ops->get_rflags(vcpu);
  5343. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5344. rflags &= ~X86_EFLAGS_TF;
  5345. return rflags;
  5346. }
  5347. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  5348. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  5349. {
  5350. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  5351. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  5352. rflags |= X86_EFLAGS_TF;
  5353. kvm_x86_ops->set_rflags(vcpu, rflags);
  5354. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5355. }
  5356. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  5357. void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
  5358. {
  5359. int r;
  5360. if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
  5361. is_error_page(work->page))
  5362. return;
  5363. r = kvm_mmu_reload(vcpu);
  5364. if (unlikely(r))
  5365. return;
  5366. if (!vcpu->arch.mmu.direct_map &&
  5367. work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
  5368. return;
  5369. vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
  5370. }
  5371. static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
  5372. {
  5373. return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
  5374. }
  5375. static inline u32 kvm_async_pf_next_probe(u32 key)
  5376. {
  5377. return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
  5378. }
  5379. static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5380. {
  5381. u32 key = kvm_async_pf_hash_fn(gfn);
  5382. while (vcpu->arch.apf.gfns[key] != ~0)
  5383. key = kvm_async_pf_next_probe(key);
  5384. vcpu->arch.apf.gfns[key] = gfn;
  5385. }
  5386. static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
  5387. {
  5388. int i;
  5389. u32 key = kvm_async_pf_hash_fn(gfn);
  5390. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
  5391. (vcpu->arch.apf.gfns[key] != gfn &&
  5392. vcpu->arch.apf.gfns[key] != ~0); i++)
  5393. key = kvm_async_pf_next_probe(key);
  5394. return key;
  5395. }
  5396. bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5397. {
  5398. return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
  5399. }
  5400. static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5401. {
  5402. u32 i, j, k;
  5403. i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
  5404. while (true) {
  5405. vcpu->arch.apf.gfns[i] = ~0;
  5406. do {
  5407. j = kvm_async_pf_next_probe(j);
  5408. if (vcpu->arch.apf.gfns[j] == ~0)
  5409. return;
  5410. k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
  5411. /*
  5412. * k lies cyclically in ]i,j]
  5413. * | i.k.j |
  5414. * |....j i.k.| or |.k..j i...|
  5415. */
  5416. } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
  5417. vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
  5418. i = j;
  5419. }
  5420. }
  5421. static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
  5422. {
  5423. return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
  5424. sizeof(val));
  5425. }
  5426. void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
  5427. struct kvm_async_pf *work)
  5428. {
  5429. struct x86_exception fault;
  5430. trace_kvm_async_pf_not_present(work->arch.token, work->gva);
  5431. kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
  5432. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
  5433. (vcpu->arch.apf.send_user_only &&
  5434. kvm_x86_ops->get_cpl(vcpu) == 0))
  5435. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  5436. else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
  5437. fault.vector = PF_VECTOR;
  5438. fault.error_code_valid = true;
  5439. fault.error_code = 0;
  5440. fault.nested_page_fault = false;
  5441. fault.address = work->arch.token;
  5442. kvm_inject_page_fault(vcpu, &fault);
  5443. }
  5444. }
  5445. void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
  5446. struct kvm_async_pf *work)
  5447. {
  5448. struct x86_exception fault;
  5449. trace_kvm_async_pf_ready(work->arch.token, work->gva);
  5450. if (is_error_page(work->page))
  5451. work->arch.token = ~0; /* broadcast wakeup */
  5452. else
  5453. kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
  5454. if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
  5455. !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
  5456. fault.vector = PF_VECTOR;
  5457. fault.error_code_valid = true;
  5458. fault.error_code = 0;
  5459. fault.nested_page_fault = false;
  5460. fault.address = work->arch.token;
  5461. kvm_inject_page_fault(vcpu, &fault);
  5462. }
  5463. vcpu->arch.apf.halted = false;
  5464. }
  5465. bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
  5466. {
  5467. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
  5468. return true;
  5469. else
  5470. return !kvm_event_needs_reinjection(vcpu) &&
  5471. kvm_x86_ops->interrupt_allowed(vcpu);
  5472. }
  5473. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  5474. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  5475. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  5476. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  5477. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  5478. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  5479. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  5480. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  5481. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  5482. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  5483. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  5484. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);