cciss.c 126 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557
  1. /*
  2. * Disk Array driver for HP Smart Array controllers.
  3. * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; version 2 of the License.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
  17. * 02111-1307, USA.
  18. *
  19. * Questions/Comments/Bugfixes to iss_storagedev@hp.com
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/types.h>
  25. #include <linux/pci.h>
  26. #include <linux/kernel.h>
  27. #include <linux/slab.h>
  28. #include <linux/smp_lock.h>
  29. #include <linux/delay.h>
  30. #include <linux/major.h>
  31. #include <linux/fs.h>
  32. #include <linux/bio.h>
  33. #include <linux/blkpg.h>
  34. #include <linux/timer.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/seq_file.h>
  37. #include <linux/init.h>
  38. #include <linux/jiffies.h>
  39. #include <linux/hdreg.h>
  40. #include <linux/spinlock.h>
  41. #include <linux/compat.h>
  42. #include <linux/mutex.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/io.h>
  45. #include <linux/dma-mapping.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/genhd.h>
  48. #include <linux/completion.h>
  49. #include <scsi/scsi.h>
  50. #include <scsi/sg.h>
  51. #include <scsi/scsi_ioctl.h>
  52. #include <linux/cdrom.h>
  53. #include <linux/scatterlist.h>
  54. #include <linux/kthread.h>
  55. #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
  56. #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
  57. #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
  58. /* Embedded module documentation macros - see modules.h */
  59. MODULE_AUTHOR("Hewlett-Packard Company");
  60. MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
  61. MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
  62. " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
  63. " Smart Array G2 Series SAS/SATA Controllers");
  64. MODULE_VERSION("3.6.20");
  65. MODULE_LICENSE("GPL");
  66. #include "cciss_cmd.h"
  67. #include "cciss.h"
  68. #include <linux/cciss_ioctl.h>
  69. /* define the PCI info for the cards we can control */
  70. static const struct pci_device_id cciss_pci_device_id[] = {
  71. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
  72. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
  73. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
  74. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
  75. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
  76. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
  77. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
  78. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
  79. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
  80. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
  81. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
  82. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
  83. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
  84. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
  85. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
  86. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
  87. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
  88. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
  89. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
  90. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
  91. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
  92. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
  93. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
  94. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
  95. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
  96. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
  97. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
  98. {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
  99. PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
  100. {0,}
  101. };
  102. MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
  103. /* board_id = Subsystem Device ID & Vendor ID
  104. * product = Marketing Name for the board
  105. * access = Address of the struct of function pointers
  106. */
  107. static struct board_type products[] = {
  108. {0x40700E11, "Smart Array 5300", &SA5_access},
  109. {0x40800E11, "Smart Array 5i", &SA5B_access},
  110. {0x40820E11, "Smart Array 532", &SA5B_access},
  111. {0x40830E11, "Smart Array 5312", &SA5B_access},
  112. {0x409A0E11, "Smart Array 641", &SA5_access},
  113. {0x409B0E11, "Smart Array 642", &SA5_access},
  114. {0x409C0E11, "Smart Array 6400", &SA5_access},
  115. {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
  116. {0x40910E11, "Smart Array 6i", &SA5_access},
  117. {0x3225103C, "Smart Array P600", &SA5_access},
  118. {0x3223103C, "Smart Array P800", &SA5_access},
  119. {0x3234103C, "Smart Array P400", &SA5_access},
  120. {0x3235103C, "Smart Array P400i", &SA5_access},
  121. {0x3211103C, "Smart Array E200i", &SA5_access},
  122. {0x3212103C, "Smart Array E200", &SA5_access},
  123. {0x3213103C, "Smart Array E200i", &SA5_access},
  124. {0x3214103C, "Smart Array E200i", &SA5_access},
  125. {0x3215103C, "Smart Array E200i", &SA5_access},
  126. {0x3237103C, "Smart Array E500", &SA5_access},
  127. {0x323D103C, "Smart Array P700m", &SA5_access},
  128. {0x3241103C, "Smart Array P212", &SA5_access},
  129. {0x3243103C, "Smart Array P410", &SA5_access},
  130. {0x3245103C, "Smart Array P410i", &SA5_access},
  131. {0x3247103C, "Smart Array P411", &SA5_access},
  132. {0x3249103C, "Smart Array P812", &SA5_access},
  133. {0x324A103C, "Smart Array P712m", &SA5_access},
  134. {0x324B103C, "Smart Array P711m", &SA5_access},
  135. {0xFFFF103C, "Unknown Smart Array", &SA5_access},
  136. };
  137. /* How long to wait (in milliseconds) for board to go into simple mode */
  138. #define MAX_CONFIG_WAIT 30000
  139. #define MAX_IOCTL_CONFIG_WAIT 1000
  140. /*define how many times we will try a command because of bus resets */
  141. #define MAX_CMD_RETRIES 3
  142. #define MAX_CTLR 32
  143. /* Originally cciss driver only supports 8 major numbers */
  144. #define MAX_CTLR_ORIG 8
  145. static ctlr_info_t *hba[MAX_CTLR];
  146. static struct task_struct *cciss_scan_thread;
  147. static DEFINE_MUTEX(scan_mutex);
  148. static LIST_HEAD(scan_q);
  149. static void do_cciss_request(struct request_queue *q);
  150. static irqreturn_t do_cciss_intr(int irq, void *dev_id);
  151. static int cciss_open(struct block_device *bdev, fmode_t mode);
  152. static int cciss_release(struct gendisk *disk, fmode_t mode);
  153. static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
  154. unsigned int cmd, unsigned long arg);
  155. static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
  156. static int cciss_revalidate(struct gendisk *disk);
  157. static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
  158. static int deregister_disk(ctlr_info_t *h, int drv_index,
  159. int clear_all, int via_ioctl);
  160. static void cciss_read_capacity(int ctlr, int logvol, int withirq,
  161. sector_t *total_size, unsigned int *block_size);
  162. static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
  163. sector_t *total_size, unsigned int *block_size);
  164. static void cciss_geometry_inquiry(int ctlr, int logvol,
  165. int withirq, sector_t total_size,
  166. unsigned int block_size, InquiryData_struct *inq_buff,
  167. drive_info_struct *drv);
  168. static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
  169. __u32);
  170. static void start_io(ctlr_info_t *h);
  171. static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
  172. __u8 page_code, unsigned char *scsi3addr, int cmd_type);
  173. static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
  174. __u8 page_code, unsigned char scsi3addr[],
  175. int cmd_type);
  176. static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
  177. int attempt_retry);
  178. static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
  179. static void fail_all_cmds(unsigned long ctlr);
  180. static int add_to_scan_list(struct ctlr_info *h);
  181. static int scan_thread(void *data);
  182. static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
  183. static void cciss_hba_release(struct device *dev);
  184. static void cciss_device_release(struct device *dev);
  185. static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
  186. #ifdef CONFIG_PROC_FS
  187. static void cciss_procinit(int i);
  188. #else
  189. static void cciss_procinit(int i)
  190. {
  191. }
  192. #endif /* CONFIG_PROC_FS */
  193. #ifdef CONFIG_COMPAT
  194. static int cciss_compat_ioctl(struct block_device *, fmode_t,
  195. unsigned, unsigned long);
  196. #endif
  197. static const struct block_device_operations cciss_fops = {
  198. .owner = THIS_MODULE,
  199. .open = cciss_open,
  200. .release = cciss_release,
  201. .locked_ioctl = cciss_ioctl,
  202. .getgeo = cciss_getgeo,
  203. #ifdef CONFIG_COMPAT
  204. .compat_ioctl = cciss_compat_ioctl,
  205. #endif
  206. .revalidate_disk = cciss_revalidate,
  207. };
  208. /*
  209. * Enqueuing and dequeuing functions for cmdlists.
  210. */
  211. static inline void addQ(struct hlist_head *list, CommandList_struct *c)
  212. {
  213. hlist_add_head(&c->list, list);
  214. }
  215. static inline void removeQ(CommandList_struct *c)
  216. {
  217. /*
  218. * After kexec/dump some commands might still
  219. * be in flight, which the firmware will try
  220. * to complete. Resetting the firmware doesn't work
  221. * with old fw revisions, so we have to mark
  222. * them off as 'stale' to prevent the driver from
  223. * falling over.
  224. */
  225. if (WARN_ON(hlist_unhashed(&c->list))) {
  226. c->cmd_type = CMD_MSG_STALE;
  227. return;
  228. }
  229. hlist_del_init(&c->list);
  230. }
  231. #include "cciss_scsi.c" /* For SCSI tape support */
  232. #ifdef CONFIG_PROC_FS
  233. /*
  234. * Report information about this controller.
  235. */
  236. #define ENG_GIG 1000000000
  237. #define ENG_GIG_FACTOR (ENG_GIG/512)
  238. #define ENGAGE_SCSI "engage scsi"
  239. static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
  240. "UNKNOWN"
  241. };
  242. #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
  243. static struct proc_dir_entry *proc_cciss;
  244. static void cciss_seq_show_header(struct seq_file *seq)
  245. {
  246. ctlr_info_t *h = seq->private;
  247. seq_printf(seq, "%s: HP %s Controller\n"
  248. "Board ID: 0x%08lx\n"
  249. "Firmware Version: %c%c%c%c\n"
  250. "IRQ: %d\n"
  251. "Logical drives: %d\n"
  252. "Current Q depth: %d\n"
  253. "Current # commands on controller: %d\n"
  254. "Max Q depth since init: %d\n"
  255. "Max # commands on controller since init: %d\n"
  256. "Max SG entries since init: %d\n",
  257. h->devname,
  258. h->product_name,
  259. (unsigned long)h->board_id,
  260. h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
  261. h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
  262. h->num_luns,
  263. h->Qdepth, h->commands_outstanding,
  264. h->maxQsinceinit, h->max_outstanding, h->maxSG);
  265. #ifdef CONFIG_CISS_SCSI_TAPE
  266. cciss_seq_tape_report(seq, h->ctlr);
  267. #endif /* CONFIG_CISS_SCSI_TAPE */
  268. }
  269. static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
  270. {
  271. ctlr_info_t *h = seq->private;
  272. unsigned ctlr = h->ctlr;
  273. unsigned long flags;
  274. /* prevent displaying bogus info during configuration
  275. * or deconfiguration of a logical volume
  276. */
  277. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  278. if (h->busy_configuring) {
  279. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  280. return ERR_PTR(-EBUSY);
  281. }
  282. h->busy_configuring = 1;
  283. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  284. if (*pos == 0)
  285. cciss_seq_show_header(seq);
  286. return pos;
  287. }
  288. static int cciss_seq_show(struct seq_file *seq, void *v)
  289. {
  290. sector_t vol_sz, vol_sz_frac;
  291. ctlr_info_t *h = seq->private;
  292. unsigned ctlr = h->ctlr;
  293. loff_t *pos = v;
  294. drive_info_struct *drv = &h->drv[*pos];
  295. if (*pos > h->highest_lun)
  296. return 0;
  297. if (drv->heads == 0)
  298. return 0;
  299. vol_sz = drv->nr_blocks;
  300. vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
  301. vol_sz_frac *= 100;
  302. sector_div(vol_sz_frac, ENG_GIG_FACTOR);
  303. if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
  304. drv->raid_level = RAID_UNKNOWN;
  305. seq_printf(seq, "cciss/c%dd%d:"
  306. "\t%4u.%02uGB\tRAID %s\n",
  307. ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
  308. raid_label[drv->raid_level]);
  309. return 0;
  310. }
  311. static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  312. {
  313. ctlr_info_t *h = seq->private;
  314. if (*pos > h->highest_lun)
  315. return NULL;
  316. *pos += 1;
  317. return pos;
  318. }
  319. static void cciss_seq_stop(struct seq_file *seq, void *v)
  320. {
  321. ctlr_info_t *h = seq->private;
  322. /* Only reset h->busy_configuring if we succeeded in setting
  323. * it during cciss_seq_start. */
  324. if (v == ERR_PTR(-EBUSY))
  325. return;
  326. h->busy_configuring = 0;
  327. }
  328. static const struct seq_operations cciss_seq_ops = {
  329. .start = cciss_seq_start,
  330. .show = cciss_seq_show,
  331. .next = cciss_seq_next,
  332. .stop = cciss_seq_stop,
  333. };
  334. static int cciss_seq_open(struct inode *inode, struct file *file)
  335. {
  336. int ret = seq_open(file, &cciss_seq_ops);
  337. struct seq_file *seq = file->private_data;
  338. if (!ret)
  339. seq->private = PDE(inode)->data;
  340. return ret;
  341. }
  342. static ssize_t
  343. cciss_proc_write(struct file *file, const char __user *buf,
  344. size_t length, loff_t *ppos)
  345. {
  346. int err;
  347. char *buffer;
  348. #ifndef CONFIG_CISS_SCSI_TAPE
  349. return -EINVAL;
  350. #endif
  351. if (!buf || length > PAGE_SIZE - 1)
  352. return -EINVAL;
  353. buffer = (char *)__get_free_page(GFP_KERNEL);
  354. if (!buffer)
  355. return -ENOMEM;
  356. err = -EFAULT;
  357. if (copy_from_user(buffer, buf, length))
  358. goto out;
  359. buffer[length] = '\0';
  360. #ifdef CONFIG_CISS_SCSI_TAPE
  361. if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
  362. struct seq_file *seq = file->private_data;
  363. ctlr_info_t *h = seq->private;
  364. int rc;
  365. rc = cciss_engage_scsi(h->ctlr);
  366. if (rc != 0)
  367. err = -rc;
  368. else
  369. err = length;
  370. } else
  371. #endif /* CONFIG_CISS_SCSI_TAPE */
  372. err = -EINVAL;
  373. /* might be nice to have "disengage" too, but it's not
  374. safely possible. (only 1 module use count, lock issues.) */
  375. out:
  376. free_page((unsigned long)buffer);
  377. return err;
  378. }
  379. static struct file_operations cciss_proc_fops = {
  380. .owner = THIS_MODULE,
  381. .open = cciss_seq_open,
  382. .read = seq_read,
  383. .llseek = seq_lseek,
  384. .release = seq_release,
  385. .write = cciss_proc_write,
  386. };
  387. static void __devinit cciss_procinit(int i)
  388. {
  389. struct proc_dir_entry *pde;
  390. if (proc_cciss == NULL)
  391. proc_cciss = proc_mkdir("driver/cciss", NULL);
  392. if (!proc_cciss)
  393. return;
  394. pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
  395. S_IROTH, proc_cciss,
  396. &cciss_proc_fops, hba[i]);
  397. }
  398. #endif /* CONFIG_PROC_FS */
  399. #define MAX_PRODUCT_NAME_LEN 19
  400. #define to_hba(n) container_of(n, struct ctlr_info, dev)
  401. static ssize_t host_store_rescan(struct device *dev,
  402. struct device_attribute *attr,
  403. const char *buf, size_t count)
  404. {
  405. struct ctlr_info *h = to_hba(dev);
  406. add_to_scan_list(h);
  407. wake_up_process(cciss_scan_thread);
  408. wait_for_completion_interruptible(&h->scan_wait);
  409. return count;
  410. }
  411. DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
  412. static ssize_t dev_show_unique_id(struct device *dev,
  413. struct device_attribute *attr,
  414. char *buf)
  415. {
  416. drive_info_struct *drv = dev_get_drvdata(dev);
  417. struct ctlr_info *h = to_hba(drv->dev->parent);
  418. __u8 sn[16];
  419. unsigned long flags;
  420. int ret = 0;
  421. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  422. if (h->busy_configuring)
  423. ret = -EBUSY;
  424. else
  425. memcpy(sn, drv->serial_no, sizeof(sn));
  426. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  427. if (ret)
  428. return ret;
  429. else
  430. return snprintf(buf, 16 * 2 + 2,
  431. "%02X%02X%02X%02X%02X%02X%02X%02X"
  432. "%02X%02X%02X%02X%02X%02X%02X%02X\n",
  433. sn[0], sn[1], sn[2], sn[3],
  434. sn[4], sn[5], sn[6], sn[7],
  435. sn[8], sn[9], sn[10], sn[11],
  436. sn[12], sn[13], sn[14], sn[15]);
  437. }
  438. DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
  439. static ssize_t dev_show_vendor(struct device *dev,
  440. struct device_attribute *attr,
  441. char *buf)
  442. {
  443. drive_info_struct *drv = dev_get_drvdata(dev);
  444. struct ctlr_info *h = to_hba(drv->dev->parent);
  445. char vendor[VENDOR_LEN + 1];
  446. unsigned long flags;
  447. int ret = 0;
  448. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  449. if (h->busy_configuring)
  450. ret = -EBUSY;
  451. else
  452. memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
  453. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  454. if (ret)
  455. return ret;
  456. else
  457. return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
  458. }
  459. DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
  460. static ssize_t dev_show_model(struct device *dev,
  461. struct device_attribute *attr,
  462. char *buf)
  463. {
  464. drive_info_struct *drv = dev_get_drvdata(dev);
  465. struct ctlr_info *h = to_hba(drv->dev->parent);
  466. char model[MODEL_LEN + 1];
  467. unsigned long flags;
  468. int ret = 0;
  469. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  470. if (h->busy_configuring)
  471. ret = -EBUSY;
  472. else
  473. memcpy(model, drv->model, MODEL_LEN + 1);
  474. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  475. if (ret)
  476. return ret;
  477. else
  478. return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
  479. }
  480. DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
  481. static ssize_t dev_show_rev(struct device *dev,
  482. struct device_attribute *attr,
  483. char *buf)
  484. {
  485. drive_info_struct *drv = dev_get_drvdata(dev);
  486. struct ctlr_info *h = to_hba(drv->dev->parent);
  487. char rev[REV_LEN + 1];
  488. unsigned long flags;
  489. int ret = 0;
  490. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  491. if (h->busy_configuring)
  492. ret = -EBUSY;
  493. else
  494. memcpy(rev, drv->rev, REV_LEN + 1);
  495. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  496. if (ret)
  497. return ret;
  498. else
  499. return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
  500. }
  501. DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
  502. static ssize_t cciss_show_lunid(struct device *dev,
  503. struct device_attribute *attr, char *buf)
  504. {
  505. drive_info_struct *drv = dev_get_drvdata(dev);
  506. struct ctlr_info *h = to_hba(drv->dev->parent);
  507. unsigned long flags;
  508. unsigned char lunid[8];
  509. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  510. if (h->busy_configuring) {
  511. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  512. return -EBUSY;
  513. }
  514. if (!drv->heads) {
  515. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  516. return -ENOTTY;
  517. }
  518. memcpy(lunid, drv->LunID, sizeof(lunid));
  519. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  520. return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
  521. lunid[0], lunid[1], lunid[2], lunid[3],
  522. lunid[4], lunid[5], lunid[6], lunid[7]);
  523. }
  524. DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
  525. static ssize_t cciss_show_raid_level(struct device *dev,
  526. struct device_attribute *attr, char *buf)
  527. {
  528. drive_info_struct *drv = dev_get_drvdata(dev);
  529. struct ctlr_info *h = to_hba(drv->dev->parent);
  530. int raid;
  531. unsigned long flags;
  532. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  533. if (h->busy_configuring) {
  534. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  535. return -EBUSY;
  536. }
  537. raid = drv->raid_level;
  538. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  539. if (raid < 0 || raid > RAID_UNKNOWN)
  540. raid = RAID_UNKNOWN;
  541. return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
  542. raid_label[raid]);
  543. }
  544. DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
  545. static struct attribute *cciss_host_attrs[] = {
  546. &dev_attr_rescan.attr,
  547. NULL
  548. };
  549. static struct attribute_group cciss_host_attr_group = {
  550. .attrs = cciss_host_attrs,
  551. };
  552. static struct attribute_group *cciss_host_attr_groups[] = {
  553. &cciss_host_attr_group,
  554. NULL
  555. };
  556. static struct device_type cciss_host_type = {
  557. .name = "cciss_host",
  558. .groups = cciss_host_attr_groups,
  559. .release = cciss_hba_release,
  560. };
  561. static struct attribute *cciss_dev_attrs[] = {
  562. &dev_attr_unique_id.attr,
  563. &dev_attr_model.attr,
  564. &dev_attr_vendor.attr,
  565. &dev_attr_rev.attr,
  566. &dev_attr_lunid.attr,
  567. &dev_attr_raid_level.attr,
  568. NULL
  569. };
  570. static struct attribute_group cciss_dev_attr_group = {
  571. .attrs = cciss_dev_attrs,
  572. };
  573. static const struct attribute_group *cciss_dev_attr_groups[] = {
  574. &cciss_dev_attr_group,
  575. NULL
  576. };
  577. static struct device_type cciss_dev_type = {
  578. .name = "cciss_device",
  579. .groups = cciss_dev_attr_groups,
  580. .release = cciss_device_release,
  581. };
  582. static struct bus_type cciss_bus_type = {
  583. .name = "cciss",
  584. };
  585. /*
  586. * cciss_hba_release is called when the reference count
  587. * of h->dev goes to zero.
  588. */
  589. static void cciss_hba_release(struct device *dev)
  590. {
  591. /*
  592. * nothing to do, but need this to avoid a warning
  593. * about not having a release handler from lib/kref.c.
  594. */
  595. }
  596. /*
  597. * Initialize sysfs entry for each controller. This sets up and registers
  598. * the 'cciss#' directory for each individual controller under
  599. * /sys/bus/pci/devices/<dev>/.
  600. */
  601. static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
  602. {
  603. device_initialize(&h->dev);
  604. h->dev.type = &cciss_host_type;
  605. h->dev.bus = &cciss_bus_type;
  606. dev_set_name(&h->dev, "%s", h->devname);
  607. h->dev.parent = &h->pdev->dev;
  608. return device_add(&h->dev);
  609. }
  610. /*
  611. * Remove sysfs entries for an hba.
  612. */
  613. static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
  614. {
  615. device_del(&h->dev);
  616. put_device(&h->dev); /* final put. */
  617. }
  618. /* cciss_device_release is called when the reference count
  619. * of h->drv[x].dev goes to zero.
  620. */
  621. static void cciss_device_release(struct device *dev)
  622. {
  623. kfree(dev);
  624. }
  625. /*
  626. * Initialize sysfs for each logical drive. This sets up and registers
  627. * the 'c#d#' directory for each individual logical drive under
  628. * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
  629. * /sys/block/cciss!c#d# to this entry.
  630. */
  631. static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
  632. int drv_index)
  633. {
  634. struct device *dev;
  635. /* Special case for c*d0, we only create it once. */
  636. if (drv_index == 0 && h->drv[drv_index].dev != NULL)
  637. return 0;
  638. dev = kzalloc(sizeof(*dev), GFP_KERNEL);
  639. if (!dev)
  640. return -ENOMEM;
  641. device_initialize(dev);
  642. dev->type = &cciss_dev_type;
  643. dev->bus = &cciss_bus_type;
  644. dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
  645. dev->parent = &h->dev;
  646. h->drv[drv_index].dev = dev;
  647. dev_set_drvdata(dev, &h->drv[drv_index]);
  648. return device_add(dev);
  649. }
  650. /*
  651. * Remove sysfs entries for a logical drive.
  652. */
  653. static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
  654. int ctlr_exiting)
  655. {
  656. struct device *dev = h->drv[drv_index].dev;
  657. /* special case for c*d0, we only destroy it on controller exit */
  658. if (drv_index == 0 && !ctlr_exiting)
  659. return;
  660. device_del(dev);
  661. put_device(dev); /* the "final" put. */
  662. h->drv[drv_index].dev = NULL;
  663. }
  664. /*
  665. * For operations that cannot sleep, a command block is allocated at init,
  666. * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
  667. * which ones are free or in use. For operations that can wait for kmalloc
  668. * to possible sleep, this routine can be called with get_from_pool set to 0.
  669. * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
  670. */
  671. static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
  672. {
  673. CommandList_struct *c;
  674. int i;
  675. u64bit temp64;
  676. dma_addr_t cmd_dma_handle, err_dma_handle;
  677. if (!get_from_pool) {
  678. c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
  679. sizeof(CommandList_struct), &cmd_dma_handle);
  680. if (c == NULL)
  681. return NULL;
  682. memset(c, 0, sizeof(CommandList_struct));
  683. c->cmdindex = -1;
  684. c->err_info = (ErrorInfo_struct *)
  685. pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
  686. &err_dma_handle);
  687. if (c->err_info == NULL) {
  688. pci_free_consistent(h->pdev,
  689. sizeof(CommandList_struct), c, cmd_dma_handle);
  690. return NULL;
  691. }
  692. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  693. } else { /* get it out of the controllers pool */
  694. do {
  695. i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
  696. if (i == h->nr_cmds)
  697. return NULL;
  698. } while (test_and_set_bit
  699. (i & (BITS_PER_LONG - 1),
  700. h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
  701. #ifdef CCISS_DEBUG
  702. printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
  703. #endif
  704. c = h->cmd_pool + i;
  705. memset(c, 0, sizeof(CommandList_struct));
  706. cmd_dma_handle = h->cmd_pool_dhandle
  707. + i * sizeof(CommandList_struct);
  708. c->err_info = h->errinfo_pool + i;
  709. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  710. err_dma_handle = h->errinfo_pool_dhandle
  711. + i * sizeof(ErrorInfo_struct);
  712. h->nr_allocs++;
  713. c->cmdindex = i;
  714. }
  715. INIT_HLIST_NODE(&c->list);
  716. c->busaddr = (__u32) cmd_dma_handle;
  717. temp64.val = (__u64) err_dma_handle;
  718. c->ErrDesc.Addr.lower = temp64.val32.lower;
  719. c->ErrDesc.Addr.upper = temp64.val32.upper;
  720. c->ErrDesc.Len = sizeof(ErrorInfo_struct);
  721. c->ctlr = h->ctlr;
  722. return c;
  723. }
  724. /*
  725. * Frees a command block that was previously allocated with cmd_alloc().
  726. */
  727. static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
  728. {
  729. int i;
  730. u64bit temp64;
  731. if (!got_from_pool) {
  732. temp64.val32.lower = c->ErrDesc.Addr.lower;
  733. temp64.val32.upper = c->ErrDesc.Addr.upper;
  734. pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
  735. c->err_info, (dma_addr_t) temp64.val);
  736. pci_free_consistent(h->pdev, sizeof(CommandList_struct),
  737. c, (dma_addr_t) c->busaddr);
  738. } else {
  739. i = c - h->cmd_pool;
  740. clear_bit(i & (BITS_PER_LONG - 1),
  741. h->cmd_pool_bits + (i / BITS_PER_LONG));
  742. h->nr_frees++;
  743. }
  744. }
  745. static inline ctlr_info_t *get_host(struct gendisk *disk)
  746. {
  747. return disk->queue->queuedata;
  748. }
  749. static inline drive_info_struct *get_drv(struct gendisk *disk)
  750. {
  751. return disk->private_data;
  752. }
  753. /*
  754. * Open. Make sure the device is really there.
  755. */
  756. static int cciss_open(struct block_device *bdev, fmode_t mode)
  757. {
  758. ctlr_info_t *host = get_host(bdev->bd_disk);
  759. drive_info_struct *drv = get_drv(bdev->bd_disk);
  760. #ifdef CCISS_DEBUG
  761. printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
  762. #endif /* CCISS_DEBUG */
  763. if (drv->busy_configuring)
  764. return -EBUSY;
  765. /*
  766. * Root is allowed to open raw volume zero even if it's not configured
  767. * so array config can still work. Root is also allowed to open any
  768. * volume that has a LUN ID, so it can issue IOCTL to reread the
  769. * disk information. I don't think I really like this
  770. * but I'm already using way to many device nodes to claim another one
  771. * for "raw controller".
  772. */
  773. if (drv->heads == 0) {
  774. if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
  775. /* if not node 0 make sure it is a partition = 0 */
  776. if (MINOR(bdev->bd_dev) & 0x0f) {
  777. return -ENXIO;
  778. /* if it is, make sure we have a LUN ID */
  779. } else if (memcmp(drv->LunID, CTLR_LUNID,
  780. sizeof(drv->LunID))) {
  781. return -ENXIO;
  782. }
  783. }
  784. if (!capable(CAP_SYS_ADMIN))
  785. return -EPERM;
  786. }
  787. drv->usage_count++;
  788. host->usage_count++;
  789. return 0;
  790. }
  791. /*
  792. * Close. Sync first.
  793. */
  794. static int cciss_release(struct gendisk *disk, fmode_t mode)
  795. {
  796. ctlr_info_t *host = get_host(disk);
  797. drive_info_struct *drv = get_drv(disk);
  798. #ifdef CCISS_DEBUG
  799. printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
  800. #endif /* CCISS_DEBUG */
  801. drv->usage_count--;
  802. host->usage_count--;
  803. return 0;
  804. }
  805. #ifdef CONFIG_COMPAT
  806. static int do_ioctl(struct block_device *bdev, fmode_t mode,
  807. unsigned cmd, unsigned long arg)
  808. {
  809. int ret;
  810. lock_kernel();
  811. ret = cciss_ioctl(bdev, mode, cmd, arg);
  812. unlock_kernel();
  813. return ret;
  814. }
  815. static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
  816. unsigned cmd, unsigned long arg);
  817. static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
  818. unsigned cmd, unsigned long arg);
  819. static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
  820. unsigned cmd, unsigned long arg)
  821. {
  822. switch (cmd) {
  823. case CCISS_GETPCIINFO:
  824. case CCISS_GETINTINFO:
  825. case CCISS_SETINTINFO:
  826. case CCISS_GETNODENAME:
  827. case CCISS_SETNODENAME:
  828. case CCISS_GETHEARTBEAT:
  829. case CCISS_GETBUSTYPES:
  830. case CCISS_GETFIRMVER:
  831. case CCISS_GETDRIVVER:
  832. case CCISS_REVALIDVOLS:
  833. case CCISS_DEREGDISK:
  834. case CCISS_REGNEWDISK:
  835. case CCISS_REGNEWD:
  836. case CCISS_RESCANDISK:
  837. case CCISS_GETLUNINFO:
  838. return do_ioctl(bdev, mode, cmd, arg);
  839. case CCISS_PASSTHRU32:
  840. return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
  841. case CCISS_BIG_PASSTHRU32:
  842. return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
  843. default:
  844. return -ENOIOCTLCMD;
  845. }
  846. }
  847. static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
  848. unsigned cmd, unsigned long arg)
  849. {
  850. IOCTL32_Command_struct __user *arg32 =
  851. (IOCTL32_Command_struct __user *) arg;
  852. IOCTL_Command_struct arg64;
  853. IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
  854. int err;
  855. u32 cp;
  856. err = 0;
  857. err |=
  858. copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
  859. sizeof(arg64.LUN_info));
  860. err |=
  861. copy_from_user(&arg64.Request, &arg32->Request,
  862. sizeof(arg64.Request));
  863. err |=
  864. copy_from_user(&arg64.error_info, &arg32->error_info,
  865. sizeof(arg64.error_info));
  866. err |= get_user(arg64.buf_size, &arg32->buf_size);
  867. err |= get_user(cp, &arg32->buf);
  868. arg64.buf = compat_ptr(cp);
  869. err |= copy_to_user(p, &arg64, sizeof(arg64));
  870. if (err)
  871. return -EFAULT;
  872. err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
  873. if (err)
  874. return err;
  875. err |=
  876. copy_in_user(&arg32->error_info, &p->error_info,
  877. sizeof(arg32->error_info));
  878. if (err)
  879. return -EFAULT;
  880. return err;
  881. }
  882. static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
  883. unsigned cmd, unsigned long arg)
  884. {
  885. BIG_IOCTL32_Command_struct __user *arg32 =
  886. (BIG_IOCTL32_Command_struct __user *) arg;
  887. BIG_IOCTL_Command_struct arg64;
  888. BIG_IOCTL_Command_struct __user *p =
  889. compat_alloc_user_space(sizeof(arg64));
  890. int err;
  891. u32 cp;
  892. err = 0;
  893. err |=
  894. copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
  895. sizeof(arg64.LUN_info));
  896. err |=
  897. copy_from_user(&arg64.Request, &arg32->Request,
  898. sizeof(arg64.Request));
  899. err |=
  900. copy_from_user(&arg64.error_info, &arg32->error_info,
  901. sizeof(arg64.error_info));
  902. err |= get_user(arg64.buf_size, &arg32->buf_size);
  903. err |= get_user(arg64.malloc_size, &arg32->malloc_size);
  904. err |= get_user(cp, &arg32->buf);
  905. arg64.buf = compat_ptr(cp);
  906. err |= copy_to_user(p, &arg64, sizeof(arg64));
  907. if (err)
  908. return -EFAULT;
  909. err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
  910. if (err)
  911. return err;
  912. err |=
  913. copy_in_user(&arg32->error_info, &p->error_info,
  914. sizeof(arg32->error_info));
  915. if (err)
  916. return -EFAULT;
  917. return err;
  918. }
  919. #endif
  920. static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  921. {
  922. drive_info_struct *drv = get_drv(bdev->bd_disk);
  923. if (!drv->cylinders)
  924. return -ENXIO;
  925. geo->heads = drv->heads;
  926. geo->sectors = drv->sectors;
  927. geo->cylinders = drv->cylinders;
  928. return 0;
  929. }
  930. static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
  931. {
  932. if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
  933. c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
  934. (void)check_for_unit_attention(host, c);
  935. }
  936. /*
  937. * ioctl
  938. */
  939. static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
  940. unsigned int cmd, unsigned long arg)
  941. {
  942. struct gendisk *disk = bdev->bd_disk;
  943. ctlr_info_t *host = get_host(disk);
  944. drive_info_struct *drv = get_drv(disk);
  945. int ctlr = host->ctlr;
  946. void __user *argp = (void __user *)arg;
  947. #ifdef CCISS_DEBUG
  948. printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
  949. #endif /* CCISS_DEBUG */
  950. switch (cmd) {
  951. case CCISS_GETPCIINFO:
  952. {
  953. cciss_pci_info_struct pciinfo;
  954. if (!arg)
  955. return -EINVAL;
  956. pciinfo.domain = pci_domain_nr(host->pdev->bus);
  957. pciinfo.bus = host->pdev->bus->number;
  958. pciinfo.dev_fn = host->pdev->devfn;
  959. pciinfo.board_id = host->board_id;
  960. if (copy_to_user
  961. (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
  962. return -EFAULT;
  963. return 0;
  964. }
  965. case CCISS_GETINTINFO:
  966. {
  967. cciss_coalint_struct intinfo;
  968. if (!arg)
  969. return -EINVAL;
  970. intinfo.delay =
  971. readl(&host->cfgtable->HostWrite.CoalIntDelay);
  972. intinfo.count =
  973. readl(&host->cfgtable->HostWrite.CoalIntCount);
  974. if (copy_to_user
  975. (argp, &intinfo, sizeof(cciss_coalint_struct)))
  976. return -EFAULT;
  977. return 0;
  978. }
  979. case CCISS_SETINTINFO:
  980. {
  981. cciss_coalint_struct intinfo;
  982. unsigned long flags;
  983. int i;
  984. if (!arg)
  985. return -EINVAL;
  986. if (!capable(CAP_SYS_ADMIN))
  987. return -EPERM;
  988. if (copy_from_user
  989. (&intinfo, argp, sizeof(cciss_coalint_struct)))
  990. return -EFAULT;
  991. if ((intinfo.delay == 0) && (intinfo.count == 0))
  992. {
  993. // printk("cciss_ioctl: delay and count cannot be 0\n");
  994. return -EINVAL;
  995. }
  996. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  997. /* Update the field, and then ring the doorbell */
  998. writel(intinfo.delay,
  999. &(host->cfgtable->HostWrite.CoalIntDelay));
  1000. writel(intinfo.count,
  1001. &(host->cfgtable->HostWrite.CoalIntCount));
  1002. writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
  1003. for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
  1004. if (!(readl(host->vaddr + SA5_DOORBELL)
  1005. & CFGTBL_ChangeReq))
  1006. break;
  1007. /* delay and try again */
  1008. udelay(1000);
  1009. }
  1010. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  1011. if (i >= MAX_IOCTL_CONFIG_WAIT)
  1012. return -EAGAIN;
  1013. return 0;
  1014. }
  1015. case CCISS_GETNODENAME:
  1016. {
  1017. NodeName_type NodeName;
  1018. int i;
  1019. if (!arg)
  1020. return -EINVAL;
  1021. for (i = 0; i < 16; i++)
  1022. NodeName[i] =
  1023. readb(&host->cfgtable->ServerName[i]);
  1024. if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
  1025. return -EFAULT;
  1026. return 0;
  1027. }
  1028. case CCISS_SETNODENAME:
  1029. {
  1030. NodeName_type NodeName;
  1031. unsigned long flags;
  1032. int i;
  1033. if (!arg)
  1034. return -EINVAL;
  1035. if (!capable(CAP_SYS_ADMIN))
  1036. return -EPERM;
  1037. if (copy_from_user
  1038. (NodeName, argp, sizeof(NodeName_type)))
  1039. return -EFAULT;
  1040. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  1041. /* Update the field, and then ring the doorbell */
  1042. for (i = 0; i < 16; i++)
  1043. writeb(NodeName[i],
  1044. &host->cfgtable->ServerName[i]);
  1045. writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
  1046. for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
  1047. if (!(readl(host->vaddr + SA5_DOORBELL)
  1048. & CFGTBL_ChangeReq))
  1049. break;
  1050. /* delay and try again */
  1051. udelay(1000);
  1052. }
  1053. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  1054. if (i >= MAX_IOCTL_CONFIG_WAIT)
  1055. return -EAGAIN;
  1056. return 0;
  1057. }
  1058. case CCISS_GETHEARTBEAT:
  1059. {
  1060. Heartbeat_type heartbeat;
  1061. if (!arg)
  1062. return -EINVAL;
  1063. heartbeat = readl(&host->cfgtable->HeartBeat);
  1064. if (copy_to_user
  1065. (argp, &heartbeat, sizeof(Heartbeat_type)))
  1066. return -EFAULT;
  1067. return 0;
  1068. }
  1069. case CCISS_GETBUSTYPES:
  1070. {
  1071. BusTypes_type BusTypes;
  1072. if (!arg)
  1073. return -EINVAL;
  1074. BusTypes = readl(&host->cfgtable->BusTypes);
  1075. if (copy_to_user
  1076. (argp, &BusTypes, sizeof(BusTypes_type)))
  1077. return -EFAULT;
  1078. return 0;
  1079. }
  1080. case CCISS_GETFIRMVER:
  1081. {
  1082. FirmwareVer_type firmware;
  1083. if (!arg)
  1084. return -EINVAL;
  1085. memcpy(firmware, host->firm_ver, 4);
  1086. if (copy_to_user
  1087. (argp, firmware, sizeof(FirmwareVer_type)))
  1088. return -EFAULT;
  1089. return 0;
  1090. }
  1091. case CCISS_GETDRIVVER:
  1092. {
  1093. DriverVer_type DriverVer = DRIVER_VERSION;
  1094. if (!arg)
  1095. return -EINVAL;
  1096. if (copy_to_user
  1097. (argp, &DriverVer, sizeof(DriverVer_type)))
  1098. return -EFAULT;
  1099. return 0;
  1100. }
  1101. case CCISS_DEREGDISK:
  1102. case CCISS_REGNEWD:
  1103. case CCISS_REVALIDVOLS:
  1104. return rebuild_lun_table(host, 0, 1);
  1105. case CCISS_GETLUNINFO:{
  1106. LogvolInfo_struct luninfo;
  1107. memcpy(&luninfo.LunID, drv->LunID,
  1108. sizeof(luninfo.LunID));
  1109. luninfo.num_opens = drv->usage_count;
  1110. luninfo.num_parts = 0;
  1111. if (copy_to_user(argp, &luninfo,
  1112. sizeof(LogvolInfo_struct)))
  1113. return -EFAULT;
  1114. return 0;
  1115. }
  1116. case CCISS_PASSTHRU:
  1117. {
  1118. IOCTL_Command_struct iocommand;
  1119. CommandList_struct *c;
  1120. char *buff = NULL;
  1121. u64bit temp64;
  1122. unsigned long flags;
  1123. DECLARE_COMPLETION_ONSTACK(wait);
  1124. if (!arg)
  1125. return -EINVAL;
  1126. if (!capable(CAP_SYS_RAWIO))
  1127. return -EPERM;
  1128. if (copy_from_user
  1129. (&iocommand, argp, sizeof(IOCTL_Command_struct)))
  1130. return -EFAULT;
  1131. if ((iocommand.buf_size < 1) &&
  1132. (iocommand.Request.Type.Direction != XFER_NONE)) {
  1133. return -EINVAL;
  1134. }
  1135. #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
  1136. /* Check kmalloc limits */
  1137. if (iocommand.buf_size > 128000)
  1138. return -EINVAL;
  1139. #endif
  1140. if (iocommand.buf_size > 0) {
  1141. buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
  1142. if (buff == NULL)
  1143. return -EFAULT;
  1144. }
  1145. if (iocommand.Request.Type.Direction == XFER_WRITE) {
  1146. /* Copy the data into the buffer we created */
  1147. if (copy_from_user
  1148. (buff, iocommand.buf, iocommand.buf_size)) {
  1149. kfree(buff);
  1150. return -EFAULT;
  1151. }
  1152. } else {
  1153. memset(buff, 0, iocommand.buf_size);
  1154. }
  1155. if ((c = cmd_alloc(host, 0)) == NULL) {
  1156. kfree(buff);
  1157. return -ENOMEM;
  1158. }
  1159. // Fill in the command type
  1160. c->cmd_type = CMD_IOCTL_PEND;
  1161. // Fill in Command Header
  1162. c->Header.ReplyQueue = 0; // unused in simple mode
  1163. if (iocommand.buf_size > 0) // buffer to fill
  1164. {
  1165. c->Header.SGList = 1;
  1166. c->Header.SGTotal = 1;
  1167. } else // no buffers to fill
  1168. {
  1169. c->Header.SGList = 0;
  1170. c->Header.SGTotal = 0;
  1171. }
  1172. c->Header.LUN = iocommand.LUN_info;
  1173. c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
  1174. // Fill in Request block
  1175. c->Request = iocommand.Request;
  1176. // Fill in the scatter gather information
  1177. if (iocommand.buf_size > 0) {
  1178. temp64.val = pci_map_single(host->pdev, buff,
  1179. iocommand.buf_size,
  1180. PCI_DMA_BIDIRECTIONAL);
  1181. c->SG[0].Addr.lower = temp64.val32.lower;
  1182. c->SG[0].Addr.upper = temp64.val32.upper;
  1183. c->SG[0].Len = iocommand.buf_size;
  1184. c->SG[0].Ext = 0; // we are not chaining
  1185. }
  1186. c->waiting = &wait;
  1187. /* Put the request on the tail of the request queue */
  1188. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  1189. addQ(&host->reqQ, c);
  1190. host->Qdepth++;
  1191. start_io(host);
  1192. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  1193. wait_for_completion(&wait);
  1194. /* unlock the buffers from DMA */
  1195. temp64.val32.lower = c->SG[0].Addr.lower;
  1196. temp64.val32.upper = c->SG[0].Addr.upper;
  1197. pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
  1198. iocommand.buf_size,
  1199. PCI_DMA_BIDIRECTIONAL);
  1200. check_ioctl_unit_attention(host, c);
  1201. /* Copy the error information out */
  1202. iocommand.error_info = *(c->err_info);
  1203. if (copy_to_user
  1204. (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
  1205. kfree(buff);
  1206. cmd_free(host, c, 0);
  1207. return -EFAULT;
  1208. }
  1209. if (iocommand.Request.Type.Direction == XFER_READ) {
  1210. /* Copy the data out of the buffer we created */
  1211. if (copy_to_user
  1212. (iocommand.buf, buff, iocommand.buf_size)) {
  1213. kfree(buff);
  1214. cmd_free(host, c, 0);
  1215. return -EFAULT;
  1216. }
  1217. }
  1218. kfree(buff);
  1219. cmd_free(host, c, 0);
  1220. return 0;
  1221. }
  1222. case CCISS_BIG_PASSTHRU:{
  1223. BIG_IOCTL_Command_struct *ioc;
  1224. CommandList_struct *c;
  1225. unsigned char **buff = NULL;
  1226. int *buff_size = NULL;
  1227. u64bit temp64;
  1228. unsigned long flags;
  1229. BYTE sg_used = 0;
  1230. int status = 0;
  1231. int i;
  1232. DECLARE_COMPLETION_ONSTACK(wait);
  1233. __u32 left;
  1234. __u32 sz;
  1235. BYTE __user *data_ptr;
  1236. if (!arg)
  1237. return -EINVAL;
  1238. if (!capable(CAP_SYS_RAWIO))
  1239. return -EPERM;
  1240. ioc = (BIG_IOCTL_Command_struct *)
  1241. kmalloc(sizeof(*ioc), GFP_KERNEL);
  1242. if (!ioc) {
  1243. status = -ENOMEM;
  1244. goto cleanup1;
  1245. }
  1246. if (copy_from_user(ioc, argp, sizeof(*ioc))) {
  1247. status = -EFAULT;
  1248. goto cleanup1;
  1249. }
  1250. if ((ioc->buf_size < 1) &&
  1251. (ioc->Request.Type.Direction != XFER_NONE)) {
  1252. status = -EINVAL;
  1253. goto cleanup1;
  1254. }
  1255. /* Check kmalloc limits using all SGs */
  1256. if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
  1257. status = -EINVAL;
  1258. goto cleanup1;
  1259. }
  1260. if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
  1261. status = -EINVAL;
  1262. goto cleanup1;
  1263. }
  1264. buff =
  1265. kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
  1266. if (!buff) {
  1267. status = -ENOMEM;
  1268. goto cleanup1;
  1269. }
  1270. buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
  1271. GFP_KERNEL);
  1272. if (!buff_size) {
  1273. status = -ENOMEM;
  1274. goto cleanup1;
  1275. }
  1276. left = ioc->buf_size;
  1277. data_ptr = ioc->buf;
  1278. while (left) {
  1279. sz = (left >
  1280. ioc->malloc_size) ? ioc->
  1281. malloc_size : left;
  1282. buff_size[sg_used] = sz;
  1283. buff[sg_used] = kmalloc(sz, GFP_KERNEL);
  1284. if (buff[sg_used] == NULL) {
  1285. status = -ENOMEM;
  1286. goto cleanup1;
  1287. }
  1288. if (ioc->Request.Type.Direction == XFER_WRITE) {
  1289. if (copy_from_user
  1290. (buff[sg_used], data_ptr, sz)) {
  1291. status = -EFAULT;
  1292. goto cleanup1;
  1293. }
  1294. } else {
  1295. memset(buff[sg_used], 0, sz);
  1296. }
  1297. left -= sz;
  1298. data_ptr += sz;
  1299. sg_used++;
  1300. }
  1301. if ((c = cmd_alloc(host, 0)) == NULL) {
  1302. status = -ENOMEM;
  1303. goto cleanup1;
  1304. }
  1305. c->cmd_type = CMD_IOCTL_PEND;
  1306. c->Header.ReplyQueue = 0;
  1307. if (ioc->buf_size > 0) {
  1308. c->Header.SGList = sg_used;
  1309. c->Header.SGTotal = sg_used;
  1310. } else {
  1311. c->Header.SGList = 0;
  1312. c->Header.SGTotal = 0;
  1313. }
  1314. c->Header.LUN = ioc->LUN_info;
  1315. c->Header.Tag.lower = c->busaddr;
  1316. c->Request = ioc->Request;
  1317. if (ioc->buf_size > 0) {
  1318. int i;
  1319. for (i = 0; i < sg_used; i++) {
  1320. temp64.val =
  1321. pci_map_single(host->pdev, buff[i],
  1322. buff_size[i],
  1323. PCI_DMA_BIDIRECTIONAL);
  1324. c->SG[i].Addr.lower =
  1325. temp64.val32.lower;
  1326. c->SG[i].Addr.upper =
  1327. temp64.val32.upper;
  1328. c->SG[i].Len = buff_size[i];
  1329. c->SG[i].Ext = 0; /* we are not chaining */
  1330. }
  1331. }
  1332. c->waiting = &wait;
  1333. /* Put the request on the tail of the request queue */
  1334. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  1335. addQ(&host->reqQ, c);
  1336. host->Qdepth++;
  1337. start_io(host);
  1338. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  1339. wait_for_completion(&wait);
  1340. /* unlock the buffers from DMA */
  1341. for (i = 0; i < sg_used; i++) {
  1342. temp64.val32.lower = c->SG[i].Addr.lower;
  1343. temp64.val32.upper = c->SG[i].Addr.upper;
  1344. pci_unmap_single(host->pdev,
  1345. (dma_addr_t) temp64.val, buff_size[i],
  1346. PCI_DMA_BIDIRECTIONAL);
  1347. }
  1348. check_ioctl_unit_attention(host, c);
  1349. /* Copy the error information out */
  1350. ioc->error_info = *(c->err_info);
  1351. if (copy_to_user(argp, ioc, sizeof(*ioc))) {
  1352. cmd_free(host, c, 0);
  1353. status = -EFAULT;
  1354. goto cleanup1;
  1355. }
  1356. if (ioc->Request.Type.Direction == XFER_READ) {
  1357. /* Copy the data out of the buffer we created */
  1358. BYTE __user *ptr = ioc->buf;
  1359. for (i = 0; i < sg_used; i++) {
  1360. if (copy_to_user
  1361. (ptr, buff[i], buff_size[i])) {
  1362. cmd_free(host, c, 0);
  1363. status = -EFAULT;
  1364. goto cleanup1;
  1365. }
  1366. ptr += buff_size[i];
  1367. }
  1368. }
  1369. cmd_free(host, c, 0);
  1370. status = 0;
  1371. cleanup1:
  1372. if (buff) {
  1373. for (i = 0; i < sg_used; i++)
  1374. kfree(buff[i]);
  1375. kfree(buff);
  1376. }
  1377. kfree(buff_size);
  1378. kfree(ioc);
  1379. return status;
  1380. }
  1381. /* scsi_cmd_ioctl handles these, below, though some are not */
  1382. /* very meaningful for cciss. SG_IO is the main one people want. */
  1383. case SG_GET_VERSION_NUM:
  1384. case SG_SET_TIMEOUT:
  1385. case SG_GET_TIMEOUT:
  1386. case SG_GET_RESERVED_SIZE:
  1387. case SG_SET_RESERVED_SIZE:
  1388. case SG_EMULATED_HOST:
  1389. case SG_IO:
  1390. case SCSI_IOCTL_SEND_COMMAND:
  1391. return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
  1392. /* scsi_cmd_ioctl would normally handle these, below, but */
  1393. /* they aren't a good fit for cciss, as CD-ROMs are */
  1394. /* not supported, and we don't have any bus/target/lun */
  1395. /* which we present to the kernel. */
  1396. case CDROM_SEND_PACKET:
  1397. case CDROMCLOSETRAY:
  1398. case CDROMEJECT:
  1399. case SCSI_IOCTL_GET_IDLUN:
  1400. case SCSI_IOCTL_GET_BUS_NUMBER:
  1401. default:
  1402. return -ENOTTY;
  1403. }
  1404. }
  1405. static void cciss_check_queues(ctlr_info_t *h)
  1406. {
  1407. int start_queue = h->next_to_run;
  1408. int i;
  1409. /* check to see if we have maxed out the number of commands that can
  1410. * be placed on the queue. If so then exit. We do this check here
  1411. * in case the interrupt we serviced was from an ioctl and did not
  1412. * free any new commands.
  1413. */
  1414. if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
  1415. return;
  1416. /* We have room on the queue for more commands. Now we need to queue
  1417. * them up. We will also keep track of the next queue to run so
  1418. * that every queue gets a chance to be started first.
  1419. */
  1420. for (i = 0; i < h->highest_lun + 1; i++) {
  1421. int curr_queue = (start_queue + i) % (h->highest_lun + 1);
  1422. /* make sure the disk has been added and the drive is real
  1423. * because this can be called from the middle of init_one.
  1424. */
  1425. if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
  1426. continue;
  1427. blk_start_queue(h->gendisk[curr_queue]->queue);
  1428. /* check to see if we have maxed out the number of commands
  1429. * that can be placed on the queue.
  1430. */
  1431. if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
  1432. if (curr_queue == start_queue) {
  1433. h->next_to_run =
  1434. (start_queue + 1) % (h->highest_lun + 1);
  1435. break;
  1436. } else {
  1437. h->next_to_run = curr_queue;
  1438. break;
  1439. }
  1440. }
  1441. }
  1442. }
  1443. static void cciss_softirq_done(struct request *rq)
  1444. {
  1445. CommandList_struct *cmd = rq->completion_data;
  1446. ctlr_info_t *h = hba[cmd->ctlr];
  1447. unsigned long flags;
  1448. u64bit temp64;
  1449. int i, ddir;
  1450. if (cmd->Request.Type.Direction == XFER_READ)
  1451. ddir = PCI_DMA_FROMDEVICE;
  1452. else
  1453. ddir = PCI_DMA_TODEVICE;
  1454. /* command did not need to be retried */
  1455. /* unmap the DMA mapping for all the scatter gather elements */
  1456. for (i = 0; i < cmd->Header.SGList; i++) {
  1457. temp64.val32.lower = cmd->SG[i].Addr.lower;
  1458. temp64.val32.upper = cmd->SG[i].Addr.upper;
  1459. pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
  1460. }
  1461. #ifdef CCISS_DEBUG
  1462. printk("Done with %p\n", rq);
  1463. #endif /* CCISS_DEBUG */
  1464. /* set the residual count for pc requests */
  1465. if (blk_pc_request(rq))
  1466. rq->resid_len = cmd->err_info->ResidualCnt;
  1467. blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
  1468. spin_lock_irqsave(&h->lock, flags);
  1469. cmd_free(h, cmd, 1);
  1470. cciss_check_queues(h);
  1471. spin_unlock_irqrestore(&h->lock, flags);
  1472. }
  1473. static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
  1474. unsigned char scsi3addr[], uint32_t log_unit)
  1475. {
  1476. memcpy(scsi3addr, h->drv[log_unit].LunID,
  1477. sizeof(h->drv[log_unit].LunID));
  1478. }
  1479. /* This function gets the SCSI vendor, model, and revision of a logical drive
  1480. * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
  1481. * they cannot be read.
  1482. */
  1483. static void cciss_get_device_descr(int ctlr, int logvol, int withirq,
  1484. char *vendor, char *model, char *rev)
  1485. {
  1486. int rc;
  1487. InquiryData_struct *inq_buf;
  1488. unsigned char scsi3addr[8];
  1489. *vendor = '\0';
  1490. *model = '\0';
  1491. *rev = '\0';
  1492. inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  1493. if (!inq_buf)
  1494. return;
  1495. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  1496. if (withirq)
  1497. rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf,
  1498. sizeof(InquiryData_struct), 0,
  1499. scsi3addr, TYPE_CMD);
  1500. else
  1501. rc = sendcmd(CISS_INQUIRY, ctlr, inq_buf,
  1502. sizeof(InquiryData_struct), 0,
  1503. scsi3addr, TYPE_CMD);
  1504. if (rc == IO_OK) {
  1505. memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
  1506. vendor[VENDOR_LEN] = '\0';
  1507. memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
  1508. model[MODEL_LEN] = '\0';
  1509. memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
  1510. rev[REV_LEN] = '\0';
  1511. }
  1512. kfree(inq_buf);
  1513. return;
  1514. }
  1515. /* This function gets the serial number of a logical drive via
  1516. * inquiry page 0x83. Serial no. is 16 bytes. If the serial
  1517. * number cannot be had, for whatever reason, 16 bytes of 0xff
  1518. * are returned instead.
  1519. */
  1520. static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
  1521. unsigned char *serial_no, int buflen)
  1522. {
  1523. #define PAGE_83_INQ_BYTES 64
  1524. int rc;
  1525. unsigned char *buf;
  1526. unsigned char scsi3addr[8];
  1527. if (buflen > 16)
  1528. buflen = 16;
  1529. memset(serial_no, 0xff, buflen);
  1530. buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
  1531. if (!buf)
  1532. return;
  1533. memset(serial_no, 0, buflen);
  1534. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  1535. if (withirq)
  1536. rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
  1537. PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
  1538. else
  1539. rc = sendcmd(CISS_INQUIRY, ctlr, buf,
  1540. PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
  1541. if (rc == IO_OK)
  1542. memcpy(serial_no, &buf[8], buflen);
  1543. kfree(buf);
  1544. return;
  1545. }
  1546. /*
  1547. * cciss_add_disk sets up the block device queue for a logical drive
  1548. */
  1549. static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
  1550. int drv_index)
  1551. {
  1552. disk->queue = blk_init_queue(do_cciss_request, &h->lock);
  1553. if (!disk->queue)
  1554. goto init_queue_failure;
  1555. sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
  1556. disk->major = h->major;
  1557. disk->first_minor = drv_index << NWD_SHIFT;
  1558. disk->fops = &cciss_fops;
  1559. if (h->drv[drv_index].dev == NULL) {
  1560. if (cciss_create_ld_sysfs_entry(h, drv_index))
  1561. goto cleanup_queue;
  1562. }
  1563. disk->private_data = &h->drv[drv_index];
  1564. disk->driverfs_dev = h->drv[drv_index].dev;
  1565. /* Set up queue information */
  1566. blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
  1567. /* This is a hardware imposed limit. */
  1568. blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
  1569. /* This is a limit in the driver and could be eliminated. */
  1570. blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
  1571. blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
  1572. blk_queue_softirq_done(disk->queue, cciss_softirq_done);
  1573. disk->queue->queuedata = h;
  1574. blk_queue_logical_block_size(disk->queue,
  1575. h->drv[drv_index].block_size);
  1576. /* Make sure all queue data is written out before */
  1577. /* setting h->drv[drv_index].queue, as setting this */
  1578. /* allows the interrupt handler to start the queue */
  1579. wmb();
  1580. h->drv[drv_index].queue = disk->queue;
  1581. add_disk(disk);
  1582. return 0;
  1583. cleanup_queue:
  1584. blk_cleanup_queue(disk->queue);
  1585. disk->queue = NULL;
  1586. init_queue_failure:
  1587. return -1;
  1588. }
  1589. /* This function will check the usage_count of the drive to be updated/added.
  1590. * If the usage_count is zero and it is a heretofore unknown drive, or,
  1591. * the drive's capacity, geometry, or serial number has changed,
  1592. * then the drive information will be updated and the disk will be
  1593. * re-registered with the kernel. If these conditions don't hold,
  1594. * then it will be left alone for the next reboot. The exception to this
  1595. * is disk 0 which will always be left registered with the kernel since it
  1596. * is also the controller node. Any changes to disk 0 will show up on
  1597. * the next reboot.
  1598. */
  1599. static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
  1600. int via_ioctl)
  1601. {
  1602. ctlr_info_t *h = hba[ctlr];
  1603. struct gendisk *disk;
  1604. InquiryData_struct *inq_buff = NULL;
  1605. unsigned int block_size;
  1606. sector_t total_size;
  1607. unsigned long flags = 0;
  1608. int ret = 0;
  1609. drive_info_struct *drvinfo;
  1610. /* Get information about the disk and modify the driver structure */
  1611. inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  1612. drvinfo = kmalloc(sizeof(*drvinfo), GFP_KERNEL);
  1613. if (inq_buff == NULL || drvinfo == NULL)
  1614. goto mem_msg;
  1615. /* testing to see if 16-byte CDBs are already being used */
  1616. if (h->cciss_read == CCISS_READ_16) {
  1617. cciss_read_capacity_16(h->ctlr, drv_index, 1,
  1618. &total_size, &block_size);
  1619. } else {
  1620. cciss_read_capacity(ctlr, drv_index, 1,
  1621. &total_size, &block_size);
  1622. /* if read_capacity returns all F's this volume is >2TB */
  1623. /* in size so we switch to 16-byte CDB's for all */
  1624. /* read/write ops */
  1625. if (total_size == 0xFFFFFFFFULL) {
  1626. cciss_read_capacity_16(ctlr, drv_index, 1,
  1627. &total_size, &block_size);
  1628. h->cciss_read = CCISS_READ_16;
  1629. h->cciss_write = CCISS_WRITE_16;
  1630. } else {
  1631. h->cciss_read = CCISS_READ_10;
  1632. h->cciss_write = CCISS_WRITE_10;
  1633. }
  1634. }
  1635. cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
  1636. inq_buff, drvinfo);
  1637. drvinfo->block_size = block_size;
  1638. drvinfo->nr_blocks = total_size + 1;
  1639. cciss_get_device_descr(ctlr, drv_index, 1, drvinfo->vendor,
  1640. drvinfo->model, drvinfo->rev);
  1641. cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
  1642. sizeof(drvinfo->serial_no));
  1643. /* Is it the same disk we already know, and nothing's changed? */
  1644. if (h->drv[drv_index].raid_level != -1 &&
  1645. ((memcmp(drvinfo->serial_no,
  1646. h->drv[drv_index].serial_no, 16) == 0) &&
  1647. drvinfo->block_size == h->drv[drv_index].block_size &&
  1648. drvinfo->nr_blocks == h->drv[drv_index].nr_blocks &&
  1649. drvinfo->heads == h->drv[drv_index].heads &&
  1650. drvinfo->sectors == h->drv[drv_index].sectors &&
  1651. drvinfo->cylinders == h->drv[drv_index].cylinders))
  1652. /* The disk is unchanged, nothing to update */
  1653. goto freeret;
  1654. /* If we get here it's not the same disk, or something's changed,
  1655. * so we need to * deregister it, and re-register it, if it's not
  1656. * in use.
  1657. * If the disk already exists then deregister it before proceeding
  1658. * (unless it's the first disk (for the controller node).
  1659. */
  1660. if (h->drv[drv_index].raid_level != -1 && drv_index != 0) {
  1661. printk(KERN_WARNING "disk %d has changed.\n", drv_index);
  1662. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  1663. h->drv[drv_index].busy_configuring = 1;
  1664. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  1665. /* deregister_disk sets h->drv[drv_index].queue = NULL
  1666. * which keeps the interrupt handler from starting
  1667. * the queue.
  1668. */
  1669. ret = deregister_disk(h, drv_index, 0, via_ioctl);
  1670. h->drv[drv_index].busy_configuring = 0;
  1671. }
  1672. /* If the disk is in use return */
  1673. if (ret)
  1674. goto freeret;
  1675. /* Save the new information from cciss_geometry_inquiry
  1676. * and serial number inquiry.
  1677. */
  1678. h->drv[drv_index].block_size = drvinfo->block_size;
  1679. h->drv[drv_index].nr_blocks = drvinfo->nr_blocks;
  1680. h->drv[drv_index].heads = drvinfo->heads;
  1681. h->drv[drv_index].sectors = drvinfo->sectors;
  1682. h->drv[drv_index].cylinders = drvinfo->cylinders;
  1683. h->drv[drv_index].raid_level = drvinfo->raid_level;
  1684. memcpy(h->drv[drv_index].serial_no, drvinfo->serial_no, 16);
  1685. memcpy(h->drv[drv_index].vendor, drvinfo->vendor, VENDOR_LEN + 1);
  1686. memcpy(h->drv[drv_index].model, drvinfo->model, MODEL_LEN + 1);
  1687. memcpy(h->drv[drv_index].rev, drvinfo->rev, REV_LEN + 1);
  1688. ++h->num_luns;
  1689. disk = h->gendisk[drv_index];
  1690. set_capacity(disk, h->drv[drv_index].nr_blocks);
  1691. /* If it's not disk 0 (drv_index != 0)
  1692. * or if it was disk 0, but there was previously
  1693. * no actual corresponding configured logical drive
  1694. * (raid_leve == -1) then we want to update the
  1695. * logical drive's information.
  1696. */
  1697. if (drv_index || first_time) {
  1698. if (cciss_add_disk(h, disk, drv_index) != 0) {
  1699. cciss_free_gendisk(h, drv_index);
  1700. printk(KERN_WARNING "cciss:%d could not update "
  1701. "disk %d\n", h->ctlr, drv_index);
  1702. --h->num_luns;
  1703. }
  1704. }
  1705. freeret:
  1706. kfree(inq_buff);
  1707. kfree(drvinfo);
  1708. return;
  1709. mem_msg:
  1710. printk(KERN_ERR "cciss: out of memory\n");
  1711. goto freeret;
  1712. }
  1713. /* This function will find the first index of the controllers drive array
  1714. * that has a -1 for the raid_level and will return that index. This is
  1715. * where new drives will be added. If the index to be returned is greater
  1716. * than the highest_lun index for the controller then highest_lun is set
  1717. * to this new index. If there are no available indexes then -1 is returned.
  1718. * "controller_node" is used to know if this is a real logical drive, or just
  1719. * the controller node, which determines if this counts towards highest_lun.
  1720. */
  1721. static int cciss_find_free_drive_index(int ctlr, int controller_node)
  1722. {
  1723. int i;
  1724. for (i = 0; i < CISS_MAX_LUN; i++) {
  1725. if (hba[ctlr]->drv[i].raid_level == -1) {
  1726. if (i > hba[ctlr]->highest_lun)
  1727. if (!controller_node)
  1728. hba[ctlr]->highest_lun = i;
  1729. return i;
  1730. }
  1731. }
  1732. return -1;
  1733. }
  1734. static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
  1735. {
  1736. put_disk(h->gendisk[drv_index]);
  1737. h->gendisk[drv_index] = NULL;
  1738. }
  1739. /* cciss_add_gendisk finds a free hba[]->drv structure
  1740. * and allocates a gendisk if needed, and sets the lunid
  1741. * in the drvinfo structure. It returns the index into
  1742. * the ->drv[] array, or -1 if none are free.
  1743. * is_controller_node indicates whether highest_lun should
  1744. * count this disk, or if it's only being added to provide
  1745. * a means to talk to the controller in case no logical
  1746. * drives have yet been configured.
  1747. */
  1748. static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
  1749. int controller_node)
  1750. {
  1751. int drv_index;
  1752. drv_index = cciss_find_free_drive_index(h->ctlr, controller_node);
  1753. if (drv_index == -1)
  1754. return -1;
  1755. /*Check if the gendisk needs to be allocated */
  1756. if (!h->gendisk[drv_index]) {
  1757. h->gendisk[drv_index] =
  1758. alloc_disk(1 << NWD_SHIFT);
  1759. if (!h->gendisk[drv_index]) {
  1760. printk(KERN_ERR "cciss%d: could not "
  1761. "allocate a new disk %d\n",
  1762. h->ctlr, drv_index);
  1763. return -1;
  1764. }
  1765. }
  1766. memcpy(h->drv[drv_index].LunID, lunid,
  1767. sizeof(h->drv[drv_index].LunID));
  1768. if (h->drv[drv_index].dev == NULL) {
  1769. if (cciss_create_ld_sysfs_entry(h, drv_index))
  1770. goto err_free_disk;
  1771. }
  1772. /* Don't need to mark this busy because nobody */
  1773. /* else knows about this disk yet to contend */
  1774. /* for access to it. */
  1775. h->drv[drv_index].busy_configuring = 0;
  1776. wmb();
  1777. return drv_index;
  1778. err_free_disk:
  1779. cciss_free_gendisk(h, drv_index);
  1780. return -1;
  1781. }
  1782. /* This is for the special case of a controller which
  1783. * has no logical drives. In this case, we still need
  1784. * to register a disk so the controller can be accessed
  1785. * by the Array Config Utility.
  1786. */
  1787. static void cciss_add_controller_node(ctlr_info_t *h)
  1788. {
  1789. struct gendisk *disk;
  1790. int drv_index;
  1791. if (h->gendisk[0] != NULL) /* already did this? Then bail. */
  1792. return;
  1793. drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
  1794. if (drv_index == -1)
  1795. goto error;
  1796. h->drv[drv_index].block_size = 512;
  1797. h->drv[drv_index].nr_blocks = 0;
  1798. h->drv[drv_index].heads = 0;
  1799. h->drv[drv_index].sectors = 0;
  1800. h->drv[drv_index].cylinders = 0;
  1801. h->drv[drv_index].raid_level = -1;
  1802. memset(h->drv[drv_index].serial_no, 0, 16);
  1803. disk = h->gendisk[drv_index];
  1804. if (cciss_add_disk(h, disk, drv_index) == 0)
  1805. return;
  1806. cciss_free_gendisk(h, drv_index);
  1807. error:
  1808. printk(KERN_WARNING "cciss%d: could not "
  1809. "add disk 0.\n", h->ctlr);
  1810. return;
  1811. }
  1812. /* This function will add and remove logical drives from the Logical
  1813. * drive array of the controller and maintain persistency of ordering
  1814. * so that mount points are preserved until the next reboot. This allows
  1815. * for the removal of logical drives in the middle of the drive array
  1816. * without a re-ordering of those drives.
  1817. * INPUT
  1818. * h = The controller to perform the operations on
  1819. */
  1820. static int rebuild_lun_table(ctlr_info_t *h, int first_time,
  1821. int via_ioctl)
  1822. {
  1823. int ctlr = h->ctlr;
  1824. int num_luns;
  1825. ReportLunData_struct *ld_buff = NULL;
  1826. int return_code;
  1827. int listlength = 0;
  1828. int i;
  1829. int drv_found;
  1830. int drv_index = 0;
  1831. unsigned char lunid[8] = CTLR_LUNID;
  1832. unsigned long flags;
  1833. if (!capable(CAP_SYS_RAWIO))
  1834. return -EPERM;
  1835. /* Set busy_configuring flag for this operation */
  1836. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  1837. if (h->busy_configuring) {
  1838. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  1839. return -EBUSY;
  1840. }
  1841. h->busy_configuring = 1;
  1842. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  1843. ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
  1844. if (ld_buff == NULL)
  1845. goto mem_msg;
  1846. return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
  1847. sizeof(ReportLunData_struct),
  1848. 0, CTLR_LUNID, TYPE_CMD);
  1849. if (return_code == IO_OK)
  1850. listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
  1851. else { /* reading number of logical volumes failed */
  1852. printk(KERN_WARNING "cciss: report logical volume"
  1853. " command failed\n");
  1854. listlength = 0;
  1855. goto freeret;
  1856. }
  1857. num_luns = listlength / 8; /* 8 bytes per entry */
  1858. if (num_luns > CISS_MAX_LUN) {
  1859. num_luns = CISS_MAX_LUN;
  1860. printk(KERN_WARNING "cciss: more luns configured"
  1861. " on controller than can be handled by"
  1862. " this driver.\n");
  1863. }
  1864. if (num_luns == 0)
  1865. cciss_add_controller_node(h);
  1866. /* Compare controller drive array to driver's drive array
  1867. * to see if any drives are missing on the controller due
  1868. * to action of Array Config Utility (user deletes drive)
  1869. * and deregister logical drives which have disappeared.
  1870. */
  1871. for (i = 0; i <= h->highest_lun; i++) {
  1872. int j;
  1873. drv_found = 0;
  1874. /* skip holes in the array from already deleted drives */
  1875. if (h->drv[i].raid_level == -1)
  1876. continue;
  1877. for (j = 0; j < num_luns; j++) {
  1878. memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
  1879. if (memcmp(h->drv[i].LunID, lunid,
  1880. sizeof(lunid)) == 0) {
  1881. drv_found = 1;
  1882. break;
  1883. }
  1884. }
  1885. if (!drv_found) {
  1886. /* Deregister it from the OS, it's gone. */
  1887. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  1888. h->drv[i].busy_configuring = 1;
  1889. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  1890. return_code = deregister_disk(h, i, 1, via_ioctl);
  1891. h->drv[i].busy_configuring = 0;
  1892. }
  1893. }
  1894. /* Compare controller drive array to driver's drive array.
  1895. * Check for updates in the drive information and any new drives
  1896. * on the controller due to ACU adding logical drives, or changing
  1897. * a logical drive's size, etc. Reregister any new/changed drives
  1898. */
  1899. for (i = 0; i < num_luns; i++) {
  1900. int j;
  1901. drv_found = 0;
  1902. memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
  1903. /* Find if the LUN is already in the drive array
  1904. * of the driver. If so then update its info
  1905. * if not in use. If it does not exist then find
  1906. * the first free index and add it.
  1907. */
  1908. for (j = 0; j <= h->highest_lun; j++) {
  1909. if (h->drv[j].raid_level != -1 &&
  1910. memcmp(h->drv[j].LunID, lunid,
  1911. sizeof(h->drv[j].LunID)) == 0) {
  1912. drv_index = j;
  1913. drv_found = 1;
  1914. break;
  1915. }
  1916. }
  1917. /* check if the drive was found already in the array */
  1918. if (!drv_found) {
  1919. drv_index = cciss_add_gendisk(h, lunid, 0);
  1920. if (drv_index == -1)
  1921. goto freeret;
  1922. }
  1923. cciss_update_drive_info(ctlr, drv_index, first_time,
  1924. via_ioctl);
  1925. } /* end for */
  1926. freeret:
  1927. kfree(ld_buff);
  1928. h->busy_configuring = 0;
  1929. /* We return -1 here to tell the ACU that we have registered/updated
  1930. * all of the drives that we can and to keep it from calling us
  1931. * additional times.
  1932. */
  1933. return -1;
  1934. mem_msg:
  1935. printk(KERN_ERR "cciss: out of memory\n");
  1936. h->busy_configuring = 0;
  1937. goto freeret;
  1938. }
  1939. static void cciss_clear_drive_info(drive_info_struct *drive_info)
  1940. {
  1941. /* zero out the disk size info */
  1942. drive_info->nr_blocks = 0;
  1943. drive_info->block_size = 0;
  1944. drive_info->heads = 0;
  1945. drive_info->sectors = 0;
  1946. drive_info->cylinders = 0;
  1947. drive_info->raid_level = -1;
  1948. memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
  1949. memset(drive_info->model, 0, sizeof(drive_info->model));
  1950. memset(drive_info->rev, 0, sizeof(drive_info->rev));
  1951. memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
  1952. /*
  1953. * don't clear the LUNID though, we need to remember which
  1954. * one this one is.
  1955. */
  1956. }
  1957. /* This function will deregister the disk and it's queue from the
  1958. * kernel. It must be called with the controller lock held and the
  1959. * drv structures busy_configuring flag set. It's parameters are:
  1960. *
  1961. * disk = This is the disk to be deregistered
  1962. * drv = This is the drive_info_struct associated with the disk to be
  1963. * deregistered. It contains information about the disk used
  1964. * by the driver.
  1965. * clear_all = This flag determines whether or not the disk information
  1966. * is going to be completely cleared out and the highest_lun
  1967. * reset. Sometimes we want to clear out information about
  1968. * the disk in preparation for re-adding it. In this case
  1969. * the highest_lun should be left unchanged and the LunID
  1970. * should not be cleared.
  1971. * via_ioctl
  1972. * This indicates whether we've reached this path via ioctl.
  1973. * This affects the maximum usage count allowed for c0d0 to be messed with.
  1974. * If this path is reached via ioctl(), then the max_usage_count will
  1975. * be 1, as the process calling ioctl() has got to have the device open.
  1976. * If we get here via sysfs, then the max usage count will be zero.
  1977. */
  1978. static int deregister_disk(ctlr_info_t *h, int drv_index,
  1979. int clear_all, int via_ioctl)
  1980. {
  1981. int i;
  1982. struct gendisk *disk;
  1983. drive_info_struct *drv;
  1984. if (!capable(CAP_SYS_RAWIO))
  1985. return -EPERM;
  1986. drv = &h->drv[drv_index];
  1987. disk = h->gendisk[drv_index];
  1988. /* make sure logical volume is NOT is use */
  1989. if (clear_all || (h->gendisk[0] == disk)) {
  1990. if (drv->usage_count > via_ioctl)
  1991. return -EBUSY;
  1992. } else if (drv->usage_count > 0)
  1993. return -EBUSY;
  1994. /* invalidate the devices and deregister the disk. If it is disk
  1995. * zero do not deregister it but just zero out it's values. This
  1996. * allows us to delete disk zero but keep the controller registered.
  1997. */
  1998. if (h->gendisk[0] != disk) {
  1999. struct request_queue *q = disk->queue;
  2000. if (disk->flags & GENHD_FL_UP) {
  2001. cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
  2002. del_gendisk(disk);
  2003. }
  2004. if (q) {
  2005. blk_cleanup_queue(q);
  2006. /* Set drv->queue to NULL so that we do not try
  2007. * to call blk_start_queue on this queue in the
  2008. * interrupt handler
  2009. */
  2010. drv->queue = NULL;
  2011. }
  2012. /* If clear_all is set then we are deleting the logical
  2013. * drive, not just refreshing its info. For drives
  2014. * other than disk 0 we will call put_disk. We do not
  2015. * do this for disk 0 as we need it to be able to
  2016. * configure the controller.
  2017. */
  2018. if (clear_all){
  2019. /* This isn't pretty, but we need to find the
  2020. * disk in our array and NULL our the pointer.
  2021. * This is so that we will call alloc_disk if
  2022. * this index is used again later.
  2023. */
  2024. for (i=0; i < CISS_MAX_LUN; i++){
  2025. if (h->gendisk[i] == disk) {
  2026. h->gendisk[i] = NULL;
  2027. break;
  2028. }
  2029. }
  2030. put_disk(disk);
  2031. }
  2032. } else {
  2033. set_capacity(disk, 0);
  2034. }
  2035. --h->num_luns;
  2036. cciss_clear_drive_info(drv);
  2037. if (clear_all) {
  2038. /* check to see if it was the last disk */
  2039. if (drv == h->drv + h->highest_lun) {
  2040. /* if so, find the new hightest lun */
  2041. int i, newhighest = -1;
  2042. for (i = 0; i <= h->highest_lun; i++) {
  2043. /* if the disk has size > 0, it is available */
  2044. if (h->drv[i].heads)
  2045. newhighest = i;
  2046. }
  2047. h->highest_lun = newhighest;
  2048. }
  2049. memset(drv->LunID, 0, sizeof(drv->LunID));
  2050. }
  2051. return 0;
  2052. }
  2053. static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
  2054. size_t size, __u8 page_code, unsigned char *scsi3addr,
  2055. int cmd_type)
  2056. {
  2057. ctlr_info_t *h = hba[ctlr];
  2058. u64bit buff_dma_handle;
  2059. int status = IO_OK;
  2060. c->cmd_type = CMD_IOCTL_PEND;
  2061. c->Header.ReplyQueue = 0;
  2062. if (buff != NULL) {
  2063. c->Header.SGList = 1;
  2064. c->Header.SGTotal = 1;
  2065. } else {
  2066. c->Header.SGList = 0;
  2067. c->Header.SGTotal = 0;
  2068. }
  2069. c->Header.Tag.lower = c->busaddr;
  2070. memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
  2071. c->Request.Type.Type = cmd_type;
  2072. if (cmd_type == TYPE_CMD) {
  2073. switch (cmd) {
  2074. case CISS_INQUIRY:
  2075. /* are we trying to read a vital product page */
  2076. if (page_code != 0) {
  2077. c->Request.CDB[1] = 0x01;
  2078. c->Request.CDB[2] = page_code;
  2079. }
  2080. c->Request.CDBLen = 6;
  2081. c->Request.Type.Attribute = ATTR_SIMPLE;
  2082. c->Request.Type.Direction = XFER_READ;
  2083. c->Request.Timeout = 0;
  2084. c->Request.CDB[0] = CISS_INQUIRY;
  2085. c->Request.CDB[4] = size & 0xFF;
  2086. break;
  2087. case CISS_REPORT_LOG:
  2088. case CISS_REPORT_PHYS:
  2089. /* Talking to controller so It's a physical command
  2090. mode = 00 target = 0. Nothing to write.
  2091. */
  2092. c->Request.CDBLen = 12;
  2093. c->Request.Type.Attribute = ATTR_SIMPLE;
  2094. c->Request.Type.Direction = XFER_READ;
  2095. c->Request.Timeout = 0;
  2096. c->Request.CDB[0] = cmd;
  2097. c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
  2098. c->Request.CDB[7] = (size >> 16) & 0xFF;
  2099. c->Request.CDB[8] = (size >> 8) & 0xFF;
  2100. c->Request.CDB[9] = size & 0xFF;
  2101. break;
  2102. case CCISS_READ_CAPACITY:
  2103. c->Request.CDBLen = 10;
  2104. c->Request.Type.Attribute = ATTR_SIMPLE;
  2105. c->Request.Type.Direction = XFER_READ;
  2106. c->Request.Timeout = 0;
  2107. c->Request.CDB[0] = cmd;
  2108. break;
  2109. case CCISS_READ_CAPACITY_16:
  2110. c->Request.CDBLen = 16;
  2111. c->Request.Type.Attribute = ATTR_SIMPLE;
  2112. c->Request.Type.Direction = XFER_READ;
  2113. c->Request.Timeout = 0;
  2114. c->Request.CDB[0] = cmd;
  2115. c->Request.CDB[1] = 0x10;
  2116. c->Request.CDB[10] = (size >> 24) & 0xFF;
  2117. c->Request.CDB[11] = (size >> 16) & 0xFF;
  2118. c->Request.CDB[12] = (size >> 8) & 0xFF;
  2119. c->Request.CDB[13] = size & 0xFF;
  2120. c->Request.Timeout = 0;
  2121. c->Request.CDB[0] = cmd;
  2122. break;
  2123. case CCISS_CACHE_FLUSH:
  2124. c->Request.CDBLen = 12;
  2125. c->Request.Type.Attribute = ATTR_SIMPLE;
  2126. c->Request.Type.Direction = XFER_WRITE;
  2127. c->Request.Timeout = 0;
  2128. c->Request.CDB[0] = BMIC_WRITE;
  2129. c->Request.CDB[6] = BMIC_CACHE_FLUSH;
  2130. break;
  2131. case TEST_UNIT_READY:
  2132. c->Request.CDBLen = 6;
  2133. c->Request.Type.Attribute = ATTR_SIMPLE;
  2134. c->Request.Type.Direction = XFER_NONE;
  2135. c->Request.Timeout = 0;
  2136. break;
  2137. default:
  2138. printk(KERN_WARNING
  2139. "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
  2140. return IO_ERROR;
  2141. }
  2142. } else if (cmd_type == TYPE_MSG) {
  2143. switch (cmd) {
  2144. case 0: /* ABORT message */
  2145. c->Request.CDBLen = 12;
  2146. c->Request.Type.Attribute = ATTR_SIMPLE;
  2147. c->Request.Type.Direction = XFER_WRITE;
  2148. c->Request.Timeout = 0;
  2149. c->Request.CDB[0] = cmd; /* abort */
  2150. c->Request.CDB[1] = 0; /* abort a command */
  2151. /* buff contains the tag of the command to abort */
  2152. memcpy(&c->Request.CDB[4], buff, 8);
  2153. break;
  2154. case 1: /* RESET message */
  2155. c->Request.CDBLen = 16;
  2156. c->Request.Type.Attribute = ATTR_SIMPLE;
  2157. c->Request.Type.Direction = XFER_NONE;
  2158. c->Request.Timeout = 0;
  2159. memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
  2160. c->Request.CDB[0] = cmd; /* reset */
  2161. c->Request.CDB[1] = 0x03; /* reset a target */
  2162. break;
  2163. case 3: /* No-Op message */
  2164. c->Request.CDBLen = 1;
  2165. c->Request.Type.Attribute = ATTR_SIMPLE;
  2166. c->Request.Type.Direction = XFER_WRITE;
  2167. c->Request.Timeout = 0;
  2168. c->Request.CDB[0] = cmd;
  2169. break;
  2170. default:
  2171. printk(KERN_WARNING
  2172. "cciss%d: unknown message type %d\n", ctlr, cmd);
  2173. return IO_ERROR;
  2174. }
  2175. } else {
  2176. printk(KERN_WARNING
  2177. "cciss%d: unknown command type %d\n", ctlr, cmd_type);
  2178. return IO_ERROR;
  2179. }
  2180. /* Fill in the scatter gather information */
  2181. if (size > 0) {
  2182. buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
  2183. buff, size,
  2184. PCI_DMA_BIDIRECTIONAL);
  2185. c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
  2186. c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
  2187. c->SG[0].Len = size;
  2188. c->SG[0].Ext = 0; /* we are not chaining */
  2189. }
  2190. return status;
  2191. }
  2192. static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
  2193. {
  2194. switch (c->err_info->ScsiStatus) {
  2195. case SAM_STAT_GOOD:
  2196. return IO_OK;
  2197. case SAM_STAT_CHECK_CONDITION:
  2198. switch (0xf & c->err_info->SenseInfo[2]) {
  2199. case 0: return IO_OK; /* no sense */
  2200. case 1: return IO_OK; /* recovered error */
  2201. default:
  2202. printk(KERN_WARNING "cciss%d: cmd 0x%02x "
  2203. "check condition, sense key = 0x%02x\n",
  2204. h->ctlr, c->Request.CDB[0],
  2205. c->err_info->SenseInfo[2]);
  2206. }
  2207. break;
  2208. default:
  2209. printk(KERN_WARNING "cciss%d: cmd 0x%02x"
  2210. "scsi status = 0x%02x\n", h->ctlr,
  2211. c->Request.CDB[0], c->err_info->ScsiStatus);
  2212. break;
  2213. }
  2214. return IO_ERROR;
  2215. }
  2216. static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
  2217. {
  2218. int return_status = IO_OK;
  2219. if (c->err_info->CommandStatus == CMD_SUCCESS)
  2220. return IO_OK;
  2221. switch (c->err_info->CommandStatus) {
  2222. case CMD_TARGET_STATUS:
  2223. return_status = check_target_status(h, c);
  2224. break;
  2225. case CMD_DATA_UNDERRUN:
  2226. case CMD_DATA_OVERRUN:
  2227. /* expected for inquiry and report lun commands */
  2228. break;
  2229. case CMD_INVALID:
  2230. printk(KERN_WARNING "cciss: cmd 0x%02x is "
  2231. "reported invalid\n", c->Request.CDB[0]);
  2232. return_status = IO_ERROR;
  2233. break;
  2234. case CMD_PROTOCOL_ERR:
  2235. printk(KERN_WARNING "cciss: cmd 0x%02x has "
  2236. "protocol error \n", c->Request.CDB[0]);
  2237. return_status = IO_ERROR;
  2238. break;
  2239. case CMD_HARDWARE_ERR:
  2240. printk(KERN_WARNING "cciss: cmd 0x%02x had "
  2241. " hardware error\n", c->Request.CDB[0]);
  2242. return_status = IO_ERROR;
  2243. break;
  2244. case CMD_CONNECTION_LOST:
  2245. printk(KERN_WARNING "cciss: cmd 0x%02x had "
  2246. "connection lost\n", c->Request.CDB[0]);
  2247. return_status = IO_ERROR;
  2248. break;
  2249. case CMD_ABORTED:
  2250. printk(KERN_WARNING "cciss: cmd 0x%02x was "
  2251. "aborted\n", c->Request.CDB[0]);
  2252. return_status = IO_ERROR;
  2253. break;
  2254. case CMD_ABORT_FAILED:
  2255. printk(KERN_WARNING "cciss: cmd 0x%02x reports "
  2256. "abort failed\n", c->Request.CDB[0]);
  2257. return_status = IO_ERROR;
  2258. break;
  2259. case CMD_UNSOLICITED_ABORT:
  2260. printk(KERN_WARNING
  2261. "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
  2262. c->Request.CDB[0]);
  2263. return_status = IO_NEEDS_RETRY;
  2264. break;
  2265. default:
  2266. printk(KERN_WARNING "cciss: cmd 0x%02x returned "
  2267. "unknown status %x\n", c->Request.CDB[0],
  2268. c->err_info->CommandStatus);
  2269. return_status = IO_ERROR;
  2270. }
  2271. return return_status;
  2272. }
  2273. static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
  2274. int attempt_retry)
  2275. {
  2276. DECLARE_COMPLETION_ONSTACK(wait);
  2277. u64bit buff_dma_handle;
  2278. unsigned long flags;
  2279. int return_status = IO_OK;
  2280. resend_cmd2:
  2281. c->waiting = &wait;
  2282. /* Put the request on the tail of the queue and send it */
  2283. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  2284. addQ(&h->reqQ, c);
  2285. h->Qdepth++;
  2286. start_io(h);
  2287. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  2288. wait_for_completion(&wait);
  2289. if (c->err_info->CommandStatus == 0 || !attempt_retry)
  2290. goto command_done;
  2291. return_status = process_sendcmd_error(h, c);
  2292. if (return_status == IO_NEEDS_RETRY &&
  2293. c->retry_count < MAX_CMD_RETRIES) {
  2294. printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
  2295. c->Request.CDB[0]);
  2296. c->retry_count++;
  2297. /* erase the old error information */
  2298. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  2299. return_status = IO_OK;
  2300. INIT_COMPLETION(wait);
  2301. goto resend_cmd2;
  2302. }
  2303. command_done:
  2304. /* unlock the buffers from DMA */
  2305. buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
  2306. buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
  2307. pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
  2308. c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
  2309. return return_status;
  2310. }
  2311. static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
  2312. __u8 page_code, unsigned char scsi3addr[],
  2313. int cmd_type)
  2314. {
  2315. ctlr_info_t *h = hba[ctlr];
  2316. CommandList_struct *c;
  2317. int return_status;
  2318. c = cmd_alloc(h, 0);
  2319. if (!c)
  2320. return -ENOMEM;
  2321. return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
  2322. scsi3addr, cmd_type);
  2323. if (return_status == IO_OK)
  2324. return_status = sendcmd_withirq_core(h, c, 1);
  2325. cmd_free(h, c, 0);
  2326. return return_status;
  2327. }
  2328. static void cciss_geometry_inquiry(int ctlr, int logvol,
  2329. int withirq, sector_t total_size,
  2330. unsigned int block_size,
  2331. InquiryData_struct *inq_buff,
  2332. drive_info_struct *drv)
  2333. {
  2334. int return_code;
  2335. unsigned long t;
  2336. unsigned char scsi3addr[8];
  2337. memset(inq_buff, 0, sizeof(InquiryData_struct));
  2338. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  2339. if (withirq)
  2340. return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
  2341. inq_buff, sizeof(*inq_buff),
  2342. 0xC1, scsi3addr, TYPE_CMD);
  2343. else
  2344. return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
  2345. sizeof(*inq_buff), 0xC1, scsi3addr,
  2346. TYPE_CMD);
  2347. if (return_code == IO_OK) {
  2348. if (inq_buff->data_byte[8] == 0xFF) {
  2349. printk(KERN_WARNING
  2350. "cciss: reading geometry failed, volume "
  2351. "does not support reading geometry\n");
  2352. drv->heads = 255;
  2353. drv->sectors = 32; // Sectors per track
  2354. drv->cylinders = total_size + 1;
  2355. drv->raid_level = RAID_UNKNOWN;
  2356. } else {
  2357. drv->heads = inq_buff->data_byte[6];
  2358. drv->sectors = inq_buff->data_byte[7];
  2359. drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
  2360. drv->cylinders += inq_buff->data_byte[5];
  2361. drv->raid_level = inq_buff->data_byte[8];
  2362. }
  2363. drv->block_size = block_size;
  2364. drv->nr_blocks = total_size + 1;
  2365. t = drv->heads * drv->sectors;
  2366. if (t > 1) {
  2367. sector_t real_size = total_size + 1;
  2368. unsigned long rem = sector_div(real_size, t);
  2369. if (rem)
  2370. real_size++;
  2371. drv->cylinders = real_size;
  2372. }
  2373. } else { /* Get geometry failed */
  2374. printk(KERN_WARNING "cciss: reading geometry failed\n");
  2375. }
  2376. }
  2377. static void
  2378. cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
  2379. unsigned int *block_size)
  2380. {
  2381. ReadCapdata_struct *buf;
  2382. int return_code;
  2383. unsigned char scsi3addr[8];
  2384. buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
  2385. if (!buf) {
  2386. printk(KERN_WARNING "cciss: out of memory\n");
  2387. return;
  2388. }
  2389. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  2390. if (withirq)
  2391. return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
  2392. ctlr, buf, sizeof(ReadCapdata_struct),
  2393. 0, scsi3addr, TYPE_CMD);
  2394. else
  2395. return_code = sendcmd(CCISS_READ_CAPACITY,
  2396. ctlr, buf, sizeof(ReadCapdata_struct),
  2397. 0, scsi3addr, TYPE_CMD);
  2398. if (return_code == IO_OK) {
  2399. *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
  2400. *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
  2401. } else { /* read capacity command failed */
  2402. printk(KERN_WARNING "cciss: read capacity failed\n");
  2403. *total_size = 0;
  2404. *block_size = BLOCK_SIZE;
  2405. }
  2406. kfree(buf);
  2407. }
  2408. static void
  2409. cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
  2410. {
  2411. ReadCapdata_struct_16 *buf;
  2412. int return_code;
  2413. unsigned char scsi3addr[8];
  2414. buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
  2415. if (!buf) {
  2416. printk(KERN_WARNING "cciss: out of memory\n");
  2417. return;
  2418. }
  2419. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  2420. if (withirq) {
  2421. return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
  2422. ctlr, buf, sizeof(ReadCapdata_struct_16),
  2423. 0, scsi3addr, TYPE_CMD);
  2424. }
  2425. else {
  2426. return_code = sendcmd(CCISS_READ_CAPACITY_16,
  2427. ctlr, buf, sizeof(ReadCapdata_struct_16),
  2428. 0, scsi3addr, TYPE_CMD);
  2429. }
  2430. if (return_code == IO_OK) {
  2431. *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
  2432. *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
  2433. } else { /* read capacity command failed */
  2434. printk(KERN_WARNING "cciss: read capacity failed\n");
  2435. *total_size = 0;
  2436. *block_size = BLOCK_SIZE;
  2437. }
  2438. printk(KERN_INFO " blocks= %llu block_size= %d\n",
  2439. (unsigned long long)*total_size+1, *block_size);
  2440. kfree(buf);
  2441. }
  2442. static int cciss_revalidate(struct gendisk *disk)
  2443. {
  2444. ctlr_info_t *h = get_host(disk);
  2445. drive_info_struct *drv = get_drv(disk);
  2446. int logvol;
  2447. int FOUND = 0;
  2448. unsigned int block_size;
  2449. sector_t total_size;
  2450. InquiryData_struct *inq_buff = NULL;
  2451. for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
  2452. if (memcmp(h->drv[logvol].LunID, drv->LunID,
  2453. sizeof(drv->LunID)) == 0) {
  2454. FOUND = 1;
  2455. break;
  2456. }
  2457. }
  2458. if (!FOUND)
  2459. return 1;
  2460. inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  2461. if (inq_buff == NULL) {
  2462. printk(KERN_WARNING "cciss: out of memory\n");
  2463. return 1;
  2464. }
  2465. if (h->cciss_read == CCISS_READ_10) {
  2466. cciss_read_capacity(h->ctlr, logvol, 1,
  2467. &total_size, &block_size);
  2468. } else {
  2469. cciss_read_capacity_16(h->ctlr, logvol, 1,
  2470. &total_size, &block_size);
  2471. }
  2472. cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
  2473. inq_buff, drv);
  2474. blk_queue_logical_block_size(drv->queue, drv->block_size);
  2475. set_capacity(disk, drv->nr_blocks);
  2476. kfree(inq_buff);
  2477. return 0;
  2478. }
  2479. /*
  2480. * Wait polling for a command to complete.
  2481. * The memory mapped FIFO is polled for the completion.
  2482. * Used only at init time, interrupts from the HBA are disabled.
  2483. */
  2484. static unsigned long pollcomplete(int ctlr)
  2485. {
  2486. unsigned long done;
  2487. int i;
  2488. /* Wait (up to 20 seconds) for a command to complete */
  2489. for (i = 20 * HZ; i > 0; i--) {
  2490. done = hba[ctlr]->access.command_completed(hba[ctlr]);
  2491. if (done == FIFO_EMPTY)
  2492. schedule_timeout_uninterruptible(1);
  2493. else
  2494. return done;
  2495. }
  2496. /* Invalid address to tell caller we ran out of time */
  2497. return 1;
  2498. }
  2499. /* Send command c to controller h and poll for it to complete.
  2500. * Turns interrupts off on the board. Used at driver init time
  2501. * and during SCSI error recovery.
  2502. */
  2503. static int sendcmd_core(ctlr_info_t *h, CommandList_struct *c)
  2504. {
  2505. int i;
  2506. unsigned long complete;
  2507. int status = IO_ERROR;
  2508. u64bit buff_dma_handle;
  2509. resend_cmd1:
  2510. /* Disable interrupt on the board. */
  2511. h->access.set_intr_mask(h, CCISS_INTR_OFF);
  2512. /* Make sure there is room in the command FIFO */
  2513. /* Actually it should be completely empty at this time */
  2514. /* unless we are in here doing error handling for the scsi */
  2515. /* tape side of the driver. */
  2516. for (i = 200000; i > 0; i--) {
  2517. /* if fifo isn't full go */
  2518. if (!(h->access.fifo_full(h)))
  2519. break;
  2520. udelay(10);
  2521. printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
  2522. " waiting!\n", h->ctlr);
  2523. }
  2524. h->access.submit_command(h, c); /* Send the cmd */
  2525. do {
  2526. complete = pollcomplete(h->ctlr);
  2527. #ifdef CCISS_DEBUG
  2528. printk(KERN_DEBUG "cciss: command completed\n");
  2529. #endif /* CCISS_DEBUG */
  2530. if (complete == 1) {
  2531. printk(KERN_WARNING
  2532. "cciss cciss%d: SendCmd Timeout out, "
  2533. "No command list address returned!\n", h->ctlr);
  2534. status = IO_ERROR;
  2535. break;
  2536. }
  2537. /* Make sure it's the command we're expecting. */
  2538. if ((complete & ~CISS_ERROR_BIT) != c->busaddr) {
  2539. printk(KERN_WARNING "cciss%d: Unexpected command "
  2540. "completion.\n", h->ctlr);
  2541. continue;
  2542. }
  2543. /* It is our command. If no error, we're done. */
  2544. if (!(complete & CISS_ERROR_BIT)) {
  2545. status = IO_OK;
  2546. break;
  2547. }
  2548. /* There is an error... */
  2549. /* if data overrun or underun on Report command ignore it */
  2550. if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
  2551. (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
  2552. (c->Request.CDB[0] == CISS_INQUIRY)) &&
  2553. ((c->err_info->CommandStatus == CMD_DATA_OVERRUN) ||
  2554. (c->err_info->CommandStatus == CMD_DATA_UNDERRUN))) {
  2555. complete = c->busaddr;
  2556. status = IO_OK;
  2557. break;
  2558. }
  2559. if (c->err_info->CommandStatus == CMD_UNSOLICITED_ABORT) {
  2560. printk(KERN_WARNING "cciss%d: unsolicited abort %p\n",
  2561. h->ctlr, c);
  2562. if (c->retry_count < MAX_CMD_RETRIES) {
  2563. printk(KERN_WARNING "cciss%d: retrying %p\n",
  2564. h->ctlr, c);
  2565. c->retry_count++;
  2566. /* erase the old error information */
  2567. memset(c->err_info, 0, sizeof(c->err_info));
  2568. goto resend_cmd1;
  2569. }
  2570. printk(KERN_WARNING "cciss%d: retried %p too many "
  2571. "times\n", h->ctlr, c);
  2572. status = IO_ERROR;
  2573. break;
  2574. }
  2575. if (c->err_info->CommandStatus == CMD_UNABORTABLE) {
  2576. printk(KERN_WARNING "cciss%d: command could not be "
  2577. "aborted.\n", h->ctlr);
  2578. status = IO_ERROR;
  2579. break;
  2580. }
  2581. if (c->err_info->CommandStatus == CMD_TARGET_STATUS) {
  2582. status = check_target_status(h, c);
  2583. break;
  2584. }
  2585. printk(KERN_WARNING "cciss%d: sendcmd error\n", h->ctlr);
  2586. printk(KERN_WARNING "cmd = 0x%02x, CommandStatus = 0x%02x\n",
  2587. c->Request.CDB[0], c->err_info->CommandStatus);
  2588. status = IO_ERROR;
  2589. break;
  2590. } while (1);
  2591. /* unlock the data buffer from DMA */
  2592. buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
  2593. buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
  2594. pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
  2595. c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
  2596. return status;
  2597. }
  2598. /*
  2599. * Send a command to the controller, and wait for it to complete.
  2600. * Used at init time, and during SCSI error recovery.
  2601. */
  2602. static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
  2603. __u8 page_code, unsigned char *scsi3addr, int cmd_type)
  2604. {
  2605. CommandList_struct *c;
  2606. int status;
  2607. c = cmd_alloc(hba[ctlr], 1);
  2608. if (!c) {
  2609. printk(KERN_WARNING "cciss: unable to get memory");
  2610. return IO_ERROR;
  2611. }
  2612. status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
  2613. scsi3addr, cmd_type);
  2614. if (status == IO_OK)
  2615. status = sendcmd_core(hba[ctlr], c);
  2616. cmd_free(hba[ctlr], c, 1);
  2617. return status;
  2618. }
  2619. /*
  2620. * Map (physical) PCI mem into (virtual) kernel space
  2621. */
  2622. static void __iomem *remap_pci_mem(ulong base, ulong size)
  2623. {
  2624. ulong page_base = ((ulong) base) & PAGE_MASK;
  2625. ulong page_offs = ((ulong) base) - page_base;
  2626. void __iomem *page_remapped = ioremap(page_base, page_offs + size);
  2627. return page_remapped ? (page_remapped + page_offs) : NULL;
  2628. }
  2629. /*
  2630. * Takes jobs of the Q and sends them to the hardware, then puts it on
  2631. * the Q to wait for completion.
  2632. */
  2633. static void start_io(ctlr_info_t *h)
  2634. {
  2635. CommandList_struct *c;
  2636. while (!hlist_empty(&h->reqQ)) {
  2637. c = hlist_entry(h->reqQ.first, CommandList_struct, list);
  2638. /* can't do anything if fifo is full */
  2639. if ((h->access.fifo_full(h))) {
  2640. printk(KERN_WARNING "cciss: fifo full\n");
  2641. break;
  2642. }
  2643. /* Get the first entry from the Request Q */
  2644. removeQ(c);
  2645. h->Qdepth--;
  2646. /* Tell the controller execute command */
  2647. h->access.submit_command(h, c);
  2648. /* Put job onto the completed Q */
  2649. addQ(&h->cmpQ, c);
  2650. }
  2651. }
  2652. /* Assumes that CCISS_LOCK(h->ctlr) is held. */
  2653. /* Zeros out the error record and then resends the command back */
  2654. /* to the controller */
  2655. static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
  2656. {
  2657. /* erase the old error information */
  2658. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  2659. /* add it to software queue and then send it to the controller */
  2660. addQ(&h->reqQ, c);
  2661. h->Qdepth++;
  2662. if (h->Qdepth > h->maxQsinceinit)
  2663. h->maxQsinceinit = h->Qdepth;
  2664. start_io(h);
  2665. }
  2666. static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
  2667. unsigned int msg_byte, unsigned int host_byte,
  2668. unsigned int driver_byte)
  2669. {
  2670. /* inverse of macros in scsi.h */
  2671. return (scsi_status_byte & 0xff) |
  2672. ((msg_byte & 0xff) << 8) |
  2673. ((host_byte & 0xff) << 16) |
  2674. ((driver_byte & 0xff) << 24);
  2675. }
  2676. static inline int evaluate_target_status(ctlr_info_t *h,
  2677. CommandList_struct *cmd, int *retry_cmd)
  2678. {
  2679. unsigned char sense_key;
  2680. unsigned char status_byte, msg_byte, host_byte, driver_byte;
  2681. int error_value;
  2682. *retry_cmd = 0;
  2683. /* If we get in here, it means we got "target status", that is, scsi status */
  2684. status_byte = cmd->err_info->ScsiStatus;
  2685. driver_byte = DRIVER_OK;
  2686. msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
  2687. if (blk_pc_request(cmd->rq))
  2688. host_byte = DID_PASSTHROUGH;
  2689. else
  2690. host_byte = DID_OK;
  2691. error_value = make_status_bytes(status_byte, msg_byte,
  2692. host_byte, driver_byte);
  2693. if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
  2694. if (!blk_pc_request(cmd->rq))
  2695. printk(KERN_WARNING "cciss: cmd %p "
  2696. "has SCSI Status 0x%x\n",
  2697. cmd, cmd->err_info->ScsiStatus);
  2698. return error_value;
  2699. }
  2700. /* check the sense key */
  2701. sense_key = 0xf & cmd->err_info->SenseInfo[2];
  2702. /* no status or recovered error */
  2703. if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
  2704. error_value = 0;
  2705. if (check_for_unit_attention(h, cmd)) {
  2706. *retry_cmd = !blk_pc_request(cmd->rq);
  2707. return 0;
  2708. }
  2709. if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
  2710. if (error_value != 0)
  2711. printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
  2712. " sense key = 0x%x\n", cmd, sense_key);
  2713. return error_value;
  2714. }
  2715. /* SG_IO or similar, copy sense data back */
  2716. if (cmd->rq->sense) {
  2717. if (cmd->rq->sense_len > cmd->err_info->SenseLen)
  2718. cmd->rq->sense_len = cmd->err_info->SenseLen;
  2719. memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
  2720. cmd->rq->sense_len);
  2721. } else
  2722. cmd->rq->sense_len = 0;
  2723. return error_value;
  2724. }
  2725. /* checks the status of the job and calls complete buffers to mark all
  2726. * buffers for the completed job. Note that this function does not need
  2727. * to hold the hba/queue lock.
  2728. */
  2729. static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
  2730. int timeout)
  2731. {
  2732. int retry_cmd = 0;
  2733. struct request *rq = cmd->rq;
  2734. rq->errors = 0;
  2735. if (timeout)
  2736. rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
  2737. if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
  2738. goto after_error_processing;
  2739. switch (cmd->err_info->CommandStatus) {
  2740. case CMD_TARGET_STATUS:
  2741. rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
  2742. break;
  2743. case CMD_DATA_UNDERRUN:
  2744. if (blk_fs_request(cmd->rq)) {
  2745. printk(KERN_WARNING "cciss: cmd %p has"
  2746. " completed with data underrun "
  2747. "reported\n", cmd);
  2748. cmd->rq->resid_len = cmd->err_info->ResidualCnt;
  2749. }
  2750. break;
  2751. case CMD_DATA_OVERRUN:
  2752. if (blk_fs_request(cmd->rq))
  2753. printk(KERN_WARNING "cciss: cmd %p has"
  2754. " completed with data overrun "
  2755. "reported\n", cmd);
  2756. break;
  2757. case CMD_INVALID:
  2758. printk(KERN_WARNING "cciss: cmd %p is "
  2759. "reported invalid\n", cmd);
  2760. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2761. cmd->err_info->CommandStatus, DRIVER_OK,
  2762. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2763. break;
  2764. case CMD_PROTOCOL_ERR:
  2765. printk(KERN_WARNING "cciss: cmd %p has "
  2766. "protocol error \n", cmd);
  2767. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2768. cmd->err_info->CommandStatus, DRIVER_OK,
  2769. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2770. break;
  2771. case CMD_HARDWARE_ERR:
  2772. printk(KERN_WARNING "cciss: cmd %p had "
  2773. " hardware error\n", cmd);
  2774. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2775. cmd->err_info->CommandStatus, DRIVER_OK,
  2776. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2777. break;
  2778. case CMD_CONNECTION_LOST:
  2779. printk(KERN_WARNING "cciss: cmd %p had "
  2780. "connection lost\n", cmd);
  2781. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2782. cmd->err_info->CommandStatus, DRIVER_OK,
  2783. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2784. break;
  2785. case CMD_ABORTED:
  2786. printk(KERN_WARNING "cciss: cmd %p was "
  2787. "aborted\n", cmd);
  2788. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2789. cmd->err_info->CommandStatus, DRIVER_OK,
  2790. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
  2791. break;
  2792. case CMD_ABORT_FAILED:
  2793. printk(KERN_WARNING "cciss: cmd %p reports "
  2794. "abort failed\n", cmd);
  2795. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2796. cmd->err_info->CommandStatus, DRIVER_OK,
  2797. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2798. break;
  2799. case CMD_UNSOLICITED_ABORT:
  2800. printk(KERN_WARNING "cciss%d: unsolicited "
  2801. "abort %p\n", h->ctlr, cmd);
  2802. if (cmd->retry_count < MAX_CMD_RETRIES) {
  2803. retry_cmd = 1;
  2804. printk(KERN_WARNING
  2805. "cciss%d: retrying %p\n", h->ctlr, cmd);
  2806. cmd->retry_count++;
  2807. } else
  2808. printk(KERN_WARNING
  2809. "cciss%d: %p retried too "
  2810. "many times\n", h->ctlr, cmd);
  2811. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2812. cmd->err_info->CommandStatus, DRIVER_OK,
  2813. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
  2814. break;
  2815. case CMD_TIMEOUT:
  2816. printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
  2817. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2818. cmd->err_info->CommandStatus, DRIVER_OK,
  2819. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2820. break;
  2821. default:
  2822. printk(KERN_WARNING "cciss: cmd %p returned "
  2823. "unknown status %x\n", cmd,
  2824. cmd->err_info->CommandStatus);
  2825. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2826. cmd->err_info->CommandStatus, DRIVER_OK,
  2827. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2828. }
  2829. after_error_processing:
  2830. /* We need to return this command */
  2831. if (retry_cmd) {
  2832. resend_cciss_cmd(h, cmd);
  2833. return;
  2834. }
  2835. cmd->rq->completion_data = cmd;
  2836. blk_complete_request(cmd->rq);
  2837. }
  2838. /*
  2839. * Get a request and submit it to the controller.
  2840. */
  2841. static void do_cciss_request(struct request_queue *q)
  2842. {
  2843. ctlr_info_t *h = q->queuedata;
  2844. CommandList_struct *c;
  2845. sector_t start_blk;
  2846. int seg;
  2847. struct request *creq;
  2848. u64bit temp64;
  2849. struct scatterlist tmp_sg[MAXSGENTRIES];
  2850. drive_info_struct *drv;
  2851. int i, dir;
  2852. /* We call start_io here in case there is a command waiting on the
  2853. * queue that has not been sent.
  2854. */
  2855. if (blk_queue_plugged(q))
  2856. goto startio;
  2857. queue:
  2858. creq = blk_peek_request(q);
  2859. if (!creq)
  2860. goto startio;
  2861. BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
  2862. if ((c = cmd_alloc(h, 1)) == NULL)
  2863. goto full;
  2864. blk_start_request(creq);
  2865. spin_unlock_irq(q->queue_lock);
  2866. c->cmd_type = CMD_RWREQ;
  2867. c->rq = creq;
  2868. /* fill in the request */
  2869. drv = creq->rq_disk->private_data;
  2870. c->Header.ReplyQueue = 0; // unused in simple mode
  2871. /* got command from pool, so use the command block index instead */
  2872. /* for direct lookups. */
  2873. /* The first 2 bits are reserved for controller error reporting. */
  2874. c->Header.Tag.lower = (c->cmdindex << 3);
  2875. c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
  2876. memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
  2877. c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
  2878. c->Request.Type.Type = TYPE_CMD; // It is a command.
  2879. c->Request.Type.Attribute = ATTR_SIMPLE;
  2880. c->Request.Type.Direction =
  2881. (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
  2882. c->Request.Timeout = 0; // Don't time out
  2883. c->Request.CDB[0] =
  2884. (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
  2885. start_blk = blk_rq_pos(creq);
  2886. #ifdef CCISS_DEBUG
  2887. printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
  2888. (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
  2889. #endif /* CCISS_DEBUG */
  2890. sg_init_table(tmp_sg, MAXSGENTRIES);
  2891. seg = blk_rq_map_sg(q, creq, tmp_sg);
  2892. /* get the DMA records for the setup */
  2893. if (c->Request.Type.Direction == XFER_READ)
  2894. dir = PCI_DMA_FROMDEVICE;
  2895. else
  2896. dir = PCI_DMA_TODEVICE;
  2897. for (i = 0; i < seg; i++) {
  2898. c->SG[i].Len = tmp_sg[i].length;
  2899. temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
  2900. tmp_sg[i].offset,
  2901. tmp_sg[i].length, dir);
  2902. c->SG[i].Addr.lower = temp64.val32.lower;
  2903. c->SG[i].Addr.upper = temp64.val32.upper;
  2904. c->SG[i].Ext = 0; // we are not chaining
  2905. }
  2906. /* track how many SG entries we are using */
  2907. if (seg > h->maxSG)
  2908. h->maxSG = seg;
  2909. #ifdef CCISS_DEBUG
  2910. printk(KERN_DEBUG "cciss: Submitting %u sectors in %d segments\n",
  2911. blk_rq_sectors(creq), seg);
  2912. #endif /* CCISS_DEBUG */
  2913. c->Header.SGList = c->Header.SGTotal = seg;
  2914. if (likely(blk_fs_request(creq))) {
  2915. if(h->cciss_read == CCISS_READ_10) {
  2916. c->Request.CDB[1] = 0;
  2917. c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
  2918. c->Request.CDB[3] = (start_blk >> 16) & 0xff;
  2919. c->Request.CDB[4] = (start_blk >> 8) & 0xff;
  2920. c->Request.CDB[5] = start_blk & 0xff;
  2921. c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
  2922. c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
  2923. c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
  2924. c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
  2925. } else {
  2926. u32 upper32 = upper_32_bits(start_blk);
  2927. c->Request.CDBLen = 16;
  2928. c->Request.CDB[1]= 0;
  2929. c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
  2930. c->Request.CDB[3]= (upper32 >> 16) & 0xff;
  2931. c->Request.CDB[4]= (upper32 >> 8) & 0xff;
  2932. c->Request.CDB[5]= upper32 & 0xff;
  2933. c->Request.CDB[6]= (start_blk >> 24) & 0xff;
  2934. c->Request.CDB[7]= (start_blk >> 16) & 0xff;
  2935. c->Request.CDB[8]= (start_blk >> 8) & 0xff;
  2936. c->Request.CDB[9]= start_blk & 0xff;
  2937. c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
  2938. c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
  2939. c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
  2940. c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
  2941. c->Request.CDB[14] = c->Request.CDB[15] = 0;
  2942. }
  2943. } else if (blk_pc_request(creq)) {
  2944. c->Request.CDBLen = creq->cmd_len;
  2945. memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
  2946. } else {
  2947. printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
  2948. BUG();
  2949. }
  2950. spin_lock_irq(q->queue_lock);
  2951. addQ(&h->reqQ, c);
  2952. h->Qdepth++;
  2953. if (h->Qdepth > h->maxQsinceinit)
  2954. h->maxQsinceinit = h->Qdepth;
  2955. goto queue;
  2956. full:
  2957. blk_stop_queue(q);
  2958. startio:
  2959. /* We will already have the driver lock here so not need
  2960. * to lock it.
  2961. */
  2962. start_io(h);
  2963. }
  2964. static inline unsigned long get_next_completion(ctlr_info_t *h)
  2965. {
  2966. return h->access.command_completed(h);
  2967. }
  2968. static inline int interrupt_pending(ctlr_info_t *h)
  2969. {
  2970. return h->access.intr_pending(h);
  2971. }
  2972. static inline long interrupt_not_for_us(ctlr_info_t *h)
  2973. {
  2974. return (((h->access.intr_pending(h) == 0) ||
  2975. (h->interrupts_enabled == 0)));
  2976. }
  2977. static irqreturn_t do_cciss_intr(int irq, void *dev_id)
  2978. {
  2979. ctlr_info_t *h = dev_id;
  2980. CommandList_struct *c;
  2981. unsigned long flags;
  2982. __u32 a, a1, a2;
  2983. if (interrupt_not_for_us(h))
  2984. return IRQ_NONE;
  2985. /*
  2986. * If there are completed commands in the completion queue,
  2987. * we had better do something about it.
  2988. */
  2989. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  2990. while (interrupt_pending(h)) {
  2991. while ((a = get_next_completion(h)) != FIFO_EMPTY) {
  2992. a1 = a;
  2993. if ((a & 0x04)) {
  2994. a2 = (a >> 3);
  2995. if (a2 >= h->nr_cmds) {
  2996. printk(KERN_WARNING
  2997. "cciss: controller cciss%d failed, stopping.\n",
  2998. h->ctlr);
  2999. fail_all_cmds(h->ctlr);
  3000. return IRQ_HANDLED;
  3001. }
  3002. c = h->cmd_pool + a2;
  3003. a = c->busaddr;
  3004. } else {
  3005. struct hlist_node *tmp;
  3006. a &= ~3;
  3007. c = NULL;
  3008. hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
  3009. if (c->busaddr == a)
  3010. break;
  3011. }
  3012. }
  3013. /*
  3014. * If we've found the command, take it off the
  3015. * completion Q and free it
  3016. */
  3017. if (c && c->busaddr == a) {
  3018. removeQ(c);
  3019. if (c->cmd_type == CMD_RWREQ) {
  3020. complete_command(h, c, 0);
  3021. } else if (c->cmd_type == CMD_IOCTL_PEND) {
  3022. complete(c->waiting);
  3023. }
  3024. # ifdef CONFIG_CISS_SCSI_TAPE
  3025. else if (c->cmd_type == CMD_SCSI)
  3026. complete_scsi_command(c, 0, a1);
  3027. # endif
  3028. continue;
  3029. }
  3030. }
  3031. }
  3032. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  3033. return IRQ_HANDLED;
  3034. }
  3035. /**
  3036. * add_to_scan_list() - add controller to rescan queue
  3037. * @h: Pointer to the controller.
  3038. *
  3039. * Adds the controller to the rescan queue if not already on the queue.
  3040. *
  3041. * returns 1 if added to the queue, 0 if skipped (could be on the
  3042. * queue already, or the controller could be initializing or shutting
  3043. * down).
  3044. **/
  3045. static int add_to_scan_list(struct ctlr_info *h)
  3046. {
  3047. struct ctlr_info *test_h;
  3048. int found = 0;
  3049. int ret = 0;
  3050. if (h->busy_initializing)
  3051. return 0;
  3052. if (!mutex_trylock(&h->busy_shutting_down))
  3053. return 0;
  3054. mutex_lock(&scan_mutex);
  3055. list_for_each_entry(test_h, &scan_q, scan_list) {
  3056. if (test_h == h) {
  3057. found = 1;
  3058. break;
  3059. }
  3060. }
  3061. if (!found && !h->busy_scanning) {
  3062. INIT_COMPLETION(h->scan_wait);
  3063. list_add_tail(&h->scan_list, &scan_q);
  3064. ret = 1;
  3065. }
  3066. mutex_unlock(&scan_mutex);
  3067. mutex_unlock(&h->busy_shutting_down);
  3068. return ret;
  3069. }
  3070. /**
  3071. * remove_from_scan_list() - remove controller from rescan queue
  3072. * @h: Pointer to the controller.
  3073. *
  3074. * Removes the controller from the rescan queue if present. Blocks if
  3075. * the controller is currently conducting a rescan.
  3076. **/
  3077. static void remove_from_scan_list(struct ctlr_info *h)
  3078. {
  3079. struct ctlr_info *test_h, *tmp_h;
  3080. int scanning = 0;
  3081. mutex_lock(&scan_mutex);
  3082. list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
  3083. if (test_h == h) {
  3084. list_del(&h->scan_list);
  3085. complete_all(&h->scan_wait);
  3086. mutex_unlock(&scan_mutex);
  3087. return;
  3088. }
  3089. }
  3090. if (&h->busy_scanning)
  3091. scanning = 0;
  3092. mutex_unlock(&scan_mutex);
  3093. if (scanning)
  3094. wait_for_completion(&h->scan_wait);
  3095. }
  3096. /**
  3097. * scan_thread() - kernel thread used to rescan controllers
  3098. * @data: Ignored.
  3099. *
  3100. * A kernel thread used scan for drive topology changes on
  3101. * controllers. The thread processes only one controller at a time
  3102. * using a queue. Controllers are added to the queue using
  3103. * add_to_scan_list() and removed from the queue either after done
  3104. * processing or using remove_from_scan_list().
  3105. *
  3106. * returns 0.
  3107. **/
  3108. static int scan_thread(void *data)
  3109. {
  3110. struct ctlr_info *h;
  3111. while (1) {
  3112. set_current_state(TASK_INTERRUPTIBLE);
  3113. schedule();
  3114. if (kthread_should_stop())
  3115. break;
  3116. while (1) {
  3117. mutex_lock(&scan_mutex);
  3118. if (list_empty(&scan_q)) {
  3119. mutex_unlock(&scan_mutex);
  3120. break;
  3121. }
  3122. h = list_entry(scan_q.next,
  3123. struct ctlr_info,
  3124. scan_list);
  3125. list_del(&h->scan_list);
  3126. h->busy_scanning = 1;
  3127. mutex_unlock(&scan_mutex);
  3128. if (h) {
  3129. rebuild_lun_table(h, 0, 0);
  3130. complete_all(&h->scan_wait);
  3131. mutex_lock(&scan_mutex);
  3132. h->busy_scanning = 0;
  3133. mutex_unlock(&scan_mutex);
  3134. }
  3135. }
  3136. }
  3137. return 0;
  3138. }
  3139. static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
  3140. {
  3141. if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
  3142. return 0;
  3143. switch (c->err_info->SenseInfo[12]) {
  3144. case STATE_CHANGED:
  3145. printk(KERN_WARNING "cciss%d: a state change "
  3146. "detected, command retried\n", h->ctlr);
  3147. return 1;
  3148. break;
  3149. case LUN_FAILED:
  3150. printk(KERN_WARNING "cciss%d: LUN failure "
  3151. "detected, action required\n", h->ctlr);
  3152. return 1;
  3153. break;
  3154. case REPORT_LUNS_CHANGED:
  3155. printk(KERN_WARNING "cciss%d: report LUN data "
  3156. "changed\n", h->ctlr);
  3157. add_to_scan_list(h);
  3158. wake_up_process(cciss_scan_thread);
  3159. return 1;
  3160. break;
  3161. case POWER_OR_RESET:
  3162. printk(KERN_WARNING "cciss%d: a power on "
  3163. "or device reset detected\n", h->ctlr);
  3164. return 1;
  3165. break;
  3166. case UNIT_ATTENTION_CLEARED:
  3167. printk(KERN_WARNING "cciss%d: unit attention "
  3168. "cleared by another initiator\n", h->ctlr);
  3169. return 1;
  3170. break;
  3171. default:
  3172. printk(KERN_WARNING "cciss%d: unknown "
  3173. "unit attention detected\n", h->ctlr);
  3174. return 1;
  3175. }
  3176. }
  3177. /*
  3178. * We cannot read the structure directly, for portability we must use
  3179. * the io functions.
  3180. * This is for debug only.
  3181. */
  3182. #ifdef CCISS_DEBUG
  3183. static void print_cfg_table(CfgTable_struct *tb)
  3184. {
  3185. int i;
  3186. char temp_name[17];
  3187. printk("Controller Configuration information\n");
  3188. printk("------------------------------------\n");
  3189. for (i = 0; i < 4; i++)
  3190. temp_name[i] = readb(&(tb->Signature[i]));
  3191. temp_name[4] = '\0';
  3192. printk(" Signature = %s\n", temp_name);
  3193. printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
  3194. printk(" Transport methods supported = 0x%x\n",
  3195. readl(&(tb->TransportSupport)));
  3196. printk(" Transport methods active = 0x%x\n",
  3197. readl(&(tb->TransportActive)));
  3198. printk(" Requested transport Method = 0x%x\n",
  3199. readl(&(tb->HostWrite.TransportRequest)));
  3200. printk(" Coalesce Interrupt Delay = 0x%x\n",
  3201. readl(&(tb->HostWrite.CoalIntDelay)));
  3202. printk(" Coalesce Interrupt Count = 0x%x\n",
  3203. readl(&(tb->HostWrite.CoalIntCount)));
  3204. printk(" Max outstanding commands = 0x%d\n",
  3205. readl(&(tb->CmdsOutMax)));
  3206. printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
  3207. for (i = 0; i < 16; i++)
  3208. temp_name[i] = readb(&(tb->ServerName[i]));
  3209. temp_name[16] = '\0';
  3210. printk(" Server Name = %s\n", temp_name);
  3211. printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
  3212. }
  3213. #endif /* CCISS_DEBUG */
  3214. static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
  3215. {
  3216. int i, offset, mem_type, bar_type;
  3217. if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
  3218. return 0;
  3219. offset = 0;
  3220. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  3221. bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
  3222. if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
  3223. offset += 4;
  3224. else {
  3225. mem_type = pci_resource_flags(pdev, i) &
  3226. PCI_BASE_ADDRESS_MEM_TYPE_MASK;
  3227. switch (mem_type) {
  3228. case PCI_BASE_ADDRESS_MEM_TYPE_32:
  3229. case PCI_BASE_ADDRESS_MEM_TYPE_1M:
  3230. offset += 4; /* 32 bit */
  3231. break;
  3232. case PCI_BASE_ADDRESS_MEM_TYPE_64:
  3233. offset += 8;
  3234. break;
  3235. default: /* reserved in PCI 2.2 */
  3236. printk(KERN_WARNING
  3237. "Base address is invalid\n");
  3238. return -1;
  3239. break;
  3240. }
  3241. }
  3242. if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
  3243. return i + 1;
  3244. }
  3245. return -1;
  3246. }
  3247. /* If MSI/MSI-X is supported by the kernel we will try to enable it on
  3248. * controllers that are capable. If not, we use IO-APIC mode.
  3249. */
  3250. static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
  3251. struct pci_dev *pdev, __u32 board_id)
  3252. {
  3253. #ifdef CONFIG_PCI_MSI
  3254. int err;
  3255. struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
  3256. {0, 2}, {0, 3}
  3257. };
  3258. /* Some boards advertise MSI but don't really support it */
  3259. if ((board_id == 0x40700E11) ||
  3260. (board_id == 0x40800E11) ||
  3261. (board_id == 0x40820E11) || (board_id == 0x40830E11))
  3262. goto default_int_mode;
  3263. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
  3264. err = pci_enable_msix(pdev, cciss_msix_entries, 4);
  3265. if (!err) {
  3266. c->intr[0] = cciss_msix_entries[0].vector;
  3267. c->intr[1] = cciss_msix_entries[1].vector;
  3268. c->intr[2] = cciss_msix_entries[2].vector;
  3269. c->intr[3] = cciss_msix_entries[3].vector;
  3270. c->msix_vector = 1;
  3271. return;
  3272. }
  3273. if (err > 0) {
  3274. printk(KERN_WARNING "cciss: only %d MSI-X vectors "
  3275. "available\n", err);
  3276. goto default_int_mode;
  3277. } else {
  3278. printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
  3279. err);
  3280. goto default_int_mode;
  3281. }
  3282. }
  3283. if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
  3284. if (!pci_enable_msi(pdev)) {
  3285. c->msi_vector = 1;
  3286. } else {
  3287. printk(KERN_WARNING "cciss: MSI init failed\n");
  3288. }
  3289. }
  3290. default_int_mode:
  3291. #endif /* CONFIG_PCI_MSI */
  3292. /* if we get here we're going to use the default interrupt mode */
  3293. c->intr[SIMPLE_MODE_INT] = pdev->irq;
  3294. return;
  3295. }
  3296. static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
  3297. {
  3298. ushort subsystem_vendor_id, subsystem_device_id, command;
  3299. __u32 board_id, scratchpad = 0;
  3300. __u64 cfg_offset;
  3301. __u32 cfg_base_addr;
  3302. __u64 cfg_base_addr_index;
  3303. int i, err;
  3304. /* check to see if controller has been disabled */
  3305. /* BEFORE trying to enable it */
  3306. (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
  3307. if (!(command & 0x02)) {
  3308. printk(KERN_WARNING
  3309. "cciss: controller appears to be disabled\n");
  3310. return -ENODEV;
  3311. }
  3312. err = pci_enable_device(pdev);
  3313. if (err) {
  3314. printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
  3315. return err;
  3316. }
  3317. err = pci_request_regions(pdev, "cciss");
  3318. if (err) {
  3319. printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
  3320. "aborting\n");
  3321. return err;
  3322. }
  3323. subsystem_vendor_id = pdev->subsystem_vendor;
  3324. subsystem_device_id = pdev->subsystem_device;
  3325. board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
  3326. subsystem_vendor_id);
  3327. #ifdef CCISS_DEBUG
  3328. printk("command = %x\n", command);
  3329. printk("irq = %x\n", pdev->irq);
  3330. printk("board_id = %x\n", board_id);
  3331. #endif /* CCISS_DEBUG */
  3332. /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
  3333. * else we use the IO-APIC interrupt assigned to us by system ROM.
  3334. */
  3335. cciss_interrupt_mode(c, pdev, board_id);
  3336. /* find the memory BAR */
  3337. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  3338. if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
  3339. break;
  3340. }
  3341. if (i == DEVICE_COUNT_RESOURCE) {
  3342. printk(KERN_WARNING "cciss: No memory BAR found\n");
  3343. err = -ENODEV;
  3344. goto err_out_free_res;
  3345. }
  3346. c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
  3347. * already removed
  3348. */
  3349. #ifdef CCISS_DEBUG
  3350. printk("address 0 = %lx\n", c->paddr);
  3351. #endif /* CCISS_DEBUG */
  3352. c->vaddr = remap_pci_mem(c->paddr, 0x250);
  3353. /* Wait for the board to become ready. (PCI hotplug needs this.)
  3354. * We poll for up to 120 secs, once per 100ms. */
  3355. for (i = 0; i < 1200; i++) {
  3356. scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
  3357. if (scratchpad == CCISS_FIRMWARE_READY)
  3358. break;
  3359. set_current_state(TASK_INTERRUPTIBLE);
  3360. schedule_timeout(msecs_to_jiffies(100)); /* wait 100ms */
  3361. }
  3362. if (scratchpad != CCISS_FIRMWARE_READY) {
  3363. printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
  3364. err = -ENODEV;
  3365. goto err_out_free_res;
  3366. }
  3367. /* get the address index number */
  3368. cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
  3369. cfg_base_addr &= (__u32) 0x0000ffff;
  3370. #ifdef CCISS_DEBUG
  3371. printk("cfg base address = %x\n", cfg_base_addr);
  3372. #endif /* CCISS_DEBUG */
  3373. cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
  3374. #ifdef CCISS_DEBUG
  3375. printk("cfg base address index = %llx\n",
  3376. (unsigned long long)cfg_base_addr_index);
  3377. #endif /* CCISS_DEBUG */
  3378. if (cfg_base_addr_index == -1) {
  3379. printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
  3380. err = -ENODEV;
  3381. goto err_out_free_res;
  3382. }
  3383. cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
  3384. #ifdef CCISS_DEBUG
  3385. printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
  3386. #endif /* CCISS_DEBUG */
  3387. c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
  3388. cfg_base_addr_index) +
  3389. cfg_offset, sizeof(CfgTable_struct));
  3390. c->board_id = board_id;
  3391. #ifdef CCISS_DEBUG
  3392. print_cfg_table(c->cfgtable);
  3393. #endif /* CCISS_DEBUG */
  3394. /* Some controllers support Zero Memory Raid (ZMR).
  3395. * When configured in ZMR mode the number of supported
  3396. * commands drops to 64. So instead of just setting an
  3397. * arbitrary value we make the driver a little smarter.
  3398. * We read the config table to tell us how many commands
  3399. * are supported on the controller then subtract 4 to
  3400. * leave a little room for ioctl calls.
  3401. */
  3402. c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
  3403. for (i = 0; i < ARRAY_SIZE(products); i++) {
  3404. if (board_id == products[i].board_id) {
  3405. c->product_name = products[i].product_name;
  3406. c->access = *(products[i].access);
  3407. c->nr_cmds = c->max_commands - 4;
  3408. break;
  3409. }
  3410. }
  3411. if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
  3412. (readb(&c->cfgtable->Signature[1]) != 'I') ||
  3413. (readb(&c->cfgtable->Signature[2]) != 'S') ||
  3414. (readb(&c->cfgtable->Signature[3]) != 'S')) {
  3415. printk("Does not appear to be a valid CISS config table\n");
  3416. err = -ENODEV;
  3417. goto err_out_free_res;
  3418. }
  3419. /* We didn't find the controller in our list. We know the
  3420. * signature is valid. If it's an HP device let's try to
  3421. * bind to the device and fire it up. Otherwise we bail.
  3422. */
  3423. if (i == ARRAY_SIZE(products)) {
  3424. if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
  3425. c->product_name = products[i-1].product_name;
  3426. c->access = *(products[i-1].access);
  3427. c->nr_cmds = c->max_commands - 4;
  3428. printk(KERN_WARNING "cciss: This is an unknown "
  3429. "Smart Array controller.\n"
  3430. "cciss: Please update to the latest driver "
  3431. "available from www.hp.com.\n");
  3432. } else {
  3433. printk(KERN_WARNING "cciss: Sorry, I don't know how"
  3434. " to access the Smart Array controller %08lx\n"
  3435. , (unsigned long)board_id);
  3436. err = -ENODEV;
  3437. goto err_out_free_res;
  3438. }
  3439. }
  3440. #ifdef CONFIG_X86
  3441. {
  3442. /* Need to enable prefetch in the SCSI core for 6400 in x86 */
  3443. __u32 prefetch;
  3444. prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
  3445. prefetch |= 0x100;
  3446. writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
  3447. }
  3448. #endif
  3449. /* Disabling DMA prefetch and refetch for the P600.
  3450. * An ASIC bug may result in accesses to invalid memory addresses.
  3451. * We've disabled prefetch for some time now. Testing with XEN
  3452. * kernels revealed a bug in the refetch if dom0 resides on a P600.
  3453. */
  3454. if(board_id == 0x3225103C) {
  3455. __u32 dma_prefetch;
  3456. __u32 dma_refetch;
  3457. dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
  3458. dma_prefetch |= 0x8000;
  3459. writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
  3460. pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
  3461. dma_refetch |= 0x1;
  3462. pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
  3463. }
  3464. #ifdef CCISS_DEBUG
  3465. printk("Trying to put board into Simple mode\n");
  3466. #endif /* CCISS_DEBUG */
  3467. c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
  3468. /* Update the field, and then ring the doorbell */
  3469. writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
  3470. writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
  3471. /* under certain very rare conditions, this can take awhile.
  3472. * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
  3473. * as we enter this code.) */
  3474. for (i = 0; i < MAX_CONFIG_WAIT; i++) {
  3475. if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
  3476. break;
  3477. /* delay and try again */
  3478. set_current_state(TASK_INTERRUPTIBLE);
  3479. schedule_timeout(msecs_to_jiffies(1));
  3480. }
  3481. #ifdef CCISS_DEBUG
  3482. printk(KERN_DEBUG "I counter got to %d %x\n", i,
  3483. readl(c->vaddr + SA5_DOORBELL));
  3484. #endif /* CCISS_DEBUG */
  3485. #ifdef CCISS_DEBUG
  3486. print_cfg_table(c->cfgtable);
  3487. #endif /* CCISS_DEBUG */
  3488. if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
  3489. printk(KERN_WARNING "cciss: unable to get board into"
  3490. " simple mode\n");
  3491. err = -ENODEV;
  3492. goto err_out_free_res;
  3493. }
  3494. return 0;
  3495. err_out_free_res:
  3496. /*
  3497. * Deliberately omit pci_disable_device(): it does something nasty to
  3498. * Smart Array controllers that pci_enable_device does not undo
  3499. */
  3500. pci_release_regions(pdev);
  3501. return err;
  3502. }
  3503. /* Function to find the first free pointer into our hba[] array
  3504. * Returns -1 if no free entries are left.
  3505. */
  3506. static int alloc_cciss_hba(void)
  3507. {
  3508. int i;
  3509. for (i = 0; i < MAX_CTLR; i++) {
  3510. if (!hba[i]) {
  3511. ctlr_info_t *p;
  3512. p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
  3513. if (!p)
  3514. goto Enomem;
  3515. hba[i] = p;
  3516. return i;
  3517. }
  3518. }
  3519. printk(KERN_WARNING "cciss: This driver supports a maximum"
  3520. " of %d controllers.\n", MAX_CTLR);
  3521. return -1;
  3522. Enomem:
  3523. printk(KERN_ERR "cciss: out of memory.\n");
  3524. return -1;
  3525. }
  3526. static void free_hba(int n)
  3527. {
  3528. ctlr_info_t *h = hba[n];
  3529. int i;
  3530. hba[n] = NULL;
  3531. for (i = 0; i < h->highest_lun + 1; i++)
  3532. if (h->gendisk[i] != NULL)
  3533. put_disk(h->gendisk[i]);
  3534. kfree(h);
  3535. }
  3536. /* Send a message CDB to the firmware. */
  3537. static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
  3538. {
  3539. typedef struct {
  3540. CommandListHeader_struct CommandHeader;
  3541. RequestBlock_struct Request;
  3542. ErrDescriptor_struct ErrorDescriptor;
  3543. } Command;
  3544. static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
  3545. Command *cmd;
  3546. dma_addr_t paddr64;
  3547. uint32_t paddr32, tag;
  3548. void __iomem *vaddr;
  3549. int i, err;
  3550. vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
  3551. if (vaddr == NULL)
  3552. return -ENOMEM;
  3553. /* The Inbound Post Queue only accepts 32-bit physical addresses for the
  3554. CCISS commands, so they must be allocated from the lower 4GiB of
  3555. memory. */
  3556. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3557. if (err) {
  3558. iounmap(vaddr);
  3559. return -ENOMEM;
  3560. }
  3561. cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
  3562. if (cmd == NULL) {
  3563. iounmap(vaddr);
  3564. return -ENOMEM;
  3565. }
  3566. /* This must fit, because of the 32-bit consistent DMA mask. Also,
  3567. although there's no guarantee, we assume that the address is at
  3568. least 4-byte aligned (most likely, it's page-aligned). */
  3569. paddr32 = paddr64;
  3570. cmd->CommandHeader.ReplyQueue = 0;
  3571. cmd->CommandHeader.SGList = 0;
  3572. cmd->CommandHeader.SGTotal = 0;
  3573. cmd->CommandHeader.Tag.lower = paddr32;
  3574. cmd->CommandHeader.Tag.upper = 0;
  3575. memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
  3576. cmd->Request.CDBLen = 16;
  3577. cmd->Request.Type.Type = TYPE_MSG;
  3578. cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
  3579. cmd->Request.Type.Direction = XFER_NONE;
  3580. cmd->Request.Timeout = 0; /* Don't time out */
  3581. cmd->Request.CDB[0] = opcode;
  3582. cmd->Request.CDB[1] = type;
  3583. memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
  3584. cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
  3585. cmd->ErrorDescriptor.Addr.upper = 0;
  3586. cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
  3587. writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
  3588. for (i = 0; i < 10; i++) {
  3589. tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
  3590. if ((tag & ~3) == paddr32)
  3591. break;
  3592. schedule_timeout_uninterruptible(HZ);
  3593. }
  3594. iounmap(vaddr);
  3595. /* we leak the DMA buffer here ... no choice since the controller could
  3596. still complete the command. */
  3597. if (i == 10) {
  3598. printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
  3599. opcode, type);
  3600. return -ETIMEDOUT;
  3601. }
  3602. pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
  3603. if (tag & 2) {
  3604. printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
  3605. opcode, type);
  3606. return -EIO;
  3607. }
  3608. printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
  3609. opcode, type);
  3610. return 0;
  3611. }
  3612. #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
  3613. #define cciss_noop(p) cciss_message(p, 3, 0)
  3614. static __devinit int cciss_reset_msi(struct pci_dev *pdev)
  3615. {
  3616. /* the #defines are stolen from drivers/pci/msi.h. */
  3617. #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
  3618. #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
  3619. int pos;
  3620. u16 control = 0;
  3621. pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
  3622. if (pos) {
  3623. pci_read_config_word(pdev, msi_control_reg(pos), &control);
  3624. if (control & PCI_MSI_FLAGS_ENABLE) {
  3625. printk(KERN_INFO "cciss: resetting MSI\n");
  3626. pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
  3627. }
  3628. }
  3629. pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
  3630. if (pos) {
  3631. pci_read_config_word(pdev, msi_control_reg(pos), &control);
  3632. if (control & PCI_MSIX_FLAGS_ENABLE) {
  3633. printk(KERN_INFO "cciss: resetting MSI-X\n");
  3634. pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
  3635. }
  3636. }
  3637. return 0;
  3638. }
  3639. /* This does a hard reset of the controller using PCI power management
  3640. * states. */
  3641. static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
  3642. {
  3643. u16 pmcsr, saved_config_space[32];
  3644. int i, pos;
  3645. printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
  3646. /* This is very nearly the same thing as
  3647. pci_save_state(pci_dev);
  3648. pci_set_power_state(pci_dev, PCI_D3hot);
  3649. pci_set_power_state(pci_dev, PCI_D0);
  3650. pci_restore_state(pci_dev);
  3651. but we can't use these nice canned kernel routines on
  3652. kexec, because they also check the MSI/MSI-X state in PCI
  3653. configuration space and do the wrong thing when it is
  3654. set/cleared. Also, the pci_save/restore_state functions
  3655. violate the ordering requirements for restoring the
  3656. configuration space from the CCISS document (see the
  3657. comment below). So we roll our own .... */
  3658. for (i = 0; i < 32; i++)
  3659. pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
  3660. pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
  3661. if (pos == 0) {
  3662. printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
  3663. return -ENODEV;
  3664. }
  3665. /* Quoting from the Open CISS Specification: "The Power
  3666. * Management Control/Status Register (CSR) controls the power
  3667. * state of the device. The normal operating state is D0,
  3668. * CSR=00h. The software off state is D3, CSR=03h. To reset
  3669. * the controller, place the interface device in D3 then to
  3670. * D0, this causes a secondary PCI reset which will reset the
  3671. * controller." */
  3672. /* enter the D3hot power management state */
  3673. pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
  3674. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3675. pmcsr |= PCI_D3hot;
  3676. pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
  3677. schedule_timeout_uninterruptible(HZ >> 1);
  3678. /* enter the D0 power management state */
  3679. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3680. pmcsr |= PCI_D0;
  3681. pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
  3682. schedule_timeout_uninterruptible(HZ >> 1);
  3683. /* Restore the PCI configuration space. The Open CISS
  3684. * Specification says, "Restore the PCI Configuration
  3685. * Registers, offsets 00h through 60h. It is important to
  3686. * restore the command register, 16-bits at offset 04h,
  3687. * last. Do not restore the configuration status register,
  3688. * 16-bits at offset 06h." Note that the offset is 2*i. */
  3689. for (i = 0; i < 32; i++) {
  3690. if (i == 2 || i == 3)
  3691. continue;
  3692. pci_write_config_word(pdev, 2*i, saved_config_space[i]);
  3693. }
  3694. wmb();
  3695. pci_write_config_word(pdev, 4, saved_config_space[2]);
  3696. return 0;
  3697. }
  3698. /*
  3699. * This is it. Find all the controllers and register them. I really hate
  3700. * stealing all these major device numbers.
  3701. * returns the number of block devices registered.
  3702. */
  3703. static int __devinit cciss_init_one(struct pci_dev *pdev,
  3704. const struct pci_device_id *ent)
  3705. {
  3706. int i;
  3707. int j = 0;
  3708. int rc;
  3709. int dac, return_code;
  3710. InquiryData_struct *inq_buff;
  3711. if (reset_devices) {
  3712. /* Reset the controller with a PCI power-cycle */
  3713. if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
  3714. return -ENODEV;
  3715. /* Now try to get the controller to respond to a no-op. Some
  3716. devices (notably the HP Smart Array 5i Controller) need
  3717. up to 30 seconds to respond. */
  3718. for (i=0; i<30; i++) {
  3719. if (cciss_noop(pdev) == 0)
  3720. break;
  3721. schedule_timeout_uninterruptible(HZ);
  3722. }
  3723. if (i == 30) {
  3724. printk(KERN_ERR "cciss: controller seems dead\n");
  3725. return -EBUSY;
  3726. }
  3727. }
  3728. i = alloc_cciss_hba();
  3729. if (i < 0)
  3730. return -1;
  3731. hba[i]->busy_initializing = 1;
  3732. INIT_HLIST_HEAD(&hba[i]->cmpQ);
  3733. INIT_HLIST_HEAD(&hba[i]->reqQ);
  3734. mutex_init(&hba[i]->busy_shutting_down);
  3735. if (cciss_pci_init(hba[i], pdev) != 0)
  3736. goto clean0;
  3737. sprintf(hba[i]->devname, "cciss%d", i);
  3738. hba[i]->ctlr = i;
  3739. hba[i]->pdev = pdev;
  3740. init_completion(&hba[i]->scan_wait);
  3741. if (cciss_create_hba_sysfs_entry(hba[i]))
  3742. goto clean0;
  3743. /* configure PCI DMA stuff */
  3744. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
  3745. dac = 1;
  3746. else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
  3747. dac = 0;
  3748. else {
  3749. printk(KERN_ERR "cciss: no suitable DMA available\n");
  3750. goto clean1;
  3751. }
  3752. /*
  3753. * register with the major number, or get a dynamic major number
  3754. * by passing 0 as argument. This is done for greater than
  3755. * 8 controller support.
  3756. */
  3757. if (i < MAX_CTLR_ORIG)
  3758. hba[i]->major = COMPAQ_CISS_MAJOR + i;
  3759. rc = register_blkdev(hba[i]->major, hba[i]->devname);
  3760. if (rc == -EBUSY || rc == -EINVAL) {
  3761. printk(KERN_ERR
  3762. "cciss: Unable to get major number %d for %s "
  3763. "on hba %d\n", hba[i]->major, hba[i]->devname, i);
  3764. goto clean1;
  3765. } else {
  3766. if (i >= MAX_CTLR_ORIG)
  3767. hba[i]->major = rc;
  3768. }
  3769. /* make sure the board interrupts are off */
  3770. hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
  3771. if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
  3772. IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
  3773. printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
  3774. hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
  3775. goto clean2;
  3776. }
  3777. printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
  3778. hba[i]->devname, pdev->device, pci_name(pdev),
  3779. hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
  3780. hba[i]->cmd_pool_bits =
  3781. kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
  3782. * sizeof(unsigned long), GFP_KERNEL);
  3783. hba[i]->cmd_pool = (CommandList_struct *)
  3784. pci_alloc_consistent(hba[i]->pdev,
  3785. hba[i]->nr_cmds * sizeof(CommandList_struct),
  3786. &(hba[i]->cmd_pool_dhandle));
  3787. hba[i]->errinfo_pool = (ErrorInfo_struct *)
  3788. pci_alloc_consistent(hba[i]->pdev,
  3789. hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
  3790. &(hba[i]->errinfo_pool_dhandle));
  3791. if ((hba[i]->cmd_pool_bits == NULL)
  3792. || (hba[i]->cmd_pool == NULL)
  3793. || (hba[i]->errinfo_pool == NULL)) {
  3794. printk(KERN_ERR "cciss: out of memory");
  3795. goto clean4;
  3796. }
  3797. spin_lock_init(&hba[i]->lock);
  3798. /* Initialize the pdev driver private data.
  3799. have it point to hba[i]. */
  3800. pci_set_drvdata(pdev, hba[i]);
  3801. /* command and error info recs zeroed out before
  3802. they are used */
  3803. memset(hba[i]->cmd_pool_bits, 0,
  3804. DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
  3805. * sizeof(unsigned long));
  3806. hba[i]->num_luns = 0;
  3807. hba[i]->highest_lun = -1;
  3808. for (j = 0; j < CISS_MAX_LUN; j++) {
  3809. hba[i]->drv[j].raid_level = -1;
  3810. hba[i]->drv[j].queue = NULL;
  3811. hba[i]->gendisk[j] = NULL;
  3812. }
  3813. cciss_scsi_setup(i);
  3814. /* Turn the interrupts on so we can service requests */
  3815. hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
  3816. /* Get the firmware version */
  3817. inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  3818. if (inq_buff == NULL) {
  3819. printk(KERN_ERR "cciss: out of memory\n");
  3820. goto clean4;
  3821. }
  3822. return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
  3823. sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
  3824. if (return_code == IO_OK) {
  3825. hba[i]->firm_ver[0] = inq_buff->data_byte[32];
  3826. hba[i]->firm_ver[1] = inq_buff->data_byte[33];
  3827. hba[i]->firm_ver[2] = inq_buff->data_byte[34];
  3828. hba[i]->firm_ver[3] = inq_buff->data_byte[35];
  3829. } else { /* send command failed */
  3830. printk(KERN_WARNING "cciss: unable to determine firmware"
  3831. " version of controller\n");
  3832. }
  3833. kfree(inq_buff);
  3834. cciss_procinit(i);
  3835. hba[i]->cciss_max_sectors = 2048;
  3836. rebuild_lun_table(hba[i], 1, 0);
  3837. hba[i]->busy_initializing = 0;
  3838. return 1;
  3839. clean4:
  3840. kfree(hba[i]->cmd_pool_bits);
  3841. if (hba[i]->cmd_pool)
  3842. pci_free_consistent(hba[i]->pdev,
  3843. hba[i]->nr_cmds * sizeof(CommandList_struct),
  3844. hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
  3845. if (hba[i]->errinfo_pool)
  3846. pci_free_consistent(hba[i]->pdev,
  3847. hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
  3848. hba[i]->errinfo_pool,
  3849. hba[i]->errinfo_pool_dhandle);
  3850. free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
  3851. clean2:
  3852. unregister_blkdev(hba[i]->major, hba[i]->devname);
  3853. clean1:
  3854. cciss_destroy_hba_sysfs_entry(hba[i]);
  3855. clean0:
  3856. hba[i]->busy_initializing = 0;
  3857. /* cleanup any queues that may have been initialized */
  3858. for (j=0; j <= hba[i]->highest_lun; j++){
  3859. drive_info_struct *drv = &(hba[i]->drv[j]);
  3860. if (drv->queue)
  3861. blk_cleanup_queue(drv->queue);
  3862. }
  3863. /*
  3864. * Deliberately omit pci_disable_device(): it does something nasty to
  3865. * Smart Array controllers that pci_enable_device does not undo
  3866. */
  3867. pci_release_regions(pdev);
  3868. pci_set_drvdata(pdev, NULL);
  3869. free_hba(i);
  3870. return -1;
  3871. }
  3872. static void cciss_shutdown(struct pci_dev *pdev)
  3873. {
  3874. ctlr_info_t *tmp_ptr;
  3875. int i;
  3876. char flush_buf[4];
  3877. int return_code;
  3878. tmp_ptr = pci_get_drvdata(pdev);
  3879. if (tmp_ptr == NULL)
  3880. return;
  3881. i = tmp_ptr->ctlr;
  3882. if (hba[i] == NULL)
  3883. return;
  3884. /* Turn board interrupts off and send the flush cache command */
  3885. /* sendcmd will turn off interrupt, and send the flush...
  3886. * To write all data in the battery backed cache to disks */
  3887. memset(flush_buf, 0, 4);
  3888. return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0,
  3889. CTLR_LUNID, TYPE_CMD);
  3890. if (return_code == IO_OK) {
  3891. printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
  3892. } else {
  3893. printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
  3894. }
  3895. free_irq(hba[i]->intr[2], hba[i]);
  3896. }
  3897. static void __devexit cciss_remove_one(struct pci_dev *pdev)
  3898. {
  3899. ctlr_info_t *tmp_ptr;
  3900. int i, j;
  3901. if (pci_get_drvdata(pdev) == NULL) {
  3902. printk(KERN_ERR "cciss: Unable to remove device \n");
  3903. return;
  3904. }
  3905. tmp_ptr = pci_get_drvdata(pdev);
  3906. i = tmp_ptr->ctlr;
  3907. if (hba[i] == NULL) {
  3908. printk(KERN_ERR "cciss: device appears to "
  3909. "already be removed \n");
  3910. return;
  3911. }
  3912. mutex_lock(&hba[i]->busy_shutting_down);
  3913. remove_from_scan_list(hba[i]);
  3914. remove_proc_entry(hba[i]->devname, proc_cciss);
  3915. unregister_blkdev(hba[i]->major, hba[i]->devname);
  3916. /* remove it from the disk list */
  3917. for (j = 0; j < CISS_MAX_LUN; j++) {
  3918. struct gendisk *disk = hba[i]->gendisk[j];
  3919. if (disk) {
  3920. struct request_queue *q = disk->queue;
  3921. if (disk->flags & GENHD_FL_UP) {
  3922. cciss_destroy_ld_sysfs_entry(hba[i], j, 1);
  3923. del_gendisk(disk);
  3924. }
  3925. if (q)
  3926. blk_cleanup_queue(q);
  3927. }
  3928. }
  3929. #ifdef CONFIG_CISS_SCSI_TAPE
  3930. cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
  3931. #endif
  3932. cciss_shutdown(pdev);
  3933. #ifdef CONFIG_PCI_MSI
  3934. if (hba[i]->msix_vector)
  3935. pci_disable_msix(hba[i]->pdev);
  3936. else if (hba[i]->msi_vector)
  3937. pci_disable_msi(hba[i]->pdev);
  3938. #endif /* CONFIG_PCI_MSI */
  3939. iounmap(hba[i]->vaddr);
  3940. pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
  3941. hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
  3942. pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
  3943. hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
  3944. kfree(hba[i]->cmd_pool_bits);
  3945. /*
  3946. * Deliberately omit pci_disable_device(): it does something nasty to
  3947. * Smart Array controllers that pci_enable_device does not undo
  3948. */
  3949. pci_release_regions(pdev);
  3950. pci_set_drvdata(pdev, NULL);
  3951. cciss_destroy_hba_sysfs_entry(hba[i]);
  3952. mutex_unlock(&hba[i]->busy_shutting_down);
  3953. free_hba(i);
  3954. }
  3955. static struct pci_driver cciss_pci_driver = {
  3956. .name = "cciss",
  3957. .probe = cciss_init_one,
  3958. .remove = __devexit_p(cciss_remove_one),
  3959. .id_table = cciss_pci_device_id, /* id_table */
  3960. .shutdown = cciss_shutdown,
  3961. };
  3962. /*
  3963. * This is it. Register the PCI driver information for the cards we control
  3964. * the OS will call our registered routines when it finds one of our cards.
  3965. */
  3966. static int __init cciss_init(void)
  3967. {
  3968. int err;
  3969. /*
  3970. * The hardware requires that commands are aligned on a 64-bit
  3971. * boundary. Given that we use pci_alloc_consistent() to allocate an
  3972. * array of them, the size must be a multiple of 8 bytes.
  3973. */
  3974. BUILD_BUG_ON(sizeof(CommandList_struct) % 8);
  3975. printk(KERN_INFO DRIVER_NAME "\n");
  3976. err = bus_register(&cciss_bus_type);
  3977. if (err)
  3978. return err;
  3979. /* Start the scan thread */
  3980. cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
  3981. if (IS_ERR(cciss_scan_thread)) {
  3982. err = PTR_ERR(cciss_scan_thread);
  3983. goto err_bus_unregister;
  3984. }
  3985. /* Register for our PCI devices */
  3986. err = pci_register_driver(&cciss_pci_driver);
  3987. if (err)
  3988. goto err_thread_stop;
  3989. return err;
  3990. err_thread_stop:
  3991. kthread_stop(cciss_scan_thread);
  3992. err_bus_unregister:
  3993. bus_unregister(&cciss_bus_type);
  3994. return err;
  3995. }
  3996. static void __exit cciss_cleanup(void)
  3997. {
  3998. int i;
  3999. pci_unregister_driver(&cciss_pci_driver);
  4000. /* double check that all controller entrys have been removed */
  4001. for (i = 0; i < MAX_CTLR; i++) {
  4002. if (hba[i] != NULL) {
  4003. printk(KERN_WARNING "cciss: had to remove"
  4004. " controller %d\n", i);
  4005. cciss_remove_one(hba[i]->pdev);
  4006. }
  4007. }
  4008. kthread_stop(cciss_scan_thread);
  4009. remove_proc_entry("driver/cciss", NULL);
  4010. bus_unregister(&cciss_bus_type);
  4011. }
  4012. static void fail_all_cmds(unsigned long ctlr)
  4013. {
  4014. /* If we get here, the board is apparently dead. */
  4015. ctlr_info_t *h = hba[ctlr];
  4016. CommandList_struct *c;
  4017. unsigned long flags;
  4018. printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
  4019. h->alive = 0; /* the controller apparently died... */
  4020. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  4021. pci_disable_device(h->pdev); /* Make sure it is really dead. */
  4022. /* move everything off the request queue onto the completed queue */
  4023. while (!hlist_empty(&h->reqQ)) {
  4024. c = hlist_entry(h->reqQ.first, CommandList_struct, list);
  4025. removeQ(c);
  4026. h->Qdepth--;
  4027. addQ(&h->cmpQ, c);
  4028. }
  4029. /* Now, fail everything on the completed queue with a HW error */
  4030. while (!hlist_empty(&h->cmpQ)) {
  4031. c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
  4032. removeQ(c);
  4033. if (c->cmd_type != CMD_MSG_STALE)
  4034. c->err_info->CommandStatus = CMD_HARDWARE_ERR;
  4035. if (c->cmd_type == CMD_RWREQ) {
  4036. complete_command(h, c, 0);
  4037. } else if (c->cmd_type == CMD_IOCTL_PEND)
  4038. complete(c->waiting);
  4039. #ifdef CONFIG_CISS_SCSI_TAPE
  4040. else if (c->cmd_type == CMD_SCSI)
  4041. complete_scsi_command(c, 0, 0);
  4042. #endif
  4043. }
  4044. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  4045. return;
  4046. }
  4047. module_init(cciss_init);
  4048. module_exit(cciss_cleanup);