sched.c 229 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/stop_machine.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/debugfs.h>
  70. #include <linux/ctype.h>
  71. #include <linux/ftrace.h>
  72. #include <linux/slab.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include <asm/mutex.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #include "sched_autogroup.h"
  79. #define CREATE_TRACE_POINTS
  80. #include <trace/events/sched.h>
  81. /*
  82. * Convert user-nice values [ -20 ... 0 ... 19 ]
  83. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  84. * and back.
  85. */
  86. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  87. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  88. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  89. /*
  90. * 'User priority' is the nice value converted to something we
  91. * can work with better when scaling various scheduler parameters,
  92. * it's a [ 0 ... 39 ] range.
  93. */
  94. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  95. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  96. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  97. /*
  98. * Helpers for converting nanosecond timing to jiffy resolution
  99. */
  100. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  101. #define NICE_0_LOAD SCHED_LOAD_SCALE
  102. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  103. /*
  104. * These are the 'tuning knobs' of the scheduler:
  105. *
  106. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  107. * Timeslices get refilled after they expire.
  108. */
  109. #define DEF_TIMESLICE (100 * HZ / 1000)
  110. /*
  111. * single value that denotes runtime == period, ie unlimited time.
  112. */
  113. #define RUNTIME_INF ((u64)~0ULL)
  114. static inline int rt_policy(int policy)
  115. {
  116. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  117. return 1;
  118. return 0;
  119. }
  120. static inline int task_has_rt_policy(struct task_struct *p)
  121. {
  122. return rt_policy(p->policy);
  123. }
  124. /*
  125. * This is the priority-queue data structure of the RT scheduling class:
  126. */
  127. struct rt_prio_array {
  128. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  129. struct list_head queue[MAX_RT_PRIO];
  130. };
  131. struct rt_bandwidth {
  132. /* nests inside the rq lock: */
  133. raw_spinlock_t rt_runtime_lock;
  134. ktime_t rt_period;
  135. u64 rt_runtime;
  136. struct hrtimer rt_period_timer;
  137. };
  138. static struct rt_bandwidth def_rt_bandwidth;
  139. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  140. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  141. {
  142. struct rt_bandwidth *rt_b =
  143. container_of(timer, struct rt_bandwidth, rt_period_timer);
  144. ktime_t now;
  145. int overrun;
  146. int idle = 0;
  147. for (;;) {
  148. now = hrtimer_cb_get_time(timer);
  149. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  150. if (!overrun)
  151. break;
  152. idle = do_sched_rt_period_timer(rt_b, overrun);
  153. }
  154. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  155. }
  156. static
  157. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  158. {
  159. rt_b->rt_period = ns_to_ktime(period);
  160. rt_b->rt_runtime = runtime;
  161. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  162. hrtimer_init(&rt_b->rt_period_timer,
  163. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  164. rt_b->rt_period_timer.function = sched_rt_period_timer;
  165. }
  166. static inline int rt_bandwidth_enabled(void)
  167. {
  168. return sysctl_sched_rt_runtime >= 0;
  169. }
  170. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  171. {
  172. ktime_t now;
  173. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  174. return;
  175. if (hrtimer_active(&rt_b->rt_period_timer))
  176. return;
  177. raw_spin_lock(&rt_b->rt_runtime_lock);
  178. for (;;) {
  179. unsigned long delta;
  180. ktime_t soft, hard;
  181. if (hrtimer_active(&rt_b->rt_period_timer))
  182. break;
  183. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  184. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  185. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  186. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  187. delta = ktime_to_ns(ktime_sub(hard, soft));
  188. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  189. HRTIMER_MODE_ABS_PINNED, 0);
  190. }
  191. raw_spin_unlock(&rt_b->rt_runtime_lock);
  192. }
  193. #ifdef CONFIG_RT_GROUP_SCHED
  194. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  195. {
  196. hrtimer_cancel(&rt_b->rt_period_timer);
  197. }
  198. #endif
  199. /*
  200. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  201. * detach_destroy_domains and partition_sched_domains.
  202. */
  203. static DEFINE_MUTEX(sched_domains_mutex);
  204. #ifdef CONFIG_CGROUP_SCHED
  205. #include <linux/cgroup.h>
  206. struct cfs_rq;
  207. static LIST_HEAD(task_groups);
  208. /* task group related information */
  209. struct task_group {
  210. struct cgroup_subsys_state css;
  211. #ifdef CONFIG_FAIR_GROUP_SCHED
  212. /* schedulable entities of this group on each cpu */
  213. struct sched_entity **se;
  214. /* runqueue "owned" by this group on each cpu */
  215. struct cfs_rq **cfs_rq;
  216. unsigned long shares;
  217. atomic_t load_weight;
  218. #endif
  219. #ifdef CONFIG_RT_GROUP_SCHED
  220. struct sched_rt_entity **rt_se;
  221. struct rt_rq **rt_rq;
  222. struct rt_bandwidth rt_bandwidth;
  223. #endif
  224. struct rcu_head rcu;
  225. struct list_head list;
  226. struct task_group *parent;
  227. struct list_head siblings;
  228. struct list_head children;
  229. #ifdef CONFIG_SCHED_AUTOGROUP
  230. struct autogroup *autogroup;
  231. #endif
  232. };
  233. /* task_group_lock serializes the addition/removal of task groups */
  234. static DEFINE_SPINLOCK(task_group_lock);
  235. #ifdef CONFIG_FAIR_GROUP_SCHED
  236. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  237. /*
  238. * A weight of 0 or 1 can cause arithmetics problems.
  239. * A weight of a cfs_rq is the sum of weights of which entities
  240. * are queued on this cfs_rq, so a weight of a entity should not be
  241. * too large, so as the shares value of a task group.
  242. * (The default weight is 1024 - so there's no practical
  243. * limitation from this.)
  244. */
  245. #define MIN_SHARES 2
  246. #define MAX_SHARES (1UL << 18)
  247. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  248. #endif
  249. /* Default task group.
  250. * Every task in system belong to this group at bootup.
  251. */
  252. struct task_group root_task_group;
  253. #endif /* CONFIG_CGROUP_SCHED */
  254. /* CFS-related fields in a runqueue */
  255. struct cfs_rq {
  256. struct load_weight load;
  257. unsigned long nr_running;
  258. u64 exec_clock;
  259. u64 min_vruntime;
  260. #ifndef CONFIG_64BIT
  261. u64 min_vruntime_copy;
  262. #endif
  263. struct rb_root tasks_timeline;
  264. struct rb_node *rb_leftmost;
  265. struct list_head tasks;
  266. struct list_head *balance_iterator;
  267. /*
  268. * 'curr' points to currently running entity on this cfs_rq.
  269. * It is set to NULL otherwise (i.e when none are currently running).
  270. */
  271. struct sched_entity *curr, *next, *last, *skip;
  272. unsigned int nr_spread_over;
  273. #ifdef CONFIG_FAIR_GROUP_SCHED
  274. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  275. /*
  276. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  277. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  278. * (like users, containers etc.)
  279. *
  280. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  281. * list is used during load balance.
  282. */
  283. int on_list;
  284. struct list_head leaf_cfs_rq_list;
  285. struct task_group *tg; /* group that "owns" this runqueue */
  286. #ifdef CONFIG_SMP
  287. /*
  288. * the part of load.weight contributed by tasks
  289. */
  290. unsigned long task_weight;
  291. /*
  292. * h_load = weight * f(tg)
  293. *
  294. * Where f(tg) is the recursive weight fraction assigned to
  295. * this group.
  296. */
  297. unsigned long h_load;
  298. /*
  299. * Maintaining per-cpu shares distribution for group scheduling
  300. *
  301. * load_stamp is the last time we updated the load average
  302. * load_last is the last time we updated the load average and saw load
  303. * load_unacc_exec_time is currently unaccounted execution time
  304. */
  305. u64 load_avg;
  306. u64 load_period;
  307. u64 load_stamp, load_last, load_unacc_exec_time;
  308. unsigned long load_contribution;
  309. #endif
  310. #endif
  311. };
  312. /* Real-Time classes' related field in a runqueue: */
  313. struct rt_rq {
  314. struct rt_prio_array active;
  315. unsigned long rt_nr_running;
  316. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  317. struct {
  318. int curr; /* highest queued rt task prio */
  319. #ifdef CONFIG_SMP
  320. int next; /* next highest */
  321. #endif
  322. } highest_prio;
  323. #endif
  324. #ifdef CONFIG_SMP
  325. unsigned long rt_nr_migratory;
  326. unsigned long rt_nr_total;
  327. int overloaded;
  328. struct plist_head pushable_tasks;
  329. #endif
  330. int rt_throttled;
  331. u64 rt_time;
  332. u64 rt_runtime;
  333. /* Nests inside the rq lock: */
  334. raw_spinlock_t rt_runtime_lock;
  335. #ifdef CONFIG_RT_GROUP_SCHED
  336. unsigned long rt_nr_boosted;
  337. struct rq *rq;
  338. struct list_head leaf_rt_rq_list;
  339. struct task_group *tg;
  340. #endif
  341. };
  342. #ifdef CONFIG_SMP
  343. /*
  344. * We add the notion of a root-domain which will be used to define per-domain
  345. * variables. Each exclusive cpuset essentially defines an island domain by
  346. * fully partitioning the member cpus from any other cpuset. Whenever a new
  347. * exclusive cpuset is created, we also create and attach a new root-domain
  348. * object.
  349. *
  350. */
  351. struct root_domain {
  352. atomic_t refcount;
  353. cpumask_var_t span;
  354. cpumask_var_t online;
  355. /*
  356. * The "RT overload" flag: it gets set if a CPU has more than
  357. * one runnable RT task.
  358. */
  359. cpumask_var_t rto_mask;
  360. atomic_t rto_count;
  361. struct cpupri cpupri;
  362. };
  363. /*
  364. * By default the system creates a single root-domain with all cpus as
  365. * members (mimicking the global state we have today).
  366. */
  367. static struct root_domain def_root_domain;
  368. #endif /* CONFIG_SMP */
  369. /*
  370. * This is the main, per-CPU runqueue data structure.
  371. *
  372. * Locking rule: those places that want to lock multiple runqueues
  373. * (such as the load balancing or the thread migration code), lock
  374. * acquire operations must be ordered by ascending &runqueue.
  375. */
  376. struct rq {
  377. /* runqueue lock: */
  378. raw_spinlock_t lock;
  379. /*
  380. * nr_running and cpu_load should be in the same cacheline because
  381. * remote CPUs use both these fields when doing load calculation.
  382. */
  383. unsigned long nr_running;
  384. #define CPU_LOAD_IDX_MAX 5
  385. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  386. unsigned long last_load_update_tick;
  387. #ifdef CONFIG_NO_HZ
  388. u64 nohz_stamp;
  389. unsigned char nohz_balance_kick;
  390. #endif
  391. unsigned int skip_clock_update;
  392. /* capture load from *all* tasks on this cpu: */
  393. struct load_weight load;
  394. unsigned long nr_load_updates;
  395. u64 nr_switches;
  396. struct cfs_rq cfs;
  397. struct rt_rq rt;
  398. #ifdef CONFIG_FAIR_GROUP_SCHED
  399. /* list of leaf cfs_rq on this cpu: */
  400. struct list_head leaf_cfs_rq_list;
  401. #endif
  402. #ifdef CONFIG_RT_GROUP_SCHED
  403. struct list_head leaf_rt_rq_list;
  404. #endif
  405. /*
  406. * This is part of a global counter where only the total sum
  407. * over all CPUs matters. A task can increase this counter on
  408. * one CPU and if it got migrated afterwards it may decrease
  409. * it on another CPU. Always updated under the runqueue lock:
  410. */
  411. unsigned long nr_uninterruptible;
  412. struct task_struct *curr, *idle, *stop;
  413. unsigned long next_balance;
  414. struct mm_struct *prev_mm;
  415. u64 clock;
  416. u64 clock_task;
  417. atomic_t nr_iowait;
  418. #ifdef CONFIG_SMP
  419. struct root_domain *rd;
  420. struct sched_domain *sd;
  421. unsigned long cpu_power;
  422. unsigned char idle_at_tick;
  423. /* For active balancing */
  424. int post_schedule;
  425. int active_balance;
  426. int push_cpu;
  427. struct cpu_stop_work active_balance_work;
  428. /* cpu of this runqueue: */
  429. int cpu;
  430. int online;
  431. unsigned long avg_load_per_task;
  432. u64 rt_avg;
  433. u64 age_stamp;
  434. u64 idle_stamp;
  435. u64 avg_idle;
  436. #endif
  437. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  438. u64 prev_irq_time;
  439. #endif
  440. /* calc_load related fields */
  441. unsigned long calc_load_update;
  442. long calc_load_active;
  443. #ifdef CONFIG_SCHED_HRTICK
  444. #ifdef CONFIG_SMP
  445. int hrtick_csd_pending;
  446. struct call_single_data hrtick_csd;
  447. #endif
  448. struct hrtimer hrtick_timer;
  449. #endif
  450. #ifdef CONFIG_SCHEDSTATS
  451. /* latency stats */
  452. struct sched_info rq_sched_info;
  453. unsigned long long rq_cpu_time;
  454. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  455. /* sys_sched_yield() stats */
  456. unsigned int yld_count;
  457. /* schedule() stats */
  458. unsigned int sched_switch;
  459. unsigned int sched_count;
  460. unsigned int sched_goidle;
  461. /* try_to_wake_up() stats */
  462. unsigned int ttwu_count;
  463. unsigned int ttwu_local;
  464. #endif
  465. };
  466. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  467. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  468. static inline int cpu_of(struct rq *rq)
  469. {
  470. #ifdef CONFIG_SMP
  471. return rq->cpu;
  472. #else
  473. return 0;
  474. #endif
  475. }
  476. #define rcu_dereference_check_sched_domain(p) \
  477. rcu_dereference_check((p), \
  478. rcu_read_lock_sched_held() || \
  479. lockdep_is_held(&sched_domains_mutex))
  480. /*
  481. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  482. * See detach_destroy_domains: synchronize_sched for details.
  483. *
  484. * The domain tree of any CPU may only be accessed from within
  485. * preempt-disabled sections.
  486. */
  487. #define for_each_domain(cpu, __sd) \
  488. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  489. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  490. #define this_rq() (&__get_cpu_var(runqueues))
  491. #define task_rq(p) cpu_rq(task_cpu(p))
  492. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  493. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  494. #ifdef CONFIG_CGROUP_SCHED
  495. /*
  496. * Return the group to which this tasks belongs.
  497. *
  498. * We use task_subsys_state_check() and extend the RCU verification
  499. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  500. * holds that lock for each task it moves into the cgroup. Therefore
  501. * by holding that lock, we pin the task to the current cgroup.
  502. */
  503. static inline struct task_group *task_group(struct task_struct *p)
  504. {
  505. struct task_group *tg;
  506. struct cgroup_subsys_state *css;
  507. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  508. lockdep_is_held(&task_rq(p)->lock));
  509. tg = container_of(css, struct task_group, css);
  510. return autogroup_task_group(p, tg);
  511. }
  512. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  513. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  514. {
  515. #ifdef CONFIG_FAIR_GROUP_SCHED
  516. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  517. p->se.parent = task_group(p)->se[cpu];
  518. #endif
  519. #ifdef CONFIG_RT_GROUP_SCHED
  520. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  521. p->rt.parent = task_group(p)->rt_se[cpu];
  522. #endif
  523. }
  524. #else /* CONFIG_CGROUP_SCHED */
  525. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  526. static inline struct task_group *task_group(struct task_struct *p)
  527. {
  528. return NULL;
  529. }
  530. #endif /* CONFIG_CGROUP_SCHED */
  531. static void update_rq_clock_task(struct rq *rq, s64 delta);
  532. static void update_rq_clock(struct rq *rq)
  533. {
  534. s64 delta;
  535. if (rq->skip_clock_update)
  536. return;
  537. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  538. rq->clock += delta;
  539. update_rq_clock_task(rq, delta);
  540. }
  541. /*
  542. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  543. */
  544. #ifdef CONFIG_SCHED_DEBUG
  545. # define const_debug __read_mostly
  546. #else
  547. # define const_debug static const
  548. #endif
  549. /**
  550. * runqueue_is_locked - Returns true if the current cpu runqueue is locked
  551. * @cpu: the processor in question.
  552. *
  553. * This interface allows printk to be called with the runqueue lock
  554. * held and know whether or not it is OK to wake up the klogd.
  555. */
  556. int runqueue_is_locked(int cpu)
  557. {
  558. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  559. }
  560. /*
  561. * Debugging: various feature bits
  562. */
  563. #define SCHED_FEAT(name, enabled) \
  564. __SCHED_FEAT_##name ,
  565. enum {
  566. #include "sched_features.h"
  567. };
  568. #undef SCHED_FEAT
  569. #define SCHED_FEAT(name, enabled) \
  570. (1UL << __SCHED_FEAT_##name) * enabled |
  571. const_debug unsigned int sysctl_sched_features =
  572. #include "sched_features.h"
  573. 0;
  574. #undef SCHED_FEAT
  575. #ifdef CONFIG_SCHED_DEBUG
  576. #define SCHED_FEAT(name, enabled) \
  577. #name ,
  578. static __read_mostly char *sched_feat_names[] = {
  579. #include "sched_features.h"
  580. NULL
  581. };
  582. #undef SCHED_FEAT
  583. static int sched_feat_show(struct seq_file *m, void *v)
  584. {
  585. int i;
  586. for (i = 0; sched_feat_names[i]; i++) {
  587. if (!(sysctl_sched_features & (1UL << i)))
  588. seq_puts(m, "NO_");
  589. seq_printf(m, "%s ", sched_feat_names[i]);
  590. }
  591. seq_puts(m, "\n");
  592. return 0;
  593. }
  594. static ssize_t
  595. sched_feat_write(struct file *filp, const char __user *ubuf,
  596. size_t cnt, loff_t *ppos)
  597. {
  598. char buf[64];
  599. char *cmp;
  600. int neg = 0;
  601. int i;
  602. if (cnt > 63)
  603. cnt = 63;
  604. if (copy_from_user(&buf, ubuf, cnt))
  605. return -EFAULT;
  606. buf[cnt] = 0;
  607. cmp = strstrip(buf);
  608. if (strncmp(cmp, "NO_", 3) == 0) {
  609. neg = 1;
  610. cmp += 3;
  611. }
  612. for (i = 0; sched_feat_names[i]; i++) {
  613. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  614. if (neg)
  615. sysctl_sched_features &= ~(1UL << i);
  616. else
  617. sysctl_sched_features |= (1UL << i);
  618. break;
  619. }
  620. }
  621. if (!sched_feat_names[i])
  622. return -EINVAL;
  623. *ppos += cnt;
  624. return cnt;
  625. }
  626. static int sched_feat_open(struct inode *inode, struct file *filp)
  627. {
  628. return single_open(filp, sched_feat_show, NULL);
  629. }
  630. static const struct file_operations sched_feat_fops = {
  631. .open = sched_feat_open,
  632. .write = sched_feat_write,
  633. .read = seq_read,
  634. .llseek = seq_lseek,
  635. .release = single_release,
  636. };
  637. static __init int sched_init_debug(void)
  638. {
  639. debugfs_create_file("sched_features", 0644, NULL, NULL,
  640. &sched_feat_fops);
  641. return 0;
  642. }
  643. late_initcall(sched_init_debug);
  644. #endif
  645. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  646. /*
  647. * Number of tasks to iterate in a single balance run.
  648. * Limited because this is done with IRQs disabled.
  649. */
  650. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  651. /*
  652. * period over which we average the RT time consumption, measured
  653. * in ms.
  654. *
  655. * default: 1s
  656. */
  657. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  658. /*
  659. * period over which we measure -rt task cpu usage in us.
  660. * default: 1s
  661. */
  662. unsigned int sysctl_sched_rt_period = 1000000;
  663. static __read_mostly int scheduler_running;
  664. /*
  665. * part of the period that we allow rt tasks to run in us.
  666. * default: 0.95s
  667. */
  668. int sysctl_sched_rt_runtime = 950000;
  669. static inline u64 global_rt_period(void)
  670. {
  671. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  672. }
  673. static inline u64 global_rt_runtime(void)
  674. {
  675. if (sysctl_sched_rt_runtime < 0)
  676. return RUNTIME_INF;
  677. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  678. }
  679. #ifndef prepare_arch_switch
  680. # define prepare_arch_switch(next) do { } while (0)
  681. #endif
  682. #ifndef finish_arch_switch
  683. # define finish_arch_switch(prev) do { } while (0)
  684. #endif
  685. static inline int task_current(struct rq *rq, struct task_struct *p)
  686. {
  687. return rq->curr == p;
  688. }
  689. static inline int task_running(struct rq *rq, struct task_struct *p)
  690. {
  691. #ifdef CONFIG_SMP
  692. return p->on_cpu;
  693. #else
  694. return task_current(rq, p);
  695. #endif
  696. }
  697. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  698. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  699. {
  700. #ifdef CONFIG_SMP
  701. /*
  702. * We can optimise this out completely for !SMP, because the
  703. * SMP rebalancing from interrupt is the only thing that cares
  704. * here.
  705. */
  706. next->on_cpu = 1;
  707. #endif
  708. }
  709. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  710. {
  711. #ifdef CONFIG_SMP
  712. /*
  713. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  714. * We must ensure this doesn't happen until the switch is completely
  715. * finished.
  716. */
  717. smp_wmb();
  718. prev->on_cpu = 0;
  719. #endif
  720. #ifdef CONFIG_DEBUG_SPINLOCK
  721. /* this is a valid case when another task releases the spinlock */
  722. rq->lock.owner = current;
  723. #endif
  724. /*
  725. * If we are tracking spinlock dependencies then we have to
  726. * fix up the runqueue lock - which gets 'carried over' from
  727. * prev into current:
  728. */
  729. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  730. raw_spin_unlock_irq(&rq->lock);
  731. }
  732. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  733. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  734. {
  735. #ifdef CONFIG_SMP
  736. /*
  737. * We can optimise this out completely for !SMP, because the
  738. * SMP rebalancing from interrupt is the only thing that cares
  739. * here.
  740. */
  741. next->on_cpu = 1;
  742. #endif
  743. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  744. raw_spin_unlock_irq(&rq->lock);
  745. #else
  746. raw_spin_unlock(&rq->lock);
  747. #endif
  748. }
  749. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  750. {
  751. #ifdef CONFIG_SMP
  752. /*
  753. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  754. * We must ensure this doesn't happen until the switch is completely
  755. * finished.
  756. */
  757. smp_wmb();
  758. prev->on_cpu = 0;
  759. #endif
  760. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  761. local_irq_enable();
  762. #endif
  763. }
  764. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  765. /*
  766. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  767. * against ttwu().
  768. */
  769. static inline int task_is_waking(struct task_struct *p)
  770. {
  771. return unlikely(p->state == TASK_WAKING);
  772. }
  773. /*
  774. * __task_rq_lock - lock the runqueue a given task resides on.
  775. * Must be called interrupts disabled.
  776. */
  777. static inline struct rq *__task_rq_lock(struct task_struct *p)
  778. __acquires(rq->lock)
  779. {
  780. struct rq *rq;
  781. for (;;) {
  782. rq = task_rq(p);
  783. raw_spin_lock(&rq->lock);
  784. if (likely(rq == task_rq(p)))
  785. return rq;
  786. raw_spin_unlock(&rq->lock);
  787. }
  788. }
  789. /*
  790. * task_rq_lock - lock the runqueue a given task resides on and disable
  791. * interrupts. Note the ordering: we can safely lookup the task_rq without
  792. * explicitly disabling preemption.
  793. */
  794. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  795. __acquires(rq->lock)
  796. {
  797. struct rq *rq;
  798. for (;;) {
  799. local_irq_save(*flags);
  800. rq = task_rq(p);
  801. raw_spin_lock(&rq->lock);
  802. if (likely(rq == task_rq(p)))
  803. return rq;
  804. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  805. }
  806. }
  807. static void __task_rq_unlock(struct rq *rq)
  808. __releases(rq->lock)
  809. {
  810. raw_spin_unlock(&rq->lock);
  811. }
  812. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  813. __releases(rq->lock)
  814. {
  815. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  816. }
  817. /*
  818. * this_rq_lock - lock this runqueue and disable interrupts.
  819. */
  820. static struct rq *this_rq_lock(void)
  821. __acquires(rq->lock)
  822. {
  823. struct rq *rq;
  824. local_irq_disable();
  825. rq = this_rq();
  826. raw_spin_lock(&rq->lock);
  827. return rq;
  828. }
  829. #ifdef CONFIG_SCHED_HRTICK
  830. /*
  831. * Use HR-timers to deliver accurate preemption points.
  832. *
  833. * Its all a bit involved since we cannot program an hrt while holding the
  834. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  835. * reschedule event.
  836. *
  837. * When we get rescheduled we reprogram the hrtick_timer outside of the
  838. * rq->lock.
  839. */
  840. /*
  841. * Use hrtick when:
  842. * - enabled by features
  843. * - hrtimer is actually high res
  844. */
  845. static inline int hrtick_enabled(struct rq *rq)
  846. {
  847. if (!sched_feat(HRTICK))
  848. return 0;
  849. if (!cpu_active(cpu_of(rq)))
  850. return 0;
  851. return hrtimer_is_hres_active(&rq->hrtick_timer);
  852. }
  853. static void hrtick_clear(struct rq *rq)
  854. {
  855. if (hrtimer_active(&rq->hrtick_timer))
  856. hrtimer_cancel(&rq->hrtick_timer);
  857. }
  858. /*
  859. * High-resolution timer tick.
  860. * Runs from hardirq context with interrupts disabled.
  861. */
  862. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  863. {
  864. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  865. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  866. raw_spin_lock(&rq->lock);
  867. update_rq_clock(rq);
  868. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  869. raw_spin_unlock(&rq->lock);
  870. return HRTIMER_NORESTART;
  871. }
  872. #ifdef CONFIG_SMP
  873. /*
  874. * called from hardirq (IPI) context
  875. */
  876. static void __hrtick_start(void *arg)
  877. {
  878. struct rq *rq = arg;
  879. raw_spin_lock(&rq->lock);
  880. hrtimer_restart(&rq->hrtick_timer);
  881. rq->hrtick_csd_pending = 0;
  882. raw_spin_unlock(&rq->lock);
  883. }
  884. /*
  885. * Called to set the hrtick timer state.
  886. *
  887. * called with rq->lock held and irqs disabled
  888. */
  889. static void hrtick_start(struct rq *rq, u64 delay)
  890. {
  891. struct hrtimer *timer = &rq->hrtick_timer;
  892. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  893. hrtimer_set_expires(timer, time);
  894. if (rq == this_rq()) {
  895. hrtimer_restart(timer);
  896. } else if (!rq->hrtick_csd_pending) {
  897. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  898. rq->hrtick_csd_pending = 1;
  899. }
  900. }
  901. static int
  902. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  903. {
  904. int cpu = (int)(long)hcpu;
  905. switch (action) {
  906. case CPU_UP_CANCELED:
  907. case CPU_UP_CANCELED_FROZEN:
  908. case CPU_DOWN_PREPARE:
  909. case CPU_DOWN_PREPARE_FROZEN:
  910. case CPU_DEAD:
  911. case CPU_DEAD_FROZEN:
  912. hrtick_clear(cpu_rq(cpu));
  913. return NOTIFY_OK;
  914. }
  915. return NOTIFY_DONE;
  916. }
  917. static __init void init_hrtick(void)
  918. {
  919. hotcpu_notifier(hotplug_hrtick, 0);
  920. }
  921. #else
  922. /*
  923. * Called to set the hrtick timer state.
  924. *
  925. * called with rq->lock held and irqs disabled
  926. */
  927. static void hrtick_start(struct rq *rq, u64 delay)
  928. {
  929. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  930. HRTIMER_MODE_REL_PINNED, 0);
  931. }
  932. static inline void init_hrtick(void)
  933. {
  934. }
  935. #endif /* CONFIG_SMP */
  936. static void init_rq_hrtick(struct rq *rq)
  937. {
  938. #ifdef CONFIG_SMP
  939. rq->hrtick_csd_pending = 0;
  940. rq->hrtick_csd.flags = 0;
  941. rq->hrtick_csd.func = __hrtick_start;
  942. rq->hrtick_csd.info = rq;
  943. #endif
  944. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  945. rq->hrtick_timer.function = hrtick;
  946. }
  947. #else /* CONFIG_SCHED_HRTICK */
  948. static inline void hrtick_clear(struct rq *rq)
  949. {
  950. }
  951. static inline void init_rq_hrtick(struct rq *rq)
  952. {
  953. }
  954. static inline void init_hrtick(void)
  955. {
  956. }
  957. #endif /* CONFIG_SCHED_HRTICK */
  958. /*
  959. * resched_task - mark a task 'to be rescheduled now'.
  960. *
  961. * On UP this means the setting of the need_resched flag, on SMP it
  962. * might also involve a cross-CPU call to trigger the scheduler on
  963. * the target CPU.
  964. */
  965. #ifdef CONFIG_SMP
  966. #ifndef tsk_is_polling
  967. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  968. #endif
  969. static void resched_task(struct task_struct *p)
  970. {
  971. int cpu;
  972. assert_raw_spin_locked(&task_rq(p)->lock);
  973. if (test_tsk_need_resched(p))
  974. return;
  975. set_tsk_need_resched(p);
  976. cpu = task_cpu(p);
  977. if (cpu == smp_processor_id())
  978. return;
  979. /* NEED_RESCHED must be visible before we test polling */
  980. smp_mb();
  981. if (!tsk_is_polling(p))
  982. smp_send_reschedule(cpu);
  983. }
  984. static void resched_cpu(int cpu)
  985. {
  986. struct rq *rq = cpu_rq(cpu);
  987. unsigned long flags;
  988. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  989. return;
  990. resched_task(cpu_curr(cpu));
  991. raw_spin_unlock_irqrestore(&rq->lock, flags);
  992. }
  993. #ifdef CONFIG_NO_HZ
  994. /*
  995. * In the semi idle case, use the nearest busy cpu for migrating timers
  996. * from an idle cpu. This is good for power-savings.
  997. *
  998. * We don't do similar optimization for completely idle system, as
  999. * selecting an idle cpu will add more delays to the timers than intended
  1000. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  1001. */
  1002. int get_nohz_timer_target(void)
  1003. {
  1004. int cpu = smp_processor_id();
  1005. int i;
  1006. struct sched_domain *sd;
  1007. for_each_domain(cpu, sd) {
  1008. for_each_cpu(i, sched_domain_span(sd))
  1009. if (!idle_cpu(i))
  1010. return i;
  1011. }
  1012. return cpu;
  1013. }
  1014. /*
  1015. * When add_timer_on() enqueues a timer into the timer wheel of an
  1016. * idle CPU then this timer might expire before the next timer event
  1017. * which is scheduled to wake up that CPU. In case of a completely
  1018. * idle system the next event might even be infinite time into the
  1019. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1020. * leaves the inner idle loop so the newly added timer is taken into
  1021. * account when the CPU goes back to idle and evaluates the timer
  1022. * wheel for the next timer event.
  1023. */
  1024. void wake_up_idle_cpu(int cpu)
  1025. {
  1026. struct rq *rq = cpu_rq(cpu);
  1027. if (cpu == smp_processor_id())
  1028. return;
  1029. /*
  1030. * This is safe, as this function is called with the timer
  1031. * wheel base lock of (cpu) held. When the CPU is on the way
  1032. * to idle and has not yet set rq->curr to idle then it will
  1033. * be serialized on the timer wheel base lock and take the new
  1034. * timer into account automatically.
  1035. */
  1036. if (rq->curr != rq->idle)
  1037. return;
  1038. /*
  1039. * We can set TIF_RESCHED on the idle task of the other CPU
  1040. * lockless. The worst case is that the other CPU runs the
  1041. * idle task through an additional NOOP schedule()
  1042. */
  1043. set_tsk_need_resched(rq->idle);
  1044. /* NEED_RESCHED must be visible before we test polling */
  1045. smp_mb();
  1046. if (!tsk_is_polling(rq->idle))
  1047. smp_send_reschedule(cpu);
  1048. }
  1049. #endif /* CONFIG_NO_HZ */
  1050. static u64 sched_avg_period(void)
  1051. {
  1052. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1053. }
  1054. static void sched_avg_update(struct rq *rq)
  1055. {
  1056. s64 period = sched_avg_period();
  1057. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1058. /*
  1059. * Inline assembly required to prevent the compiler
  1060. * optimising this loop into a divmod call.
  1061. * See __iter_div_u64_rem() for another example of this.
  1062. */
  1063. asm("" : "+rm" (rq->age_stamp));
  1064. rq->age_stamp += period;
  1065. rq->rt_avg /= 2;
  1066. }
  1067. }
  1068. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1069. {
  1070. rq->rt_avg += rt_delta;
  1071. sched_avg_update(rq);
  1072. }
  1073. #else /* !CONFIG_SMP */
  1074. static void resched_task(struct task_struct *p)
  1075. {
  1076. assert_raw_spin_locked(&task_rq(p)->lock);
  1077. set_tsk_need_resched(p);
  1078. }
  1079. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1080. {
  1081. }
  1082. static void sched_avg_update(struct rq *rq)
  1083. {
  1084. }
  1085. #endif /* CONFIG_SMP */
  1086. #if BITS_PER_LONG == 32
  1087. # define WMULT_CONST (~0UL)
  1088. #else
  1089. # define WMULT_CONST (1UL << 32)
  1090. #endif
  1091. #define WMULT_SHIFT 32
  1092. /*
  1093. * Shift right and round:
  1094. */
  1095. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1096. /*
  1097. * delta *= weight / lw
  1098. */
  1099. static unsigned long
  1100. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1101. struct load_weight *lw)
  1102. {
  1103. u64 tmp;
  1104. if (!lw->inv_weight) {
  1105. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1106. lw->inv_weight = 1;
  1107. else
  1108. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1109. / (lw->weight+1);
  1110. }
  1111. tmp = (u64)delta_exec * weight;
  1112. /*
  1113. * Check whether we'd overflow the 64-bit multiplication:
  1114. */
  1115. if (unlikely(tmp > WMULT_CONST))
  1116. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1117. WMULT_SHIFT/2);
  1118. else
  1119. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1120. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1121. }
  1122. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1123. {
  1124. lw->weight += inc;
  1125. lw->inv_weight = 0;
  1126. }
  1127. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1128. {
  1129. lw->weight -= dec;
  1130. lw->inv_weight = 0;
  1131. }
  1132. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1133. {
  1134. lw->weight = w;
  1135. lw->inv_weight = 0;
  1136. }
  1137. /*
  1138. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1139. * of tasks with abnormal "nice" values across CPUs the contribution that
  1140. * each task makes to its run queue's load is weighted according to its
  1141. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1142. * scaled version of the new time slice allocation that they receive on time
  1143. * slice expiry etc.
  1144. */
  1145. #define WEIGHT_IDLEPRIO 3
  1146. #define WMULT_IDLEPRIO 1431655765
  1147. /*
  1148. * Nice levels are multiplicative, with a gentle 10% change for every
  1149. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1150. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1151. * that remained on nice 0.
  1152. *
  1153. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1154. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1155. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1156. * If a task goes up by ~10% and another task goes down by ~10% then
  1157. * the relative distance between them is ~25%.)
  1158. */
  1159. static const int prio_to_weight[40] = {
  1160. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1161. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1162. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1163. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1164. /* 0 */ 1024, 820, 655, 526, 423,
  1165. /* 5 */ 335, 272, 215, 172, 137,
  1166. /* 10 */ 110, 87, 70, 56, 45,
  1167. /* 15 */ 36, 29, 23, 18, 15,
  1168. };
  1169. /*
  1170. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1171. *
  1172. * In cases where the weight does not change often, we can use the
  1173. * precalculated inverse to speed up arithmetics by turning divisions
  1174. * into multiplications:
  1175. */
  1176. static const u32 prio_to_wmult[40] = {
  1177. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1178. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1179. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1180. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1181. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1182. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1183. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1184. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1185. };
  1186. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1187. enum cpuacct_stat_index {
  1188. CPUACCT_STAT_USER, /* ... user mode */
  1189. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1190. CPUACCT_STAT_NSTATS,
  1191. };
  1192. #ifdef CONFIG_CGROUP_CPUACCT
  1193. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1194. static void cpuacct_update_stats(struct task_struct *tsk,
  1195. enum cpuacct_stat_index idx, cputime_t val);
  1196. #else
  1197. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1198. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1199. enum cpuacct_stat_index idx, cputime_t val) {}
  1200. #endif
  1201. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1202. {
  1203. update_load_add(&rq->load, load);
  1204. }
  1205. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1206. {
  1207. update_load_sub(&rq->load, load);
  1208. }
  1209. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1210. typedef int (*tg_visitor)(struct task_group *, void *);
  1211. /*
  1212. * Iterate the full tree, calling @down when first entering a node and @up when
  1213. * leaving it for the final time.
  1214. */
  1215. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1216. {
  1217. struct task_group *parent, *child;
  1218. int ret;
  1219. rcu_read_lock();
  1220. parent = &root_task_group;
  1221. down:
  1222. ret = (*down)(parent, data);
  1223. if (ret)
  1224. goto out_unlock;
  1225. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1226. parent = child;
  1227. goto down;
  1228. up:
  1229. continue;
  1230. }
  1231. ret = (*up)(parent, data);
  1232. if (ret)
  1233. goto out_unlock;
  1234. child = parent;
  1235. parent = parent->parent;
  1236. if (parent)
  1237. goto up;
  1238. out_unlock:
  1239. rcu_read_unlock();
  1240. return ret;
  1241. }
  1242. static int tg_nop(struct task_group *tg, void *data)
  1243. {
  1244. return 0;
  1245. }
  1246. #endif
  1247. #ifdef CONFIG_SMP
  1248. /* Used instead of source_load when we know the type == 0 */
  1249. static unsigned long weighted_cpuload(const int cpu)
  1250. {
  1251. return cpu_rq(cpu)->load.weight;
  1252. }
  1253. /*
  1254. * Return a low guess at the load of a migration-source cpu weighted
  1255. * according to the scheduling class and "nice" value.
  1256. *
  1257. * We want to under-estimate the load of migration sources, to
  1258. * balance conservatively.
  1259. */
  1260. static unsigned long source_load(int cpu, int type)
  1261. {
  1262. struct rq *rq = cpu_rq(cpu);
  1263. unsigned long total = weighted_cpuload(cpu);
  1264. if (type == 0 || !sched_feat(LB_BIAS))
  1265. return total;
  1266. return min(rq->cpu_load[type-1], total);
  1267. }
  1268. /*
  1269. * Return a high guess at the load of a migration-target cpu weighted
  1270. * according to the scheduling class and "nice" value.
  1271. */
  1272. static unsigned long target_load(int cpu, int type)
  1273. {
  1274. struct rq *rq = cpu_rq(cpu);
  1275. unsigned long total = weighted_cpuload(cpu);
  1276. if (type == 0 || !sched_feat(LB_BIAS))
  1277. return total;
  1278. return max(rq->cpu_load[type-1], total);
  1279. }
  1280. static unsigned long power_of(int cpu)
  1281. {
  1282. return cpu_rq(cpu)->cpu_power;
  1283. }
  1284. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1285. static unsigned long cpu_avg_load_per_task(int cpu)
  1286. {
  1287. struct rq *rq = cpu_rq(cpu);
  1288. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1289. if (nr_running)
  1290. rq->avg_load_per_task = rq->load.weight / nr_running;
  1291. else
  1292. rq->avg_load_per_task = 0;
  1293. return rq->avg_load_per_task;
  1294. }
  1295. #ifdef CONFIG_FAIR_GROUP_SCHED
  1296. /*
  1297. * Compute the cpu's hierarchical load factor for each task group.
  1298. * This needs to be done in a top-down fashion because the load of a child
  1299. * group is a fraction of its parents load.
  1300. */
  1301. static int tg_load_down(struct task_group *tg, void *data)
  1302. {
  1303. unsigned long load;
  1304. long cpu = (long)data;
  1305. if (!tg->parent) {
  1306. load = cpu_rq(cpu)->load.weight;
  1307. } else {
  1308. load = tg->parent->cfs_rq[cpu]->h_load;
  1309. load *= tg->se[cpu]->load.weight;
  1310. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1311. }
  1312. tg->cfs_rq[cpu]->h_load = load;
  1313. return 0;
  1314. }
  1315. static void update_h_load(long cpu)
  1316. {
  1317. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1318. }
  1319. #endif
  1320. #ifdef CONFIG_PREEMPT
  1321. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1322. /*
  1323. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1324. * way at the expense of forcing extra atomic operations in all
  1325. * invocations. This assures that the double_lock is acquired using the
  1326. * same underlying policy as the spinlock_t on this architecture, which
  1327. * reduces latency compared to the unfair variant below. However, it
  1328. * also adds more overhead and therefore may reduce throughput.
  1329. */
  1330. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1331. __releases(this_rq->lock)
  1332. __acquires(busiest->lock)
  1333. __acquires(this_rq->lock)
  1334. {
  1335. raw_spin_unlock(&this_rq->lock);
  1336. double_rq_lock(this_rq, busiest);
  1337. return 1;
  1338. }
  1339. #else
  1340. /*
  1341. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1342. * latency by eliminating extra atomic operations when the locks are
  1343. * already in proper order on entry. This favors lower cpu-ids and will
  1344. * grant the double lock to lower cpus over higher ids under contention,
  1345. * regardless of entry order into the function.
  1346. */
  1347. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1348. __releases(this_rq->lock)
  1349. __acquires(busiest->lock)
  1350. __acquires(this_rq->lock)
  1351. {
  1352. int ret = 0;
  1353. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1354. if (busiest < this_rq) {
  1355. raw_spin_unlock(&this_rq->lock);
  1356. raw_spin_lock(&busiest->lock);
  1357. raw_spin_lock_nested(&this_rq->lock,
  1358. SINGLE_DEPTH_NESTING);
  1359. ret = 1;
  1360. } else
  1361. raw_spin_lock_nested(&busiest->lock,
  1362. SINGLE_DEPTH_NESTING);
  1363. }
  1364. return ret;
  1365. }
  1366. #endif /* CONFIG_PREEMPT */
  1367. /*
  1368. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1369. */
  1370. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1371. {
  1372. if (unlikely(!irqs_disabled())) {
  1373. /* printk() doesn't work good under rq->lock */
  1374. raw_spin_unlock(&this_rq->lock);
  1375. BUG_ON(1);
  1376. }
  1377. return _double_lock_balance(this_rq, busiest);
  1378. }
  1379. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1380. __releases(busiest->lock)
  1381. {
  1382. raw_spin_unlock(&busiest->lock);
  1383. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1384. }
  1385. /*
  1386. * double_rq_lock - safely lock two runqueues
  1387. *
  1388. * Note this does not disable interrupts like task_rq_lock,
  1389. * you need to do so manually before calling.
  1390. */
  1391. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1392. __acquires(rq1->lock)
  1393. __acquires(rq2->lock)
  1394. {
  1395. BUG_ON(!irqs_disabled());
  1396. if (rq1 == rq2) {
  1397. raw_spin_lock(&rq1->lock);
  1398. __acquire(rq2->lock); /* Fake it out ;) */
  1399. } else {
  1400. if (rq1 < rq2) {
  1401. raw_spin_lock(&rq1->lock);
  1402. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1403. } else {
  1404. raw_spin_lock(&rq2->lock);
  1405. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1406. }
  1407. }
  1408. }
  1409. /*
  1410. * double_rq_unlock - safely unlock two runqueues
  1411. *
  1412. * Note this does not restore interrupts like task_rq_unlock,
  1413. * you need to do so manually after calling.
  1414. */
  1415. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1416. __releases(rq1->lock)
  1417. __releases(rq2->lock)
  1418. {
  1419. raw_spin_unlock(&rq1->lock);
  1420. if (rq1 != rq2)
  1421. raw_spin_unlock(&rq2->lock);
  1422. else
  1423. __release(rq2->lock);
  1424. }
  1425. #else /* CONFIG_SMP */
  1426. /*
  1427. * double_rq_lock - safely lock two runqueues
  1428. *
  1429. * Note this does not disable interrupts like task_rq_lock,
  1430. * you need to do so manually before calling.
  1431. */
  1432. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1433. __acquires(rq1->lock)
  1434. __acquires(rq2->lock)
  1435. {
  1436. BUG_ON(!irqs_disabled());
  1437. BUG_ON(rq1 != rq2);
  1438. raw_spin_lock(&rq1->lock);
  1439. __acquire(rq2->lock); /* Fake it out ;) */
  1440. }
  1441. /*
  1442. * double_rq_unlock - safely unlock two runqueues
  1443. *
  1444. * Note this does not restore interrupts like task_rq_unlock,
  1445. * you need to do so manually after calling.
  1446. */
  1447. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1448. __releases(rq1->lock)
  1449. __releases(rq2->lock)
  1450. {
  1451. BUG_ON(rq1 != rq2);
  1452. raw_spin_unlock(&rq1->lock);
  1453. __release(rq2->lock);
  1454. }
  1455. #endif
  1456. static void calc_load_account_idle(struct rq *this_rq);
  1457. static void update_sysctl(void);
  1458. static int get_update_sysctl_factor(void);
  1459. static void update_cpu_load(struct rq *this_rq);
  1460. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1461. {
  1462. set_task_rq(p, cpu);
  1463. #ifdef CONFIG_SMP
  1464. /*
  1465. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1466. * successfuly executed on another CPU. We must ensure that updates of
  1467. * per-task data have been completed by this moment.
  1468. */
  1469. smp_wmb();
  1470. task_thread_info(p)->cpu = cpu;
  1471. #endif
  1472. }
  1473. static const struct sched_class rt_sched_class;
  1474. #define sched_class_highest (&stop_sched_class)
  1475. #define for_each_class(class) \
  1476. for (class = sched_class_highest; class; class = class->next)
  1477. #include "sched_stats.h"
  1478. static void inc_nr_running(struct rq *rq)
  1479. {
  1480. rq->nr_running++;
  1481. }
  1482. static void dec_nr_running(struct rq *rq)
  1483. {
  1484. rq->nr_running--;
  1485. }
  1486. static void set_load_weight(struct task_struct *p)
  1487. {
  1488. /*
  1489. * SCHED_IDLE tasks get minimal weight:
  1490. */
  1491. if (p->policy == SCHED_IDLE) {
  1492. p->se.load.weight = WEIGHT_IDLEPRIO;
  1493. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1494. return;
  1495. }
  1496. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1497. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1498. }
  1499. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1500. {
  1501. update_rq_clock(rq);
  1502. sched_info_queued(p);
  1503. p->sched_class->enqueue_task(rq, p, flags);
  1504. }
  1505. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1506. {
  1507. update_rq_clock(rq);
  1508. sched_info_dequeued(p);
  1509. p->sched_class->dequeue_task(rq, p, flags);
  1510. }
  1511. /*
  1512. * activate_task - move a task to the runqueue.
  1513. */
  1514. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1515. {
  1516. if (task_contributes_to_load(p))
  1517. rq->nr_uninterruptible--;
  1518. enqueue_task(rq, p, flags);
  1519. inc_nr_running(rq);
  1520. }
  1521. /*
  1522. * deactivate_task - remove a task from the runqueue.
  1523. */
  1524. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1525. {
  1526. if (task_contributes_to_load(p))
  1527. rq->nr_uninterruptible++;
  1528. dequeue_task(rq, p, flags);
  1529. dec_nr_running(rq);
  1530. }
  1531. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1532. /*
  1533. * There are no locks covering percpu hardirq/softirq time.
  1534. * They are only modified in account_system_vtime, on corresponding CPU
  1535. * with interrupts disabled. So, writes are safe.
  1536. * They are read and saved off onto struct rq in update_rq_clock().
  1537. * This may result in other CPU reading this CPU's irq time and can
  1538. * race with irq/account_system_vtime on this CPU. We would either get old
  1539. * or new value with a side effect of accounting a slice of irq time to wrong
  1540. * task when irq is in progress while we read rq->clock. That is a worthy
  1541. * compromise in place of having locks on each irq in account_system_time.
  1542. */
  1543. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1544. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1545. static DEFINE_PER_CPU(u64, irq_start_time);
  1546. static int sched_clock_irqtime;
  1547. void enable_sched_clock_irqtime(void)
  1548. {
  1549. sched_clock_irqtime = 1;
  1550. }
  1551. void disable_sched_clock_irqtime(void)
  1552. {
  1553. sched_clock_irqtime = 0;
  1554. }
  1555. #ifndef CONFIG_64BIT
  1556. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1557. static inline void irq_time_write_begin(void)
  1558. {
  1559. __this_cpu_inc(irq_time_seq.sequence);
  1560. smp_wmb();
  1561. }
  1562. static inline void irq_time_write_end(void)
  1563. {
  1564. smp_wmb();
  1565. __this_cpu_inc(irq_time_seq.sequence);
  1566. }
  1567. static inline u64 irq_time_read(int cpu)
  1568. {
  1569. u64 irq_time;
  1570. unsigned seq;
  1571. do {
  1572. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1573. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1574. per_cpu(cpu_hardirq_time, cpu);
  1575. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1576. return irq_time;
  1577. }
  1578. #else /* CONFIG_64BIT */
  1579. static inline void irq_time_write_begin(void)
  1580. {
  1581. }
  1582. static inline void irq_time_write_end(void)
  1583. {
  1584. }
  1585. static inline u64 irq_time_read(int cpu)
  1586. {
  1587. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1588. }
  1589. #endif /* CONFIG_64BIT */
  1590. /*
  1591. * Called before incrementing preempt_count on {soft,}irq_enter
  1592. * and before decrementing preempt_count on {soft,}irq_exit.
  1593. */
  1594. void account_system_vtime(struct task_struct *curr)
  1595. {
  1596. unsigned long flags;
  1597. s64 delta;
  1598. int cpu;
  1599. if (!sched_clock_irqtime)
  1600. return;
  1601. local_irq_save(flags);
  1602. cpu = smp_processor_id();
  1603. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1604. __this_cpu_add(irq_start_time, delta);
  1605. irq_time_write_begin();
  1606. /*
  1607. * We do not account for softirq time from ksoftirqd here.
  1608. * We want to continue accounting softirq time to ksoftirqd thread
  1609. * in that case, so as not to confuse scheduler with a special task
  1610. * that do not consume any time, but still wants to run.
  1611. */
  1612. if (hardirq_count())
  1613. __this_cpu_add(cpu_hardirq_time, delta);
  1614. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  1615. __this_cpu_add(cpu_softirq_time, delta);
  1616. irq_time_write_end();
  1617. local_irq_restore(flags);
  1618. }
  1619. EXPORT_SYMBOL_GPL(account_system_vtime);
  1620. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1621. {
  1622. s64 irq_delta;
  1623. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1624. /*
  1625. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1626. * this case when a previous update_rq_clock() happened inside a
  1627. * {soft,}irq region.
  1628. *
  1629. * When this happens, we stop ->clock_task and only update the
  1630. * prev_irq_time stamp to account for the part that fit, so that a next
  1631. * update will consume the rest. This ensures ->clock_task is
  1632. * monotonic.
  1633. *
  1634. * It does however cause some slight miss-attribution of {soft,}irq
  1635. * time, a more accurate solution would be to update the irq_time using
  1636. * the current rq->clock timestamp, except that would require using
  1637. * atomic ops.
  1638. */
  1639. if (irq_delta > delta)
  1640. irq_delta = delta;
  1641. rq->prev_irq_time += irq_delta;
  1642. delta -= irq_delta;
  1643. rq->clock_task += delta;
  1644. if (irq_delta && sched_feat(NONIRQ_POWER))
  1645. sched_rt_avg_update(rq, irq_delta);
  1646. }
  1647. static int irqtime_account_hi_update(void)
  1648. {
  1649. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1650. unsigned long flags;
  1651. u64 latest_ns;
  1652. int ret = 0;
  1653. local_irq_save(flags);
  1654. latest_ns = this_cpu_read(cpu_hardirq_time);
  1655. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  1656. ret = 1;
  1657. local_irq_restore(flags);
  1658. return ret;
  1659. }
  1660. static int irqtime_account_si_update(void)
  1661. {
  1662. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1663. unsigned long flags;
  1664. u64 latest_ns;
  1665. int ret = 0;
  1666. local_irq_save(flags);
  1667. latest_ns = this_cpu_read(cpu_softirq_time);
  1668. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  1669. ret = 1;
  1670. local_irq_restore(flags);
  1671. return ret;
  1672. }
  1673. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1674. #define sched_clock_irqtime (0)
  1675. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1676. {
  1677. rq->clock_task += delta;
  1678. }
  1679. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1680. #include "sched_idletask.c"
  1681. #include "sched_fair.c"
  1682. #include "sched_rt.c"
  1683. #include "sched_autogroup.c"
  1684. #include "sched_stoptask.c"
  1685. #ifdef CONFIG_SCHED_DEBUG
  1686. # include "sched_debug.c"
  1687. #endif
  1688. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1689. {
  1690. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1691. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1692. if (stop) {
  1693. /*
  1694. * Make it appear like a SCHED_FIFO task, its something
  1695. * userspace knows about and won't get confused about.
  1696. *
  1697. * Also, it will make PI more or less work without too
  1698. * much confusion -- but then, stop work should not
  1699. * rely on PI working anyway.
  1700. */
  1701. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1702. stop->sched_class = &stop_sched_class;
  1703. }
  1704. cpu_rq(cpu)->stop = stop;
  1705. if (old_stop) {
  1706. /*
  1707. * Reset it back to a normal scheduling class so that
  1708. * it can die in pieces.
  1709. */
  1710. old_stop->sched_class = &rt_sched_class;
  1711. }
  1712. }
  1713. /*
  1714. * __normal_prio - return the priority that is based on the static prio
  1715. */
  1716. static inline int __normal_prio(struct task_struct *p)
  1717. {
  1718. return p->static_prio;
  1719. }
  1720. /*
  1721. * Calculate the expected normal priority: i.e. priority
  1722. * without taking RT-inheritance into account. Might be
  1723. * boosted by interactivity modifiers. Changes upon fork,
  1724. * setprio syscalls, and whenever the interactivity
  1725. * estimator recalculates.
  1726. */
  1727. static inline int normal_prio(struct task_struct *p)
  1728. {
  1729. int prio;
  1730. if (task_has_rt_policy(p))
  1731. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1732. else
  1733. prio = __normal_prio(p);
  1734. return prio;
  1735. }
  1736. /*
  1737. * Calculate the current priority, i.e. the priority
  1738. * taken into account by the scheduler. This value might
  1739. * be boosted by RT tasks, or might be boosted by
  1740. * interactivity modifiers. Will be RT if the task got
  1741. * RT-boosted. If not then it returns p->normal_prio.
  1742. */
  1743. static int effective_prio(struct task_struct *p)
  1744. {
  1745. p->normal_prio = normal_prio(p);
  1746. /*
  1747. * If we are RT tasks or we were boosted to RT priority,
  1748. * keep the priority unchanged. Otherwise, update priority
  1749. * to the normal priority:
  1750. */
  1751. if (!rt_prio(p->prio))
  1752. return p->normal_prio;
  1753. return p->prio;
  1754. }
  1755. /**
  1756. * task_curr - is this task currently executing on a CPU?
  1757. * @p: the task in question.
  1758. */
  1759. inline int task_curr(const struct task_struct *p)
  1760. {
  1761. return cpu_curr(task_cpu(p)) == p;
  1762. }
  1763. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1764. const struct sched_class *prev_class,
  1765. int oldprio)
  1766. {
  1767. if (prev_class != p->sched_class) {
  1768. if (prev_class->switched_from)
  1769. prev_class->switched_from(rq, p);
  1770. p->sched_class->switched_to(rq, p);
  1771. } else if (oldprio != p->prio)
  1772. p->sched_class->prio_changed(rq, p, oldprio);
  1773. }
  1774. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1775. {
  1776. const struct sched_class *class;
  1777. if (p->sched_class == rq->curr->sched_class) {
  1778. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1779. } else {
  1780. for_each_class(class) {
  1781. if (class == rq->curr->sched_class)
  1782. break;
  1783. if (class == p->sched_class) {
  1784. resched_task(rq->curr);
  1785. break;
  1786. }
  1787. }
  1788. }
  1789. /*
  1790. * A queue event has occurred, and we're going to schedule. In
  1791. * this case, we can save a useless back to back clock update.
  1792. */
  1793. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  1794. rq->skip_clock_update = 1;
  1795. }
  1796. #ifdef CONFIG_SMP
  1797. /*
  1798. * Is this task likely cache-hot:
  1799. */
  1800. static int
  1801. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1802. {
  1803. s64 delta;
  1804. if (p->sched_class != &fair_sched_class)
  1805. return 0;
  1806. if (unlikely(p->policy == SCHED_IDLE))
  1807. return 0;
  1808. /*
  1809. * Buddy candidates are cache hot:
  1810. */
  1811. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1812. (&p->se == cfs_rq_of(&p->se)->next ||
  1813. &p->se == cfs_rq_of(&p->se)->last))
  1814. return 1;
  1815. if (sysctl_sched_migration_cost == -1)
  1816. return 1;
  1817. if (sysctl_sched_migration_cost == 0)
  1818. return 0;
  1819. delta = now - p->se.exec_start;
  1820. return delta < (s64)sysctl_sched_migration_cost;
  1821. }
  1822. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1823. {
  1824. #ifdef CONFIG_SCHED_DEBUG
  1825. /*
  1826. * We should never call set_task_cpu() on a blocked task,
  1827. * ttwu() will sort out the placement.
  1828. */
  1829. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1830. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1831. #endif
  1832. trace_sched_migrate_task(p, new_cpu);
  1833. if (task_cpu(p) != new_cpu) {
  1834. p->se.nr_migrations++;
  1835. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1836. }
  1837. __set_task_cpu(p, new_cpu);
  1838. }
  1839. struct migration_arg {
  1840. struct task_struct *task;
  1841. int dest_cpu;
  1842. };
  1843. static int migration_cpu_stop(void *data);
  1844. /*
  1845. * The task's runqueue lock must be held.
  1846. * Returns true if you have to wait for migration thread.
  1847. */
  1848. static bool need_migrate_task(struct task_struct *p)
  1849. {
  1850. /*
  1851. * If the task is not on a runqueue (and not running), then
  1852. * the next wake-up will properly place the task.
  1853. */
  1854. bool running = p->on_rq || p->on_cpu;
  1855. smp_rmb(); /* finish_lock_switch() */
  1856. return running;
  1857. }
  1858. /*
  1859. * wait_task_inactive - wait for a thread to unschedule.
  1860. *
  1861. * If @match_state is nonzero, it's the @p->state value just checked and
  1862. * not expected to change. If it changes, i.e. @p might have woken up,
  1863. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1864. * we return a positive number (its total switch count). If a second call
  1865. * a short while later returns the same number, the caller can be sure that
  1866. * @p has remained unscheduled the whole time.
  1867. *
  1868. * The caller must ensure that the task *will* unschedule sometime soon,
  1869. * else this function might spin for a *long* time. This function can't
  1870. * be called with interrupts off, or it may introduce deadlock with
  1871. * smp_call_function() if an IPI is sent by the same process we are
  1872. * waiting to become inactive.
  1873. */
  1874. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1875. {
  1876. unsigned long flags;
  1877. int running, on_rq;
  1878. unsigned long ncsw;
  1879. struct rq *rq;
  1880. for (;;) {
  1881. /*
  1882. * We do the initial early heuristics without holding
  1883. * any task-queue locks at all. We'll only try to get
  1884. * the runqueue lock when things look like they will
  1885. * work out!
  1886. */
  1887. rq = task_rq(p);
  1888. /*
  1889. * If the task is actively running on another CPU
  1890. * still, just relax and busy-wait without holding
  1891. * any locks.
  1892. *
  1893. * NOTE! Since we don't hold any locks, it's not
  1894. * even sure that "rq" stays as the right runqueue!
  1895. * But we don't care, since "task_running()" will
  1896. * return false if the runqueue has changed and p
  1897. * is actually now running somewhere else!
  1898. */
  1899. while (task_running(rq, p)) {
  1900. if (match_state && unlikely(p->state != match_state))
  1901. return 0;
  1902. cpu_relax();
  1903. }
  1904. /*
  1905. * Ok, time to look more closely! We need the rq
  1906. * lock now, to be *sure*. If we're wrong, we'll
  1907. * just go back and repeat.
  1908. */
  1909. rq = task_rq_lock(p, &flags);
  1910. trace_sched_wait_task(p);
  1911. running = task_running(rq, p);
  1912. on_rq = p->on_rq;
  1913. ncsw = 0;
  1914. if (!match_state || p->state == match_state)
  1915. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1916. task_rq_unlock(rq, &flags);
  1917. /*
  1918. * If it changed from the expected state, bail out now.
  1919. */
  1920. if (unlikely(!ncsw))
  1921. break;
  1922. /*
  1923. * Was it really running after all now that we
  1924. * checked with the proper locks actually held?
  1925. *
  1926. * Oops. Go back and try again..
  1927. */
  1928. if (unlikely(running)) {
  1929. cpu_relax();
  1930. continue;
  1931. }
  1932. /*
  1933. * It's not enough that it's not actively running,
  1934. * it must be off the runqueue _entirely_, and not
  1935. * preempted!
  1936. *
  1937. * So if it was still runnable (but just not actively
  1938. * running right now), it's preempted, and we should
  1939. * yield - it could be a while.
  1940. */
  1941. if (unlikely(on_rq)) {
  1942. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1943. set_current_state(TASK_UNINTERRUPTIBLE);
  1944. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1945. continue;
  1946. }
  1947. /*
  1948. * Ahh, all good. It wasn't running, and it wasn't
  1949. * runnable, which means that it will never become
  1950. * running in the future either. We're all done!
  1951. */
  1952. break;
  1953. }
  1954. return ncsw;
  1955. }
  1956. /***
  1957. * kick_process - kick a running thread to enter/exit the kernel
  1958. * @p: the to-be-kicked thread
  1959. *
  1960. * Cause a process which is running on another CPU to enter
  1961. * kernel-mode, without any delay. (to get signals handled.)
  1962. *
  1963. * NOTE: this function doesn't have to take the runqueue lock,
  1964. * because all it wants to ensure is that the remote task enters
  1965. * the kernel. If the IPI races and the task has been migrated
  1966. * to another CPU then no harm is done and the purpose has been
  1967. * achieved as well.
  1968. */
  1969. void kick_process(struct task_struct *p)
  1970. {
  1971. int cpu;
  1972. preempt_disable();
  1973. cpu = task_cpu(p);
  1974. if ((cpu != smp_processor_id()) && task_curr(p))
  1975. smp_send_reschedule(cpu);
  1976. preempt_enable();
  1977. }
  1978. EXPORT_SYMBOL_GPL(kick_process);
  1979. #endif /* CONFIG_SMP */
  1980. #ifdef CONFIG_SMP
  1981. /*
  1982. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1983. */
  1984. static int select_fallback_rq(int cpu, struct task_struct *p)
  1985. {
  1986. int dest_cpu;
  1987. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1988. /* Look for allowed, online CPU in same node. */
  1989. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1990. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1991. return dest_cpu;
  1992. /* Any allowed, online CPU? */
  1993. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1994. if (dest_cpu < nr_cpu_ids)
  1995. return dest_cpu;
  1996. /* No more Mr. Nice Guy. */
  1997. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1998. /*
  1999. * Don't tell them about moving exiting tasks or
  2000. * kernel threads (both mm NULL), since they never
  2001. * leave kernel.
  2002. */
  2003. if (p->mm && printk_ratelimit()) {
  2004. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  2005. task_pid_nr(p), p->comm, cpu);
  2006. }
  2007. return dest_cpu;
  2008. }
  2009. /*
  2010. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  2011. */
  2012. static inline
  2013. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  2014. {
  2015. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  2016. /*
  2017. * In order not to call set_task_cpu() on a blocking task we need
  2018. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2019. * cpu.
  2020. *
  2021. * Since this is common to all placement strategies, this lives here.
  2022. *
  2023. * [ this allows ->select_task() to simply return task_cpu(p) and
  2024. * not worry about this generic constraint ]
  2025. */
  2026. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2027. !cpu_online(cpu)))
  2028. cpu = select_fallback_rq(task_cpu(p), p);
  2029. return cpu;
  2030. }
  2031. static void update_avg(u64 *avg, u64 sample)
  2032. {
  2033. s64 diff = sample - *avg;
  2034. *avg += diff >> 3;
  2035. }
  2036. #endif
  2037. static void
  2038. ttwu_stat(struct rq *rq, struct task_struct *p, int cpu, int wake_flags)
  2039. {
  2040. #ifdef CONFIG_SCHEDSTATS
  2041. #ifdef CONFIG_SMP
  2042. int this_cpu = smp_processor_id();
  2043. if (cpu == this_cpu) {
  2044. schedstat_inc(rq, ttwu_local);
  2045. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2046. } else {
  2047. struct sched_domain *sd;
  2048. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2049. for_each_domain(this_cpu, sd) {
  2050. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2051. schedstat_inc(sd, ttwu_wake_remote);
  2052. break;
  2053. }
  2054. }
  2055. }
  2056. #endif /* CONFIG_SMP */
  2057. schedstat_inc(rq, ttwu_count);
  2058. schedstat_inc(p, se.statistics.nr_wakeups);
  2059. if (wake_flags & WF_SYNC)
  2060. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2061. if (cpu != task_cpu(p))
  2062. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2063. #endif /* CONFIG_SCHEDSTATS */
  2064. }
  2065. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  2066. {
  2067. activate_task(rq, p, en_flags);
  2068. p->on_rq = 1;
  2069. /* if a worker is waking up, notify workqueue */
  2070. if (p->flags & PF_WQ_WORKER)
  2071. wq_worker_waking_up(p, cpu_of(rq));
  2072. }
  2073. static void
  2074. ttwu_post_activation(struct task_struct *p, struct rq *rq, int wake_flags)
  2075. {
  2076. trace_sched_wakeup(p, true);
  2077. check_preempt_curr(rq, p, wake_flags);
  2078. p->state = TASK_RUNNING;
  2079. #ifdef CONFIG_SMP
  2080. if (p->sched_class->task_woken)
  2081. p->sched_class->task_woken(rq, p);
  2082. if (unlikely(rq->idle_stamp)) {
  2083. u64 delta = rq->clock - rq->idle_stamp;
  2084. u64 max = 2*sysctl_sched_migration_cost;
  2085. if (delta > max)
  2086. rq->avg_idle = max;
  2087. else
  2088. update_avg(&rq->avg_idle, delta);
  2089. rq->idle_stamp = 0;
  2090. }
  2091. #endif
  2092. }
  2093. /**
  2094. * try_to_wake_up - wake up a thread
  2095. * @p: the thread to be awakened
  2096. * @state: the mask of task states that can be woken
  2097. * @wake_flags: wake modifier flags (WF_*)
  2098. *
  2099. * Put it on the run-queue if it's not already there. The "current"
  2100. * thread is always on the run-queue (except when the actual
  2101. * re-schedule is in progress), and as such you're allowed to do
  2102. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2103. * runnable without the overhead of this.
  2104. *
  2105. * Returns %true if @p was woken up, %false if it was already running
  2106. * or @state didn't match @p's state.
  2107. */
  2108. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  2109. int wake_flags)
  2110. {
  2111. int cpu, orig_cpu, this_cpu, success = 0;
  2112. unsigned long flags;
  2113. unsigned long en_flags = ENQUEUE_WAKEUP;
  2114. struct rq *rq;
  2115. this_cpu = get_cpu();
  2116. smp_wmb();
  2117. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2118. rq = __task_rq_lock(p);
  2119. if (!(p->state & state))
  2120. goto out;
  2121. cpu = task_cpu(p);
  2122. if (p->on_rq)
  2123. goto out_running;
  2124. orig_cpu = cpu;
  2125. #ifdef CONFIG_SMP
  2126. if (unlikely(task_running(rq, p)))
  2127. goto out_activate;
  2128. /*
  2129. * In order to handle concurrent wakeups and release the rq->lock
  2130. * we put the task in TASK_WAKING state.
  2131. *
  2132. * First fix up the nr_uninterruptible count:
  2133. */
  2134. if (task_contributes_to_load(p)) {
  2135. if (likely(cpu_online(orig_cpu)))
  2136. rq->nr_uninterruptible--;
  2137. else
  2138. this_rq()->nr_uninterruptible--;
  2139. }
  2140. p->state = TASK_WAKING;
  2141. if (p->sched_class->task_waking) {
  2142. p->sched_class->task_waking(p);
  2143. en_flags |= ENQUEUE_WAKING;
  2144. }
  2145. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2146. if (cpu != orig_cpu)
  2147. set_task_cpu(p, cpu);
  2148. __task_rq_unlock(rq);
  2149. rq = cpu_rq(cpu);
  2150. raw_spin_lock(&rq->lock);
  2151. /*
  2152. * We migrated the task without holding either rq->lock, however
  2153. * since the task is not on the task list itself, nobody else
  2154. * will try and migrate the task, hence the rq should match the
  2155. * cpu we just moved it to.
  2156. */
  2157. WARN_ON(task_cpu(p) != cpu);
  2158. WARN_ON(p->state != TASK_WAKING);
  2159. out_activate:
  2160. #endif /* CONFIG_SMP */
  2161. ttwu_activate(rq, p, en_flags);
  2162. out_running:
  2163. ttwu_post_activation(p, rq, wake_flags);
  2164. ttwu_stat(rq, p, cpu, wake_flags);
  2165. success = 1;
  2166. out:
  2167. __task_rq_unlock(rq);
  2168. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2169. put_cpu();
  2170. return success;
  2171. }
  2172. /**
  2173. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2174. * @p: the thread to be awakened
  2175. *
  2176. * Put @p on the run-queue if it's not already there. The caller must
  2177. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2178. * the current task. this_rq() stays locked over invocation.
  2179. */
  2180. static void try_to_wake_up_local(struct task_struct *p)
  2181. {
  2182. struct rq *rq = task_rq(p);
  2183. BUG_ON(rq != this_rq());
  2184. BUG_ON(p == current);
  2185. lockdep_assert_held(&rq->lock);
  2186. if (!(p->state & TASK_NORMAL))
  2187. return;
  2188. if (!p->on_rq)
  2189. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2190. ttwu_post_activation(p, rq, 0);
  2191. ttwu_stat(rq, p, smp_processor_id(), 0);
  2192. }
  2193. /**
  2194. * wake_up_process - Wake up a specific process
  2195. * @p: The process to be woken up.
  2196. *
  2197. * Attempt to wake up the nominated process and move it to the set of runnable
  2198. * processes. Returns 1 if the process was woken up, 0 if it was already
  2199. * running.
  2200. *
  2201. * It may be assumed that this function implies a write memory barrier before
  2202. * changing the task state if and only if any tasks are woken up.
  2203. */
  2204. int wake_up_process(struct task_struct *p)
  2205. {
  2206. return try_to_wake_up(p, TASK_ALL, 0);
  2207. }
  2208. EXPORT_SYMBOL(wake_up_process);
  2209. int wake_up_state(struct task_struct *p, unsigned int state)
  2210. {
  2211. return try_to_wake_up(p, state, 0);
  2212. }
  2213. /*
  2214. * Perform scheduler related setup for a newly forked process p.
  2215. * p is forked by current.
  2216. *
  2217. * __sched_fork() is basic setup used by init_idle() too:
  2218. */
  2219. static void __sched_fork(struct task_struct *p)
  2220. {
  2221. p->on_rq = 0;
  2222. p->se.on_rq = 0;
  2223. p->se.exec_start = 0;
  2224. p->se.sum_exec_runtime = 0;
  2225. p->se.prev_sum_exec_runtime = 0;
  2226. p->se.nr_migrations = 0;
  2227. p->se.vruntime = 0;
  2228. INIT_LIST_HEAD(&p->se.group_node);
  2229. #ifdef CONFIG_SCHEDSTATS
  2230. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2231. #endif
  2232. INIT_LIST_HEAD(&p->rt.run_list);
  2233. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2234. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2235. #endif
  2236. }
  2237. /*
  2238. * fork()/clone()-time setup:
  2239. */
  2240. void sched_fork(struct task_struct *p, int clone_flags)
  2241. {
  2242. int cpu = get_cpu();
  2243. __sched_fork(p);
  2244. /*
  2245. * We mark the process as running here. This guarantees that
  2246. * nobody will actually run it, and a signal or other external
  2247. * event cannot wake it up and insert it on the runqueue either.
  2248. */
  2249. p->state = TASK_RUNNING;
  2250. /*
  2251. * Revert to default priority/policy on fork if requested.
  2252. */
  2253. if (unlikely(p->sched_reset_on_fork)) {
  2254. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2255. p->policy = SCHED_NORMAL;
  2256. p->normal_prio = p->static_prio;
  2257. }
  2258. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2259. p->static_prio = NICE_TO_PRIO(0);
  2260. p->normal_prio = p->static_prio;
  2261. set_load_weight(p);
  2262. }
  2263. /*
  2264. * We don't need the reset flag anymore after the fork. It has
  2265. * fulfilled its duty:
  2266. */
  2267. p->sched_reset_on_fork = 0;
  2268. }
  2269. /*
  2270. * Make sure we do not leak PI boosting priority to the child.
  2271. */
  2272. p->prio = current->normal_prio;
  2273. if (!rt_prio(p->prio))
  2274. p->sched_class = &fair_sched_class;
  2275. if (p->sched_class->task_fork)
  2276. p->sched_class->task_fork(p);
  2277. /*
  2278. * The child is not yet in the pid-hash so no cgroup attach races,
  2279. * and the cgroup is pinned to this child due to cgroup_fork()
  2280. * is ran before sched_fork().
  2281. *
  2282. * Silence PROVE_RCU.
  2283. */
  2284. rcu_read_lock();
  2285. set_task_cpu(p, cpu);
  2286. rcu_read_unlock();
  2287. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2288. if (likely(sched_info_on()))
  2289. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2290. #endif
  2291. #if defined(CONFIG_SMP)
  2292. p->on_cpu = 0;
  2293. #endif
  2294. #ifdef CONFIG_PREEMPT
  2295. /* Want to start with kernel preemption disabled. */
  2296. task_thread_info(p)->preempt_count = 1;
  2297. #endif
  2298. #ifdef CONFIG_SMP
  2299. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2300. #endif
  2301. put_cpu();
  2302. }
  2303. /*
  2304. * wake_up_new_task - wake up a newly created task for the first time.
  2305. *
  2306. * This function will do some initial scheduler statistics housekeeping
  2307. * that must be done for every newly created context, then puts the task
  2308. * on the runqueue and wakes it.
  2309. */
  2310. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2311. {
  2312. unsigned long flags;
  2313. struct rq *rq;
  2314. int cpu __maybe_unused = get_cpu();
  2315. #ifdef CONFIG_SMP
  2316. rq = task_rq_lock(p, &flags);
  2317. p->state = TASK_WAKING;
  2318. /*
  2319. * Fork balancing, do it here and not earlier because:
  2320. * - cpus_allowed can change in the fork path
  2321. * - any previously selected cpu might disappear through hotplug
  2322. *
  2323. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2324. * without people poking at ->cpus_allowed.
  2325. */
  2326. cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
  2327. set_task_cpu(p, cpu);
  2328. p->state = TASK_RUNNING;
  2329. task_rq_unlock(rq, &flags);
  2330. #endif
  2331. rq = task_rq_lock(p, &flags);
  2332. activate_task(rq, p, 0);
  2333. p->on_rq = 1;
  2334. trace_sched_wakeup_new(p, true);
  2335. check_preempt_curr(rq, p, WF_FORK);
  2336. #ifdef CONFIG_SMP
  2337. if (p->sched_class->task_woken)
  2338. p->sched_class->task_woken(rq, p);
  2339. #endif
  2340. task_rq_unlock(rq, &flags);
  2341. put_cpu();
  2342. }
  2343. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2344. /**
  2345. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2346. * @notifier: notifier struct to register
  2347. */
  2348. void preempt_notifier_register(struct preempt_notifier *notifier)
  2349. {
  2350. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2351. }
  2352. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2353. /**
  2354. * preempt_notifier_unregister - no longer interested in preemption notifications
  2355. * @notifier: notifier struct to unregister
  2356. *
  2357. * This is safe to call from within a preemption notifier.
  2358. */
  2359. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2360. {
  2361. hlist_del(&notifier->link);
  2362. }
  2363. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2364. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2365. {
  2366. struct preempt_notifier *notifier;
  2367. struct hlist_node *node;
  2368. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2369. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2370. }
  2371. static void
  2372. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2373. struct task_struct *next)
  2374. {
  2375. struct preempt_notifier *notifier;
  2376. struct hlist_node *node;
  2377. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2378. notifier->ops->sched_out(notifier, next);
  2379. }
  2380. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2381. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2382. {
  2383. }
  2384. static void
  2385. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2386. struct task_struct *next)
  2387. {
  2388. }
  2389. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2390. /**
  2391. * prepare_task_switch - prepare to switch tasks
  2392. * @rq: the runqueue preparing to switch
  2393. * @prev: the current task that is being switched out
  2394. * @next: the task we are going to switch to.
  2395. *
  2396. * This is called with the rq lock held and interrupts off. It must
  2397. * be paired with a subsequent finish_task_switch after the context
  2398. * switch.
  2399. *
  2400. * prepare_task_switch sets up locking and calls architecture specific
  2401. * hooks.
  2402. */
  2403. static inline void
  2404. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2405. struct task_struct *next)
  2406. {
  2407. sched_info_switch(prev, next);
  2408. perf_event_task_sched_out(prev, next);
  2409. fire_sched_out_preempt_notifiers(prev, next);
  2410. prepare_lock_switch(rq, next);
  2411. prepare_arch_switch(next);
  2412. trace_sched_switch(prev, next);
  2413. }
  2414. /**
  2415. * finish_task_switch - clean up after a task-switch
  2416. * @rq: runqueue associated with task-switch
  2417. * @prev: the thread we just switched away from.
  2418. *
  2419. * finish_task_switch must be called after the context switch, paired
  2420. * with a prepare_task_switch call before the context switch.
  2421. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2422. * and do any other architecture-specific cleanup actions.
  2423. *
  2424. * Note that we may have delayed dropping an mm in context_switch(). If
  2425. * so, we finish that here outside of the runqueue lock. (Doing it
  2426. * with the lock held can cause deadlocks; see schedule() for
  2427. * details.)
  2428. */
  2429. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2430. __releases(rq->lock)
  2431. {
  2432. struct mm_struct *mm = rq->prev_mm;
  2433. long prev_state;
  2434. rq->prev_mm = NULL;
  2435. /*
  2436. * A task struct has one reference for the use as "current".
  2437. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2438. * schedule one last time. The schedule call will never return, and
  2439. * the scheduled task must drop that reference.
  2440. * The test for TASK_DEAD must occur while the runqueue locks are
  2441. * still held, otherwise prev could be scheduled on another cpu, die
  2442. * there before we look at prev->state, and then the reference would
  2443. * be dropped twice.
  2444. * Manfred Spraul <manfred@colorfullife.com>
  2445. */
  2446. prev_state = prev->state;
  2447. finish_arch_switch(prev);
  2448. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2449. local_irq_disable();
  2450. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2451. perf_event_task_sched_in(current);
  2452. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2453. local_irq_enable();
  2454. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2455. finish_lock_switch(rq, prev);
  2456. fire_sched_in_preempt_notifiers(current);
  2457. if (mm)
  2458. mmdrop(mm);
  2459. if (unlikely(prev_state == TASK_DEAD)) {
  2460. /*
  2461. * Remove function-return probe instances associated with this
  2462. * task and put them back on the free list.
  2463. */
  2464. kprobe_flush_task(prev);
  2465. put_task_struct(prev);
  2466. }
  2467. }
  2468. #ifdef CONFIG_SMP
  2469. /* assumes rq->lock is held */
  2470. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2471. {
  2472. if (prev->sched_class->pre_schedule)
  2473. prev->sched_class->pre_schedule(rq, prev);
  2474. }
  2475. /* rq->lock is NOT held, but preemption is disabled */
  2476. static inline void post_schedule(struct rq *rq)
  2477. {
  2478. if (rq->post_schedule) {
  2479. unsigned long flags;
  2480. raw_spin_lock_irqsave(&rq->lock, flags);
  2481. if (rq->curr->sched_class->post_schedule)
  2482. rq->curr->sched_class->post_schedule(rq);
  2483. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2484. rq->post_schedule = 0;
  2485. }
  2486. }
  2487. #else
  2488. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2489. {
  2490. }
  2491. static inline void post_schedule(struct rq *rq)
  2492. {
  2493. }
  2494. #endif
  2495. /**
  2496. * schedule_tail - first thing a freshly forked thread must call.
  2497. * @prev: the thread we just switched away from.
  2498. */
  2499. asmlinkage void schedule_tail(struct task_struct *prev)
  2500. __releases(rq->lock)
  2501. {
  2502. struct rq *rq = this_rq();
  2503. finish_task_switch(rq, prev);
  2504. /*
  2505. * FIXME: do we need to worry about rq being invalidated by the
  2506. * task_switch?
  2507. */
  2508. post_schedule(rq);
  2509. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2510. /* In this case, finish_task_switch does not reenable preemption */
  2511. preempt_enable();
  2512. #endif
  2513. if (current->set_child_tid)
  2514. put_user(task_pid_vnr(current), current->set_child_tid);
  2515. }
  2516. /*
  2517. * context_switch - switch to the new MM and the new
  2518. * thread's register state.
  2519. */
  2520. static inline void
  2521. context_switch(struct rq *rq, struct task_struct *prev,
  2522. struct task_struct *next)
  2523. {
  2524. struct mm_struct *mm, *oldmm;
  2525. prepare_task_switch(rq, prev, next);
  2526. mm = next->mm;
  2527. oldmm = prev->active_mm;
  2528. /*
  2529. * For paravirt, this is coupled with an exit in switch_to to
  2530. * combine the page table reload and the switch backend into
  2531. * one hypercall.
  2532. */
  2533. arch_start_context_switch(prev);
  2534. if (!mm) {
  2535. next->active_mm = oldmm;
  2536. atomic_inc(&oldmm->mm_count);
  2537. enter_lazy_tlb(oldmm, next);
  2538. } else
  2539. switch_mm(oldmm, mm, next);
  2540. if (!prev->mm) {
  2541. prev->active_mm = NULL;
  2542. rq->prev_mm = oldmm;
  2543. }
  2544. /*
  2545. * Since the runqueue lock will be released by the next
  2546. * task (which is an invalid locking op but in the case
  2547. * of the scheduler it's an obvious special-case), so we
  2548. * do an early lockdep release here:
  2549. */
  2550. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2551. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2552. #endif
  2553. /* Here we just switch the register state and the stack. */
  2554. switch_to(prev, next, prev);
  2555. barrier();
  2556. /*
  2557. * this_rq must be evaluated again because prev may have moved
  2558. * CPUs since it called schedule(), thus the 'rq' on its stack
  2559. * frame will be invalid.
  2560. */
  2561. finish_task_switch(this_rq(), prev);
  2562. }
  2563. /*
  2564. * nr_running, nr_uninterruptible and nr_context_switches:
  2565. *
  2566. * externally visible scheduler statistics: current number of runnable
  2567. * threads, current number of uninterruptible-sleeping threads, total
  2568. * number of context switches performed since bootup.
  2569. */
  2570. unsigned long nr_running(void)
  2571. {
  2572. unsigned long i, sum = 0;
  2573. for_each_online_cpu(i)
  2574. sum += cpu_rq(i)->nr_running;
  2575. return sum;
  2576. }
  2577. unsigned long nr_uninterruptible(void)
  2578. {
  2579. unsigned long i, sum = 0;
  2580. for_each_possible_cpu(i)
  2581. sum += cpu_rq(i)->nr_uninterruptible;
  2582. /*
  2583. * Since we read the counters lockless, it might be slightly
  2584. * inaccurate. Do not allow it to go below zero though:
  2585. */
  2586. if (unlikely((long)sum < 0))
  2587. sum = 0;
  2588. return sum;
  2589. }
  2590. unsigned long long nr_context_switches(void)
  2591. {
  2592. int i;
  2593. unsigned long long sum = 0;
  2594. for_each_possible_cpu(i)
  2595. sum += cpu_rq(i)->nr_switches;
  2596. return sum;
  2597. }
  2598. unsigned long nr_iowait(void)
  2599. {
  2600. unsigned long i, sum = 0;
  2601. for_each_possible_cpu(i)
  2602. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2603. return sum;
  2604. }
  2605. unsigned long nr_iowait_cpu(int cpu)
  2606. {
  2607. struct rq *this = cpu_rq(cpu);
  2608. return atomic_read(&this->nr_iowait);
  2609. }
  2610. unsigned long this_cpu_load(void)
  2611. {
  2612. struct rq *this = this_rq();
  2613. return this->cpu_load[0];
  2614. }
  2615. /* Variables and functions for calc_load */
  2616. static atomic_long_t calc_load_tasks;
  2617. static unsigned long calc_load_update;
  2618. unsigned long avenrun[3];
  2619. EXPORT_SYMBOL(avenrun);
  2620. static long calc_load_fold_active(struct rq *this_rq)
  2621. {
  2622. long nr_active, delta = 0;
  2623. nr_active = this_rq->nr_running;
  2624. nr_active += (long) this_rq->nr_uninterruptible;
  2625. if (nr_active != this_rq->calc_load_active) {
  2626. delta = nr_active - this_rq->calc_load_active;
  2627. this_rq->calc_load_active = nr_active;
  2628. }
  2629. return delta;
  2630. }
  2631. static unsigned long
  2632. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2633. {
  2634. load *= exp;
  2635. load += active * (FIXED_1 - exp);
  2636. load += 1UL << (FSHIFT - 1);
  2637. return load >> FSHIFT;
  2638. }
  2639. #ifdef CONFIG_NO_HZ
  2640. /*
  2641. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2642. *
  2643. * When making the ILB scale, we should try to pull this in as well.
  2644. */
  2645. static atomic_long_t calc_load_tasks_idle;
  2646. static void calc_load_account_idle(struct rq *this_rq)
  2647. {
  2648. long delta;
  2649. delta = calc_load_fold_active(this_rq);
  2650. if (delta)
  2651. atomic_long_add(delta, &calc_load_tasks_idle);
  2652. }
  2653. static long calc_load_fold_idle(void)
  2654. {
  2655. long delta = 0;
  2656. /*
  2657. * Its got a race, we don't care...
  2658. */
  2659. if (atomic_long_read(&calc_load_tasks_idle))
  2660. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2661. return delta;
  2662. }
  2663. /**
  2664. * fixed_power_int - compute: x^n, in O(log n) time
  2665. *
  2666. * @x: base of the power
  2667. * @frac_bits: fractional bits of @x
  2668. * @n: power to raise @x to.
  2669. *
  2670. * By exploiting the relation between the definition of the natural power
  2671. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2672. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2673. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2674. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2675. * of course trivially computable in O(log_2 n), the length of our binary
  2676. * vector.
  2677. */
  2678. static unsigned long
  2679. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2680. {
  2681. unsigned long result = 1UL << frac_bits;
  2682. if (n) for (;;) {
  2683. if (n & 1) {
  2684. result *= x;
  2685. result += 1UL << (frac_bits - 1);
  2686. result >>= frac_bits;
  2687. }
  2688. n >>= 1;
  2689. if (!n)
  2690. break;
  2691. x *= x;
  2692. x += 1UL << (frac_bits - 1);
  2693. x >>= frac_bits;
  2694. }
  2695. return result;
  2696. }
  2697. /*
  2698. * a1 = a0 * e + a * (1 - e)
  2699. *
  2700. * a2 = a1 * e + a * (1 - e)
  2701. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2702. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2703. *
  2704. * a3 = a2 * e + a * (1 - e)
  2705. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2706. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2707. *
  2708. * ...
  2709. *
  2710. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2711. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2712. * = a0 * e^n + a * (1 - e^n)
  2713. *
  2714. * [1] application of the geometric series:
  2715. *
  2716. * n 1 - x^(n+1)
  2717. * S_n := \Sum x^i = -------------
  2718. * i=0 1 - x
  2719. */
  2720. static unsigned long
  2721. calc_load_n(unsigned long load, unsigned long exp,
  2722. unsigned long active, unsigned int n)
  2723. {
  2724. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2725. }
  2726. /*
  2727. * NO_HZ can leave us missing all per-cpu ticks calling
  2728. * calc_load_account_active(), but since an idle CPU folds its delta into
  2729. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2730. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2731. *
  2732. * Once we've updated the global active value, we need to apply the exponential
  2733. * weights adjusted to the number of cycles missed.
  2734. */
  2735. static void calc_global_nohz(unsigned long ticks)
  2736. {
  2737. long delta, active, n;
  2738. if (time_before(jiffies, calc_load_update))
  2739. return;
  2740. /*
  2741. * If we crossed a calc_load_update boundary, make sure to fold
  2742. * any pending idle changes, the respective CPUs might have
  2743. * missed the tick driven calc_load_account_active() update
  2744. * due to NO_HZ.
  2745. */
  2746. delta = calc_load_fold_idle();
  2747. if (delta)
  2748. atomic_long_add(delta, &calc_load_tasks);
  2749. /*
  2750. * If we were idle for multiple load cycles, apply them.
  2751. */
  2752. if (ticks >= LOAD_FREQ) {
  2753. n = ticks / LOAD_FREQ;
  2754. active = atomic_long_read(&calc_load_tasks);
  2755. active = active > 0 ? active * FIXED_1 : 0;
  2756. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2757. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2758. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2759. calc_load_update += n * LOAD_FREQ;
  2760. }
  2761. /*
  2762. * Its possible the remainder of the above division also crosses
  2763. * a LOAD_FREQ period, the regular check in calc_global_load()
  2764. * which comes after this will take care of that.
  2765. *
  2766. * Consider us being 11 ticks before a cycle completion, and us
  2767. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2768. * age us 4 cycles, and the test in calc_global_load() will
  2769. * pick up the final one.
  2770. */
  2771. }
  2772. #else
  2773. static void calc_load_account_idle(struct rq *this_rq)
  2774. {
  2775. }
  2776. static inline long calc_load_fold_idle(void)
  2777. {
  2778. return 0;
  2779. }
  2780. static void calc_global_nohz(unsigned long ticks)
  2781. {
  2782. }
  2783. #endif
  2784. /**
  2785. * get_avenrun - get the load average array
  2786. * @loads: pointer to dest load array
  2787. * @offset: offset to add
  2788. * @shift: shift count to shift the result left
  2789. *
  2790. * These values are estimates at best, so no need for locking.
  2791. */
  2792. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2793. {
  2794. loads[0] = (avenrun[0] + offset) << shift;
  2795. loads[1] = (avenrun[1] + offset) << shift;
  2796. loads[2] = (avenrun[2] + offset) << shift;
  2797. }
  2798. /*
  2799. * calc_load - update the avenrun load estimates 10 ticks after the
  2800. * CPUs have updated calc_load_tasks.
  2801. */
  2802. void calc_global_load(unsigned long ticks)
  2803. {
  2804. long active;
  2805. calc_global_nohz(ticks);
  2806. if (time_before(jiffies, calc_load_update + 10))
  2807. return;
  2808. active = atomic_long_read(&calc_load_tasks);
  2809. active = active > 0 ? active * FIXED_1 : 0;
  2810. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2811. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2812. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2813. calc_load_update += LOAD_FREQ;
  2814. }
  2815. /*
  2816. * Called from update_cpu_load() to periodically update this CPU's
  2817. * active count.
  2818. */
  2819. static void calc_load_account_active(struct rq *this_rq)
  2820. {
  2821. long delta;
  2822. if (time_before(jiffies, this_rq->calc_load_update))
  2823. return;
  2824. delta = calc_load_fold_active(this_rq);
  2825. delta += calc_load_fold_idle();
  2826. if (delta)
  2827. atomic_long_add(delta, &calc_load_tasks);
  2828. this_rq->calc_load_update += LOAD_FREQ;
  2829. }
  2830. /*
  2831. * The exact cpuload at various idx values, calculated at every tick would be
  2832. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2833. *
  2834. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2835. * on nth tick when cpu may be busy, then we have:
  2836. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2837. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2838. *
  2839. * decay_load_missed() below does efficient calculation of
  2840. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2841. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2842. *
  2843. * The calculation is approximated on a 128 point scale.
  2844. * degrade_zero_ticks is the number of ticks after which load at any
  2845. * particular idx is approximated to be zero.
  2846. * degrade_factor is a precomputed table, a row for each load idx.
  2847. * Each column corresponds to degradation factor for a power of two ticks,
  2848. * based on 128 point scale.
  2849. * Example:
  2850. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2851. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2852. *
  2853. * With this power of 2 load factors, we can degrade the load n times
  2854. * by looking at 1 bits in n and doing as many mult/shift instead of
  2855. * n mult/shifts needed by the exact degradation.
  2856. */
  2857. #define DEGRADE_SHIFT 7
  2858. static const unsigned char
  2859. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2860. static const unsigned char
  2861. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2862. {0, 0, 0, 0, 0, 0, 0, 0},
  2863. {64, 32, 8, 0, 0, 0, 0, 0},
  2864. {96, 72, 40, 12, 1, 0, 0},
  2865. {112, 98, 75, 43, 15, 1, 0},
  2866. {120, 112, 98, 76, 45, 16, 2} };
  2867. /*
  2868. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2869. * would be when CPU is idle and so we just decay the old load without
  2870. * adding any new load.
  2871. */
  2872. static unsigned long
  2873. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2874. {
  2875. int j = 0;
  2876. if (!missed_updates)
  2877. return load;
  2878. if (missed_updates >= degrade_zero_ticks[idx])
  2879. return 0;
  2880. if (idx == 1)
  2881. return load >> missed_updates;
  2882. while (missed_updates) {
  2883. if (missed_updates % 2)
  2884. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2885. missed_updates >>= 1;
  2886. j++;
  2887. }
  2888. return load;
  2889. }
  2890. /*
  2891. * Update rq->cpu_load[] statistics. This function is usually called every
  2892. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2893. * every tick. We fix it up based on jiffies.
  2894. */
  2895. static void update_cpu_load(struct rq *this_rq)
  2896. {
  2897. unsigned long this_load = this_rq->load.weight;
  2898. unsigned long curr_jiffies = jiffies;
  2899. unsigned long pending_updates;
  2900. int i, scale;
  2901. this_rq->nr_load_updates++;
  2902. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2903. if (curr_jiffies == this_rq->last_load_update_tick)
  2904. return;
  2905. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2906. this_rq->last_load_update_tick = curr_jiffies;
  2907. /* Update our load: */
  2908. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2909. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2910. unsigned long old_load, new_load;
  2911. /* scale is effectively 1 << i now, and >> i divides by scale */
  2912. old_load = this_rq->cpu_load[i];
  2913. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2914. new_load = this_load;
  2915. /*
  2916. * Round up the averaging division if load is increasing. This
  2917. * prevents us from getting stuck on 9 if the load is 10, for
  2918. * example.
  2919. */
  2920. if (new_load > old_load)
  2921. new_load += scale - 1;
  2922. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2923. }
  2924. sched_avg_update(this_rq);
  2925. }
  2926. static void update_cpu_load_active(struct rq *this_rq)
  2927. {
  2928. update_cpu_load(this_rq);
  2929. calc_load_account_active(this_rq);
  2930. }
  2931. #ifdef CONFIG_SMP
  2932. /*
  2933. * sched_exec - execve() is a valuable balancing opportunity, because at
  2934. * this point the task has the smallest effective memory and cache footprint.
  2935. */
  2936. void sched_exec(void)
  2937. {
  2938. struct task_struct *p = current;
  2939. unsigned long flags;
  2940. struct rq *rq;
  2941. int dest_cpu;
  2942. rq = task_rq_lock(p, &flags);
  2943. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2944. if (dest_cpu == smp_processor_id())
  2945. goto unlock;
  2946. /*
  2947. * select_task_rq() can race against ->cpus_allowed
  2948. */
  2949. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2950. likely(cpu_active(dest_cpu)) && need_migrate_task(p)) {
  2951. struct migration_arg arg = { p, dest_cpu };
  2952. task_rq_unlock(rq, &flags);
  2953. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2954. return;
  2955. }
  2956. unlock:
  2957. task_rq_unlock(rq, &flags);
  2958. }
  2959. #endif
  2960. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2961. EXPORT_PER_CPU_SYMBOL(kstat);
  2962. /*
  2963. * Return any ns on the sched_clock that have not yet been accounted in
  2964. * @p in case that task is currently running.
  2965. *
  2966. * Called with task_rq_lock() held on @rq.
  2967. */
  2968. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2969. {
  2970. u64 ns = 0;
  2971. if (task_current(rq, p)) {
  2972. update_rq_clock(rq);
  2973. ns = rq->clock_task - p->se.exec_start;
  2974. if ((s64)ns < 0)
  2975. ns = 0;
  2976. }
  2977. return ns;
  2978. }
  2979. unsigned long long task_delta_exec(struct task_struct *p)
  2980. {
  2981. unsigned long flags;
  2982. struct rq *rq;
  2983. u64 ns = 0;
  2984. rq = task_rq_lock(p, &flags);
  2985. ns = do_task_delta_exec(p, rq);
  2986. task_rq_unlock(rq, &flags);
  2987. return ns;
  2988. }
  2989. /*
  2990. * Return accounted runtime for the task.
  2991. * In case the task is currently running, return the runtime plus current's
  2992. * pending runtime that have not been accounted yet.
  2993. */
  2994. unsigned long long task_sched_runtime(struct task_struct *p)
  2995. {
  2996. unsigned long flags;
  2997. struct rq *rq;
  2998. u64 ns = 0;
  2999. rq = task_rq_lock(p, &flags);
  3000. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3001. task_rq_unlock(rq, &flags);
  3002. return ns;
  3003. }
  3004. /*
  3005. * Return sum_exec_runtime for the thread group.
  3006. * In case the task is currently running, return the sum plus current's
  3007. * pending runtime that have not been accounted yet.
  3008. *
  3009. * Note that the thread group might have other running tasks as well,
  3010. * so the return value not includes other pending runtime that other
  3011. * running tasks might have.
  3012. */
  3013. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3014. {
  3015. struct task_cputime totals;
  3016. unsigned long flags;
  3017. struct rq *rq;
  3018. u64 ns;
  3019. rq = task_rq_lock(p, &flags);
  3020. thread_group_cputime(p, &totals);
  3021. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3022. task_rq_unlock(rq, &flags);
  3023. return ns;
  3024. }
  3025. /*
  3026. * Account user cpu time to a process.
  3027. * @p: the process that the cpu time gets accounted to
  3028. * @cputime: the cpu time spent in user space since the last update
  3029. * @cputime_scaled: cputime scaled by cpu frequency
  3030. */
  3031. void account_user_time(struct task_struct *p, cputime_t cputime,
  3032. cputime_t cputime_scaled)
  3033. {
  3034. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3035. cputime64_t tmp;
  3036. /* Add user time to process. */
  3037. p->utime = cputime_add(p->utime, cputime);
  3038. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3039. account_group_user_time(p, cputime);
  3040. /* Add user time to cpustat. */
  3041. tmp = cputime_to_cputime64(cputime);
  3042. if (TASK_NICE(p) > 0)
  3043. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3044. else
  3045. cpustat->user = cputime64_add(cpustat->user, tmp);
  3046. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3047. /* Account for user time used */
  3048. acct_update_integrals(p);
  3049. }
  3050. /*
  3051. * Account guest cpu time to a process.
  3052. * @p: the process that the cpu time gets accounted to
  3053. * @cputime: the cpu time spent in virtual machine since the last update
  3054. * @cputime_scaled: cputime scaled by cpu frequency
  3055. */
  3056. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3057. cputime_t cputime_scaled)
  3058. {
  3059. cputime64_t tmp;
  3060. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3061. tmp = cputime_to_cputime64(cputime);
  3062. /* Add guest time to process. */
  3063. p->utime = cputime_add(p->utime, cputime);
  3064. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3065. account_group_user_time(p, cputime);
  3066. p->gtime = cputime_add(p->gtime, cputime);
  3067. /* Add guest time to cpustat. */
  3068. if (TASK_NICE(p) > 0) {
  3069. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3070. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3071. } else {
  3072. cpustat->user = cputime64_add(cpustat->user, tmp);
  3073. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3074. }
  3075. }
  3076. /*
  3077. * Account system cpu time to a process and desired cpustat field
  3078. * @p: the process that the cpu time gets accounted to
  3079. * @cputime: the cpu time spent in kernel space since the last update
  3080. * @cputime_scaled: cputime scaled by cpu frequency
  3081. * @target_cputime64: pointer to cpustat field that has to be updated
  3082. */
  3083. static inline
  3084. void __account_system_time(struct task_struct *p, cputime_t cputime,
  3085. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  3086. {
  3087. cputime64_t tmp = cputime_to_cputime64(cputime);
  3088. /* Add system time to process. */
  3089. p->stime = cputime_add(p->stime, cputime);
  3090. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3091. account_group_system_time(p, cputime);
  3092. /* Add system time to cpustat. */
  3093. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  3094. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3095. /* Account for system time used */
  3096. acct_update_integrals(p);
  3097. }
  3098. /*
  3099. * Account system cpu time to a process.
  3100. * @p: the process that the cpu time gets accounted to
  3101. * @hardirq_offset: the offset to subtract from hardirq_count()
  3102. * @cputime: the cpu time spent in kernel space since the last update
  3103. * @cputime_scaled: cputime scaled by cpu frequency
  3104. */
  3105. void account_system_time(struct task_struct *p, int hardirq_offset,
  3106. cputime_t cputime, cputime_t cputime_scaled)
  3107. {
  3108. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3109. cputime64_t *target_cputime64;
  3110. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3111. account_guest_time(p, cputime, cputime_scaled);
  3112. return;
  3113. }
  3114. if (hardirq_count() - hardirq_offset)
  3115. target_cputime64 = &cpustat->irq;
  3116. else if (in_serving_softirq())
  3117. target_cputime64 = &cpustat->softirq;
  3118. else
  3119. target_cputime64 = &cpustat->system;
  3120. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  3121. }
  3122. /*
  3123. * Account for involuntary wait time.
  3124. * @cputime: the cpu time spent in involuntary wait
  3125. */
  3126. void account_steal_time(cputime_t cputime)
  3127. {
  3128. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3129. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3130. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3131. }
  3132. /*
  3133. * Account for idle time.
  3134. * @cputime: the cpu time spent in idle wait
  3135. */
  3136. void account_idle_time(cputime_t cputime)
  3137. {
  3138. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3139. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3140. struct rq *rq = this_rq();
  3141. if (atomic_read(&rq->nr_iowait) > 0)
  3142. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3143. else
  3144. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3145. }
  3146. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3147. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  3148. /*
  3149. * Account a tick to a process and cpustat
  3150. * @p: the process that the cpu time gets accounted to
  3151. * @user_tick: is the tick from userspace
  3152. * @rq: the pointer to rq
  3153. *
  3154. * Tick demultiplexing follows the order
  3155. * - pending hardirq update
  3156. * - pending softirq update
  3157. * - user_time
  3158. * - idle_time
  3159. * - system time
  3160. * - check for guest_time
  3161. * - else account as system_time
  3162. *
  3163. * Check for hardirq is done both for system and user time as there is
  3164. * no timer going off while we are on hardirq and hence we may never get an
  3165. * opportunity to update it solely in system time.
  3166. * p->stime and friends are only updated on system time and not on irq
  3167. * softirq as those do not count in task exec_runtime any more.
  3168. */
  3169. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3170. struct rq *rq)
  3171. {
  3172. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3173. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  3174. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3175. if (irqtime_account_hi_update()) {
  3176. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3177. } else if (irqtime_account_si_update()) {
  3178. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3179. } else if (this_cpu_ksoftirqd() == p) {
  3180. /*
  3181. * ksoftirqd time do not get accounted in cpu_softirq_time.
  3182. * So, we have to handle it separately here.
  3183. * Also, p->stime needs to be updated for ksoftirqd.
  3184. */
  3185. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3186. &cpustat->softirq);
  3187. } else if (user_tick) {
  3188. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3189. } else if (p == rq->idle) {
  3190. account_idle_time(cputime_one_jiffy);
  3191. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  3192. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3193. } else {
  3194. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3195. &cpustat->system);
  3196. }
  3197. }
  3198. static void irqtime_account_idle_ticks(int ticks)
  3199. {
  3200. int i;
  3201. struct rq *rq = this_rq();
  3202. for (i = 0; i < ticks; i++)
  3203. irqtime_account_process_tick(current, 0, rq);
  3204. }
  3205. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  3206. static void irqtime_account_idle_ticks(int ticks) {}
  3207. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3208. struct rq *rq) {}
  3209. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  3210. /*
  3211. * Account a single tick of cpu time.
  3212. * @p: the process that the cpu time gets accounted to
  3213. * @user_tick: indicates if the tick is a user or a system tick
  3214. */
  3215. void account_process_tick(struct task_struct *p, int user_tick)
  3216. {
  3217. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3218. struct rq *rq = this_rq();
  3219. if (sched_clock_irqtime) {
  3220. irqtime_account_process_tick(p, user_tick, rq);
  3221. return;
  3222. }
  3223. if (user_tick)
  3224. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3225. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3226. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3227. one_jiffy_scaled);
  3228. else
  3229. account_idle_time(cputime_one_jiffy);
  3230. }
  3231. /*
  3232. * Account multiple ticks of steal time.
  3233. * @p: the process from which the cpu time has been stolen
  3234. * @ticks: number of stolen ticks
  3235. */
  3236. void account_steal_ticks(unsigned long ticks)
  3237. {
  3238. account_steal_time(jiffies_to_cputime(ticks));
  3239. }
  3240. /*
  3241. * Account multiple ticks of idle time.
  3242. * @ticks: number of stolen ticks
  3243. */
  3244. void account_idle_ticks(unsigned long ticks)
  3245. {
  3246. if (sched_clock_irqtime) {
  3247. irqtime_account_idle_ticks(ticks);
  3248. return;
  3249. }
  3250. account_idle_time(jiffies_to_cputime(ticks));
  3251. }
  3252. #endif
  3253. /*
  3254. * Use precise platform statistics if available:
  3255. */
  3256. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3257. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3258. {
  3259. *ut = p->utime;
  3260. *st = p->stime;
  3261. }
  3262. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3263. {
  3264. struct task_cputime cputime;
  3265. thread_group_cputime(p, &cputime);
  3266. *ut = cputime.utime;
  3267. *st = cputime.stime;
  3268. }
  3269. #else
  3270. #ifndef nsecs_to_cputime
  3271. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3272. #endif
  3273. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3274. {
  3275. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3276. /*
  3277. * Use CFS's precise accounting:
  3278. */
  3279. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3280. if (total) {
  3281. u64 temp = rtime;
  3282. temp *= utime;
  3283. do_div(temp, total);
  3284. utime = (cputime_t)temp;
  3285. } else
  3286. utime = rtime;
  3287. /*
  3288. * Compare with previous values, to keep monotonicity:
  3289. */
  3290. p->prev_utime = max(p->prev_utime, utime);
  3291. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3292. *ut = p->prev_utime;
  3293. *st = p->prev_stime;
  3294. }
  3295. /*
  3296. * Must be called with siglock held.
  3297. */
  3298. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3299. {
  3300. struct signal_struct *sig = p->signal;
  3301. struct task_cputime cputime;
  3302. cputime_t rtime, utime, total;
  3303. thread_group_cputime(p, &cputime);
  3304. total = cputime_add(cputime.utime, cputime.stime);
  3305. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3306. if (total) {
  3307. u64 temp = rtime;
  3308. temp *= cputime.utime;
  3309. do_div(temp, total);
  3310. utime = (cputime_t)temp;
  3311. } else
  3312. utime = rtime;
  3313. sig->prev_utime = max(sig->prev_utime, utime);
  3314. sig->prev_stime = max(sig->prev_stime,
  3315. cputime_sub(rtime, sig->prev_utime));
  3316. *ut = sig->prev_utime;
  3317. *st = sig->prev_stime;
  3318. }
  3319. #endif
  3320. /*
  3321. * This function gets called by the timer code, with HZ frequency.
  3322. * We call it with interrupts disabled.
  3323. *
  3324. * It also gets called by the fork code, when changing the parent's
  3325. * timeslices.
  3326. */
  3327. void scheduler_tick(void)
  3328. {
  3329. int cpu = smp_processor_id();
  3330. struct rq *rq = cpu_rq(cpu);
  3331. struct task_struct *curr = rq->curr;
  3332. sched_clock_tick();
  3333. raw_spin_lock(&rq->lock);
  3334. update_rq_clock(rq);
  3335. update_cpu_load_active(rq);
  3336. curr->sched_class->task_tick(rq, curr, 0);
  3337. raw_spin_unlock(&rq->lock);
  3338. perf_event_task_tick();
  3339. #ifdef CONFIG_SMP
  3340. rq->idle_at_tick = idle_cpu(cpu);
  3341. trigger_load_balance(rq, cpu);
  3342. #endif
  3343. }
  3344. notrace unsigned long get_parent_ip(unsigned long addr)
  3345. {
  3346. if (in_lock_functions(addr)) {
  3347. addr = CALLER_ADDR2;
  3348. if (in_lock_functions(addr))
  3349. addr = CALLER_ADDR3;
  3350. }
  3351. return addr;
  3352. }
  3353. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3354. defined(CONFIG_PREEMPT_TRACER))
  3355. void __kprobes add_preempt_count(int val)
  3356. {
  3357. #ifdef CONFIG_DEBUG_PREEMPT
  3358. /*
  3359. * Underflow?
  3360. */
  3361. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3362. return;
  3363. #endif
  3364. preempt_count() += val;
  3365. #ifdef CONFIG_DEBUG_PREEMPT
  3366. /*
  3367. * Spinlock count overflowing soon?
  3368. */
  3369. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3370. PREEMPT_MASK - 10);
  3371. #endif
  3372. if (preempt_count() == val)
  3373. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3374. }
  3375. EXPORT_SYMBOL(add_preempt_count);
  3376. void __kprobes sub_preempt_count(int val)
  3377. {
  3378. #ifdef CONFIG_DEBUG_PREEMPT
  3379. /*
  3380. * Underflow?
  3381. */
  3382. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3383. return;
  3384. /*
  3385. * Is the spinlock portion underflowing?
  3386. */
  3387. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3388. !(preempt_count() & PREEMPT_MASK)))
  3389. return;
  3390. #endif
  3391. if (preempt_count() == val)
  3392. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3393. preempt_count() -= val;
  3394. }
  3395. EXPORT_SYMBOL(sub_preempt_count);
  3396. #endif
  3397. /*
  3398. * Print scheduling while atomic bug:
  3399. */
  3400. static noinline void __schedule_bug(struct task_struct *prev)
  3401. {
  3402. struct pt_regs *regs = get_irq_regs();
  3403. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3404. prev->comm, prev->pid, preempt_count());
  3405. debug_show_held_locks(prev);
  3406. print_modules();
  3407. if (irqs_disabled())
  3408. print_irqtrace_events(prev);
  3409. if (regs)
  3410. show_regs(regs);
  3411. else
  3412. dump_stack();
  3413. }
  3414. /*
  3415. * Various schedule()-time debugging checks and statistics:
  3416. */
  3417. static inline void schedule_debug(struct task_struct *prev)
  3418. {
  3419. /*
  3420. * Test if we are atomic. Since do_exit() needs to call into
  3421. * schedule() atomically, we ignore that path for now.
  3422. * Otherwise, whine if we are scheduling when we should not be.
  3423. */
  3424. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3425. __schedule_bug(prev);
  3426. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3427. schedstat_inc(this_rq(), sched_count);
  3428. #ifdef CONFIG_SCHEDSTATS
  3429. if (unlikely(prev->lock_depth >= 0)) {
  3430. schedstat_inc(this_rq(), rq_sched_info.bkl_count);
  3431. schedstat_inc(prev, sched_info.bkl_count);
  3432. }
  3433. #endif
  3434. }
  3435. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3436. {
  3437. if (prev->on_rq)
  3438. update_rq_clock(rq);
  3439. prev->sched_class->put_prev_task(rq, prev);
  3440. }
  3441. /*
  3442. * Pick up the highest-prio task:
  3443. */
  3444. static inline struct task_struct *
  3445. pick_next_task(struct rq *rq)
  3446. {
  3447. const struct sched_class *class;
  3448. struct task_struct *p;
  3449. /*
  3450. * Optimization: we know that if all tasks are in
  3451. * the fair class we can call that function directly:
  3452. */
  3453. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3454. p = fair_sched_class.pick_next_task(rq);
  3455. if (likely(p))
  3456. return p;
  3457. }
  3458. for_each_class(class) {
  3459. p = class->pick_next_task(rq);
  3460. if (p)
  3461. return p;
  3462. }
  3463. BUG(); /* the idle class will always have a runnable task */
  3464. }
  3465. /*
  3466. * schedule() is the main scheduler function.
  3467. */
  3468. asmlinkage void __sched schedule(void)
  3469. {
  3470. struct task_struct *prev, *next;
  3471. unsigned long *switch_count;
  3472. struct rq *rq;
  3473. int cpu;
  3474. need_resched:
  3475. preempt_disable();
  3476. cpu = smp_processor_id();
  3477. rq = cpu_rq(cpu);
  3478. rcu_note_context_switch(cpu);
  3479. prev = rq->curr;
  3480. schedule_debug(prev);
  3481. if (sched_feat(HRTICK))
  3482. hrtick_clear(rq);
  3483. raw_spin_lock_irq(&rq->lock);
  3484. switch_count = &prev->nivcsw;
  3485. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3486. if (unlikely(signal_pending_state(prev->state, prev))) {
  3487. prev->state = TASK_RUNNING;
  3488. } else {
  3489. /*
  3490. * If a worker is going to sleep, notify and
  3491. * ask workqueue whether it wants to wake up a
  3492. * task to maintain concurrency. If so, wake
  3493. * up the task.
  3494. */
  3495. if (prev->flags & PF_WQ_WORKER) {
  3496. struct task_struct *to_wakeup;
  3497. to_wakeup = wq_worker_sleeping(prev, cpu);
  3498. if (to_wakeup)
  3499. try_to_wake_up_local(to_wakeup);
  3500. }
  3501. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3502. prev->on_rq = 0;
  3503. /*
  3504. * If we are going to sleep and we have plugged IO queued, make
  3505. * sure to submit it to avoid deadlocks.
  3506. */
  3507. if (blk_needs_flush_plug(prev)) {
  3508. raw_spin_unlock(&rq->lock);
  3509. blk_flush_plug(prev);
  3510. raw_spin_lock(&rq->lock);
  3511. }
  3512. }
  3513. switch_count = &prev->nvcsw;
  3514. }
  3515. pre_schedule(rq, prev);
  3516. if (unlikely(!rq->nr_running))
  3517. idle_balance(cpu, rq);
  3518. put_prev_task(rq, prev);
  3519. next = pick_next_task(rq);
  3520. clear_tsk_need_resched(prev);
  3521. rq->skip_clock_update = 0;
  3522. if (likely(prev != next)) {
  3523. rq->nr_switches++;
  3524. rq->curr = next;
  3525. ++*switch_count;
  3526. context_switch(rq, prev, next); /* unlocks the rq */
  3527. /*
  3528. * The context switch have flipped the stack from under us
  3529. * and restored the local variables which were saved when
  3530. * this task called schedule() in the past. prev == current
  3531. * is still correct, but it can be moved to another cpu/rq.
  3532. */
  3533. cpu = smp_processor_id();
  3534. rq = cpu_rq(cpu);
  3535. } else
  3536. raw_spin_unlock_irq(&rq->lock);
  3537. post_schedule(rq);
  3538. preempt_enable_no_resched();
  3539. if (need_resched())
  3540. goto need_resched;
  3541. }
  3542. EXPORT_SYMBOL(schedule);
  3543. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3544. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  3545. {
  3546. bool ret = false;
  3547. rcu_read_lock();
  3548. if (lock->owner != owner)
  3549. goto fail;
  3550. /*
  3551. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  3552. * lock->owner still matches owner, if that fails, owner might
  3553. * point to free()d memory, if it still matches, the rcu_read_lock()
  3554. * ensures the memory stays valid.
  3555. */
  3556. barrier();
  3557. ret = owner->on_cpu;
  3558. fail:
  3559. rcu_read_unlock();
  3560. return ret;
  3561. }
  3562. /*
  3563. * Look out! "owner" is an entirely speculative pointer
  3564. * access and not reliable.
  3565. */
  3566. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  3567. {
  3568. if (!sched_feat(OWNER_SPIN))
  3569. return 0;
  3570. while (owner_running(lock, owner)) {
  3571. if (need_resched())
  3572. return 0;
  3573. arch_mutex_cpu_relax();
  3574. }
  3575. /*
  3576. * If the owner changed to another task there is likely
  3577. * heavy contention, stop spinning.
  3578. */
  3579. if (lock->owner)
  3580. return 0;
  3581. return 1;
  3582. }
  3583. #endif
  3584. #ifdef CONFIG_PREEMPT
  3585. /*
  3586. * this is the entry point to schedule() from in-kernel preemption
  3587. * off of preempt_enable. Kernel preemptions off return from interrupt
  3588. * occur there and call schedule directly.
  3589. */
  3590. asmlinkage void __sched notrace preempt_schedule(void)
  3591. {
  3592. struct thread_info *ti = current_thread_info();
  3593. /*
  3594. * If there is a non-zero preempt_count or interrupts are disabled,
  3595. * we do not want to preempt the current task. Just return..
  3596. */
  3597. if (likely(ti->preempt_count || irqs_disabled()))
  3598. return;
  3599. do {
  3600. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3601. schedule();
  3602. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3603. /*
  3604. * Check again in case we missed a preemption opportunity
  3605. * between schedule and now.
  3606. */
  3607. barrier();
  3608. } while (need_resched());
  3609. }
  3610. EXPORT_SYMBOL(preempt_schedule);
  3611. /*
  3612. * this is the entry point to schedule() from kernel preemption
  3613. * off of irq context.
  3614. * Note, that this is called and return with irqs disabled. This will
  3615. * protect us against recursive calling from irq.
  3616. */
  3617. asmlinkage void __sched preempt_schedule_irq(void)
  3618. {
  3619. struct thread_info *ti = current_thread_info();
  3620. /* Catch callers which need to be fixed */
  3621. BUG_ON(ti->preempt_count || !irqs_disabled());
  3622. do {
  3623. add_preempt_count(PREEMPT_ACTIVE);
  3624. local_irq_enable();
  3625. schedule();
  3626. local_irq_disable();
  3627. sub_preempt_count(PREEMPT_ACTIVE);
  3628. /*
  3629. * Check again in case we missed a preemption opportunity
  3630. * between schedule and now.
  3631. */
  3632. barrier();
  3633. } while (need_resched());
  3634. }
  3635. #endif /* CONFIG_PREEMPT */
  3636. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3637. void *key)
  3638. {
  3639. return try_to_wake_up(curr->private, mode, wake_flags);
  3640. }
  3641. EXPORT_SYMBOL(default_wake_function);
  3642. /*
  3643. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3644. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3645. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3646. *
  3647. * There are circumstances in which we can try to wake a task which has already
  3648. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3649. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3650. */
  3651. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3652. int nr_exclusive, int wake_flags, void *key)
  3653. {
  3654. wait_queue_t *curr, *next;
  3655. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3656. unsigned flags = curr->flags;
  3657. if (curr->func(curr, mode, wake_flags, key) &&
  3658. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3659. break;
  3660. }
  3661. }
  3662. /**
  3663. * __wake_up - wake up threads blocked on a waitqueue.
  3664. * @q: the waitqueue
  3665. * @mode: which threads
  3666. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3667. * @key: is directly passed to the wakeup function
  3668. *
  3669. * It may be assumed that this function implies a write memory barrier before
  3670. * changing the task state if and only if any tasks are woken up.
  3671. */
  3672. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3673. int nr_exclusive, void *key)
  3674. {
  3675. unsigned long flags;
  3676. spin_lock_irqsave(&q->lock, flags);
  3677. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3678. spin_unlock_irqrestore(&q->lock, flags);
  3679. }
  3680. EXPORT_SYMBOL(__wake_up);
  3681. /*
  3682. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3683. */
  3684. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3685. {
  3686. __wake_up_common(q, mode, 1, 0, NULL);
  3687. }
  3688. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3689. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3690. {
  3691. __wake_up_common(q, mode, 1, 0, key);
  3692. }
  3693. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3694. /**
  3695. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3696. * @q: the waitqueue
  3697. * @mode: which threads
  3698. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3699. * @key: opaque value to be passed to wakeup targets
  3700. *
  3701. * The sync wakeup differs that the waker knows that it will schedule
  3702. * away soon, so while the target thread will be woken up, it will not
  3703. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3704. * with each other. This can prevent needless bouncing between CPUs.
  3705. *
  3706. * On UP it can prevent extra preemption.
  3707. *
  3708. * It may be assumed that this function implies a write memory barrier before
  3709. * changing the task state if and only if any tasks are woken up.
  3710. */
  3711. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3712. int nr_exclusive, void *key)
  3713. {
  3714. unsigned long flags;
  3715. int wake_flags = WF_SYNC;
  3716. if (unlikely(!q))
  3717. return;
  3718. if (unlikely(!nr_exclusive))
  3719. wake_flags = 0;
  3720. spin_lock_irqsave(&q->lock, flags);
  3721. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3722. spin_unlock_irqrestore(&q->lock, flags);
  3723. }
  3724. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3725. /*
  3726. * __wake_up_sync - see __wake_up_sync_key()
  3727. */
  3728. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3729. {
  3730. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3731. }
  3732. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3733. /**
  3734. * complete: - signals a single thread waiting on this completion
  3735. * @x: holds the state of this particular completion
  3736. *
  3737. * This will wake up a single thread waiting on this completion. Threads will be
  3738. * awakened in the same order in which they were queued.
  3739. *
  3740. * See also complete_all(), wait_for_completion() and related routines.
  3741. *
  3742. * It may be assumed that this function implies a write memory barrier before
  3743. * changing the task state if and only if any tasks are woken up.
  3744. */
  3745. void complete(struct completion *x)
  3746. {
  3747. unsigned long flags;
  3748. spin_lock_irqsave(&x->wait.lock, flags);
  3749. x->done++;
  3750. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3751. spin_unlock_irqrestore(&x->wait.lock, flags);
  3752. }
  3753. EXPORT_SYMBOL(complete);
  3754. /**
  3755. * complete_all: - signals all threads waiting on this completion
  3756. * @x: holds the state of this particular completion
  3757. *
  3758. * This will wake up all threads waiting on this particular completion event.
  3759. *
  3760. * It may be assumed that this function implies a write memory barrier before
  3761. * changing the task state if and only if any tasks are woken up.
  3762. */
  3763. void complete_all(struct completion *x)
  3764. {
  3765. unsigned long flags;
  3766. spin_lock_irqsave(&x->wait.lock, flags);
  3767. x->done += UINT_MAX/2;
  3768. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3769. spin_unlock_irqrestore(&x->wait.lock, flags);
  3770. }
  3771. EXPORT_SYMBOL(complete_all);
  3772. static inline long __sched
  3773. do_wait_for_common(struct completion *x, long timeout, int state)
  3774. {
  3775. if (!x->done) {
  3776. DECLARE_WAITQUEUE(wait, current);
  3777. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3778. do {
  3779. if (signal_pending_state(state, current)) {
  3780. timeout = -ERESTARTSYS;
  3781. break;
  3782. }
  3783. __set_current_state(state);
  3784. spin_unlock_irq(&x->wait.lock);
  3785. timeout = schedule_timeout(timeout);
  3786. spin_lock_irq(&x->wait.lock);
  3787. } while (!x->done && timeout);
  3788. __remove_wait_queue(&x->wait, &wait);
  3789. if (!x->done)
  3790. return timeout;
  3791. }
  3792. x->done--;
  3793. return timeout ?: 1;
  3794. }
  3795. static long __sched
  3796. wait_for_common(struct completion *x, long timeout, int state)
  3797. {
  3798. might_sleep();
  3799. spin_lock_irq(&x->wait.lock);
  3800. timeout = do_wait_for_common(x, timeout, state);
  3801. spin_unlock_irq(&x->wait.lock);
  3802. return timeout;
  3803. }
  3804. /**
  3805. * wait_for_completion: - waits for completion of a task
  3806. * @x: holds the state of this particular completion
  3807. *
  3808. * This waits to be signaled for completion of a specific task. It is NOT
  3809. * interruptible and there is no timeout.
  3810. *
  3811. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3812. * and interrupt capability. Also see complete().
  3813. */
  3814. void __sched wait_for_completion(struct completion *x)
  3815. {
  3816. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3817. }
  3818. EXPORT_SYMBOL(wait_for_completion);
  3819. /**
  3820. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3821. * @x: holds the state of this particular completion
  3822. * @timeout: timeout value in jiffies
  3823. *
  3824. * This waits for either a completion of a specific task to be signaled or for a
  3825. * specified timeout to expire. The timeout is in jiffies. It is not
  3826. * interruptible.
  3827. */
  3828. unsigned long __sched
  3829. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3830. {
  3831. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3832. }
  3833. EXPORT_SYMBOL(wait_for_completion_timeout);
  3834. /**
  3835. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3836. * @x: holds the state of this particular completion
  3837. *
  3838. * This waits for completion of a specific task to be signaled. It is
  3839. * interruptible.
  3840. */
  3841. int __sched wait_for_completion_interruptible(struct completion *x)
  3842. {
  3843. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3844. if (t == -ERESTARTSYS)
  3845. return t;
  3846. return 0;
  3847. }
  3848. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3849. /**
  3850. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3851. * @x: holds the state of this particular completion
  3852. * @timeout: timeout value in jiffies
  3853. *
  3854. * This waits for either a completion of a specific task to be signaled or for a
  3855. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3856. */
  3857. long __sched
  3858. wait_for_completion_interruptible_timeout(struct completion *x,
  3859. unsigned long timeout)
  3860. {
  3861. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3862. }
  3863. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3864. /**
  3865. * wait_for_completion_killable: - waits for completion of a task (killable)
  3866. * @x: holds the state of this particular completion
  3867. *
  3868. * This waits to be signaled for completion of a specific task. It can be
  3869. * interrupted by a kill signal.
  3870. */
  3871. int __sched wait_for_completion_killable(struct completion *x)
  3872. {
  3873. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3874. if (t == -ERESTARTSYS)
  3875. return t;
  3876. return 0;
  3877. }
  3878. EXPORT_SYMBOL(wait_for_completion_killable);
  3879. /**
  3880. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3881. * @x: holds the state of this particular completion
  3882. * @timeout: timeout value in jiffies
  3883. *
  3884. * This waits for either a completion of a specific task to be
  3885. * signaled or for a specified timeout to expire. It can be
  3886. * interrupted by a kill signal. The timeout is in jiffies.
  3887. */
  3888. long __sched
  3889. wait_for_completion_killable_timeout(struct completion *x,
  3890. unsigned long timeout)
  3891. {
  3892. return wait_for_common(x, timeout, TASK_KILLABLE);
  3893. }
  3894. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3895. /**
  3896. * try_wait_for_completion - try to decrement a completion without blocking
  3897. * @x: completion structure
  3898. *
  3899. * Returns: 0 if a decrement cannot be done without blocking
  3900. * 1 if a decrement succeeded.
  3901. *
  3902. * If a completion is being used as a counting completion,
  3903. * attempt to decrement the counter without blocking. This
  3904. * enables us to avoid waiting if the resource the completion
  3905. * is protecting is not available.
  3906. */
  3907. bool try_wait_for_completion(struct completion *x)
  3908. {
  3909. unsigned long flags;
  3910. int ret = 1;
  3911. spin_lock_irqsave(&x->wait.lock, flags);
  3912. if (!x->done)
  3913. ret = 0;
  3914. else
  3915. x->done--;
  3916. spin_unlock_irqrestore(&x->wait.lock, flags);
  3917. return ret;
  3918. }
  3919. EXPORT_SYMBOL(try_wait_for_completion);
  3920. /**
  3921. * completion_done - Test to see if a completion has any waiters
  3922. * @x: completion structure
  3923. *
  3924. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3925. * 1 if there are no waiters.
  3926. *
  3927. */
  3928. bool completion_done(struct completion *x)
  3929. {
  3930. unsigned long flags;
  3931. int ret = 1;
  3932. spin_lock_irqsave(&x->wait.lock, flags);
  3933. if (!x->done)
  3934. ret = 0;
  3935. spin_unlock_irqrestore(&x->wait.lock, flags);
  3936. return ret;
  3937. }
  3938. EXPORT_SYMBOL(completion_done);
  3939. static long __sched
  3940. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3941. {
  3942. unsigned long flags;
  3943. wait_queue_t wait;
  3944. init_waitqueue_entry(&wait, current);
  3945. __set_current_state(state);
  3946. spin_lock_irqsave(&q->lock, flags);
  3947. __add_wait_queue(q, &wait);
  3948. spin_unlock(&q->lock);
  3949. timeout = schedule_timeout(timeout);
  3950. spin_lock_irq(&q->lock);
  3951. __remove_wait_queue(q, &wait);
  3952. spin_unlock_irqrestore(&q->lock, flags);
  3953. return timeout;
  3954. }
  3955. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3956. {
  3957. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3958. }
  3959. EXPORT_SYMBOL(interruptible_sleep_on);
  3960. long __sched
  3961. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3962. {
  3963. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3964. }
  3965. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3966. void __sched sleep_on(wait_queue_head_t *q)
  3967. {
  3968. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3969. }
  3970. EXPORT_SYMBOL(sleep_on);
  3971. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3972. {
  3973. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3974. }
  3975. EXPORT_SYMBOL(sleep_on_timeout);
  3976. #ifdef CONFIG_RT_MUTEXES
  3977. /*
  3978. * rt_mutex_setprio - set the current priority of a task
  3979. * @p: task
  3980. * @prio: prio value (kernel-internal form)
  3981. *
  3982. * This function changes the 'effective' priority of a task. It does
  3983. * not touch ->normal_prio like __setscheduler().
  3984. *
  3985. * Used by the rt_mutex code to implement priority inheritance logic.
  3986. */
  3987. void rt_mutex_setprio(struct task_struct *p, int prio)
  3988. {
  3989. unsigned long flags;
  3990. int oldprio, on_rq, running;
  3991. struct rq *rq;
  3992. const struct sched_class *prev_class;
  3993. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3994. lockdep_assert_held(&p->pi_lock);
  3995. rq = task_rq_lock(p, &flags);
  3996. trace_sched_pi_setprio(p, prio);
  3997. oldprio = p->prio;
  3998. prev_class = p->sched_class;
  3999. on_rq = p->on_rq;
  4000. running = task_current(rq, p);
  4001. if (on_rq)
  4002. dequeue_task(rq, p, 0);
  4003. if (running)
  4004. p->sched_class->put_prev_task(rq, p);
  4005. if (rt_prio(prio))
  4006. p->sched_class = &rt_sched_class;
  4007. else
  4008. p->sched_class = &fair_sched_class;
  4009. p->prio = prio;
  4010. if (running)
  4011. p->sched_class->set_curr_task(rq);
  4012. if (on_rq)
  4013. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  4014. check_class_changed(rq, p, prev_class, oldprio);
  4015. task_rq_unlock(rq, &flags);
  4016. }
  4017. #endif
  4018. void set_user_nice(struct task_struct *p, long nice)
  4019. {
  4020. int old_prio, delta, on_rq;
  4021. unsigned long flags;
  4022. struct rq *rq;
  4023. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4024. return;
  4025. /*
  4026. * We have to be careful, if called from sys_setpriority(),
  4027. * the task might be in the middle of scheduling on another CPU.
  4028. */
  4029. rq = task_rq_lock(p, &flags);
  4030. /*
  4031. * The RT priorities are set via sched_setscheduler(), but we still
  4032. * allow the 'normal' nice value to be set - but as expected
  4033. * it wont have any effect on scheduling until the task is
  4034. * SCHED_FIFO/SCHED_RR:
  4035. */
  4036. if (task_has_rt_policy(p)) {
  4037. p->static_prio = NICE_TO_PRIO(nice);
  4038. goto out_unlock;
  4039. }
  4040. on_rq = p->on_rq;
  4041. if (on_rq)
  4042. dequeue_task(rq, p, 0);
  4043. p->static_prio = NICE_TO_PRIO(nice);
  4044. set_load_weight(p);
  4045. old_prio = p->prio;
  4046. p->prio = effective_prio(p);
  4047. delta = p->prio - old_prio;
  4048. if (on_rq) {
  4049. enqueue_task(rq, p, 0);
  4050. /*
  4051. * If the task increased its priority or is running and
  4052. * lowered its priority, then reschedule its CPU:
  4053. */
  4054. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4055. resched_task(rq->curr);
  4056. }
  4057. out_unlock:
  4058. task_rq_unlock(rq, &flags);
  4059. }
  4060. EXPORT_SYMBOL(set_user_nice);
  4061. /*
  4062. * can_nice - check if a task can reduce its nice value
  4063. * @p: task
  4064. * @nice: nice value
  4065. */
  4066. int can_nice(const struct task_struct *p, const int nice)
  4067. {
  4068. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4069. int nice_rlim = 20 - nice;
  4070. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4071. capable(CAP_SYS_NICE));
  4072. }
  4073. #ifdef __ARCH_WANT_SYS_NICE
  4074. /*
  4075. * sys_nice - change the priority of the current process.
  4076. * @increment: priority increment
  4077. *
  4078. * sys_setpriority is a more generic, but much slower function that
  4079. * does similar things.
  4080. */
  4081. SYSCALL_DEFINE1(nice, int, increment)
  4082. {
  4083. long nice, retval;
  4084. /*
  4085. * Setpriority might change our priority at the same moment.
  4086. * We don't have to worry. Conceptually one call occurs first
  4087. * and we have a single winner.
  4088. */
  4089. if (increment < -40)
  4090. increment = -40;
  4091. if (increment > 40)
  4092. increment = 40;
  4093. nice = TASK_NICE(current) + increment;
  4094. if (nice < -20)
  4095. nice = -20;
  4096. if (nice > 19)
  4097. nice = 19;
  4098. if (increment < 0 && !can_nice(current, nice))
  4099. return -EPERM;
  4100. retval = security_task_setnice(current, nice);
  4101. if (retval)
  4102. return retval;
  4103. set_user_nice(current, nice);
  4104. return 0;
  4105. }
  4106. #endif
  4107. /**
  4108. * task_prio - return the priority value of a given task.
  4109. * @p: the task in question.
  4110. *
  4111. * This is the priority value as seen by users in /proc.
  4112. * RT tasks are offset by -200. Normal tasks are centered
  4113. * around 0, value goes from -16 to +15.
  4114. */
  4115. int task_prio(const struct task_struct *p)
  4116. {
  4117. return p->prio - MAX_RT_PRIO;
  4118. }
  4119. /**
  4120. * task_nice - return the nice value of a given task.
  4121. * @p: the task in question.
  4122. */
  4123. int task_nice(const struct task_struct *p)
  4124. {
  4125. return TASK_NICE(p);
  4126. }
  4127. EXPORT_SYMBOL(task_nice);
  4128. /**
  4129. * idle_cpu - is a given cpu idle currently?
  4130. * @cpu: the processor in question.
  4131. */
  4132. int idle_cpu(int cpu)
  4133. {
  4134. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4135. }
  4136. /**
  4137. * idle_task - return the idle task for a given cpu.
  4138. * @cpu: the processor in question.
  4139. */
  4140. struct task_struct *idle_task(int cpu)
  4141. {
  4142. return cpu_rq(cpu)->idle;
  4143. }
  4144. /**
  4145. * find_process_by_pid - find a process with a matching PID value.
  4146. * @pid: the pid in question.
  4147. */
  4148. static struct task_struct *find_process_by_pid(pid_t pid)
  4149. {
  4150. return pid ? find_task_by_vpid(pid) : current;
  4151. }
  4152. /* Actually do priority change: must hold rq lock. */
  4153. static void
  4154. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4155. {
  4156. p->policy = policy;
  4157. p->rt_priority = prio;
  4158. p->normal_prio = normal_prio(p);
  4159. /* we are holding p->pi_lock already */
  4160. p->prio = rt_mutex_getprio(p);
  4161. if (rt_prio(p->prio))
  4162. p->sched_class = &rt_sched_class;
  4163. else
  4164. p->sched_class = &fair_sched_class;
  4165. set_load_weight(p);
  4166. }
  4167. /*
  4168. * check the target process has a UID that matches the current process's
  4169. */
  4170. static bool check_same_owner(struct task_struct *p)
  4171. {
  4172. const struct cred *cred = current_cred(), *pcred;
  4173. bool match;
  4174. rcu_read_lock();
  4175. pcred = __task_cred(p);
  4176. if (cred->user->user_ns == pcred->user->user_ns)
  4177. match = (cred->euid == pcred->euid ||
  4178. cred->euid == pcred->uid);
  4179. else
  4180. match = false;
  4181. rcu_read_unlock();
  4182. return match;
  4183. }
  4184. static int __sched_setscheduler(struct task_struct *p, int policy,
  4185. const struct sched_param *param, bool user)
  4186. {
  4187. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4188. unsigned long flags;
  4189. const struct sched_class *prev_class;
  4190. struct rq *rq;
  4191. int reset_on_fork;
  4192. /* may grab non-irq protected spin_locks */
  4193. BUG_ON(in_interrupt());
  4194. recheck:
  4195. /* double check policy once rq lock held */
  4196. if (policy < 0) {
  4197. reset_on_fork = p->sched_reset_on_fork;
  4198. policy = oldpolicy = p->policy;
  4199. } else {
  4200. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4201. policy &= ~SCHED_RESET_ON_FORK;
  4202. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4203. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4204. policy != SCHED_IDLE)
  4205. return -EINVAL;
  4206. }
  4207. /*
  4208. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4209. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4210. * SCHED_BATCH and SCHED_IDLE is 0.
  4211. */
  4212. if (param->sched_priority < 0 ||
  4213. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4214. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4215. return -EINVAL;
  4216. if (rt_policy(policy) != (param->sched_priority != 0))
  4217. return -EINVAL;
  4218. /*
  4219. * Allow unprivileged RT tasks to decrease priority:
  4220. */
  4221. if (user && !capable(CAP_SYS_NICE)) {
  4222. if (rt_policy(policy)) {
  4223. unsigned long rlim_rtprio =
  4224. task_rlimit(p, RLIMIT_RTPRIO);
  4225. /* can't set/change the rt policy */
  4226. if (policy != p->policy && !rlim_rtprio)
  4227. return -EPERM;
  4228. /* can't increase priority */
  4229. if (param->sched_priority > p->rt_priority &&
  4230. param->sched_priority > rlim_rtprio)
  4231. return -EPERM;
  4232. }
  4233. /*
  4234. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  4235. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  4236. */
  4237. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  4238. if (!can_nice(p, TASK_NICE(p)))
  4239. return -EPERM;
  4240. }
  4241. /* can't change other user's priorities */
  4242. if (!check_same_owner(p))
  4243. return -EPERM;
  4244. /* Normal users shall not reset the sched_reset_on_fork flag */
  4245. if (p->sched_reset_on_fork && !reset_on_fork)
  4246. return -EPERM;
  4247. }
  4248. if (user) {
  4249. retval = security_task_setscheduler(p);
  4250. if (retval)
  4251. return retval;
  4252. }
  4253. /*
  4254. * make sure no PI-waiters arrive (or leave) while we are
  4255. * changing the priority of the task:
  4256. */
  4257. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4258. /*
  4259. * To be able to change p->policy safely, the appropriate
  4260. * runqueue lock must be held.
  4261. */
  4262. rq = __task_rq_lock(p);
  4263. /*
  4264. * Changing the policy of the stop threads its a very bad idea
  4265. */
  4266. if (p == rq->stop) {
  4267. __task_rq_unlock(rq);
  4268. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4269. return -EINVAL;
  4270. }
  4271. /*
  4272. * If not changing anything there's no need to proceed further:
  4273. */
  4274. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  4275. param->sched_priority == p->rt_priority))) {
  4276. __task_rq_unlock(rq);
  4277. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4278. return 0;
  4279. }
  4280. #ifdef CONFIG_RT_GROUP_SCHED
  4281. if (user) {
  4282. /*
  4283. * Do not allow realtime tasks into groups that have no runtime
  4284. * assigned.
  4285. */
  4286. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4287. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4288. !task_group_is_autogroup(task_group(p))) {
  4289. __task_rq_unlock(rq);
  4290. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4291. return -EPERM;
  4292. }
  4293. }
  4294. #endif
  4295. /* recheck policy now with rq lock held */
  4296. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4297. policy = oldpolicy = -1;
  4298. __task_rq_unlock(rq);
  4299. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4300. goto recheck;
  4301. }
  4302. on_rq = p->on_rq;
  4303. running = task_current(rq, p);
  4304. if (on_rq)
  4305. deactivate_task(rq, p, 0);
  4306. if (running)
  4307. p->sched_class->put_prev_task(rq, p);
  4308. p->sched_reset_on_fork = reset_on_fork;
  4309. oldprio = p->prio;
  4310. prev_class = p->sched_class;
  4311. __setscheduler(rq, p, policy, param->sched_priority);
  4312. if (running)
  4313. p->sched_class->set_curr_task(rq);
  4314. if (on_rq)
  4315. activate_task(rq, p, 0);
  4316. check_class_changed(rq, p, prev_class, oldprio);
  4317. __task_rq_unlock(rq);
  4318. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4319. rt_mutex_adjust_pi(p);
  4320. return 0;
  4321. }
  4322. /**
  4323. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4324. * @p: the task in question.
  4325. * @policy: new policy.
  4326. * @param: structure containing the new RT priority.
  4327. *
  4328. * NOTE that the task may be already dead.
  4329. */
  4330. int sched_setscheduler(struct task_struct *p, int policy,
  4331. const struct sched_param *param)
  4332. {
  4333. return __sched_setscheduler(p, policy, param, true);
  4334. }
  4335. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4336. /**
  4337. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4338. * @p: the task in question.
  4339. * @policy: new policy.
  4340. * @param: structure containing the new RT priority.
  4341. *
  4342. * Just like sched_setscheduler, only don't bother checking if the
  4343. * current context has permission. For example, this is needed in
  4344. * stop_machine(): we create temporary high priority worker threads,
  4345. * but our caller might not have that capability.
  4346. */
  4347. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4348. const struct sched_param *param)
  4349. {
  4350. return __sched_setscheduler(p, policy, param, false);
  4351. }
  4352. static int
  4353. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4354. {
  4355. struct sched_param lparam;
  4356. struct task_struct *p;
  4357. int retval;
  4358. if (!param || pid < 0)
  4359. return -EINVAL;
  4360. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4361. return -EFAULT;
  4362. rcu_read_lock();
  4363. retval = -ESRCH;
  4364. p = find_process_by_pid(pid);
  4365. if (p != NULL)
  4366. retval = sched_setscheduler(p, policy, &lparam);
  4367. rcu_read_unlock();
  4368. return retval;
  4369. }
  4370. /**
  4371. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4372. * @pid: the pid in question.
  4373. * @policy: new policy.
  4374. * @param: structure containing the new RT priority.
  4375. */
  4376. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4377. struct sched_param __user *, param)
  4378. {
  4379. /* negative values for policy are not valid */
  4380. if (policy < 0)
  4381. return -EINVAL;
  4382. return do_sched_setscheduler(pid, policy, param);
  4383. }
  4384. /**
  4385. * sys_sched_setparam - set/change the RT priority of a thread
  4386. * @pid: the pid in question.
  4387. * @param: structure containing the new RT priority.
  4388. */
  4389. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4390. {
  4391. return do_sched_setscheduler(pid, -1, param);
  4392. }
  4393. /**
  4394. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4395. * @pid: the pid in question.
  4396. */
  4397. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4398. {
  4399. struct task_struct *p;
  4400. int retval;
  4401. if (pid < 0)
  4402. return -EINVAL;
  4403. retval = -ESRCH;
  4404. rcu_read_lock();
  4405. p = find_process_by_pid(pid);
  4406. if (p) {
  4407. retval = security_task_getscheduler(p);
  4408. if (!retval)
  4409. retval = p->policy
  4410. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4411. }
  4412. rcu_read_unlock();
  4413. return retval;
  4414. }
  4415. /**
  4416. * sys_sched_getparam - get the RT priority of a thread
  4417. * @pid: the pid in question.
  4418. * @param: structure containing the RT priority.
  4419. */
  4420. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4421. {
  4422. struct sched_param lp;
  4423. struct task_struct *p;
  4424. int retval;
  4425. if (!param || pid < 0)
  4426. return -EINVAL;
  4427. rcu_read_lock();
  4428. p = find_process_by_pid(pid);
  4429. retval = -ESRCH;
  4430. if (!p)
  4431. goto out_unlock;
  4432. retval = security_task_getscheduler(p);
  4433. if (retval)
  4434. goto out_unlock;
  4435. lp.sched_priority = p->rt_priority;
  4436. rcu_read_unlock();
  4437. /*
  4438. * This one might sleep, we cannot do it with a spinlock held ...
  4439. */
  4440. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4441. return retval;
  4442. out_unlock:
  4443. rcu_read_unlock();
  4444. return retval;
  4445. }
  4446. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4447. {
  4448. cpumask_var_t cpus_allowed, new_mask;
  4449. struct task_struct *p;
  4450. int retval;
  4451. get_online_cpus();
  4452. rcu_read_lock();
  4453. p = find_process_by_pid(pid);
  4454. if (!p) {
  4455. rcu_read_unlock();
  4456. put_online_cpus();
  4457. return -ESRCH;
  4458. }
  4459. /* Prevent p going away */
  4460. get_task_struct(p);
  4461. rcu_read_unlock();
  4462. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4463. retval = -ENOMEM;
  4464. goto out_put_task;
  4465. }
  4466. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4467. retval = -ENOMEM;
  4468. goto out_free_cpus_allowed;
  4469. }
  4470. retval = -EPERM;
  4471. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  4472. goto out_unlock;
  4473. retval = security_task_setscheduler(p);
  4474. if (retval)
  4475. goto out_unlock;
  4476. cpuset_cpus_allowed(p, cpus_allowed);
  4477. cpumask_and(new_mask, in_mask, cpus_allowed);
  4478. again:
  4479. retval = set_cpus_allowed_ptr(p, new_mask);
  4480. if (!retval) {
  4481. cpuset_cpus_allowed(p, cpus_allowed);
  4482. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4483. /*
  4484. * We must have raced with a concurrent cpuset
  4485. * update. Just reset the cpus_allowed to the
  4486. * cpuset's cpus_allowed
  4487. */
  4488. cpumask_copy(new_mask, cpus_allowed);
  4489. goto again;
  4490. }
  4491. }
  4492. out_unlock:
  4493. free_cpumask_var(new_mask);
  4494. out_free_cpus_allowed:
  4495. free_cpumask_var(cpus_allowed);
  4496. out_put_task:
  4497. put_task_struct(p);
  4498. put_online_cpus();
  4499. return retval;
  4500. }
  4501. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4502. struct cpumask *new_mask)
  4503. {
  4504. if (len < cpumask_size())
  4505. cpumask_clear(new_mask);
  4506. else if (len > cpumask_size())
  4507. len = cpumask_size();
  4508. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4509. }
  4510. /**
  4511. * sys_sched_setaffinity - set the cpu affinity of a process
  4512. * @pid: pid of the process
  4513. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4514. * @user_mask_ptr: user-space pointer to the new cpu mask
  4515. */
  4516. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4517. unsigned long __user *, user_mask_ptr)
  4518. {
  4519. cpumask_var_t new_mask;
  4520. int retval;
  4521. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4522. return -ENOMEM;
  4523. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4524. if (retval == 0)
  4525. retval = sched_setaffinity(pid, new_mask);
  4526. free_cpumask_var(new_mask);
  4527. return retval;
  4528. }
  4529. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4530. {
  4531. struct task_struct *p;
  4532. unsigned long flags;
  4533. int retval;
  4534. get_online_cpus();
  4535. rcu_read_lock();
  4536. retval = -ESRCH;
  4537. p = find_process_by_pid(pid);
  4538. if (!p)
  4539. goto out_unlock;
  4540. retval = security_task_getscheduler(p);
  4541. if (retval)
  4542. goto out_unlock;
  4543. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4544. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4545. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4546. out_unlock:
  4547. rcu_read_unlock();
  4548. put_online_cpus();
  4549. return retval;
  4550. }
  4551. /**
  4552. * sys_sched_getaffinity - get the cpu affinity of a process
  4553. * @pid: pid of the process
  4554. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4555. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4556. */
  4557. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4558. unsigned long __user *, user_mask_ptr)
  4559. {
  4560. int ret;
  4561. cpumask_var_t mask;
  4562. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4563. return -EINVAL;
  4564. if (len & (sizeof(unsigned long)-1))
  4565. return -EINVAL;
  4566. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4567. return -ENOMEM;
  4568. ret = sched_getaffinity(pid, mask);
  4569. if (ret == 0) {
  4570. size_t retlen = min_t(size_t, len, cpumask_size());
  4571. if (copy_to_user(user_mask_ptr, mask, retlen))
  4572. ret = -EFAULT;
  4573. else
  4574. ret = retlen;
  4575. }
  4576. free_cpumask_var(mask);
  4577. return ret;
  4578. }
  4579. /**
  4580. * sys_sched_yield - yield the current processor to other threads.
  4581. *
  4582. * This function yields the current CPU to other tasks. If there are no
  4583. * other threads running on this CPU then this function will return.
  4584. */
  4585. SYSCALL_DEFINE0(sched_yield)
  4586. {
  4587. struct rq *rq = this_rq_lock();
  4588. schedstat_inc(rq, yld_count);
  4589. current->sched_class->yield_task(rq);
  4590. /*
  4591. * Since we are going to call schedule() anyway, there's
  4592. * no need to preempt or enable interrupts:
  4593. */
  4594. __release(rq->lock);
  4595. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4596. do_raw_spin_unlock(&rq->lock);
  4597. preempt_enable_no_resched();
  4598. schedule();
  4599. return 0;
  4600. }
  4601. static inline int should_resched(void)
  4602. {
  4603. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4604. }
  4605. static void __cond_resched(void)
  4606. {
  4607. add_preempt_count(PREEMPT_ACTIVE);
  4608. schedule();
  4609. sub_preempt_count(PREEMPT_ACTIVE);
  4610. }
  4611. int __sched _cond_resched(void)
  4612. {
  4613. if (should_resched()) {
  4614. __cond_resched();
  4615. return 1;
  4616. }
  4617. return 0;
  4618. }
  4619. EXPORT_SYMBOL(_cond_resched);
  4620. /*
  4621. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4622. * call schedule, and on return reacquire the lock.
  4623. *
  4624. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4625. * operations here to prevent schedule() from being called twice (once via
  4626. * spin_unlock(), once by hand).
  4627. */
  4628. int __cond_resched_lock(spinlock_t *lock)
  4629. {
  4630. int resched = should_resched();
  4631. int ret = 0;
  4632. lockdep_assert_held(lock);
  4633. if (spin_needbreak(lock) || resched) {
  4634. spin_unlock(lock);
  4635. if (resched)
  4636. __cond_resched();
  4637. else
  4638. cpu_relax();
  4639. ret = 1;
  4640. spin_lock(lock);
  4641. }
  4642. return ret;
  4643. }
  4644. EXPORT_SYMBOL(__cond_resched_lock);
  4645. int __sched __cond_resched_softirq(void)
  4646. {
  4647. BUG_ON(!in_softirq());
  4648. if (should_resched()) {
  4649. local_bh_enable();
  4650. __cond_resched();
  4651. local_bh_disable();
  4652. return 1;
  4653. }
  4654. return 0;
  4655. }
  4656. EXPORT_SYMBOL(__cond_resched_softirq);
  4657. /**
  4658. * yield - yield the current processor to other threads.
  4659. *
  4660. * This is a shortcut for kernel-space yielding - it marks the
  4661. * thread runnable and calls sys_sched_yield().
  4662. */
  4663. void __sched yield(void)
  4664. {
  4665. set_current_state(TASK_RUNNING);
  4666. sys_sched_yield();
  4667. }
  4668. EXPORT_SYMBOL(yield);
  4669. /**
  4670. * yield_to - yield the current processor to another thread in
  4671. * your thread group, or accelerate that thread toward the
  4672. * processor it's on.
  4673. * @p: target task
  4674. * @preempt: whether task preemption is allowed or not
  4675. *
  4676. * It's the caller's job to ensure that the target task struct
  4677. * can't go away on us before we can do any checks.
  4678. *
  4679. * Returns true if we indeed boosted the target task.
  4680. */
  4681. bool __sched yield_to(struct task_struct *p, bool preempt)
  4682. {
  4683. struct task_struct *curr = current;
  4684. struct rq *rq, *p_rq;
  4685. unsigned long flags;
  4686. bool yielded = 0;
  4687. local_irq_save(flags);
  4688. rq = this_rq();
  4689. again:
  4690. p_rq = task_rq(p);
  4691. double_rq_lock(rq, p_rq);
  4692. while (task_rq(p) != p_rq) {
  4693. double_rq_unlock(rq, p_rq);
  4694. goto again;
  4695. }
  4696. if (!curr->sched_class->yield_to_task)
  4697. goto out;
  4698. if (curr->sched_class != p->sched_class)
  4699. goto out;
  4700. if (task_running(p_rq, p) || p->state)
  4701. goto out;
  4702. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4703. if (yielded) {
  4704. schedstat_inc(rq, yld_count);
  4705. /*
  4706. * Make p's CPU reschedule; pick_next_entity takes care of
  4707. * fairness.
  4708. */
  4709. if (preempt && rq != p_rq)
  4710. resched_task(p_rq->curr);
  4711. }
  4712. out:
  4713. double_rq_unlock(rq, p_rq);
  4714. local_irq_restore(flags);
  4715. if (yielded)
  4716. schedule();
  4717. return yielded;
  4718. }
  4719. EXPORT_SYMBOL_GPL(yield_to);
  4720. /*
  4721. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4722. * that process accounting knows that this is a task in IO wait state.
  4723. */
  4724. void __sched io_schedule(void)
  4725. {
  4726. struct rq *rq = raw_rq();
  4727. delayacct_blkio_start();
  4728. atomic_inc(&rq->nr_iowait);
  4729. blk_flush_plug(current);
  4730. current->in_iowait = 1;
  4731. schedule();
  4732. current->in_iowait = 0;
  4733. atomic_dec(&rq->nr_iowait);
  4734. delayacct_blkio_end();
  4735. }
  4736. EXPORT_SYMBOL(io_schedule);
  4737. long __sched io_schedule_timeout(long timeout)
  4738. {
  4739. struct rq *rq = raw_rq();
  4740. long ret;
  4741. delayacct_blkio_start();
  4742. atomic_inc(&rq->nr_iowait);
  4743. blk_flush_plug(current);
  4744. current->in_iowait = 1;
  4745. ret = schedule_timeout(timeout);
  4746. current->in_iowait = 0;
  4747. atomic_dec(&rq->nr_iowait);
  4748. delayacct_blkio_end();
  4749. return ret;
  4750. }
  4751. /**
  4752. * sys_sched_get_priority_max - return maximum RT priority.
  4753. * @policy: scheduling class.
  4754. *
  4755. * this syscall returns the maximum rt_priority that can be used
  4756. * by a given scheduling class.
  4757. */
  4758. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4759. {
  4760. int ret = -EINVAL;
  4761. switch (policy) {
  4762. case SCHED_FIFO:
  4763. case SCHED_RR:
  4764. ret = MAX_USER_RT_PRIO-1;
  4765. break;
  4766. case SCHED_NORMAL:
  4767. case SCHED_BATCH:
  4768. case SCHED_IDLE:
  4769. ret = 0;
  4770. break;
  4771. }
  4772. return ret;
  4773. }
  4774. /**
  4775. * sys_sched_get_priority_min - return minimum RT priority.
  4776. * @policy: scheduling class.
  4777. *
  4778. * this syscall returns the minimum rt_priority that can be used
  4779. * by a given scheduling class.
  4780. */
  4781. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4782. {
  4783. int ret = -EINVAL;
  4784. switch (policy) {
  4785. case SCHED_FIFO:
  4786. case SCHED_RR:
  4787. ret = 1;
  4788. break;
  4789. case SCHED_NORMAL:
  4790. case SCHED_BATCH:
  4791. case SCHED_IDLE:
  4792. ret = 0;
  4793. }
  4794. return ret;
  4795. }
  4796. /**
  4797. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4798. * @pid: pid of the process.
  4799. * @interval: userspace pointer to the timeslice value.
  4800. *
  4801. * this syscall writes the default timeslice value of a given process
  4802. * into the user-space timespec buffer. A value of '0' means infinity.
  4803. */
  4804. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4805. struct timespec __user *, interval)
  4806. {
  4807. struct task_struct *p;
  4808. unsigned int time_slice;
  4809. unsigned long flags;
  4810. struct rq *rq;
  4811. int retval;
  4812. struct timespec t;
  4813. if (pid < 0)
  4814. return -EINVAL;
  4815. retval = -ESRCH;
  4816. rcu_read_lock();
  4817. p = find_process_by_pid(pid);
  4818. if (!p)
  4819. goto out_unlock;
  4820. retval = security_task_getscheduler(p);
  4821. if (retval)
  4822. goto out_unlock;
  4823. rq = task_rq_lock(p, &flags);
  4824. time_slice = p->sched_class->get_rr_interval(rq, p);
  4825. task_rq_unlock(rq, &flags);
  4826. rcu_read_unlock();
  4827. jiffies_to_timespec(time_slice, &t);
  4828. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4829. return retval;
  4830. out_unlock:
  4831. rcu_read_unlock();
  4832. return retval;
  4833. }
  4834. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4835. void sched_show_task(struct task_struct *p)
  4836. {
  4837. unsigned long free = 0;
  4838. unsigned state;
  4839. state = p->state ? __ffs(p->state) + 1 : 0;
  4840. printk(KERN_INFO "%-15.15s %c", p->comm,
  4841. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4842. #if BITS_PER_LONG == 32
  4843. if (state == TASK_RUNNING)
  4844. printk(KERN_CONT " running ");
  4845. else
  4846. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4847. #else
  4848. if (state == TASK_RUNNING)
  4849. printk(KERN_CONT " running task ");
  4850. else
  4851. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4852. #endif
  4853. #ifdef CONFIG_DEBUG_STACK_USAGE
  4854. free = stack_not_used(p);
  4855. #endif
  4856. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4857. task_pid_nr(p), task_pid_nr(p->real_parent),
  4858. (unsigned long)task_thread_info(p)->flags);
  4859. show_stack(p, NULL);
  4860. }
  4861. void show_state_filter(unsigned long state_filter)
  4862. {
  4863. struct task_struct *g, *p;
  4864. #if BITS_PER_LONG == 32
  4865. printk(KERN_INFO
  4866. " task PC stack pid father\n");
  4867. #else
  4868. printk(KERN_INFO
  4869. " task PC stack pid father\n");
  4870. #endif
  4871. read_lock(&tasklist_lock);
  4872. do_each_thread(g, p) {
  4873. /*
  4874. * reset the NMI-timeout, listing all files on a slow
  4875. * console might take a lot of time:
  4876. */
  4877. touch_nmi_watchdog();
  4878. if (!state_filter || (p->state & state_filter))
  4879. sched_show_task(p);
  4880. } while_each_thread(g, p);
  4881. touch_all_softlockup_watchdogs();
  4882. #ifdef CONFIG_SCHED_DEBUG
  4883. sysrq_sched_debug_show();
  4884. #endif
  4885. read_unlock(&tasklist_lock);
  4886. /*
  4887. * Only show locks if all tasks are dumped:
  4888. */
  4889. if (!state_filter)
  4890. debug_show_all_locks();
  4891. }
  4892. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4893. {
  4894. idle->sched_class = &idle_sched_class;
  4895. }
  4896. /**
  4897. * init_idle - set up an idle thread for a given CPU
  4898. * @idle: task in question
  4899. * @cpu: cpu the idle task belongs to
  4900. *
  4901. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4902. * flag, to make booting more robust.
  4903. */
  4904. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4905. {
  4906. struct rq *rq = cpu_rq(cpu);
  4907. unsigned long flags;
  4908. raw_spin_lock_irqsave(&rq->lock, flags);
  4909. __sched_fork(idle);
  4910. idle->state = TASK_RUNNING;
  4911. idle->se.exec_start = sched_clock();
  4912. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4913. /*
  4914. * We're having a chicken and egg problem, even though we are
  4915. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4916. * lockdep check in task_group() will fail.
  4917. *
  4918. * Similar case to sched_fork(). / Alternatively we could
  4919. * use task_rq_lock() here and obtain the other rq->lock.
  4920. *
  4921. * Silence PROVE_RCU
  4922. */
  4923. rcu_read_lock();
  4924. __set_task_cpu(idle, cpu);
  4925. rcu_read_unlock();
  4926. rq->curr = rq->idle = idle;
  4927. #if defined(CONFIG_SMP)
  4928. idle->on_cpu = 1;
  4929. #endif
  4930. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4931. /* Set the preempt count _outside_ the spinlocks! */
  4932. #if defined(CONFIG_PREEMPT)
  4933. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4934. #else
  4935. task_thread_info(idle)->preempt_count = 0;
  4936. #endif
  4937. /*
  4938. * The idle tasks have their own, simple scheduling class:
  4939. */
  4940. idle->sched_class = &idle_sched_class;
  4941. ftrace_graph_init_idle_task(idle, cpu);
  4942. }
  4943. /*
  4944. * In a system that switches off the HZ timer nohz_cpu_mask
  4945. * indicates which cpus entered this state. This is used
  4946. * in the rcu update to wait only for active cpus. For system
  4947. * which do not switch off the HZ timer nohz_cpu_mask should
  4948. * always be CPU_BITS_NONE.
  4949. */
  4950. cpumask_var_t nohz_cpu_mask;
  4951. /*
  4952. * Increase the granularity value when there are more CPUs,
  4953. * because with more CPUs the 'effective latency' as visible
  4954. * to users decreases. But the relationship is not linear,
  4955. * so pick a second-best guess by going with the log2 of the
  4956. * number of CPUs.
  4957. *
  4958. * This idea comes from the SD scheduler of Con Kolivas:
  4959. */
  4960. static int get_update_sysctl_factor(void)
  4961. {
  4962. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4963. unsigned int factor;
  4964. switch (sysctl_sched_tunable_scaling) {
  4965. case SCHED_TUNABLESCALING_NONE:
  4966. factor = 1;
  4967. break;
  4968. case SCHED_TUNABLESCALING_LINEAR:
  4969. factor = cpus;
  4970. break;
  4971. case SCHED_TUNABLESCALING_LOG:
  4972. default:
  4973. factor = 1 + ilog2(cpus);
  4974. break;
  4975. }
  4976. return factor;
  4977. }
  4978. static void update_sysctl(void)
  4979. {
  4980. unsigned int factor = get_update_sysctl_factor();
  4981. #define SET_SYSCTL(name) \
  4982. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4983. SET_SYSCTL(sched_min_granularity);
  4984. SET_SYSCTL(sched_latency);
  4985. SET_SYSCTL(sched_wakeup_granularity);
  4986. #undef SET_SYSCTL
  4987. }
  4988. static inline void sched_init_granularity(void)
  4989. {
  4990. update_sysctl();
  4991. }
  4992. #ifdef CONFIG_SMP
  4993. /*
  4994. * This is how migration works:
  4995. *
  4996. * 1) we invoke migration_cpu_stop() on the target CPU using
  4997. * stop_one_cpu().
  4998. * 2) stopper starts to run (implicitly forcing the migrated thread
  4999. * off the CPU)
  5000. * 3) it checks whether the migrated task is still in the wrong runqueue.
  5001. * 4) if it's in the wrong runqueue then the migration thread removes
  5002. * it and puts it into the right queue.
  5003. * 5) stopper completes and stop_one_cpu() returns and the migration
  5004. * is done.
  5005. */
  5006. /*
  5007. * Change a given task's CPU affinity. Migrate the thread to a
  5008. * proper CPU and schedule it away if the CPU it's executing on
  5009. * is removed from the allowed bitmask.
  5010. *
  5011. * NOTE: the caller must have a valid reference to the task, the
  5012. * task must not exit() & deallocate itself prematurely. The
  5013. * call is not atomic; no spinlocks may be held.
  5014. */
  5015. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5016. {
  5017. unsigned long flags;
  5018. struct rq *rq;
  5019. unsigned int dest_cpu;
  5020. int ret = 0;
  5021. raw_spin_lock_irqsave(&p->pi_lock, flags);
  5022. rq = __task_rq_lock(p);
  5023. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  5024. ret = -EINVAL;
  5025. goto out;
  5026. }
  5027. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5028. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5029. ret = -EINVAL;
  5030. goto out;
  5031. }
  5032. if (p->sched_class->set_cpus_allowed)
  5033. p->sched_class->set_cpus_allowed(p, new_mask);
  5034. else {
  5035. cpumask_copy(&p->cpus_allowed, new_mask);
  5036. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5037. }
  5038. /* Can the task run on the task's current CPU? If so, we're done */
  5039. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5040. goto out;
  5041. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  5042. if (need_migrate_task(p)) {
  5043. struct migration_arg arg = { p, dest_cpu };
  5044. /* Need help from migration thread: drop lock and wait. */
  5045. __task_rq_unlock(rq);
  5046. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  5047. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  5048. tlb_migrate_finish(p->mm);
  5049. return 0;
  5050. }
  5051. out:
  5052. __task_rq_unlock(rq);
  5053. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  5054. return ret;
  5055. }
  5056. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5057. /*
  5058. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5059. * this because either it can't run here any more (set_cpus_allowed()
  5060. * away from this CPU, or CPU going down), or because we're
  5061. * attempting to rebalance this task on exec (sched_exec).
  5062. *
  5063. * So we race with normal scheduler movements, but that's OK, as long
  5064. * as the task is no longer on this CPU.
  5065. *
  5066. * Returns non-zero if task was successfully migrated.
  5067. */
  5068. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5069. {
  5070. struct rq *rq_dest, *rq_src;
  5071. int ret = 0;
  5072. if (unlikely(!cpu_active(dest_cpu)))
  5073. return ret;
  5074. rq_src = cpu_rq(src_cpu);
  5075. rq_dest = cpu_rq(dest_cpu);
  5076. double_rq_lock(rq_src, rq_dest);
  5077. /* Already moved. */
  5078. if (task_cpu(p) != src_cpu)
  5079. goto done;
  5080. /* Affinity changed (again). */
  5081. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5082. goto fail;
  5083. /*
  5084. * If we're not on a rq, the next wake-up will ensure we're
  5085. * placed properly.
  5086. */
  5087. if (p->on_rq) {
  5088. deactivate_task(rq_src, p, 0);
  5089. set_task_cpu(p, dest_cpu);
  5090. activate_task(rq_dest, p, 0);
  5091. check_preempt_curr(rq_dest, p, 0);
  5092. }
  5093. done:
  5094. ret = 1;
  5095. fail:
  5096. double_rq_unlock(rq_src, rq_dest);
  5097. return ret;
  5098. }
  5099. /*
  5100. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5101. * and performs thread migration by bumping thread off CPU then
  5102. * 'pushing' onto another runqueue.
  5103. */
  5104. static int migration_cpu_stop(void *data)
  5105. {
  5106. struct migration_arg *arg = data;
  5107. /*
  5108. * The original target cpu might have gone down and we might
  5109. * be on another cpu but it doesn't matter.
  5110. */
  5111. local_irq_disable();
  5112. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5113. local_irq_enable();
  5114. return 0;
  5115. }
  5116. #ifdef CONFIG_HOTPLUG_CPU
  5117. /*
  5118. * Ensures that the idle task is using init_mm right before its cpu goes
  5119. * offline.
  5120. */
  5121. void idle_task_exit(void)
  5122. {
  5123. struct mm_struct *mm = current->active_mm;
  5124. BUG_ON(cpu_online(smp_processor_id()));
  5125. if (mm != &init_mm)
  5126. switch_mm(mm, &init_mm, current);
  5127. mmdrop(mm);
  5128. }
  5129. /*
  5130. * While a dead CPU has no uninterruptible tasks queued at this point,
  5131. * it might still have a nonzero ->nr_uninterruptible counter, because
  5132. * for performance reasons the counter is not stricly tracking tasks to
  5133. * their home CPUs. So we just add the counter to another CPU's counter,
  5134. * to keep the global sum constant after CPU-down:
  5135. */
  5136. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5137. {
  5138. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5139. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5140. rq_src->nr_uninterruptible = 0;
  5141. }
  5142. /*
  5143. * remove the tasks which were accounted by rq from calc_load_tasks.
  5144. */
  5145. static void calc_global_load_remove(struct rq *rq)
  5146. {
  5147. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5148. rq->calc_load_active = 0;
  5149. }
  5150. /*
  5151. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  5152. * try_to_wake_up()->select_task_rq().
  5153. *
  5154. * Called with rq->lock held even though we'er in stop_machine() and
  5155. * there's no concurrency possible, we hold the required locks anyway
  5156. * because of lock validation efforts.
  5157. */
  5158. static void migrate_tasks(unsigned int dead_cpu)
  5159. {
  5160. struct rq *rq = cpu_rq(dead_cpu);
  5161. struct task_struct *next, *stop = rq->stop;
  5162. int dest_cpu;
  5163. /*
  5164. * Fudge the rq selection such that the below task selection loop
  5165. * doesn't get stuck on the currently eligible stop task.
  5166. *
  5167. * We're currently inside stop_machine() and the rq is either stuck
  5168. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  5169. * either way we should never end up calling schedule() until we're
  5170. * done here.
  5171. */
  5172. rq->stop = NULL;
  5173. for ( ; ; ) {
  5174. /*
  5175. * There's this thread running, bail when that's the only
  5176. * remaining thread.
  5177. */
  5178. if (rq->nr_running == 1)
  5179. break;
  5180. next = pick_next_task(rq);
  5181. BUG_ON(!next);
  5182. next->sched_class->put_prev_task(rq, next);
  5183. /* Find suitable destination for @next, with force if needed. */
  5184. dest_cpu = select_fallback_rq(dead_cpu, next);
  5185. raw_spin_unlock(&rq->lock);
  5186. __migrate_task(next, dead_cpu, dest_cpu);
  5187. raw_spin_lock(&rq->lock);
  5188. }
  5189. rq->stop = stop;
  5190. }
  5191. #endif /* CONFIG_HOTPLUG_CPU */
  5192. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5193. static struct ctl_table sd_ctl_dir[] = {
  5194. {
  5195. .procname = "sched_domain",
  5196. .mode = 0555,
  5197. },
  5198. {}
  5199. };
  5200. static struct ctl_table sd_ctl_root[] = {
  5201. {
  5202. .procname = "kernel",
  5203. .mode = 0555,
  5204. .child = sd_ctl_dir,
  5205. },
  5206. {}
  5207. };
  5208. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5209. {
  5210. struct ctl_table *entry =
  5211. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5212. return entry;
  5213. }
  5214. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5215. {
  5216. struct ctl_table *entry;
  5217. /*
  5218. * In the intermediate directories, both the child directory and
  5219. * procname are dynamically allocated and could fail but the mode
  5220. * will always be set. In the lowest directory the names are
  5221. * static strings and all have proc handlers.
  5222. */
  5223. for (entry = *tablep; entry->mode; entry++) {
  5224. if (entry->child)
  5225. sd_free_ctl_entry(&entry->child);
  5226. if (entry->proc_handler == NULL)
  5227. kfree(entry->procname);
  5228. }
  5229. kfree(*tablep);
  5230. *tablep = NULL;
  5231. }
  5232. static void
  5233. set_table_entry(struct ctl_table *entry,
  5234. const char *procname, void *data, int maxlen,
  5235. mode_t mode, proc_handler *proc_handler)
  5236. {
  5237. entry->procname = procname;
  5238. entry->data = data;
  5239. entry->maxlen = maxlen;
  5240. entry->mode = mode;
  5241. entry->proc_handler = proc_handler;
  5242. }
  5243. static struct ctl_table *
  5244. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5245. {
  5246. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5247. if (table == NULL)
  5248. return NULL;
  5249. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5250. sizeof(long), 0644, proc_doulongvec_minmax);
  5251. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5252. sizeof(long), 0644, proc_doulongvec_minmax);
  5253. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5254. sizeof(int), 0644, proc_dointvec_minmax);
  5255. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5256. sizeof(int), 0644, proc_dointvec_minmax);
  5257. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5258. sizeof(int), 0644, proc_dointvec_minmax);
  5259. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5260. sizeof(int), 0644, proc_dointvec_minmax);
  5261. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5262. sizeof(int), 0644, proc_dointvec_minmax);
  5263. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5264. sizeof(int), 0644, proc_dointvec_minmax);
  5265. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5266. sizeof(int), 0644, proc_dointvec_minmax);
  5267. set_table_entry(&table[9], "cache_nice_tries",
  5268. &sd->cache_nice_tries,
  5269. sizeof(int), 0644, proc_dointvec_minmax);
  5270. set_table_entry(&table[10], "flags", &sd->flags,
  5271. sizeof(int), 0644, proc_dointvec_minmax);
  5272. set_table_entry(&table[11], "name", sd->name,
  5273. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5274. /* &table[12] is terminator */
  5275. return table;
  5276. }
  5277. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5278. {
  5279. struct ctl_table *entry, *table;
  5280. struct sched_domain *sd;
  5281. int domain_num = 0, i;
  5282. char buf[32];
  5283. for_each_domain(cpu, sd)
  5284. domain_num++;
  5285. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5286. if (table == NULL)
  5287. return NULL;
  5288. i = 0;
  5289. for_each_domain(cpu, sd) {
  5290. snprintf(buf, 32, "domain%d", i);
  5291. entry->procname = kstrdup(buf, GFP_KERNEL);
  5292. entry->mode = 0555;
  5293. entry->child = sd_alloc_ctl_domain_table(sd);
  5294. entry++;
  5295. i++;
  5296. }
  5297. return table;
  5298. }
  5299. static struct ctl_table_header *sd_sysctl_header;
  5300. static void register_sched_domain_sysctl(void)
  5301. {
  5302. int i, cpu_num = num_possible_cpus();
  5303. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5304. char buf[32];
  5305. WARN_ON(sd_ctl_dir[0].child);
  5306. sd_ctl_dir[0].child = entry;
  5307. if (entry == NULL)
  5308. return;
  5309. for_each_possible_cpu(i) {
  5310. snprintf(buf, 32, "cpu%d", i);
  5311. entry->procname = kstrdup(buf, GFP_KERNEL);
  5312. entry->mode = 0555;
  5313. entry->child = sd_alloc_ctl_cpu_table(i);
  5314. entry++;
  5315. }
  5316. WARN_ON(sd_sysctl_header);
  5317. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5318. }
  5319. /* may be called multiple times per register */
  5320. static void unregister_sched_domain_sysctl(void)
  5321. {
  5322. if (sd_sysctl_header)
  5323. unregister_sysctl_table(sd_sysctl_header);
  5324. sd_sysctl_header = NULL;
  5325. if (sd_ctl_dir[0].child)
  5326. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5327. }
  5328. #else
  5329. static void register_sched_domain_sysctl(void)
  5330. {
  5331. }
  5332. static void unregister_sched_domain_sysctl(void)
  5333. {
  5334. }
  5335. #endif
  5336. static void set_rq_online(struct rq *rq)
  5337. {
  5338. if (!rq->online) {
  5339. const struct sched_class *class;
  5340. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5341. rq->online = 1;
  5342. for_each_class(class) {
  5343. if (class->rq_online)
  5344. class->rq_online(rq);
  5345. }
  5346. }
  5347. }
  5348. static void set_rq_offline(struct rq *rq)
  5349. {
  5350. if (rq->online) {
  5351. const struct sched_class *class;
  5352. for_each_class(class) {
  5353. if (class->rq_offline)
  5354. class->rq_offline(rq);
  5355. }
  5356. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5357. rq->online = 0;
  5358. }
  5359. }
  5360. /*
  5361. * migration_call - callback that gets triggered when a CPU is added.
  5362. * Here we can start up the necessary migration thread for the new CPU.
  5363. */
  5364. static int __cpuinit
  5365. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5366. {
  5367. int cpu = (long)hcpu;
  5368. unsigned long flags;
  5369. struct rq *rq = cpu_rq(cpu);
  5370. switch (action & ~CPU_TASKS_FROZEN) {
  5371. case CPU_UP_PREPARE:
  5372. rq->calc_load_update = calc_load_update;
  5373. break;
  5374. case CPU_ONLINE:
  5375. /* Update our root-domain */
  5376. raw_spin_lock_irqsave(&rq->lock, flags);
  5377. if (rq->rd) {
  5378. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5379. set_rq_online(rq);
  5380. }
  5381. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5382. break;
  5383. #ifdef CONFIG_HOTPLUG_CPU
  5384. case CPU_DYING:
  5385. /* Update our root-domain */
  5386. raw_spin_lock_irqsave(&rq->lock, flags);
  5387. if (rq->rd) {
  5388. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5389. set_rq_offline(rq);
  5390. }
  5391. migrate_tasks(cpu);
  5392. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5393. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5394. migrate_nr_uninterruptible(rq);
  5395. calc_global_load_remove(rq);
  5396. break;
  5397. #endif
  5398. }
  5399. update_max_interval();
  5400. return NOTIFY_OK;
  5401. }
  5402. /*
  5403. * Register at high priority so that task migration (migrate_all_tasks)
  5404. * happens before everything else. This has to be lower priority than
  5405. * the notifier in the perf_event subsystem, though.
  5406. */
  5407. static struct notifier_block __cpuinitdata migration_notifier = {
  5408. .notifier_call = migration_call,
  5409. .priority = CPU_PRI_MIGRATION,
  5410. };
  5411. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5412. unsigned long action, void *hcpu)
  5413. {
  5414. switch (action & ~CPU_TASKS_FROZEN) {
  5415. case CPU_ONLINE:
  5416. case CPU_DOWN_FAILED:
  5417. set_cpu_active((long)hcpu, true);
  5418. return NOTIFY_OK;
  5419. default:
  5420. return NOTIFY_DONE;
  5421. }
  5422. }
  5423. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5424. unsigned long action, void *hcpu)
  5425. {
  5426. switch (action & ~CPU_TASKS_FROZEN) {
  5427. case CPU_DOWN_PREPARE:
  5428. set_cpu_active((long)hcpu, false);
  5429. return NOTIFY_OK;
  5430. default:
  5431. return NOTIFY_DONE;
  5432. }
  5433. }
  5434. static int __init migration_init(void)
  5435. {
  5436. void *cpu = (void *)(long)smp_processor_id();
  5437. int err;
  5438. /* Initialize migration for the boot CPU */
  5439. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5440. BUG_ON(err == NOTIFY_BAD);
  5441. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5442. register_cpu_notifier(&migration_notifier);
  5443. /* Register cpu active notifiers */
  5444. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5445. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5446. return 0;
  5447. }
  5448. early_initcall(migration_init);
  5449. #endif
  5450. #ifdef CONFIG_SMP
  5451. #ifdef CONFIG_SCHED_DEBUG
  5452. static __read_mostly int sched_domain_debug_enabled;
  5453. static int __init sched_domain_debug_setup(char *str)
  5454. {
  5455. sched_domain_debug_enabled = 1;
  5456. return 0;
  5457. }
  5458. early_param("sched_debug", sched_domain_debug_setup);
  5459. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5460. struct cpumask *groupmask)
  5461. {
  5462. struct sched_group *group = sd->groups;
  5463. char str[256];
  5464. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5465. cpumask_clear(groupmask);
  5466. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5467. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5468. printk("does not load-balance\n");
  5469. if (sd->parent)
  5470. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5471. " has parent");
  5472. return -1;
  5473. }
  5474. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5475. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5476. printk(KERN_ERR "ERROR: domain->span does not contain "
  5477. "CPU%d\n", cpu);
  5478. }
  5479. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5480. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5481. " CPU%d\n", cpu);
  5482. }
  5483. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5484. do {
  5485. if (!group) {
  5486. printk("\n");
  5487. printk(KERN_ERR "ERROR: group is NULL\n");
  5488. break;
  5489. }
  5490. if (!group->cpu_power) {
  5491. printk(KERN_CONT "\n");
  5492. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5493. "set\n");
  5494. break;
  5495. }
  5496. if (!cpumask_weight(sched_group_cpus(group))) {
  5497. printk(KERN_CONT "\n");
  5498. printk(KERN_ERR "ERROR: empty group\n");
  5499. break;
  5500. }
  5501. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5502. printk(KERN_CONT "\n");
  5503. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5504. break;
  5505. }
  5506. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5507. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5508. printk(KERN_CONT " %s", str);
  5509. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5510. printk(KERN_CONT " (cpu_power = %d)",
  5511. group->cpu_power);
  5512. }
  5513. group = group->next;
  5514. } while (group != sd->groups);
  5515. printk(KERN_CONT "\n");
  5516. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5517. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5518. if (sd->parent &&
  5519. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5520. printk(KERN_ERR "ERROR: parent span is not a superset "
  5521. "of domain->span\n");
  5522. return 0;
  5523. }
  5524. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5525. {
  5526. cpumask_var_t groupmask;
  5527. int level = 0;
  5528. if (!sched_domain_debug_enabled)
  5529. return;
  5530. if (!sd) {
  5531. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5532. return;
  5533. }
  5534. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5535. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5536. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5537. return;
  5538. }
  5539. for (;;) {
  5540. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5541. break;
  5542. level++;
  5543. sd = sd->parent;
  5544. if (!sd)
  5545. break;
  5546. }
  5547. free_cpumask_var(groupmask);
  5548. }
  5549. #else /* !CONFIG_SCHED_DEBUG */
  5550. # define sched_domain_debug(sd, cpu) do { } while (0)
  5551. #endif /* CONFIG_SCHED_DEBUG */
  5552. static int sd_degenerate(struct sched_domain *sd)
  5553. {
  5554. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5555. return 1;
  5556. /* Following flags need at least 2 groups */
  5557. if (sd->flags & (SD_LOAD_BALANCE |
  5558. SD_BALANCE_NEWIDLE |
  5559. SD_BALANCE_FORK |
  5560. SD_BALANCE_EXEC |
  5561. SD_SHARE_CPUPOWER |
  5562. SD_SHARE_PKG_RESOURCES)) {
  5563. if (sd->groups != sd->groups->next)
  5564. return 0;
  5565. }
  5566. /* Following flags don't use groups */
  5567. if (sd->flags & (SD_WAKE_AFFINE))
  5568. return 0;
  5569. return 1;
  5570. }
  5571. static int
  5572. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5573. {
  5574. unsigned long cflags = sd->flags, pflags = parent->flags;
  5575. if (sd_degenerate(parent))
  5576. return 1;
  5577. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5578. return 0;
  5579. /* Flags needing groups don't count if only 1 group in parent */
  5580. if (parent->groups == parent->groups->next) {
  5581. pflags &= ~(SD_LOAD_BALANCE |
  5582. SD_BALANCE_NEWIDLE |
  5583. SD_BALANCE_FORK |
  5584. SD_BALANCE_EXEC |
  5585. SD_SHARE_CPUPOWER |
  5586. SD_SHARE_PKG_RESOURCES);
  5587. if (nr_node_ids == 1)
  5588. pflags &= ~SD_SERIALIZE;
  5589. }
  5590. if (~cflags & pflags)
  5591. return 0;
  5592. return 1;
  5593. }
  5594. static void free_rootdomain(struct root_domain *rd)
  5595. {
  5596. synchronize_sched();
  5597. cpupri_cleanup(&rd->cpupri);
  5598. free_cpumask_var(rd->rto_mask);
  5599. free_cpumask_var(rd->online);
  5600. free_cpumask_var(rd->span);
  5601. kfree(rd);
  5602. }
  5603. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5604. {
  5605. struct root_domain *old_rd = NULL;
  5606. unsigned long flags;
  5607. raw_spin_lock_irqsave(&rq->lock, flags);
  5608. if (rq->rd) {
  5609. old_rd = rq->rd;
  5610. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5611. set_rq_offline(rq);
  5612. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5613. /*
  5614. * If we dont want to free the old_rt yet then
  5615. * set old_rd to NULL to skip the freeing later
  5616. * in this function:
  5617. */
  5618. if (!atomic_dec_and_test(&old_rd->refcount))
  5619. old_rd = NULL;
  5620. }
  5621. atomic_inc(&rd->refcount);
  5622. rq->rd = rd;
  5623. cpumask_set_cpu(rq->cpu, rd->span);
  5624. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5625. set_rq_online(rq);
  5626. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5627. if (old_rd)
  5628. free_rootdomain(old_rd);
  5629. }
  5630. static int init_rootdomain(struct root_domain *rd)
  5631. {
  5632. memset(rd, 0, sizeof(*rd));
  5633. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5634. goto out;
  5635. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5636. goto free_span;
  5637. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5638. goto free_online;
  5639. if (cpupri_init(&rd->cpupri) != 0)
  5640. goto free_rto_mask;
  5641. return 0;
  5642. free_rto_mask:
  5643. free_cpumask_var(rd->rto_mask);
  5644. free_online:
  5645. free_cpumask_var(rd->online);
  5646. free_span:
  5647. free_cpumask_var(rd->span);
  5648. out:
  5649. return -ENOMEM;
  5650. }
  5651. static void init_defrootdomain(void)
  5652. {
  5653. init_rootdomain(&def_root_domain);
  5654. atomic_set(&def_root_domain.refcount, 1);
  5655. }
  5656. static struct root_domain *alloc_rootdomain(void)
  5657. {
  5658. struct root_domain *rd;
  5659. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5660. if (!rd)
  5661. return NULL;
  5662. if (init_rootdomain(rd) != 0) {
  5663. kfree(rd);
  5664. return NULL;
  5665. }
  5666. return rd;
  5667. }
  5668. /*
  5669. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5670. * hold the hotplug lock.
  5671. */
  5672. static void
  5673. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5674. {
  5675. struct rq *rq = cpu_rq(cpu);
  5676. struct sched_domain *tmp;
  5677. for (tmp = sd; tmp; tmp = tmp->parent)
  5678. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5679. /* Remove the sched domains which do not contribute to scheduling. */
  5680. for (tmp = sd; tmp; ) {
  5681. struct sched_domain *parent = tmp->parent;
  5682. if (!parent)
  5683. break;
  5684. if (sd_parent_degenerate(tmp, parent)) {
  5685. tmp->parent = parent->parent;
  5686. if (parent->parent)
  5687. parent->parent->child = tmp;
  5688. } else
  5689. tmp = tmp->parent;
  5690. }
  5691. if (sd && sd_degenerate(sd)) {
  5692. sd = sd->parent;
  5693. if (sd)
  5694. sd->child = NULL;
  5695. }
  5696. sched_domain_debug(sd, cpu);
  5697. rq_attach_root(rq, rd);
  5698. rcu_assign_pointer(rq->sd, sd);
  5699. }
  5700. /* cpus with isolated domains */
  5701. static cpumask_var_t cpu_isolated_map;
  5702. /* Setup the mask of cpus configured for isolated domains */
  5703. static int __init isolated_cpu_setup(char *str)
  5704. {
  5705. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5706. cpulist_parse(str, cpu_isolated_map);
  5707. return 1;
  5708. }
  5709. __setup("isolcpus=", isolated_cpu_setup);
  5710. /*
  5711. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5712. * to a function which identifies what group(along with sched group) a CPU
  5713. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5714. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5715. *
  5716. * init_sched_build_groups will build a circular linked list of the groups
  5717. * covered by the given span, and will set each group's ->cpumask correctly,
  5718. * and ->cpu_power to 0.
  5719. */
  5720. static void
  5721. init_sched_build_groups(const struct cpumask *span,
  5722. const struct cpumask *cpu_map,
  5723. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5724. struct sched_group **sg,
  5725. struct cpumask *tmpmask),
  5726. struct cpumask *covered, struct cpumask *tmpmask)
  5727. {
  5728. struct sched_group *first = NULL, *last = NULL;
  5729. int i;
  5730. cpumask_clear(covered);
  5731. for_each_cpu(i, span) {
  5732. struct sched_group *sg;
  5733. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5734. int j;
  5735. if (cpumask_test_cpu(i, covered))
  5736. continue;
  5737. cpumask_clear(sched_group_cpus(sg));
  5738. sg->cpu_power = 0;
  5739. for_each_cpu(j, span) {
  5740. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5741. continue;
  5742. cpumask_set_cpu(j, covered);
  5743. cpumask_set_cpu(j, sched_group_cpus(sg));
  5744. }
  5745. if (!first)
  5746. first = sg;
  5747. if (last)
  5748. last->next = sg;
  5749. last = sg;
  5750. }
  5751. last->next = first;
  5752. }
  5753. #define SD_NODES_PER_DOMAIN 16
  5754. #ifdef CONFIG_NUMA
  5755. /**
  5756. * find_next_best_node - find the next node to include in a sched_domain
  5757. * @node: node whose sched_domain we're building
  5758. * @used_nodes: nodes already in the sched_domain
  5759. *
  5760. * Find the next node to include in a given scheduling domain. Simply
  5761. * finds the closest node not already in the @used_nodes map.
  5762. *
  5763. * Should use nodemask_t.
  5764. */
  5765. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5766. {
  5767. int i, n, val, min_val, best_node = 0;
  5768. min_val = INT_MAX;
  5769. for (i = 0; i < nr_node_ids; i++) {
  5770. /* Start at @node */
  5771. n = (node + i) % nr_node_ids;
  5772. if (!nr_cpus_node(n))
  5773. continue;
  5774. /* Skip already used nodes */
  5775. if (node_isset(n, *used_nodes))
  5776. continue;
  5777. /* Simple min distance search */
  5778. val = node_distance(node, n);
  5779. if (val < min_val) {
  5780. min_val = val;
  5781. best_node = n;
  5782. }
  5783. }
  5784. node_set(best_node, *used_nodes);
  5785. return best_node;
  5786. }
  5787. /**
  5788. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5789. * @node: node whose cpumask we're constructing
  5790. * @span: resulting cpumask
  5791. *
  5792. * Given a node, construct a good cpumask for its sched_domain to span. It
  5793. * should be one that prevents unnecessary balancing, but also spreads tasks
  5794. * out optimally.
  5795. */
  5796. static void sched_domain_node_span(int node, struct cpumask *span)
  5797. {
  5798. nodemask_t used_nodes;
  5799. int i;
  5800. cpumask_clear(span);
  5801. nodes_clear(used_nodes);
  5802. cpumask_or(span, span, cpumask_of_node(node));
  5803. node_set(node, used_nodes);
  5804. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5805. int next_node = find_next_best_node(node, &used_nodes);
  5806. cpumask_or(span, span, cpumask_of_node(next_node));
  5807. }
  5808. }
  5809. #endif /* CONFIG_NUMA */
  5810. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5811. /*
  5812. * The cpus mask in sched_group and sched_domain hangs off the end.
  5813. *
  5814. * ( See the the comments in include/linux/sched.h:struct sched_group
  5815. * and struct sched_domain. )
  5816. */
  5817. struct static_sched_group {
  5818. struct sched_group sg;
  5819. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5820. };
  5821. struct static_sched_domain {
  5822. struct sched_domain sd;
  5823. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5824. };
  5825. struct s_data {
  5826. #ifdef CONFIG_NUMA
  5827. int sd_allnodes;
  5828. cpumask_var_t domainspan;
  5829. cpumask_var_t covered;
  5830. cpumask_var_t notcovered;
  5831. #endif
  5832. cpumask_var_t nodemask;
  5833. cpumask_var_t this_sibling_map;
  5834. cpumask_var_t this_core_map;
  5835. cpumask_var_t this_book_map;
  5836. cpumask_var_t send_covered;
  5837. cpumask_var_t tmpmask;
  5838. struct sched_group **sched_group_nodes;
  5839. struct root_domain *rd;
  5840. };
  5841. enum s_alloc {
  5842. sa_sched_groups = 0,
  5843. sa_rootdomain,
  5844. sa_tmpmask,
  5845. sa_send_covered,
  5846. sa_this_book_map,
  5847. sa_this_core_map,
  5848. sa_this_sibling_map,
  5849. sa_nodemask,
  5850. sa_sched_group_nodes,
  5851. #ifdef CONFIG_NUMA
  5852. sa_notcovered,
  5853. sa_covered,
  5854. sa_domainspan,
  5855. #endif
  5856. sa_none,
  5857. };
  5858. /*
  5859. * SMT sched-domains:
  5860. */
  5861. #ifdef CONFIG_SCHED_SMT
  5862. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5863. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5864. static int
  5865. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5866. struct sched_group **sg, struct cpumask *unused)
  5867. {
  5868. if (sg)
  5869. *sg = &per_cpu(sched_groups, cpu).sg;
  5870. return cpu;
  5871. }
  5872. #endif /* CONFIG_SCHED_SMT */
  5873. /*
  5874. * multi-core sched-domains:
  5875. */
  5876. #ifdef CONFIG_SCHED_MC
  5877. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5878. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5879. static int
  5880. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5881. struct sched_group **sg, struct cpumask *mask)
  5882. {
  5883. int group;
  5884. #ifdef CONFIG_SCHED_SMT
  5885. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5886. group = cpumask_first(mask);
  5887. #else
  5888. group = cpu;
  5889. #endif
  5890. if (sg)
  5891. *sg = &per_cpu(sched_group_core, group).sg;
  5892. return group;
  5893. }
  5894. #endif /* CONFIG_SCHED_MC */
  5895. /*
  5896. * book sched-domains:
  5897. */
  5898. #ifdef CONFIG_SCHED_BOOK
  5899. static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
  5900. static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
  5901. static int
  5902. cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
  5903. struct sched_group **sg, struct cpumask *mask)
  5904. {
  5905. int group = cpu;
  5906. #ifdef CONFIG_SCHED_MC
  5907. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5908. group = cpumask_first(mask);
  5909. #elif defined(CONFIG_SCHED_SMT)
  5910. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5911. group = cpumask_first(mask);
  5912. #endif
  5913. if (sg)
  5914. *sg = &per_cpu(sched_group_book, group).sg;
  5915. return group;
  5916. }
  5917. #endif /* CONFIG_SCHED_BOOK */
  5918. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5919. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5920. static int
  5921. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5922. struct sched_group **sg, struct cpumask *mask)
  5923. {
  5924. int group;
  5925. #ifdef CONFIG_SCHED_BOOK
  5926. cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
  5927. group = cpumask_first(mask);
  5928. #elif defined(CONFIG_SCHED_MC)
  5929. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5930. group = cpumask_first(mask);
  5931. #elif defined(CONFIG_SCHED_SMT)
  5932. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5933. group = cpumask_first(mask);
  5934. #else
  5935. group = cpu;
  5936. #endif
  5937. if (sg)
  5938. *sg = &per_cpu(sched_group_phys, group).sg;
  5939. return group;
  5940. }
  5941. #ifdef CONFIG_NUMA
  5942. /*
  5943. * The init_sched_build_groups can't handle what we want to do with node
  5944. * groups, so roll our own. Now each node has its own list of groups which
  5945. * gets dynamically allocated.
  5946. */
  5947. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5948. static struct sched_group ***sched_group_nodes_bycpu;
  5949. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5950. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5951. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5952. struct sched_group **sg,
  5953. struct cpumask *nodemask)
  5954. {
  5955. int group;
  5956. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5957. group = cpumask_first(nodemask);
  5958. if (sg)
  5959. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5960. return group;
  5961. }
  5962. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5963. {
  5964. struct sched_group *sg = group_head;
  5965. int j;
  5966. if (!sg)
  5967. return;
  5968. do {
  5969. for_each_cpu(j, sched_group_cpus(sg)) {
  5970. struct sched_domain *sd;
  5971. sd = &per_cpu(phys_domains, j).sd;
  5972. if (j != group_first_cpu(sd->groups)) {
  5973. /*
  5974. * Only add "power" once for each
  5975. * physical package.
  5976. */
  5977. continue;
  5978. }
  5979. sg->cpu_power += sd->groups->cpu_power;
  5980. }
  5981. sg = sg->next;
  5982. } while (sg != group_head);
  5983. }
  5984. static int build_numa_sched_groups(struct s_data *d,
  5985. const struct cpumask *cpu_map, int num)
  5986. {
  5987. struct sched_domain *sd;
  5988. struct sched_group *sg, *prev;
  5989. int n, j;
  5990. cpumask_clear(d->covered);
  5991. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5992. if (cpumask_empty(d->nodemask)) {
  5993. d->sched_group_nodes[num] = NULL;
  5994. goto out;
  5995. }
  5996. sched_domain_node_span(num, d->domainspan);
  5997. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5998. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5999. GFP_KERNEL, num);
  6000. if (!sg) {
  6001. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  6002. num);
  6003. return -ENOMEM;
  6004. }
  6005. d->sched_group_nodes[num] = sg;
  6006. for_each_cpu(j, d->nodemask) {
  6007. sd = &per_cpu(node_domains, j).sd;
  6008. sd->groups = sg;
  6009. }
  6010. sg->cpu_power = 0;
  6011. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  6012. sg->next = sg;
  6013. cpumask_or(d->covered, d->covered, d->nodemask);
  6014. prev = sg;
  6015. for (j = 0; j < nr_node_ids; j++) {
  6016. n = (num + j) % nr_node_ids;
  6017. cpumask_complement(d->notcovered, d->covered);
  6018. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  6019. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  6020. if (cpumask_empty(d->tmpmask))
  6021. break;
  6022. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  6023. if (cpumask_empty(d->tmpmask))
  6024. continue;
  6025. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6026. GFP_KERNEL, num);
  6027. if (!sg) {
  6028. printk(KERN_WARNING
  6029. "Can not alloc domain group for node %d\n", j);
  6030. return -ENOMEM;
  6031. }
  6032. sg->cpu_power = 0;
  6033. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  6034. sg->next = prev->next;
  6035. cpumask_or(d->covered, d->covered, d->tmpmask);
  6036. prev->next = sg;
  6037. prev = sg;
  6038. }
  6039. out:
  6040. return 0;
  6041. }
  6042. #endif /* CONFIG_NUMA */
  6043. #ifdef CONFIG_NUMA
  6044. /* Free memory allocated for various sched_group structures */
  6045. static void free_sched_groups(const struct cpumask *cpu_map,
  6046. struct cpumask *nodemask)
  6047. {
  6048. int cpu, i;
  6049. for_each_cpu(cpu, cpu_map) {
  6050. struct sched_group **sched_group_nodes
  6051. = sched_group_nodes_bycpu[cpu];
  6052. if (!sched_group_nodes)
  6053. continue;
  6054. for (i = 0; i < nr_node_ids; i++) {
  6055. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6056. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6057. if (cpumask_empty(nodemask))
  6058. continue;
  6059. if (sg == NULL)
  6060. continue;
  6061. sg = sg->next;
  6062. next_sg:
  6063. oldsg = sg;
  6064. sg = sg->next;
  6065. kfree(oldsg);
  6066. if (oldsg != sched_group_nodes[i])
  6067. goto next_sg;
  6068. }
  6069. kfree(sched_group_nodes);
  6070. sched_group_nodes_bycpu[cpu] = NULL;
  6071. }
  6072. }
  6073. #else /* !CONFIG_NUMA */
  6074. static void free_sched_groups(const struct cpumask *cpu_map,
  6075. struct cpumask *nodemask)
  6076. {
  6077. }
  6078. #endif /* CONFIG_NUMA */
  6079. /*
  6080. * Initialize sched groups cpu_power.
  6081. *
  6082. * cpu_power indicates the capacity of sched group, which is used while
  6083. * distributing the load between different sched groups in a sched domain.
  6084. * Typically cpu_power for all the groups in a sched domain will be same unless
  6085. * there are asymmetries in the topology. If there are asymmetries, group
  6086. * having more cpu_power will pickup more load compared to the group having
  6087. * less cpu_power.
  6088. */
  6089. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6090. {
  6091. struct sched_domain *child;
  6092. struct sched_group *group;
  6093. long power;
  6094. int weight;
  6095. WARN_ON(!sd || !sd->groups);
  6096. if (cpu != group_first_cpu(sd->groups))
  6097. return;
  6098. sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
  6099. child = sd->child;
  6100. sd->groups->cpu_power = 0;
  6101. if (!child) {
  6102. power = SCHED_LOAD_SCALE;
  6103. weight = cpumask_weight(sched_domain_span(sd));
  6104. /*
  6105. * SMT siblings share the power of a single core.
  6106. * Usually multiple threads get a better yield out of
  6107. * that one core than a single thread would have,
  6108. * reflect that in sd->smt_gain.
  6109. */
  6110. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  6111. power *= sd->smt_gain;
  6112. power /= weight;
  6113. power >>= SCHED_LOAD_SHIFT;
  6114. }
  6115. sd->groups->cpu_power += power;
  6116. return;
  6117. }
  6118. /*
  6119. * Add cpu_power of each child group to this groups cpu_power.
  6120. */
  6121. group = child->groups;
  6122. do {
  6123. sd->groups->cpu_power += group->cpu_power;
  6124. group = group->next;
  6125. } while (group != child->groups);
  6126. }
  6127. /*
  6128. * Initializers for schedule domains
  6129. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6130. */
  6131. #ifdef CONFIG_SCHED_DEBUG
  6132. # define SD_INIT_NAME(sd, type) sd->name = #type
  6133. #else
  6134. # define SD_INIT_NAME(sd, type) do { } while (0)
  6135. #endif
  6136. #define SD_INIT(sd, type) sd_init_##type(sd)
  6137. #define SD_INIT_FUNC(type) \
  6138. static noinline void sd_init_##type(struct sched_domain *sd) \
  6139. { \
  6140. memset(sd, 0, sizeof(*sd)); \
  6141. *sd = SD_##type##_INIT; \
  6142. sd->level = SD_LV_##type; \
  6143. SD_INIT_NAME(sd, type); \
  6144. }
  6145. SD_INIT_FUNC(CPU)
  6146. #ifdef CONFIG_NUMA
  6147. SD_INIT_FUNC(ALLNODES)
  6148. SD_INIT_FUNC(NODE)
  6149. #endif
  6150. #ifdef CONFIG_SCHED_SMT
  6151. SD_INIT_FUNC(SIBLING)
  6152. #endif
  6153. #ifdef CONFIG_SCHED_MC
  6154. SD_INIT_FUNC(MC)
  6155. #endif
  6156. #ifdef CONFIG_SCHED_BOOK
  6157. SD_INIT_FUNC(BOOK)
  6158. #endif
  6159. static int default_relax_domain_level = -1;
  6160. static int __init setup_relax_domain_level(char *str)
  6161. {
  6162. unsigned long val;
  6163. val = simple_strtoul(str, NULL, 0);
  6164. if (val < SD_LV_MAX)
  6165. default_relax_domain_level = val;
  6166. return 1;
  6167. }
  6168. __setup("relax_domain_level=", setup_relax_domain_level);
  6169. static void set_domain_attribute(struct sched_domain *sd,
  6170. struct sched_domain_attr *attr)
  6171. {
  6172. int request;
  6173. if (!attr || attr->relax_domain_level < 0) {
  6174. if (default_relax_domain_level < 0)
  6175. return;
  6176. else
  6177. request = default_relax_domain_level;
  6178. } else
  6179. request = attr->relax_domain_level;
  6180. if (request < sd->level) {
  6181. /* turn off idle balance on this domain */
  6182. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6183. } else {
  6184. /* turn on idle balance on this domain */
  6185. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6186. }
  6187. }
  6188. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6189. const struct cpumask *cpu_map)
  6190. {
  6191. switch (what) {
  6192. case sa_sched_groups:
  6193. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  6194. d->sched_group_nodes = NULL;
  6195. case sa_rootdomain:
  6196. free_rootdomain(d->rd); /* fall through */
  6197. case sa_tmpmask:
  6198. free_cpumask_var(d->tmpmask); /* fall through */
  6199. case sa_send_covered:
  6200. free_cpumask_var(d->send_covered); /* fall through */
  6201. case sa_this_book_map:
  6202. free_cpumask_var(d->this_book_map); /* fall through */
  6203. case sa_this_core_map:
  6204. free_cpumask_var(d->this_core_map); /* fall through */
  6205. case sa_this_sibling_map:
  6206. free_cpumask_var(d->this_sibling_map); /* fall through */
  6207. case sa_nodemask:
  6208. free_cpumask_var(d->nodemask); /* fall through */
  6209. case sa_sched_group_nodes:
  6210. #ifdef CONFIG_NUMA
  6211. kfree(d->sched_group_nodes); /* fall through */
  6212. case sa_notcovered:
  6213. free_cpumask_var(d->notcovered); /* fall through */
  6214. case sa_covered:
  6215. free_cpumask_var(d->covered); /* fall through */
  6216. case sa_domainspan:
  6217. free_cpumask_var(d->domainspan); /* fall through */
  6218. #endif
  6219. case sa_none:
  6220. break;
  6221. }
  6222. }
  6223. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6224. const struct cpumask *cpu_map)
  6225. {
  6226. #ifdef CONFIG_NUMA
  6227. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  6228. return sa_none;
  6229. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  6230. return sa_domainspan;
  6231. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  6232. return sa_covered;
  6233. /* Allocate the per-node list of sched groups */
  6234. d->sched_group_nodes = kcalloc(nr_node_ids,
  6235. sizeof(struct sched_group *), GFP_KERNEL);
  6236. if (!d->sched_group_nodes) {
  6237. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6238. return sa_notcovered;
  6239. }
  6240. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  6241. #endif
  6242. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  6243. return sa_sched_group_nodes;
  6244. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  6245. return sa_nodemask;
  6246. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  6247. return sa_this_sibling_map;
  6248. if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
  6249. return sa_this_core_map;
  6250. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  6251. return sa_this_book_map;
  6252. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  6253. return sa_send_covered;
  6254. d->rd = alloc_rootdomain();
  6255. if (!d->rd) {
  6256. printk(KERN_WARNING "Cannot alloc root domain\n");
  6257. return sa_tmpmask;
  6258. }
  6259. return sa_rootdomain;
  6260. }
  6261. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  6262. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  6263. {
  6264. struct sched_domain *sd = NULL;
  6265. #ifdef CONFIG_NUMA
  6266. struct sched_domain *parent;
  6267. d->sd_allnodes = 0;
  6268. if (cpumask_weight(cpu_map) >
  6269. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  6270. sd = &per_cpu(allnodes_domains, i).sd;
  6271. SD_INIT(sd, ALLNODES);
  6272. set_domain_attribute(sd, attr);
  6273. cpumask_copy(sched_domain_span(sd), cpu_map);
  6274. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  6275. d->sd_allnodes = 1;
  6276. }
  6277. parent = sd;
  6278. sd = &per_cpu(node_domains, i).sd;
  6279. SD_INIT(sd, NODE);
  6280. set_domain_attribute(sd, attr);
  6281. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6282. sd->parent = parent;
  6283. if (parent)
  6284. parent->child = sd;
  6285. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  6286. #endif
  6287. return sd;
  6288. }
  6289. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  6290. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6291. struct sched_domain *parent, int i)
  6292. {
  6293. struct sched_domain *sd;
  6294. sd = &per_cpu(phys_domains, i).sd;
  6295. SD_INIT(sd, CPU);
  6296. set_domain_attribute(sd, attr);
  6297. cpumask_copy(sched_domain_span(sd), d->nodemask);
  6298. sd->parent = parent;
  6299. if (parent)
  6300. parent->child = sd;
  6301. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  6302. return sd;
  6303. }
  6304. static struct sched_domain *__build_book_sched_domain(struct s_data *d,
  6305. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6306. struct sched_domain *parent, int i)
  6307. {
  6308. struct sched_domain *sd = parent;
  6309. #ifdef CONFIG_SCHED_BOOK
  6310. sd = &per_cpu(book_domains, i).sd;
  6311. SD_INIT(sd, BOOK);
  6312. set_domain_attribute(sd, attr);
  6313. cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
  6314. sd->parent = parent;
  6315. parent->child = sd;
  6316. cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
  6317. #endif
  6318. return sd;
  6319. }
  6320. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  6321. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6322. struct sched_domain *parent, int i)
  6323. {
  6324. struct sched_domain *sd = parent;
  6325. #ifdef CONFIG_SCHED_MC
  6326. sd = &per_cpu(core_domains, i).sd;
  6327. SD_INIT(sd, MC);
  6328. set_domain_attribute(sd, attr);
  6329. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  6330. sd->parent = parent;
  6331. parent->child = sd;
  6332. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  6333. #endif
  6334. return sd;
  6335. }
  6336. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  6337. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6338. struct sched_domain *parent, int i)
  6339. {
  6340. struct sched_domain *sd = parent;
  6341. #ifdef CONFIG_SCHED_SMT
  6342. sd = &per_cpu(cpu_domains, i).sd;
  6343. SD_INIT(sd, SIBLING);
  6344. set_domain_attribute(sd, attr);
  6345. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  6346. sd->parent = parent;
  6347. parent->child = sd;
  6348. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  6349. #endif
  6350. return sd;
  6351. }
  6352. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  6353. const struct cpumask *cpu_map, int cpu)
  6354. {
  6355. switch (l) {
  6356. #ifdef CONFIG_SCHED_SMT
  6357. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6358. cpumask_and(d->this_sibling_map, cpu_map,
  6359. topology_thread_cpumask(cpu));
  6360. if (cpu == cpumask_first(d->this_sibling_map))
  6361. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6362. &cpu_to_cpu_group,
  6363. d->send_covered, d->tmpmask);
  6364. break;
  6365. #endif
  6366. #ifdef CONFIG_SCHED_MC
  6367. case SD_LV_MC: /* set up multi-core groups */
  6368. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6369. if (cpu == cpumask_first(d->this_core_map))
  6370. init_sched_build_groups(d->this_core_map, cpu_map,
  6371. &cpu_to_core_group,
  6372. d->send_covered, d->tmpmask);
  6373. break;
  6374. #endif
  6375. #ifdef CONFIG_SCHED_BOOK
  6376. case SD_LV_BOOK: /* set up book groups */
  6377. cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
  6378. if (cpu == cpumask_first(d->this_book_map))
  6379. init_sched_build_groups(d->this_book_map, cpu_map,
  6380. &cpu_to_book_group,
  6381. d->send_covered, d->tmpmask);
  6382. break;
  6383. #endif
  6384. case SD_LV_CPU: /* set up physical groups */
  6385. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6386. if (!cpumask_empty(d->nodemask))
  6387. init_sched_build_groups(d->nodemask, cpu_map,
  6388. &cpu_to_phys_group,
  6389. d->send_covered, d->tmpmask);
  6390. break;
  6391. #ifdef CONFIG_NUMA
  6392. case SD_LV_ALLNODES:
  6393. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6394. d->send_covered, d->tmpmask);
  6395. break;
  6396. #endif
  6397. default:
  6398. break;
  6399. }
  6400. }
  6401. /*
  6402. * Build sched domains for a given set of cpus and attach the sched domains
  6403. * to the individual cpus
  6404. */
  6405. static int __build_sched_domains(const struct cpumask *cpu_map,
  6406. struct sched_domain_attr *attr)
  6407. {
  6408. enum s_alloc alloc_state = sa_none;
  6409. struct s_data d;
  6410. struct sched_domain *sd;
  6411. int i;
  6412. #ifdef CONFIG_NUMA
  6413. d.sd_allnodes = 0;
  6414. #endif
  6415. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6416. if (alloc_state != sa_rootdomain)
  6417. goto error;
  6418. alloc_state = sa_sched_groups;
  6419. /*
  6420. * Set up domains for cpus specified by the cpu_map.
  6421. */
  6422. for_each_cpu(i, cpu_map) {
  6423. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6424. cpu_map);
  6425. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6426. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6427. sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
  6428. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6429. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6430. }
  6431. for_each_cpu(i, cpu_map) {
  6432. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6433. build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
  6434. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6435. }
  6436. /* Set up physical groups */
  6437. for (i = 0; i < nr_node_ids; i++)
  6438. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6439. #ifdef CONFIG_NUMA
  6440. /* Set up node groups */
  6441. if (d.sd_allnodes)
  6442. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6443. for (i = 0; i < nr_node_ids; i++)
  6444. if (build_numa_sched_groups(&d, cpu_map, i))
  6445. goto error;
  6446. #endif
  6447. /* Calculate CPU power for physical packages and nodes */
  6448. #ifdef CONFIG_SCHED_SMT
  6449. for_each_cpu(i, cpu_map) {
  6450. sd = &per_cpu(cpu_domains, i).sd;
  6451. init_sched_groups_power(i, sd);
  6452. }
  6453. #endif
  6454. #ifdef CONFIG_SCHED_MC
  6455. for_each_cpu(i, cpu_map) {
  6456. sd = &per_cpu(core_domains, i).sd;
  6457. init_sched_groups_power(i, sd);
  6458. }
  6459. #endif
  6460. #ifdef CONFIG_SCHED_BOOK
  6461. for_each_cpu(i, cpu_map) {
  6462. sd = &per_cpu(book_domains, i).sd;
  6463. init_sched_groups_power(i, sd);
  6464. }
  6465. #endif
  6466. for_each_cpu(i, cpu_map) {
  6467. sd = &per_cpu(phys_domains, i).sd;
  6468. init_sched_groups_power(i, sd);
  6469. }
  6470. #ifdef CONFIG_NUMA
  6471. for (i = 0; i < nr_node_ids; i++)
  6472. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6473. if (d.sd_allnodes) {
  6474. struct sched_group *sg;
  6475. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6476. d.tmpmask);
  6477. init_numa_sched_groups_power(sg);
  6478. }
  6479. #endif
  6480. /* Attach the domains */
  6481. for_each_cpu(i, cpu_map) {
  6482. #ifdef CONFIG_SCHED_SMT
  6483. sd = &per_cpu(cpu_domains, i).sd;
  6484. #elif defined(CONFIG_SCHED_MC)
  6485. sd = &per_cpu(core_domains, i).sd;
  6486. #elif defined(CONFIG_SCHED_BOOK)
  6487. sd = &per_cpu(book_domains, i).sd;
  6488. #else
  6489. sd = &per_cpu(phys_domains, i).sd;
  6490. #endif
  6491. cpu_attach_domain(sd, d.rd, i);
  6492. }
  6493. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6494. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6495. return 0;
  6496. error:
  6497. __free_domain_allocs(&d, alloc_state, cpu_map);
  6498. return -ENOMEM;
  6499. }
  6500. static int build_sched_domains(const struct cpumask *cpu_map)
  6501. {
  6502. return __build_sched_domains(cpu_map, NULL);
  6503. }
  6504. static cpumask_var_t *doms_cur; /* current sched domains */
  6505. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6506. static struct sched_domain_attr *dattr_cur;
  6507. /* attribues of custom domains in 'doms_cur' */
  6508. /*
  6509. * Special case: If a kmalloc of a doms_cur partition (array of
  6510. * cpumask) fails, then fallback to a single sched domain,
  6511. * as determined by the single cpumask fallback_doms.
  6512. */
  6513. static cpumask_var_t fallback_doms;
  6514. /*
  6515. * arch_update_cpu_topology lets virtualized architectures update the
  6516. * cpu core maps. It is supposed to return 1 if the topology changed
  6517. * or 0 if it stayed the same.
  6518. */
  6519. int __attribute__((weak)) arch_update_cpu_topology(void)
  6520. {
  6521. return 0;
  6522. }
  6523. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6524. {
  6525. int i;
  6526. cpumask_var_t *doms;
  6527. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6528. if (!doms)
  6529. return NULL;
  6530. for (i = 0; i < ndoms; i++) {
  6531. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6532. free_sched_domains(doms, i);
  6533. return NULL;
  6534. }
  6535. }
  6536. return doms;
  6537. }
  6538. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6539. {
  6540. unsigned int i;
  6541. for (i = 0; i < ndoms; i++)
  6542. free_cpumask_var(doms[i]);
  6543. kfree(doms);
  6544. }
  6545. /*
  6546. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6547. * For now this just excludes isolated cpus, but could be used to
  6548. * exclude other special cases in the future.
  6549. */
  6550. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6551. {
  6552. int err;
  6553. arch_update_cpu_topology();
  6554. ndoms_cur = 1;
  6555. doms_cur = alloc_sched_domains(ndoms_cur);
  6556. if (!doms_cur)
  6557. doms_cur = &fallback_doms;
  6558. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6559. dattr_cur = NULL;
  6560. err = build_sched_domains(doms_cur[0]);
  6561. register_sched_domain_sysctl();
  6562. return err;
  6563. }
  6564. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6565. struct cpumask *tmpmask)
  6566. {
  6567. free_sched_groups(cpu_map, tmpmask);
  6568. }
  6569. /*
  6570. * Detach sched domains from a group of cpus specified in cpu_map
  6571. * These cpus will now be attached to the NULL domain
  6572. */
  6573. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6574. {
  6575. /* Save because hotplug lock held. */
  6576. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6577. int i;
  6578. for_each_cpu(i, cpu_map)
  6579. cpu_attach_domain(NULL, &def_root_domain, i);
  6580. synchronize_sched();
  6581. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6582. }
  6583. /* handle null as "default" */
  6584. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6585. struct sched_domain_attr *new, int idx_new)
  6586. {
  6587. struct sched_domain_attr tmp;
  6588. /* fast path */
  6589. if (!new && !cur)
  6590. return 1;
  6591. tmp = SD_ATTR_INIT;
  6592. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6593. new ? (new + idx_new) : &tmp,
  6594. sizeof(struct sched_domain_attr));
  6595. }
  6596. /*
  6597. * Partition sched domains as specified by the 'ndoms_new'
  6598. * cpumasks in the array doms_new[] of cpumasks. This compares
  6599. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6600. * It destroys each deleted domain and builds each new domain.
  6601. *
  6602. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6603. * The masks don't intersect (don't overlap.) We should setup one
  6604. * sched domain for each mask. CPUs not in any of the cpumasks will
  6605. * not be load balanced. If the same cpumask appears both in the
  6606. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6607. * it as it is.
  6608. *
  6609. * The passed in 'doms_new' should be allocated using
  6610. * alloc_sched_domains. This routine takes ownership of it and will
  6611. * free_sched_domains it when done with it. If the caller failed the
  6612. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6613. * and partition_sched_domains() will fallback to the single partition
  6614. * 'fallback_doms', it also forces the domains to be rebuilt.
  6615. *
  6616. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6617. * ndoms_new == 0 is a special case for destroying existing domains,
  6618. * and it will not create the default domain.
  6619. *
  6620. * Call with hotplug lock held
  6621. */
  6622. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6623. struct sched_domain_attr *dattr_new)
  6624. {
  6625. int i, j, n;
  6626. int new_topology;
  6627. mutex_lock(&sched_domains_mutex);
  6628. /* always unregister in case we don't destroy any domains */
  6629. unregister_sched_domain_sysctl();
  6630. /* Let architecture update cpu core mappings. */
  6631. new_topology = arch_update_cpu_topology();
  6632. n = doms_new ? ndoms_new : 0;
  6633. /* Destroy deleted domains */
  6634. for (i = 0; i < ndoms_cur; i++) {
  6635. for (j = 0; j < n && !new_topology; j++) {
  6636. if (cpumask_equal(doms_cur[i], doms_new[j])
  6637. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6638. goto match1;
  6639. }
  6640. /* no match - a current sched domain not in new doms_new[] */
  6641. detach_destroy_domains(doms_cur[i]);
  6642. match1:
  6643. ;
  6644. }
  6645. if (doms_new == NULL) {
  6646. ndoms_cur = 0;
  6647. doms_new = &fallback_doms;
  6648. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6649. WARN_ON_ONCE(dattr_new);
  6650. }
  6651. /* Build new domains */
  6652. for (i = 0; i < ndoms_new; i++) {
  6653. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6654. if (cpumask_equal(doms_new[i], doms_cur[j])
  6655. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6656. goto match2;
  6657. }
  6658. /* no match - add a new doms_new */
  6659. __build_sched_domains(doms_new[i],
  6660. dattr_new ? dattr_new + i : NULL);
  6661. match2:
  6662. ;
  6663. }
  6664. /* Remember the new sched domains */
  6665. if (doms_cur != &fallback_doms)
  6666. free_sched_domains(doms_cur, ndoms_cur);
  6667. kfree(dattr_cur); /* kfree(NULL) is safe */
  6668. doms_cur = doms_new;
  6669. dattr_cur = dattr_new;
  6670. ndoms_cur = ndoms_new;
  6671. register_sched_domain_sysctl();
  6672. mutex_unlock(&sched_domains_mutex);
  6673. }
  6674. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6675. static void arch_reinit_sched_domains(void)
  6676. {
  6677. get_online_cpus();
  6678. /* Destroy domains first to force the rebuild */
  6679. partition_sched_domains(0, NULL, NULL);
  6680. rebuild_sched_domains();
  6681. put_online_cpus();
  6682. }
  6683. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6684. {
  6685. unsigned int level = 0;
  6686. if (sscanf(buf, "%u", &level) != 1)
  6687. return -EINVAL;
  6688. /*
  6689. * level is always be positive so don't check for
  6690. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6691. * What happens on 0 or 1 byte write,
  6692. * need to check for count as well?
  6693. */
  6694. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6695. return -EINVAL;
  6696. if (smt)
  6697. sched_smt_power_savings = level;
  6698. else
  6699. sched_mc_power_savings = level;
  6700. arch_reinit_sched_domains();
  6701. return count;
  6702. }
  6703. #ifdef CONFIG_SCHED_MC
  6704. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6705. struct sysdev_class_attribute *attr,
  6706. char *page)
  6707. {
  6708. return sprintf(page, "%u\n", sched_mc_power_savings);
  6709. }
  6710. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6711. struct sysdev_class_attribute *attr,
  6712. const char *buf, size_t count)
  6713. {
  6714. return sched_power_savings_store(buf, count, 0);
  6715. }
  6716. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6717. sched_mc_power_savings_show,
  6718. sched_mc_power_savings_store);
  6719. #endif
  6720. #ifdef CONFIG_SCHED_SMT
  6721. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6722. struct sysdev_class_attribute *attr,
  6723. char *page)
  6724. {
  6725. return sprintf(page, "%u\n", sched_smt_power_savings);
  6726. }
  6727. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6728. struct sysdev_class_attribute *attr,
  6729. const char *buf, size_t count)
  6730. {
  6731. return sched_power_savings_store(buf, count, 1);
  6732. }
  6733. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6734. sched_smt_power_savings_show,
  6735. sched_smt_power_savings_store);
  6736. #endif
  6737. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6738. {
  6739. int err = 0;
  6740. #ifdef CONFIG_SCHED_SMT
  6741. if (smt_capable())
  6742. err = sysfs_create_file(&cls->kset.kobj,
  6743. &attr_sched_smt_power_savings.attr);
  6744. #endif
  6745. #ifdef CONFIG_SCHED_MC
  6746. if (!err && mc_capable())
  6747. err = sysfs_create_file(&cls->kset.kobj,
  6748. &attr_sched_mc_power_savings.attr);
  6749. #endif
  6750. return err;
  6751. }
  6752. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6753. /*
  6754. * Update cpusets according to cpu_active mask. If cpusets are
  6755. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6756. * around partition_sched_domains().
  6757. */
  6758. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6759. void *hcpu)
  6760. {
  6761. switch (action & ~CPU_TASKS_FROZEN) {
  6762. case CPU_ONLINE:
  6763. case CPU_DOWN_FAILED:
  6764. cpuset_update_active_cpus();
  6765. return NOTIFY_OK;
  6766. default:
  6767. return NOTIFY_DONE;
  6768. }
  6769. }
  6770. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6771. void *hcpu)
  6772. {
  6773. switch (action & ~CPU_TASKS_FROZEN) {
  6774. case CPU_DOWN_PREPARE:
  6775. cpuset_update_active_cpus();
  6776. return NOTIFY_OK;
  6777. default:
  6778. return NOTIFY_DONE;
  6779. }
  6780. }
  6781. static int update_runtime(struct notifier_block *nfb,
  6782. unsigned long action, void *hcpu)
  6783. {
  6784. int cpu = (int)(long)hcpu;
  6785. switch (action) {
  6786. case CPU_DOWN_PREPARE:
  6787. case CPU_DOWN_PREPARE_FROZEN:
  6788. disable_runtime(cpu_rq(cpu));
  6789. return NOTIFY_OK;
  6790. case CPU_DOWN_FAILED:
  6791. case CPU_DOWN_FAILED_FROZEN:
  6792. case CPU_ONLINE:
  6793. case CPU_ONLINE_FROZEN:
  6794. enable_runtime(cpu_rq(cpu));
  6795. return NOTIFY_OK;
  6796. default:
  6797. return NOTIFY_DONE;
  6798. }
  6799. }
  6800. void __init sched_init_smp(void)
  6801. {
  6802. cpumask_var_t non_isolated_cpus;
  6803. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6804. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6805. #if defined(CONFIG_NUMA)
  6806. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6807. GFP_KERNEL);
  6808. BUG_ON(sched_group_nodes_bycpu == NULL);
  6809. #endif
  6810. get_online_cpus();
  6811. mutex_lock(&sched_domains_mutex);
  6812. arch_init_sched_domains(cpu_active_mask);
  6813. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6814. if (cpumask_empty(non_isolated_cpus))
  6815. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6816. mutex_unlock(&sched_domains_mutex);
  6817. put_online_cpus();
  6818. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6819. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6820. /* RT runtime code needs to handle some hotplug events */
  6821. hotcpu_notifier(update_runtime, 0);
  6822. init_hrtick();
  6823. /* Move init over to a non-isolated CPU */
  6824. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6825. BUG();
  6826. sched_init_granularity();
  6827. free_cpumask_var(non_isolated_cpus);
  6828. init_sched_rt_class();
  6829. }
  6830. #else
  6831. void __init sched_init_smp(void)
  6832. {
  6833. sched_init_granularity();
  6834. }
  6835. #endif /* CONFIG_SMP */
  6836. const_debug unsigned int sysctl_timer_migration = 1;
  6837. int in_sched_functions(unsigned long addr)
  6838. {
  6839. return in_lock_functions(addr) ||
  6840. (addr >= (unsigned long)__sched_text_start
  6841. && addr < (unsigned long)__sched_text_end);
  6842. }
  6843. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6844. {
  6845. cfs_rq->tasks_timeline = RB_ROOT;
  6846. INIT_LIST_HEAD(&cfs_rq->tasks);
  6847. #ifdef CONFIG_FAIR_GROUP_SCHED
  6848. cfs_rq->rq = rq;
  6849. /* allow initial update_cfs_load() to truncate */
  6850. #ifdef CONFIG_SMP
  6851. cfs_rq->load_stamp = 1;
  6852. #endif
  6853. #endif
  6854. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6855. }
  6856. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6857. {
  6858. struct rt_prio_array *array;
  6859. int i;
  6860. array = &rt_rq->active;
  6861. for (i = 0; i < MAX_RT_PRIO; i++) {
  6862. INIT_LIST_HEAD(array->queue + i);
  6863. __clear_bit(i, array->bitmap);
  6864. }
  6865. /* delimiter for bitsearch: */
  6866. __set_bit(MAX_RT_PRIO, array->bitmap);
  6867. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6868. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6869. #ifdef CONFIG_SMP
  6870. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6871. #endif
  6872. #endif
  6873. #ifdef CONFIG_SMP
  6874. rt_rq->rt_nr_migratory = 0;
  6875. rt_rq->overloaded = 0;
  6876. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6877. #endif
  6878. rt_rq->rt_time = 0;
  6879. rt_rq->rt_throttled = 0;
  6880. rt_rq->rt_runtime = 0;
  6881. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6882. #ifdef CONFIG_RT_GROUP_SCHED
  6883. rt_rq->rt_nr_boosted = 0;
  6884. rt_rq->rq = rq;
  6885. #endif
  6886. }
  6887. #ifdef CONFIG_FAIR_GROUP_SCHED
  6888. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6889. struct sched_entity *se, int cpu,
  6890. struct sched_entity *parent)
  6891. {
  6892. struct rq *rq = cpu_rq(cpu);
  6893. tg->cfs_rq[cpu] = cfs_rq;
  6894. init_cfs_rq(cfs_rq, rq);
  6895. cfs_rq->tg = tg;
  6896. tg->se[cpu] = se;
  6897. /* se could be NULL for root_task_group */
  6898. if (!se)
  6899. return;
  6900. if (!parent)
  6901. se->cfs_rq = &rq->cfs;
  6902. else
  6903. se->cfs_rq = parent->my_q;
  6904. se->my_q = cfs_rq;
  6905. update_load_set(&se->load, 0);
  6906. se->parent = parent;
  6907. }
  6908. #endif
  6909. #ifdef CONFIG_RT_GROUP_SCHED
  6910. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6911. struct sched_rt_entity *rt_se, int cpu,
  6912. struct sched_rt_entity *parent)
  6913. {
  6914. struct rq *rq = cpu_rq(cpu);
  6915. tg->rt_rq[cpu] = rt_rq;
  6916. init_rt_rq(rt_rq, rq);
  6917. rt_rq->tg = tg;
  6918. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6919. tg->rt_se[cpu] = rt_se;
  6920. if (!rt_se)
  6921. return;
  6922. if (!parent)
  6923. rt_se->rt_rq = &rq->rt;
  6924. else
  6925. rt_se->rt_rq = parent->my_q;
  6926. rt_se->my_q = rt_rq;
  6927. rt_se->parent = parent;
  6928. INIT_LIST_HEAD(&rt_se->run_list);
  6929. }
  6930. #endif
  6931. void __init sched_init(void)
  6932. {
  6933. int i, j;
  6934. unsigned long alloc_size = 0, ptr;
  6935. #ifdef CONFIG_FAIR_GROUP_SCHED
  6936. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6937. #endif
  6938. #ifdef CONFIG_RT_GROUP_SCHED
  6939. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6940. #endif
  6941. #ifdef CONFIG_CPUMASK_OFFSTACK
  6942. alloc_size += num_possible_cpus() * cpumask_size();
  6943. #endif
  6944. if (alloc_size) {
  6945. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6946. #ifdef CONFIG_FAIR_GROUP_SCHED
  6947. root_task_group.se = (struct sched_entity **)ptr;
  6948. ptr += nr_cpu_ids * sizeof(void **);
  6949. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6950. ptr += nr_cpu_ids * sizeof(void **);
  6951. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6952. #ifdef CONFIG_RT_GROUP_SCHED
  6953. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6954. ptr += nr_cpu_ids * sizeof(void **);
  6955. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6956. ptr += nr_cpu_ids * sizeof(void **);
  6957. #endif /* CONFIG_RT_GROUP_SCHED */
  6958. #ifdef CONFIG_CPUMASK_OFFSTACK
  6959. for_each_possible_cpu(i) {
  6960. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6961. ptr += cpumask_size();
  6962. }
  6963. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6964. }
  6965. #ifdef CONFIG_SMP
  6966. init_defrootdomain();
  6967. #endif
  6968. init_rt_bandwidth(&def_rt_bandwidth,
  6969. global_rt_period(), global_rt_runtime());
  6970. #ifdef CONFIG_RT_GROUP_SCHED
  6971. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6972. global_rt_period(), global_rt_runtime());
  6973. #endif /* CONFIG_RT_GROUP_SCHED */
  6974. #ifdef CONFIG_CGROUP_SCHED
  6975. list_add(&root_task_group.list, &task_groups);
  6976. INIT_LIST_HEAD(&root_task_group.children);
  6977. autogroup_init(&init_task);
  6978. #endif /* CONFIG_CGROUP_SCHED */
  6979. for_each_possible_cpu(i) {
  6980. struct rq *rq;
  6981. rq = cpu_rq(i);
  6982. raw_spin_lock_init(&rq->lock);
  6983. rq->nr_running = 0;
  6984. rq->calc_load_active = 0;
  6985. rq->calc_load_update = jiffies + LOAD_FREQ;
  6986. init_cfs_rq(&rq->cfs, rq);
  6987. init_rt_rq(&rq->rt, rq);
  6988. #ifdef CONFIG_FAIR_GROUP_SCHED
  6989. root_task_group.shares = root_task_group_load;
  6990. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6991. /*
  6992. * How much cpu bandwidth does root_task_group get?
  6993. *
  6994. * In case of task-groups formed thr' the cgroup filesystem, it
  6995. * gets 100% of the cpu resources in the system. This overall
  6996. * system cpu resource is divided among the tasks of
  6997. * root_task_group and its child task-groups in a fair manner,
  6998. * based on each entity's (task or task-group's) weight
  6999. * (se->load.weight).
  7000. *
  7001. * In other words, if root_task_group has 10 tasks of weight
  7002. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7003. * then A0's share of the cpu resource is:
  7004. *
  7005. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7006. *
  7007. * We achieve this by letting root_task_group's tasks sit
  7008. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  7009. */
  7010. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  7011. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7012. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7013. #ifdef CONFIG_RT_GROUP_SCHED
  7014. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7015. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  7016. #endif
  7017. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7018. rq->cpu_load[j] = 0;
  7019. rq->last_load_update_tick = jiffies;
  7020. #ifdef CONFIG_SMP
  7021. rq->sd = NULL;
  7022. rq->rd = NULL;
  7023. rq->cpu_power = SCHED_LOAD_SCALE;
  7024. rq->post_schedule = 0;
  7025. rq->active_balance = 0;
  7026. rq->next_balance = jiffies;
  7027. rq->push_cpu = 0;
  7028. rq->cpu = i;
  7029. rq->online = 0;
  7030. rq->idle_stamp = 0;
  7031. rq->avg_idle = 2*sysctl_sched_migration_cost;
  7032. rq_attach_root(rq, &def_root_domain);
  7033. #ifdef CONFIG_NO_HZ
  7034. rq->nohz_balance_kick = 0;
  7035. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  7036. #endif
  7037. #endif
  7038. init_rq_hrtick(rq);
  7039. atomic_set(&rq->nr_iowait, 0);
  7040. }
  7041. set_load_weight(&init_task);
  7042. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7043. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7044. #endif
  7045. #ifdef CONFIG_SMP
  7046. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7047. #endif
  7048. #ifdef CONFIG_RT_MUTEXES
  7049. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  7050. #endif
  7051. /*
  7052. * The boot idle thread does lazy MMU switching as well:
  7053. */
  7054. atomic_inc(&init_mm.mm_count);
  7055. enter_lazy_tlb(&init_mm, current);
  7056. /*
  7057. * Make us the idle thread. Technically, schedule() should not be
  7058. * called from this thread, however somewhere below it might be,
  7059. * but because we are the idle thread, we just pick up running again
  7060. * when this runqueue becomes "idle".
  7061. */
  7062. init_idle(current, smp_processor_id());
  7063. calc_load_update = jiffies + LOAD_FREQ;
  7064. /*
  7065. * During early bootup we pretend to be a normal task:
  7066. */
  7067. current->sched_class = &fair_sched_class;
  7068. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7069. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  7070. #ifdef CONFIG_SMP
  7071. #ifdef CONFIG_NO_HZ
  7072. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  7073. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  7074. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  7075. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  7076. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  7077. #endif
  7078. /* May be allocated at isolcpus cmdline parse time */
  7079. if (cpu_isolated_map == NULL)
  7080. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  7081. #endif /* SMP */
  7082. scheduler_running = 1;
  7083. }
  7084. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7085. static inline int preempt_count_equals(int preempt_offset)
  7086. {
  7087. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  7088. return (nested == preempt_offset);
  7089. }
  7090. void __might_sleep(const char *file, int line, int preempt_offset)
  7091. {
  7092. #ifdef in_atomic
  7093. static unsigned long prev_jiffy; /* ratelimiting */
  7094. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  7095. system_state != SYSTEM_RUNNING || oops_in_progress)
  7096. return;
  7097. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7098. return;
  7099. prev_jiffy = jiffies;
  7100. printk(KERN_ERR
  7101. "BUG: sleeping function called from invalid context at %s:%d\n",
  7102. file, line);
  7103. printk(KERN_ERR
  7104. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7105. in_atomic(), irqs_disabled(),
  7106. current->pid, current->comm);
  7107. debug_show_held_locks(current);
  7108. if (irqs_disabled())
  7109. print_irqtrace_events(current);
  7110. dump_stack();
  7111. #endif
  7112. }
  7113. EXPORT_SYMBOL(__might_sleep);
  7114. #endif
  7115. #ifdef CONFIG_MAGIC_SYSRQ
  7116. static void normalize_task(struct rq *rq, struct task_struct *p)
  7117. {
  7118. const struct sched_class *prev_class = p->sched_class;
  7119. int old_prio = p->prio;
  7120. int on_rq;
  7121. on_rq = p->on_rq;
  7122. if (on_rq)
  7123. deactivate_task(rq, p, 0);
  7124. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7125. if (on_rq) {
  7126. activate_task(rq, p, 0);
  7127. resched_task(rq->curr);
  7128. }
  7129. check_class_changed(rq, p, prev_class, old_prio);
  7130. }
  7131. void normalize_rt_tasks(void)
  7132. {
  7133. struct task_struct *g, *p;
  7134. unsigned long flags;
  7135. struct rq *rq;
  7136. read_lock_irqsave(&tasklist_lock, flags);
  7137. do_each_thread(g, p) {
  7138. /*
  7139. * Only normalize user tasks:
  7140. */
  7141. if (!p->mm)
  7142. continue;
  7143. p->se.exec_start = 0;
  7144. #ifdef CONFIG_SCHEDSTATS
  7145. p->se.statistics.wait_start = 0;
  7146. p->se.statistics.sleep_start = 0;
  7147. p->se.statistics.block_start = 0;
  7148. #endif
  7149. if (!rt_task(p)) {
  7150. /*
  7151. * Renice negative nice level userspace
  7152. * tasks back to 0:
  7153. */
  7154. if (TASK_NICE(p) < 0 && p->mm)
  7155. set_user_nice(p, 0);
  7156. continue;
  7157. }
  7158. raw_spin_lock(&p->pi_lock);
  7159. rq = __task_rq_lock(p);
  7160. normalize_task(rq, p);
  7161. __task_rq_unlock(rq);
  7162. raw_spin_unlock(&p->pi_lock);
  7163. } while_each_thread(g, p);
  7164. read_unlock_irqrestore(&tasklist_lock, flags);
  7165. }
  7166. #endif /* CONFIG_MAGIC_SYSRQ */
  7167. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  7168. /*
  7169. * These functions are only useful for the IA64 MCA handling, or kdb.
  7170. *
  7171. * They can only be called when the whole system has been
  7172. * stopped - every CPU needs to be quiescent, and no scheduling
  7173. * activity can take place. Using them for anything else would
  7174. * be a serious bug, and as a result, they aren't even visible
  7175. * under any other configuration.
  7176. */
  7177. /**
  7178. * curr_task - return the current task for a given cpu.
  7179. * @cpu: the processor in question.
  7180. *
  7181. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7182. */
  7183. struct task_struct *curr_task(int cpu)
  7184. {
  7185. return cpu_curr(cpu);
  7186. }
  7187. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  7188. #ifdef CONFIG_IA64
  7189. /**
  7190. * set_curr_task - set the current task for a given cpu.
  7191. * @cpu: the processor in question.
  7192. * @p: the task pointer to set.
  7193. *
  7194. * Description: This function must only be used when non-maskable interrupts
  7195. * are serviced on a separate stack. It allows the architecture to switch the
  7196. * notion of the current task on a cpu in a non-blocking manner. This function
  7197. * must be called with all CPU's synchronized, and interrupts disabled, the
  7198. * and caller must save the original value of the current task (see
  7199. * curr_task() above) and restore that value before reenabling interrupts and
  7200. * re-starting the system.
  7201. *
  7202. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7203. */
  7204. void set_curr_task(int cpu, struct task_struct *p)
  7205. {
  7206. cpu_curr(cpu) = p;
  7207. }
  7208. #endif
  7209. #ifdef CONFIG_FAIR_GROUP_SCHED
  7210. static void free_fair_sched_group(struct task_group *tg)
  7211. {
  7212. int i;
  7213. for_each_possible_cpu(i) {
  7214. if (tg->cfs_rq)
  7215. kfree(tg->cfs_rq[i]);
  7216. if (tg->se)
  7217. kfree(tg->se[i]);
  7218. }
  7219. kfree(tg->cfs_rq);
  7220. kfree(tg->se);
  7221. }
  7222. static
  7223. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7224. {
  7225. struct cfs_rq *cfs_rq;
  7226. struct sched_entity *se;
  7227. int i;
  7228. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7229. if (!tg->cfs_rq)
  7230. goto err;
  7231. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7232. if (!tg->se)
  7233. goto err;
  7234. tg->shares = NICE_0_LOAD;
  7235. for_each_possible_cpu(i) {
  7236. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7237. GFP_KERNEL, cpu_to_node(i));
  7238. if (!cfs_rq)
  7239. goto err;
  7240. se = kzalloc_node(sizeof(struct sched_entity),
  7241. GFP_KERNEL, cpu_to_node(i));
  7242. if (!se)
  7243. goto err_free_rq;
  7244. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  7245. }
  7246. return 1;
  7247. err_free_rq:
  7248. kfree(cfs_rq);
  7249. err:
  7250. return 0;
  7251. }
  7252. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7253. {
  7254. struct rq *rq = cpu_rq(cpu);
  7255. unsigned long flags;
  7256. /*
  7257. * Only empty task groups can be destroyed; so we can speculatively
  7258. * check on_list without danger of it being re-added.
  7259. */
  7260. if (!tg->cfs_rq[cpu]->on_list)
  7261. return;
  7262. raw_spin_lock_irqsave(&rq->lock, flags);
  7263. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7264. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7265. }
  7266. #else /* !CONFG_FAIR_GROUP_SCHED */
  7267. static inline void free_fair_sched_group(struct task_group *tg)
  7268. {
  7269. }
  7270. static inline
  7271. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7272. {
  7273. return 1;
  7274. }
  7275. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7276. {
  7277. }
  7278. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7279. #ifdef CONFIG_RT_GROUP_SCHED
  7280. static void free_rt_sched_group(struct task_group *tg)
  7281. {
  7282. int i;
  7283. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7284. for_each_possible_cpu(i) {
  7285. if (tg->rt_rq)
  7286. kfree(tg->rt_rq[i]);
  7287. if (tg->rt_se)
  7288. kfree(tg->rt_se[i]);
  7289. }
  7290. kfree(tg->rt_rq);
  7291. kfree(tg->rt_se);
  7292. }
  7293. static
  7294. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7295. {
  7296. struct rt_rq *rt_rq;
  7297. struct sched_rt_entity *rt_se;
  7298. struct rq *rq;
  7299. int i;
  7300. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7301. if (!tg->rt_rq)
  7302. goto err;
  7303. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7304. if (!tg->rt_se)
  7305. goto err;
  7306. init_rt_bandwidth(&tg->rt_bandwidth,
  7307. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7308. for_each_possible_cpu(i) {
  7309. rq = cpu_rq(i);
  7310. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7311. GFP_KERNEL, cpu_to_node(i));
  7312. if (!rt_rq)
  7313. goto err;
  7314. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7315. GFP_KERNEL, cpu_to_node(i));
  7316. if (!rt_se)
  7317. goto err_free_rq;
  7318. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  7319. }
  7320. return 1;
  7321. err_free_rq:
  7322. kfree(rt_rq);
  7323. err:
  7324. return 0;
  7325. }
  7326. #else /* !CONFIG_RT_GROUP_SCHED */
  7327. static inline void free_rt_sched_group(struct task_group *tg)
  7328. {
  7329. }
  7330. static inline
  7331. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7332. {
  7333. return 1;
  7334. }
  7335. #endif /* CONFIG_RT_GROUP_SCHED */
  7336. #ifdef CONFIG_CGROUP_SCHED
  7337. static void free_sched_group(struct task_group *tg)
  7338. {
  7339. free_fair_sched_group(tg);
  7340. free_rt_sched_group(tg);
  7341. autogroup_free(tg);
  7342. kfree(tg);
  7343. }
  7344. /* allocate runqueue etc for a new task group */
  7345. struct task_group *sched_create_group(struct task_group *parent)
  7346. {
  7347. struct task_group *tg;
  7348. unsigned long flags;
  7349. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7350. if (!tg)
  7351. return ERR_PTR(-ENOMEM);
  7352. if (!alloc_fair_sched_group(tg, parent))
  7353. goto err;
  7354. if (!alloc_rt_sched_group(tg, parent))
  7355. goto err;
  7356. spin_lock_irqsave(&task_group_lock, flags);
  7357. list_add_rcu(&tg->list, &task_groups);
  7358. WARN_ON(!parent); /* root should already exist */
  7359. tg->parent = parent;
  7360. INIT_LIST_HEAD(&tg->children);
  7361. list_add_rcu(&tg->siblings, &parent->children);
  7362. spin_unlock_irqrestore(&task_group_lock, flags);
  7363. return tg;
  7364. err:
  7365. free_sched_group(tg);
  7366. return ERR_PTR(-ENOMEM);
  7367. }
  7368. /* rcu callback to free various structures associated with a task group */
  7369. static void free_sched_group_rcu(struct rcu_head *rhp)
  7370. {
  7371. /* now it should be safe to free those cfs_rqs */
  7372. free_sched_group(container_of(rhp, struct task_group, rcu));
  7373. }
  7374. /* Destroy runqueue etc associated with a task group */
  7375. void sched_destroy_group(struct task_group *tg)
  7376. {
  7377. unsigned long flags;
  7378. int i;
  7379. /* end participation in shares distribution */
  7380. for_each_possible_cpu(i)
  7381. unregister_fair_sched_group(tg, i);
  7382. spin_lock_irqsave(&task_group_lock, flags);
  7383. list_del_rcu(&tg->list);
  7384. list_del_rcu(&tg->siblings);
  7385. spin_unlock_irqrestore(&task_group_lock, flags);
  7386. /* wait for possible concurrent references to cfs_rqs complete */
  7387. call_rcu(&tg->rcu, free_sched_group_rcu);
  7388. }
  7389. /* change task's runqueue when it moves between groups.
  7390. * The caller of this function should have put the task in its new group
  7391. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7392. * reflect its new group.
  7393. */
  7394. void sched_move_task(struct task_struct *tsk)
  7395. {
  7396. int on_rq, running;
  7397. unsigned long flags;
  7398. struct rq *rq;
  7399. rq = task_rq_lock(tsk, &flags);
  7400. running = task_current(rq, tsk);
  7401. on_rq = tsk->on_rq;
  7402. if (on_rq)
  7403. dequeue_task(rq, tsk, 0);
  7404. if (unlikely(running))
  7405. tsk->sched_class->put_prev_task(rq, tsk);
  7406. #ifdef CONFIG_FAIR_GROUP_SCHED
  7407. if (tsk->sched_class->task_move_group)
  7408. tsk->sched_class->task_move_group(tsk, on_rq);
  7409. else
  7410. #endif
  7411. set_task_rq(tsk, task_cpu(tsk));
  7412. if (unlikely(running))
  7413. tsk->sched_class->set_curr_task(rq);
  7414. if (on_rq)
  7415. enqueue_task(rq, tsk, 0);
  7416. task_rq_unlock(rq, &flags);
  7417. }
  7418. #endif /* CONFIG_CGROUP_SCHED */
  7419. #ifdef CONFIG_FAIR_GROUP_SCHED
  7420. static DEFINE_MUTEX(shares_mutex);
  7421. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7422. {
  7423. int i;
  7424. unsigned long flags;
  7425. /*
  7426. * We can't change the weight of the root cgroup.
  7427. */
  7428. if (!tg->se[0])
  7429. return -EINVAL;
  7430. if (shares < MIN_SHARES)
  7431. shares = MIN_SHARES;
  7432. else if (shares > MAX_SHARES)
  7433. shares = MAX_SHARES;
  7434. mutex_lock(&shares_mutex);
  7435. if (tg->shares == shares)
  7436. goto done;
  7437. tg->shares = shares;
  7438. for_each_possible_cpu(i) {
  7439. struct rq *rq = cpu_rq(i);
  7440. struct sched_entity *se;
  7441. se = tg->se[i];
  7442. /* Propagate contribution to hierarchy */
  7443. raw_spin_lock_irqsave(&rq->lock, flags);
  7444. for_each_sched_entity(se)
  7445. update_cfs_shares(group_cfs_rq(se));
  7446. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7447. }
  7448. done:
  7449. mutex_unlock(&shares_mutex);
  7450. return 0;
  7451. }
  7452. unsigned long sched_group_shares(struct task_group *tg)
  7453. {
  7454. return tg->shares;
  7455. }
  7456. #endif
  7457. #ifdef CONFIG_RT_GROUP_SCHED
  7458. /*
  7459. * Ensure that the real time constraints are schedulable.
  7460. */
  7461. static DEFINE_MUTEX(rt_constraints_mutex);
  7462. static unsigned long to_ratio(u64 period, u64 runtime)
  7463. {
  7464. if (runtime == RUNTIME_INF)
  7465. return 1ULL << 20;
  7466. return div64_u64(runtime << 20, period);
  7467. }
  7468. /* Must be called with tasklist_lock held */
  7469. static inline int tg_has_rt_tasks(struct task_group *tg)
  7470. {
  7471. struct task_struct *g, *p;
  7472. do_each_thread(g, p) {
  7473. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7474. return 1;
  7475. } while_each_thread(g, p);
  7476. return 0;
  7477. }
  7478. struct rt_schedulable_data {
  7479. struct task_group *tg;
  7480. u64 rt_period;
  7481. u64 rt_runtime;
  7482. };
  7483. static int tg_schedulable(struct task_group *tg, void *data)
  7484. {
  7485. struct rt_schedulable_data *d = data;
  7486. struct task_group *child;
  7487. unsigned long total, sum = 0;
  7488. u64 period, runtime;
  7489. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7490. runtime = tg->rt_bandwidth.rt_runtime;
  7491. if (tg == d->tg) {
  7492. period = d->rt_period;
  7493. runtime = d->rt_runtime;
  7494. }
  7495. /*
  7496. * Cannot have more runtime than the period.
  7497. */
  7498. if (runtime > period && runtime != RUNTIME_INF)
  7499. return -EINVAL;
  7500. /*
  7501. * Ensure we don't starve existing RT tasks.
  7502. */
  7503. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7504. return -EBUSY;
  7505. total = to_ratio(period, runtime);
  7506. /*
  7507. * Nobody can have more than the global setting allows.
  7508. */
  7509. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7510. return -EINVAL;
  7511. /*
  7512. * The sum of our children's runtime should not exceed our own.
  7513. */
  7514. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7515. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7516. runtime = child->rt_bandwidth.rt_runtime;
  7517. if (child == d->tg) {
  7518. period = d->rt_period;
  7519. runtime = d->rt_runtime;
  7520. }
  7521. sum += to_ratio(period, runtime);
  7522. }
  7523. if (sum > total)
  7524. return -EINVAL;
  7525. return 0;
  7526. }
  7527. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7528. {
  7529. struct rt_schedulable_data data = {
  7530. .tg = tg,
  7531. .rt_period = period,
  7532. .rt_runtime = runtime,
  7533. };
  7534. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7535. }
  7536. static int tg_set_bandwidth(struct task_group *tg,
  7537. u64 rt_period, u64 rt_runtime)
  7538. {
  7539. int i, err = 0;
  7540. mutex_lock(&rt_constraints_mutex);
  7541. read_lock(&tasklist_lock);
  7542. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7543. if (err)
  7544. goto unlock;
  7545. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7546. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7547. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7548. for_each_possible_cpu(i) {
  7549. struct rt_rq *rt_rq = tg->rt_rq[i];
  7550. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7551. rt_rq->rt_runtime = rt_runtime;
  7552. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7553. }
  7554. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7555. unlock:
  7556. read_unlock(&tasklist_lock);
  7557. mutex_unlock(&rt_constraints_mutex);
  7558. return err;
  7559. }
  7560. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7561. {
  7562. u64 rt_runtime, rt_period;
  7563. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7564. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7565. if (rt_runtime_us < 0)
  7566. rt_runtime = RUNTIME_INF;
  7567. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7568. }
  7569. long sched_group_rt_runtime(struct task_group *tg)
  7570. {
  7571. u64 rt_runtime_us;
  7572. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7573. return -1;
  7574. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7575. do_div(rt_runtime_us, NSEC_PER_USEC);
  7576. return rt_runtime_us;
  7577. }
  7578. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7579. {
  7580. u64 rt_runtime, rt_period;
  7581. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7582. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7583. if (rt_period == 0)
  7584. return -EINVAL;
  7585. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7586. }
  7587. long sched_group_rt_period(struct task_group *tg)
  7588. {
  7589. u64 rt_period_us;
  7590. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7591. do_div(rt_period_us, NSEC_PER_USEC);
  7592. return rt_period_us;
  7593. }
  7594. static int sched_rt_global_constraints(void)
  7595. {
  7596. u64 runtime, period;
  7597. int ret = 0;
  7598. if (sysctl_sched_rt_period <= 0)
  7599. return -EINVAL;
  7600. runtime = global_rt_runtime();
  7601. period = global_rt_period();
  7602. /*
  7603. * Sanity check on the sysctl variables.
  7604. */
  7605. if (runtime > period && runtime != RUNTIME_INF)
  7606. return -EINVAL;
  7607. mutex_lock(&rt_constraints_mutex);
  7608. read_lock(&tasklist_lock);
  7609. ret = __rt_schedulable(NULL, 0, 0);
  7610. read_unlock(&tasklist_lock);
  7611. mutex_unlock(&rt_constraints_mutex);
  7612. return ret;
  7613. }
  7614. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7615. {
  7616. /* Don't accept realtime tasks when there is no way for them to run */
  7617. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7618. return 0;
  7619. return 1;
  7620. }
  7621. #else /* !CONFIG_RT_GROUP_SCHED */
  7622. static int sched_rt_global_constraints(void)
  7623. {
  7624. unsigned long flags;
  7625. int i;
  7626. if (sysctl_sched_rt_period <= 0)
  7627. return -EINVAL;
  7628. /*
  7629. * There's always some RT tasks in the root group
  7630. * -- migration, kstopmachine etc..
  7631. */
  7632. if (sysctl_sched_rt_runtime == 0)
  7633. return -EBUSY;
  7634. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7635. for_each_possible_cpu(i) {
  7636. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7637. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7638. rt_rq->rt_runtime = global_rt_runtime();
  7639. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7640. }
  7641. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7642. return 0;
  7643. }
  7644. #endif /* CONFIG_RT_GROUP_SCHED */
  7645. int sched_rt_handler(struct ctl_table *table, int write,
  7646. void __user *buffer, size_t *lenp,
  7647. loff_t *ppos)
  7648. {
  7649. int ret;
  7650. int old_period, old_runtime;
  7651. static DEFINE_MUTEX(mutex);
  7652. mutex_lock(&mutex);
  7653. old_period = sysctl_sched_rt_period;
  7654. old_runtime = sysctl_sched_rt_runtime;
  7655. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7656. if (!ret && write) {
  7657. ret = sched_rt_global_constraints();
  7658. if (ret) {
  7659. sysctl_sched_rt_period = old_period;
  7660. sysctl_sched_rt_runtime = old_runtime;
  7661. } else {
  7662. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7663. def_rt_bandwidth.rt_period =
  7664. ns_to_ktime(global_rt_period());
  7665. }
  7666. }
  7667. mutex_unlock(&mutex);
  7668. return ret;
  7669. }
  7670. #ifdef CONFIG_CGROUP_SCHED
  7671. /* return corresponding task_group object of a cgroup */
  7672. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7673. {
  7674. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7675. struct task_group, css);
  7676. }
  7677. static struct cgroup_subsys_state *
  7678. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7679. {
  7680. struct task_group *tg, *parent;
  7681. if (!cgrp->parent) {
  7682. /* This is early initialization for the top cgroup */
  7683. return &root_task_group.css;
  7684. }
  7685. parent = cgroup_tg(cgrp->parent);
  7686. tg = sched_create_group(parent);
  7687. if (IS_ERR(tg))
  7688. return ERR_PTR(-ENOMEM);
  7689. return &tg->css;
  7690. }
  7691. static void
  7692. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7693. {
  7694. struct task_group *tg = cgroup_tg(cgrp);
  7695. sched_destroy_group(tg);
  7696. }
  7697. static int
  7698. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7699. {
  7700. #ifdef CONFIG_RT_GROUP_SCHED
  7701. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7702. return -EINVAL;
  7703. #else
  7704. /* We don't support RT-tasks being in separate groups */
  7705. if (tsk->sched_class != &fair_sched_class)
  7706. return -EINVAL;
  7707. #endif
  7708. return 0;
  7709. }
  7710. static int
  7711. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7712. struct task_struct *tsk, bool threadgroup)
  7713. {
  7714. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7715. if (retval)
  7716. return retval;
  7717. if (threadgroup) {
  7718. struct task_struct *c;
  7719. rcu_read_lock();
  7720. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7721. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7722. if (retval) {
  7723. rcu_read_unlock();
  7724. return retval;
  7725. }
  7726. }
  7727. rcu_read_unlock();
  7728. }
  7729. return 0;
  7730. }
  7731. static void
  7732. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7733. struct cgroup *old_cont, struct task_struct *tsk,
  7734. bool threadgroup)
  7735. {
  7736. sched_move_task(tsk);
  7737. if (threadgroup) {
  7738. struct task_struct *c;
  7739. rcu_read_lock();
  7740. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7741. sched_move_task(c);
  7742. }
  7743. rcu_read_unlock();
  7744. }
  7745. }
  7746. static void
  7747. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7748. struct cgroup *old_cgrp, struct task_struct *task)
  7749. {
  7750. /*
  7751. * cgroup_exit() is called in the copy_process() failure path.
  7752. * Ignore this case since the task hasn't ran yet, this avoids
  7753. * trying to poke a half freed task state from generic code.
  7754. */
  7755. if (!(task->flags & PF_EXITING))
  7756. return;
  7757. sched_move_task(task);
  7758. }
  7759. #ifdef CONFIG_FAIR_GROUP_SCHED
  7760. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7761. u64 shareval)
  7762. {
  7763. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7764. }
  7765. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7766. {
  7767. struct task_group *tg = cgroup_tg(cgrp);
  7768. return (u64) tg->shares;
  7769. }
  7770. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7771. #ifdef CONFIG_RT_GROUP_SCHED
  7772. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7773. s64 val)
  7774. {
  7775. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7776. }
  7777. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7778. {
  7779. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7780. }
  7781. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7782. u64 rt_period_us)
  7783. {
  7784. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7785. }
  7786. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7787. {
  7788. return sched_group_rt_period(cgroup_tg(cgrp));
  7789. }
  7790. #endif /* CONFIG_RT_GROUP_SCHED */
  7791. static struct cftype cpu_files[] = {
  7792. #ifdef CONFIG_FAIR_GROUP_SCHED
  7793. {
  7794. .name = "shares",
  7795. .read_u64 = cpu_shares_read_u64,
  7796. .write_u64 = cpu_shares_write_u64,
  7797. },
  7798. #endif
  7799. #ifdef CONFIG_RT_GROUP_SCHED
  7800. {
  7801. .name = "rt_runtime_us",
  7802. .read_s64 = cpu_rt_runtime_read,
  7803. .write_s64 = cpu_rt_runtime_write,
  7804. },
  7805. {
  7806. .name = "rt_period_us",
  7807. .read_u64 = cpu_rt_period_read_uint,
  7808. .write_u64 = cpu_rt_period_write_uint,
  7809. },
  7810. #endif
  7811. };
  7812. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7813. {
  7814. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7815. }
  7816. struct cgroup_subsys cpu_cgroup_subsys = {
  7817. .name = "cpu",
  7818. .create = cpu_cgroup_create,
  7819. .destroy = cpu_cgroup_destroy,
  7820. .can_attach = cpu_cgroup_can_attach,
  7821. .attach = cpu_cgroup_attach,
  7822. .exit = cpu_cgroup_exit,
  7823. .populate = cpu_cgroup_populate,
  7824. .subsys_id = cpu_cgroup_subsys_id,
  7825. .early_init = 1,
  7826. };
  7827. #endif /* CONFIG_CGROUP_SCHED */
  7828. #ifdef CONFIG_CGROUP_CPUACCT
  7829. /*
  7830. * CPU accounting code for task groups.
  7831. *
  7832. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7833. * (balbir@in.ibm.com).
  7834. */
  7835. /* track cpu usage of a group of tasks and its child groups */
  7836. struct cpuacct {
  7837. struct cgroup_subsys_state css;
  7838. /* cpuusage holds pointer to a u64-type object on every cpu */
  7839. u64 __percpu *cpuusage;
  7840. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7841. struct cpuacct *parent;
  7842. };
  7843. struct cgroup_subsys cpuacct_subsys;
  7844. /* return cpu accounting group corresponding to this container */
  7845. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7846. {
  7847. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7848. struct cpuacct, css);
  7849. }
  7850. /* return cpu accounting group to which this task belongs */
  7851. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7852. {
  7853. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7854. struct cpuacct, css);
  7855. }
  7856. /* create a new cpu accounting group */
  7857. static struct cgroup_subsys_state *cpuacct_create(
  7858. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7859. {
  7860. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7861. int i;
  7862. if (!ca)
  7863. goto out;
  7864. ca->cpuusage = alloc_percpu(u64);
  7865. if (!ca->cpuusage)
  7866. goto out_free_ca;
  7867. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7868. if (percpu_counter_init(&ca->cpustat[i], 0))
  7869. goto out_free_counters;
  7870. if (cgrp->parent)
  7871. ca->parent = cgroup_ca(cgrp->parent);
  7872. return &ca->css;
  7873. out_free_counters:
  7874. while (--i >= 0)
  7875. percpu_counter_destroy(&ca->cpustat[i]);
  7876. free_percpu(ca->cpuusage);
  7877. out_free_ca:
  7878. kfree(ca);
  7879. out:
  7880. return ERR_PTR(-ENOMEM);
  7881. }
  7882. /* destroy an existing cpu accounting group */
  7883. static void
  7884. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7885. {
  7886. struct cpuacct *ca = cgroup_ca(cgrp);
  7887. int i;
  7888. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7889. percpu_counter_destroy(&ca->cpustat[i]);
  7890. free_percpu(ca->cpuusage);
  7891. kfree(ca);
  7892. }
  7893. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7894. {
  7895. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7896. u64 data;
  7897. #ifndef CONFIG_64BIT
  7898. /*
  7899. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7900. */
  7901. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7902. data = *cpuusage;
  7903. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7904. #else
  7905. data = *cpuusage;
  7906. #endif
  7907. return data;
  7908. }
  7909. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7910. {
  7911. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7912. #ifndef CONFIG_64BIT
  7913. /*
  7914. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7915. */
  7916. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7917. *cpuusage = val;
  7918. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7919. #else
  7920. *cpuusage = val;
  7921. #endif
  7922. }
  7923. /* return total cpu usage (in nanoseconds) of a group */
  7924. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7925. {
  7926. struct cpuacct *ca = cgroup_ca(cgrp);
  7927. u64 totalcpuusage = 0;
  7928. int i;
  7929. for_each_present_cpu(i)
  7930. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7931. return totalcpuusage;
  7932. }
  7933. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7934. u64 reset)
  7935. {
  7936. struct cpuacct *ca = cgroup_ca(cgrp);
  7937. int err = 0;
  7938. int i;
  7939. if (reset) {
  7940. err = -EINVAL;
  7941. goto out;
  7942. }
  7943. for_each_present_cpu(i)
  7944. cpuacct_cpuusage_write(ca, i, 0);
  7945. out:
  7946. return err;
  7947. }
  7948. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7949. struct seq_file *m)
  7950. {
  7951. struct cpuacct *ca = cgroup_ca(cgroup);
  7952. u64 percpu;
  7953. int i;
  7954. for_each_present_cpu(i) {
  7955. percpu = cpuacct_cpuusage_read(ca, i);
  7956. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7957. }
  7958. seq_printf(m, "\n");
  7959. return 0;
  7960. }
  7961. static const char *cpuacct_stat_desc[] = {
  7962. [CPUACCT_STAT_USER] = "user",
  7963. [CPUACCT_STAT_SYSTEM] = "system",
  7964. };
  7965. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7966. struct cgroup_map_cb *cb)
  7967. {
  7968. struct cpuacct *ca = cgroup_ca(cgrp);
  7969. int i;
  7970. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7971. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7972. val = cputime64_to_clock_t(val);
  7973. cb->fill(cb, cpuacct_stat_desc[i], val);
  7974. }
  7975. return 0;
  7976. }
  7977. static struct cftype files[] = {
  7978. {
  7979. .name = "usage",
  7980. .read_u64 = cpuusage_read,
  7981. .write_u64 = cpuusage_write,
  7982. },
  7983. {
  7984. .name = "usage_percpu",
  7985. .read_seq_string = cpuacct_percpu_seq_read,
  7986. },
  7987. {
  7988. .name = "stat",
  7989. .read_map = cpuacct_stats_show,
  7990. },
  7991. };
  7992. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7993. {
  7994. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7995. }
  7996. /*
  7997. * charge this task's execution time to its accounting group.
  7998. *
  7999. * called with rq->lock held.
  8000. */
  8001. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8002. {
  8003. struct cpuacct *ca;
  8004. int cpu;
  8005. if (unlikely(!cpuacct_subsys.active))
  8006. return;
  8007. cpu = task_cpu(tsk);
  8008. rcu_read_lock();
  8009. ca = task_ca(tsk);
  8010. for (; ca; ca = ca->parent) {
  8011. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8012. *cpuusage += cputime;
  8013. }
  8014. rcu_read_unlock();
  8015. }
  8016. /*
  8017. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  8018. * in cputime_t units. As a result, cpuacct_update_stats calls
  8019. * percpu_counter_add with values large enough to always overflow the
  8020. * per cpu batch limit causing bad SMP scalability.
  8021. *
  8022. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  8023. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  8024. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  8025. */
  8026. #ifdef CONFIG_SMP
  8027. #define CPUACCT_BATCH \
  8028. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  8029. #else
  8030. #define CPUACCT_BATCH 0
  8031. #endif
  8032. /*
  8033. * Charge the system/user time to the task's accounting group.
  8034. */
  8035. static void cpuacct_update_stats(struct task_struct *tsk,
  8036. enum cpuacct_stat_index idx, cputime_t val)
  8037. {
  8038. struct cpuacct *ca;
  8039. int batch = CPUACCT_BATCH;
  8040. if (unlikely(!cpuacct_subsys.active))
  8041. return;
  8042. rcu_read_lock();
  8043. ca = task_ca(tsk);
  8044. do {
  8045. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  8046. ca = ca->parent;
  8047. } while (ca);
  8048. rcu_read_unlock();
  8049. }
  8050. struct cgroup_subsys cpuacct_subsys = {
  8051. .name = "cpuacct",
  8052. .create = cpuacct_create,
  8053. .destroy = cpuacct_destroy,
  8054. .populate = cpuacct_populate,
  8055. .subsys_id = cpuacct_subsys_id,
  8056. };
  8057. #endif /* CONFIG_CGROUP_CPUACCT */