slab.c 118 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same initializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/proc_fs.h>
  98. #include <linux/seq_file.h>
  99. #include <linux/notifier.h>
  100. #include <linux/kallsyms.h>
  101. #include <linux/cpu.h>
  102. #include <linux/sysctl.h>
  103. #include <linux/module.h>
  104. #include <tracing/kmemtrace.h>
  105. #include <linux/rcupdate.h>
  106. #include <linux/string.h>
  107. #include <linux/uaccess.h>
  108. #include <linux/nodemask.h>
  109. #include <linux/mempolicy.h>
  110. #include <linux/mutex.h>
  111. #include <linux/fault-inject.h>
  112. #include <linux/rtmutex.h>
  113. #include <linux/reciprocal_div.h>
  114. #include <linux/debugobjects.h>
  115. #include <asm/cacheflush.h>
  116. #include <asm/tlbflush.h>
  117. #include <asm/page.h>
  118. /*
  119. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
  120. * 0 for faster, smaller code (especially in the critical paths).
  121. *
  122. * STATS - 1 to collect stats for /proc/slabinfo.
  123. * 0 for faster, smaller code (especially in the critical paths).
  124. *
  125. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  126. */
  127. #ifdef CONFIG_DEBUG_SLAB
  128. #define DEBUG 1
  129. #define STATS 1
  130. #define FORCED_DEBUG 1
  131. #else
  132. #define DEBUG 0
  133. #define STATS 0
  134. #define FORCED_DEBUG 0
  135. #endif
  136. /* Shouldn't this be in a header file somewhere? */
  137. #define BYTES_PER_WORD sizeof(void *)
  138. #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
  139. #ifndef ARCH_KMALLOC_MINALIGN
  140. /*
  141. * Enforce a minimum alignment for the kmalloc caches.
  142. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  143. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  144. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  145. * alignment larger than the alignment of a 64-bit integer.
  146. * ARCH_KMALLOC_MINALIGN allows that.
  147. * Note that increasing this value may disable some debug features.
  148. */
  149. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  150. #endif
  151. #ifndef ARCH_SLAB_MINALIGN
  152. /*
  153. * Enforce a minimum alignment for all caches.
  154. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  155. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  156. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  157. * some debug features.
  158. */
  159. #define ARCH_SLAB_MINALIGN 0
  160. #endif
  161. #ifndef ARCH_KMALLOC_FLAGS
  162. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  163. #endif
  164. /* Legal flag mask for kmem_cache_create(). */
  165. #if DEBUG
  166. # define CREATE_MASK (SLAB_RED_ZONE | \
  167. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  168. SLAB_CACHE_DMA | \
  169. SLAB_STORE_USER | \
  170. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  171. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  172. SLAB_DEBUG_OBJECTS)
  173. #else
  174. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  175. SLAB_CACHE_DMA | \
  176. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  177. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  178. SLAB_DEBUG_OBJECTS)
  179. #endif
  180. /*
  181. * kmem_bufctl_t:
  182. *
  183. * Bufctl's are used for linking objs within a slab
  184. * linked offsets.
  185. *
  186. * This implementation relies on "struct page" for locating the cache &
  187. * slab an object belongs to.
  188. * This allows the bufctl structure to be small (one int), but limits
  189. * the number of objects a slab (not a cache) can contain when off-slab
  190. * bufctls are used. The limit is the size of the largest general cache
  191. * that does not use off-slab slabs.
  192. * For 32bit archs with 4 kB pages, is this 56.
  193. * This is not serious, as it is only for large objects, when it is unwise
  194. * to have too many per slab.
  195. * Note: This limit can be raised by introducing a general cache whose size
  196. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  197. */
  198. typedef unsigned int kmem_bufctl_t;
  199. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  200. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  201. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  202. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  203. /*
  204. * struct slab
  205. *
  206. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  207. * for a slab, or allocated from an general cache.
  208. * Slabs are chained into three list: fully used, partial, fully free slabs.
  209. */
  210. struct slab {
  211. struct list_head list;
  212. unsigned long colouroff;
  213. void *s_mem; /* including colour offset */
  214. unsigned int inuse; /* num of objs active in slab */
  215. kmem_bufctl_t free;
  216. unsigned short nodeid;
  217. };
  218. /*
  219. * struct slab_rcu
  220. *
  221. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  222. * arrange for kmem_freepages to be called via RCU. This is useful if
  223. * we need to approach a kernel structure obliquely, from its address
  224. * obtained without the usual locking. We can lock the structure to
  225. * stabilize it and check it's still at the given address, only if we
  226. * can be sure that the memory has not been meanwhile reused for some
  227. * other kind of object (which our subsystem's lock might corrupt).
  228. *
  229. * rcu_read_lock before reading the address, then rcu_read_unlock after
  230. * taking the spinlock within the structure expected at that address.
  231. *
  232. * We assume struct slab_rcu can overlay struct slab when destroying.
  233. */
  234. struct slab_rcu {
  235. struct rcu_head head;
  236. struct kmem_cache *cachep;
  237. void *addr;
  238. };
  239. /*
  240. * struct array_cache
  241. *
  242. * Purpose:
  243. * - LIFO ordering, to hand out cache-warm objects from _alloc
  244. * - reduce the number of linked list operations
  245. * - reduce spinlock operations
  246. *
  247. * The limit is stored in the per-cpu structure to reduce the data cache
  248. * footprint.
  249. *
  250. */
  251. struct array_cache {
  252. unsigned int avail;
  253. unsigned int limit;
  254. unsigned int batchcount;
  255. unsigned int touched;
  256. spinlock_t lock;
  257. void *entry[]; /*
  258. * Must have this definition in here for the proper
  259. * alignment of array_cache. Also simplifies accessing
  260. * the entries.
  261. */
  262. };
  263. /*
  264. * bootstrap: The caches do not work without cpuarrays anymore, but the
  265. * cpuarrays are allocated from the generic caches...
  266. */
  267. #define BOOT_CPUCACHE_ENTRIES 1
  268. struct arraycache_init {
  269. struct array_cache cache;
  270. void *entries[BOOT_CPUCACHE_ENTRIES];
  271. };
  272. /*
  273. * The slab lists for all objects.
  274. */
  275. struct kmem_list3 {
  276. struct list_head slabs_partial; /* partial list first, better asm code */
  277. struct list_head slabs_full;
  278. struct list_head slabs_free;
  279. unsigned long free_objects;
  280. unsigned int free_limit;
  281. unsigned int colour_next; /* Per-node cache coloring */
  282. spinlock_t list_lock;
  283. struct array_cache *shared; /* shared per node */
  284. struct array_cache **alien; /* on other nodes */
  285. unsigned long next_reap; /* updated without locking */
  286. int free_touched; /* updated without locking */
  287. };
  288. /*
  289. * Need this for bootstrapping a per node allocator.
  290. */
  291. #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
  292. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  293. #define CACHE_CACHE 0
  294. #define SIZE_AC MAX_NUMNODES
  295. #define SIZE_L3 (2 * MAX_NUMNODES)
  296. static int drain_freelist(struct kmem_cache *cache,
  297. struct kmem_list3 *l3, int tofree);
  298. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  299. int node);
  300. static int enable_cpucache(struct kmem_cache *cachep);
  301. static void cache_reap(struct work_struct *unused);
  302. /*
  303. * This function must be completely optimized away if a constant is passed to
  304. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  305. */
  306. static __always_inline int index_of(const size_t size)
  307. {
  308. extern void __bad_size(void);
  309. if (__builtin_constant_p(size)) {
  310. int i = 0;
  311. #define CACHE(x) \
  312. if (size <=x) \
  313. return i; \
  314. else \
  315. i++;
  316. #include <linux/kmalloc_sizes.h>
  317. #undef CACHE
  318. __bad_size();
  319. } else
  320. __bad_size();
  321. return 0;
  322. }
  323. static int slab_early_init = 1;
  324. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  325. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  326. static void kmem_list3_init(struct kmem_list3 *parent)
  327. {
  328. INIT_LIST_HEAD(&parent->slabs_full);
  329. INIT_LIST_HEAD(&parent->slabs_partial);
  330. INIT_LIST_HEAD(&parent->slabs_free);
  331. parent->shared = NULL;
  332. parent->alien = NULL;
  333. parent->colour_next = 0;
  334. spin_lock_init(&parent->list_lock);
  335. parent->free_objects = 0;
  336. parent->free_touched = 0;
  337. }
  338. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  339. do { \
  340. INIT_LIST_HEAD(listp); \
  341. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  342. } while (0)
  343. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  344. do { \
  345. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  346. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  347. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  348. } while (0)
  349. /*
  350. * struct kmem_cache
  351. *
  352. * manages a cache.
  353. */
  354. struct kmem_cache {
  355. /* 1) per-cpu data, touched during every alloc/free */
  356. struct array_cache *array[NR_CPUS];
  357. /* 2) Cache tunables. Protected by cache_chain_mutex */
  358. unsigned int batchcount;
  359. unsigned int limit;
  360. unsigned int shared;
  361. unsigned int buffer_size;
  362. u32 reciprocal_buffer_size;
  363. /* 3) touched by every alloc & free from the backend */
  364. unsigned int flags; /* constant flags */
  365. unsigned int num; /* # of objs per slab */
  366. /* 4) cache_grow/shrink */
  367. /* order of pgs per slab (2^n) */
  368. unsigned int gfporder;
  369. /* force GFP flags, e.g. GFP_DMA */
  370. gfp_t gfpflags;
  371. size_t colour; /* cache colouring range */
  372. unsigned int colour_off; /* colour offset */
  373. struct kmem_cache *slabp_cache;
  374. unsigned int slab_size;
  375. unsigned int dflags; /* dynamic flags */
  376. /* constructor func */
  377. void (*ctor)(void *obj);
  378. /* 5) cache creation/removal */
  379. const char *name;
  380. struct list_head next;
  381. /* 6) statistics */
  382. #if STATS
  383. unsigned long num_active;
  384. unsigned long num_allocations;
  385. unsigned long high_mark;
  386. unsigned long grown;
  387. unsigned long reaped;
  388. unsigned long errors;
  389. unsigned long max_freeable;
  390. unsigned long node_allocs;
  391. unsigned long node_frees;
  392. unsigned long node_overflow;
  393. atomic_t allochit;
  394. atomic_t allocmiss;
  395. atomic_t freehit;
  396. atomic_t freemiss;
  397. #endif
  398. #if DEBUG
  399. /*
  400. * If debugging is enabled, then the allocator can add additional
  401. * fields and/or padding to every object. buffer_size contains the total
  402. * object size including these internal fields, the following two
  403. * variables contain the offset to the user object and its size.
  404. */
  405. int obj_offset;
  406. int obj_size;
  407. #endif
  408. /*
  409. * We put nodelists[] at the end of kmem_cache, because we want to size
  410. * this array to nr_node_ids slots instead of MAX_NUMNODES
  411. * (see kmem_cache_init())
  412. * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
  413. * is statically defined, so we reserve the max number of nodes.
  414. */
  415. struct kmem_list3 *nodelists[MAX_NUMNODES];
  416. /*
  417. * Do not add fields after nodelists[]
  418. */
  419. };
  420. #define CFLGS_OFF_SLAB (0x80000000UL)
  421. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  422. #define BATCHREFILL_LIMIT 16
  423. /*
  424. * Optimization question: fewer reaps means less probability for unnessary
  425. * cpucache drain/refill cycles.
  426. *
  427. * OTOH the cpuarrays can contain lots of objects,
  428. * which could lock up otherwise freeable slabs.
  429. */
  430. #define REAPTIMEOUT_CPUC (2*HZ)
  431. #define REAPTIMEOUT_LIST3 (4*HZ)
  432. #if STATS
  433. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  434. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  435. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  436. #define STATS_INC_GROWN(x) ((x)->grown++)
  437. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  438. #define STATS_SET_HIGH(x) \
  439. do { \
  440. if ((x)->num_active > (x)->high_mark) \
  441. (x)->high_mark = (x)->num_active; \
  442. } while (0)
  443. #define STATS_INC_ERR(x) ((x)->errors++)
  444. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  445. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  446. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  447. #define STATS_SET_FREEABLE(x, i) \
  448. do { \
  449. if ((x)->max_freeable < i) \
  450. (x)->max_freeable = i; \
  451. } while (0)
  452. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  453. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  454. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  455. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  456. #else
  457. #define STATS_INC_ACTIVE(x) do { } while (0)
  458. #define STATS_DEC_ACTIVE(x) do { } while (0)
  459. #define STATS_INC_ALLOCED(x) do { } while (0)
  460. #define STATS_INC_GROWN(x) do { } while (0)
  461. #define STATS_ADD_REAPED(x,y) do { } while (0)
  462. #define STATS_SET_HIGH(x) do { } while (0)
  463. #define STATS_INC_ERR(x) do { } while (0)
  464. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  465. #define STATS_INC_NODEFREES(x) do { } while (0)
  466. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  467. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  468. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  469. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  470. #define STATS_INC_FREEHIT(x) do { } while (0)
  471. #define STATS_INC_FREEMISS(x) do { } while (0)
  472. #endif
  473. #if DEBUG
  474. /*
  475. * memory layout of objects:
  476. * 0 : objp
  477. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  478. * the end of an object is aligned with the end of the real
  479. * allocation. Catches writes behind the end of the allocation.
  480. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  481. * redzone word.
  482. * cachep->obj_offset: The real object.
  483. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  484. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  485. * [BYTES_PER_WORD long]
  486. */
  487. static int obj_offset(struct kmem_cache *cachep)
  488. {
  489. return cachep->obj_offset;
  490. }
  491. static int obj_size(struct kmem_cache *cachep)
  492. {
  493. return cachep->obj_size;
  494. }
  495. static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  496. {
  497. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  498. return (unsigned long long*) (objp + obj_offset(cachep) -
  499. sizeof(unsigned long long));
  500. }
  501. static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  502. {
  503. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  504. if (cachep->flags & SLAB_STORE_USER)
  505. return (unsigned long long *)(objp + cachep->buffer_size -
  506. sizeof(unsigned long long) -
  507. REDZONE_ALIGN);
  508. return (unsigned long long *) (objp + cachep->buffer_size -
  509. sizeof(unsigned long long));
  510. }
  511. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  512. {
  513. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  514. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  515. }
  516. #else
  517. #define obj_offset(x) 0
  518. #define obj_size(cachep) (cachep->buffer_size)
  519. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  520. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  521. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  522. #endif
  523. #ifdef CONFIG_KMEMTRACE
  524. size_t slab_buffer_size(struct kmem_cache *cachep)
  525. {
  526. return cachep->buffer_size;
  527. }
  528. EXPORT_SYMBOL(slab_buffer_size);
  529. #endif
  530. /*
  531. * Do not go above this order unless 0 objects fit into the slab.
  532. */
  533. #define BREAK_GFP_ORDER_HI 1
  534. #define BREAK_GFP_ORDER_LO 0
  535. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  536. /*
  537. * Functions for storing/retrieving the cachep and or slab from the page
  538. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  539. * these are used to find the cache which an obj belongs to.
  540. */
  541. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  542. {
  543. page->lru.next = (struct list_head *)cache;
  544. }
  545. static inline struct kmem_cache *page_get_cache(struct page *page)
  546. {
  547. page = compound_head(page);
  548. BUG_ON(!PageSlab(page));
  549. return (struct kmem_cache *)page->lru.next;
  550. }
  551. static inline void page_set_slab(struct page *page, struct slab *slab)
  552. {
  553. page->lru.prev = (struct list_head *)slab;
  554. }
  555. static inline struct slab *page_get_slab(struct page *page)
  556. {
  557. BUG_ON(!PageSlab(page));
  558. return (struct slab *)page->lru.prev;
  559. }
  560. static inline struct kmem_cache *virt_to_cache(const void *obj)
  561. {
  562. struct page *page = virt_to_head_page(obj);
  563. return page_get_cache(page);
  564. }
  565. static inline struct slab *virt_to_slab(const void *obj)
  566. {
  567. struct page *page = virt_to_head_page(obj);
  568. return page_get_slab(page);
  569. }
  570. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  571. unsigned int idx)
  572. {
  573. return slab->s_mem + cache->buffer_size * idx;
  574. }
  575. /*
  576. * We want to avoid an expensive divide : (offset / cache->buffer_size)
  577. * Using the fact that buffer_size is a constant for a particular cache,
  578. * we can replace (offset / cache->buffer_size) by
  579. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  580. */
  581. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  582. const struct slab *slab, void *obj)
  583. {
  584. u32 offset = (obj - slab->s_mem);
  585. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  586. }
  587. /*
  588. * These are the default caches for kmalloc. Custom caches can have other sizes.
  589. */
  590. struct cache_sizes malloc_sizes[] = {
  591. #define CACHE(x) { .cs_size = (x) },
  592. #include <linux/kmalloc_sizes.h>
  593. CACHE(ULONG_MAX)
  594. #undef CACHE
  595. };
  596. EXPORT_SYMBOL(malloc_sizes);
  597. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  598. struct cache_names {
  599. char *name;
  600. char *name_dma;
  601. };
  602. static struct cache_names __initdata cache_names[] = {
  603. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  604. #include <linux/kmalloc_sizes.h>
  605. {NULL,}
  606. #undef CACHE
  607. };
  608. static struct arraycache_init initarray_cache __initdata =
  609. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  610. static struct arraycache_init initarray_generic =
  611. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  612. /* internal cache of cache description objs */
  613. static struct kmem_cache cache_cache = {
  614. .batchcount = 1,
  615. .limit = BOOT_CPUCACHE_ENTRIES,
  616. .shared = 1,
  617. .buffer_size = sizeof(struct kmem_cache),
  618. .name = "kmem_cache",
  619. };
  620. #define BAD_ALIEN_MAGIC 0x01020304ul
  621. #ifdef CONFIG_LOCKDEP
  622. /*
  623. * Slab sometimes uses the kmalloc slabs to store the slab headers
  624. * for other slabs "off slab".
  625. * The locking for this is tricky in that it nests within the locks
  626. * of all other slabs in a few places; to deal with this special
  627. * locking we put on-slab caches into a separate lock-class.
  628. *
  629. * We set lock class for alien array caches which are up during init.
  630. * The lock annotation will be lost if all cpus of a node goes down and
  631. * then comes back up during hotplug
  632. */
  633. static struct lock_class_key on_slab_l3_key;
  634. static struct lock_class_key on_slab_alc_key;
  635. static inline void init_lock_keys(void)
  636. {
  637. int q;
  638. struct cache_sizes *s = malloc_sizes;
  639. while (s->cs_size != ULONG_MAX) {
  640. for_each_node(q) {
  641. struct array_cache **alc;
  642. int r;
  643. struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
  644. if (!l3 || OFF_SLAB(s->cs_cachep))
  645. continue;
  646. lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
  647. alc = l3->alien;
  648. /*
  649. * FIXME: This check for BAD_ALIEN_MAGIC
  650. * should go away when common slab code is taught to
  651. * work even without alien caches.
  652. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  653. * for alloc_alien_cache,
  654. */
  655. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  656. continue;
  657. for_each_node(r) {
  658. if (alc[r])
  659. lockdep_set_class(&alc[r]->lock,
  660. &on_slab_alc_key);
  661. }
  662. }
  663. s++;
  664. }
  665. }
  666. #else
  667. static inline void init_lock_keys(void)
  668. {
  669. }
  670. #endif
  671. /*
  672. * Guard access to the cache-chain.
  673. */
  674. static DEFINE_MUTEX(cache_chain_mutex);
  675. static struct list_head cache_chain;
  676. /*
  677. * chicken and egg problem: delay the per-cpu array allocation
  678. * until the general caches are up.
  679. */
  680. static enum {
  681. NONE,
  682. PARTIAL_AC,
  683. PARTIAL_L3,
  684. FULL
  685. } g_cpucache_up;
  686. /*
  687. * used by boot code to determine if it can use slab based allocator
  688. */
  689. int slab_is_available(void)
  690. {
  691. return g_cpucache_up == FULL;
  692. }
  693. static DEFINE_PER_CPU(struct delayed_work, reap_work);
  694. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  695. {
  696. return cachep->array[smp_processor_id()];
  697. }
  698. static inline struct kmem_cache *__find_general_cachep(size_t size,
  699. gfp_t gfpflags)
  700. {
  701. struct cache_sizes *csizep = malloc_sizes;
  702. #if DEBUG
  703. /* This happens if someone tries to call
  704. * kmem_cache_create(), or __kmalloc(), before
  705. * the generic caches are initialized.
  706. */
  707. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  708. #endif
  709. if (!size)
  710. return ZERO_SIZE_PTR;
  711. while (size > csizep->cs_size)
  712. csizep++;
  713. /*
  714. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  715. * has cs_{dma,}cachep==NULL. Thus no special case
  716. * for large kmalloc calls required.
  717. */
  718. #ifdef CONFIG_ZONE_DMA
  719. if (unlikely(gfpflags & GFP_DMA))
  720. return csizep->cs_dmacachep;
  721. #endif
  722. return csizep->cs_cachep;
  723. }
  724. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  725. {
  726. return __find_general_cachep(size, gfpflags);
  727. }
  728. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  729. {
  730. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  731. }
  732. /*
  733. * Calculate the number of objects and left-over bytes for a given buffer size.
  734. */
  735. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  736. size_t align, int flags, size_t *left_over,
  737. unsigned int *num)
  738. {
  739. int nr_objs;
  740. size_t mgmt_size;
  741. size_t slab_size = PAGE_SIZE << gfporder;
  742. /*
  743. * The slab management structure can be either off the slab or
  744. * on it. For the latter case, the memory allocated for a
  745. * slab is used for:
  746. *
  747. * - The struct slab
  748. * - One kmem_bufctl_t for each object
  749. * - Padding to respect alignment of @align
  750. * - @buffer_size bytes for each object
  751. *
  752. * If the slab management structure is off the slab, then the
  753. * alignment will already be calculated into the size. Because
  754. * the slabs are all pages aligned, the objects will be at the
  755. * correct alignment when allocated.
  756. */
  757. if (flags & CFLGS_OFF_SLAB) {
  758. mgmt_size = 0;
  759. nr_objs = slab_size / buffer_size;
  760. if (nr_objs > SLAB_LIMIT)
  761. nr_objs = SLAB_LIMIT;
  762. } else {
  763. /*
  764. * Ignore padding for the initial guess. The padding
  765. * is at most @align-1 bytes, and @buffer_size is at
  766. * least @align. In the worst case, this result will
  767. * be one greater than the number of objects that fit
  768. * into the memory allocation when taking the padding
  769. * into account.
  770. */
  771. nr_objs = (slab_size - sizeof(struct slab)) /
  772. (buffer_size + sizeof(kmem_bufctl_t));
  773. /*
  774. * This calculated number will be either the right
  775. * amount, or one greater than what we want.
  776. */
  777. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  778. > slab_size)
  779. nr_objs--;
  780. if (nr_objs > SLAB_LIMIT)
  781. nr_objs = SLAB_LIMIT;
  782. mgmt_size = slab_mgmt_size(nr_objs, align);
  783. }
  784. *num = nr_objs;
  785. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  786. }
  787. #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
  788. static void __slab_error(const char *function, struct kmem_cache *cachep,
  789. char *msg)
  790. {
  791. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  792. function, cachep->name, msg);
  793. dump_stack();
  794. }
  795. /*
  796. * By default on NUMA we use alien caches to stage the freeing of
  797. * objects allocated from other nodes. This causes massive memory
  798. * inefficiencies when using fake NUMA setup to split memory into a
  799. * large number of small nodes, so it can be disabled on the command
  800. * line
  801. */
  802. static int use_alien_caches __read_mostly = 1;
  803. static int numa_platform __read_mostly = 1;
  804. static int __init noaliencache_setup(char *s)
  805. {
  806. use_alien_caches = 0;
  807. return 1;
  808. }
  809. __setup("noaliencache", noaliencache_setup);
  810. #ifdef CONFIG_NUMA
  811. /*
  812. * Special reaping functions for NUMA systems called from cache_reap().
  813. * These take care of doing round robin flushing of alien caches (containing
  814. * objects freed on different nodes from which they were allocated) and the
  815. * flushing of remote pcps by calling drain_node_pages.
  816. */
  817. static DEFINE_PER_CPU(unsigned long, reap_node);
  818. static void init_reap_node(int cpu)
  819. {
  820. int node;
  821. node = next_node(cpu_to_node(cpu), node_online_map);
  822. if (node == MAX_NUMNODES)
  823. node = first_node(node_online_map);
  824. per_cpu(reap_node, cpu) = node;
  825. }
  826. static void next_reap_node(void)
  827. {
  828. int node = __get_cpu_var(reap_node);
  829. node = next_node(node, node_online_map);
  830. if (unlikely(node >= MAX_NUMNODES))
  831. node = first_node(node_online_map);
  832. __get_cpu_var(reap_node) = node;
  833. }
  834. #else
  835. #define init_reap_node(cpu) do { } while (0)
  836. #define next_reap_node(void) do { } while (0)
  837. #endif
  838. /*
  839. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  840. * via the workqueue/eventd.
  841. * Add the CPU number into the expiration time to minimize the possibility of
  842. * the CPUs getting into lockstep and contending for the global cache chain
  843. * lock.
  844. */
  845. static void __cpuinit start_cpu_timer(int cpu)
  846. {
  847. struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
  848. /*
  849. * When this gets called from do_initcalls via cpucache_init(),
  850. * init_workqueues() has already run, so keventd will be setup
  851. * at that time.
  852. */
  853. if (keventd_up() && reap_work->work.func == NULL) {
  854. init_reap_node(cpu);
  855. INIT_DELAYED_WORK(reap_work, cache_reap);
  856. schedule_delayed_work_on(cpu, reap_work,
  857. __round_jiffies_relative(HZ, cpu));
  858. }
  859. }
  860. static struct array_cache *alloc_arraycache(int node, int entries,
  861. int batchcount)
  862. {
  863. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  864. struct array_cache *nc = NULL;
  865. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  866. if (nc) {
  867. nc->avail = 0;
  868. nc->limit = entries;
  869. nc->batchcount = batchcount;
  870. nc->touched = 0;
  871. spin_lock_init(&nc->lock);
  872. }
  873. return nc;
  874. }
  875. /*
  876. * Transfer objects in one arraycache to another.
  877. * Locking must be handled by the caller.
  878. *
  879. * Return the number of entries transferred.
  880. */
  881. static int transfer_objects(struct array_cache *to,
  882. struct array_cache *from, unsigned int max)
  883. {
  884. /* Figure out how many entries to transfer */
  885. int nr = min(min(from->avail, max), to->limit - to->avail);
  886. if (!nr)
  887. return 0;
  888. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  889. sizeof(void *) *nr);
  890. from->avail -= nr;
  891. to->avail += nr;
  892. to->touched = 1;
  893. return nr;
  894. }
  895. #ifndef CONFIG_NUMA
  896. #define drain_alien_cache(cachep, alien) do { } while (0)
  897. #define reap_alien(cachep, l3) do { } while (0)
  898. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  899. {
  900. return (struct array_cache **)BAD_ALIEN_MAGIC;
  901. }
  902. static inline void free_alien_cache(struct array_cache **ac_ptr)
  903. {
  904. }
  905. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  906. {
  907. return 0;
  908. }
  909. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  910. gfp_t flags)
  911. {
  912. return NULL;
  913. }
  914. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  915. gfp_t flags, int nodeid)
  916. {
  917. return NULL;
  918. }
  919. #else /* CONFIG_NUMA */
  920. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  921. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  922. static struct array_cache **alloc_alien_cache(int node, int limit)
  923. {
  924. struct array_cache **ac_ptr;
  925. int memsize = sizeof(void *) * nr_node_ids;
  926. int i;
  927. if (limit > 1)
  928. limit = 12;
  929. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  930. if (ac_ptr) {
  931. for_each_node(i) {
  932. if (i == node || !node_online(i)) {
  933. ac_ptr[i] = NULL;
  934. continue;
  935. }
  936. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  937. if (!ac_ptr[i]) {
  938. for (i--; i >= 0; i--)
  939. kfree(ac_ptr[i]);
  940. kfree(ac_ptr);
  941. return NULL;
  942. }
  943. }
  944. }
  945. return ac_ptr;
  946. }
  947. static void free_alien_cache(struct array_cache **ac_ptr)
  948. {
  949. int i;
  950. if (!ac_ptr)
  951. return;
  952. for_each_node(i)
  953. kfree(ac_ptr[i]);
  954. kfree(ac_ptr);
  955. }
  956. static void __drain_alien_cache(struct kmem_cache *cachep,
  957. struct array_cache *ac, int node)
  958. {
  959. struct kmem_list3 *rl3 = cachep->nodelists[node];
  960. if (ac->avail) {
  961. spin_lock(&rl3->list_lock);
  962. /*
  963. * Stuff objects into the remote nodes shared array first.
  964. * That way we could avoid the overhead of putting the objects
  965. * into the free lists and getting them back later.
  966. */
  967. if (rl3->shared)
  968. transfer_objects(rl3->shared, ac, ac->limit);
  969. free_block(cachep, ac->entry, ac->avail, node);
  970. ac->avail = 0;
  971. spin_unlock(&rl3->list_lock);
  972. }
  973. }
  974. /*
  975. * Called from cache_reap() to regularly drain alien caches round robin.
  976. */
  977. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  978. {
  979. int node = __get_cpu_var(reap_node);
  980. if (l3->alien) {
  981. struct array_cache *ac = l3->alien[node];
  982. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  983. __drain_alien_cache(cachep, ac, node);
  984. spin_unlock_irq(&ac->lock);
  985. }
  986. }
  987. }
  988. static void drain_alien_cache(struct kmem_cache *cachep,
  989. struct array_cache **alien)
  990. {
  991. int i = 0;
  992. struct array_cache *ac;
  993. unsigned long flags;
  994. for_each_online_node(i) {
  995. ac = alien[i];
  996. if (ac) {
  997. spin_lock_irqsave(&ac->lock, flags);
  998. __drain_alien_cache(cachep, ac, i);
  999. spin_unlock_irqrestore(&ac->lock, flags);
  1000. }
  1001. }
  1002. }
  1003. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  1004. {
  1005. struct slab *slabp = virt_to_slab(objp);
  1006. int nodeid = slabp->nodeid;
  1007. struct kmem_list3 *l3;
  1008. struct array_cache *alien = NULL;
  1009. int node;
  1010. node = numa_node_id();
  1011. /*
  1012. * Make sure we are not freeing a object from another node to the array
  1013. * cache on this cpu.
  1014. */
  1015. if (likely(slabp->nodeid == node))
  1016. return 0;
  1017. l3 = cachep->nodelists[node];
  1018. STATS_INC_NODEFREES(cachep);
  1019. if (l3->alien && l3->alien[nodeid]) {
  1020. alien = l3->alien[nodeid];
  1021. spin_lock(&alien->lock);
  1022. if (unlikely(alien->avail == alien->limit)) {
  1023. STATS_INC_ACOVERFLOW(cachep);
  1024. __drain_alien_cache(cachep, alien, nodeid);
  1025. }
  1026. alien->entry[alien->avail++] = objp;
  1027. spin_unlock(&alien->lock);
  1028. } else {
  1029. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  1030. free_block(cachep, &objp, 1, nodeid);
  1031. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  1032. }
  1033. return 1;
  1034. }
  1035. #endif
  1036. static void __cpuinit cpuup_canceled(long cpu)
  1037. {
  1038. struct kmem_cache *cachep;
  1039. struct kmem_list3 *l3 = NULL;
  1040. int node = cpu_to_node(cpu);
  1041. node_to_cpumask_ptr(mask, node);
  1042. list_for_each_entry(cachep, &cache_chain, next) {
  1043. struct array_cache *nc;
  1044. struct array_cache *shared;
  1045. struct array_cache **alien;
  1046. /* cpu is dead; no one can alloc from it. */
  1047. nc = cachep->array[cpu];
  1048. cachep->array[cpu] = NULL;
  1049. l3 = cachep->nodelists[node];
  1050. if (!l3)
  1051. goto free_array_cache;
  1052. spin_lock_irq(&l3->list_lock);
  1053. /* Free limit for this kmem_list3 */
  1054. l3->free_limit -= cachep->batchcount;
  1055. if (nc)
  1056. free_block(cachep, nc->entry, nc->avail, node);
  1057. if (!cpus_empty(*mask)) {
  1058. spin_unlock_irq(&l3->list_lock);
  1059. goto free_array_cache;
  1060. }
  1061. shared = l3->shared;
  1062. if (shared) {
  1063. free_block(cachep, shared->entry,
  1064. shared->avail, node);
  1065. l3->shared = NULL;
  1066. }
  1067. alien = l3->alien;
  1068. l3->alien = NULL;
  1069. spin_unlock_irq(&l3->list_lock);
  1070. kfree(shared);
  1071. if (alien) {
  1072. drain_alien_cache(cachep, alien);
  1073. free_alien_cache(alien);
  1074. }
  1075. free_array_cache:
  1076. kfree(nc);
  1077. }
  1078. /*
  1079. * In the previous loop, all the objects were freed to
  1080. * the respective cache's slabs, now we can go ahead and
  1081. * shrink each nodelist to its limit.
  1082. */
  1083. list_for_each_entry(cachep, &cache_chain, next) {
  1084. l3 = cachep->nodelists[node];
  1085. if (!l3)
  1086. continue;
  1087. drain_freelist(cachep, l3, l3->free_objects);
  1088. }
  1089. }
  1090. static int __cpuinit cpuup_prepare(long cpu)
  1091. {
  1092. struct kmem_cache *cachep;
  1093. struct kmem_list3 *l3 = NULL;
  1094. int node = cpu_to_node(cpu);
  1095. const int memsize = sizeof(struct kmem_list3);
  1096. /*
  1097. * We need to do this right in the beginning since
  1098. * alloc_arraycache's are going to use this list.
  1099. * kmalloc_node allows us to add the slab to the right
  1100. * kmem_list3 and not this cpu's kmem_list3
  1101. */
  1102. list_for_each_entry(cachep, &cache_chain, next) {
  1103. /*
  1104. * Set up the size64 kmemlist for cpu before we can
  1105. * begin anything. Make sure some other cpu on this
  1106. * node has not already allocated this
  1107. */
  1108. if (!cachep->nodelists[node]) {
  1109. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  1110. if (!l3)
  1111. goto bad;
  1112. kmem_list3_init(l3);
  1113. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  1114. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1115. /*
  1116. * The l3s don't come and go as CPUs come and
  1117. * go. cache_chain_mutex is sufficient
  1118. * protection here.
  1119. */
  1120. cachep->nodelists[node] = l3;
  1121. }
  1122. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  1123. cachep->nodelists[node]->free_limit =
  1124. (1 + nr_cpus_node(node)) *
  1125. cachep->batchcount + cachep->num;
  1126. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1127. }
  1128. /*
  1129. * Now we can go ahead with allocating the shared arrays and
  1130. * array caches
  1131. */
  1132. list_for_each_entry(cachep, &cache_chain, next) {
  1133. struct array_cache *nc;
  1134. struct array_cache *shared = NULL;
  1135. struct array_cache **alien = NULL;
  1136. nc = alloc_arraycache(node, cachep->limit,
  1137. cachep->batchcount);
  1138. if (!nc)
  1139. goto bad;
  1140. if (cachep->shared) {
  1141. shared = alloc_arraycache(node,
  1142. cachep->shared * cachep->batchcount,
  1143. 0xbaadf00d);
  1144. if (!shared) {
  1145. kfree(nc);
  1146. goto bad;
  1147. }
  1148. }
  1149. if (use_alien_caches) {
  1150. alien = alloc_alien_cache(node, cachep->limit);
  1151. if (!alien) {
  1152. kfree(shared);
  1153. kfree(nc);
  1154. goto bad;
  1155. }
  1156. }
  1157. cachep->array[cpu] = nc;
  1158. l3 = cachep->nodelists[node];
  1159. BUG_ON(!l3);
  1160. spin_lock_irq(&l3->list_lock);
  1161. if (!l3->shared) {
  1162. /*
  1163. * We are serialised from CPU_DEAD or
  1164. * CPU_UP_CANCELLED by the cpucontrol lock
  1165. */
  1166. l3->shared = shared;
  1167. shared = NULL;
  1168. }
  1169. #ifdef CONFIG_NUMA
  1170. if (!l3->alien) {
  1171. l3->alien = alien;
  1172. alien = NULL;
  1173. }
  1174. #endif
  1175. spin_unlock_irq(&l3->list_lock);
  1176. kfree(shared);
  1177. free_alien_cache(alien);
  1178. }
  1179. return 0;
  1180. bad:
  1181. cpuup_canceled(cpu);
  1182. return -ENOMEM;
  1183. }
  1184. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  1185. unsigned long action, void *hcpu)
  1186. {
  1187. long cpu = (long)hcpu;
  1188. int err = 0;
  1189. switch (action) {
  1190. case CPU_UP_PREPARE:
  1191. case CPU_UP_PREPARE_FROZEN:
  1192. mutex_lock(&cache_chain_mutex);
  1193. err = cpuup_prepare(cpu);
  1194. mutex_unlock(&cache_chain_mutex);
  1195. break;
  1196. case CPU_ONLINE:
  1197. case CPU_ONLINE_FROZEN:
  1198. start_cpu_timer(cpu);
  1199. break;
  1200. #ifdef CONFIG_HOTPLUG_CPU
  1201. case CPU_DOWN_PREPARE:
  1202. case CPU_DOWN_PREPARE_FROZEN:
  1203. /*
  1204. * Shutdown cache reaper. Note that the cache_chain_mutex is
  1205. * held so that if cache_reap() is invoked it cannot do
  1206. * anything expensive but will only modify reap_work
  1207. * and reschedule the timer.
  1208. */
  1209. cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
  1210. /* Now the cache_reaper is guaranteed to be not running. */
  1211. per_cpu(reap_work, cpu).work.func = NULL;
  1212. break;
  1213. case CPU_DOWN_FAILED:
  1214. case CPU_DOWN_FAILED_FROZEN:
  1215. start_cpu_timer(cpu);
  1216. break;
  1217. case CPU_DEAD:
  1218. case CPU_DEAD_FROZEN:
  1219. /*
  1220. * Even if all the cpus of a node are down, we don't free the
  1221. * kmem_list3 of any cache. This to avoid a race between
  1222. * cpu_down, and a kmalloc allocation from another cpu for
  1223. * memory from the node of the cpu going down. The list3
  1224. * structure is usually allocated from kmem_cache_create() and
  1225. * gets destroyed at kmem_cache_destroy().
  1226. */
  1227. /* fall through */
  1228. #endif
  1229. case CPU_UP_CANCELED:
  1230. case CPU_UP_CANCELED_FROZEN:
  1231. mutex_lock(&cache_chain_mutex);
  1232. cpuup_canceled(cpu);
  1233. mutex_unlock(&cache_chain_mutex);
  1234. break;
  1235. }
  1236. return err ? NOTIFY_BAD : NOTIFY_OK;
  1237. }
  1238. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1239. &cpuup_callback, NULL, 0
  1240. };
  1241. /*
  1242. * swap the static kmem_list3 with kmalloced memory
  1243. */
  1244. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1245. int nodeid)
  1246. {
  1247. struct kmem_list3 *ptr;
  1248. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1249. BUG_ON(!ptr);
  1250. local_irq_disable();
  1251. memcpy(ptr, list, sizeof(struct kmem_list3));
  1252. /*
  1253. * Do not assume that spinlocks can be initialized via memcpy:
  1254. */
  1255. spin_lock_init(&ptr->list_lock);
  1256. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1257. cachep->nodelists[nodeid] = ptr;
  1258. local_irq_enable();
  1259. }
  1260. /*
  1261. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1262. * size of kmem_list3.
  1263. */
  1264. static void __init set_up_list3s(struct kmem_cache *cachep, int index)
  1265. {
  1266. int node;
  1267. for_each_online_node(node) {
  1268. cachep->nodelists[node] = &initkmem_list3[index + node];
  1269. cachep->nodelists[node]->next_reap = jiffies +
  1270. REAPTIMEOUT_LIST3 +
  1271. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1272. }
  1273. }
  1274. /*
  1275. * Initialisation. Called after the page allocator have been initialised and
  1276. * before smp_init().
  1277. */
  1278. void __init kmem_cache_init(void)
  1279. {
  1280. size_t left_over;
  1281. struct cache_sizes *sizes;
  1282. struct cache_names *names;
  1283. int i;
  1284. int order;
  1285. int node;
  1286. if (num_possible_nodes() == 1) {
  1287. use_alien_caches = 0;
  1288. numa_platform = 0;
  1289. }
  1290. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1291. kmem_list3_init(&initkmem_list3[i]);
  1292. if (i < MAX_NUMNODES)
  1293. cache_cache.nodelists[i] = NULL;
  1294. }
  1295. set_up_list3s(&cache_cache, CACHE_CACHE);
  1296. /*
  1297. * Fragmentation resistance on low memory - only use bigger
  1298. * page orders on machines with more than 32MB of memory.
  1299. */
  1300. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1301. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1302. /* Bootstrap is tricky, because several objects are allocated
  1303. * from caches that do not exist yet:
  1304. * 1) initialize the cache_cache cache: it contains the struct
  1305. * kmem_cache structures of all caches, except cache_cache itself:
  1306. * cache_cache is statically allocated.
  1307. * Initially an __init data area is used for the head array and the
  1308. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1309. * array at the end of the bootstrap.
  1310. * 2) Create the first kmalloc cache.
  1311. * The struct kmem_cache for the new cache is allocated normally.
  1312. * An __init data area is used for the head array.
  1313. * 3) Create the remaining kmalloc caches, with minimally sized
  1314. * head arrays.
  1315. * 4) Replace the __init data head arrays for cache_cache and the first
  1316. * kmalloc cache with kmalloc allocated arrays.
  1317. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1318. * the other cache's with kmalloc allocated memory.
  1319. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1320. */
  1321. node = numa_node_id();
  1322. /* 1) create the cache_cache */
  1323. INIT_LIST_HEAD(&cache_chain);
  1324. list_add(&cache_cache.next, &cache_chain);
  1325. cache_cache.colour_off = cache_line_size();
  1326. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1327. cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
  1328. /*
  1329. * struct kmem_cache size depends on nr_node_ids, which
  1330. * can be less than MAX_NUMNODES.
  1331. */
  1332. cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
  1333. nr_node_ids * sizeof(struct kmem_list3 *);
  1334. #if DEBUG
  1335. cache_cache.obj_size = cache_cache.buffer_size;
  1336. #endif
  1337. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1338. cache_line_size());
  1339. cache_cache.reciprocal_buffer_size =
  1340. reciprocal_value(cache_cache.buffer_size);
  1341. for (order = 0; order < MAX_ORDER; order++) {
  1342. cache_estimate(order, cache_cache.buffer_size,
  1343. cache_line_size(), 0, &left_over, &cache_cache.num);
  1344. if (cache_cache.num)
  1345. break;
  1346. }
  1347. BUG_ON(!cache_cache.num);
  1348. cache_cache.gfporder = order;
  1349. cache_cache.colour = left_over / cache_cache.colour_off;
  1350. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1351. sizeof(struct slab), cache_line_size());
  1352. /* 2+3) create the kmalloc caches */
  1353. sizes = malloc_sizes;
  1354. names = cache_names;
  1355. /*
  1356. * Initialize the caches that provide memory for the array cache and the
  1357. * kmem_list3 structures first. Without this, further allocations will
  1358. * bug.
  1359. */
  1360. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1361. sizes[INDEX_AC].cs_size,
  1362. ARCH_KMALLOC_MINALIGN,
  1363. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1364. NULL);
  1365. if (INDEX_AC != INDEX_L3) {
  1366. sizes[INDEX_L3].cs_cachep =
  1367. kmem_cache_create(names[INDEX_L3].name,
  1368. sizes[INDEX_L3].cs_size,
  1369. ARCH_KMALLOC_MINALIGN,
  1370. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1371. NULL);
  1372. }
  1373. slab_early_init = 0;
  1374. while (sizes->cs_size != ULONG_MAX) {
  1375. /*
  1376. * For performance, all the general caches are L1 aligned.
  1377. * This should be particularly beneficial on SMP boxes, as it
  1378. * eliminates "false sharing".
  1379. * Note for systems short on memory removing the alignment will
  1380. * allow tighter packing of the smaller caches.
  1381. */
  1382. if (!sizes->cs_cachep) {
  1383. sizes->cs_cachep = kmem_cache_create(names->name,
  1384. sizes->cs_size,
  1385. ARCH_KMALLOC_MINALIGN,
  1386. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1387. NULL);
  1388. }
  1389. #ifdef CONFIG_ZONE_DMA
  1390. sizes->cs_dmacachep = kmem_cache_create(
  1391. names->name_dma,
  1392. sizes->cs_size,
  1393. ARCH_KMALLOC_MINALIGN,
  1394. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1395. SLAB_PANIC,
  1396. NULL);
  1397. #endif
  1398. sizes++;
  1399. names++;
  1400. }
  1401. /* 4) Replace the bootstrap head arrays */
  1402. {
  1403. struct array_cache *ptr;
  1404. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1405. local_irq_disable();
  1406. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1407. memcpy(ptr, cpu_cache_get(&cache_cache),
  1408. sizeof(struct arraycache_init));
  1409. /*
  1410. * Do not assume that spinlocks can be initialized via memcpy:
  1411. */
  1412. spin_lock_init(&ptr->lock);
  1413. cache_cache.array[smp_processor_id()] = ptr;
  1414. local_irq_enable();
  1415. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1416. local_irq_disable();
  1417. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1418. != &initarray_generic.cache);
  1419. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1420. sizeof(struct arraycache_init));
  1421. /*
  1422. * Do not assume that spinlocks can be initialized via memcpy:
  1423. */
  1424. spin_lock_init(&ptr->lock);
  1425. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1426. ptr;
  1427. local_irq_enable();
  1428. }
  1429. /* 5) Replace the bootstrap kmem_list3's */
  1430. {
  1431. int nid;
  1432. for_each_online_node(nid) {
  1433. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
  1434. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1435. &initkmem_list3[SIZE_AC + nid], nid);
  1436. if (INDEX_AC != INDEX_L3) {
  1437. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1438. &initkmem_list3[SIZE_L3 + nid], nid);
  1439. }
  1440. }
  1441. }
  1442. /* 6) resize the head arrays to their final sizes */
  1443. {
  1444. struct kmem_cache *cachep;
  1445. mutex_lock(&cache_chain_mutex);
  1446. list_for_each_entry(cachep, &cache_chain, next)
  1447. if (enable_cpucache(cachep))
  1448. BUG();
  1449. mutex_unlock(&cache_chain_mutex);
  1450. }
  1451. /* Annotate slab for lockdep -- annotate the malloc caches */
  1452. init_lock_keys();
  1453. /* Done! */
  1454. g_cpucache_up = FULL;
  1455. /*
  1456. * Register a cpu startup notifier callback that initializes
  1457. * cpu_cache_get for all new cpus
  1458. */
  1459. register_cpu_notifier(&cpucache_notifier);
  1460. /*
  1461. * The reap timers are started later, with a module init call: That part
  1462. * of the kernel is not yet operational.
  1463. */
  1464. }
  1465. static int __init cpucache_init(void)
  1466. {
  1467. int cpu;
  1468. /*
  1469. * Register the timers that return unneeded pages to the page allocator
  1470. */
  1471. for_each_online_cpu(cpu)
  1472. start_cpu_timer(cpu);
  1473. return 0;
  1474. }
  1475. __initcall(cpucache_init);
  1476. /*
  1477. * Interface to system's page allocator. No need to hold the cache-lock.
  1478. *
  1479. * If we requested dmaable memory, we will get it. Even if we
  1480. * did not request dmaable memory, we might get it, but that
  1481. * would be relatively rare and ignorable.
  1482. */
  1483. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1484. {
  1485. struct page *page;
  1486. int nr_pages;
  1487. int i;
  1488. #ifndef CONFIG_MMU
  1489. /*
  1490. * Nommu uses slab's for process anonymous memory allocations, and thus
  1491. * requires __GFP_COMP to properly refcount higher order allocations
  1492. */
  1493. flags |= __GFP_COMP;
  1494. #endif
  1495. flags |= cachep->gfpflags;
  1496. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1497. flags |= __GFP_RECLAIMABLE;
  1498. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1499. if (!page)
  1500. return NULL;
  1501. nr_pages = (1 << cachep->gfporder);
  1502. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1503. add_zone_page_state(page_zone(page),
  1504. NR_SLAB_RECLAIMABLE, nr_pages);
  1505. else
  1506. add_zone_page_state(page_zone(page),
  1507. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1508. for (i = 0; i < nr_pages; i++)
  1509. __SetPageSlab(page + i);
  1510. return page_address(page);
  1511. }
  1512. /*
  1513. * Interface to system's page release.
  1514. */
  1515. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1516. {
  1517. unsigned long i = (1 << cachep->gfporder);
  1518. struct page *page = virt_to_page(addr);
  1519. const unsigned long nr_freed = i;
  1520. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1521. sub_zone_page_state(page_zone(page),
  1522. NR_SLAB_RECLAIMABLE, nr_freed);
  1523. else
  1524. sub_zone_page_state(page_zone(page),
  1525. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1526. while (i--) {
  1527. BUG_ON(!PageSlab(page));
  1528. __ClearPageSlab(page);
  1529. page++;
  1530. }
  1531. if (current->reclaim_state)
  1532. current->reclaim_state->reclaimed_slab += nr_freed;
  1533. free_pages((unsigned long)addr, cachep->gfporder);
  1534. }
  1535. static void kmem_rcu_free(struct rcu_head *head)
  1536. {
  1537. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1538. struct kmem_cache *cachep = slab_rcu->cachep;
  1539. kmem_freepages(cachep, slab_rcu->addr);
  1540. if (OFF_SLAB(cachep))
  1541. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1542. }
  1543. #if DEBUG
  1544. #ifdef CONFIG_DEBUG_PAGEALLOC
  1545. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1546. unsigned long caller)
  1547. {
  1548. int size = obj_size(cachep);
  1549. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1550. if (size < 5 * sizeof(unsigned long))
  1551. return;
  1552. *addr++ = 0x12345678;
  1553. *addr++ = caller;
  1554. *addr++ = smp_processor_id();
  1555. size -= 3 * sizeof(unsigned long);
  1556. {
  1557. unsigned long *sptr = &caller;
  1558. unsigned long svalue;
  1559. while (!kstack_end(sptr)) {
  1560. svalue = *sptr++;
  1561. if (kernel_text_address(svalue)) {
  1562. *addr++ = svalue;
  1563. size -= sizeof(unsigned long);
  1564. if (size <= sizeof(unsigned long))
  1565. break;
  1566. }
  1567. }
  1568. }
  1569. *addr++ = 0x87654321;
  1570. }
  1571. #endif
  1572. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1573. {
  1574. int size = obj_size(cachep);
  1575. addr = &((char *)addr)[obj_offset(cachep)];
  1576. memset(addr, val, size);
  1577. *(unsigned char *)(addr + size - 1) = POISON_END;
  1578. }
  1579. static void dump_line(char *data, int offset, int limit)
  1580. {
  1581. int i;
  1582. unsigned char error = 0;
  1583. int bad_count = 0;
  1584. printk(KERN_ERR "%03x:", offset);
  1585. for (i = 0; i < limit; i++) {
  1586. if (data[offset + i] != POISON_FREE) {
  1587. error = data[offset + i];
  1588. bad_count++;
  1589. }
  1590. printk(" %02x", (unsigned char)data[offset + i]);
  1591. }
  1592. printk("\n");
  1593. if (bad_count == 1) {
  1594. error ^= POISON_FREE;
  1595. if (!(error & (error - 1))) {
  1596. printk(KERN_ERR "Single bit error detected. Probably "
  1597. "bad RAM.\n");
  1598. #ifdef CONFIG_X86
  1599. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1600. "test tool.\n");
  1601. #else
  1602. printk(KERN_ERR "Run a memory test tool.\n");
  1603. #endif
  1604. }
  1605. }
  1606. }
  1607. #endif
  1608. #if DEBUG
  1609. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1610. {
  1611. int i, size;
  1612. char *realobj;
  1613. if (cachep->flags & SLAB_RED_ZONE) {
  1614. printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
  1615. *dbg_redzone1(cachep, objp),
  1616. *dbg_redzone2(cachep, objp));
  1617. }
  1618. if (cachep->flags & SLAB_STORE_USER) {
  1619. printk(KERN_ERR "Last user: [<%p>]",
  1620. *dbg_userword(cachep, objp));
  1621. print_symbol("(%s)",
  1622. (unsigned long)*dbg_userword(cachep, objp));
  1623. printk("\n");
  1624. }
  1625. realobj = (char *)objp + obj_offset(cachep);
  1626. size = obj_size(cachep);
  1627. for (i = 0; i < size && lines; i += 16, lines--) {
  1628. int limit;
  1629. limit = 16;
  1630. if (i + limit > size)
  1631. limit = size - i;
  1632. dump_line(realobj, i, limit);
  1633. }
  1634. }
  1635. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1636. {
  1637. char *realobj;
  1638. int size, i;
  1639. int lines = 0;
  1640. realobj = (char *)objp + obj_offset(cachep);
  1641. size = obj_size(cachep);
  1642. for (i = 0; i < size; i++) {
  1643. char exp = POISON_FREE;
  1644. if (i == size - 1)
  1645. exp = POISON_END;
  1646. if (realobj[i] != exp) {
  1647. int limit;
  1648. /* Mismatch ! */
  1649. /* Print header */
  1650. if (lines == 0) {
  1651. printk(KERN_ERR
  1652. "Slab corruption: %s start=%p, len=%d\n",
  1653. cachep->name, realobj, size);
  1654. print_objinfo(cachep, objp, 0);
  1655. }
  1656. /* Hexdump the affected line */
  1657. i = (i / 16) * 16;
  1658. limit = 16;
  1659. if (i + limit > size)
  1660. limit = size - i;
  1661. dump_line(realobj, i, limit);
  1662. i += 16;
  1663. lines++;
  1664. /* Limit to 5 lines */
  1665. if (lines > 5)
  1666. break;
  1667. }
  1668. }
  1669. if (lines != 0) {
  1670. /* Print some data about the neighboring objects, if they
  1671. * exist:
  1672. */
  1673. struct slab *slabp = virt_to_slab(objp);
  1674. unsigned int objnr;
  1675. objnr = obj_to_index(cachep, slabp, objp);
  1676. if (objnr) {
  1677. objp = index_to_obj(cachep, slabp, objnr - 1);
  1678. realobj = (char *)objp + obj_offset(cachep);
  1679. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1680. realobj, size);
  1681. print_objinfo(cachep, objp, 2);
  1682. }
  1683. if (objnr + 1 < cachep->num) {
  1684. objp = index_to_obj(cachep, slabp, objnr + 1);
  1685. realobj = (char *)objp + obj_offset(cachep);
  1686. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1687. realobj, size);
  1688. print_objinfo(cachep, objp, 2);
  1689. }
  1690. }
  1691. }
  1692. #endif
  1693. #if DEBUG
  1694. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1695. {
  1696. int i;
  1697. for (i = 0; i < cachep->num; i++) {
  1698. void *objp = index_to_obj(cachep, slabp, i);
  1699. if (cachep->flags & SLAB_POISON) {
  1700. #ifdef CONFIG_DEBUG_PAGEALLOC
  1701. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1702. OFF_SLAB(cachep))
  1703. kernel_map_pages(virt_to_page(objp),
  1704. cachep->buffer_size / PAGE_SIZE, 1);
  1705. else
  1706. check_poison_obj(cachep, objp);
  1707. #else
  1708. check_poison_obj(cachep, objp);
  1709. #endif
  1710. }
  1711. if (cachep->flags & SLAB_RED_ZONE) {
  1712. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1713. slab_error(cachep, "start of a freed object "
  1714. "was overwritten");
  1715. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1716. slab_error(cachep, "end of a freed object "
  1717. "was overwritten");
  1718. }
  1719. }
  1720. }
  1721. #else
  1722. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1723. {
  1724. }
  1725. #endif
  1726. /**
  1727. * slab_destroy - destroy and release all objects in a slab
  1728. * @cachep: cache pointer being destroyed
  1729. * @slabp: slab pointer being destroyed
  1730. *
  1731. * Destroy all the objs in a slab, and release the mem back to the system.
  1732. * Before calling the slab must have been unlinked from the cache. The
  1733. * cache-lock is not held/needed.
  1734. */
  1735. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1736. {
  1737. void *addr = slabp->s_mem - slabp->colouroff;
  1738. slab_destroy_debugcheck(cachep, slabp);
  1739. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1740. struct slab_rcu *slab_rcu;
  1741. slab_rcu = (struct slab_rcu *)slabp;
  1742. slab_rcu->cachep = cachep;
  1743. slab_rcu->addr = addr;
  1744. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1745. } else {
  1746. kmem_freepages(cachep, addr);
  1747. if (OFF_SLAB(cachep))
  1748. kmem_cache_free(cachep->slabp_cache, slabp);
  1749. }
  1750. }
  1751. static void __kmem_cache_destroy(struct kmem_cache *cachep)
  1752. {
  1753. int i;
  1754. struct kmem_list3 *l3;
  1755. for_each_online_cpu(i)
  1756. kfree(cachep->array[i]);
  1757. /* NUMA: free the list3 structures */
  1758. for_each_online_node(i) {
  1759. l3 = cachep->nodelists[i];
  1760. if (l3) {
  1761. kfree(l3->shared);
  1762. free_alien_cache(l3->alien);
  1763. kfree(l3);
  1764. }
  1765. }
  1766. kmem_cache_free(&cache_cache, cachep);
  1767. }
  1768. /**
  1769. * calculate_slab_order - calculate size (page order) of slabs
  1770. * @cachep: pointer to the cache that is being created
  1771. * @size: size of objects to be created in this cache.
  1772. * @align: required alignment for the objects.
  1773. * @flags: slab allocation flags
  1774. *
  1775. * Also calculates the number of objects per slab.
  1776. *
  1777. * This could be made much more intelligent. For now, try to avoid using
  1778. * high order pages for slabs. When the gfp() functions are more friendly
  1779. * towards high-order requests, this should be changed.
  1780. */
  1781. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1782. size_t size, size_t align, unsigned long flags)
  1783. {
  1784. unsigned long offslab_limit;
  1785. size_t left_over = 0;
  1786. int gfporder;
  1787. for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
  1788. unsigned int num;
  1789. size_t remainder;
  1790. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1791. if (!num)
  1792. continue;
  1793. if (flags & CFLGS_OFF_SLAB) {
  1794. /*
  1795. * Max number of objs-per-slab for caches which
  1796. * use off-slab slabs. Needed to avoid a possible
  1797. * looping condition in cache_grow().
  1798. */
  1799. offslab_limit = size - sizeof(struct slab);
  1800. offslab_limit /= sizeof(kmem_bufctl_t);
  1801. if (num > offslab_limit)
  1802. break;
  1803. }
  1804. /* Found something acceptable - save it away */
  1805. cachep->num = num;
  1806. cachep->gfporder = gfporder;
  1807. left_over = remainder;
  1808. /*
  1809. * A VFS-reclaimable slab tends to have most allocations
  1810. * as GFP_NOFS and we really don't want to have to be allocating
  1811. * higher-order pages when we are unable to shrink dcache.
  1812. */
  1813. if (flags & SLAB_RECLAIM_ACCOUNT)
  1814. break;
  1815. /*
  1816. * Large number of objects is good, but very large slabs are
  1817. * currently bad for the gfp()s.
  1818. */
  1819. if (gfporder >= slab_break_gfp_order)
  1820. break;
  1821. /*
  1822. * Acceptable internal fragmentation?
  1823. */
  1824. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1825. break;
  1826. }
  1827. return left_over;
  1828. }
  1829. static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
  1830. {
  1831. if (g_cpucache_up == FULL)
  1832. return enable_cpucache(cachep);
  1833. if (g_cpucache_up == NONE) {
  1834. /*
  1835. * Note: the first kmem_cache_create must create the cache
  1836. * that's used by kmalloc(24), otherwise the creation of
  1837. * further caches will BUG().
  1838. */
  1839. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1840. /*
  1841. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1842. * the first cache, then we need to set up all its list3s,
  1843. * otherwise the creation of further caches will BUG().
  1844. */
  1845. set_up_list3s(cachep, SIZE_AC);
  1846. if (INDEX_AC == INDEX_L3)
  1847. g_cpucache_up = PARTIAL_L3;
  1848. else
  1849. g_cpucache_up = PARTIAL_AC;
  1850. } else {
  1851. cachep->array[smp_processor_id()] =
  1852. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1853. if (g_cpucache_up == PARTIAL_AC) {
  1854. set_up_list3s(cachep, SIZE_L3);
  1855. g_cpucache_up = PARTIAL_L3;
  1856. } else {
  1857. int node;
  1858. for_each_online_node(node) {
  1859. cachep->nodelists[node] =
  1860. kmalloc_node(sizeof(struct kmem_list3),
  1861. GFP_KERNEL, node);
  1862. BUG_ON(!cachep->nodelists[node]);
  1863. kmem_list3_init(cachep->nodelists[node]);
  1864. }
  1865. }
  1866. }
  1867. cachep->nodelists[numa_node_id()]->next_reap =
  1868. jiffies + REAPTIMEOUT_LIST3 +
  1869. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1870. cpu_cache_get(cachep)->avail = 0;
  1871. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1872. cpu_cache_get(cachep)->batchcount = 1;
  1873. cpu_cache_get(cachep)->touched = 0;
  1874. cachep->batchcount = 1;
  1875. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1876. return 0;
  1877. }
  1878. /**
  1879. * kmem_cache_create - Create a cache.
  1880. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1881. * @size: The size of objects to be created in this cache.
  1882. * @align: The required alignment for the objects.
  1883. * @flags: SLAB flags
  1884. * @ctor: A constructor for the objects.
  1885. *
  1886. * Returns a ptr to the cache on success, NULL on failure.
  1887. * Cannot be called within a int, but can be interrupted.
  1888. * The @ctor is run when new pages are allocated by the cache.
  1889. *
  1890. * @name must be valid until the cache is destroyed. This implies that
  1891. * the module calling this has to destroy the cache before getting unloaded.
  1892. *
  1893. * The flags are
  1894. *
  1895. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1896. * to catch references to uninitialised memory.
  1897. *
  1898. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1899. * for buffer overruns.
  1900. *
  1901. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1902. * cacheline. This can be beneficial if you're counting cycles as closely
  1903. * as davem.
  1904. */
  1905. struct kmem_cache *
  1906. kmem_cache_create (const char *name, size_t size, size_t align,
  1907. unsigned long flags, void (*ctor)(void *))
  1908. {
  1909. size_t left_over, slab_size, ralign;
  1910. struct kmem_cache *cachep = NULL, *pc;
  1911. /*
  1912. * Sanity checks... these are all serious usage bugs.
  1913. */
  1914. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1915. size > KMALLOC_MAX_SIZE) {
  1916. printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
  1917. name);
  1918. BUG();
  1919. }
  1920. /*
  1921. * We use cache_chain_mutex to ensure a consistent view of
  1922. * cpu_online_map as well. Please see cpuup_callback
  1923. */
  1924. get_online_cpus();
  1925. mutex_lock(&cache_chain_mutex);
  1926. list_for_each_entry(pc, &cache_chain, next) {
  1927. char tmp;
  1928. int res;
  1929. /*
  1930. * This happens when the module gets unloaded and doesn't
  1931. * destroy its slab cache and no-one else reuses the vmalloc
  1932. * area of the module. Print a warning.
  1933. */
  1934. res = probe_kernel_address(pc->name, tmp);
  1935. if (res) {
  1936. printk(KERN_ERR
  1937. "SLAB: cache with size %d has lost its name\n",
  1938. pc->buffer_size);
  1939. continue;
  1940. }
  1941. if (!strcmp(pc->name, name)) {
  1942. printk(KERN_ERR
  1943. "kmem_cache_create: duplicate cache %s\n", name);
  1944. dump_stack();
  1945. goto oops;
  1946. }
  1947. }
  1948. #if DEBUG
  1949. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1950. #if FORCED_DEBUG
  1951. /*
  1952. * Enable redzoning and last user accounting, except for caches with
  1953. * large objects, if the increased size would increase the object size
  1954. * above the next power of two: caches with object sizes just above a
  1955. * power of two have a significant amount of internal fragmentation.
  1956. */
  1957. if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
  1958. 2 * sizeof(unsigned long long)))
  1959. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1960. if (!(flags & SLAB_DESTROY_BY_RCU))
  1961. flags |= SLAB_POISON;
  1962. #endif
  1963. if (flags & SLAB_DESTROY_BY_RCU)
  1964. BUG_ON(flags & SLAB_POISON);
  1965. #endif
  1966. /*
  1967. * Always checks flags, a caller might be expecting debug support which
  1968. * isn't available.
  1969. */
  1970. BUG_ON(flags & ~CREATE_MASK);
  1971. /*
  1972. * Check that size is in terms of words. This is needed to avoid
  1973. * unaligned accesses for some archs when redzoning is used, and makes
  1974. * sure any on-slab bufctl's are also correctly aligned.
  1975. */
  1976. if (size & (BYTES_PER_WORD - 1)) {
  1977. size += (BYTES_PER_WORD - 1);
  1978. size &= ~(BYTES_PER_WORD - 1);
  1979. }
  1980. /* calculate the final buffer alignment: */
  1981. /* 1) arch recommendation: can be overridden for debug */
  1982. if (flags & SLAB_HWCACHE_ALIGN) {
  1983. /*
  1984. * Default alignment: as specified by the arch code. Except if
  1985. * an object is really small, then squeeze multiple objects into
  1986. * one cacheline.
  1987. */
  1988. ralign = cache_line_size();
  1989. while (size <= ralign / 2)
  1990. ralign /= 2;
  1991. } else {
  1992. ralign = BYTES_PER_WORD;
  1993. }
  1994. /*
  1995. * Redzoning and user store require word alignment or possibly larger.
  1996. * Note this will be overridden by architecture or caller mandated
  1997. * alignment if either is greater than BYTES_PER_WORD.
  1998. */
  1999. if (flags & SLAB_STORE_USER)
  2000. ralign = BYTES_PER_WORD;
  2001. if (flags & SLAB_RED_ZONE) {
  2002. ralign = REDZONE_ALIGN;
  2003. /* If redzoning, ensure that the second redzone is suitably
  2004. * aligned, by adjusting the object size accordingly. */
  2005. size += REDZONE_ALIGN - 1;
  2006. size &= ~(REDZONE_ALIGN - 1);
  2007. }
  2008. /* 2) arch mandated alignment */
  2009. if (ralign < ARCH_SLAB_MINALIGN) {
  2010. ralign = ARCH_SLAB_MINALIGN;
  2011. }
  2012. /* 3) caller mandated alignment */
  2013. if (ralign < align) {
  2014. ralign = align;
  2015. }
  2016. /* disable debug if necessary */
  2017. if (ralign > __alignof__(unsigned long long))
  2018. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2019. /*
  2020. * 4) Store it.
  2021. */
  2022. align = ralign;
  2023. /* Get cache's description obj. */
  2024. cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
  2025. if (!cachep)
  2026. goto oops;
  2027. #if DEBUG
  2028. cachep->obj_size = size;
  2029. /*
  2030. * Both debugging options require word-alignment which is calculated
  2031. * into align above.
  2032. */
  2033. if (flags & SLAB_RED_ZONE) {
  2034. /* add space for red zone words */
  2035. cachep->obj_offset += sizeof(unsigned long long);
  2036. size += 2 * sizeof(unsigned long long);
  2037. }
  2038. if (flags & SLAB_STORE_USER) {
  2039. /* user store requires one word storage behind the end of
  2040. * the real object. But if the second red zone needs to be
  2041. * aligned to 64 bits, we must allow that much space.
  2042. */
  2043. if (flags & SLAB_RED_ZONE)
  2044. size += REDZONE_ALIGN;
  2045. else
  2046. size += BYTES_PER_WORD;
  2047. }
  2048. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  2049. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  2050. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  2051. cachep->obj_offset += PAGE_SIZE - size;
  2052. size = PAGE_SIZE;
  2053. }
  2054. #endif
  2055. #endif
  2056. /*
  2057. * Determine if the slab management is 'on' or 'off' slab.
  2058. * (bootstrapping cannot cope with offslab caches so don't do
  2059. * it too early on.)
  2060. */
  2061. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
  2062. /*
  2063. * Size is large, assume best to place the slab management obj
  2064. * off-slab (should allow better packing of objs).
  2065. */
  2066. flags |= CFLGS_OFF_SLAB;
  2067. size = ALIGN(size, align);
  2068. left_over = calculate_slab_order(cachep, size, align, flags);
  2069. if (!cachep->num) {
  2070. printk(KERN_ERR
  2071. "kmem_cache_create: couldn't create cache %s.\n", name);
  2072. kmem_cache_free(&cache_cache, cachep);
  2073. cachep = NULL;
  2074. goto oops;
  2075. }
  2076. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  2077. + sizeof(struct slab), align);
  2078. /*
  2079. * If the slab has been placed off-slab, and we have enough space then
  2080. * move it on-slab. This is at the expense of any extra colouring.
  2081. */
  2082. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  2083. flags &= ~CFLGS_OFF_SLAB;
  2084. left_over -= slab_size;
  2085. }
  2086. if (flags & CFLGS_OFF_SLAB) {
  2087. /* really off slab. No need for manual alignment */
  2088. slab_size =
  2089. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  2090. }
  2091. cachep->colour_off = cache_line_size();
  2092. /* Offset must be a multiple of the alignment. */
  2093. if (cachep->colour_off < align)
  2094. cachep->colour_off = align;
  2095. cachep->colour = left_over / cachep->colour_off;
  2096. cachep->slab_size = slab_size;
  2097. cachep->flags = flags;
  2098. cachep->gfpflags = 0;
  2099. if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
  2100. cachep->gfpflags |= GFP_DMA;
  2101. cachep->buffer_size = size;
  2102. cachep->reciprocal_buffer_size = reciprocal_value(size);
  2103. if (flags & CFLGS_OFF_SLAB) {
  2104. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  2105. /*
  2106. * This is a possibility for one of the malloc_sizes caches.
  2107. * But since we go off slab only for object size greater than
  2108. * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
  2109. * this should not happen at all.
  2110. * But leave a BUG_ON for some lucky dude.
  2111. */
  2112. BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
  2113. }
  2114. cachep->ctor = ctor;
  2115. cachep->name = name;
  2116. if (setup_cpu_cache(cachep)) {
  2117. __kmem_cache_destroy(cachep);
  2118. cachep = NULL;
  2119. goto oops;
  2120. }
  2121. /* cache setup completed, link it into the list */
  2122. list_add(&cachep->next, &cache_chain);
  2123. oops:
  2124. if (!cachep && (flags & SLAB_PANIC))
  2125. panic("kmem_cache_create(): failed to create slab `%s'\n",
  2126. name);
  2127. mutex_unlock(&cache_chain_mutex);
  2128. put_online_cpus();
  2129. return cachep;
  2130. }
  2131. EXPORT_SYMBOL(kmem_cache_create);
  2132. #if DEBUG
  2133. static void check_irq_off(void)
  2134. {
  2135. BUG_ON(!irqs_disabled());
  2136. }
  2137. static void check_irq_on(void)
  2138. {
  2139. BUG_ON(irqs_disabled());
  2140. }
  2141. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2142. {
  2143. #ifdef CONFIG_SMP
  2144. check_irq_off();
  2145. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  2146. #endif
  2147. }
  2148. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2149. {
  2150. #ifdef CONFIG_SMP
  2151. check_irq_off();
  2152. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  2153. #endif
  2154. }
  2155. #else
  2156. #define check_irq_off() do { } while(0)
  2157. #define check_irq_on() do { } while(0)
  2158. #define check_spinlock_acquired(x) do { } while(0)
  2159. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2160. #endif
  2161. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  2162. struct array_cache *ac,
  2163. int force, int node);
  2164. static void do_drain(void *arg)
  2165. {
  2166. struct kmem_cache *cachep = arg;
  2167. struct array_cache *ac;
  2168. int node = numa_node_id();
  2169. check_irq_off();
  2170. ac = cpu_cache_get(cachep);
  2171. spin_lock(&cachep->nodelists[node]->list_lock);
  2172. free_block(cachep, ac->entry, ac->avail, node);
  2173. spin_unlock(&cachep->nodelists[node]->list_lock);
  2174. ac->avail = 0;
  2175. }
  2176. static void drain_cpu_caches(struct kmem_cache *cachep)
  2177. {
  2178. struct kmem_list3 *l3;
  2179. int node;
  2180. on_each_cpu(do_drain, cachep, 1);
  2181. check_irq_on();
  2182. for_each_online_node(node) {
  2183. l3 = cachep->nodelists[node];
  2184. if (l3 && l3->alien)
  2185. drain_alien_cache(cachep, l3->alien);
  2186. }
  2187. for_each_online_node(node) {
  2188. l3 = cachep->nodelists[node];
  2189. if (l3)
  2190. drain_array(cachep, l3, l3->shared, 1, node);
  2191. }
  2192. }
  2193. /*
  2194. * Remove slabs from the list of free slabs.
  2195. * Specify the number of slabs to drain in tofree.
  2196. *
  2197. * Returns the actual number of slabs released.
  2198. */
  2199. static int drain_freelist(struct kmem_cache *cache,
  2200. struct kmem_list3 *l3, int tofree)
  2201. {
  2202. struct list_head *p;
  2203. int nr_freed;
  2204. struct slab *slabp;
  2205. nr_freed = 0;
  2206. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2207. spin_lock_irq(&l3->list_lock);
  2208. p = l3->slabs_free.prev;
  2209. if (p == &l3->slabs_free) {
  2210. spin_unlock_irq(&l3->list_lock);
  2211. goto out;
  2212. }
  2213. slabp = list_entry(p, struct slab, list);
  2214. #if DEBUG
  2215. BUG_ON(slabp->inuse);
  2216. #endif
  2217. list_del(&slabp->list);
  2218. /*
  2219. * Safe to drop the lock. The slab is no longer linked
  2220. * to the cache.
  2221. */
  2222. l3->free_objects -= cache->num;
  2223. spin_unlock_irq(&l3->list_lock);
  2224. slab_destroy(cache, slabp);
  2225. nr_freed++;
  2226. }
  2227. out:
  2228. return nr_freed;
  2229. }
  2230. /* Called with cache_chain_mutex held to protect against cpu hotplug */
  2231. static int __cache_shrink(struct kmem_cache *cachep)
  2232. {
  2233. int ret = 0, i = 0;
  2234. struct kmem_list3 *l3;
  2235. drain_cpu_caches(cachep);
  2236. check_irq_on();
  2237. for_each_online_node(i) {
  2238. l3 = cachep->nodelists[i];
  2239. if (!l3)
  2240. continue;
  2241. drain_freelist(cachep, l3, l3->free_objects);
  2242. ret += !list_empty(&l3->slabs_full) ||
  2243. !list_empty(&l3->slabs_partial);
  2244. }
  2245. return (ret ? 1 : 0);
  2246. }
  2247. /**
  2248. * kmem_cache_shrink - Shrink a cache.
  2249. * @cachep: The cache to shrink.
  2250. *
  2251. * Releases as many slabs as possible for a cache.
  2252. * To help debugging, a zero exit status indicates all slabs were released.
  2253. */
  2254. int kmem_cache_shrink(struct kmem_cache *cachep)
  2255. {
  2256. int ret;
  2257. BUG_ON(!cachep || in_interrupt());
  2258. get_online_cpus();
  2259. mutex_lock(&cache_chain_mutex);
  2260. ret = __cache_shrink(cachep);
  2261. mutex_unlock(&cache_chain_mutex);
  2262. put_online_cpus();
  2263. return ret;
  2264. }
  2265. EXPORT_SYMBOL(kmem_cache_shrink);
  2266. /**
  2267. * kmem_cache_destroy - delete a cache
  2268. * @cachep: the cache to destroy
  2269. *
  2270. * Remove a &struct kmem_cache object from the slab cache.
  2271. *
  2272. * It is expected this function will be called by a module when it is
  2273. * unloaded. This will remove the cache completely, and avoid a duplicate
  2274. * cache being allocated each time a module is loaded and unloaded, if the
  2275. * module doesn't have persistent in-kernel storage across loads and unloads.
  2276. *
  2277. * The cache must be empty before calling this function.
  2278. *
  2279. * The caller must guarantee that noone will allocate memory from the cache
  2280. * during the kmem_cache_destroy().
  2281. */
  2282. void kmem_cache_destroy(struct kmem_cache *cachep)
  2283. {
  2284. BUG_ON(!cachep || in_interrupt());
  2285. /* Find the cache in the chain of caches. */
  2286. get_online_cpus();
  2287. mutex_lock(&cache_chain_mutex);
  2288. /*
  2289. * the chain is never empty, cache_cache is never destroyed
  2290. */
  2291. list_del(&cachep->next);
  2292. if (__cache_shrink(cachep)) {
  2293. slab_error(cachep, "Can't free all objects");
  2294. list_add(&cachep->next, &cache_chain);
  2295. mutex_unlock(&cache_chain_mutex);
  2296. put_online_cpus();
  2297. return;
  2298. }
  2299. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2300. synchronize_rcu();
  2301. __kmem_cache_destroy(cachep);
  2302. mutex_unlock(&cache_chain_mutex);
  2303. put_online_cpus();
  2304. }
  2305. EXPORT_SYMBOL(kmem_cache_destroy);
  2306. /*
  2307. * Get the memory for a slab management obj.
  2308. * For a slab cache when the slab descriptor is off-slab, slab descriptors
  2309. * always come from malloc_sizes caches. The slab descriptor cannot
  2310. * come from the same cache which is getting created because,
  2311. * when we are searching for an appropriate cache for these
  2312. * descriptors in kmem_cache_create, we search through the malloc_sizes array.
  2313. * If we are creating a malloc_sizes cache here it would not be visible to
  2314. * kmem_find_general_cachep till the initialization is complete.
  2315. * Hence we cannot have slabp_cache same as the original cache.
  2316. */
  2317. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2318. int colour_off, gfp_t local_flags,
  2319. int nodeid)
  2320. {
  2321. struct slab *slabp;
  2322. if (OFF_SLAB(cachep)) {
  2323. /* Slab management obj is off-slab. */
  2324. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2325. local_flags & ~GFP_THISNODE, nodeid);
  2326. if (!slabp)
  2327. return NULL;
  2328. } else {
  2329. slabp = objp + colour_off;
  2330. colour_off += cachep->slab_size;
  2331. }
  2332. slabp->inuse = 0;
  2333. slabp->colouroff = colour_off;
  2334. slabp->s_mem = objp + colour_off;
  2335. slabp->nodeid = nodeid;
  2336. slabp->free = 0;
  2337. return slabp;
  2338. }
  2339. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2340. {
  2341. return (kmem_bufctl_t *) (slabp + 1);
  2342. }
  2343. static void cache_init_objs(struct kmem_cache *cachep,
  2344. struct slab *slabp)
  2345. {
  2346. int i;
  2347. for (i = 0; i < cachep->num; i++) {
  2348. void *objp = index_to_obj(cachep, slabp, i);
  2349. #if DEBUG
  2350. /* need to poison the objs? */
  2351. if (cachep->flags & SLAB_POISON)
  2352. poison_obj(cachep, objp, POISON_FREE);
  2353. if (cachep->flags & SLAB_STORE_USER)
  2354. *dbg_userword(cachep, objp) = NULL;
  2355. if (cachep->flags & SLAB_RED_ZONE) {
  2356. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2357. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2358. }
  2359. /*
  2360. * Constructors are not allowed to allocate memory from the same
  2361. * cache which they are a constructor for. Otherwise, deadlock.
  2362. * They must also be threaded.
  2363. */
  2364. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2365. cachep->ctor(objp + obj_offset(cachep));
  2366. if (cachep->flags & SLAB_RED_ZONE) {
  2367. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2368. slab_error(cachep, "constructor overwrote the"
  2369. " end of an object");
  2370. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2371. slab_error(cachep, "constructor overwrote the"
  2372. " start of an object");
  2373. }
  2374. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2375. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2376. kernel_map_pages(virt_to_page(objp),
  2377. cachep->buffer_size / PAGE_SIZE, 0);
  2378. #else
  2379. if (cachep->ctor)
  2380. cachep->ctor(objp);
  2381. #endif
  2382. slab_bufctl(slabp)[i] = i + 1;
  2383. }
  2384. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2385. }
  2386. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2387. {
  2388. if (CONFIG_ZONE_DMA_FLAG) {
  2389. if (flags & GFP_DMA)
  2390. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2391. else
  2392. BUG_ON(cachep->gfpflags & GFP_DMA);
  2393. }
  2394. }
  2395. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2396. int nodeid)
  2397. {
  2398. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2399. kmem_bufctl_t next;
  2400. slabp->inuse++;
  2401. next = slab_bufctl(slabp)[slabp->free];
  2402. #if DEBUG
  2403. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2404. WARN_ON(slabp->nodeid != nodeid);
  2405. #endif
  2406. slabp->free = next;
  2407. return objp;
  2408. }
  2409. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2410. void *objp, int nodeid)
  2411. {
  2412. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2413. #if DEBUG
  2414. /* Verify that the slab belongs to the intended node */
  2415. WARN_ON(slabp->nodeid != nodeid);
  2416. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2417. printk(KERN_ERR "slab: double free detected in cache "
  2418. "'%s', objp %p\n", cachep->name, objp);
  2419. BUG();
  2420. }
  2421. #endif
  2422. slab_bufctl(slabp)[objnr] = slabp->free;
  2423. slabp->free = objnr;
  2424. slabp->inuse--;
  2425. }
  2426. /*
  2427. * Map pages beginning at addr to the given cache and slab. This is required
  2428. * for the slab allocator to be able to lookup the cache and slab of a
  2429. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2430. */
  2431. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2432. void *addr)
  2433. {
  2434. int nr_pages;
  2435. struct page *page;
  2436. page = virt_to_page(addr);
  2437. nr_pages = 1;
  2438. if (likely(!PageCompound(page)))
  2439. nr_pages <<= cache->gfporder;
  2440. do {
  2441. page_set_cache(page, cache);
  2442. page_set_slab(page, slab);
  2443. page++;
  2444. } while (--nr_pages);
  2445. }
  2446. /*
  2447. * Grow (by 1) the number of slabs within a cache. This is called by
  2448. * kmem_cache_alloc() when there are no active objs left in a cache.
  2449. */
  2450. static int cache_grow(struct kmem_cache *cachep,
  2451. gfp_t flags, int nodeid, void *objp)
  2452. {
  2453. struct slab *slabp;
  2454. size_t offset;
  2455. gfp_t local_flags;
  2456. struct kmem_list3 *l3;
  2457. /*
  2458. * Be lazy and only check for valid flags here, keeping it out of the
  2459. * critical path in kmem_cache_alloc().
  2460. */
  2461. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  2462. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2463. /* Take the l3 list lock to change the colour_next on this node */
  2464. check_irq_off();
  2465. l3 = cachep->nodelists[nodeid];
  2466. spin_lock(&l3->list_lock);
  2467. /* Get colour for the slab, and cal the next value. */
  2468. offset = l3->colour_next;
  2469. l3->colour_next++;
  2470. if (l3->colour_next >= cachep->colour)
  2471. l3->colour_next = 0;
  2472. spin_unlock(&l3->list_lock);
  2473. offset *= cachep->colour_off;
  2474. if (local_flags & __GFP_WAIT)
  2475. local_irq_enable();
  2476. /*
  2477. * The test for missing atomic flag is performed here, rather than
  2478. * the more obvious place, simply to reduce the critical path length
  2479. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2480. * will eventually be caught here (where it matters).
  2481. */
  2482. kmem_flagcheck(cachep, flags);
  2483. /*
  2484. * Get mem for the objs. Attempt to allocate a physical page from
  2485. * 'nodeid'.
  2486. */
  2487. if (!objp)
  2488. objp = kmem_getpages(cachep, local_flags, nodeid);
  2489. if (!objp)
  2490. goto failed;
  2491. /* Get slab management. */
  2492. slabp = alloc_slabmgmt(cachep, objp, offset,
  2493. local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
  2494. if (!slabp)
  2495. goto opps1;
  2496. slab_map_pages(cachep, slabp, objp);
  2497. cache_init_objs(cachep, slabp);
  2498. if (local_flags & __GFP_WAIT)
  2499. local_irq_disable();
  2500. check_irq_off();
  2501. spin_lock(&l3->list_lock);
  2502. /* Make slab active. */
  2503. list_add_tail(&slabp->list, &(l3->slabs_free));
  2504. STATS_INC_GROWN(cachep);
  2505. l3->free_objects += cachep->num;
  2506. spin_unlock(&l3->list_lock);
  2507. return 1;
  2508. opps1:
  2509. kmem_freepages(cachep, objp);
  2510. failed:
  2511. if (local_flags & __GFP_WAIT)
  2512. local_irq_disable();
  2513. return 0;
  2514. }
  2515. #if DEBUG
  2516. /*
  2517. * Perform extra freeing checks:
  2518. * - detect bad pointers.
  2519. * - POISON/RED_ZONE checking
  2520. */
  2521. static void kfree_debugcheck(const void *objp)
  2522. {
  2523. if (!virt_addr_valid(objp)) {
  2524. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2525. (unsigned long)objp);
  2526. BUG();
  2527. }
  2528. }
  2529. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2530. {
  2531. unsigned long long redzone1, redzone2;
  2532. redzone1 = *dbg_redzone1(cache, obj);
  2533. redzone2 = *dbg_redzone2(cache, obj);
  2534. /*
  2535. * Redzone is ok.
  2536. */
  2537. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2538. return;
  2539. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2540. slab_error(cache, "double free detected");
  2541. else
  2542. slab_error(cache, "memory outside object was overwritten");
  2543. printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
  2544. obj, redzone1, redzone2);
  2545. }
  2546. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2547. void *caller)
  2548. {
  2549. struct page *page;
  2550. unsigned int objnr;
  2551. struct slab *slabp;
  2552. BUG_ON(virt_to_cache(objp) != cachep);
  2553. objp -= obj_offset(cachep);
  2554. kfree_debugcheck(objp);
  2555. page = virt_to_head_page(objp);
  2556. slabp = page_get_slab(page);
  2557. if (cachep->flags & SLAB_RED_ZONE) {
  2558. verify_redzone_free(cachep, objp);
  2559. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2560. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2561. }
  2562. if (cachep->flags & SLAB_STORE_USER)
  2563. *dbg_userword(cachep, objp) = caller;
  2564. objnr = obj_to_index(cachep, slabp, objp);
  2565. BUG_ON(objnr >= cachep->num);
  2566. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2567. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2568. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2569. #endif
  2570. if (cachep->flags & SLAB_POISON) {
  2571. #ifdef CONFIG_DEBUG_PAGEALLOC
  2572. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2573. store_stackinfo(cachep, objp, (unsigned long)caller);
  2574. kernel_map_pages(virt_to_page(objp),
  2575. cachep->buffer_size / PAGE_SIZE, 0);
  2576. } else {
  2577. poison_obj(cachep, objp, POISON_FREE);
  2578. }
  2579. #else
  2580. poison_obj(cachep, objp, POISON_FREE);
  2581. #endif
  2582. }
  2583. return objp;
  2584. }
  2585. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2586. {
  2587. kmem_bufctl_t i;
  2588. int entries = 0;
  2589. /* Check slab's freelist to see if this obj is there. */
  2590. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2591. entries++;
  2592. if (entries > cachep->num || i >= cachep->num)
  2593. goto bad;
  2594. }
  2595. if (entries != cachep->num - slabp->inuse) {
  2596. bad:
  2597. printk(KERN_ERR "slab: Internal list corruption detected in "
  2598. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2599. cachep->name, cachep->num, slabp, slabp->inuse);
  2600. for (i = 0;
  2601. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2602. i++) {
  2603. if (i % 16 == 0)
  2604. printk("\n%03x:", i);
  2605. printk(" %02x", ((unsigned char *)slabp)[i]);
  2606. }
  2607. printk("\n");
  2608. BUG();
  2609. }
  2610. }
  2611. #else
  2612. #define kfree_debugcheck(x) do { } while(0)
  2613. #define cache_free_debugcheck(x,objp,z) (objp)
  2614. #define check_slabp(x,y) do { } while(0)
  2615. #endif
  2616. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2617. {
  2618. int batchcount;
  2619. struct kmem_list3 *l3;
  2620. struct array_cache *ac;
  2621. int node;
  2622. retry:
  2623. check_irq_off();
  2624. node = numa_node_id();
  2625. ac = cpu_cache_get(cachep);
  2626. batchcount = ac->batchcount;
  2627. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2628. /*
  2629. * If there was little recent activity on this cache, then
  2630. * perform only a partial refill. Otherwise we could generate
  2631. * refill bouncing.
  2632. */
  2633. batchcount = BATCHREFILL_LIMIT;
  2634. }
  2635. l3 = cachep->nodelists[node];
  2636. BUG_ON(ac->avail > 0 || !l3);
  2637. spin_lock(&l3->list_lock);
  2638. /* See if we can refill from the shared array */
  2639. if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
  2640. goto alloc_done;
  2641. while (batchcount > 0) {
  2642. struct list_head *entry;
  2643. struct slab *slabp;
  2644. /* Get slab alloc is to come from. */
  2645. entry = l3->slabs_partial.next;
  2646. if (entry == &l3->slabs_partial) {
  2647. l3->free_touched = 1;
  2648. entry = l3->slabs_free.next;
  2649. if (entry == &l3->slabs_free)
  2650. goto must_grow;
  2651. }
  2652. slabp = list_entry(entry, struct slab, list);
  2653. check_slabp(cachep, slabp);
  2654. check_spinlock_acquired(cachep);
  2655. /*
  2656. * The slab was either on partial or free list so
  2657. * there must be at least one object available for
  2658. * allocation.
  2659. */
  2660. BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
  2661. while (slabp->inuse < cachep->num && batchcount--) {
  2662. STATS_INC_ALLOCED(cachep);
  2663. STATS_INC_ACTIVE(cachep);
  2664. STATS_SET_HIGH(cachep);
  2665. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2666. node);
  2667. }
  2668. check_slabp(cachep, slabp);
  2669. /* move slabp to correct slabp list: */
  2670. list_del(&slabp->list);
  2671. if (slabp->free == BUFCTL_END)
  2672. list_add(&slabp->list, &l3->slabs_full);
  2673. else
  2674. list_add(&slabp->list, &l3->slabs_partial);
  2675. }
  2676. must_grow:
  2677. l3->free_objects -= ac->avail;
  2678. alloc_done:
  2679. spin_unlock(&l3->list_lock);
  2680. if (unlikely(!ac->avail)) {
  2681. int x;
  2682. x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
  2683. /* cache_grow can reenable interrupts, then ac could change. */
  2684. ac = cpu_cache_get(cachep);
  2685. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2686. return NULL;
  2687. if (!ac->avail) /* objects refilled by interrupt? */
  2688. goto retry;
  2689. }
  2690. ac->touched = 1;
  2691. return ac->entry[--ac->avail];
  2692. }
  2693. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2694. gfp_t flags)
  2695. {
  2696. might_sleep_if(flags & __GFP_WAIT);
  2697. #if DEBUG
  2698. kmem_flagcheck(cachep, flags);
  2699. #endif
  2700. }
  2701. #if DEBUG
  2702. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2703. gfp_t flags, void *objp, void *caller)
  2704. {
  2705. if (!objp)
  2706. return objp;
  2707. if (cachep->flags & SLAB_POISON) {
  2708. #ifdef CONFIG_DEBUG_PAGEALLOC
  2709. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2710. kernel_map_pages(virt_to_page(objp),
  2711. cachep->buffer_size / PAGE_SIZE, 1);
  2712. else
  2713. check_poison_obj(cachep, objp);
  2714. #else
  2715. check_poison_obj(cachep, objp);
  2716. #endif
  2717. poison_obj(cachep, objp, POISON_INUSE);
  2718. }
  2719. if (cachep->flags & SLAB_STORE_USER)
  2720. *dbg_userword(cachep, objp) = caller;
  2721. if (cachep->flags & SLAB_RED_ZONE) {
  2722. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2723. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2724. slab_error(cachep, "double free, or memory outside"
  2725. " object was overwritten");
  2726. printk(KERN_ERR
  2727. "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
  2728. objp, *dbg_redzone1(cachep, objp),
  2729. *dbg_redzone2(cachep, objp));
  2730. }
  2731. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2732. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2733. }
  2734. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2735. {
  2736. struct slab *slabp;
  2737. unsigned objnr;
  2738. slabp = page_get_slab(virt_to_head_page(objp));
  2739. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2740. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2741. }
  2742. #endif
  2743. objp += obj_offset(cachep);
  2744. if (cachep->ctor && cachep->flags & SLAB_POISON)
  2745. cachep->ctor(objp);
  2746. #if ARCH_SLAB_MINALIGN
  2747. if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
  2748. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2749. objp, ARCH_SLAB_MINALIGN);
  2750. }
  2751. #endif
  2752. return objp;
  2753. }
  2754. #else
  2755. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2756. #endif
  2757. #ifdef CONFIG_FAILSLAB
  2758. static struct failslab_attr {
  2759. struct fault_attr attr;
  2760. u32 ignore_gfp_wait;
  2761. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2762. struct dentry *ignore_gfp_wait_file;
  2763. #endif
  2764. } failslab = {
  2765. .attr = FAULT_ATTR_INITIALIZER,
  2766. .ignore_gfp_wait = 1,
  2767. };
  2768. static int __init setup_failslab(char *str)
  2769. {
  2770. return setup_fault_attr(&failslab.attr, str);
  2771. }
  2772. __setup("failslab=", setup_failslab);
  2773. static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2774. {
  2775. if (cachep == &cache_cache)
  2776. return 0;
  2777. if (flags & __GFP_NOFAIL)
  2778. return 0;
  2779. if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
  2780. return 0;
  2781. return should_fail(&failslab.attr, obj_size(cachep));
  2782. }
  2783. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2784. static int __init failslab_debugfs(void)
  2785. {
  2786. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2787. struct dentry *dir;
  2788. int err;
  2789. err = init_fault_attr_dentries(&failslab.attr, "failslab");
  2790. if (err)
  2791. return err;
  2792. dir = failslab.attr.dentries.dir;
  2793. failslab.ignore_gfp_wait_file =
  2794. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2795. &failslab.ignore_gfp_wait);
  2796. if (!failslab.ignore_gfp_wait_file) {
  2797. err = -ENOMEM;
  2798. debugfs_remove(failslab.ignore_gfp_wait_file);
  2799. cleanup_fault_attr_dentries(&failslab.attr);
  2800. }
  2801. return err;
  2802. }
  2803. late_initcall(failslab_debugfs);
  2804. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2805. #else /* CONFIG_FAILSLAB */
  2806. static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2807. {
  2808. return 0;
  2809. }
  2810. #endif /* CONFIG_FAILSLAB */
  2811. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2812. {
  2813. void *objp;
  2814. struct array_cache *ac;
  2815. check_irq_off();
  2816. ac = cpu_cache_get(cachep);
  2817. if (likely(ac->avail)) {
  2818. STATS_INC_ALLOCHIT(cachep);
  2819. ac->touched = 1;
  2820. objp = ac->entry[--ac->avail];
  2821. } else {
  2822. STATS_INC_ALLOCMISS(cachep);
  2823. objp = cache_alloc_refill(cachep, flags);
  2824. }
  2825. return objp;
  2826. }
  2827. #ifdef CONFIG_NUMA
  2828. /*
  2829. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2830. *
  2831. * If we are in_interrupt, then process context, including cpusets and
  2832. * mempolicy, may not apply and should not be used for allocation policy.
  2833. */
  2834. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2835. {
  2836. int nid_alloc, nid_here;
  2837. if (in_interrupt() || (flags & __GFP_THISNODE))
  2838. return NULL;
  2839. nid_alloc = nid_here = numa_node_id();
  2840. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2841. nid_alloc = cpuset_mem_spread_node();
  2842. else if (current->mempolicy)
  2843. nid_alloc = slab_node(current->mempolicy);
  2844. if (nid_alloc != nid_here)
  2845. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2846. return NULL;
  2847. }
  2848. /*
  2849. * Fallback function if there was no memory available and no objects on a
  2850. * certain node and fall back is permitted. First we scan all the
  2851. * available nodelists for available objects. If that fails then we
  2852. * perform an allocation without specifying a node. This allows the page
  2853. * allocator to do its reclaim / fallback magic. We then insert the
  2854. * slab into the proper nodelist and then allocate from it.
  2855. */
  2856. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2857. {
  2858. struct zonelist *zonelist;
  2859. gfp_t local_flags;
  2860. struct zoneref *z;
  2861. struct zone *zone;
  2862. enum zone_type high_zoneidx = gfp_zone(flags);
  2863. void *obj = NULL;
  2864. int nid;
  2865. if (flags & __GFP_THISNODE)
  2866. return NULL;
  2867. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  2868. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2869. retry:
  2870. /*
  2871. * Look through allowed nodes for objects available
  2872. * from existing per node queues.
  2873. */
  2874. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  2875. nid = zone_to_nid(zone);
  2876. if (cpuset_zone_allowed_hardwall(zone, flags) &&
  2877. cache->nodelists[nid] &&
  2878. cache->nodelists[nid]->free_objects) {
  2879. obj = ____cache_alloc_node(cache,
  2880. flags | GFP_THISNODE, nid);
  2881. if (obj)
  2882. break;
  2883. }
  2884. }
  2885. if (!obj) {
  2886. /*
  2887. * This allocation will be performed within the constraints
  2888. * of the current cpuset / memory policy requirements.
  2889. * We may trigger various forms of reclaim on the allowed
  2890. * set and go into memory reserves if necessary.
  2891. */
  2892. if (local_flags & __GFP_WAIT)
  2893. local_irq_enable();
  2894. kmem_flagcheck(cache, flags);
  2895. obj = kmem_getpages(cache, local_flags, -1);
  2896. if (local_flags & __GFP_WAIT)
  2897. local_irq_disable();
  2898. if (obj) {
  2899. /*
  2900. * Insert into the appropriate per node queues
  2901. */
  2902. nid = page_to_nid(virt_to_page(obj));
  2903. if (cache_grow(cache, flags, nid, obj)) {
  2904. obj = ____cache_alloc_node(cache,
  2905. flags | GFP_THISNODE, nid);
  2906. if (!obj)
  2907. /*
  2908. * Another processor may allocate the
  2909. * objects in the slab since we are
  2910. * not holding any locks.
  2911. */
  2912. goto retry;
  2913. } else {
  2914. /* cache_grow already freed obj */
  2915. obj = NULL;
  2916. }
  2917. }
  2918. }
  2919. return obj;
  2920. }
  2921. /*
  2922. * A interface to enable slab creation on nodeid
  2923. */
  2924. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2925. int nodeid)
  2926. {
  2927. struct list_head *entry;
  2928. struct slab *slabp;
  2929. struct kmem_list3 *l3;
  2930. void *obj;
  2931. int x;
  2932. l3 = cachep->nodelists[nodeid];
  2933. BUG_ON(!l3);
  2934. retry:
  2935. check_irq_off();
  2936. spin_lock(&l3->list_lock);
  2937. entry = l3->slabs_partial.next;
  2938. if (entry == &l3->slabs_partial) {
  2939. l3->free_touched = 1;
  2940. entry = l3->slabs_free.next;
  2941. if (entry == &l3->slabs_free)
  2942. goto must_grow;
  2943. }
  2944. slabp = list_entry(entry, struct slab, list);
  2945. check_spinlock_acquired_node(cachep, nodeid);
  2946. check_slabp(cachep, slabp);
  2947. STATS_INC_NODEALLOCS(cachep);
  2948. STATS_INC_ACTIVE(cachep);
  2949. STATS_SET_HIGH(cachep);
  2950. BUG_ON(slabp->inuse == cachep->num);
  2951. obj = slab_get_obj(cachep, slabp, nodeid);
  2952. check_slabp(cachep, slabp);
  2953. l3->free_objects--;
  2954. /* move slabp to correct slabp list: */
  2955. list_del(&slabp->list);
  2956. if (slabp->free == BUFCTL_END)
  2957. list_add(&slabp->list, &l3->slabs_full);
  2958. else
  2959. list_add(&slabp->list, &l3->slabs_partial);
  2960. spin_unlock(&l3->list_lock);
  2961. goto done;
  2962. must_grow:
  2963. spin_unlock(&l3->list_lock);
  2964. x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
  2965. if (x)
  2966. goto retry;
  2967. return fallback_alloc(cachep, flags);
  2968. done:
  2969. return obj;
  2970. }
  2971. /**
  2972. * kmem_cache_alloc_node - Allocate an object on the specified node
  2973. * @cachep: The cache to allocate from.
  2974. * @flags: See kmalloc().
  2975. * @nodeid: node number of the target node.
  2976. * @caller: return address of caller, used for debug information
  2977. *
  2978. * Identical to kmem_cache_alloc but it will allocate memory on the given
  2979. * node, which can improve the performance for cpu bound structures.
  2980. *
  2981. * Fallback to other node is possible if __GFP_THISNODE is not set.
  2982. */
  2983. static __always_inline void *
  2984. __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  2985. void *caller)
  2986. {
  2987. unsigned long save_flags;
  2988. void *ptr;
  2989. if (should_failslab(cachep, flags))
  2990. return NULL;
  2991. cache_alloc_debugcheck_before(cachep, flags);
  2992. local_irq_save(save_flags);
  2993. if (unlikely(nodeid == -1))
  2994. nodeid = numa_node_id();
  2995. if (unlikely(!cachep->nodelists[nodeid])) {
  2996. /* Node not bootstrapped yet */
  2997. ptr = fallback_alloc(cachep, flags);
  2998. goto out;
  2999. }
  3000. if (nodeid == numa_node_id()) {
  3001. /*
  3002. * Use the locally cached objects if possible.
  3003. * However ____cache_alloc does not allow fallback
  3004. * to other nodes. It may fail while we still have
  3005. * objects on other nodes available.
  3006. */
  3007. ptr = ____cache_alloc(cachep, flags);
  3008. if (ptr)
  3009. goto out;
  3010. }
  3011. /* ___cache_alloc_node can fall back to other nodes */
  3012. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  3013. out:
  3014. local_irq_restore(save_flags);
  3015. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  3016. if (unlikely((flags & __GFP_ZERO) && ptr))
  3017. memset(ptr, 0, obj_size(cachep));
  3018. return ptr;
  3019. }
  3020. static __always_inline void *
  3021. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  3022. {
  3023. void *objp;
  3024. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  3025. objp = alternate_node_alloc(cache, flags);
  3026. if (objp)
  3027. goto out;
  3028. }
  3029. objp = ____cache_alloc(cache, flags);
  3030. /*
  3031. * We may just have run out of memory on the local node.
  3032. * ____cache_alloc_node() knows how to locate memory on other nodes
  3033. */
  3034. if (!objp)
  3035. objp = ____cache_alloc_node(cache, flags, numa_node_id());
  3036. out:
  3037. return objp;
  3038. }
  3039. #else
  3040. static __always_inline void *
  3041. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3042. {
  3043. return ____cache_alloc(cachep, flags);
  3044. }
  3045. #endif /* CONFIG_NUMA */
  3046. static __always_inline void *
  3047. __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
  3048. {
  3049. unsigned long save_flags;
  3050. void *objp;
  3051. if (should_failslab(cachep, flags))
  3052. return NULL;
  3053. cache_alloc_debugcheck_before(cachep, flags);
  3054. local_irq_save(save_flags);
  3055. objp = __do_cache_alloc(cachep, flags);
  3056. local_irq_restore(save_flags);
  3057. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  3058. prefetchw(objp);
  3059. if (unlikely((flags & __GFP_ZERO) && objp))
  3060. memset(objp, 0, obj_size(cachep));
  3061. return objp;
  3062. }
  3063. /*
  3064. * Caller needs to acquire correct kmem_list's list_lock
  3065. */
  3066. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  3067. int node)
  3068. {
  3069. int i;
  3070. struct kmem_list3 *l3;
  3071. for (i = 0; i < nr_objects; i++) {
  3072. void *objp = objpp[i];
  3073. struct slab *slabp;
  3074. slabp = virt_to_slab(objp);
  3075. l3 = cachep->nodelists[node];
  3076. list_del(&slabp->list);
  3077. check_spinlock_acquired_node(cachep, node);
  3078. check_slabp(cachep, slabp);
  3079. slab_put_obj(cachep, slabp, objp, node);
  3080. STATS_DEC_ACTIVE(cachep);
  3081. l3->free_objects++;
  3082. check_slabp(cachep, slabp);
  3083. /* fixup slab chains */
  3084. if (slabp->inuse == 0) {
  3085. if (l3->free_objects > l3->free_limit) {
  3086. l3->free_objects -= cachep->num;
  3087. /* No need to drop any previously held
  3088. * lock here, even if we have a off-slab slab
  3089. * descriptor it is guaranteed to come from
  3090. * a different cache, refer to comments before
  3091. * alloc_slabmgmt.
  3092. */
  3093. slab_destroy(cachep, slabp);
  3094. } else {
  3095. list_add(&slabp->list, &l3->slabs_free);
  3096. }
  3097. } else {
  3098. /* Unconditionally move a slab to the end of the
  3099. * partial list on free - maximum time for the
  3100. * other objects to be freed, too.
  3101. */
  3102. list_add_tail(&slabp->list, &l3->slabs_partial);
  3103. }
  3104. }
  3105. }
  3106. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  3107. {
  3108. int batchcount;
  3109. struct kmem_list3 *l3;
  3110. int node = numa_node_id();
  3111. batchcount = ac->batchcount;
  3112. #if DEBUG
  3113. BUG_ON(!batchcount || batchcount > ac->avail);
  3114. #endif
  3115. check_irq_off();
  3116. l3 = cachep->nodelists[node];
  3117. spin_lock(&l3->list_lock);
  3118. if (l3->shared) {
  3119. struct array_cache *shared_array = l3->shared;
  3120. int max = shared_array->limit - shared_array->avail;
  3121. if (max) {
  3122. if (batchcount > max)
  3123. batchcount = max;
  3124. memcpy(&(shared_array->entry[shared_array->avail]),
  3125. ac->entry, sizeof(void *) * batchcount);
  3126. shared_array->avail += batchcount;
  3127. goto free_done;
  3128. }
  3129. }
  3130. free_block(cachep, ac->entry, batchcount, node);
  3131. free_done:
  3132. #if STATS
  3133. {
  3134. int i = 0;
  3135. struct list_head *p;
  3136. p = l3->slabs_free.next;
  3137. while (p != &(l3->slabs_free)) {
  3138. struct slab *slabp;
  3139. slabp = list_entry(p, struct slab, list);
  3140. BUG_ON(slabp->inuse);
  3141. i++;
  3142. p = p->next;
  3143. }
  3144. STATS_SET_FREEABLE(cachep, i);
  3145. }
  3146. #endif
  3147. spin_unlock(&l3->list_lock);
  3148. ac->avail -= batchcount;
  3149. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  3150. }
  3151. /*
  3152. * Release an obj back to its cache. If the obj has a constructed state, it must
  3153. * be in this state _before_ it is released. Called with disabled ints.
  3154. */
  3155. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  3156. {
  3157. struct array_cache *ac = cpu_cache_get(cachep);
  3158. check_irq_off();
  3159. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  3160. /*
  3161. * Skip calling cache_free_alien() when the platform is not numa.
  3162. * This will avoid cache misses that happen while accessing slabp (which
  3163. * is per page memory reference) to get nodeid. Instead use a global
  3164. * variable to skip the call, which is mostly likely to be present in
  3165. * the cache.
  3166. */
  3167. if (numa_platform && cache_free_alien(cachep, objp))
  3168. return;
  3169. if (likely(ac->avail < ac->limit)) {
  3170. STATS_INC_FREEHIT(cachep);
  3171. ac->entry[ac->avail++] = objp;
  3172. return;
  3173. } else {
  3174. STATS_INC_FREEMISS(cachep);
  3175. cache_flusharray(cachep, ac);
  3176. ac->entry[ac->avail++] = objp;
  3177. }
  3178. }
  3179. /**
  3180. * kmem_cache_alloc - Allocate an object
  3181. * @cachep: The cache to allocate from.
  3182. * @flags: See kmalloc().
  3183. *
  3184. * Allocate an object from this cache. The flags are only relevant
  3185. * if the cache has no available objects.
  3186. */
  3187. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3188. {
  3189. void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
  3190. kmemtrace_mark_alloc(KMEMTRACE_TYPE_CACHE, _RET_IP_, ret,
  3191. obj_size(cachep), cachep->buffer_size, flags);
  3192. return ret;
  3193. }
  3194. EXPORT_SYMBOL(kmem_cache_alloc);
  3195. #ifdef CONFIG_KMEMTRACE
  3196. void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
  3197. {
  3198. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  3199. }
  3200. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  3201. #endif
  3202. /**
  3203. * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
  3204. * @cachep: the cache we're checking against
  3205. * @ptr: pointer to validate
  3206. *
  3207. * This verifies that the untrusted pointer looks sane;
  3208. * it is _not_ a guarantee that the pointer is actually
  3209. * part of the slab cache in question, but it at least
  3210. * validates that the pointer can be dereferenced and
  3211. * looks half-way sane.
  3212. *
  3213. * Currently only used for dentry validation.
  3214. */
  3215. int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
  3216. {
  3217. unsigned long addr = (unsigned long)ptr;
  3218. unsigned long min_addr = PAGE_OFFSET;
  3219. unsigned long align_mask = BYTES_PER_WORD - 1;
  3220. unsigned long size = cachep->buffer_size;
  3221. struct page *page;
  3222. if (unlikely(addr < min_addr))
  3223. goto out;
  3224. if (unlikely(addr > (unsigned long)high_memory - size))
  3225. goto out;
  3226. if (unlikely(addr & align_mask))
  3227. goto out;
  3228. if (unlikely(!kern_addr_valid(addr)))
  3229. goto out;
  3230. if (unlikely(!kern_addr_valid(addr + size - 1)))
  3231. goto out;
  3232. page = virt_to_page(ptr);
  3233. if (unlikely(!PageSlab(page)))
  3234. goto out;
  3235. if (unlikely(page_get_cache(page) != cachep))
  3236. goto out;
  3237. return 1;
  3238. out:
  3239. return 0;
  3240. }
  3241. #ifdef CONFIG_NUMA
  3242. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3243. {
  3244. void *ret = __cache_alloc_node(cachep, flags, nodeid,
  3245. __builtin_return_address(0));
  3246. kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_CACHE, _RET_IP_, ret,
  3247. obj_size(cachep), cachep->buffer_size,
  3248. flags, nodeid);
  3249. return ret;
  3250. }
  3251. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3252. #ifdef CONFIG_KMEMTRACE
  3253. void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
  3254. gfp_t flags,
  3255. int nodeid)
  3256. {
  3257. return __cache_alloc_node(cachep, flags, nodeid,
  3258. __builtin_return_address(0));
  3259. }
  3260. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  3261. #endif
  3262. static __always_inline void *
  3263. __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
  3264. {
  3265. struct kmem_cache *cachep;
  3266. void *ret;
  3267. cachep = kmem_find_general_cachep(size, flags);
  3268. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3269. return cachep;
  3270. ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
  3271. kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC,
  3272. (unsigned long) caller, ret,
  3273. size, cachep->buffer_size, flags, node);
  3274. return ret;
  3275. }
  3276. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
  3277. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3278. {
  3279. return __do_kmalloc_node(size, flags, node,
  3280. __builtin_return_address(0));
  3281. }
  3282. EXPORT_SYMBOL(__kmalloc_node);
  3283. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3284. int node, unsigned long caller)
  3285. {
  3286. return __do_kmalloc_node(size, flags, node, (void *)caller);
  3287. }
  3288. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3289. #else
  3290. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3291. {
  3292. return __do_kmalloc_node(size, flags, node, NULL);
  3293. }
  3294. EXPORT_SYMBOL(__kmalloc_node);
  3295. #endif /* CONFIG_DEBUG_SLAB */
  3296. #endif /* CONFIG_NUMA */
  3297. /**
  3298. * __do_kmalloc - allocate memory
  3299. * @size: how many bytes of memory are required.
  3300. * @flags: the type of memory to allocate (see kmalloc).
  3301. * @caller: function caller for debug tracking of the caller
  3302. */
  3303. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3304. void *caller)
  3305. {
  3306. struct kmem_cache *cachep;
  3307. void *ret;
  3308. /* If you want to save a few bytes .text space: replace
  3309. * __ with kmem_.
  3310. * Then kmalloc uses the uninlined functions instead of the inline
  3311. * functions.
  3312. */
  3313. cachep = __find_general_cachep(size, flags);
  3314. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3315. return cachep;
  3316. ret = __cache_alloc(cachep, flags, caller);
  3317. kmemtrace_mark_alloc(KMEMTRACE_TYPE_KMALLOC,
  3318. (unsigned long) caller, ret,
  3319. size, cachep->buffer_size, flags);
  3320. return ret;
  3321. }
  3322. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
  3323. void *__kmalloc(size_t size, gfp_t flags)
  3324. {
  3325. return __do_kmalloc(size, flags, __builtin_return_address(0));
  3326. }
  3327. EXPORT_SYMBOL(__kmalloc);
  3328. void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
  3329. {
  3330. return __do_kmalloc(size, flags, (void *)caller);
  3331. }
  3332. EXPORT_SYMBOL(__kmalloc_track_caller);
  3333. #else
  3334. void *__kmalloc(size_t size, gfp_t flags)
  3335. {
  3336. return __do_kmalloc(size, flags, NULL);
  3337. }
  3338. EXPORT_SYMBOL(__kmalloc);
  3339. #endif
  3340. /**
  3341. * kmem_cache_free - Deallocate an object
  3342. * @cachep: The cache the allocation was from.
  3343. * @objp: The previously allocated object.
  3344. *
  3345. * Free an object which was previously allocated from this
  3346. * cache.
  3347. */
  3348. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3349. {
  3350. unsigned long flags;
  3351. local_irq_save(flags);
  3352. debug_check_no_locks_freed(objp, obj_size(cachep));
  3353. if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
  3354. debug_check_no_obj_freed(objp, obj_size(cachep));
  3355. __cache_free(cachep, objp);
  3356. local_irq_restore(flags);
  3357. kmemtrace_mark_free(KMEMTRACE_TYPE_CACHE, _RET_IP_, objp);
  3358. }
  3359. EXPORT_SYMBOL(kmem_cache_free);
  3360. /**
  3361. * kfree - free previously allocated memory
  3362. * @objp: pointer returned by kmalloc.
  3363. *
  3364. * If @objp is NULL, no operation is performed.
  3365. *
  3366. * Don't free memory not originally allocated by kmalloc()
  3367. * or you will run into trouble.
  3368. */
  3369. void kfree(const void *objp)
  3370. {
  3371. struct kmem_cache *c;
  3372. unsigned long flags;
  3373. if (unlikely(ZERO_OR_NULL_PTR(objp)))
  3374. return;
  3375. local_irq_save(flags);
  3376. kfree_debugcheck(objp);
  3377. c = virt_to_cache(objp);
  3378. debug_check_no_locks_freed(objp, obj_size(c));
  3379. debug_check_no_obj_freed(objp, obj_size(c));
  3380. __cache_free(c, (void *)objp);
  3381. local_irq_restore(flags);
  3382. kmemtrace_mark_free(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, objp);
  3383. }
  3384. EXPORT_SYMBOL(kfree);
  3385. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3386. {
  3387. return obj_size(cachep);
  3388. }
  3389. EXPORT_SYMBOL(kmem_cache_size);
  3390. const char *kmem_cache_name(struct kmem_cache *cachep)
  3391. {
  3392. return cachep->name;
  3393. }
  3394. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3395. /*
  3396. * This initializes kmem_list3 or resizes various caches for all nodes.
  3397. */
  3398. static int alloc_kmemlist(struct kmem_cache *cachep)
  3399. {
  3400. int node;
  3401. struct kmem_list3 *l3;
  3402. struct array_cache *new_shared;
  3403. struct array_cache **new_alien = NULL;
  3404. for_each_online_node(node) {
  3405. if (use_alien_caches) {
  3406. new_alien = alloc_alien_cache(node, cachep->limit);
  3407. if (!new_alien)
  3408. goto fail;
  3409. }
  3410. new_shared = NULL;
  3411. if (cachep->shared) {
  3412. new_shared = alloc_arraycache(node,
  3413. cachep->shared*cachep->batchcount,
  3414. 0xbaadf00d);
  3415. if (!new_shared) {
  3416. free_alien_cache(new_alien);
  3417. goto fail;
  3418. }
  3419. }
  3420. l3 = cachep->nodelists[node];
  3421. if (l3) {
  3422. struct array_cache *shared = l3->shared;
  3423. spin_lock_irq(&l3->list_lock);
  3424. if (shared)
  3425. free_block(cachep, shared->entry,
  3426. shared->avail, node);
  3427. l3->shared = new_shared;
  3428. if (!l3->alien) {
  3429. l3->alien = new_alien;
  3430. new_alien = NULL;
  3431. }
  3432. l3->free_limit = (1 + nr_cpus_node(node)) *
  3433. cachep->batchcount + cachep->num;
  3434. spin_unlock_irq(&l3->list_lock);
  3435. kfree(shared);
  3436. free_alien_cache(new_alien);
  3437. continue;
  3438. }
  3439. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  3440. if (!l3) {
  3441. free_alien_cache(new_alien);
  3442. kfree(new_shared);
  3443. goto fail;
  3444. }
  3445. kmem_list3_init(l3);
  3446. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3447. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3448. l3->shared = new_shared;
  3449. l3->alien = new_alien;
  3450. l3->free_limit = (1 + nr_cpus_node(node)) *
  3451. cachep->batchcount + cachep->num;
  3452. cachep->nodelists[node] = l3;
  3453. }
  3454. return 0;
  3455. fail:
  3456. if (!cachep->next.next) {
  3457. /* Cache is not active yet. Roll back what we did */
  3458. node--;
  3459. while (node >= 0) {
  3460. if (cachep->nodelists[node]) {
  3461. l3 = cachep->nodelists[node];
  3462. kfree(l3->shared);
  3463. free_alien_cache(l3->alien);
  3464. kfree(l3);
  3465. cachep->nodelists[node] = NULL;
  3466. }
  3467. node--;
  3468. }
  3469. }
  3470. return -ENOMEM;
  3471. }
  3472. struct ccupdate_struct {
  3473. struct kmem_cache *cachep;
  3474. struct array_cache *new[NR_CPUS];
  3475. };
  3476. static void do_ccupdate_local(void *info)
  3477. {
  3478. struct ccupdate_struct *new = info;
  3479. struct array_cache *old;
  3480. check_irq_off();
  3481. old = cpu_cache_get(new->cachep);
  3482. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3483. new->new[smp_processor_id()] = old;
  3484. }
  3485. /* Always called with the cache_chain_mutex held */
  3486. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3487. int batchcount, int shared)
  3488. {
  3489. struct ccupdate_struct *new;
  3490. int i;
  3491. new = kzalloc(sizeof(*new), GFP_KERNEL);
  3492. if (!new)
  3493. return -ENOMEM;
  3494. for_each_online_cpu(i) {
  3495. new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3496. batchcount);
  3497. if (!new->new[i]) {
  3498. for (i--; i >= 0; i--)
  3499. kfree(new->new[i]);
  3500. kfree(new);
  3501. return -ENOMEM;
  3502. }
  3503. }
  3504. new->cachep = cachep;
  3505. on_each_cpu(do_ccupdate_local, (void *)new, 1);
  3506. check_irq_on();
  3507. cachep->batchcount = batchcount;
  3508. cachep->limit = limit;
  3509. cachep->shared = shared;
  3510. for_each_online_cpu(i) {
  3511. struct array_cache *ccold = new->new[i];
  3512. if (!ccold)
  3513. continue;
  3514. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3515. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3516. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3517. kfree(ccold);
  3518. }
  3519. kfree(new);
  3520. return alloc_kmemlist(cachep);
  3521. }
  3522. /* Called with cache_chain_mutex held always */
  3523. static int enable_cpucache(struct kmem_cache *cachep)
  3524. {
  3525. int err;
  3526. int limit, shared;
  3527. /*
  3528. * The head array serves three purposes:
  3529. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3530. * - reduce the number of spinlock operations.
  3531. * - reduce the number of linked list operations on the slab and
  3532. * bufctl chains: array operations are cheaper.
  3533. * The numbers are guessed, we should auto-tune as described by
  3534. * Bonwick.
  3535. */
  3536. if (cachep->buffer_size > 131072)
  3537. limit = 1;
  3538. else if (cachep->buffer_size > PAGE_SIZE)
  3539. limit = 8;
  3540. else if (cachep->buffer_size > 1024)
  3541. limit = 24;
  3542. else if (cachep->buffer_size > 256)
  3543. limit = 54;
  3544. else
  3545. limit = 120;
  3546. /*
  3547. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3548. * allocation behaviour: Most allocs on one cpu, most free operations
  3549. * on another cpu. For these cases, an efficient object passing between
  3550. * cpus is necessary. This is provided by a shared array. The array
  3551. * replaces Bonwick's magazine layer.
  3552. * On uniprocessor, it's functionally equivalent (but less efficient)
  3553. * to a larger limit. Thus disabled by default.
  3554. */
  3555. shared = 0;
  3556. if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
  3557. shared = 8;
  3558. #if DEBUG
  3559. /*
  3560. * With debugging enabled, large batchcount lead to excessively long
  3561. * periods with disabled local interrupts. Limit the batchcount
  3562. */
  3563. if (limit > 32)
  3564. limit = 32;
  3565. #endif
  3566. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3567. if (err)
  3568. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3569. cachep->name, -err);
  3570. return err;
  3571. }
  3572. /*
  3573. * Drain an array if it contains any elements taking the l3 lock only if
  3574. * necessary. Note that the l3 listlock also protects the array_cache
  3575. * if drain_array() is used on the shared array.
  3576. */
  3577. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3578. struct array_cache *ac, int force, int node)
  3579. {
  3580. int tofree;
  3581. if (!ac || !ac->avail)
  3582. return;
  3583. if (ac->touched && !force) {
  3584. ac->touched = 0;
  3585. } else {
  3586. spin_lock_irq(&l3->list_lock);
  3587. if (ac->avail) {
  3588. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3589. if (tofree > ac->avail)
  3590. tofree = (ac->avail + 1) / 2;
  3591. free_block(cachep, ac->entry, tofree, node);
  3592. ac->avail -= tofree;
  3593. memmove(ac->entry, &(ac->entry[tofree]),
  3594. sizeof(void *) * ac->avail);
  3595. }
  3596. spin_unlock_irq(&l3->list_lock);
  3597. }
  3598. }
  3599. /**
  3600. * cache_reap - Reclaim memory from caches.
  3601. * @w: work descriptor
  3602. *
  3603. * Called from workqueue/eventd every few seconds.
  3604. * Purpose:
  3605. * - clear the per-cpu caches for this CPU.
  3606. * - return freeable pages to the main free memory pool.
  3607. *
  3608. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3609. * again on the next iteration.
  3610. */
  3611. static void cache_reap(struct work_struct *w)
  3612. {
  3613. struct kmem_cache *searchp;
  3614. struct kmem_list3 *l3;
  3615. int node = numa_node_id();
  3616. struct delayed_work *work =
  3617. container_of(w, struct delayed_work, work);
  3618. if (!mutex_trylock(&cache_chain_mutex))
  3619. /* Give up. Setup the next iteration. */
  3620. goto out;
  3621. list_for_each_entry(searchp, &cache_chain, next) {
  3622. check_irq_on();
  3623. /*
  3624. * We only take the l3 lock if absolutely necessary and we
  3625. * have established with reasonable certainty that
  3626. * we can do some work if the lock was obtained.
  3627. */
  3628. l3 = searchp->nodelists[node];
  3629. reap_alien(searchp, l3);
  3630. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3631. /*
  3632. * These are racy checks but it does not matter
  3633. * if we skip one check or scan twice.
  3634. */
  3635. if (time_after(l3->next_reap, jiffies))
  3636. goto next;
  3637. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3638. drain_array(searchp, l3, l3->shared, 0, node);
  3639. if (l3->free_touched)
  3640. l3->free_touched = 0;
  3641. else {
  3642. int freed;
  3643. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3644. 5 * searchp->num - 1) / (5 * searchp->num));
  3645. STATS_ADD_REAPED(searchp, freed);
  3646. }
  3647. next:
  3648. cond_resched();
  3649. }
  3650. check_irq_on();
  3651. mutex_unlock(&cache_chain_mutex);
  3652. next_reap_node();
  3653. out:
  3654. /* Set up the next iteration */
  3655. schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
  3656. }
  3657. #ifdef CONFIG_SLABINFO
  3658. static void print_slabinfo_header(struct seq_file *m)
  3659. {
  3660. /*
  3661. * Output format version, so at least we can change it
  3662. * without _too_ many complaints.
  3663. */
  3664. #if STATS
  3665. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3666. #else
  3667. seq_puts(m, "slabinfo - version: 2.1\n");
  3668. #endif
  3669. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3670. "<objperslab> <pagesperslab>");
  3671. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3672. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3673. #if STATS
  3674. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3675. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3676. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3677. #endif
  3678. seq_putc(m, '\n');
  3679. }
  3680. static void *s_start(struct seq_file *m, loff_t *pos)
  3681. {
  3682. loff_t n = *pos;
  3683. mutex_lock(&cache_chain_mutex);
  3684. if (!n)
  3685. print_slabinfo_header(m);
  3686. return seq_list_start(&cache_chain, *pos);
  3687. }
  3688. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3689. {
  3690. return seq_list_next(p, &cache_chain, pos);
  3691. }
  3692. static void s_stop(struct seq_file *m, void *p)
  3693. {
  3694. mutex_unlock(&cache_chain_mutex);
  3695. }
  3696. static int s_show(struct seq_file *m, void *p)
  3697. {
  3698. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3699. struct slab *slabp;
  3700. unsigned long active_objs;
  3701. unsigned long num_objs;
  3702. unsigned long active_slabs = 0;
  3703. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3704. const char *name;
  3705. char *error = NULL;
  3706. int node;
  3707. struct kmem_list3 *l3;
  3708. active_objs = 0;
  3709. num_slabs = 0;
  3710. for_each_online_node(node) {
  3711. l3 = cachep->nodelists[node];
  3712. if (!l3)
  3713. continue;
  3714. check_irq_on();
  3715. spin_lock_irq(&l3->list_lock);
  3716. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3717. if (slabp->inuse != cachep->num && !error)
  3718. error = "slabs_full accounting error";
  3719. active_objs += cachep->num;
  3720. active_slabs++;
  3721. }
  3722. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3723. if (slabp->inuse == cachep->num && !error)
  3724. error = "slabs_partial inuse accounting error";
  3725. if (!slabp->inuse && !error)
  3726. error = "slabs_partial/inuse accounting error";
  3727. active_objs += slabp->inuse;
  3728. active_slabs++;
  3729. }
  3730. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3731. if (slabp->inuse && !error)
  3732. error = "slabs_free/inuse accounting error";
  3733. num_slabs++;
  3734. }
  3735. free_objects += l3->free_objects;
  3736. if (l3->shared)
  3737. shared_avail += l3->shared->avail;
  3738. spin_unlock_irq(&l3->list_lock);
  3739. }
  3740. num_slabs += active_slabs;
  3741. num_objs = num_slabs * cachep->num;
  3742. if (num_objs - active_objs != free_objects && !error)
  3743. error = "free_objects accounting error";
  3744. name = cachep->name;
  3745. if (error)
  3746. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3747. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3748. name, active_objs, num_objs, cachep->buffer_size,
  3749. cachep->num, (1 << cachep->gfporder));
  3750. seq_printf(m, " : tunables %4u %4u %4u",
  3751. cachep->limit, cachep->batchcount, cachep->shared);
  3752. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3753. active_slabs, num_slabs, shared_avail);
  3754. #if STATS
  3755. { /* list3 stats */
  3756. unsigned long high = cachep->high_mark;
  3757. unsigned long allocs = cachep->num_allocations;
  3758. unsigned long grown = cachep->grown;
  3759. unsigned long reaped = cachep->reaped;
  3760. unsigned long errors = cachep->errors;
  3761. unsigned long max_freeable = cachep->max_freeable;
  3762. unsigned long node_allocs = cachep->node_allocs;
  3763. unsigned long node_frees = cachep->node_frees;
  3764. unsigned long overflows = cachep->node_overflow;
  3765. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3766. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3767. reaped, errors, max_freeable, node_allocs,
  3768. node_frees, overflows);
  3769. }
  3770. /* cpu stats */
  3771. {
  3772. unsigned long allochit = atomic_read(&cachep->allochit);
  3773. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3774. unsigned long freehit = atomic_read(&cachep->freehit);
  3775. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3776. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3777. allochit, allocmiss, freehit, freemiss);
  3778. }
  3779. #endif
  3780. seq_putc(m, '\n');
  3781. return 0;
  3782. }
  3783. /*
  3784. * slabinfo_op - iterator that generates /proc/slabinfo
  3785. *
  3786. * Output layout:
  3787. * cache-name
  3788. * num-active-objs
  3789. * total-objs
  3790. * object size
  3791. * num-active-slabs
  3792. * total-slabs
  3793. * num-pages-per-slab
  3794. * + further values on SMP and with statistics enabled
  3795. */
  3796. static const struct seq_operations slabinfo_op = {
  3797. .start = s_start,
  3798. .next = s_next,
  3799. .stop = s_stop,
  3800. .show = s_show,
  3801. };
  3802. #define MAX_SLABINFO_WRITE 128
  3803. /**
  3804. * slabinfo_write - Tuning for the slab allocator
  3805. * @file: unused
  3806. * @buffer: user buffer
  3807. * @count: data length
  3808. * @ppos: unused
  3809. */
  3810. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3811. size_t count, loff_t *ppos)
  3812. {
  3813. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3814. int limit, batchcount, shared, res;
  3815. struct kmem_cache *cachep;
  3816. if (count > MAX_SLABINFO_WRITE)
  3817. return -EINVAL;
  3818. if (copy_from_user(&kbuf, buffer, count))
  3819. return -EFAULT;
  3820. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3821. tmp = strchr(kbuf, ' ');
  3822. if (!tmp)
  3823. return -EINVAL;
  3824. *tmp = '\0';
  3825. tmp++;
  3826. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3827. return -EINVAL;
  3828. /* Find the cache in the chain of caches. */
  3829. mutex_lock(&cache_chain_mutex);
  3830. res = -EINVAL;
  3831. list_for_each_entry(cachep, &cache_chain, next) {
  3832. if (!strcmp(cachep->name, kbuf)) {
  3833. if (limit < 1 || batchcount < 1 ||
  3834. batchcount > limit || shared < 0) {
  3835. res = 0;
  3836. } else {
  3837. res = do_tune_cpucache(cachep, limit,
  3838. batchcount, shared);
  3839. }
  3840. break;
  3841. }
  3842. }
  3843. mutex_unlock(&cache_chain_mutex);
  3844. if (res >= 0)
  3845. res = count;
  3846. return res;
  3847. }
  3848. static int slabinfo_open(struct inode *inode, struct file *file)
  3849. {
  3850. return seq_open(file, &slabinfo_op);
  3851. }
  3852. static const struct file_operations proc_slabinfo_operations = {
  3853. .open = slabinfo_open,
  3854. .read = seq_read,
  3855. .write = slabinfo_write,
  3856. .llseek = seq_lseek,
  3857. .release = seq_release,
  3858. };
  3859. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3860. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3861. {
  3862. mutex_lock(&cache_chain_mutex);
  3863. return seq_list_start(&cache_chain, *pos);
  3864. }
  3865. static inline int add_caller(unsigned long *n, unsigned long v)
  3866. {
  3867. unsigned long *p;
  3868. int l;
  3869. if (!v)
  3870. return 1;
  3871. l = n[1];
  3872. p = n + 2;
  3873. while (l) {
  3874. int i = l/2;
  3875. unsigned long *q = p + 2 * i;
  3876. if (*q == v) {
  3877. q[1]++;
  3878. return 1;
  3879. }
  3880. if (*q > v) {
  3881. l = i;
  3882. } else {
  3883. p = q + 2;
  3884. l -= i + 1;
  3885. }
  3886. }
  3887. if (++n[1] == n[0])
  3888. return 0;
  3889. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3890. p[0] = v;
  3891. p[1] = 1;
  3892. return 1;
  3893. }
  3894. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3895. {
  3896. void *p;
  3897. int i;
  3898. if (n[0] == n[1])
  3899. return;
  3900. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3901. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3902. continue;
  3903. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3904. return;
  3905. }
  3906. }
  3907. static void show_symbol(struct seq_file *m, unsigned long address)
  3908. {
  3909. #ifdef CONFIG_KALLSYMS
  3910. unsigned long offset, size;
  3911. char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
  3912. if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
  3913. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3914. if (modname[0])
  3915. seq_printf(m, " [%s]", modname);
  3916. return;
  3917. }
  3918. #endif
  3919. seq_printf(m, "%p", (void *)address);
  3920. }
  3921. static int leaks_show(struct seq_file *m, void *p)
  3922. {
  3923. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3924. struct slab *slabp;
  3925. struct kmem_list3 *l3;
  3926. const char *name;
  3927. unsigned long *n = m->private;
  3928. int node;
  3929. int i;
  3930. if (!(cachep->flags & SLAB_STORE_USER))
  3931. return 0;
  3932. if (!(cachep->flags & SLAB_RED_ZONE))
  3933. return 0;
  3934. /* OK, we can do it */
  3935. n[1] = 0;
  3936. for_each_online_node(node) {
  3937. l3 = cachep->nodelists[node];
  3938. if (!l3)
  3939. continue;
  3940. check_irq_on();
  3941. spin_lock_irq(&l3->list_lock);
  3942. list_for_each_entry(slabp, &l3->slabs_full, list)
  3943. handle_slab(n, cachep, slabp);
  3944. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3945. handle_slab(n, cachep, slabp);
  3946. spin_unlock_irq(&l3->list_lock);
  3947. }
  3948. name = cachep->name;
  3949. if (n[0] == n[1]) {
  3950. /* Increase the buffer size */
  3951. mutex_unlock(&cache_chain_mutex);
  3952. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3953. if (!m->private) {
  3954. /* Too bad, we are really out */
  3955. m->private = n;
  3956. mutex_lock(&cache_chain_mutex);
  3957. return -ENOMEM;
  3958. }
  3959. *(unsigned long *)m->private = n[0] * 2;
  3960. kfree(n);
  3961. mutex_lock(&cache_chain_mutex);
  3962. /* Now make sure this entry will be retried */
  3963. m->count = m->size;
  3964. return 0;
  3965. }
  3966. for (i = 0; i < n[1]; i++) {
  3967. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3968. show_symbol(m, n[2*i+2]);
  3969. seq_putc(m, '\n');
  3970. }
  3971. return 0;
  3972. }
  3973. static const struct seq_operations slabstats_op = {
  3974. .start = leaks_start,
  3975. .next = s_next,
  3976. .stop = s_stop,
  3977. .show = leaks_show,
  3978. };
  3979. static int slabstats_open(struct inode *inode, struct file *file)
  3980. {
  3981. unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
  3982. int ret = -ENOMEM;
  3983. if (n) {
  3984. ret = seq_open(file, &slabstats_op);
  3985. if (!ret) {
  3986. struct seq_file *m = file->private_data;
  3987. *n = PAGE_SIZE / (2 * sizeof(unsigned long));
  3988. m->private = n;
  3989. n = NULL;
  3990. }
  3991. kfree(n);
  3992. }
  3993. return ret;
  3994. }
  3995. static const struct file_operations proc_slabstats_operations = {
  3996. .open = slabstats_open,
  3997. .read = seq_read,
  3998. .llseek = seq_lseek,
  3999. .release = seq_release_private,
  4000. };
  4001. #endif
  4002. static int __init slab_proc_init(void)
  4003. {
  4004. proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
  4005. #ifdef CONFIG_DEBUG_SLAB_LEAK
  4006. proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
  4007. #endif
  4008. return 0;
  4009. }
  4010. module_init(slab_proc_init);
  4011. #endif
  4012. /**
  4013. * ksize - get the actual amount of memory allocated for a given object
  4014. * @objp: Pointer to the object
  4015. *
  4016. * kmalloc may internally round up allocations and return more memory
  4017. * than requested. ksize() can be used to determine the actual amount of
  4018. * memory allocated. The caller may use this additional memory, even though
  4019. * a smaller amount of memory was initially specified with the kmalloc call.
  4020. * The caller must guarantee that objp points to a valid object previously
  4021. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  4022. * must not be freed during the duration of the call.
  4023. */
  4024. size_t ksize(const void *objp)
  4025. {
  4026. BUG_ON(!objp);
  4027. if (unlikely(objp == ZERO_SIZE_PTR))
  4028. return 0;
  4029. return obj_size(virt_to_cache(objp));
  4030. }